WO2017000215A1 - 辐射装置 - Google Patents

辐射装置 Download PDF

Info

Publication number
WO2017000215A1
WO2017000215A1 PCT/CN2015/082826 CN2015082826W WO2017000215A1 WO 2017000215 A1 WO2017000215 A1 WO 2017000215A1 CN 2015082826 W CN2015082826 W CN 2015082826W WO 2017000215 A1 WO2017000215 A1 WO 2017000215A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
radiation device
radiator
connecting portion
conductive plates
Prior art date
Application number
PCT/CN2015/082826
Other languages
English (en)
French (fr)
Inventor
道坚丁九
肖伟宏
谢国庆
薛小刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112017028246-1A priority Critical patent/BR112017028246B1/pt
Priority to CN201580024669.7A priority patent/CN108028460B/zh
Priority to EP15896746.3A priority patent/EP3301756B1/en
Priority to JP2017567672A priority patent/JP6505876B2/ja
Priority to PCT/CN2015/082826 priority patent/WO2017000215A1/zh
Publication of WO2017000215A1 publication Critical patent/WO2017000215A1/zh
Priority to US15/858,993 priority patent/US10389018B2/en
Priority to US16/531,976 priority patent/US10714820B2/en
Priority to US16/916,840 priority patent/US11316263B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to the field of communications, and in particular to a radiation device.
  • the antenna is a system component that radiates and receives electromagnetic waves.
  • the performance of the antenna plays a decisive role in the performance of the mobile communication system.
  • a high-performance antenna satisfies the requirements of the wide system and improves the performance of the entire system.
  • the core issue of modern antenna design is to make the antenna meet the more demanding technical requirements of the new system and to surpass the original antenna form to meet the new system requirements.
  • the rapid growth of mobile users has led to continuous updating and expansion of communication systems.
  • antennas are required to operate in a wide frequency range, while meeting the communication requirements of multiple systems, enabling multi-system sharing and transceiving. Share. Studying the base station antennas shared by multiple systems can reduce the number of antennas and reduce inter-antenna interference and antenna cost, and can share the original base stations. Therefore, research on multi-band base station antenna units is very meaningful.
  • Base station antennas mostly adopt linear polarization mode, in which monopole antennas mostly adopt vertical line polarization; dual-polarization antennas are generally divided into vertical and horizontal polarization and +/- 45 degree polarization. The performance is generally better than the former, so most of the current use is +/- 45 degree polarization. Since a dual-polarized antenna is composed of two antennas whose polarizations are orthogonal to each other and is packaged in the same radome, the two-wire polarized antenna can greatly reduce the number of antennas, simplify antenna engineering installation, reduce cost, and reduce antenna footprint. Space is the mainstream of the opening antennas in urban areas.
  • the dual-polarized antenna combines two antennas with orthogonal directions of +45 degrees and -45 degrees, and operates in the duplex mode at the same time.
  • the isolation between the two antennas of 45 degrees and -45 degrees satisfies the requirement of intermodulation isolation between antennas ( ⁇ 30dB), so the spatial separation between the dual-polarized antennas only needs 20-30cm, which effectively ensures diversity reception. Good results.
  • the traditional +/- 45 degree polarized antenna has no relationship between the +45 degree and -45 degrees two polarization corresponding radiation arms. When one polarization corresponding to the radiation arm is working, the other polarization corresponding to the radiation arm is Will not work.
  • the placement and feeding of the LF unit can have a significant impact on the adjacent high frequency unit.
  • embodiments of the present invention provide a radiation device capable of achieving a polarization effect of +/- 45 degrees, thereby reducing mutual coupling between high and low frequency units in a multi-frequency multi-array environment.
  • a first aspect provides a radiation device comprising: at least four radiators, two L-shaped feed sheets, and a balun structure; the balun structure is composed of four L-shaped structures formed of eight conductive plates; each L-shaped The structure is formed by two conductive plates arranged at approximately 90 degrees.
  • each L-shaped structure is electrically connected to a radiator, and the angle between the length direction of the radiator and the two conductive plates is approximately 45 degrees; each adjacent two L-shaped structures are arranged in a T-shape, the four radiators are approximately cross-shaped and approximately in the same horizontal plane; two adjacent conductive plates of each adjacent two L-shaped structures are approximately parallel
  • the intermediate spacing is preset to form four feeding slits; the two L-shaped feeding sheets are placed in the feeding gap with an approximately 90 degree offset, wherein each L-shaped feeding piece is placed in two opposite feeding gaps. in.
  • the total length of each of the radiators is approximately one quarter of the wavelength corresponding to the operating frequency band.
  • the total length of each conductive plate is approximately one quarter of the wavelength corresponding to the operating frequency band.
  • each L-shaped structure is electrically connected directly to a radiator or electrically coupled connection.
  • one end of the radiator has a coupling structure electrically coupled to the L-shaped structure.
  • a fifth possible implementation in the L-shaped structure, two conductive flat plates The connecting edges are completely joined together to form a unitary structure.
  • the radiator connects the junction of the two conductive plates.
  • a seventh possible implementation in the L-shaped structure, two conductive flat plates The connecting side portions are connected together and partially grooved.
  • the slot is disposed at one end of the L-shaped structure adjacent to the radiator or in the middle of the L-shaped structure.
  • the radiator is 90 degrees with respect to the length direction of the balun structure, or slightly inclined.
  • a cross bar connects the two mutually distant sides of the two conductive plates, approximate An isosceles triangle is formed, and one end of the radiator is welded to the middle portion of the crossbar.
  • each L-shaped structure at one end of each L-shaped structure, one end of the first connecting rod and one end of the second connecting rod respectively Connecting two conductive plates, the other end of the first connecting rod is connected with the other end of the second connecting rod, one end of the radiator is connected to the connection of the first connecting rod and the second connecting rod, and the connection of the two conductive plates
