WO2017006724A1 - 原料ガスの精製装置、及び精製方法 - Google Patents

原料ガスの精製装置、及び精製方法 Download PDF

Info

Publication number
WO2017006724A1
WO2017006724A1 PCT/JP2016/067790 JP2016067790W WO2017006724A1 WO 2017006724 A1 WO2017006724 A1 WO 2017006724A1 JP 2016067790 W JP2016067790 W JP 2016067790W WO 2017006724 A1 WO2017006724 A1 WO 2017006724A1
Authority
WO
WIPO (PCT)
Prior art keywords
source gas
removal
cos
purifying
gas
Prior art date
Application number
PCT/JP2016/067790
Other languages
English (en)
French (fr)
Inventor
田中 幸男
繁 野島
昌之 江田
秋山 知雄
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/571,317 priority Critical patent/US20180119039A1/en
Publication of WO2017006724A1 publication Critical patent/WO2017006724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8606Removing sulfur compounds only one sulfur compound other than sulfur oxides or hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a source gas purification apparatus and a purification method.
  • untreated natural gas includes, in addition to hydrocarbons (HC) such as methane, CO 2 , H 2 S (hydrogen sulfide), COS (carbonyl sulfide), RSH (mercaptans), H 2 O, Hg ( Contains impurities such as mercury).
  • HC hydrocarbons
  • methane CO 2
  • H 2 S hydrogen sulfide
  • COS carbonyl sulfide
  • RSH mercaptans
  • H 2 O Hg
  • Hg Contains impurities such as mercury
  • Patent Document 1 As one of the techniques for solving the above problems, a method according to Patent Document 1 is known which employs a guard bed for hydrolyzing COS to H 2 S prior to chemical absorption of a source gas. .
  • the metal oxide material for decomposing COS since the metal oxide material for decomposing COS is used in combination with the Hg adsorbent, there is a possibility that the resolution of the COS by the metal oxide material may be deteriorated early.
  • H 2 S is contained in a large amount in the source gas, there is a fear that COS can not be converted to H 2 S.
  • Patent Document 1 describes that gas-liquid separation by cooling is effective with respect to the RSH treatment method.
  • the present invention has been made in view of the above circumstances, and it is possible to provide a source gas purification apparatus and a purification method in which the burden of cost, labor and the like in the process is reduced and the system is simplified. With the goal.
  • the present invention in order to achieve the object, an apparatus for purifying the raw material gas, and at least a hydrocarbon, and H 2 S, from a raw material gas containing sulfur compounds other than H 2 S, the H 2 S a first H 2 S removal device for removing the conversion device of the sulfur compounds to convert the sulfur compounds other than the H 2 S in H 2 S, the second H 2 S to remove the conversion has been H 2 S And a removing device.
  • the sulfur compounds other than H 2 S can be made COS and RSH.
  • the conversion device of the sulfur compound can be configured as a COS-RSH conversion catalyst device.
  • the first H 2 S removal apparatus can be configured as a chemical absorption apparatus.
  • the second H 2 S removal apparatus can be configured as an adsorption / desorption apparatus using an adsorbent.
  • the adsorbent is preferably a molecular sieve or zinc oxide.
  • the raw material gas purification apparatus according to the present invention may further include, in another embodiment, an H 2 S combustion apparatus and a limestone-type desulfurization apparatus for treating an exhaust gas from the H 2 S combustion apparatus.
  • the first H 2 S removal device H 2 S separation membrane, or the H 2 S separation apparatus having a H 2 S adsorbent can be configured as a chemical absorption device.
  • the second H 2 S removal device can be configured as an adsorption / desorption device.
  • a mercury removal apparatus can be further provided immediately before the conversion apparatus of the sulfur compound.
  • the present invention in another aspect, is a method of purifying a feed gas, the method of purifying the feed gas comprising at least a hydrocarbon, H 2 S, and a sulfur compound other than H 2 S. a first H 2 S removal step of removing H 2 S, and conversion processes of the sulfur compounds other than the H 2 S sulfur compound which is converted to a H 2 S, the second to remove the conversion has been H 2 S And an H 2 S removing step.
  • the sulfur compound other than H 2 S can be made COS and RSH.
  • the conversion step of the sulfur compound can be carried out as a COS-RSH conversion catalyst step.
  • the method for purifying a source gas according to the present invention can implement the first H 2 S removing step as a chemical absorption step in another embodiment.
  • the second H 2 S removing step can be carried out as a removing step by an adsorption / desorption device configured using an adsorbent.
  • the adsorbent is preferably a molecular sieve or zinc oxide.
  • the purification method of the raw material gas according to the present invention may further include, in another embodiment, a H 2 S combustion process and a limestone-type desulfurization process for treating an exhaust gas from the H 2 S combustion process.
  • the second H 2 S removing step can be performed as a chemical absorption step.
  • Purification method for raw material gas in accordance with the present invention use in other embodiments, the first H 2 S removal process to H 2 S separation membrane, or the H 2 S separation apparatus having a H 2 S adsorbent
  • the second H 2 S removal step can be carried out as an adsorption step using an adsorption / desorption device.
  • a mercury removal step can be further provided immediately before the conversion step of the sulfur compound.
  • the burden of cost, labor, etc. in the process is reduced, and the system is simplified.
  • a purification apparatus, and a purification method are provided.
  • FIG. 1 conceptually shows a first embodiment of a raw material gas purification apparatus according to the present invention.
  • the raw material gas purification apparatus according to the present embodiment is provided with a CO 2 separation device 1, a chemical absorption device 2, a sulfur compound conversion catalyst device 3, and an adsorption / desorption device 4 as main components.
  • natural gas containing sulfur compounds other than CO 2 , H 2 S, H 2 S (mainly COS and RSH), and H 2 O as impurities is treated. It is used as the target source gas.
  • the raw material gas to be treated according to the present invention is not limited to natural gas, and, for example, coal gasification gas, synthesis gas, coke oven gas, petroleum gas (accompanying gas associated with crude oil production, etc.), etc. can include, but is not limited thereto, as long as the gas containing acid gases such as H 2 S, the application of interest. That is, the object of the present embodiment and other embodiments of the present invention is not limited to natural gas.
  • the CO 2 separation device 1 is provided as one form of the CO 2 removal device.
  • the CO 2 separation device 1 is a device that removes the CO 2 and the other gas components by using the difference in mobility of the CO 2 and the other gas components in the film.
  • a CO 2 separation membrane is mainly used, and more specifically, a known one composed of a polymer material such as cellulose, polysulfone, polyimide, an inorganic material such as zeolite, and carbon It can be adopted.
  • the chemical absorption device 2 is provided as one form of a first H 2 S removal device. In addition to the removal of H 2 S, the chemical absorption device 2 also removes remaining CO 2 that has not been completely removed by the CO 2 separation device 1.
  • the remaining CO 2 and H 2 S are absorbed and removed by bringing an amine absorbing solution containing an amine compound into contact with the raw material gas. After such absorption and removal, CO 2 and H 2 S are dissipated by heating the amine absorbing solution, and the amine absorbing solution is regenerated.
  • An amine is a compound that exhibits weak basicity , and has the characteristics of adsorbing an acidic substance such as CO 2 and H 2 S and emitting it by applying heat. This feature can be exploited and used as an acid gas absorbent.
  • an absorbing solution based on MDEA N-methyldiethanolamine
  • the raw material gas from which CO 2 and H 2 S have been removed is sent to the sulfur compound conversion catalyst device 3.
  • the raw material gas from which CO 2 and H 2 S have been removed contains, in addition to hydrocarbons such as methane, COS, RSH and H 2 O.
  • the sulfur compound conversion catalyst device 3 is provided as one form of a conversion device of a sulfur compound.
  • the sulfur compound conversion catalyst device 3 according to the present embodiment is configured as a COS / RSH conversion catalyst device provided with a forward COS conversion catalyst device 3A and a downstream RSH conversion catalyst device 3B.
  • COS conversion catalyst device 3A COS is converted to H 2 S
  • RSH conversion catalyst device 3B RSH is converted to H 2 S.
  • COS conversion catalyst used in the COS conversion catalyst device 3A using Al 2 O 3 and / or TiO 2 as a support, calcium, magnesium, strontium, zinc, iron, copper, manganese, chromium, barium, nickel, ruthenium, cobalt And a catalyst containing, as a main component, at least one metal selected from the group consisting of molybdenum.
  • the RSH conversion catalyst used in the RSH conversion catalyst device 3B include at least one solid acid catalyst selected from silica-alumina, zeolite and the like.
  • the COS conversion catalyst device 3A and the RSH conversion catalyst device 3B are arranged in tandem so that the smaller one of COS and RSH is to be treated first. Capped, the resulting H 2 S increases, generation system becomes large abundance of H 2 S, because the reaction in the direction that produces a chemical equilibrium on H 2 S becomes difficult to proceed. By processing the one with the smaller proportion first, it is possible to facilitate later conversion of the conversion target with less H 2 S. In general natural gas, since RSH has a larger presence ratio, it is preferable to dispose the COS conversion catalyst device 3A first and convert COS first.
