WO2017000264A1 - 一种投影*** - Google Patents

一种投影*** Download PDF

Info

Publication number
WO2017000264A1
WO2017000264A1 PCT/CN2015/083007 CN2015083007W WO2017000264A1 WO 2017000264 A1 WO2017000264 A1 WO 2017000264A1 CN 2015083007 W CN2015083007 W CN 2015083007W WO 2017000264 A1 WO2017000264 A1 WO 2017000264A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
unit
screen unit
light
transmitting portion
Prior art date
Application number
PCT/CN2015/083007
Other languages
English (en)
French (fr)
Inventor
黄治
罗伯森⋅布莱恩
初大平
Original Assignee
华为技术有限公司
剑桥企业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 剑桥企业有限公司 filed Critical 华为技术有限公司
Priority to EP15896795.0A priority Critical patent/EP3301510B1/en
Priority to PCT/CN2015/083007 priority patent/WO2017000264A1/zh
Priority to CN201580078802.7A priority patent/CN107850828B/zh
Publication of WO2017000264A1 publication Critical patent/WO2017000264A1/zh
Priority to US15/859,023 priority patent/US10261399B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/13Projectors for producing special effects at the edges of picture, e.g. blurring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection system.
  • the resolution, projection range, brightness and contrast of the projection system on the market are gradually increasing, and the price is gradually reduced.
  • the resolution of 1080P projection system has been widely used, and the 4K projection system is gradually becoming commercial.
  • the projection array splicing method is generally used to splicing a plurality of screen units, and each adjacent two screen units are connected at the edge. A certain coincident area fusion area.
  • the present invention provides a projection system that is capable of improving the display quality of an image when the projection system is projected.
  • a projection system including a projection unit, a screen unit, an outer frame frame, and a support structure assembly, wherein the screen unit is configured to present a picture projected by the projection unit, and the outer frame frame is used for Fixing the projection unit and the support structure assembly, the support structure assembly is configured to fixedly connect the screen unit to the outer frame frame, and the support structure component is located on a light entrance side of the screen unit,
  • the support structure assembly includes a light transmitting portion and a at least one connecting portion, the light transmitting portion is fixedly connected to the screen unit, and the light transmitting portion is configured to enable the projection unit to emit light that is irradiated on the light transmitting portion.
  • the at least one connecting portion is located outside a propagation path of the light emitted by the projection unit, and the at least one connecting portion is configured to fixedly connect the light transmitting portion and the outer frame frame.
  • a distance between a point on the inner curved surface of the light transmitting portion and an optical axis of the projection unit gradually increases in a reverse projection direction
  • the light transmission a distance between a point on the outer curved surface of the portion and an optical axis of the projection unit gradually increases along the reverse projection direction
  • the reverse projection direction being a direction in which the screen unit points to the projection unit
  • the inner The curved surface is a surface of the light transmitting portion facing the optical axis side of the projection unit
  • the outer curved surface is a surface of the light transmitting portion facing away from the optical axis side of the projection unit.
  • the inner surface is A smooth transition between the light incident surfaces of the screen unit, and a smooth transition between the outer curved surface and the light incident surface, so that the light transmitted through the light transmitting portion is evenly distributed when it is incident on the light incident surface of the screen unit.
  • the point on the inner curved surface or the outer curved surface that is farthest from the optical axis is An edge point whose minimum value h min from the length of the screen unit satisfies:
  • ⁇ max is the maximum angle between the light emitted by the projection unit and the optical axis of the projection unit.
  • the optical axis of the projection unit An intersection of the screen unit is an origin, wherein a light incident surface of the screen unit is a plane where the x-axis and the y-axis are located, and the optical axis is a z-axis, and the z-axis direction is pointed by the screen unit to the projection unit within the coordinate system, the function of the inner surface satisfies:
  • ⁇ 1 and Q 1 are optimization coefficients
  • r 1 is a radius of a circle in which the intersection of the inner curved surface and the light incident surface is located, and r is an arbitrary point on the inner curved surface and an optical axis of the projection unit distance
  • h 1 is the distance from any point on the screen to the surface of the cell
  • ⁇ 2 and Q 2 are optimization coefficients
  • r 2 is a radius of a circle where the intersection of the outer curved surface and the light incident surface is located
  • r is an arbitrary point on the outer curved surface and an optical axis of the projection unit
  • the distance h 2 is the distance from the arbitrary point to the light incident surface of the screen unit.
  • An intersection of an optical axis of the projection unit and the screen unit is an origin, wherein a light incident surface of the screen unit is a plane where the x-axis and the y-axis are located, and the optical axis is a z-axis, and the z-axis direction is
  • the screen unit is pointed into the coordinate system of the projection unit, and the function of the inner surface satisfies:
  • ⁇ n and N are optimization coefficients
  • r is a distance between an arbitrary point on the inner curved surface and an optical axis of the projection unit
  • h 1 is a distance from the arbitrary point to a light incident surface of the screen unit
  • ⁇ n and M are optimization coefficients
  • r is the distance from any point on the outer curved surface to the optical axis of the projection unit
  • h 2 is the distance from the arbitrary point to the light incident surface of the screen unit.
  • the transparent portion is adhered to the screen unit, and a surface to which the transparent portion is adhered to the screen unit is a bonding surface, and the screen unit and the bonding surface are The conformed area does not overlap the edge area of the screen unit, the edge area being a partial area of the fused area of the projection system.
  • the projection unit includes a projector, a first reflective sheet, and a second reflective sheet, and the first reflective sheet is configured to reflect the light emitted by the projector to the first a second reflective sheet for reflecting light reflected by the first reflective sheet toward the screen unit.
  • the preparation material of the light transmissive portion comprises acrylic plastic or polystyrene plastic
  • the preparation material of the connecting portion comprises acrylic plastic or poly Styrene plastic
  • the screen unit is a flat screen unit or a curved screen unit.
  • the light irradiated on the light transmitting portion of the supporting structure component can be projected on the screen unit through the light transmitting portion, and the light transmitting portion is not emitted to the projection unit.
  • the light causes occlusion; at the same time, the connection portion in the support structure component is not located outside the path through which the projection unit emits light, and does not block the light emitted by the projection unit. Therefore, the support structure component of the screen unit does not project the projection.
  • the light emitted by the unit is occluded, thereby reducing the shadow formed on the image by the projection system when the image is displayed, thereby making the projection system have better display quality.
  • FIG. 1 is a schematic structural diagram of a projection system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a mating structure of a support structure assembly and a screen unit in the projection system shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a cooperation principle between a light transmitting portion, a projection unit, and a screen unit in a support structure assembly in a projection system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the surface function of a light transmitting portion in a support structure assembly in a projection system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an optical path of a light emitted by a projection unit in a projection system according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing distortions of a projection unit and a support structure assembly in the projection system shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a projection system according to another embodiment of the present invention.