  • the sides are in the same plane as the length of the radiator.
  • the L-shaped power feeding piece includes the first connecting portion a second connecting portion parallel to the first connecting portion and having a length smaller than the first connecting portion, the second connecting portion vertically connecting the first connecting portion and the third connecting portion, the first connecting portion And the third connecting portion are respectively placed in two opposite feeding slits.
  • the end of the first connecting portion of the L-shaped power feeding piece remote from the second connecting portion is directly inserted on the PCB board
  • the conductive plate is connected to the ground of the PCB board.
  • the end of the first connecting portion of the L-shaped power feeding piece away from the second connecting portion is formed with the balun structure
  • the radiation device of the present invention comprises: at least four radiators, two L-shaped feed sheets, and a balun structure; the balun structure is composed of four L-shaped structures formed by eight conductive plates; each L-shaped structure consists of two The conductive plates are arranged at approximately 90 degrees.
  • each L-shaped structure is electrically connected to a radiator, and the angle between the length direction of the radiator and the two conductive plates is approximately 45 degrees;
  • Two adjacent L-shaped structures are arranged in a T-shape, four radiators are approximately cross-shaped, and are approximately in the same horizontal plane;
  • two adjacent conductive plates of each adjacent two L-shaped structures are approximately parallel, with an intermediate interval Set the distance to form four feed gaps;
  • the two L-shaped feed pieces are placed in the feed gap at approximately 90 degrees offset, wherein each L-shaped feed piece is placed in two opposite feed slots, such that one
  • the L-shaped feeder is polarized, all four radiators participate in the radiation, and the required working polarization is synthesized in the direction of +/- 45 degrees by vector synthesis, achieving a polarization effect of +/- 45 degrees, and then multi-frequency. Reducing mutual coupling between high and low frequency units in a multi-array environment
  • FIG. 1 is a schematic structural view of a radiation device according to a first embodiment of the present invention
  • Figure 2 is a side elevational view of the radiation device of Figure 1;
  • FIG. 3 is a schematic structural view of an L-shaped feed piece according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the operating current vector of the radiation device of Figure 1;
  • Figure 5 is a schematic structural view of a radiation device according to a second embodiment of the present invention.
  • Figure 6 is a schematic structural view of a radiation device according to a third embodiment of the present invention.
  • Figure 7 is a schematic structural view of a radiation device according to a fourth embodiment of the present invention.
  • Figure 8 is a schematic structural view of a radiation device according to a fifth embodiment of the present invention.
  • Figure 9 is a schematic structural view of a radiation device according to a sixth embodiment of the present invention.
  • Figure 10 is a schematic structural view of a radiation device according to a seventh embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a radiation apparatus according to an eighth embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a radiation device according to a first embodiment of the present invention.
  • the radiation device 10 includes: at least four radiators 11, two L-shaped feed pieces 12, and a balun structure 13; four L-shaped structures 131 formed by eight conductive plates 132 of the balun structure 13 composition.
  • Each L-shaped structure 131 is formed by two conductive flat plates 132 arranged at approximately 90 degrees.
  • each L-shaped structure 131 is electrically connected to a radiator 11 and the length direction of the radiator 11 is two The angle between the conductive plates 132 is approximately 45 degrees; each adjacent two L-shaped structures 131 are arranged in a T-shape, and the four radiators 11 are approximately cross-shaped and approximately in the same horizontal plane; each adjacent two The two adjacent conductive plates 132 of the L-shaped structure 131 are approximately parallel, with a predetermined distance therebetween, forming four feeding slits 14; the two L-shaped feeding sheets 12 are placed in the feeding gap 14 at approximately 90 degrees offset. Each of the L-shaped feed tabs 12 is placed in two opposing feed slots 14.
  • the total length of each of the radiators 11 is about one quarter of the wavelength of the working frequency band, and the radiator 11 may be a rectangular parallelepiped shape, a cylindrical shape, or the like, and is not particularly limited.
  • the total length of each of the conductive plates 132 is approximately one quarter of the wavelength corresponding to the operating frequency band.
  • the eight conductive plates 132 may be connected together by the connection structure 15, or may be separated from each other.
  • the shape of the connecting structure 15 is not limited and may be a disk shape, a cylindrical shape, a square shape or the like.
  • the two conductive plates may be directly connected or may not be directly connected, and are only placed in an L shape.
  • the connecting edges of the two conductive flat plates 132 may be completely connected together to form a unitary structure.
  • the radiator 11 connects the connections of the two conductive flat plates 132.
  • the radiator 11 is a rectangular parallelepiped, the radiator 11 is welded to the junction of the two conductive flat plates 132, and the width direction of the radiator 11 is parallel to the longitudinal direction of the two conductive flat plates 132.
  • the radiator is 90 degrees with respect to the longitudinal direction of the balun structure, or the radiator is slightly inclined with the length direction of the balun structure, but the inclination angle is not excessive. As can be seen from Fig. 2, the radiator is slightly inclined with respect to the length direction of the balun structure.
  • the L-shaped feed piece 12 includes a first connecting portion 121, a second connecting portion 122, and a third connecting portion 123.
  • the third connecting portion 123 is parallel to the first connecting portion 121 and has a smaller length than the first connecting portion 121.