  • the COS conversion catalyst device 3A and the RSH conversion catalyst device 3B are integrally configured in the same reaction vessel, and at least one member belonging to Group V, Group VI, and Group VII as the inorganic oxide support It is also possible to carry out a catalyst on which the metal of the present invention is supported, using, for example, a catalyst such as C-Mo / alumina etc., in the form of simultaneously promoting the conversion of both COS and RSH. Furthermore, only one of the COS conversion catalyst device 3A and the RSH conversion catalyst device 3B can be operated according to the properties of the raw material gas to be treated. Alternatively, only one of them may be provided.
  • the adsorption / desorption device 4 is provided as one form of a second H 2 S removal device.
  • the material constituting the adsorption / desorption device 4 can be an adsorbent such as molecular sieve or zinc oxide employing a known material such as artificial zeolite.
  • the adsorption / desorption device 4 adsorbs and removes H 2 S and H 2 O from the sulfur compound conversion catalyst device 3.
  • the adsorption / desorption device 4 is regenerated by desorbing H 2 S and H 2 O by heating and depressurization.
  • the source gas purification apparatus further includes, as other components, an NGL recovery apparatus 5, an H 2 S combustion apparatus 6, and a lime plaster type desulfurization apparatus 7.
  • the NGL recovery unit 5 is a hydrocarbon obtained by removing H 2 S and H 2 O by the adsorption / desorption unit 4 as C1 hydrocarbon (methane), C2-4 hydrocarbon (hydrocarbon having 2 to 4 carbon atoms) And C5 + (hydrocarbon having 5 or more carbon atoms).
  • the NGL recovery device 5 separates hydrocarbons by a known method such as cryogenic separation process using a turbo expander.
  • the H 2 S combustion device 6 is a device for burning and processing H 2 S and COS, and can be configured by a known combustion device such as a combustion burner.
  • the limestone type desulfurization apparatus 7 is an apparatus for recovering SO 2 (sulfurous acid gas) generated by burning H 2 S and COS as gypsum (CaSO 4 .2H 2 O).
  • SO 2 sulfurous acid gas
  • gypsum CaSO 4 .2H 2 O
  • a well-known one can be adopted as the lime-gypsum desulfurization apparatus 7.
  • limestone (CaCO 3 ) is suspended in water to make a limestone slurry, and this slurry is used as an absorption tower
  • the exhaust gas is brought into contact with the exhaust gas to absorb and remove SO 2 in the exhaust gas, and is further converted to gypsum with oxygen in the exhaust gas and oxygen in the air introduced into the absorption tower.
  • the source gas is introduced into the CO 2 separation device 1.
  • the CO 2 separation device 1 separates and removes CO 2 contained in the source gas from other gas components by a separation membrane.
  • the raw material gas from which CO 2 has been removed is introduced into the chemical absorption device 2.
  • the chemical absorption device 2 removes H 2 S by chemical absorption. Furthermore, in addition to the removal of H 2 S, the chemical absorption device 2 can also remove remaining CO 2 that has not been completely removed by the CO 2 separation device 1. In addition, a part of COS is also absorbed and removed. Further, if the CO 2 concentration in the feed gas is low, the separated and removed to CO 2, using only a chemical absorber 2, it may be omitted CO 2 separator 1.
  • the raw material gas from which CO 2 and H 2 S have been removed is sent to the sulfur compound conversion catalyst device 3.
  • the source gas from which CO 2 and H 2 S have been removed contains, in addition to hydrocarbons such as methane, sulfur compounds other than H 2 S (denoted as COS and RSH in FIG. 1), H 2 O It is done.
  • the temperature of the introduced steam is preferably 100 to 700 ° C., more preferably 300 ° C. or more.
  • a gas containing hydrocarbon, H 2 S, and H 2 O obtained after converting COS and RSH into H 2 S by the sulfur compound conversion catalyst device 3 is introduced into the adsorption / desorption device 4 via the cooler 8 Do.
  • the adsorption / desorption device 4 adsorbs and removes H 2 S and H 2 O contained in the gas.
  • the gas from which H 2 S and H 2 O are removed is a hydrocarbon of high purity, and is sent to the NGL recovery unit 5.
  • the adsorption / desorption device 4 is regenerated by desorbing H 2 S and H 2 O by heating and depressurization.
  • the desorbed H 2 S and H 2 O are carried by the C1 hydrocarbon (methane) supplied from the NGL recovery unit 5 and join the source gas from the CO 2 separation unit 1 (at * in FIG. 1) , Is introduced into the chemical absorption device 2.
  • the gas sent to the NGL recovery unit 5 is separated into C1 hydrocarbon (methane), C2-4 hydrocarbon (hydrocarbon having 2 to 4 carbon atoms), and C5 + hydrocarbon (hydrocarbon having 5 or more carbon atoms). Ru. Part of the C1 hydrocarbon after NGL recovery is sent as an auxiliary fuel to the H 2 S combustion device 6 separately from the one recovered as a product. C2-4 hydrocarbons, and C5 + hydrocarbons are recovered as products.
  • the chemical absorption device 2 dissipates H 2 S, COS, and CO 2 by heating the amine absorption liquid.
  • H 2 S, COS, and CO 2 is fed into the H 2 S combustion device 6.
  • the C 1 hydrocarbon from the NGL recovery device 5 is also fed to the H 2 S combustion device 6.
  • the C 1 hydrocarbon, H 2 S, and COS are burned in the H 2 S combustion device 6.
  • the exhaust gas obtained after burning the C1 hydrocarbon, H 2 S, and COS is sent to the lime plaster type desulfurization device 7 via the heat exchanger 9.
  • the heat obtained by the heat exchanger 9 can be used to generate steam at a temperature exceeding 300 ° C. supplied to the sulfur compound conversion catalyst device 3.
  • the limestone type desulfurization apparatus 7 recovers SO 2 (sulfurous acid gas) obtained by burning H 2 S and COS as gypsum (CaSO 4 .2H 2 O).
  • SO 2 sulfurous acid gas
  • gypsum limestone
  • limestone (CaCO 3 ) is suspended in water to make a limestone slurry, this slurry is brought into contact with exhaust gas in an absorption tower, and SO 2 in exhaust gas is absorbed and removed, and further in exhaust gas. Oxygen and oxygen in the air introduced into the absorber make gypsum.
  • the absorption process such as the chemical absorption process may be performed in one process, and burdens such as cost and labor in the process can be reduced.
  • the system is simple.
  • the S component is recovered as gypsum (CaSO 4 ⁇ 2H 2 O), and the storage burden is also small.
  • FIG. 2 conceptually shows a second embodiment of the source gas purification apparatus according to the present invention.
  • the second embodiment shows the first embodiment at a more specific level.
  • the manner of illustration of the second embodiment in FIG. 2 is apparently different in comparison with the first embodiment, and is described as the second embodiment in order to facilitate the description.
  • the CO 2 separation device 21 is the CO 2 separation device 1
  • the chemical absorption device 22 is the chemical absorption device 2
  • the COS conversion catalyst device 23 A is the COS conversion catalyst device 3 A.
  • the conversion catalyst device 23B corresponds to the RSH conversion catalyst device 3B, and the adsorption / desorption devices 24A and 24B correspond to the adsorption / desorption device 4, and the contents described for the first embodiment of these constituent devices are the same as those of this embodiment. It is incorporated into the form. In FIG. 2, the H 2 S combustion device, the NGL recovery device, and the limestone gypsum desulfurization device are not shown.
  • the source gas is introduced into the CO 2 separation device 21.
  • the CO 2 separation device 21 separates and removes CO 2 contained in the source gas from other gas components by a separation membrane. If the present invention is to feed gas membrane separation as a target for CO 2 ratio in the feed gas, the gas on the primary side outlet proportion of CO 2 is reduced in film, the secondary side CO 2 A gas with an increased proportion of is obtained. If the ratio of CO 2 in the primary side outlet gas of the membrane does not reach the target, it is combined with the absorption method. That is, the chemical absorption device 22 plays this role.
  • heat can be recovered by burning the off-gas on the secondary side (OFG in FIG. 2) and using it as a heat source.
  • the off gas may be pressurized again, recycled to the primary side, and recovered as a product.
  • heat recovery is performed by burning off gas (OFG in FIG. 2) on the secondary side.
  • the raw material gas from which CO 2 has been removed is introduced into the chemical absorption device 22.
  • the chemical absorption device 22 removes H 2 S by chemical absorption. Furthermore, in addition to the removal of H 2 S, the chemical absorption device 22 can also remove remaining CO 2 that has not been completely removed by the CO 2 separation device 1. In addition, a part of COS is also absorbed and removed.
  • the chemical absorption device 22 dissipates H 2 S, COS, and CO 2 by heating the amine absorption liquid. H 2 S, COS, and CO 2 are fed into the H 2 S combustor. Further, if the CO 2 concentration in the feed gas is low, the separated and removed to CO 2, using only a chemical absorber 2, it may be omitted CO 2 separator 1.
  • the raw material gas from which CO 2 and H 2 S have been removed is heated by the heat exchanger 25 with the gas from the RSH conversion catalyst device 23 B, and further, the heat exchanger 26 burns the H 2 S combustion gas and the off gas. It is heated by the resulting combustion gas, preferably to a temperature above 300.degree.
  • the raw material gas from which CO 2 and H 2 S have been removed is sent to the COS conversion catalyst device 23A and then to the RSH conversion catalyst device 23B.
  • Material gas has a temperature exceeding 300 ° C.
  • COS conversion catalyst device 23A of the pre-swirl COS is converted to H 2 S, at RSH conversion catalyst device 23B on the downstream, RSH is converted to H 2 S Be done.
  • the COS conversion catalyst device 23A and the RSH conversion catalyst device 23B are preferably arranged in tandem so that the smaller one of COS and RSH is to be treated first.
  • generation system becomes large abundance of H 2 S, because the reaction in the direction that produces a chemical equilibrium on H 2 S becomes difficult to proceed.
  • a gas containing hydrocarbon, H 2 S, and H 2 O obtained after converting COS and RSH into H 2 S is introduced into the adsorption / desorption devices 24 A, 24 B via the cooler 27.
  • the cooling water cools the gas.