  • FIG. 8 is a schematic view of a mating structure between a projection unit and a support structure assembly and a screen unit in the projection system of the structure shown in FIG. 7;
  • FIG. 9 is a schematic diagram of distortion of a projection unit and a support structure component in a projection system according to an embodiment of the present invention.
  • an embodiment of the present invention provides a projection system including an outer frame frame 4 and a plurality of display units, each of which includes a screen unit 1, a projection unit 2, and a support structure assembly 3;
  • the screen unit 1 is for presenting a picture projected by the projection unit 2
  • the outer frame frame 4 is for fixing the projection unit 2 and the support structure assembly 3
  • the two support structure assembly 3 is for fixing the screen unit 1 and the outer frame frame 4 Connected, the support structure component 3 is located on the light entrance side of the screen unit 1;
  • the support structure assembly 3 includes a light transmitting portion 31 for fixed connection with the screen unit 1 and at least one connecting portion 32, and the light transmitting portion 31 is used for the projection unit 2 to emit and illuminate the light transmitting portion 31. Light is transmitted, so that the light emitted by the projection unit 2 and irradiated on the light transmitting portion 31 is projected on the screen unit 1;
  • the at least one connecting portion 32 is located outside the propagation path of the light emitted by the projection unit 2 such that the light emitted by the projection unit 2 does not pass through the at least one connecting portion 32, and the at least one connecting portion 32 is used for fixing the light transmitting portion 31. With the outer frame rack 4.
  • the projection unit 2 is configured to emit light of a projection picture that the projection system wants to project, this part
  • the light illuminates the screen unit 1 from the side of the screen unit 1 facing away from the viewer, and then the light passes through the screen unit 1 and illuminates the side of the screen unit 1 toward the viewer. Therefore, the light incident side of the screen unit 1 refers to The screen unit 1 faces the side of the projection unit 2, and the light incident surface of the screen unit 1 refers to the surface of the screen unit 1 toward the side of the projection unit 2.
  • the propagation path of the light emitted by the projection unit 2 refers to the path through which the light emitted by the projection unit 2 propagates.
  • the screen units 1 in each display unit are spliced together to form a display screen of the projection system, and the edge regions of each adjacent two screen units 1 form a fusion when the two screen units 1 are spliced.
  • the area is as shown in FIG. 1; in each of the display units, among the light emitted by the projection unit 2, the light irradiated on the light transmitting portion 31 of the support structure assembly 3 can be projected through the light transmitting portion 31 on the screen unit. 1 , the light transmitting portion 31 does not block the light emitted by the projection unit 2; meanwhile, the connecting portion 32 in the supporting structure assembly 3 is located outside the path through which the projection unit 2 emits light, and does not affect the projection unit.
  • the supporting structure component 3 supporting the screen unit 1 does not block the light emitted by the projection unit 2, thereby reducing the shadow formed on the image when the projection system displays an image, thereby further projecting the projection.
  • the system has a good display quality.
  • the surface of the light transmitting portion 31 facing the optical axis 21 side of the projection unit 2 is an inner curved surface 311, and the light transmitting portion 31 faces away from the optical axis of the projection unit 2.
  • the surface on the 21 side is an outer curved surface 312, wherein the distance between the point on the inner curved surface 311 of the light transmitting portion 31 and the optical axis 21 of the projection unit 2 gradually increases in the reverse projection direction, and the outer curved surface of the light transmitting portion 31 The distance between the point on 312 and the optical axis 21 of the projection unit 2 is gradually increased in the direction of the reverse projection, wherein the above-described reverse projection direction is the direction in which the screen unit 1 is directed to the projection unit 2.
  • the derivative of the position where the inner curved surface 311 of the light transmitting portion 31 intersects with the light incident surface of the screen unit 1 is zero, that is, between the inner curved surface 311 of the light transmitting portion 31 and the light incident surface of the screen unit 1.
  • the smooth transition; and the derivative of the position where the outer curved surface 312 of the light transmitting portion 31 intersects with the light incident surface of the screen unit 1 is zero, that is, the smooth transition between the outer curved surface 312 of the light transmitting portion 31 and the light incident surface of the screen unit 1.
  • the light passing through the light transmitting portion 31 does not form a light collecting point when irradiated on the light incident surface of the screen unit 1, but causes light emitted by the projection unit 2 and transmitted through the light transmitting portion 31. It is evenly distributed when the screen unit 1 is incident on the light surface, thereby further reducing the shadow formed on the screen unit 1 when the projection system is displayed due to the refraction of the light transmitted by the light transmitting portion 31 in the support structure assembly 3.
  • the light transmitting portion 31 is passed through, and the connecting portion 32 in the supporting structure assembly 3 is not The light emitted by the projection unit 2 is blocked, as shown in FIG. 3, the light transmitting portion 31 and the projection unit 2 corresponding thereto satisfy:
  • the point on the inner curved surface 311 or the outer curved surface 312 that is farthest from the optical axis 21 is an edge point, and the minimum value h min of the edge point from the length of the screen unit 1 satisfies:
  • ⁇ max is the maximum angle between the light emitted by the projection unit and the optical axis of the projection unit.
  • the screen unit 1 and the projection unit 2 of one display unit the light emitted by the projection unit 2 is divided into three parts, such as:
  • the first portion as irradiated in the portion of the OB region shown in FIG. 5, the portion of the projection unit 2 that emits light in the OB region directly reaches the screen unit 1, and does not undergo any deformation without passing through the light transmitting portion 31;
  • the second part such as the part irradiated in the BC area shown in Fig. 5, needs to pass through one refraction to reach P2, so it is inevitably not in the same position as the position P2' when the light reaches the screen without the transparent support structure, and needs to pass.
  • the software correction method produces a reverse distortion before projection to offset the distortion due to refraction.
  • the third portion such as the portion irradiated in the region of C away from O shown in FIG. 5, is required to pass through the light transmitting portion 31 toward the surface of the optical axis 21 and the light transmitting portion 31 away from the surface of the optical axis 21. Therefore, this part of the light will be refracted twice and then irradiated to the P3 point.
  • the surface shape of the inner curved surface 311 and the outer curved surface 312 of the light transmitting portion 31 is optimized by using an exponential equation, specifically, the intersection of the optical axis 21 of the projection unit 2 and the screen unit 1 is taken as an origin.
  • the light incident surface of the screen unit 1 is the plane of the x-axis and the y-axis
  • the optical axis 21 is the z-axis
  • the z-axis direction is directed by the screen unit 1 into the coordinate system of the projection unit 2.