  • the second connecting portion 122 vertically connects the first connecting portion 121 and the third connecting portion 123, the first connecting portion 121 and the third portion.
  • the connecting portions 123 are placed in the two opposing feed slots 14, respectively.
  • the length of the first connecting portion 121 is about one quarter of the wavelength corresponding to the working frequency band, and the length of the third connecting portion 123 is not greater than the length of the first connecting portion 121. Therefore, the total length of the L-shaped feeding piece 12 is not greater than the working length.
  • the frequency band corresponds to one-half of the wavelength.
  • the current directions of the first L-shaped structure 131 and the second L-shaped structure 133 are opposite to the current direction of the first connecting portion 121, that is, upward; correspondingly, the first radiator 111 and the first The current of the two radiators 112 is outward.
  • the current directions of the third L-shaped structure 134 and the fourth L-shaped structure 135 are opposite to the current direction of the third connecting portion 123, that is, upward; accordingly, the current directions of the third radiator 113 and the fourth radiator 114 are inward.
  • the vector synthesis synthesizes the working polarization in the +45 degree direction.
  • the required working polarization can be synthesized in the direction of +/- 45 degrees by vector synthesis, achieving a polarization effect of +/- 45 degrees, and thus multi-frequency multi-array Reduce the mutual coupling between high and low frequency units in the environment.
  • one end of the first connecting portion 121 of the L-shaped feed piece 12 away from the second connecting portion 122 is directly inserted on the PCB board 16, and the conductive flat plate 132 is connected to the ground of the PCB board 16.
  • a reflector (not shown) is disposed under the PCB board 16.
  • the eight conductive plates 132 constituting the balun structure 13 can be directly electrically connected together through the connecting structure 15 at the other end of the balun structure 13 and then connected to the reflecting plate.
  • the eight conductive flat plates 132' constituting the balun structure 13' are coupled by a reflection plate, and the eight conductive flat plates 132' are respectively connected to the reflection plate.
  • a coaxial suspension strip line is formed with the balun structure 13 at an end of the first connecting portion 121 of the L-shaped feed piece 12 away from the second connecting portion 122.
  • the two conductive plates constituting the L-shaped structure may be integrally connected, partially connected, or completely separated.
  • FIG. a is a perspective view
  • FIG. b is a side view.
  • the connecting side portions of the two conductive flat plates 232 are connected together and partially grooved.
  • the slit 230 is provided at one end of the L-shaped structure 231 close to the radiator 21.
  • the radiator 21 is 90 degrees from the length of the balun structure 23.
  • a crossbar 235 connects the two mutually distant sides of the two conductive flat plates 232 to form an isosceles triangle, and one end of the radiator 21 is welded to the intermediate portion of the crossbar 235.
  • the width direction of the radiator 21 is parallel to the longitudinal direction of the cross bar 235.
  • FIG. 9 wherein a is a perspective view and FIG. b is a side view.
  • the slot 330 is disposed in the middle of the L-shaped structure 331.
  • the radiator 31 is 90 degrees from the length of the balun structure 33.
  • the L-shaped structure 43 can also be electrically coupled to the radiator 41 without being electrically connected directly to the radiator 41.
  • One end of the radiator 41 has a coupling structure 410 that is electrically coupled to the L-shaped structure 43.
  • the coupling structure 410 may be a structure that is parallel to the L-shaped structure. In other embodiments of the invention, it may also be a structure that is not parallel to the L-shaped structure.
  • the coupling area can be determined as the case may be, and is not limited herein.
  • each L-shaped structure 531 at one end of each L-shaped structure 531, one end of the first connecting rod 511 and one end of the second connecting rod 512 are respectively connected with two conductive flat plates 532, and the first connecting rod 511 is connected. The other end is connected to the other end of the second connecting rod 512.
  • One end of the radiator 51 is connected to the joint of the first connecting rod 511 and the second connecting rod 512, and the connecting side of the two conductive plates 532 and the radiator 51 are connected.
  • the length direction is in the same plane.
  • connection between the radiator and the L-shaped structure, between the connecting rods, and between the connecting rod and the radiator or the conductive plate may be welding, rivet connection, dowel connection, or other connection manner.
  • the radiation device of the present invention comprises: at least four radiators, two L-shaped feed sheets, and a balun structure; the balun structure is composed of four L-shaped structures formed by eight conductive plates; each L The shaped structure is formed by two conductive plates arranged at approximately 90 degrees. At one end of the balun structure, each L-shaped structure is electrically connected to a radiator, and the longitudinal direction of the radiator is approximated to the angle between the two conductive plates.
  • each adjacent two L-shaped structures are arranged in a T-shape, the four radiators are approximately cross-shaped and approximately in the same horizontal plane; two adjacent conductive plates of each adjacent two L-shaped structures are approximated Parallel, intermediately spaced apart by a predetermined distance to form four feed gaps; two L-shaped feed sheets are placed in the feed gap at approximately 90 degrees offset, wherein each L-shaped feed piece is placed in two opposite feeds In the gap, when four L-shaped feeders are polarized, all four radiators participate in the radiation, and the required working polarization is synthesized in the direction of +/- 45 degrees by vector synthesis, achieving a polarization effect of +/- 45 degrees. , thereby reducing the high and low frequency units in a multi-frequency multi-array environment Between the mutual coupling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Measurement Of Radiation (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种辐射装置,辐射装置包括:检测到分别位于两个域中两个节点的域名相同时,向两个节点发送节点切换指示消息,将两个域中的域主节点切换至媒介间桥接器并进行同步;分析两个域中的设备地址的冲突情况,并在冲突时为一侧域中的设备地址冲突的节点分配新的设备地址;广播新的设备地址以及生效时间,以使节点按照新的设备地址进行工作。通过以上公开内容,本发明能够保证域无缝合并,不影响流业务传输,同时降低实现复杂度。