  • the adsorption and desorption devices 24A and 24B adsorb and remove H 2 S and H 2 O contained in the gas.
  • the gas from which H 2 S and H 2 O have been removed is a hydrocarbon of high purity, and is sent to an NGL recovery device (not shown).
  • the adsorption / desorption devices 24A, 24B are regenerated by desorbing H 2 S and H 2 O by heating or depressurization.
  • the desorbed H 2 S and H 2 O are carried by C 1 hydrocarbon (methane) supplied from the NGL recovery device, join with the raw material gas from the CO 2 separation device 21, and are introduced into the chemical absorption device 22 .
  • adsorption-desorption apparatus 24B are closed, H 2 S, and H 2 O is adsorbed by the adsorption and desorption apparatus 24A.
  • H 2 S and H 2 O can be desorbed by opening a valve (not shown) and heating / depressurizing the adsorption / desorption device 24B.
  • the adsorption and desorption devices 24A and 24B alternately repeat adsorption and desorption to enable continuous operation of the entire device.
  • the second embodiment describes the first embodiment at a more specific level. Therefore, the second embodiment has the same effect as the first embodiment. It is understood that, in addition to such basic effects, in the second embodiment, the combustion of the off gas has the effect of improving the thermal efficiency of the system. Further, in the second embodiment, it is also understood that by alternately repeating adsorption / desorption for the two adsorption towers constituting the adsorption / desorption device, there is an effect that continuous operation of the entire device is enabled. Ru.
  • FIG. 3 conceptually shows a third embodiment of the source gas purification apparatus according to the present invention.
  • This third embodiment as the first H 2 S removal device employs a H 2 S separation device 31, the sulfur compounds other than H 2 S as a conversion device of the sulfur compounds is converted to H 2 S is The same sulfur compound conversion catalyst device 32 as that of the first embodiment is adopted, and a chemical absorption device 33 similar to that of the first embodiment is adopted as a second H 2 S removal device.
  • the CO 2 separation device 34, the adsorption and desorption device 35, the NGL recovery device 36, the H 2 S combustion device 37, and the limestone gypsum desulfurization device 38 have the same basic configuration as the first embodiment.
  • the contents described for the first embodiment for constituent devices with the same name other than the H 2 S separation device 31 are basically incorporated in the present embodiment.
  • the H 2 S separation device 31 uses an H 2 S separation membrane to contain sulfur compounds other than CO 2 , H 2 S, H 2 S (mainly COS or RSH), H 2 O, in addition to hydrocarbons such as methane. It is an apparatus for selectively removing H 2 S from natural gas contained as an impurity.
  • the H 2 S separation membrane it is possible to use a material having the property of being easy to permeate H 2 S and carbon dioxide gas as described in JP-A-7-155787, etc. and to hardly permeate methane and the like.
  • an H 2 S separation membrane one composed of silicon, polyimide, and cellulose acetate can be exemplified.
  • adsorption of H 2 S by molecular sieve or zinc oxide may be performed.
  • the present embodiment will be described by describing the action mechanism of the constituent devices.
  • the third embodiment of the method for purifying a source gas according to the present invention will be described with an explanation of such an action mechanism.
  • the source gas is introduced into the CO 2 separation device 34.
  • the CO 2 separation device 34 separates and removes CO 2 contained in the source gas from other gas components by a separation membrane.
  • the raw material gas from which CO 2 has been removed is introduced into the H 2 S separation device 31.
  • H 2 S is removed by an H 2 S separation membrane or an adsorbent.
  • the removed H 2 S is burned by the H 2 S combustor 37.
  • the remaining CO 2 not completely removed by the CO 2 separation device 34 can be removed.
  • the raw material gas from which CO 2 and H 2 S have been removed is sent to the sulfur compound conversion catalyst device 32.
  • the source gas from which CO 2 and H 2 S have been removed contains, in addition to hydrocarbons such as methane, sulfur compounds other than H 2 S (denoted as COS and RSH in FIG. 3), H 2 O It is done.
  • steam at a temperature exceeding 300 ° C. is introduced into each of the COS conversion catalyst device 32A and the RSH conversion catalyst device 32B that constitute the sulfur compound conversion catalyst device 32, and COS is introduced by the COS conversion catalyst device 32A of the front stream. Convert to H 2 S and turn RSH to H 2 S in the downstream RSH conversion catalyst unit 32 B.
  • Gas containing hydrocarbon, H 2 S, CO 2 (by-product), and H 2 O which is obtained after converting COS and RSH to H 2 S by the sulfur compound conversion catalyst device 32, is supplied to the chemical absorption device 33. Introduce.
  • the chemical absorption device 33 adsorbs and removes H 2 S and CO 2 contained in the gas.
  • the gas from which H 2 S and CO 2 have been removed contains hydrocarbons and H 2 O, and is sent to the adsorption / desorption device 35 via the cooler 39.
  • H 2 O is adsorbed and removed.
  • the adsorption and desorption device 35 is regenerated by desorbing H 2 O by heating and depressurization.
  • the desorbed H 2 O is transported by the C1 hydrocarbon (methane) supplied from the NGL recovery device 5 and joins the C1 hydrocarbon discharge line (at * in the figure).
  • the gas sent to the NGL recovery unit 36 is separated into C1 hydrocarbon (methane), C2-4 hydrocarbon (hydrocarbon having 2 to 4 carbon atoms), and C5 + hydrocarbon (hydrocarbon having 5 or more carbon atoms). Ru.
  • C1 hydrocarbons are partially sent to the adsorption / desorption device 35 as described above, and the other portion is sent to the H 2 S combustion device 37.
  • C2-4 hydrocarbons, and C5 + hydrocarbons are recovered as products.
  • the chemical absorption device 33 dissipates H 2 S and CO 2 by heating the amine absorption liquid.
  • the H 2 S and CO 2 are fed to the H 2 S combustion device 37.
  • the C 1 hydrocarbon from the NGL recovery unit 36 is also fed to the H 2 S combustion unit 37 as described above.
  • the C 1 hydrocarbon and H 2 S are burned by the H 2 S combustion device 37.
  • the exhaust gas obtained after burning the C1 hydrocarbon and H 2 S is sent to the limestone gypsum desulfurization device 38 via the heat exchanger 40.
  • the heat obtained by the heat exchanger 40 can be used to generate steam at a temperature exceeding 300 ° C. supplied to the sulfur compound conversion catalyst device 32.
  • the limestone type desulfurization apparatus 38 recovers SO 2 (sulfurous acid gas) obtained by burning H 2 S and COS as gypsum (CaSO 4 ⁇ 2H 2 O).
  • SO 2 sulfurous acid gas
  • gypsum limestone
  • limestone (CaCO 3 ) is suspended in water to make a limestone slurry, this slurry is brought into contact with the exhaust gas in an absorption tower, and SO 2 in the exhaust gas is absorbed and removed, Oxygen and oxygen in the air introduced into the absorber make gypsum.
  • the chemical absorption device 33 may not be provided.
  • all gases containing hydrocarbons, H 2 S and H 2 O are sent from the sulfur compound conversion catalyst device 32 to the adsorption and desorption device 35 to adsorb H 2 S and H 2 O.
  • high purity hydrocarbons are obtained and sent to the NGL recovery unit 36.
  • H 2 S and H 2 O are desorbed from the adsorption / desorption device 35 by the C 1 hydrocarbon from the NGL recovery device 36, and are sent to the H 2 S separation device 31.
  • the other processing can be the same as that of the third embodiment.
  • FIG. 4 conceptually shows a fourth embodiment of the source gas purification apparatus according to the present invention.
  • the sulfur compound conversion catalyst device 3 is provided with the mercury removing device 10 immediately before.
  • hydrocarbons such as methane, natural gas containing sulfur compounds other than CO 2 , H 2 S, H 2 S (mainly COS and RSH), H 2 O, Hg as impurities, It is used as the source gas to be processed.
  • components given the same reference numerals as in FIG. 1 have substantially the same configuration as FIG. 1 and perform substantially the same function.
  • the operation mechanism of the present embodiment that is, one embodiment of the method of purifying the source gas according to the present invention is substantially the same as that described with reference to FIG. However, it is different in that the process of the mercury removal which makes the mercury removal apparatus 10 act is added.
  • the mercury removal apparatus 10 is installed for the purpose of removing mercury (Hg alone or organic mercury) which is a trace component.
  • mercury removal apparatus 10 which can be employ
  • adopted what makes activated carbon a physical adsorption agent can also be used as a molecular sieve. However, such a physical adsorption method tends to increase the capacity of the device. Therefore, as a guard reactor for the sulfur compound conversion catalyst device 3, one incorporating a mercury adsorbent (chemical adsorbent) is preferable.
  • a mercury adsorption agent incorporated As a mercury adsorption agent incorporated, a sulfide (CuS, and / or MoS 3 or the like) is suitable.
  • a mercury adsorbent With such a form of employing a mercury adsorbent, it is possible to realize a large amount of adsorption and save space because of chemical adsorption. In addition, since mercury is fixedly adsorbed as sulfide, immobilization is possible regardless of mercury species.
  • the heating temperature of the mercury adsorbent is around 100 to 300 ° C., and a heat source similar to that for heating the sulfur compound conversion catalyst device 3 can be employed.
  • the fourth embodiment in addition to the effects of the first embodiment, it is also possible to expect an effect that mercury contained in the source gas can be effectively removed. In addition, an effect of preventing the poisoning of the conversion catalyst used for the sulfur compound conversion catalyst device 3 present in the rear stream can also be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスから、該HSを除去する第一のHS除去装置2と、前記HS以外の硫黄化合物をHSに転換する硫黄化合物の転換装置3と、前記転換されたHSを除去する第二のHS除去装置4とを備えることとした。