  • the function of the inner curved surface 311 satisfies:
  • ⁇ 1 and Q 1 are optimization coefficients
  • r 1 is the radius of the circle where the intersection of the inner curved surface 311 and the light incident surface
  • r is the distance between any point on the inner curved surface 311 and the optical axis 21 of the projection unit 2
  • h 1 The distance from any point mentioned above to the light incident surface of the screen unit 1;
  • ⁇ 2 and Q 2 are optimization coefficients
  • r 2 is the radius of the circle where the intersection of the outer curved surface 312 and the light incident surface
  • r is the distance between any point on the outer curved surface 312 and the optical axis 21 of the projection unit 2
  • h 2 The distance from any point mentioned above to the light incident surface of the screen unit 1.
  • the width of the fusion region A after each adjacent two screen units 1 is spliced b 80 mm;
  • the abscissa is the radial coordinate of the center of the screen unit 1 as the origin, and the ordinate is the difference between the position where the same light reaches the screen unit 1 in the case where the light transmitting portion 31 and the light transmitting portion 31 are not provided.
  • FIG. 6 it can be seen from FIG. 6 that when the light of the projection unit 2 is irradiated onto the screen unit 1 in the OB region shown in FIG. 6, there is no distortion; there is a light that is irradiated in the BC region.
  • the smaller negative distortion variable as shown in Figure 6, is 0.06 mm, less than one tenth of the pixel diameter value, and the light that illuminates the side of C away from the O has an orthodontic variable with a maximum value of 0.44 mm. This value is also smaller than the diameter of the projection pixel by 0.54 mm, the distortion is extremely small, and then the distortion variable begins to decrease.
  • the projection system has a higher display quality.
  • each of the display unit support structure component 3 and the corresponding screen unit 1 and the projection unit 2 in each of the display unit support structure component 3 and the corresponding screen unit 1 and the projection unit 2:
  • the width of the fusion region after each adjacent two screen units 1 is spliced b 80 mm;
  • the maximum distortion of the light emitted by the projection unit 2 when it is irradiated on the screen unit 1 The amount is about 0.6mm, which is close to the diameter of one projection pixel, which can basically meet the design requirements of the projection system without distortion.
  • the weight of the support structure assembly 3 can be reduced, thereby reducing the weight of the entire projection system.
  • the surface shape of the inner curved surface 311 and the outer curved surface 312 of the light transmitting portion 31 can also be optimized by the method of sum of polynomials, specifically:
  • the intersection of the optical axis 21 of the projection unit 2 and the light incident surface of the screen unit 1 is the origin, the light incident surface of the screen unit 1 is the plane of the x-axis and the y-axis, and the optical axis 21 of the projection unit 2 is the z-axis.
  • the z-axis direction is directed by the screen unit 1 into the coordinate system of the projection unit 2, and the function of the inner curved surface 311 of the light transmitting portion 31 satisfies:
  • ⁇ n and N is the optimization coefficient
  • r is an arbitrary point on the inner surface 311 from the axis of projection 21 of unit 2
  • h 1 is an arbitrary point to the surface of the screen unit distance of 1;
  • ⁇ n and M are optimization coefficients
  • r is the distance from any point on the outer curved surface 312 to the optical axis 21 of the projection unit 2
  • h 2 is the distance from any of the above points to the light incident surface of the screen unit 1.
  • the support structure component 3 can be arranged in various ways:
  • the support structure assembly 3 includes a light transmitting portion, and the light transmitting portion 31 is an axisymmetric structure, and the axis of symmetry of the light transmitting portion 31 coincides with the optical axis 21 of the projection unit 2, as shown in FIG.
  • the support structure assembly 3 may be provided with a plurality of connecting portions 32. Specifically, as shown in FIG. 1, each of the supporting structural components 3 may have four connecting portions 32, and the four connecting portions 32 are along the optical axis 21. The circumferential direction is evenly distributed.
  • the supporting structure component 3 may further include two light transmitting portions 31 , and each of the light transmitting portions 31 may be integrally formed from the above-mentioned first mode and having an axisymmetric structure. A part of the cut portion is provided, and each of the two light transmitting portions 31 is provided with a connecting portion 32.
  • the support structure assembly 3 described above is capable of The weight of the support structure assembly 3 is reduced, thereby reducing the weight of the entire projection system.
  • the projection unit 2 in the above projection system can also have various setting manners, specifically:
  • the projection unit 2 may include only one projector, and the projector is mounted to the outer frame frame 4, and the optical axis 21 of the projector that emits light coincides with the axis of symmetry of the light transmitting portion 31.
  • each of the support structure components 3 and the corresponding screen unit 1 and the projection unit 2 are:
  • the projection unit 2 includes a projector 26, a first reflection sheet 24 and a second reflection sheet 25; the projector 26 is mounted on the outer frame frame 4; the first reflection sheet 24 is mounted on the outer frame frame 4, and The light emitted by the projector 26 is totally reflected toward the second reflective sheet 25; the second reflective sheet 25 is mounted on the outer frame 5 and is used to reflect all the light reflected by the first reflective sheet 24 toward the projection unit 2 Corresponding screen unit 1.
  • the projection distance of the projection unit 2 can be shortened by using the first reflection sheet 24 and the second reflection sheet 25 to be reflected multiple times, thereby reducing the entire projection system perpendicular to the screen unit. Thickness in 1 direction.
  • each screen unit needs to be seamlessly spliced together with other screen units in the projection system, and therefore, each support structure component 3 and corresponding screen unit In the projection unit 2, during the assembly process of the support structure assembly 3 and the projection unit 2, it is also required to ensure that the light emitted by each projection unit 2 can only pass through the light transmitting portion of the support structure assembly 3 corresponding to the projection unit. 31, but not the light transmitting portion of the supporting structure component corresponding to the other screen unit adjacent to the screen unit 1.
  • each of the support structure assembly 3 and the corresponding screen unit 1 and the projection unit 2 in:
  • the light incident surface of the screen unit 1 has a rectangular structure
  • An intersection of the optical axis 21 of the projection unit 2 and the plane of the light incident surface of the screen unit 1 is located on a straight line of the screen line 1 parallel to the center line of the short side, and is located outside the screen unit 1, and corresponds to the off-axis of the screen unit 1.
  • the height is Offset+b/2, where offset is the distance between the intersection of the optical axis of the projection unit and the plane of the entrance surface of the screen unit and the image formed by the projection unit on the screen surface of the screen; b is adjacent to each other.
  • the two light transmitting portions 31 included in each of the support structure assemblies 3 are symmetrically disposed along the center line of the screen unit 1 which is parallel to the short sides.
  • the above screen unit 1 may be a flat screen unit or a curved plane unit.
  • the light-transmitting portion 31 may be made of acrylic plastic or PS material
  • the connecting portion 32 may be made of acrylic plastic or PS material.