Description

辐射装置
【技术领域】
本发明涉及通信领域,特别是涉及一种辐射装置。
【背景技术】
天线作为无线通信***的咽喉要道,是辐射和接收电磁波的***部件。天线性能的优劣,对移动通信***的性能起着决定性的作用,一副高性能的天线满足宽***的要求且改进整个***的性能。现代天线设计的核心问题是使天线满足新***中更为苛刻的技术要求,并且超越原有天线形式,满足新的***要求。移动用户的急剧增长,使得通信***不断更新和扩容,为减小天线间的干扰并降低成本,要求天线能在宽频带范围内工作,同时满足多个***的通信要求,实现多***共用和收发共用。研究多个***共用的基站天线可以减小天线的数目而降低天线间干扰以及天线成本,而且可以共享原有的基站,因此,对多频带基站天线单元的研究是非常有意义的。
基站天线多采用线极化方式,其中单极天线多采用垂直线极化;双极化天线一般分为垂直与水平极化和+/-45度极化两种方式。性能上一般后者优于前者,因此目前大部分采用的是+/-45度极化方式。由于一个双极化天线是由极化彼此正交的两根天线封装在同一天线罩中组成的,采用双线极化天线可以大大减少天线数目,简化天线工程安装,降低成本,减少天线占地空间,是目前城市地区开局天线的主流。双极化天线组合了+45度和-45度两副极化方向相互正交的天线,并同时工作在收发双工模式下,同时由于+/-45度为正交极化,可以保证+45度和-45度两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB),因此双极化天线之间的空间间隔仅需20-30cm,有效保证了分集接收的良好效果。
传统的+/-45度极化天线,+45度和-45度两个极化对应的辐射臂之间没有关系,一个极化对应的辐射臂工作时,另一个极化对应的辐射臂是不会工作的。使用传统的+/-45度极化的天线进行平面阵列组阵的时候,低频单元的放置位置和馈电方式会对旁边的高频单元产生显著的影响。
【发明内容】
有鉴于此,本发明实施例提供了一种辐射装置,能够实现+/-45度的极化效果,进而在多频多阵列环境中减小高低频单元之间的互耦。
第一方面提供一种辐射装置,包括:至少四个辐射器、两个L形馈电片以及巴伦结构;巴伦结构由八个导电平板形成的四个L形结构组成;每个L形结构由两个导电平板以近似90度排列形成,在巴伦结构的一端,每个L形结构与一个辐射器电气连接,并且辐射器的长度方向与两个导电平板之间的夹角近似为45度;每相邻两个L形结构呈T字形排布,四个辐射器呈近似十字形,并且近似在同一水平面内;每相邻两个L形结构的两个相邻导电平板近似平行,中间间隔预设距离,形成四个馈电缝隙;两个L形馈电片呈近似90度错位放置在馈电缝隙中,其中每个L形馈电片放置在两个相对的馈电缝隙中。
结合第一方面的实现方式,在第一种可能的实现方式中,每个辐射器的总长度约为工作频段对应波长的四分之一。
结合第一方面的、第一方面的第一种可能的实现方式,在第二种可能的实现方式中,每个导电平板的总长度约为工作频段对应波长的四分之一。
结合第一方面的、第一方面的第一种可能的、第二种可能的实现方式,在第三种可能的实现方式中,每个L形结构与一个辐射器电气直接连接,或者电气耦合连接。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,辐射器的一端具有与L形结构电气耦合连接的耦合结构。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的实现方式,在第五种可能的实现方式中,L形结构中,两个导电平板的连接边完全连接在一起,形成一整体结构。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,在每个L形结构的一端,辐射器连接两个导电平板的连接处。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的实现方式,在第七种可能的实现方式中,L形结构中,两个导电平板的连接边部分连接在一起,部分开槽。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,开槽设置在L形结构的靠近辐射器的一端,或者设置在L形结构的中部。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的实现方式,在第九种可能的实现方式中,辐射器与巴伦结构长度方向呈90度,或者略有倾斜。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的、第九种可能的实现方式,在第十种可能的实现方式中,在每个L形结构的一端,一横杆连接两个导电平板的相互远离的两边,近似形成等腰三角形,辐射器的一端焊接在横杆的中间部位。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的、第九种可能的实现方式,在第十一种可能的实现方式中,在每个L形结构的一端,第一连接杆的一端和第二连接杆的一端分别连接两个导电平板,第一连接杆的另一端与第二连接杆的另一端连接在一起,辐射器的一端连接第一连接杆和第二连接杆的连接处,并且两个导电平板的连接边与辐射器的长度方向在同一平面内。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的、第九种可能的、第十种可能的、第十一种可能的实现方式,在第十二种可能的实现方式中,L形馈电片包括第一连接部、第二连接部以及第三连接部,第三连接部与第一连接部平行,且长度小于第一连接部,第二连接部垂直连接第一连接部与第三连接部,第一连接部和第三连接部分别放置在两个相对的馈电缝隙中。
结合第一方面的第十二种可能的实现方式,在第十三种可能的实现方式中,L形馈电片的第一连接部的远离第二连接部的一端直接插装在PCB板上,导电平板与PCB板的地连接。
结合第一方面的第十三种可能的实现方式,在第十四种可能的实现方式中,在L形馈电片的第一连接部的远离第二连接部的一端与巴伦结构形成同轴悬置带线结构,其中,同轴悬置带线结构的金属外壳与巴伦结构连接,内部悬置带线与L形馈电片的第一连接部的远离第二连接部的一端连接。
本发明的辐射装置包括:至少四个辐射器、两个L形馈电片以及巴伦结构;巴伦结构由八个导电平板形成的四个L形结构组成;每个L形结构由两个导电平板以近似90度排列形成,在巴伦结构的一端,每个L形结构与一个辐射器电气连接,并且辐射器的长度方向与两个导电平板之间的夹角近似为45度;每相邻两个L形结构呈T字形排布,四个辐射器呈近似十字形,并且近似在同一水平面内;每相邻两个L形结构的两个相邻导电平板近似平行,中间间隔预设距离,形成四个馈电缝隙;两个L形馈电片呈近似90度错位放置在馈电缝隙中,其中每个L形馈电片放置在两个相对的馈电缝隙中,使得一个L形馈电片极化时四个辐射器均参与辐射,通过矢量合成在+/-45度方向上合成出需要的工作极化,实现+/-45度的极化效果,进而在多频多阵列环境中减小高低频单元之间的互耦。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例的辐射装置的结构示意图;