Description

原料ガスの精製装置、及び精製方法
 本発明は、原料ガスの精製装置、及び精製方法に関する。
 従来、未処理の原料ガスが、硫黄化合物、及びCO(二酸化炭素)等の不純物を含む場合、これらを除去することが行われている。例えば、未処理の天然ガスは、メタン等の炭化水素(HC)の他に、CO、HS(硫化水素)、COS(硫化カルボニル)、RSH(メルカプタン類)、HO、Hg(水銀)等の不純物を含んでいる。
 このような不純物を除去するための従来の手法として、例えば、以下のような手法が採用されている。
 (1)アミン化合物を用いた化学吸収によって、CO、並びにHS、及びCOSの一部を除去する。
 (2)モレキュラーシーブによって、RSH、及びHOを除去する。
 (3)モレキュラーシーブは、加熱や減圧によりRSH、及びHOを脱着することによって再生される。
 (4)脱着したRSHは、物理吸収によって除去する。
 (5)(1)の工程で除去できなかったCOSは、回収したNGLからメロックスプロセスやモレキュラーシーブを用いて除去する。
 (6)そして、除去・回収したHS、COS、及びRSHは、HS部分燃焼、クラウス反応を介して、S分を固化した硫黄として回収している。
 しかし、このような手法では、化学吸収、物理吸収といったように吸収工程が少なくとも二工程必要であり、液の補充が工程上の大きな負担となり、ランニングコストが嵩み、かつ全体にシステムが複雑であった。加えて、固化した硫黄は、貯蔵監督を厳格に行わなければならず、管理上の負担が大きかった。
米国特許公開第2014/0357926 A1号公報
 上記の課題を解決する技術の一つとして、原料ガスを化学吸収することに先立って、COSをHSに加水分解するためのガードベッドを採用する特許文献1に係る方法が知られている。しかし、特許文献1に係る方法は、COSを分解するための酸化金属材料をHg吸着剤と併用しているため、酸化金属材料によるCOSの分解能が早期に劣化する恐れがあった。さらに、原料ガス中にHSが多く含まれる状態では、COSをHSに転換できないといった恐れがあった。
 また、特許文献1は、RSHの処理方法に関しては,冷却による気液分離が有効である旨記載している。しかし、このような方法では、NGL(天然ガス生産過程で生じる天然ガスコンデンセート)が共存しない天然ガスからの有機硫黄化合物の除去には有効であるものの、特許文献1で想定されていないNGLが共存した場合、同じ温度で液化するNGL成分と混合することになり、価値の高いNGLを製品として回収するために、NGLから有機硫黄化合物を更に分離する操作が必要となるという難点がある。
 NGLからの有機硫黄化合物除去については、メロックス(Merox)プロセスやモレキュラーシーブ等の適用により可能であるが、このような有機硫黄化合物除去のための機器を更に付加すると、プロセスが複雑化し,設備コストが高くなる等の課題がある。
 本発明は、以上のような実情に鑑みてなされたもので、工程上のコスト・労力等の負担軽減を図り、システムの簡素化を図った原料ガスの精製装置、及び精製方法を提供することを目的とする。
 本発明は、前記目的を達成するために、原料ガスの精製装置であって、少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスから、該HSを除去する第一のHS除去装置と、前記HS以外の硫黄化合物をHSに転換する硫黄化合物の転換装置と、前記転換されたHSを除去する第二のHS除去装置とを備える。
 本発明に係る原料ガスの精製装置は、その一実施の形態で、前記HS以外の硫黄化合物を、COS、及びRSHとすることができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記硫黄化合物の転換装置をCOS・RSH転換触媒装置として構成することができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記第一のHS除去装置を化学吸収装置として構成することができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記第二のHS除去装置を、吸着剤を用いた吸脱着装置として構成することができる。吸着剤としては、好適には、モレキュラーシーブ、又は酸化亜鉛である。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、HS燃焼装置と、該HS燃焼装置からの排ガスを処理する石灰石膏式脱硫装置をさらに含むことができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記第一のHS除去装置をHS分離膜、又はHS吸着剤を備えたHS分離装置とし、前記第二のHS除去装置を化学吸収装置として構成することができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記第一のHS除去装置をHS分離膜、又はHS吸着剤を備えたHS分離装置とし、前記第二のHS除去装置を吸脱着装置として構成することができる。
 本発明に係る原料ガスの精製装置は、他の実施の形態で、前記硫黄化合物の転換装置の直前に水銀除去装置を更に設けることができる。
 本発明は、他の側面において、原料ガスの精製方法であり、該原料ガスの精製方法は、少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスから、該HSを除去する第一のHS除去工程と、前記HS以外の硫黄化合物をHSに転換する硫黄化合物の転換工程と、前記転換されたHSを除去する第二のHS除去工程とを備える。
 本発明に係る原料ガスの精製方法は、その一実施の形態で、前記HS以外の硫黄化合物を、COS、及びRSHとすることができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記硫黄化合物の転換工程をCOS・RSH転換触媒工程として実施することができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記第一のHS除去工程を化学吸収工程として実施することができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記第二のHS除去工程を、吸着剤を用いて構成した吸脱着装置による除去工程として実施することができる。吸着剤としては、好適には、モレキュラーシーブ、又は酸化亜鉛である。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、HS燃焼工程と、該HS燃焼工程からの排ガスを処理する石灰石膏式脱硫工程を更に含むことができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記第一のHS除去工程をHS分離膜、又はHS吸着剤を備えたHS分離装置による分離工程とし、前記第二のHS除去工程を化学吸収工程として実施することができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記第一のHS除去工程をHS分離膜、又はHS吸着剤を備えたHS分離装置を用いた工程とし、前記第二のHS除去工程を吸脱着装置による吸着工程として実施することができる。
 本発明に係る原料ガスの精製方法は、他の実施の形態で、前記硫黄化合物の転換工程の直前に水銀除去工程を更に設けることができる。
 本発明によれば、少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスについて、工程上のコスト・労力等の負担軽減を図り、システムの簡素化を図った、精製装置、及び精製方法が提供される。
本発明に係る原料ガス精製装置の第一の実施の形態を説明する概念図である。 本発明に係る原料ガス精製装置の第二の実施の形態を説明する概念図である。 本発明に係る原料ガス精製装置の第三の実施の形態を説明する概念図である。 本発明に係る原料ガス精製装置の第四の実施の形態を説明する概念図である。