  • Acrylic plastic and PS materials are transparent plastics with low light absorption and low dispersion coefficient, and the material should also be suitable for compression molding and low cost. At the same time, the structural strength of the above-described support structure assembly 3 can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影***,涉及显示技术领域,包括投影单元(2)、屏幕单元(1)、外框机架(4)以及支撑结构组件(3),屏幕单元(1)用于呈现投影单元(2)投影出的画面,外框机架(4)用于固定投影单元(2)和支撑结构组件(3),支撑结构组件(3)用于将屏幕单元(1)与外框机架(4)固定连接,支撑结构组件(3)位于屏幕单元(1)的入光侧,支撑结构组件(3)包括透光部(31)和至少一个连接部(32),透光部(31)与屏幕单元(1)固定连接,透光部(31)用于使投影单元(2)发出照射在透光部(31)上的光线透过;至少一个连接部(32)位于投影单元(2)发射光线的传播路径之外,至少一个连接部(32)用于固定连接透光部(31)与外框机架(4)。这种投影***中,支撑结构组件(3)不会对投影单元(2)发射的光线进行遮挡,使投影***具有较好的显示质量。

Description

一种投影*** 技术领域
本发明涉及投影技术领域,特别涉及一种投影***。
背景技术
随着投影技术的发展,市场上投影***的分辨率、投射范围、亮度与对比度等都在逐步增加,而价格逐步降低。分辨率为1080P投影***已广泛普及,4K投影***也逐步走向商用。在使用过程中,为了获得数十米长宽的大尺寸投影屏幕,目前一般采用投影阵列拼接的方法将多个屏幕单元拼接后获得,且每相邻的两个屏幕单元相连接的边缘处有一定的重合区域融合区域。为了使观看者获得更好的视觉体验,在投影***显示过程中必要尽可能避开用于支撑投影屏幕的不透明机械结构,以防在画面上产生阴影或遮挡画面。
目前,如何减小支撑结构组件在投影***投影时产生的阴影或对画面的遮挡对图像的影响,从而提高投影***投影时的图像显示质量是亟需解决的技术问题。
发明内容
本发明提供了一种投影***,该投影***能够提高投影***投影时图像的显示质量。
第一方面,提供一种投影***,包括投影单元、屏幕单元、外框机架以及支撑结构组件,所述屏幕单元用于呈现所述投影单元投影出的画面,所述外框机架用于固定所述投影单元和所述支撑结构组件,所述支撑结构组件用于将所述屏幕单元与所述外框机架固定连接,所述支撑结构组件位于所述屏幕单元的入光侧,
所述支撑结构组件包括透光部和至少一个连接部,所述透光部与所述屏幕单元固定连接,所述透光部用于使所述投影单元发出照射在透光部上的光线透过;
所述至少一个连接部位于所述投影单元发射光线的传播路径之外,所述至少一个连接部用于固定连接所述透光部与所述外框机架。
结合第一方面,在第一种可能的实现方式中,所述透光部的内曲面上的点与所述投影单元的光轴之间的距离沿逆投影方向逐渐增大,所述透光部的外曲面上的点与所述投影单元的光轴之间的距离沿所述逆投影方向逐渐增大,所述逆投影方向为所述屏幕单元指向所述投影单元的方向,所述内曲面为所述透光部朝向投影单元的光轴一侧的表面,所述外曲面为所述透光部背离投影单元光轴一侧的表面。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述内曲面与 所述屏幕单元的入光面之间平滑过渡,所述外曲面与所述入光面之间平滑过渡,以使得透过所述透光部的光线照射到屏幕单元入光面时均匀分布。
结合第一方面的第一种可能的实现方式、第二种可能的实现方式,在第三种可能的实现方式中,所述内曲面或外曲面上与所述光轴距离最远的点为边缘点,所述边缘点距离所述屏幕单元的长度的最小值hmin满足:
Figure PCTCN2015083007-appb-000001
其中,b为所述投影***中的融合区域的宽度,θmax为所述投影单元发射的光线与投影单元光轴之间的最大夹角。
结合第一方面的第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式,在第四种可能的实现方式中,在以所述投影单元的光轴与所述屏幕单元的交点为原点,以所述屏幕单元的入光面为x轴和y轴所在平面,以所述光轴为z轴,所述z轴方向由所述屏幕单元指向所述投影单元的坐标系内,所述内曲面的函数满足:
Figure PCTCN2015083007-appb-000002
其中,α1和Q1为优化系数,r1为所述内曲面与所述入光面的交线所在圆的半径,r为所述内曲面上任意一点与所述投影单元的光轴的距离,h1为所述任意一点到所述屏幕单元的入光面的距离;
所述外曲面的函数满足:
Figure PCTCN2015083007-appb-000003
其中,α2和Q2为优化系数,r2为所述外曲面与所述入光面的交线所在圆的半径,r为所述外曲面上任意一点与所述投影单元的光轴的距离,h2为所述任意一点到所述屏幕单元的入光面的距离。
结合第一方面的第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式,在第五种可能的实现方式中,在以所述投影单元的光轴与所述屏幕单元的交点为原点,以所述屏幕单元的入光面为x轴和y轴所在平面,以所述光轴为z轴,所述z轴方向由所述屏幕单元指向所述投影单元的坐标系内,所述内曲面的函数满足:
Figure PCTCN2015083007-appb-000004
其中,αn和N为优化系数,r为所述内曲面上任意一点与所述投影单元的光轴的距离,h1为所述任意一点到所述屏幕单元的入光面的距离;
所述外曲面的函数满足:
Figure PCTCN2015083007-appb-000005
其中,βn和M为优化系数,r为所述外曲面上任意一点与所述投影单元的光轴的距离,h2为所述任意一点到所述屏幕单元的入光面的距离。
结合第一方面的第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式,在第六种可能的实现方式中,所述透光部与所述屏幕单元黏贴连接在一起,所述透光部与所述屏幕单元黏贴的面为贴合面,所述屏幕单元与所述贴合面贴合的区域与所述屏幕单元的边缘区域无交叠,所述边缘区域为所述投影***的融合区域的部分区域。
结合第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,所述投影单元包括投影机、第一反射片和第二反射片,所述第一反射片用于将所述投影机发射的光线反射向第二反射片,所述第二反射片用于将所述第一反射片反射的光线反射向所述屏幕单元。
结合第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式、第七种可能的实现方式,在第八种可能的实现方式中,所述透光部的制备材料包括亚克力塑料或者聚苯乙烯塑料,所述连接部的制备材料包括亚克力塑料或者聚苯乙烯塑料。
结合第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式、第七种可能的实现方式、第八种可能的实现方式,在第九种可能的实现方式中,所述屏幕单元为平面屏幕单元或曲面屏幕单元。