图2是图1中的辐射装置的侧视图;
图3是本发明实施例的L形馈电片的结构示意图;
图4是图1中的辐射装置的工作电流矢量示意图;
图5是本发明第二实施例的辐射装置的结构示意图;
图6是本发明第三实施例的辐射装置的结构示意图;
图7是本发明第四实施例的辐射装置的结构示意图;
图8是本发明第五实施例的辐射装置的结构示意图;
图9是本发明第六实施例的辐射装置的结构示意图;
图10是本发明第七实施例的辐射装置的结构示意图;
图11是本发明第八实施例的辐射装置的结构示意图。
【具体实施方式】
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明第一实施例的辐射装置的结构示意图。如图1所示,辐射装置10包括:至少四个辐射器11、两个L形馈电片12以及巴伦结构13;巴伦结构13由八个导电平板132形成的四个L形结构131组成。每个L形结构131由两个导电平板132以近似90度排列形成,在巴伦结构13的一端,每个L形结构131与一个辐射器11电气连接,并且辐射器11的长度方向与两个导电平板132之间的夹角近似为45度;每相邻两个L形结构131呈T字形排布,四个辐射器11呈近似十字形,并且近似在同一水平面内;每相邻两个L形结构131的两个相邻导电平板132近似平行,中间间隔预设距离,形成四个馈电缝隙14;两个L形馈电片12呈近似90度错位放置在馈电缝隙14中,其中每个L形馈电片12放置在两个相对的馈电缝隙14中。
更具体的实施例中,每个辐射器11的总长度约为工作频段对应波长的四分之一,辐射器11可以是长方体形,也可以是圆柱形等,具体不作限制。每个导电平板132的总长度约为工作频段对应波长的四分之一。在巴伦结构13的另一端,八个导电平板132可以通过连接结构15连接在一起,也可以各自分离。连接结构15的形状不限定,可以是圆盘形、圆柱形,方形等。
L形结构中,两个导电平板可以直接连接,也可以不直接连接,只呈L形放置。参见图1,L形结构131中,两个导电平板132的连接边可以完全连接在一起,形成一整体结构,在每个L形结构131的一端,辐射器11连接两个导电平板132的连接处。图1中辐射装置10的侧视图参见图2。例如,若辐射器11为长方体,辐射器11焊接在两个导电平板132的连接处,辐射器11的宽度方向与两个导电平板132的长度方向平行。
在本发明实施例中,辐射器与巴伦结构长度方向呈90度,或者辐射器与巴伦结构长度方向略有倾斜,但倾斜角度不宜过大。由图2可知,辐射器与巴伦结构长度方向略有倾斜。
如图3所示,L形馈电片12包括第一连接部121、第二连接部122以及第三连接部123 ,第三连接部123与第一连接部121平行,且长度小于第一连接部121,第二连接部122垂直连接第一连接部121与第三连接部123,第一连接部121和第三连接部123分别放置在两个相对的馈电缝隙14中。第一连接部121的长度约为工作频段对应波长的四分之一,第三连接部123的长度不大于第一连接部121的长度,因此,L形馈电片12的总长度不大于工作频段对应波长的二分之一。
辐射装置10工作时,两个L形馈电片同时作用。以其中处于+45度极化方向上的L形馈电片12通电工作进行说明如下:取L形馈电片12的第一连接部121的电流方向为向下,即远离辐射器的一端流动,对应的,第三连接部123的电流方向为向上,即朝向辐射器的一端流动。在四个辐射器上产生的电流如图4所示,在水平和垂直方向上电流的流向刚好一致。具体地,参见图1和图4,第一L形结构131和第二L形结构133的电流方向与第一连接部121的电流方向相反,即向上;相应的,第一辐射器111和第二辐射器112的电流方向向外。第三L形结构134和第四L形结构135的电流方向与第三连接部123的电流方向相反,即向上;相应的,第三辐射器113和第四辐射器114的电流方向向里。可见,在一个极化方向上的L形馈电片工作时,四个辐射器均参与辐射,水平放置的两个辐射器电流流向一致,垂直放置的两个辐射器上的电流流向一致,通过矢量合成合成出在+45度方向上的工作极化。而两个L形馈电片同时作用时,就可以通过矢量合成在+/-45度方向上合成出需要的工作极化,实现+/-45度的极化效果,进而在多频多阵列环境中减小高低频单元之间的互耦。
如图5所示,L形馈电片12的第一连接部121的远离第二连接部122的一端直接插装在PCB板16上,导电平板132与PCB板16的地连接。PCB板16的下方设置有反射板(图未示)。而组成巴伦结构13的八个导电平板132可以在巴伦结构13的另一端先通过连接结构15直接电气连接在一起,再与反射板连接。也可以参见图6,组成巴伦结构13’的八个导电平板132’通过反射板耦合连接,八个导电平板132’即分别与反射板连接。
在本发明的另一实施例中,如图7所示,在L形馈电片12的第一连接部121的远离第二连接部122的一端与巴伦结构13形成同轴悬置带线结构17,其中,同轴悬置带线结构17的金属外壳171与巴伦结构13连接,内部悬置带线172与L形馈电片12的第一连接部121的远离第二连接部122的一端连接。
在本发明实施例中,组成L形结构的两个导电平板可以整体连接、部分连接、或者完全分离。如图8所示,其中图a为立体图,图b为侧视图。L形结构231中,两个导电平板232的连接边部分连接在一起,部分开槽。开槽230设置在L形结构231的靠近辐射器21的一端。辐射器21与巴伦结构23长度方向呈90度。在每个L形结构231的一端,一横杆235连接两个导电平板232的相互远离的两边,近似形成等腰三角形,辐射器21的一端焊接在横杆235的中间部位。辐射器21的宽度方向与横杆235的长度方向平行。或者,如图9所示,其中图a为立体图,图b为侧视图。开槽330设置在L形结构331的中部。辐射器31与巴伦结构33长度方向呈90度。
本发明的又一实施例中,如图10所示,L形结构43也可以与辐射器41电气耦合连接,而不与辐射器41电气直接连接。辐射器41的一端具有与L形结构43电气耦合连接的耦合结构410。耦合结构410可以是与L形结构平行的结构。在本发明的其他实施例中,也可以是不与L形结构平行的结构。耦合面积可以视情况而定,在此不作限制。
本发明的又一实施例如图11所示,在每个L形结构531的一端,第一连接杆511的一端和第二连接杆512的一端分别连接两个导电平板532,第一连接杆511的另一端与第二连接杆512的另一端连接在一起,辐射器51的一端连接第一连接杆511和第二连接杆512的连接处,并且两个导电平板532的连接边与辐射器51的长度方向在同一平面内。