 以下、本発明に係る原料ガスの精製装置、及び精製方法の実施の形態を、添付図面を参照しながら説明する。
 原料ガスの精製装置(第一の実施の形態)
 図1に、本発明に係る原料ガスの精製装置について、第一の実施の形態を概念的に示す。
 本実施の形態に係る原料ガスの精製装置は、主たる構成要素として、CO分離装置1、化学吸収装置2、硫黄化合物転換触媒装置3、及び吸脱着装置4を備えている。
 本実施の形態では、メタン等の炭化水素の他に、CO、HS、HS以外の硫黄化合物(主にはCOSやRSH)、HOを不純物として含む天然ガスを、処理対象の原料
ガスとしている。
 なお、本発明の処理対象となる原料ガスとしては、天然ガスに限らず、他に、例えば石炭ガス化ガス、合成ガス、コークス炉ガス、石油ガス(原油の生産に伴う随伴ガス等)等を挙げることができるが、これらに限定されるものではなく、HS等の酸性ガスを含むガスであれば、適用の対象となる。すなわち、本実施の形態、及び本発明の他の実施の形態の対象は、天然ガスに限られるものではない。
 CO分離装置1は、CO除去装置の一形態として設けられている。CO分離装置1は、膜中のCOと他のガス成分の移動度の差を利用し、COと他のガス成分とを除去する装置である。CO分離装置1としては、主にCO分離膜が用いられ、より具体的には、セルロース、ポリスルフォン、ポリイミド等の高分子材料、ゼオライト及びカーボン等の無機材料により構成した公知のものを採用することができる。
 化学吸収装置2は、第一のHS除去装置の一形態として設けられている。なお、化学吸収装置2は、HSの除去に加え、CO分離装置1で除去し切っていない残余のCOも除去する。
 化学吸着装置2では、例えば、アミン化合物を含むアミン吸収液と、原料ガスとを接触させることにより、残余のCO、及びHSを吸収除去する。なお、このような吸収除去の後、アミン吸収液を加熱することによって、CO、及びHSが放散され、アミン吸収液が再生される。
 アミンは、弱い塩基性を示す化合物であり、CO2、及びHSのような酸性物質を吸着し、熱を与えることにより放散する特徴を有している。この特徴を活用し、酸性ガスの吸収液として用いることができる。アミン吸収液としては、MDEA(N-メチルジエタノールアミン)をベースとする吸収液等を用いることができる。
 また、CO、及びHSが除去された原料ガスは、硫黄化合物転換触媒装置3に送られる。なお、CO、及びHSが除去された原料ガスには、メタン等の炭化水素の他に、COS、RSH、HOが含まれている。
 硫黄化合物転換触媒装置3は、硫黄化合物の転換装置の一形態として設けられている。本実施の形態に係る硫黄化合物転換触媒装置3は、前流のCOS転換触媒装置3Aと、後流のRSH転換触媒装置3Bとを備えるCOS・RSH転換触媒装置として構成されている。COS転換触媒装置3Aでは、COSがHSに転換され、RSH転換触媒装置3Bでは、RSHがHSに転換される。
 COS転換触媒装置3Aで用いられるCOS転換触媒としては、Al及び/又はTiOを担体とし、カルシウム、マグネシウム、ストロンチウム、亜鉛、鉄、銅、マンガン、クロム、バリウム、ニッケル、ルテニウム、コバルト、モリブデンからなる群から選択される金属の少なくとも1種を主成分とする活性成分とする触媒を例示することができる。
 RSH転換触媒装置3Bで用いられるRSH転換触媒としては、シリカ-アルミナ及びゼオライト等から選択される少なくとも1種の固体酸触媒を挙げることができる。
 なお、COS転換触媒装置3Aと、RSH転換触媒装置3Bとは、COS、及びRSHのうち、存在割合の少ないほうを先に処理対象とするように相前後して配置することが好適である。けだし、生成するHSが多くなると、生成系にHSの存在量が多くなり、化学平衡上HSを生成する方向に反応が進みにくくなるためである。存在割合の少ないほうを先に処理することで、HSがより少ない状態で、後の転換対象の転換を進み易くすることができる。
 なお、一般的な天然ガスでは、RSHのほうが存在割合が大きいので、COS転換触媒装置3Aを先に配置し、COSの転換を先に行うことが好適である。
 なおまた、COS転換触媒装置3Aと、RSH転換触媒装置3Bとは、同一の反応容器内に一体に構成し、無機酸化物担体に第V族、第VI属及び第VII属に属する少なくとも1種の金属を担持させた触媒であって、例えばC-Mo/アルミナ等といった触媒を用いて、COSとRSHの両方の転換を同時に進行させる形態として実行することもできる。
 さらに、COS転換触媒装置3Aと、RSH転換触媒装置3Bとは、処理対処の原料ガスの性状に応じて、いずれか一方のみ稼働させるようにすることもできる。または、いずれか一方のみ設けるといったことも可能である。
 吸脱着装置4は、第二のHS除去装置の一形態として設けられている。吸脱着装置4を構成する素材は、人工ゼオライト等の公知のものを採用したモレキュラーシーブ又は酸化亜鉛等の吸着剤とすることができる。吸脱着装置4は、硫黄化合物転換触媒装置3からのHS、及びHOを吸着除去する。吸脱着装置4は、加熱と減圧によりHS、及びHOを脱着することによって再生される。
 図1に示すように、本実施の形態に係る原料ガスの精製装置は、他の構成要素として、NGL回収装置5、HS燃焼装置6、及び石灰石膏式脱硫装置7を更に備える。
 NGL回収装置5は、吸脱着装置4でHS、及びHOが除去されて得られる炭化水素を、C1炭化水素(メタン)、C2-4炭化水素(炭素数2~4の炭化水素)、及びC5+(炭素数5以上の炭化水素)に分離する装置である。NGL回収装置5は、ターボエキスパンダーを用いた深冷分離プロセス等の公知の手法によって、炭化水素を分離する。
 HS燃焼装置6は、HS、COSを燃焼処理するための装置であり、燃焼バーナー等の公知の燃焼装置で構成することができる。
 石灰石膏式脱硫装置7は、HS、COSを燃焼することによって生成されるSO(亜硫酸ガス)を石膏(CaSO・2HO)として回収するための装置である。石灰石膏式脱硫装置7としては、公知のものを採用することができ、該装置7では、一般的に、石灰石(CaCO)を水に懸濁させて石灰石スラリーを作り、このスラリーを吸収塔で排ガスと接触させ、排ガス中のSOを吸収除去し、さらに排ガス中の酸素及び吸収塔に導入される空気中の酸素により石膏とする。
 原料ガスの精製方法(第一の実施の形態)
 次に、図1の機器構成を備える本実施の形態に係る原料ガスの精製装置の作用機序を説明することによって、本発明に係る原料ガスの精製方法の一実施の形態を説明する。
 まず、本実施の形態では、原料ガスを、CO分離装置1に導入する。CO分離装置1は、原料ガスに含まれるCOを他のガス成分から分離膜によって分離除去する。
 次いで、COを除去した原料ガスを、化学吸収装置2に導入する。化学吸収装置2では、化学吸収によってHSを除去する。さらに、化学吸収装置2では、HSの除去に加え、CO分離装置1で除去し切っていない残余のCOも除去することができる。なお、COSの一部も吸収除去される。また、原料ガス中のCO濃度が低い場合には、COの分離除去に、化学吸収装置2のみを用い、CO分離装置1を省略してもよい。
 CO、及びHSが除去された原料ガスを、硫黄化合物転換触媒装置3に送る。CO、及びHSが除去された原料ガスには、メタン等の炭化水素の他に、HS以外の硫黄化合物(図1中では、COS、RSHと表記)、HOが含まれている。
 硫黄化合物転換触媒装置3を構成するCOS転換触媒装置3A、及びRSH転換触媒装置3Bのそれぞれに、蒸気を導入し、前流のCOS転換触媒装置3Aで、COSをHSに転換し、後流のRSH転換触媒装置3Bで、RSHをHSに転換する。導入される蒸気の温度は、100~700℃が好ましく、300℃を越える温度が更に好ましい。
 硫黄化合物転換触媒装置3により、COS及びRSHをHSに転換した後得られる、炭化水素、HS、及びHOを含むガスを、冷却器8を介して吸脱着装置4に導入する。吸脱着装置4は、ガスに含まれるHS、及びHOを吸着除去する。
 HS、及びHOを除去されたガスは、純度の高い炭化水素となっており、NGL回収装置5に送られる。
 吸脱着装置4は、加熱と減圧によりHS、及びHOを脱着することによって再生される。脱着したHS、及びHOは、NGL回収装置5から供給されるC1炭化水素(メタン)によって搬送され、CO分離装置1からの原料ガスに合流し(図1中の※で)、化学吸収装置2に導入される。
 NGL回収装置5に送られたガスは、C1炭化水素(メタン)、C2-4炭化水素(炭素数2~4の炭化水素)、及びC5+炭化水素(炭素数5以上の炭化水素)に分離される。
 NGL回収後のC1炭化水素は、成果物として回収されるものとは別に、一部がHS燃焼装置6に補助燃料として送られる。
 C2-4炭化水素、及びC5+炭化水素は、成果物として回収される。
 一方、化学吸収装置2は、アミン吸収液を加熱操作することにより、HS、COS、及びCOを放散する。HS、COS、及びCOS燃焼装置6に送り込まれる。
 HS燃焼装置6には、NGL回収装置5からのC1炭化水素も送り込まれる。C1炭化水素、HS、及びCOSは、HS燃焼装置6で燃焼される。
 C1炭化水素、HS、COSを燃焼した後得られる排ガスは、熱交換器9を経由して石灰石膏式脱硫装置7に送られる。
 熱交換器9で得られる熱は、硫黄化合物転換触媒装置3に供給される300℃を越える温度の蒸気の生成に用いることができる。
 石灰石膏式脱硫装置7では、HS、COSを燃焼して得られるSO(亜硫酸ガス)を石膏(CaSO・2HO)として回収する。石灰石膏式脱硫装置7では、石灰石(CaCO)を水に懸濁させて石灰石スラリーを作り、このスラリーを吸収塔で排ガスと接触させ、排ガス中のSOを吸収除去し、さらに排ガス中の酸素及び吸収塔に導入される空気中の酸素により石膏とする。
 本第一の実施の形態に係る原料ガスの精製装置、及び方法によれば、化学吸収工程といった吸収工程は、一工程で済み、工程上のコスト・労力等の負担軽減を図ることができる。また、システムも簡素である。加えて、S成分を石膏(CaSO・2HO)として
回収しており、貯蔵上の負担も少ない。
 原料ガスの精製装置、及び精製方法(第二の実施の形態)
 図2に、本発明に係る原料ガスの精製装置について、第二の実施の形態を概念的に示す。
 本第二の実施の形態は、第一の実施の形態をより具体的レベルで示すものである。しかし、図2における本第二の実施の形態の図示のされ方が、第一の実施の形態と対比して見掛け上異なっており、説明を容易とするために第二の実施の形態として説明する。
 本第二の実施の形態で、CO分離装置21は、CO分離装置1に、化学吸収装置22は、化学吸収装置2に、COS転換触媒装置23Aは、COS転換触媒装置3Aに、RSH転換触媒装置23Bは、RSH転換触媒装置3Bに、吸脱着装置24A、24Bは、吸脱着装置4にそれぞれ相当し、これらの構成機器について第一の実施の形態について説明した内容は、本実施の形態に援用する。
 なお、図2において、HS燃焼装置、NGL回収装置、石灰石膏式脱硫装置は、図示を省略されている。
 次に、本第二の実施の形態について、構成機器の作用機序を説明することによって本実施の形態を説明する。なお、このような作用機序の説明をもって、本発明に係る原料ガスの精製方法について、第二の実施の形態の説明とする。
 まず、図2に示すように、原料ガスを、CO分離装置21に導入する。CO分離装置21は、原料ガスに含まれるCOを他のガス成分から分離膜によって分離除去する。
 本発明が対象とするような原料ガスを膜分離した場合、原料ガス中のCO割合に対して、膜の一次側出口にはCOの割合が減少したガス、二次側にはCOの割合が増したガスが得られる。
 膜の一次側出口ガス中のCO割合が目標に未達の場合には、吸収法と組み合わせる。すなわち、化学吸収装置22は、この役割を担う。一方、二次側にもメタン等の可燃性ガスの一部が含まれることから、二次側のオフガス(図2中OFG)を燃焼させ、熱源として用いることにより熱回収することができる。または、オフガスを再昇圧し、一次側にリサイクルし、製品として回収する操作を行うこととしてもよい。 
 本実施の形態では、二次側のオフガス(図2中OFG)を燃焼して熱回収することとしている。
 次いで、COを除去した原料ガスを、化学吸収装置22に導入する。化学吸収装置22では、化学吸収によってHSを除去する。さらに、化学吸収装置22では、HSの除去に加え、CO分離装置1で除去し切っていない残余のCOも除去することができる。なお、COSの一部も吸収除去される。
 なお、化学吸収装置22は、アミン吸収液を加熱操作することにより、HS、COS、及びCOを放散する。HS、COS、及びCOS燃焼装置に送り込まれ
る。
 また、原料ガス中のCO濃度が低い場合には、COの分離除去に、化学吸収装置2のみを用い、CO分離装置1を省略してもよい。
 CO、及びHSを除去した原料ガスは、熱交換器25でRSH転換触媒装置23Bからのガスにより加熱され、さらに、熱交換器26でHS燃焼ガス、及びオフガスを燃焼して得られる燃焼ガスにより加熱され、好ましくは300℃を越える温度となる。
 さらに、CO、及びHSが除去された原料ガスを、COS転換触媒装置23Aに送り、次いでRSH転換触媒装置23Bに送る。原料ガスは、300℃を越える温度となっており、前流のCOS転換触媒装置23Aで、COSがHSに転換され、後流のRSH転換触媒装置23Bで、RSHがHSに転換される。
 COS転換触媒装置23Aと、RSH転換触媒装置23Bとは、COS、及びRSHのうち、存在割合の少ないほうを先に処理対象とするように相前後して配置することが好適である。生成するHSが多くなると、生成系にHSの存在量が多くなり、化学平衡上HSを生成する方向に反応が進みにくくなるためである。存在割合の少ないほうを先に処理することで、HSがより少ない状態で、後の転換対象の転換を進み易くすることができる。
 なお、本実施の形態では、RSHのほうが存在割合が大きい場合を想定し、COS転換触媒装置23Aを先に配置し、COSの転換を先に行うこととしている。
 COS及びRSHをHSに転換した後得られる、炭化水素、HS、及びHOを含むガスを、冷却器27を介して吸脱着装置24A、24Bに導入する。冷却器27では、クーリングウォターにより、ガスを冷却する。吸脱着装置24A、24Bは、ガスに含まれるHS、及びHOを吸着除去する。
 HS、及びHOを除去されたガスは、純度の高い炭化水素となっており、図示しないNGL回収装置に送られる。
 吸脱着装置24A、24Bは、加熱や減圧によりHS、及びHOを脱着することによって再生される。脱着したHS、及びHOは、NGL回収装置から供給されるC1炭化水素(メタン)によって搬送され、CO分離装置21からの原料ガスに合流し、化学吸収装置22に導入される。
 図示の状態では、吸脱着装置24Bが閉成されており、吸脱着装置24AでHS、及びHOが吸着されている。図示しない弁を開放し、吸脱着装置24Bを加熱・減圧することにより、HS、及びHOを脱着することができる。
 このように、吸脱着装置24A、24Bは、交互に吸着・脱着を繰り返すことにより、装置全体の連続運転が可能となる。
 前述したように本第二の実施の形態は、第一の実施の形態をより具体的レベルで説明するものである。したがって、本第二の実施の形態は、第一の実施の形態と同様の効果を奏する。このような基本的効果に加えて、本第二の実施の形態では、オフガスの燃焼により、システムの熱効率が向上するといった効果を奏することが了解される。また、本第二の実施の形態では、吸脱着装置を構成する二つの吸着塔について、交互に吸着・脱着を繰り返すことにより、装置全体の連続運転を可能とするといった効果を奏することも了解される。
 原料ガスの精製装置、及び精製方法(第三の実施の形態)
 図3に、本発明に係る原料ガスの精製装置について、第三の実施の形態を概念的に示す。
 本第三の実施の形態は、第一のHS除去装置として、HS分離装置31を採用し、HS以外の硫黄化合物をHSに転換する硫黄化合物の転換装置としては、第一の実施の形態と同様の硫黄化合物転換触媒装置32を採用し、第一の実施の形態と同様の化学吸収装置33を第二のHS除去装置として採用するものである。
 CO分離装置34、吸脱着装置35、NGL回収装置36、HS燃焼装置37、及び石灰石膏式脱硫装置38は、第一の実施の形態と基本的構成を同様としている。
 HS分離装置31以外の同一名称の構成機器について、第一の実施の形態について説明した内容は、基本的に本実施の形態に援用する。
 HS分離装置31は、HS分離膜によって、メタン等の炭化水素の他に、CO、HS、HS以外の硫黄化合物(主にCOSやRSH)、HOを不純物として含む天然ガスから、HSを選択的に除去する装置である。
 HS分離膜としては、特開平7-155787号公報等に記載されているようなHSや炭酸ガスは透過しやすく、メタン等は透過しにくい性質を有する材料を用いることができる。このようなHS分離膜としては、シリコン、ポリイミド、酢酸セルロースにより構成したものを例示することができる。
 なお、このようなHS分離膜を用いた膜分離とする他、モレキュラーシーブ、又は酸化亜鉛によるHSの吸着を行う構成とすることもできる。
 次に、本第三の実施の形態について、構成機器の作用機序を説明することによって本実施の形態を説明する。なお、このような作用機序の説明をもって、本発明に係る原料ガスの精製方法について、第三の実施の形態の説明とする。
 まず、本実施の形態では、原料ガスを、CO分離装置34に導入する。CO分離装置34は、原料ガスに含まれるCOを他のガス成分から分離膜によって分離除去する。
 次いで、COを除去した原料ガスを、HS分離装置31に導入する。HS分離装置31では、HS分離膜、又は吸着剤によってHSを除去する。除去したHSは、HS燃焼装置37で燃焼する。さらに、HS分離装置31では、HSの除去に加え、CO分離装置34で除去し切っていない残余のCOも除去することができる。
 CO、及びHSが除去された原料ガスを、硫黄化合物転換触媒装置32に送る。CO、及びHSが除去された原料ガスには、メタン等の炭化水素の他に、HS以外の硫黄化合物(図3中では、COS、RSHと表記)、HOが含まれている。
 硫黄化合物転換触媒装置32を構成するCOS転換触媒装置32A、及びRSH転換触媒装置32Bのそれぞれに、好ましくは300℃を越える温度の蒸気を導入し、前流のCOS転換触媒装置32Aで、COSをHSに転換し、後流のRSH転換触媒装置32Bで、RSHをHSにする。
 硫黄化合物転換触媒装置32により、COS及びRSHをHSに転換した後得られる、炭化水素、HS、CO(副生物)、及びHOを含むガスを、化学吸収装置33に導入する。化学吸収装置33は、ガスに含まれるHS、及びCOを吸着除去する。
 HS、及びCOを除去されたガスは、炭化水素、及びHOを含み、冷却器39を介して吸脱着装置35に送られる。
 吸脱着装置35では、HOが吸着除去される。
 吸脱着装置35は、加熱と減圧によりHOを脱着することによって再生される。脱着したHOは、NGL回収装置5から供給されるC1炭化水素(メタン)によって搬送され、C1炭化水素の搬出ラインに(図中※で)合流する。
 NGL回収装置36に送られたガスは、C1炭化水素(メタン)、C2-4炭化水素(炭素数2~4の炭化水素)、及びC5+炭化水素(炭素数5以上の炭化水素)に分離される。
 C1炭化水素は、成果物として回収されるものとは別に、一部が前記したように吸脱着装置35に送られ、また他の一部がHS燃焼装置37に送られる。
 C2-4炭化水素、及びC5+炭化水素は、成果物として回収される。
 一方、化学吸収装置33は、アミン吸収液を加熱操作することにより、HS、及びCOを放散する。HS、及びCOS燃焼装置37に送り込まれる。
 HS燃焼装置37には、前記したようにNGL回収装置36からのC1炭化水素も送り込まれる。C1炭化水素、及びHSは、HS燃焼装置37で燃焼される。
 C1炭化水素、HSを燃焼した後得られる排ガスは、熱交換器40を経由して石灰石膏式脱硫装置38に送られる。
 熱交換器40で得られる熱は、硫黄化合物転換触媒装置32に供給される300℃を越える温度の蒸気の生成に用いることができる。
 石灰石膏式脱硫装置38では、HS、COSを燃焼して得られるSO(亜硫酸ガス)を石膏(CaSO・2HO)として回収する。石灰石膏式脱硫装置38では、石灰石(CaCO)を水に懸濁させて石灰石スラリーを作り、このスラリーを吸収塔で排ガスと接触させ、排ガス中のSOを吸収除去し、さらに排ガス中の酸素及び吸収塔に導入される空気中の酸素により石膏とする。
 本第三の実施の形態は、第一の実施の形態に期待することができる効果に加え、吸脱着装置35の負担軽減によるコンパクト化という効果も期待することができる。
 なお、第三の実施の形態では、化学吸収装置33を設けないこともできる。この場合、硫黄化合物転換触媒装置32から炭化水素、HS、HOを含むガスを全て吸脱着装置35に送り、HS、HOを吸着する。これによって、純度の高い炭化水素を得て、NGL回収装置36に送る。そして、NGL回収装置36からのC1炭化水素により吸脱着装置35からHS、HOを脱着し、HS分離装置31に送る。その他の処理は、もとの第三の実施の形態と同様とすることができる。
 原料ガスの精製装置、及び原料ガスの精製方法(第四の実施の形態)
 図4に、本発明に係る原料ガスの精製装置について、第四の実施の形態を概念的に示す。
 本第四の実施の形態は、第一の実施の形態において、硫黄化合物転換触媒装置3に直前に水銀除去装置10を設けた形態である。
 本実施の形態では、メタン等の炭化水素の他に、CO、HS、HS以外の硫黄化合物(主にCOSやRSH)、HO、Hgを不純物として含む天然ガスを、処理対象の原料ガスとしている。
 本実施の形態において、図1で付したと同一の符号を付した構成要素は、図1と実質的に同一の構成であり、実質的に同一の作用を果たす。
 本実施の形態の作用機序、すなわち、本発明に係る原料ガスの精製方法の一実施の形態は、図1について説明したものと実
質的に同様である。ただし、水銀除去装置10を作用させる水銀除去の工程が付加されている点で相違する。
 水銀除去装置10は、微量成分である水銀(Hg単体、又は有機水銀)を除去することを目的として設置する。
 採用することができる水銀除去装置10としては、活性炭を物理的吸着剤とするもの、又はモレキュラーシーブとすることもできる。しかし、このような物理吸着による手法は、装置が大容量となる傾向がある。そこで、硫黄化合物転換触媒装置3のガードリアクタとして、水銀吸着剤(化学吸着剤)を内蔵したものが好適である。
 内蔵される水銀吸着剤としては、硫化物(CuS、及び/又はMoS等)等が好適である。このような水銀吸着剤を採用する形態であれば、化学吸着のため、吸着量が多く省スペースを実現することができる。また、水銀が硫化物として固定吸着されるため、水銀種に関わらずに固定化が可能である。水銀吸着剤の加熱温度は、100~300℃付近であり、硫黄化合物転換触媒装置3を加熱するものと同様の熱源を採用することができる。
 本第四の実施の形態によれば、第一の実施の形態の奏する効果に加え、原料ガスに含まれる水銀を効果的に除去することができるという効果も期待することができる。加えて、後流に存在する硫黄化合物転換触媒装置3に用いられる転換触媒が被毒することを防ぐという効果も期待することができる。
   1、34  CO分離装置
   2、33  化学吸収装置
   3、32  硫黄化合物転換触媒装置
   4、35  吸脱着装置
   5、36  NGL回収装置
   6、37  HS燃焼装置
   7、38  石灰石膏式脱硫装置
   8、39  冷却器
   9、40  熱交換器
   10    水銀除去装置  
   31    HS分離装置   

Claims (18)

  1.  原料ガスの精製装置であって、
     少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスから、該HSを除去する第一のHS除去装置と、
     前記HS以外の硫黄化合物をHSに転換する硫黄化合物の転換装置と、
     前記転換されたHSを除去する第二のHS除去装置と
    を備える原料ガスの精製装置。
  2.  前記HS以外の硫黄化合物が、COS、及びRSHである請求項1の原料ガスの精製装置。
  3.  前記硫黄化合物の転換装置をCOS・RSH転換触媒装置として構成した請求項2の原料ガスの精製装置。
  4.  前記第一のHS除去装置を化学吸収装置として構成した請求項1~3の何れか一の原料ガスの精製装置。
  5.  前記第二のHS除去装置が、吸着剤を用いて構成した吸脱着装置である請求項1~4の何れか一の原料ガスの精製装置。
  6.  HS燃焼装置と、該HS燃焼装置からの排ガスを処理する石灰石膏式脱硫装置をさらに含む請求項1~5の何れか一の原料ガスの精製装置。
  7.  前記第一のHS除去装置をHS分離膜、又はHS吸着剤を備えたHS分離装置とし、前記第二のHS除去装置を化学吸収装置として構成した請求項1の原料ガスの精製装置。
  8.  前記第一のHS除去装置をHS分離膜、又はHS吸着剤を備えたHS分離装置とし、前記第二のHS除去装置を吸脱着装置として構成した請求項1の原料ガスの精製装置。
  9.  前記硫黄化合物の転換装置の直前に水銀除去装置を更に設けた請求項1~8の何れか一の原料ガスの精製装置。
  10.  原料ガスの精製方法であって、
     少なくとも炭化水素と、HSと、HS以外の硫黄化合物とを含む原料ガスから、該HSを除去する第一のHS除去工程と、
     前記HS以外の硫黄化合物をHSに転換する硫黄化合物の転換工程と、
     前記転換されたHSを除去する第二のHS除去工程と
    を備える原料ガスの精製方法。
  11.  前記HS以外の硫黄化合物が、COS、及びRSHである請求項10の原料ガスの精製方法。
  12.  前記硫黄化合物の転換工程をCOS・RSH転換工程として構成した請求項11の原料ガスの精製方法。
  13.  前記第一のHS除去工程を、化学吸収装置によってHSを吸収除去する工程として構成した請求項10~12の何れか一の原料ガスの精製方法。
  14.  前記第二のHS除去工程が、吸着剤を用いて構成した吸脱着装置によるHS除去工程である請求項10~13の何れか一の原料ガスの精製方法。
  15.  HS燃焼工程と、該HS燃焼工程からの排ガスを処理する石灰石膏式脱硫工程をさらに含む請求項10~14の何れか一の原料ガスの精製方法。
  16.  前記第一のHS除去工程をHS分離膜、又はHS吸着剤を備えたHS分離装置を用いた工程とし、前記第二のHS除去工程を化学吸収装置による吸収工程として構成した請求項10の原料ガスの精製方法。
  17.  前記第一のHS除去工程をHS分離膜、又はHS吸着剤を備えたHS分離装置を用いた工程とし、前記第二のHS除去工程を吸脱着装置による吸着工程として構成した請求項10の原料ガスの精製方法。
  18.  前記硫黄化合物の転換工程の直前に水銀除去工程を更に設けた請求項10~17の何れか一の原料ガスの精製方法。
PCT/JP2016/067790 2015-07-03 2016-06-15 原料ガスの精製装置、及び精製方法 WO2017006724A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/571,317 US20180119039A1 (en) 2015-07-03 2016-06-15 Source gas purification apparatus and purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-134624 2015-07-03
JP2015134624A JP2017014437A (ja) 2015-07-03 2015-07-03 原料ガスの精製装置、及び精製方法

Publications (1)

Publication Number Publication Date
WO2017006724A1 true WO2017006724A1 (ja) 2017-01-12

Family

ID=57685021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067790 WO2017006724A1 (ja) 2015-07-03 2016-06-15 原料ガスの精製装置、及び精製方法

Country Status (3)

Country Link
US (1) US20180119039A1 (ja)
JP (1) JP2017014437A (ja)
WO (1) WO2017006724A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014118345A1 (de) * 2014-12-10 2016-06-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Anlage zur Reinigung von Rohsynthesegas
JP2020062571A (ja) * 2017-02-09 2020-04-23 独立行政法人石油天然ガス・金属鉱物資源機構 硫化水素除去システム及び硫化水素除去方法
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US12031676B2 (en) 2019-03-25 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
CN110052138A (zh) * 2019-05-13 2019-07-26 江苏龙泰环保设备制造有限公司 一种硬质聚氨酯泡沫塑料生产废气净化处理***
WO2021097363A1 (en) * 2019-11-15 2021-05-20 Susteon Inc. Production of high purity particulate silicon carbide by hydrocarbon pyrolysis
CA3109606C (en) 2020-02-19 2022-12-06 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CN114191929B (zh) * 2021-12-24 2022-12-06 常州化工设计院有限公司 一种化工尾气处理工艺
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230290B2 (ja) * 1981-05-26 1990-07-05 Sheru Intern Risaachi Maachatsupii Bv
JPH0345118B2 (ja) * 1981-08-24 1991-07-10 Sheru Intern Risaachi Maachatsupii Bv
JPH11104451A (ja) * 1997-10-03 1999-04-20 Mitsubishi Heavy Ind Ltd ガス精製方法及びガス精製装置
JPH11221431A (ja) * 1998-02-04 1999-08-17 Babcock Hitachi Kk 硫黄分回収方法
JPH11241076A (ja) * 1998-02-26 1999-09-07 Hitachi Ltd ガス精製方法
JP2005068337A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 液化石油ガスの脱硫装置及び硫化カルボニル分解触媒
JP2007016149A (ja) * 2005-07-08 2007-01-25 Chiyoda Corp 天然ガスからの硫黄化合物の除去方法
US20140357926A1 (en) * 2013-05-31 2014-12-04 Uop Llc Removal of sulfur compounds from natural gas streams

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012698B1 (ru) * 2006-02-01 2009-12-30 Флуор Текнолоджиз Корпорейшн Устройство и способ для удаления меркаптанов из сырьевых газов
WO2008020994A1 (en) * 2006-08-09 2008-02-21 Fluor Technologies Corporation Configurations and methods for removal of mercaptans from feed gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230290B2 (ja) * 1981-05-26 1990-07-05 Sheru Intern Risaachi Maachatsupii Bv
JPH0345118B2 (ja) * 1981-08-24 1991-07-10 Sheru Intern Risaachi Maachatsupii Bv
JPH11104451A (ja) * 1997-10-03 1999-04-20 Mitsubishi Heavy Ind Ltd ガス精製方法及びガス精製装置
JPH11221431A (ja) * 1998-02-04 1999-08-17 Babcock Hitachi Kk 硫黄分回収方法
JPH11241076A (ja) * 1998-02-26 1999-09-07 Hitachi Ltd ガス精製方法
JP2005068337A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 液化石油ガスの脱硫装置及び硫化カルボニル分解触媒
JP2007016149A (ja) * 2005-07-08 2007-01-25 Chiyoda Corp 天然ガスからの硫黄化合物の除去方法
US20140357926A1 (en) * 2013-05-31 2014-12-04 Uop Llc Removal of sulfur compounds from natural gas streams

Also Published As

Publication number Publication date
US20180119039A1 (en) 2018-05-03
JP2017014437A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2017006724A1 (ja) 原料ガスの精製装置、及び精製方法
CA2745351C (en) Separation of a sour syngas stream
RU2417825C2 (ru) Способ очистки газов, полученных из установки газификации
US10005666B2 (en) Claus process for sulfur recovery with intermediate water vapor removal by adsorption
US8518356B2 (en) Method and apparatus for adjustably treating a sour gas
CA2442119C (en) Process for the separation and recovery of carbon dioxide from waste gas or fumes produced by combustible oxidation
AU2011280022B2 (en) Natural gas purification system
JPH04227017A (ja) 燃焼排ガスからの窒素及びアルゴン副製品回収を伴なう二酸化炭素の製造
AU2012347153B2 (en) Method and device for separating hydrogen sulfide and hydrogen production system using the same
US10239756B1 (en) Process for sulfur recovery from acid gas stream without catalytic Claus reactors
US20190314759A1 (en) Process for the removal of hydrogen chloride and sulfur oxides from a gas stream by absorption
CN106362546B (zh) 改进的酸性变压吸附方法
CA2967121C (en) Process for removing and recovering h2s from a gas stream by cyclic adsorption
JP6055920B2 (ja) 水素回収方法
CN1208360A (zh) 从气体中除去含硫的污染物、芳族化合物和烃的方法
WO2003031329A2 (en) Claus feed gas hydrocarbon removal
RU2551510C2 (ru) Способ удаления вредных веществ из диоксида углерода и устройство для его осуществления
KR20130042262A (ko) 연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용하여 탄화수소 스트림으로부터 황산화물을 제거하는 방법
Castro González Selection of adsorbents for CO2 recovery from process gas streams using pressure swing adsorption processes
JPS61207494A (ja) H↓2s及びco↓2が共存するガスの脱硫法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15571317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821194

Country of ref document: EP

Kind code of ref document: A1