根据本发明实施例提供的技术方案,投影单元发出的光线中,照射在支撑结构组件的透光部的光线能够透过透光部投射在屏幕单元上,透光部不会对投影单元发射的光线造成遮挡;同时,支撑结构组件中的连接部位于投影单元发出光线传播时经过的路径之外,也不会对投影单元发射的光线造成遮挡,因此,屏幕单元的支撑结构组件不会对投影单元发射的光线进行遮挡,进而能够减轻上述投影***在显示图像时在图像上形成的阴影,进而使投影***具有较好的显示质量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附 图。
图1为本发明一种实施例提供的投影***的原理结构示意图;
图2为图1所示投影***中支撑结构组件与屏幕单元的配合结构示意图;
图3为本发明一种实施例提供的投影***中支撑结构组件中透光部与投影单元以及屏幕单元之间的一种配合原理示意图;
图4为本发明一种实施例提供的投影***中支撑结构组件中透光部的表面函数示意图;
图5为本发明一种实施例提供的投影***中投影单元发射的光线照射到屏幕单元时的光路原理示意图;
图6为图5所示投影***中投影单元以及支撑结构组件优化后的畸变量示意图;
图7为本发明另一种实施例提供的投影***的原理结构示意图;
图8为图7所示结构的投影***中投影单元与支撑结构组件以及屏幕单元之间的一种配合结构示意图;
图9为本发明一种实施例提供的投影***中投影单元以及支撑结构组件优化后的畸变量示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1和图7,本发明实施例提供了一种投影***,包括外框机架4和多个显示单元,每一个显示单元包括屏幕单元1、投影单元2以及支撑结构组件3;其中,屏幕单元1用于呈现投影单元2投影出的画面,外框机架4用于固定投影单元2和支撑结构组件3,二支撑结构组件3用于将屏幕单元1与外框机架4固定连接,支撑结构组件3位于屏幕单元1的入光侧;其中:
支撑结构组件3包括透光部31和至少一个连接部32,透光部31用于与屏幕单元1固定连接,并且透光部31用于时投影单元2发出且照射在透光部31上的光线透过,从而使投影单元2发出且照射在透光部31上的光线投射在屏幕单元1上;
上述至少一个连接部32位于投影单元2发射光线的传播路径之外,以使的投影单元2发出的光线不经过上述至少一个连接部32,上述至少一个连接部32用于固定连接透光部31与外框机架4。
投影***中,投影单元2用于发射该投影***想要投影出的投影画面的光线,此部分 光线自屏幕单元1背离观看者的一侧照射在屏幕单元1上,然后光线透过屏幕单元1后照射向屏幕单元1朝向观看者的一侧,因此,屏幕单元1的入光侧指的是屏幕单元1朝向投影单元2的一侧,屏幕单元1的入光面指的是屏幕单元1朝向投影单元2一侧的表面。投影单元2发射光线的传播路径指的是投影单元2发射的光线传播时经过的路径。
上述投影***中、各显示单元中的屏幕单元1之间相互拼接,进而形成投影***的显示屏幕,并且每相邻的两个屏幕单元1的边缘区域在两个屏幕单元1拼接时形成一个融合区域,如图1中所示的区域A;每一个显示单元中,投影单元2发出的光线中,照射在支撑结构组件3的透光部31的光线能够透过透光部31投射在屏幕单元1上,透光部31不会对投影单元2发射的光线造成遮挡;同时,支撑结构组件3中的连接部32位于投影单元2发出光线传播时经过的路径之外,也不会对投影单元2发射的光线造成遮挡,因此,支撑屏幕单元1的支撑结构组件3不会对投影单元2发射的光线进行遮挡,进而能够减轻上述投影***在显示图像时在图像上形成的阴影,进而使投影***具有较好的显示质量。
一种优选实施方式中,如图2、图3以及4所示,透光部31朝向投影单元2的光轴21一侧的表面为内曲面311,透光部31背离投影单元2的光轴21一侧的表面为外曲面312,其中,透光部31的内曲面311上的点与投影单元2的光轴21之间的距离沿逆投影方向逐渐增大,透光部31的外曲面312上的点与投影单元2的光轴21之间的距离沿逆投影方向逐渐增大,其中,上述逆投影方向为屏幕单元1指向投影单元2的方向。
具体地,如图2和图3所示,为了减轻由于支撑结构组件3中透光部31对光线的折射导致投影***显示时在屏幕单元1上形成的阴影,如图2、图3以及4所示,上述投影***中,透光部31的内曲面311与屏幕单元1的入光面相交位置的导数为零,即透光部31的内曲面311与屏幕单元1的入光面之间平滑过渡;且透光部31外曲面312与屏幕单元1的入光面相交位置的导数为零,即透光部31外曲面312与屏幕单元1的入光面之间平滑过渡。由于透光部31的内曲面311与屏幕单元1的入光面之间平滑过渡、且透光部31的外曲面312与屏幕单元1的入光面之间也是平滑过渡,进而,投影单元2发射的光线中,穿过透光部31的光线在照射在屏幕单元1的入光面上时不会形成聚光点,而是使得由投影单元2发射并透过透光部31的光线照射到屏幕单元1入光面时均匀分布,进而进一步减轻由于支撑结构组件3中透光部31对光线的折射导致投影***显示时在屏幕单元1上形成的阴影。
一种实施方式中,为了能够保证投影单元2发射的光线中射向支撑结构组件3的透光部31所在方位时穿过透光部31、且使支撑结构组件3中的连接部32不会对投影单元2发射的光线进行遮挡,如图3所示,透光部31和与其对应的投影单元2之间满足:
内曲面311或外曲面312上与光轴21距离最远的点为边缘点,上述边缘点距离屏幕单元1的长度的最小值hmin满足:
Figure PCTCN2015083007-appb-000006
其中,b为所述投影***中的融合区域的宽度;θmax为所述投影单元发射的光线与投影单元光轴之间的最大夹角。
如图5所示,在一个显示单元的支撑结构组件3、屏幕单元1和投影单元2中,投影单元2发射的光线分为三部分,如:
第一部分,如照射在图5中所示的OB区域内的部分,投影单元2发射光线中照射在OB区域的部分直接到达屏幕单元1,不经过透光部31也就不会产生任何变形;
第二部分,如照射在图5中所示的BC区域内的部分,此部分光线需要经过一次折射到达P2,因此必然和没有透明支撑结构时光线到达屏幕的位置P2’不在同一位置,需要通过软件校正的方法在投射前产生一个反向畸变去抵消由于折射产生的畸变。
第三部分,如照射在图5中所示的C远离O的区域内的部分,由于此部分光线需要先后穿越透光部31朝向光轴21的表面、以及透光部31背离光轴21表面,因此这部分光线会发生两次折射后照射到P3点。
因此,上述投影***中,为了对投影单元2的光光线在穿过支撑结构组件3的透光部31后产生的畸变量进行控制,在对透光部31进行设计时需要对透光部31的内曲面311和外曲面312进行优化。
一种优选实施方式中,采用指数方程的方式对透光部31的内曲面311以及外曲面312的面型进行优化,具体在以投影单元2的光轴21与屏幕单元1的交点为原点,以屏幕单元1的入光面为x轴和y轴所在平面,以光轴21为z轴,且z轴方向由屏幕单元1指向投影单元2的坐标系内,内曲面311的函数满足:
Figure PCTCN2015083007-appb-000007
其中,α1和Q1为优化系数,r1为内曲面311与入光面的交线所在圆的半径,r为内曲面311上任意一点与投影单元2的光轴21的距离,h1为上述任意一点到屏幕单元1的入光面的距离;
外曲面312的函数满足:
Figure PCTCN2015083007-appb-000008
其中,α2和Q2为优化系数,r2为外曲面312与入光面的交线所在圆的半径,r为外曲面312上任意一点与投影单元2的光轴21的距离,h2为上述任意一点到屏幕单元1的入光面的距离。
一种具体实施方式中,当支撑结构组件3的透光部31为对称轴与投影单元2的光轴 21重合的轴对称结构时,如图3所示:
屏幕单元1的尺寸为xs=ys=965mm;
投影单元2的镜头与屏幕单元1的入光面之间沿光轴21的距离zp=792mm;
投影单元2在屏幕单元1入光面所在平面上的投影区域为xp=yp=1045mm;
每相邻的两个屏幕单元1拼接后融合区域A的宽度b=80mm;