以上各实施例中,辐射器与L形结构、各连接杆之间,以及连接杆与辐射器或导电平板之间的连接可以是焊接、铆钉连接、镙钉连接,或者其他连接方式,在本发明中并不作限制。
综上所述,本发明的辐射装置包括:至少四个辐射器、两个L形馈电片以及巴伦结构;巴伦结构由八个导电平板形成的四个L形结构组成;每个L形结构由两个导电平板以近似90度排列形成,在巴伦结构的一端,每个L形结构与一个辐射器电气连接,并且辐射器的长度方向与两个导电平板之间的夹角近似为45度;每相邻两个L形结构呈T字形排布,四个辐射器呈近似十字形,并且近似在同一水平面内;每相邻两个L形结构的两个相邻导电平板近似平行,中间间隔预设距离,形成四个馈电缝隙;两个L形馈电片呈近似90度错位放置在馈电缝隙中,其中每个L形馈电片放置在两个相对的馈电缝隙中,使得一个L形馈电片极化时四个辐射器均参与辐射,通过矢量合成在+/-45度方向上合成出需要的工作极化,实现+/-45度的极化效果,进而在多频多阵列环境中减小高低频单元之间的互耦。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种辐射装置,其特征在于,所述装置包括:至少四个辐射器、两个L形馈电片以及巴伦结构;所述巴伦结构由八个导电平板形成的四个L形结构组成;
    每个所述L形结构由两个所述导电平板以近似90度排列形成,在所述巴伦结构的一端,每个所述L形结构与一个所述辐射器电气连接,并且所述辐射器的长度方向与两个所述导电平板之间的夹角近似为45度;每相邻两个所述L形结构呈T字形排布,所述四个辐射器呈近似十字形,并且近似在同一水平面内;每相邻两个所述L形结构的两个相邻导电平板近似平行,中间间隔预设距离,形成四个馈电缝隙;两个所述L形馈电片呈近似90度错位放置在所述馈电缝隙中,其中每个所述L形馈电片放置在两个相对的馈电缝隙中。
  2. 根据权利要求1所述的辐射装置,其特征在于,每个所述辐射器的总长度约为工作频段对应波长的四分之一。
  3. 根据权利要求1-2任一项所述的辐射装置,其特征在于,每个所述导电平板的总长度约为工作频段对应波长的四分之一。
  4. 根据权利要求1-3任一项所述的辐射装置,其特征在于,每个所述L形结构与一个所述辐射器电气直接连接,或者电气耦合连接。
  5. 根据权利要求4所述的辐射装置,其特征在于,所述辐射器的一端具有与所述L形结构电气耦合连接的耦合结构。
  6. 根据权利要求1-4任一项所述的辐射装置,其特征在于,所述L形结构中,两个所述导电平板的连接边完全连接在一起,形成一整体结构。
  7. 根据权利要求6所述的辐射装置,其特征在于,在每个所述L形结构的一端,所述辐射器连接所述两个导电平板的连接处。
  8. 根据权利要求1-4任一项所述的辐射装置,其特征在于,所述L形结构中,两个所述导电平板的连接边部分连接在一起,部分开槽。
  9. 根据权利要求8所述的辐射装置,其特征在于,所述开槽设置在所述L形结构的靠近所述辐射器的一端,或者设置在所述L形结构的中部。
  10. 根据权利要求1-9任一项所述的辐射装置,其特征在于,所述辐射器与所述巴伦结构长度方向呈90度,或者略有倾斜。
  11. 根据权利要求1-10任一项所述的辐射装置,其特征在于,在每个所述L形结构的一端,一横杆连接所述两个导电平板的相互远离的两边,近似形成等腰三角形,所述辐射器的一端焊接在所述横杆的中间部位。
  12. 根据权利要求1-10任一项所述的辐射装置,其特征在于,在每个所述L形结构的一端,第一连接杆的一端和第二连接杆的一端分别连接两个所述导电平板,所述第一连接杆的另一端与所述第二连接杆的另一端连接在一起,所述辐射器的一端连接所述第一连接杆和所述第二连接杆的连接处,并且两个所述导电平板的连接边与所述辐射器的长度方向在同一平面内。
  13. 根据权利要求1-12任一项所述的辐射装置,其特征在于,所述L形馈电片包括第一连接部、第二连接部以及第三连接部,所述第三连接部与所述第一连接部平行,且长度小于所述第一连接部,所述第二连接部垂直连接所述第一连接部与所述第三连接部,所述第一连接部和所述第三连接部分别放置在两个相对的所述馈电缝隙中。
  14. 根据权利要求13所述的辐射装置,其特征在于,所述L形馈电片的第一连接部的远离第二连接部的一端直接插装在PCB板上,所述导电平板与所述PCB板的地连接。
  15. 根据权利要求14所述的辐射装置,其特征在于,在所述L形馈电片的第一连接部的远离第二连接部的一端与所述巴伦结构形成同轴悬置带线结构,其中,所述同轴悬置带线结构的金属外壳与所述巴伦结构连接,内部悬置带线与所述L形馈电片的第一连接部的远离第二连接部的一端连接。
PCT/CN2015/082826 2015-06-30 2015-06-30 辐射装置 WO2017000215A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112017028246-1A BR112017028246B1 (pt) 2015-06-30 2015-06-30 Aparelho de radiação
CN201580024669.7A CN108028460B (zh) 2015-06-30 2015-06-30 辐射装置
EP15896746.3A EP3301756B1 (en) 2015-06-30 2015-06-30 Radiation device
JP2017567672A JP6505876B2 (ja) 2015-06-30 2015-06-30 放射装置
PCT/CN2015/082826 WO2017000215A1 (zh) 2015-06-30 2015-06-30 辐射装置
US15/858,993 US10389018B2 (en) 2015-06-30 2017-12-29 Radiation apparatus
US16/531,976 US10714820B2 (en) 2015-06-30 2019-08-05 Radiation apparatus
US16/916,840 US11316263B2 (en) 2015-06-30 2020-06-30 Radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082826 WO2017000215A1 (zh) 2015-06-30 2015-06-30 辐射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/858,993 Continuation US10389018B2 (en) 2015-06-30 2017-12-29 Radiation apparatus