透光部31沿其对称轴延伸方向的最高高度hmax≥60.6mm;
投影单元2中投影像素的直径Δ=0.54mm;
并且,支撑结构组件3中:
透光部31的内曲面311与屏幕单元1入光面交线所在的圆的半径r1=400mm;
透光部31的外曲面312与屏幕单元1入光面交线所在的圆的半径r2=410mm;
a1=a2=3.5;
Q1=Q2=1.5。
上述结构的投影***中,如图6所示的从屏幕单元1的中心到边缘的畸变的变化情况。横坐标是以屏幕单元1的中心为原点的径向坐标,纵坐标是在没有透光部31和设有透光部31两种情况下同一条光线到达屏幕单元1上的位置之间的差异,以像素为单位,则从图6所示可知,当投影单元2的光线在图6所示的OB区域内照射到屏幕单元1上时不存在畸变量;照射在BC区域内的光线存在一个较小的负畸变量,如图6中所示的0.06mm,小于十分之一的像素直径值,而照射在C背离O一侧区域的光线存在一个正畸变量,最大值为0.44mm,此值也小于投影像素的直径0.54mm,畸变量极小,然后畸变量开始下降。
当上述投影***中的支撑结构组件3、屏幕单元1以及投影单元2满足于上述参数时,投影单元发射的光线在照射到屏幕单元1上时产生的畸变量很小,人眼不能感受到,进而使投影***具有较高的显示质量。
另一种具体实施方式中,每一个显示单元的支撑结构组件3和对应的屏幕单元1以及投影单元2中:
屏幕单元1的尺寸为xs=1154mm,ys=515mm;
每相邻的两个屏幕单元1拼接后融合区域的宽度b=80mm;
透光部31沿其对称轴延伸方向的最高高度hmax≥70mm;
offset=22mm;
并且,支撑结构组件3的每一个支撑体中:
透光部31朝向投影单元2光轴21一侧的表面与屏幕单元1入光面交线所在的圆的半径r1=400mm;
透光部21背离投影单元2光轴21一侧的表面与屏幕单元1入光面交线所在的圆的半 径r2=410mm;
透光部31背离光轴21一侧表面在屏幕单元1入光面上投影对应的最大直径rm=550mm;
每一个透光部31的裁切中心线与水平线的夹角β=33.2°;
透光部31的弧度2Δβ=14.25°;
a1=a2=3.9;
Q1=Q2=1.48。
如图9所示,当投影***的每一组对应的支撑结构组件3、屏幕单元1以及投影单元2的参数为上述记载时,投影单元2发射的光线照射在屏幕单元1上时最大的畸变量大约为0.6mm,近似于1个投影像素的直径,基本能够满足投影***无畸变的设计要求。并且能够减小支撑结构组件3的重量,进而减轻了整个投影***的重量。
当然,还可以采用多项式之和的方法对透光部31的内曲面311和外曲面312的面型进行优化,具体地:
在以投影单元2的光轴21与屏幕单元1入光面的交点为原点,以屏幕单元1的入光面为x轴和y轴所在平面,以投影单元2的光轴21为z轴,且z轴方向由屏幕单元1指向投影单元2的坐标系内,透光部31的内曲面311的函数满足:
Figure PCTCN2015083007-appb-000009
其中,αn和N为优化系数,r为内曲面311上任意一点与投影单元2的光轴21的距离,h1为任意一点到屏幕单元1的入光面的距离;
透光部31的外曲面312的函数满足:
Figure PCTCN2015083007-appb-000010
其中,βn和M为优化系数,r为外曲面312上任意一点与投影单元2的光轴21的距离,h2为上述任意一点到屏幕单元1的入光面的距离。
上述投影***中,支撑结构组件3可以有多种设置方式:
方式一,支撑结构组件3包括一个透光部,且该透光部31为轴对称结构,且透光部31的对称轴与投影单元2的光轴21重合,如图1所示;此时,支撑结构组件3上可以设置有多个连接部32,具体地,如图1所示,每一个支撑结构组件3中可以具有四个连接部32,且四个连接部32沿光轴21的周向均匀分布。
方式二,如图7和图8所示,支撑结构组件3中还可以包括两个透光部31,每一个透光部31具体可以为自上述方式一中公开的具有轴对称结构的整体上切割下来的一部分,且两个透光部31中,每一个透光部31上设有一个连接部32。上述支撑结构组件3能够 减小支撑结构组件3的重量,进而减小整个投影***的重量。
当然,上述投影***中的投影单元2也可以有多种设置方式,具体地:
方式一,如图1及图3所示,每一个支撑结构组件3和对应的屏幕单元1以及投影单元2中:
投影单元2可以仅包括一投影机,投影机安装于外框机架4,且投影机发射光线的光轴21与透光部31的对称轴重合。
方式二,如图7所示,每一个支撑结构组件3和对应的屏幕单元1以及投影单元2中:
投影单元2中包括一个投影机26、一个第一反射片24和一个第二反射片25;投影机26安装于外框机架4;第一反射片24安装于外框机架4、且用于将投影机26发射的光线全部反射向第二反射片25;第二反射片25安装于外框机架4、且用于将第一反射片24反射的光线全部反射向与该投影单元2对应的屏幕单元1。
当投影单元2采用上述方式二的结构时能够通过采用第一反射片24和第二反射片25多次反射的方法来缩短投影单元2投射的距离,进而减小整个投影***在垂直于屏幕单元1方向上的厚度。
当然,由于本投影***中,每一个屏幕单元需要和其他的屏幕单元无缝拼接在一起使用,投影***在工作时每个屏幕单元各自独立,因此,每一个支撑结构组件3和对应的屏幕单元1以及投影单元2中,在支撑结构组件3以及投影单元2的组装过程中,还需要保证每个投影单元2发射的光线只能穿过与该投影单元对应的支撑结构组件3的透光部31,而不能接触到与该屏幕单元1相邻的其他屏幕单元对应的支撑结构组件的透光部。
当然,另一种优选实施方式中,如图8所示,当支撑结构组件3为上述方式二中公开的支撑结构组件3时,每一个支撑结构组件3和对应的屏幕单元1以及投影单元2中:
屏幕单元1的入光面具有长方形结构;
投影单元2的光轴21与屏幕单元1入光面所在平面的交点位于屏幕单元1中与短边平行的中线所在直线上、且位于屏幕单元1的外侧,且对应于屏幕单元1的离轴高度为Offset+b/2,其中,offset为投影单元的光轴与屏幕单元入光面所在平面的交点与投影单元在屏幕显示入光面上形成图像之间的距离;b为每相邻的两个屏幕单元拼接后融合区域的宽度;
每一个支撑结构组件3包括的两个透光部31中,两个透光部31沿屏幕单元1中与短边平行的中线对称设置。
优选地,上述屏幕单元1可以为平面屏幕单元,也可以为曲面平面单元。
一种优选实施方式中,上述透光部31的制备材料可以为亚克力塑料、或者PS材料,连接部32的制备材料可以为亚克力塑料、或者PS材料。亚克力塑料和PS材料为具有低光线吸收率和低色散系数的透明塑料,并且该材料还应适于压模制造,成本低廉等特性, 同时,能够提高上述支撑结构组件3的结构强度。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种投影***,包括投影单元、屏幕单元、外框机架以及支撑结构组件,所述屏幕单元用于呈现所述投影单元投影出的画面,所述外框机架用于固定所述投影单元和所述支撑结构组件,所述支撑结构组件用于将所述屏幕单元与所述外框机架固定连接,所述支撑结构组件位于所述屏幕单元的入光侧,其特征在于,
    所述支撑结构组件包括透光部和至少一个连接部,所述透光部与所述屏幕单元固定连接,所述透光部用于使所述投影单元发出照射在透光部上的光线透过;
    所述至少一个连接部位于所述投影单元发射光线的传播路径之外,所述至少一个连接部用于固定连接所述透光部与所述外框机架。
  2. 根据权利要求1所述的投影***,其特征在于,所述透光部的内曲面上的点与所述投影单元的光轴之间的距离沿逆投影方向逐渐增大,所述透光部的外曲面上的点与所述投影单元的光轴之间的距离沿所述逆投影方向逐渐增大,所述逆投影方向为所述屏幕单元指向所述投影单元的方向,所述内曲面为所述透光部朝向投影单元的光轴一侧的表面,所述外曲面为所述透光部背离投影单元光轴一侧的表面。
  3. 根据权利要求2所述的投影***,其特征在于,所述内曲面与所述屏幕单元的入光面之间平滑过渡,所述外曲面与所述入光面之间平滑过渡,以使得透过所述透光部的光线照射到屏幕单元入光面时均匀分布。
  4. 根据权利要求2或3所述的投影***,其特征在于,所述内曲面或外曲面上与所述光轴距离最远的点为边缘点,所述边缘点距离所述屏幕单元的长度的最小值hmin满足:
    Figure PCTCN2015083007-appb-100001
    其中,b为所述投影***中的融合区域的宽度,θmax为所述投影单元发射的光线与投影单元光轴之间的最大夹角。
  5. 根据权利要求2至4任一项所述的投影***,其特征在于,在以所述投影单元的光轴与所述屏幕单元的交点为原点,以所述屏幕单元的入光面为x轴和y轴所在平面,以所述光轴为z轴,所述z轴方向由所述屏幕单元指向所述投影单元的坐标系内,所述内曲面的函数满足:
    Figure PCTCN2015083007-appb-100002
    其中,α1和Q1为优化系数,r1为所述内曲面与所述入光面的交线所在圆的半径,r为所述内曲面上任意一点与所述投影单元的光轴的距离,h1为所述任意一点到所述屏幕单元的入光面的距离;
    所述外曲面的函数满足:
    Figure PCTCN2015083007-appb-100003
    其中,α2和Q2为优化系数,r2为所述外曲面与所述入光面的交线所在圆的半径,r为所述外曲面上任意一点与所述投影单元的光轴的距离,h2为所述任意一点到所述屏幕单元的入光面的距离。
  6. 根据权利要求2至4任一项所述的投影***,其特征在于,在以所述投影单元的光轴与所述屏幕单元的交点为原点,以所述屏幕单元的入光面为x轴和y轴所在平面,以所述光轴为z轴,所述z轴方向由所述屏幕单元指向所述投影单元的坐标系内,所述内曲面的函数满足:
    Figure PCTCN2015083007-appb-100004
    其中,αn和N为优化系数,r为所述内曲面上任意一点与所述投影单元的光轴的距离,h1为所述任意一点到所述屏幕单元的入光面的距离;
    所述外曲面的函数满足:
    Figure PCTCN2015083007-appb-100005
    其中,βn和M为优化系数,r为所述外曲面上任意一点与所述投影单元的光轴的距离,h2为所述任意一点到所述屏幕单元的入光面的距离。
  7. 根据权利要求1至6任一项所述的投影***,其特征在于,所述透光部与所述屏幕单元黏贴连接在一起,所述透光部与所述屏幕单元黏贴的面为贴合面,所述屏幕单元与所述贴合面贴合的区域与所述屏幕单元的边缘区域无交叠,所述边缘区域为所述投影***的融合区域的部分区域。
  8. 根据权利要求1至7任一项所述的投影***,其特征在于,所述投影单元包括投影机、第一反射片和第二反射片,所述第一反射片用于将所述投影机发射的光线反射向第二反射片,所述第二反射片用于将所述第一反射片反射的光线反射向所述屏幕单元。
  9. 根据权利要求1至6任一项所述的投影***,其特征在于,所述透光部的制备材料包括亚克力塑料或者聚苯乙烯塑料,所述连接部的制备材料包括亚克力塑料或者聚苯乙烯塑料。
  10. 根据权利要求1至9任一项所述的投影***,其特征在于,所述屏幕单元为平面屏幕单元或曲面屏幕单元。
PCT/CN2015/083007 2015-06-30 2015-06-30 一种投影*** WO2017000264A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15896795.0A EP3301510B1 (en) 2015-06-30 2015-06-30 Projection system
PCT/CN2015/083007 WO2017000264A1 (zh) 2015-06-30 2015-06-30 一种投影***
CN201580078802.7A CN107850828B (zh) 2015-06-30 2015-06-30 一种投影***
US15/859,023 US10261399B2 (en) 2015-06-30 2017-12-29 Projection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083007 WO2017000264A1 (zh) 2015-06-30 2015-06-30 一种投影***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/859,023 Continuation US10261399B2 (en) 2015-06-30 2017-12-29 Projection system

Publications (1)

Publication Number Publication Date
WO2017000264A1 true WO2017000264A1 (zh) 2017-01-05

Family

ID=57607464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083007 WO2017000264A1 (zh) 2015-06-30 2015-06-30 一种投影***

Country Status (4)

Country Link
US (1) US10261399B2 (zh)
EP (1) EP3301510B1 (zh)
CN (1) CN107850828B (zh)
WO (1) WO2017000264A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061966A (zh) * 2018-08-15 2018-12-21 友达光电股份有限公司 显示***
WO2020016785A1 (es) 2018-07-16 2020-01-23 Panacea Quantum Leap Technology Llc Electrodos de placas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856849B (zh) * 2019-04-28 2022-12-20 青岛海信激光显示股份有限公司 投影设备、投影***及激光电视
US11982798B2 (en) 2020-11-18 2024-05-14 Coretronic Corporation Projection lens and projection apparatus
CN114518644B (zh) * 2020-11-18 2024-06-21 中强光电股份有限公司 投影镜头及投影装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085495A (en) * 1990-02-28 1992-02-04 Hitachi, Ltd. Multi-screen projector
US5206760A (en) * 1990-10-01 1993-04-27 Hitachi, Ltd. Multiprojection apparatus
US6113041A (en) * 1996-07-30 2000-09-05 Adf, Incorporated Video wall framing system
CN101556425A (zh) * 2009-04-29 2009-10-14 广东威创视讯科技股份有限公司 一种背投影单元无缝拼接方法及专用光学结构
CN201876660U (zh) * 2010-09-30 2011-06-22 上海广电光显技术有限公司 无边缘图像遮挡投影拼接屏幕