Publications (1)

Publication Number Publication Date
WO2017000215A1 true WO2017000215A1 (zh) 2017-01-05

Family

ID=57607648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082826 WO2017000215A1 (zh) 2015-06-30 2015-06-30 辐射装置

Country Status (6)

Country Link
US (3) US10389018B2 (zh)
EP (1) EP3301756B1 (zh)
JP (1) JP6505876B2 (zh)
CN (1) CN108028460B (zh)
BR (1) BR112017028246B1 (zh)
WO (1) WO2017000215A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526930A (ja) * 2015-09-11 2018-09-13 ケーエムダブリュ・インコーポレーテッド 多重偏波放射素子およびこれを備えたアンテナ
CN110797636A (zh) * 2019-10-17 2020-02-14 华南理工大学 双极化天线及其低频辐射单元
CN110808450A (zh) * 2019-10-17 2020-02-18 华南理工大学 双极化天线及其辐射单元
CN110994147A (zh) * 2019-12-05 2020-04-10 京信通信技术(广州)有限公司 一种低频辐射单元和天线

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301756B1 (en) * 2015-06-30 2019-08-21 Huawei Technologies Co., Ltd. Radiation device
CN106876885A (zh) * 2015-12-10 2017-06-20 上海贝尔股份有限公司 一种低频振子及一种多频多端口天线装置
CN108879115A (zh) * 2018-06-20 2018-11-23 京信通信***(中国)有限公司 集成滤波器的基站辐射单元及天线
CN113036400A (zh) * 2019-12-24 2021-06-25 康普技术有限责任公司 辐射元件、天线组件和基站天线
CN111786092B (zh) * 2020-07-22 2024-01-12 江苏亨鑫科技有限公司 一种辐射臂呈水平垂直方向放置的±45°双极化辐射装置
US11329385B2 (en) * 2020-08-07 2022-05-10 Nokia Shanghai Bell Co., Ltd. Tripod radiating element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707291A (zh) * 2009-11-26 2010-05-12 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
CN201584503U (zh) * 2009-11-26 2010-09-15 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
CN201845867U (zh) * 2010-09-30 2011-05-25 佛山市健博通电讯实业有限公司 一种定向双极化天线辐射单元
CN103715519A (zh) * 2013-06-09 2014-04-09 京信通信技术(广州)有限公司 双极化阵列天线及其辐射单元

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618746A (en) * 1948-08-13 1952-11-18 Rca Corp Antenna system
US4180820A (en) * 1977-09-28 1979-12-25 Rca Corporation Circularly polarized antenna system using a combination of horizontal and bent vertical dipole radiators
US4242685A (en) * 1979-04-27 1980-12-30 Ball Corporation Slotted cavity antenna
US6072439A (en) * 1998-01-15 2000-06-06 Andrew Corporation Base station antenna for dual polarization
JPH11330850A (ja) * 1998-05-12 1999-11-30 Harada Ind Co Ltd 円偏波クロスダイポールアンテナ
US6034649A (en) * 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
FR2863110B1 (fr) * 2003-12-01 2006-05-05 Arialcom Antenne en reseau multi-bande a double polarisation
FR2863111B1 (fr) * 2003-12-01 2006-04-14 Jacquelot Antenne en reseau multi-bande a double polarisation
US7053852B2 (en) * 2004-05-12 2006-05-30 Andrew Corporation Crossed dipole antenna element
KR100883408B1 (ko) * 2006-09-11 2009-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중대역 이중편파 안테나
CN101465475A (zh) * 2009-01-12 2009-06-24 京信通信***(中国)有限公司 双极化辐射单元及其平面振子
EP2529448B1 (en) * 2010-01-29 2014-12-31 Orban Microwave Products (OMP) N.V. Circularly polarized antenna and feeding network
CN101834345B (zh) * 2010-05-17 2014-09-10 京信通信***(中国)有限公司 超宽频带天线及其单、双极化辐射单元
KR101711150B1 (ko) * 2011-01-31 2017-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
CN102403569A (zh) * 2011-09-02 2012-04-04 张家港保税区国信通信有限公司 一种耦合馈电的双极化天线辐射单元
CN202474193U (zh) * 2011-12-22 2012-10-03 广州杰赛科技股份有限公司 宽带双极化辐射单元
CN102694237B (zh) * 2012-05-21 2015-08-19 华为技术有限公司 一种双极化天线单元及基站天线
KR20140018620A (ko) * 2012-08-02 2014-02-13 한국전자통신연구원 초소형 이중편파 안테나
US9276329B2 (en) * 2012-11-22 2016-03-01 Commscope Technologies Llc Ultra-wideband dual-band cellular basestation antenna
CN203339309U (zh) * 2013-06-09 2013-12-11 京信通信技术(广州)有限公司 双极化阵列天线及其辐射单元
GB2517735B (en) * 2013-08-30 2015-10-28 Victor Sledkov Multiple-resonant-mode dual polarized antenna
CN103531890B (zh) * 2013-10-18 2016-08-31 江苏亨鑫无线技术有限公司 一种d频段双极化天线振子
CN104319480B (zh) * 2014-11-10 2017-09-15 中国电子科技集团公司第五十四研究所 一种uhf、s、c三频段共口径小型化天线
US10205226B2 (en) * 2014-11-18 2019-02-12 Zimeng LI Miniaturized dual-polarized base station antenna
EP3301756B1 (en) * 2015-06-30 2019-08-21 Huawei Technologies Co., Ltd. Radiation device
US10530068B2 (en) * 2017-07-18 2020-01-07 The Board Of Regents Of The University Of Oklahoma Dual-linear-polarized, highly-isolated, crossed-dipole antenna and antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707291A (zh) * 2009-11-26 2010-05-12 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
CN201584503U (zh) * 2009-11-26 2010-09-15 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
CN201845867U (zh) * 2010-09-30 2011-05-25 佛山市健博通电讯实业有限公司 一种定向双极化天线辐射单元
CN103715519A (zh) * 2013-06-09 2014-04-09 京信通信技术(广州)有限公司 双极化阵列天线及其辐射单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3301756A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526930A (ja) * 2015-09-11 2018-09-13 ケーエムダブリュ・インコーポレーテッド 多重偏波放射素子およびこれを備えたアンテナ
CN110797636A (zh) * 2019-10-17 2020-02-14 华南理工大学 双极化天线及其低频辐射单元
CN110808450A (zh) * 2019-10-17 2020-02-18 华南理工大学 双极化天线及其辐射单元
CN110994147A (zh) * 2019-12-05 2020-04-10 京信通信技术(广州)有限公司 一种低频辐射单元和天线

Also Published As

Publication number Publication date
CN108028460B (zh) 2020-01-31
US20200395657A1 (en) 2020-12-17
US20200036091A1 (en) 2020-01-30
EP3301756A1 (en) 2018-04-04
EP3301756B1 (en) 2019-08-21
JP2018519749A (ja) 2018-07-19
US11316263B2 (en) 2022-04-26
US10714820B2 (en) 2020-07-14
US10389018B2 (en) 2019-08-20
BR112017028246A2 (zh) 2018-09-04
EP3301756A4 (en) 2018-05-30
US20180123226A1 (en) 2018-05-03
CN108028460A (zh) 2018-05-11
BR112017028246B1 (pt) 2022-10-04
JP6505876B2 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2017000215A1 (zh) 辐射装置
WO2010033004A2 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
KR101693583B1 (ko) 공급 네트워크, 안테나, 및 이중 편파 안테나 어레이 공급 회로
CN104868228A (zh) 双极化天线及天线阵列
CN104733844A (zh) 平面宽带双极化基站天线
WO2012105784A2 (ko) 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
CN107808998B (zh) 多极化辐射振子及天线
WO2012122815A1 (zh) 双极化宽频辐射单元及阵列天线
TW201409834A (zh) 雙頻耦合饋入天線以及使用該天線的可調式波束模組
WO2021104191A1 (zh) 天线单元及电子设备
WO2020134362A1 (zh) 一种天线、天线阵列和基站
CN102280696A (zh) 半波传输去耦小间距微带阵列天线
CN102868017A (zh) 辐射装置及基于辐射装置的阵列天线
CN208272130U (zh) 一种串联结构宽带双频偶极子基站天线
WO2021120663A1 (zh) 5g天线及其辐射单元
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
CN101847783B (zh) 双极化振子天线
WO2020134448A1 (zh) 一种天线单元、天线阵列和基站
WO2018086424A1 (zh) 一种优化隔离度的天线***及移动终端
KR20100073946A (ko) 이동통신 기지국용 이중대역 이중편파 안테나
CN109149093A (zh) 大规模mimo阵列天线
EP2005522B1 (en) Broadband dual polarized base station antenna
CN105186107A (zh) 双极化天线及其辐射单元
WO2021083213A1 (zh) 天线单元及电子设备
CN114639958A (zh) 一种三频小型化美化楼宇天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567672

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015896746

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017028246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171227