CN102822722A (zh) * 2010-03-31 2012-12-12 日本电气株式会社 投影仪、投影仪***和图像校正方法
CN204375351U (zh) * 2015-01-20 2015-06-03 张慧芳 一种无缝拼接显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488531A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Back surface projection type device
JP2794915B2 (ja) * 1990-08-03 1998-09-10 三菱電機株式会社 大画面表示装置
JPH11249237A (ja) * 1998-12-07 1999-09-17 Hitachi Ltd スクリーンとその製法及びマルチプロジェクタ
US6550521B1 (en) 2000-05-30 2003-04-22 Visual Structures, Inc. Seamless screen videowall
US6833951B2 (en) 2000-12-29 2004-12-21 Honeywell International Inc. Seamless rear projection screen
US20100157256A1 (en) * 2005-06-24 2010-06-24 Tatsuo Itoh Image projection device and rear projection type display device
CN101762965A (zh) 2009-11-10 2010-06-30 广东威创视讯科技股份有限公司 一种背投影拼接显示屏
US20140226133A1 (en) * 2011-09-27 2014-08-14 Nec Corporation Multiprojection system
WO2014203387A1 (ja) * 2013-06-21 2014-12-24 Necディスプレイソリューションズ株式会社 画像表示装置及び画像表示方法
CN103489374A (zh) 2013-08-13 2014-01-01 江苏清投视讯科技有限公司 一种多屏幕拼接的无缝显示屏
CN103700323B (zh) 2013-12-31 2015-12-23 深圳市澳柯瑞科技有限公司 无边框显示装置及消除拼缝的大屏幕拼接显示***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085495A (en) * 1990-02-28 1992-02-04 Hitachi, Ltd. Multi-screen projector
US5206760A (en) * 1990-10-01 1993-04-27 Hitachi, Ltd. Multiprojection apparatus
US6113041A (en) * 1996-07-30 2000-09-05 Adf, Incorporated Video wall framing system
CN101556425A (zh) * 2009-04-29 2009-10-14 广东威创视讯科技股份有限公司 一种背投影单元无缝拼接方法及专用光学结构
CN102822722A (zh) * 2010-03-31 2012-12-12 日本电气株式会社 投影仪、投影仪***和图像校正方法
CN201876660U (zh) * 2010-09-30 2011-06-22 上海广电光显技术有限公司 无边缘图像遮挡投影拼接屏幕
CN204375351U (zh) * 2015-01-20 2015-06-03 张慧芳 一种无缝拼接显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016785A1 (es) 2018-07-16 2020-01-23 Panacea Quantum Leap Technology Llc Electrodos de placas
CN109061966A (zh) * 2018-08-15 2018-12-21 友达光电股份有限公司 显示***
TWI683162B (zh) * 2018-08-15 2020-01-21 友達光電股份有限公司 顯示系統

Also Published As

Publication number Publication date
US20180120676A1 (en) 2018-05-03
EP3301510B1 (en) 2019-08-21
EP3301510A4 (en) 2018-07-04
EP3301510A1 (en) 2018-04-04
CN107850828B (zh) 2020-10-09
CN107850828A (zh) 2018-03-27
US10261399B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2017000264A1 (zh) 一种投影***
KR101880839B1 (ko) 광 경로 조정 유닛 및 디스플레이 디바이스
US20190369399A1 (en) Head-mounted display device
JP4967247B2 (ja) 画像表示装置及びそれに用いるスクリーン
CN102349293B (zh) 显示装置
CN203745713U (zh) 一种曲面反射式超短焦投影镜头
CN106855655B (zh) 非对称曲面棱镜影像显示光学***
US20230288724A1 (en) Aerial floating image information display system and light source apparatus used in the same
CN111290100A (zh) 投影镜头及投影成像***
TWI534503B (zh) 顯示裝置
JP5055765B2 (ja) 画像表示装置、及び、それに用いるフレネルレンズシート並びにスクリーン
JP2002162689A (ja) 大画面表示装置
US11644673B2 (en) Near-eye optical system
JP5168386B2 (ja) 画像表示装置及びそれに用いるスクリーン
CN102043310B (zh) 投影***、投影装置及成像模组
CN112748572B (zh) 虚像显示装置及导光部件
JPH02134677A (ja) マルチスクリーン型表示装置
JP2016009129A (ja) 画像表示装置
US7440186B2 (en) Screen, a fresnel lens sheet used for the screen, and an image display apparatus using the screen
JP7370433B2 (ja) 空間浮遊映像情報表示システムに用いられる光源装置
JP7367148B2 (ja) 空間浮遊映像表示装置
EP2956712B1 (en) Methods for wedge-based imaging using flat surfaces
CN215068963U (zh) 消隐边框显示器
CN211014994U (zh) 一种激光投影高反射装置
JP2011081395A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015896795

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE