WO2016204178A1 - 配向膜及び配向膜用組成物 - Google Patents

配向膜及び配向膜用組成物 Download PDF

Info

Publication number
WO2016204178A1
WO2016204178A1 PCT/JP2016/067803 JP2016067803W WO2016204178A1 WO 2016204178 A1 WO2016204178 A1 WO 2016204178A1 JP 2016067803 W JP2016067803 W JP 2016067803W WO 2016204178 A1 WO2016204178 A1 WO 2016204178A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alignment film
partial structure
group
film
Prior art date
Application number
PCT/JP2016/067803
Other languages
English (en)
French (fr)
Inventor
住谷 直子
晃子 矢部
藤森 尚美
政昭 西村
充哉 青葉
輝恒 大澤
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201680031589.9A priority Critical patent/CN107683427B/zh
Priority to JP2017525261A priority patent/JP6922736B2/ja
Priority to KR1020177036033A priority patent/KR102560883B1/ko
Publication of WO2016204178A1 publication Critical patent/WO2016204178A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to an alignment film composition used for forming an anisotropic dye film formed by a wet film formation method, an alignment film obtained using the alignment film composition, and an optical element.
  • a linearly polarizing film or a circularly polarizing film is used to control optical rotation and birefringence in display.
  • light emitting display elements such as organic light emitting diodes (OLED) and input / output elements such as touch panels
  • circularly polarizing films are used to prevent reflection of external light.
  • iodine-type polarizing films prepared by dyeing polyvinyl alcohol (PVA) with iodine, stretching and crosslinking the polarizing films (anisotropic dye films) have been widely used.
  • iodine used as a dichroic material of this film has a high sublimation property, when used in a polarizing film, its heat resistance and light resistance are not sufficient. For this reason, a polarizing film using an organic dye as a dichroic substance has been studied.
  • an organic dye having dichroism is dissolved or adsorbed in polyvinyl alcohol, and the dye is oriented by stretching it into a film in one direction.
  • the method to obtain is mentioned (patent document 1).
  • a polarizing film using polyvinyl alcohol has a problem that the film is likely to shrink due to a change in temperature and humidity.
  • a defect called a frame failure or a frame unevenness occurs in a large-sized display element such as a liquid crystal television or a vehicle-mounted display element that requires durability at high temperatures such as a car navigation monitor.
  • a polarizing film is formed by forming a film containing a dye on a substrate such as glass or a transparent film by using a wet film forming method and orienting the dye using an intermolecular interaction or the like.
  • the method to obtain is mentioned (patent document 2).
  • the orientation of the dye can be controlled by subjecting the base material to an orientation treatment, and studies using a photo-alignment film have been made.
  • the base material used for rubbing treatment which is a general method for producing an alignment film, the base material itself is rubbed or the alignment film for liquid crystal is only diverted (Patent Documents 3 and 4). ).
  • liquid crystal alignment film polyimide is generally used in many cases, but an epoxy resin is also being studied (Patent Document 5).
  • Patent Document 5 it is difficult to apply an alignment film for liquid crystal as an alignment film of an anisotropic dye film obtained by a wet film formation method because the material to be aligned and required characteristics are different.
  • the lyotropic liquid crystal has a mesogen size different from that of the thermotropic nematic liquid crystal because the molecules form a column structure.
  • an alignment film suitable for a thermotropic nematic liquid crystal cannot be used as an alignment film for an anisotropic dye film obtained by a wet film formation method.
  • a water-soluble material to be aligned may be applied on the alignment film, and characteristics and the like that are not required for the alignment film for liquid crystal Necessary.
  • Patent Document 2 a technique for creating a polarizing film by applying a composition for an anisotropic dye film obtained by a wet film formation method onto a polymer surface such as polyethylene terephthalate has been introduced (Patent Document 2). Since the plastic substrate used for these has low heat resistance, it is required to lower the temperature of the manufacturing process of the liquid crystal display. In order to increase the brightness of a liquid crystal display, it has been studied to use a colorant for a color filter as a dye.
  • the dye since the dye has low heat resistance, it is required to set the temperature of the process after producing the color filter to 180 ° C. or lower, which is lower than the conventionally used temperature (Patent Document 6). Therefore, it is required that the alignment film for the anisotropic dye film is also manufactured at a temperature lower than the conventionally used temperature.
  • Japanese Patent Laid-Open No. 3-12606 Japanese National Table No. 8-511109 Japanese Unexamined Patent Publication No. 1-161202 Japanese Unexamined Patent Publication No. 2010-72521 Japanese Unexamined Patent Publication No. 10-330756 Japanese Unexamined Patent Publication No. 2011-253054
  • the present inventors have been able to produce an alignment film having a high alignment regulating ability for an anisotropic dye film composition even at a low temperature by using a specific composition for the alignment film.
  • the present inventors have found that the anisotropic dye film formed on the alignment film has high alignment characteristics.
  • the alignment film of the present invention has an anisotropic dye film formed on the alignment film by performing surface treatment such as rubbing to increase the alignment regulating force on the composition for the anisotropic dye film.
  • the orientation characteristics can be further improved.
  • the present invention has been accomplished based on these findings.
  • the gist of the present invention resides in the following [1] to [8].
  • [1] An epoxy resin cured alignment film comprising at least one of the partial structure (P1) and the partial structure (P2), An epoxy resin cured alignment film, wherein the proportion of at least one of the partial structure (P1) and the partial structure (P2) in the epoxy resin cured alignment film is 0.5% by mass or more.
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P2) is represented by the following formula (1).
  • R 1 represents a divalent group containing a hetero atom and having an unsaturated bond, and the ring bonded to R 1 is a single ring.
  • An epoxy resin cured alignment film that includes a partial structure represented by the following formula (2).
  • ring Y 1 represents a heterocyclic ring which may have a substituent.
  • An alignment film composition comprising at least one of compound group I and compound group II, The alignment film composition, wherein a ratio of at least one of the partial structure (P1) and the partial structure (P3) in the alignment film composition excluding the solvent is 0.5% by mass or more.
  • the compound group I is a compound A having an epoxy group and at least one of the partial structure (P1) and the partial structure (P3)
  • the compound group II is a compound B having a functional group that reacts with an epoxy group, and at least one of a partial structure (P1) and a partial structure (P3), and a compound C having an epoxy group
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P3) is represented by the following formula (6).
  • R 3 represents a divalent group having an unsaturated bond including a hetero atom, and the ring bonded to R 3 is a single ring.
  • An alignment film composition comprising a reaction mixture having at least one of a partial structure (P1) and a partial structure (P4), The alignment film composition, wherein a ratio of at least one of the partial structure (P1) and the partial structure (P4) in the alignment film composition excluding the solvent is 0.5% by mass or more.
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P4) is represented by the following formula (7).
  • R 4 represents a divalent group containing a hetero atom and having an unsaturated bond.
  • An alignment film composition comprising at least one of compound group III and compound group IV.
  • Compound Group III is Compound E having an epoxy group and a partial structure represented by the following formula (8)
  • the compound group IV is a compound F having a functional group that reacts with an epoxy group, a compound F having a partial structure represented by the following formula (8), and an epoxy group.
  • Z 1 represents a divalent group having a cyclic imide structure
  • Z 2 and Z 3 each independently represent a direct bond or any divalent group
  • Z 4 represents a divalent group having an aromatic ring
  • n represents an integer of 1 or more and 500 or less.
  • the alignment characteristics of the anisotropic dye film formed on the alignment film can be enhanced.
  • an alignment film having a high alignment regulating ability to the anisotropic dye film composition can be produced even at a low temperature.
  • the film obtained from the alignment film composition of the present invention is formed on the alignment film by increasing the alignment regulating force to the anisotropic dye film composition by performing a surface treatment such as rubbing. The orientation characteristics of the anisotropic dye film can be further enhanced.
  • the anisotropic dye film referred to in the present invention differs from the electromagnetic properties in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the dye film and any two orthogonal planes. It is a dye film having anisotropy.
  • the electromagnetic property include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • Examples of the film having optical anisotropy such as absorption and refraction include a linearly polarizing film, a circularly polarizing film, a retardation film, and a conductive anisotropic film.
  • the alignment film of the present invention is a film that imparts an alignment function to an anisotropic dye film or the like formed by a wet film formation method described later.
  • the alignment film of the present invention is an epoxy resin cured alignment film
  • the alignment film includes at least one of a partial structure (P1) and a partial structure (P2),
  • the ratio of at least one of the partial structure (P1) and the partial structure (P2) in the alignment film is 0.5% by mass or more.
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P2) is represented by the following formula (1).
  • R 1 represents a divalent group containing a hetero atom and having an unsaturated bond, and the ring bonded to R 1 is a single ring.
  • the alignment film of the present invention is an epoxy resin cured alignment film.
  • the epoxy resin cured alignment film includes a cured epoxy monomer and / or epoxy oligomer having an epoxy group in the molecule. Whether it is an epoxy resin cured alignment film can be confirmed by IR, solid state NMR or the like.
  • Epoxy resin cured alignment film (1) The epoxy resin cured alignment film is hereinafter referred to as at least one of the partial structure (P1) and the partial structure (P2) (hereinafter sometimes referred to as “partial structure of molecular orientation” or “partial structure (P)”). Including.
  • the reason why the alignment film of the present invention gives a high alignment function to an anisotropic dye film formed by a wet film formation method is not clear, but the following may be considered.
  • “molecular orientation” means, for example, that molecules, molecular chains, and the like are arranged in a specific direction as described in detail in Molecular Orientation Technology in Organic Electronics (CMC Publishing Co., Ltd., 2007), The property of forming an anisotropic structure.
  • the partial structure (P) can form an anisotropic regular structure, and thereby the orientation regulating force to the composition for anisotropic dye film can be increased. Furthermore, by subjecting the alignment film to a surface treatment such as rubbing, a structure with further increased anisotropy regularity is formed, and the alignment regulating force to the composition for anisotropic dye film is increased.
  • anisotropic dyes unlike liquid crystal molecules, have a relatively large association (column) structure of about 100 to several hundreds of millions of anisotropic dyes. Compared to the thermotropic nematic liquid crystal, it is considered that alignment is difficult to follow the alignment film. Therefore, in order to orient an anisotropic dye film composition containing an anisotropic dye, an alignment film having a high alignment regulating force is required.
  • the alignment film of the present invention is anisotropic for the above reasons. It has a high orientation regulating power to the composition for a functional dye film.
  • the ratio of the partial structure (P1) and the partial structure (P2) in the epoxy resin cured alignment film is 0.5% by mass or more.
  • it is 1 mass% or more, More preferably, it is 5 mass% or more, More preferably, it is 10 mass% or more, Most preferably, it is 20 mass% or more.
  • it is preferably 99% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less, and particularly preferably 80% by mass or less. By being in this range, it tends to be easy to form a film and to improve the orientation regulating power to the anisotropic dye film composition.
  • the said ratio shows the ratio of the sum of the said partial structure (P1) and partial structure (P2) in an epoxy resin cured alignment film, and a partial structure (P1) or partial structure (P2) in an epoxy resin cured alignment film
  • P1 and P2 in an epoxy resin cured alignment film
  • the partial structure (P1) is an aromatic ring containing a hetero atom.
  • the partial structure (P1) is not particularly limited as a single ring or a condensed ring as long as it has aromaticity, and may be a condensed ring of an aromatic ring and an alicyclic ring.
  • the alignment film has the partial structure (P1), the skeleton of the molecular-oriented partial structure has high rigidity, and a charge-polarized structure is formed. It becomes easy to take aggregation and association within a molecule, or a spontaneous arrangement of a partial structure of molecular orientation.
  • the number of condensed rings it has is not particularly limited, but is 2 or more, preferably 5 or less, more preferably 3 or less. By being in this range, it tends to be easy to take a spontaneous arrangement of partial structures with molecular orientation while improving flatness and rigidity.
  • a hetero atom is not specifically limited, In order to improve the polarizability in a molecule
  • the number of heteroatoms contained in the partial structure (P1) is not particularly limited, but is 1 or more, preferably 4 or less, more preferably 3 or less. By being in this range, a charge bias (polarization) structure tends to be easily formed.
  • the partial structure (P1) includes, for example, an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenylene ring, and a fluorene ring, and a heterocyclic ring having a hetero atom such as nitrogen, oxygen, and sulfur in the ring.
  • an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenylene ring, and a fluorene ring
  • a heterocyclic ring having a hetero atom such as nitrogen, oxygen, and sulfur in the ring.
  • a condensed ring an aromatic heterocycle having a heteroatom in the ring, such as pyrimidine, pyrazine, pyridazine, imidazole, triazine, naphthyridine
  • a condensed ring of an aromatic ring and a heterocyclic ring is preferable because having a plurality of rings tends to increase the planarity and rigidity of the molecule and promote the spontaneous arrangement of the molecule.
  • phthalimide, benzoxazole, benzimidazole, triazine, quinoxaline, etc. shown below have stronger intermolecular or intramolecular interactions, causing aggregation or association between molecules or molecules, making it easier to arrange molecules. It is particularly preferable because of its tendency.
  • the partial structure (P1) is particularly preferably a structure represented by the following formula (2). This is because the planarity and rigidity of the molecules increase, and the molecules tend to be easily arranged.
  • Ring Y 1 represents a heterocyclic ring which may have a substituent.
  • Ring Y 1 has the same meaning as ring Y 1 in formula (3) below, and the preferred range is also the same. Further, the ring Y 1 and ring Y 1 condensed with may have a benzene ring substituents are also the same. Further, the positions where the ring Y 1 and the benzene ring condensed with the ring Y 1 are connected to the structure in the other cured epoxy resin alignment film are also synonymous.
  • the partial structure (P2) is a partial structure represented by the following formula (1).
  • the charge orientation (polarization) structure of the molecular orientation partial structure is further increased in the epoxy resin cured alignment film. Easy to form.
  • R 1 represents a divalent group containing a hetero atom and having an unsaturated bond, and the ring bonded to R 1 is a single ring.
  • R 1 represents a divalent group containing a hetero atom and having an unsaturated bond.
  • Unsaturated bond refers to a chemical bond that is divalent or more bonded between adjacent atoms, such as a bond between carbons such as —C ⁇ C—, and a carbon and heteroatom such as —C ( ⁇ O) —. And a bond between heteroatoms such as — (O ⁇ ) S ( ⁇ O) —.
  • R 1 is a divalent group containing a hetero atom and having an unsaturated bond, the R 1 portion has planarity and polarizability, and the intermolecular or intramolecular interaction tends to become stronger. .
  • the divalent group is not particularly limited as long as it has a hetero atom and an unsaturated bond, and may be composed of a hydrocarbon group and a hetero atom.
  • the carbon number is 1 or more, and the upper limit of the carbon number is preferably 5 or less, more preferably 4 or less. Within these ranges, the planarity of the molecule tends to be obtained.
  • the hetero atom is not particularly limited, but preferably includes one selected from the group consisting of O, S and N in order to increase the polarizability in the molecule.
  • the two benzene rings to which R 1 is bonded are monocyclic.
  • the epoxy resin cured alignment film has both the partial structure (P1) and the partial structure (P2) as described later, they may be condensed.
  • the substituent that the two benzene rings to which R 1 is bonded may have, but is not particularly limited, for example, independently, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. Amino group, hetero atom, nitro group, hydroxyl group, halogen atom, —C ( ⁇ O) — group and the like.
  • the partial structure represented by the formula (1) is not particularly limited, but aromatic phenyl esters, aromatic phenyl amides, chalcones, diphenyl ketones, diphenyl sulfones and the like shown below are molecular planarity and rigidity. Is increased, a charge-biased (polarized) structure is formed, and the intermolecular or intramolecular interaction tends to become stronger, which is particularly preferable.
  • the epoxy resin cured alignment film only needs to include the partial structure (P1) and the partial structure (P2).
  • having both structures further enhances intermolecular or intramolecular interaction. It is preferable because aggregation or association between molecules or within a molecule occurs and the molecules tend to be arranged easily.
  • the two benzene rings to which R 1 is bonded are: It may be a part of the partial structure (P1). Specific examples of the partial structure having both the partial structure (P1) and the partial structure (P2) are shown below.
  • the epoxy resin cured alignment film of the present invention includes a partial structure represented by the following formula (3).
  • the partial structure represented by Formula (3) the planarity and rigidity of the molecule increase, and the ⁇ - ⁇ interaction becomes stronger.
  • a charge polarization structure is formed in the molecule, and aggregation or association occurs between molecules or within the molecule due to hydrogen bonding or donor-acceptor interaction, which facilitates the arrangement of the molecules.
  • ring Y 1 represents a heterocyclic ring which may have a substituent.
  • the hetero atom of ring Y 1 is not particularly limited, but preferably includes one selected from the group consisting of O, S, and N in order to increase the polarizability in the molecule.
  • the number of heteroatoms contained in ring Y 1 is not particularly limited, but is 1 or more, preferably 4 or less, more preferably 3 or less. By being in this range, a charge bias (polarization) structure tends to be easily formed.
  • the number of atoms forming the ring Y 1 is not particularly limited, and is 3 (3-membered ring) or more, preferably 4 (4-membered ring) or more. Further, it is preferably 8 (8-membered ring) or less, more preferably 6 (6-membered ring) or less. Within this range, the planarity and rigidity of the molecule tend to increase.
  • the benzene ring condensed with the ring Y 1 and the ring Y 1 may have a substituent.
  • substituents examples include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, a hetero atom, a nitro group, a hydroxyl group, a halogen atom, and —C ( ⁇ O ) -Group and the like.
  • the position at which the ring Y 1 and the benzene ring condensed with the ring Y 1 are connected to the structure in the other cured epoxy resin alignment film is not particularly limited, but the molecule including the partial structure represented by the formula (3) When the partial structures (3) are connected so that the aspect ratio (molecular length uniaxial ratio) is increased, the linearity of the molecule is obtained and the orientation function to the anisotropic dye film tends to be improved. Therefore, it is preferable.
  • the connecting position with the molecule is preferably substituted with an element away from the condensation position of the ring Y 1 of formula (3) and the aromatic ring.
  • the above structure has high molecular linearity, so that the crystallinity is high and the orientation regulating power to the anisotropic dye tends to be improved. Moreover, it becomes easy to form an anisotropic regular structure in which the regularity of the partial structure represented by the formula (3) is increased during surface treatment such as rubbing, and the regularity of the obtained alignment film can be increased. .
  • the proportion of the partial structure represented by the formula (3) in the epoxy resin cured alignment film is not particularly limited, but is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further more preferably 5% by mass or more. Preferably, it is more preferably 10% by mass or more, and particularly preferably 20% by mass or more. Moreover, it is preferable that it is 99 mass% or less, It is more preferable that it is 90 mass% or less, 85 mass% or less is still more preferable, 80 mass% or less is especially preferable. By being in these ranges, it tends to form a film, and tends to have a high alignment regulating force for anisotropic dyes and the like. In addition, when 2 or more types of partial structures (3) are contained in the alignment film of this invention, it is preferable that the total amount is the said range.
  • the alignment film of the present invention preferably has a benzene ring in addition to the partial structure represented by the formula (3) because the planarity and rigidity of the molecule tend to increase.
  • the partial structure is represented by the following formula (4).
  • ring Y 1 represents a heterocyclic ring which may have a substituent.
  • Ring Y 1 has the same meaning as ring Y 1 of the formula (3), and the preferred range is also the same.
  • the position at which the ring Y 1 and the benzene ring connected to or condensed with the ring Y 1 are connected to the structure in the other epoxy reaction product is not particularly limited. Among these, the linearity of the molecule is obtained when the partial structures (4) are connected so that the aspect ratio (molecular length uniaxial ratio) of the molecule including the partial structure represented by the formula (4) is increased. And the orientation function to the anisotropic dye film tends to be improved.
  • the connecting position with the molecule is preferably substituted with an element away from the condensation position of the ring Y 1 in formula (4) and the aromatic ring.
  • connection is connected at the ⁇ -position and / or ⁇ -position, ⁇ ′-position and / or ⁇ ′-position, ⁇ ′′ -position and / or ⁇ ′′ -position of the following formula (4) ′.
  • ⁇ -position and / or ⁇ -position ⁇ ′-position and / or ⁇ ′-position
  • ⁇ ′′ -position / or ⁇ ′′ -position of the following formula (4) ′.
  • the rings included in Formula (4) may each independently have a substituent.
  • substituents examples include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, a hetero atom, a nitro group, a hydroxyl group, a halogen atom, and —C ( ⁇ O ) -Group and the like.
  • the proportion of the partial structure represented by the formula (4) present in the epoxy resin cured alignment film is not particularly limited, but is preferably 0.5% by mass or more, preferably 1% by mass or more, and more preferably 5% by mass or more.
  • the content is more preferably 10% by mass or more, and particularly preferably 20% by mass or more.
  • the alignment film of this invention contains 2 or more types of partial structures (4), it is preferable that the total amount is the said range.
  • the alignment film of the present invention includes an epoxy reactant, and the epoxy reactant includes a partial structure represented by the following formula (5).
  • the epoxy reactant includes a partial structure represented by the following formula (5).
  • the planarity and rigidity of the molecule increase, and the ⁇ - ⁇ interaction becomes stronger.
  • a charge polarization structure is formed in the molecule, and aggregation or association occurs between molecules or within the molecule due to hydrogen bonding or donor-acceptor interaction, which facilitates the arrangement of the molecules.
  • ring Y 2 and ring Y 3 each independently represent an optionally substituted heterocyclic ring.
  • R 2 represents a direct bond or an arbitrary divalent group.
  • Ring Y 2 and ring Y 3 are each independently synonymous with ring Y 1 of formula (3), and the preferred range is also the same. Of these, ring Y 2 and ring Y 3 are preferably the same. By ring Y 2 and ring Y 3 are the same, manufacturing is facilitated and also, easily met since size and structure are the same during the association between the molecules is the same, further, the R 2 The electron density on both sides is the same, and the arrangement and association of molecules tend to be easier.
  • the position at which ring Y 2 and ring Y 3 are connected to the structure in the other epoxy reactant is not particularly limited. Further, the position at which R 3 is connected to the benzene ring is not particularly limited.
  • the linearity of the molecule is obtained when the partial structure (5) is connected so that the aspect ratio (molecular length uniaxial ratio) of the molecule including the partial structure represented by the formula (5) is large.
  • the orientation function to the anisotropic dye film tends to be improved.
  • the connecting position with the molecule is preferably substituted with an element away from the condensed position of ring Y 2 and / or ring Y 2 of formula (5) and the aromatic ring.
  • substituents examples include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, a hetero atom, a nitro group, a hydroxyl group, a halogen atom, and —C ( ⁇ O ) -Group and the like.
  • R 2 represents a direct bond or any divalent group. Although it does not specifically limit as arbitrary bivalent group, C1-C8 alkylene group, C1-C8 alkenylene group, Carbon atom, Oxygen atom, Sulfur atom, Divalent amino group, Ester bond Etc. Moreover, said group may have a substituent, for example, a hetero atom, a C1-C5 alkyl group, a C1-C5 alkenyl group, an amino group, etc. are mentioned. Among these, since it becomes easy to form an anisotropic ordered structure in the alignment film, and the alignment regulating force to the composition for anisotropic dye film and the like can be increased, it must have a hetero atom.
  • it has an unsaturated bond.
  • —O—C ( ⁇ O) — —NH—C ( ⁇ O) —, —O—C ( ⁇ O) —, —C ( ⁇ O) —, —C ⁇ C—C ( ⁇ O) —, — (O ⁇ ) S ( ⁇ O) —, —O— and the like.
  • the proportion of the partial structure represented by the formula (5) in the epoxy resin cured alignment film is not particularly limited, but is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further more preferably 5% by mass or more. Preferably, it is more preferably 10% by mass or more, and particularly preferably 20% by mass or more. Moreover, it is preferable that it is 99 mass% or less, It is more preferable that it is 90 mass% or less, 80 mass% or less is still more preferable, 60 mass% or less is especially preferable. By being in these ranges, it tends to have a high orientation regulating force for anisotropic dyes and the like. In addition, when 2 or more types of partial structures (5) are contained in the alignment film of this invention, it is preferable that the total amount is the said range.
  • the effect of the present invention tends to be obtained particularly when it is contained in an epoxy resin (reacted by an epoxy monomer having an epoxy group and / or an epoxy oligomer) in an epoxy resin cured alignment film. Therefore, it is preferable.
  • the amount of the epoxy resin in the epoxy cured alignment film is not particularly limited, but is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 5% by mass or more, and more preferably 10% by mass or more. More preferably, it is particularly preferably 20% by mass or more. Moreover, an upper limit is not specifically limited, 100 mass% may be sufficient.
  • the epoxy resin cured alignment film of the present invention may contain other components in addition to the partial structure as long as the effects of the present invention are not significantly impaired. Examples include fillers, curing agents, surfactants, curing accelerators, and components derived therefrom. Specifically, the other component of the composition for alignment films mentioned later is mentioned.
  • the method for obtaining the epoxy resin cured alignment film of the present invention is not particularly limited.
  • the partial structures represented by the partial structure (P1), the partial structure (P2), the formula (2), the formula (3), the formula (4), and the formula (5) are aligned to form an epoxy resin cured alignment film.
  • the compound and / or reaction mixture contained in the film composition has.
  • the partial structure may be contained in an epoxy monomer having an epoxy group, an oligomer having an epoxy group, a phenoxy resin, a curing agent, an additive, or the like. Specifically, it will be described in the composition for alignment film described later.
  • the composition for an alignment film of the present invention is used when forming an alignment film that gives an alignment function to an anisotropic dye film or the like formed by a wet film formation method described later.
  • the composition for alignment films has a specific mass of at least one of the partial structure (P1) and the partial structure (P3) (hereinafter, sometimes referred to as “molecularly-oriented partial structure” or “partial structure (P)”). % Or more and a compound having an epoxy group and / or a functional group (R) may be included.
  • the partial structure (P1), the partial structure (P3), the epoxy group, and the functional group (R) only need to be included in the compound contained in the alignment film composition.
  • the combination of the partial structures and the like possessed by the compound is not particularly limited.
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P3) is represented by the following formula (6).
  • R 3 represents a divalent group containing a hetero atom and having an unsaturated bond, and the ring bonded to R 3 is a single ring.
  • R 3 in the formula (6) has the same meaning as R 1 in the formula (1). Further, the ring bonded to R 3 is also synonymous with the formula (1).
  • the composition for alignment film of the present invention is cured as a transparent and uniform film having no precipitate, and has sufficient mechanical properties, solvent resistance, and orientation regulating ability to the composition for anisotropic dye film
  • a compound having a partial structure (P) and an epoxy group hereinafter referred to as “compound A” or “compound E”
  • compound A a compound having a partial structure (P) and a functional group (R)
  • compound B a compound B or “compound F”
  • These compounds may be used alone or in combination.
  • these compounds or reaction mixtures may be used in combination with the above compounds A, B and the like.
  • a compound having a partial structure (P), a compound having an epoxy group hereinafter referred to as “compound C” or “compound G” having an epoxy group and not having a partial structure (P) and a functional group (R)).
  • a compound having a functional group (R) may be used in combination, or a compound having a partial structure (P) may be used in combination with the above compound A and compound B.
  • the compound having the partial structure (P) may be used in combination with the above compound A and compound C.
  • the content of the partial structure (P1) and / or the partial structure (P3) in the alignment film composition in the present invention is 0.5% by mass or more with respect to the entire alignment film composition excluding the solvent. It is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 20% by mass or more. Moreover, it is preferable that it is 99 mass% or less, It is more preferable that it is 90 mass% or less, 85 mass% or less is still more preferable, 80 mass% or less is especially preferable. By being in these ranges, the solubility in a solvent or the like is improved, and there is a tendency to impart a high alignment regulating force to the alignment film obtained by curing the alignment film composition. In addition, when 2 or more types of partial structure (P1) and / or partial structure (P3) are contained in the composition for alignment films of this invention, it is preferable that the total amount is the said range.
  • the epoxy group represents a structure generally called an oxirane ring.
  • the position and valence at which the oxirane ring is linked are not particularly limited.
  • the oxirane ring may have a substituent.
  • the epoxy group contained in the alignment film composition of the present invention reacts, and the compound is cured by increasing its molecular weight. By curing, it is possible to form an alignment film that gives alignment regulating force to the anisotropic dye film composition.
  • an epoxy group reacts to open a ring and becomes a flexible fatty chain structure.
  • the alignment film of the present invention can easily orient the composition for anisotropic dye film as compared with the existing alignment film for liquid crystal.
  • generated by an epoxy group reacting may acquire the effect which improves adhesiveness with a board
  • this hydroxyl group has low reactivity, it may react with an epoxy group depending on conditions, and may be used to control the mechanical strength of the film.
  • the hydroxyl group produced by the reaction of the epoxy group may sometimes have the effect of forming a film with good affinity when applying the anisotropic dye film composition in the wet film forming method described later.
  • the epoxy group in the alignment film composition in the present invention is preferably 0.1 mmol / g or more, more preferably 0.3 mmol / g or more, and more preferably 1.0 mmol / g with respect to the entire alignment film composition excluding the solvent. g or more is more preferable. Further, it is preferably 20 mmol / g or less, and more preferably 15 mmol / g or less.
  • the content of the epoxy group in the alignment film composition excluding the solvent is, for example, 44 g / mol for the oxirane group, and in the case of 0.1 mmol / g or more, 0.44% by mass or more. This is a preferred range. By being in these ranges, there is a tendency that effects of surface treatment such as mechanical strength and rubbing, which are particularly suitable for use as an alignment film for an anisotropic dye film, can be obtained.
  • Examples of the partial structure containing an epoxy group include a partial structure represented by the following formula (14).
  • X 1 to X 4 represents a direct bond or an alkylene group having 1 to 6 carbon atoms, and is bonded to another partial structure through these.
  • X 1 to X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a direct bond, or an alkylene group having 1 to 6 carbon atoms.
  • the alkylene group having 1 to 6 carbon atoms has 6 or less, more preferably 4 or less, and particularly preferably 3 or less.
  • the alkyl group having 1 to 6 carbon atoms and the alkylene group having 1 to 6 carbon atoms may be linear or branched.
  • X 1 to X 4 may be the same or different, and they may form a ring structure in any position and / or combination. The specific example of the partial structure containing an epoxy group is shown below.
  • a structure in which a methylene group is bonded to this epoxy group is generally referred to as a glycidyl group.
  • the partial structure containing an epoxy group bonded to another partial structure via at least one of X 1 to X 4 include those represented by the following structural formula. Examples include those directly bonded, glycidyl group, glycidyl ether group, glycidyl amino group, glycidyl ester group, glycidyl amide group, glycidyl sulfonamide group, cyclohexene oxide group and the like.
  • a glycidyl ether group, a glycidyl amino group, a glycidyl sulfonamide group or a glycidyl ester group is more preferred from the viewpoint of good reactivity and ease of synthesis.
  • the functional group that reacts with an epoxy group represents a structure involved in the curing reaction of the epoxy group.
  • the functional group which the compound generally called an epoxy hardening agent has is illustrated. Specific examples include a phenolic hydroxyl group, a primary amino group, a thiol group, a carboxyl group, a cyanate group, and an isocyanate group.
  • phenolic hydroxyl groups, primary amino groups, thiol groups, and carboxyl groups are preferred from the viewpoint of obtaining raw materials, and phenolic hydroxyl groups and primary amino groups are more preferred from the viewpoint of stability of the compound and ease of synthesis. .
  • the functional group (R) in the composition for alignment film in the present invention has the effect of surface treatment such as mechanical strength and rubbing suitable for using the composition for alignment film as an alignment film for anisotropic dye film.
  • 0.1 mmol / g or more is preferable with respect to the whole composition for alignment films except a solvent, 0.3 mmol / g or more is more preferable, 1.0 mmol / g or more is still more preferable. Further, it is preferably 20 mmol / g or less, and more preferably 15 mmol / g or less.
  • content of the reactive group (R) which reacts with the epoxy group in the alignment film composition excluding the solvent for example, since the amino group is 14 g / mol, in the case of 0.1 mmol / g or more, 0.14% by mass or more is a preferable range.
  • a compound having a partial structure (P1) and / or a partial structure (P3) and an epoxy group is referred to as “compound A”.
  • the partial structure (P) forms an anisotropic regular structure, and the compound A can have an association site or an arrangement site.
  • an alignment film having an association site or an array site can be formed by reacting an epoxy group.
  • an epoxy group reacts and opens a ring, it becomes a flexible fatty chain structure. Therefore, it becomes easy to form an anisotropic ordered structure with increased regularity of the partial structure (P) during reaction of the alignment film or surface treatment such as rubbing, and it is possible to increase the regularity of the obtained alignment film.
  • the number of partial structures (P1) and / or partial structures (P3) contained in one molecule of compound A may be one or more. In a plurality of cases, the partial structure (P1) and / or the partial structure (P3) may be the same or different. Among these, it is preferable to have two or more partial structures (P) in one molecule of compound A because an anisotropic ordered structure of the partial structure (P) can be easily formed. There is no particular upper limit in one molecule of compound A of partial structure (P), but it is preferably 5 or less for reasons of ease of synthesis. When the number of partial structures (P) contained in one molecule of compound A is plural, it is more preferable to have both the partial structure (P1) and the partial structure (P3).
  • the compound A contained in the alignment film composition of the present invention may be one type, but may be a combination of a plurality of different types.
  • a compound having a partial structure (P1) hereinafter referred to as AI
  • a compound having a partial structure (P3) hereinafter referred to as A-II
  • A-II may be contained in any abundance ratio. Good. There is no limitation on their combinations and abundance ratios.
  • Compound A may have one epoxy group in one molecule of compound A or a plurality of epoxy groups. Those having a plurality of epoxy groups are preferred because they tend to form a network structure and tend to increase the strength of the alignment film.
  • the number of epoxy groups in one molecule is preferably 6 or less, more preferably 4 or less, and still more preferably 2 or less. By being in these ranges, the network does not become too dense, and the formation of the anisotropic ordered structure of the partial structure (P) tends not to be hindered. Further, the curing reaction proceeds sufficiently, and the thermal stability of the obtained alignment film tends to be improved. Therefore, the anisotropic regular structure of the partial structure (P) tends to be efficiently formed while increasing the strength of the alignment film and improving the film formability.
  • the epoxy group in the present invention is preferably located at the end of the molecule of the compound A because the anisotropic ordered structure of the partial structure (P) tends to be easily formed.
  • the bonding position of the epoxy group and the partial structure (P) in Compound A is not particularly limited, and may be bonded at an arbitrary position and number.
  • the bonding form between the epoxy group and the molecularly oriented partial structure (P) in the compound A may be directly bonded or may be bonded through an arbitrary group. Examples of the case where an arbitrary group is interposed include an example in which the partial structure (P) is bonded to the combination of the epoxy group and the arbitrary group mentioned in the partial structure including the epoxy group.
  • the weight average molecular weight (Mw) of Compound A is usually 200 or more, preferably 250 or more. Moreover, it is 100,000 or less normally, Preferably it is 50,000 or less. This range is preferable because the composition for an alignment film of the present invention is cured as an alignment film and has sufficient mechanical properties. Moreover, epoxy equivalent is 100 or more and 20000 or less normally, Preferably it is 10,000 or less, More preferably, it is 7000 or less. This range is preferable because the composition for an alignment film of the present invention is cured as an alignment film and has sufficient mechanical properties.
  • the melting point of Compound A is usually 350 ° C. or lower, preferably 300 ° C. or lower. By being in these ranges, the composition for an alignment film of the present invention is cured as a transparent and uniform alignment film without precipitates at a low temperature, and tends to have sufficient mechanical properties and solvent resistance.
  • the compound A is dissolved or dispersed usually 3% by mass or more, preferably 4% by mass or more in a solvent that is usually used. By being in these ranges, it becomes possible to apply the compound A in a state of being dissolved or dispersed in a solvent. In particular, when it is applied in a dissolved state, a transparent and uniform alignment film is easily obtained, which is preferable.
  • a solvent the solvent mentioned later is mentioned as a solvent which the composition for alignment films may contain, for example.
  • Examples of the compound A of the present invention include the following compound groups A1 to A21 and A24 to A33 having a glycidyl ether group.
  • A1 to A11 are preferable from the viewpoint of rigidity, aggregation, and association of the compound A structure
  • A12 to A21 are preferable from the viewpoint of charge bias.
  • A24 to A33 are more preferable because they have both.
  • l 1 to l 33 , m 1 to m 33 , o 18 and o 20 each independently represent an integer of 1 or 2, and they may be the same or different. Also good.
  • l + m for example, the compound A1 is l 1 + m 1
  • l + m + o for example, Compound A18 has l 18 + m 18 + o 18
  • n 6 , n 7 , n 9 and n 11 are each independently an integer of 2 or more and 12 or less.
  • the compound B of the present invention is a compound having a functional group (R) and a partial structure (P1) and / or a partial structure (P3). Since compound B has the same partial structure (P) as that exemplified for compound A, as in the case of compound A, it is easy to form an association site or a sequence site of partial structure (P). On the other hand, since compound B has a functional group (R), it can form an alignment film in combination with compound C described later. That is, the compound B can form a regular structure of molecular orientation in the present invention, and at the same time, can act as a curing agent for the compound C to form an alignment film having sufficient strength.
  • the partial structure (P) is more agglomerated during the surface treatment such as rubbing or the like of the alignment film, increases the associative property, and tends to form a regular structure. It is possible to increase the orientation regulating force of the.
  • the molecular weight of the compound B is large, it is possible to form an alignment film using only the compound B.
  • the alignment film obtained using Compound B has regularity similar to that obtained by curing Compound A, and an anisotropic dye film composition to be described later is used as an existing alignment film for liquid crystals. It becomes possible to orient more easily than the above.
  • the alignment film composition often has an aromatic ring or a heteroatom, and thus has a bias in charge.
  • the epoxy group when the epoxy group is in the alignment film composition, the epoxy group reacts to generate a hydroxyl group. Therefore, in the wet film forming method described later, an anisotropic dye having an aromatic ring described later is used. It is excellent in interaction and can be formed with good affinity even when the composition for anisotropic dye film is applied.
  • the number of partial structures (P) contained in one molecule of compound B in the composition for alignment films of the present invention may be one or more. In the case of a plurality, the partial structures (P) may be the same or different. Among these, it is preferable to have two or more partial structures (P) because an anisotropic ordered structure is easily formed.
  • the upper limit of the number of partial structures (P) is not particularly limited, but is preferably 5 or less for reasons of ease of synthesis.
  • the compound B contained in the composition for alignment films of the present invention may be one type, but may be a combination of a plurality of different types.
  • a compound having a partial structure (P1) hereinafter referred to as Compound BI
  • a compound having a partial structure (P3) hereinafter referred to as Compound B-II
  • the compound B may have one or more functional groups (R) per molecule of the compound B.
  • the number of functional groups (R) in one molecule is preferably 6 or less, more preferably 4 or less, and still more preferably 2 or less.
  • a network structure having a plurality of functional groups (R) tends to form a network structure and tends to increase the strength of the alignment film and improve the film formability.
  • the network is not too dense, and it becomes easier to form an anisotropic regular structure with increased regularity of the partial structure (P) in curing the alignment film or in surface treatment such as rubbing. It is possible to increase the regularity.
  • the epoxy group in the present invention is preferably located at the end of the molecule of the compound B because the anisotropic regular structure of the partial structure (P) tends to be easily formed. .
  • the bonding position of the functional group (R) and the partial structure (P) in the compound B of the present invention is not particularly limited, and the functional group (R) and the partial structure (P) may be directly bonded to each other. It may be bonded via the group.
  • the optional group include alkylene groups having 1 to 10 carbon atoms, alkyleneamino groups having 1 to 10 carbon atoms, alkyleneoxy groups having 1 to 10 carbon atoms, arylarylene groups having 6 to 12 carbon atoms, carbon Examples of the alkenylene group, the ketone group, the sulfonyl group, the ester group, the amide group, the sulfonyl ester group, and the sulfonamide group represented by Formulas 2 to 10 can be freely selected according to the compound structure and purpose.
  • the structure of the alkylene group having 1 to 10 carbon atoms, the alkyleneamino group having 1 to 10 carbon atoms, and the alkyleneoxy group having 1 to 10 carbon atoms is not particularly limited, and may be any of linear, branched, or cyclic structures. Also good. Among these, an alkylene group having 2 to 10 carbon atoms, an alkyleneamino group having 1 to 10 carbon atoms, an alkyleneoxy group having 1 to 10 carbon atoms, and a sulfonamide group are preferable from the viewpoint of ease of synthesis and availability of raw materials. .
  • the alkylene group having 2 to 10 carbon atoms, the alkyleneamino group having 1 to 10 carbon atoms, the alkyleneoxy group having 1 to 10 carbon atoms, the aryl group, and the alkenylene group may have a substituent.
  • the substituent that may have include an alkyl group having 1 to 10 carbon atoms, a halogen group, and an aryl group.
  • a direct bond, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group is easy to synthesize, availability of raw materials, epoxy group It is preferable for reasons such as reactivity with.
  • Compound B has a weight average molecular weight (Mw) of usually 200 or more, preferably 250 or more, and usually 100,000 or less, preferably 50,000 or less. By being in this range, the composition for an alignment film of the present invention is cured as a film and tends to have sufficient mechanical properties.
  • Mw weight average molecular weight
  • the melting point (or softening point) of Compound B is usually 350 ° C. or lower, preferably 300 ° C. or lower. By being in this range, the composition for alignment film of the present invention is cured at a low temperature as a transparent and uniform alignment film without precipitates, and tends to have sufficient mechanical properties and solvent resistance.
  • Compound B is preferably dissolved or dispersed in a commonly used solvent in an amount of usually 3% by mass or more, preferably 4% by mass or more. By being in these ranges, it becomes possible to apply the compound B in a state dissolved or dispersed in a solvent. In particular, when it is applied in a dissolved state, a transparent and uniform alignment film is easily obtained, which is preferable.
  • the solvent which is usually used is the same as the solvent mentioned in Compound A.
  • Examples of the compound B of the present invention include the following compound groups B1 to B20 and B23 to B32.
  • R 1 to R 32 in the compounds B1 to B20 and B23 to B32 represent the functional group (R) possessed by the compound B.
  • B1 to B11 are preferable from the viewpoints of rigidity, aggregation, and association of the compound B structure
  • B12 to B20 are preferable from the viewpoint of charge bias.
  • B23 to B32 are more preferable because they have both.
  • e 1 to e 32 and f 1 to f 32 each independently represent an integer of 1 or 2, and may be the same or different.
  • e + f for example, compound B1 is e 1 + f 1
  • the compounds B17, the compound B18 and Compound B20, e + f + h e.g., Compound A17 is e 17 + f 17 + h 17
  • g 6 , g 7 , g 9 and g 11 are each independently an integer of 2 or more and 12 or less.
  • a commercially available product may be used as the compound B of the present invention.
  • polyamideimide resin having a carboxyl group as a functional group (R) (DIC Corporation, UNIDIC V-8000 series), or phenolimide having an aromatic hydroxy group as R (Gunei Chemical Industry Co., Ltd., phenolimide GPI series) Etc.
  • R functional group
  • phenolimide having an aromatic hydroxy group as R (Gunei Chemical Industry Co., Ltd., phenolimide GPI series) Etc.
  • Compound C is a compound having an epoxy group and does not have a partial structure (P1), a partial structure (P3), and a functional group (R).
  • the compound C is not particularly limited, but preferably has at least two epoxy groups in one molecule of the compound C.
  • glycidyl ethers such as bisphenol A, bisphenol F, naphthalene diol, phenol novolac resins, cresol novolac resins, and phenol aralkyl resins; diglycidyl ethers such as biphenol and alkyl-substituted biphenols; triglycidyl ethers such as triphenolmethane; Examples thereof include tetraglycidyldiaminodiphenylmethane; triglycidylaminophenol; various epoxy compounds such as dicyclopentadiene type epoxy resin.
  • the alignment film compositions of cases (1) to (3) containing at least one of the compounds A to C are represented as follows.
  • the alignment film composition of the present invention is an alignment film composition comprising at least one of the compound group I and the compound group II, wherein the partial structure (P1) and the partial structure in the alignment film composition excluding the solvent
  • the ratio of at least one of the structures (P3) is 0.5% by mass or more.
  • the compound group I is a compound A having an epoxy group and at least one of the partial structure (P1) and the partial structure (P3)
  • Compound Group II is a functional group that reacts with an epoxy group
  • a compound B having at least one of a partial structure (P1) and a partial structure (P3)
  • a compound C having an epoxy group
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P3) is represented by the following formula (6).
  • R 3 represents a divalent group containing a hetero atom and having an unsaturated bond, and the ring bonded to R 3 is a single ring.
  • R 3 has the same meaning as R 1 in the formula (1). Further, the ring bonded to R 3 is also synonymous with the formula (1).
  • the alignment film obtained is cured as a transparent and uniform film without precipitates, and sufficient mechanical properties, solvent resistance and anisotropy are obtained. It can have an orientation regulating force on the composition for a dye film.
  • Compound A, compound B, and compound C are as described above.
  • the charge ratio (B / C) between the compound B and the compound C is large in that the epoxy group contained in the compound C hardly remains unreacted and can be sufficiently cured in a short time. Is preferred.
  • the functional group (R) of the compound B is small in that it is difficult to remain unreacted in the alignment film obtained by curing the alignment film composition of the present invention.
  • the equivalent ratio of the functional group (R) of the compound B to the epoxy group contained in the compound C of the present invention is preferably 0.8 or more, and 0.9 or more. More preferably, it is used.
  • the total amount of the respective equivalents is preferably within the above range.
  • the charging ratio (A / B) between compound A and compound B is small in that the epoxy group contained in compound A hardly remains unreacted and can be sufficiently cured in a short time. Is preferred.
  • the functional group (R) of the compound B is not unreacted and remains in the alignment film obtained by curing the alignment film composition of the present invention.
  • the equivalent ratio of the functional group (R) of the compound B to the epoxy group contained in the compound A of the present invention is preferably 0.8 or more, and 0.9 or more. More preferably, it is used. Moreover, it is preferable to use it so that it may become 1.5 or less, and it is still more preferable to use it so that it may become 1.2 or less.
  • the total amount of each equivalent is in the above range.
  • the reaction mixture D means other components (curing agent, solvent, other additives, etc.) to be described later in each of the case (1), case (2) and case (3) in the alignment film composition. It shows the reaction mixture obtained by the composition for alignment film obtained by mixing the above-mentioned by the method for producing the composition for alignment film described later (treatment by (a) phenoxy resinification, (b) oligomerization, etc.). That is, the reaction mixture D is obtained by reacting the alignment film composition of the present invention. Like the reaction mixture D, when the partial structure (P) is partially reacted in advance with another structure, group, etc., the melting point tends to be lowered or eliminated. Thereby, it may be possible to obtain the effects of suppressing crystal precipitation during the formation of the alignment film, lowering the curing temperature, and improving the film formability.
  • the reaction mixture D in case (4) represents a mixture obtained by combining the above compounds using the methods (a) and (b) below.
  • a method using phenoxylation in which a bifunctional epoxy compound is heated together with an addition type curing agent to induce a soluble linear resin (generally called a polymer type epoxy resin or a phenoxy resin).
  • the equivalent ratio of the functional group (R) to the epoxy group (epoxy group / functional group (R)) in the entire alignment film composition is such that the epoxy group hardly remains unreacted. A larger amount is preferable in that it can be cured sufficiently in a short time.
  • the functional group (R) of the compound B is less unreacted in the alignment film obtained by curing the alignment film composition of the present invention. Specifically, it is preferably used so as to be 0.8 or more, and more preferably used so as to be 0.9 or more. Moreover, it is preferable to use it so that it may become 1.5 or less, and it is still more preferable to use it so that it may become 1.2 or less.
  • FIG. 1 An alignment film composition comprising a reaction mixture having at least one of a partial structure (P1) and a partial structure (P4), In the alignment film composition excluding the solvent, the ratio of at least one of the partial structure (P1) and the partial structure (P4) is 0.5% by mass or more.
  • the partial structure (P1) is an aromatic ring containing a hetero atom
  • the partial structure (P4) is represented by the following formula (7).
  • R 4 represents a divalent group containing a hetero atom and having an unsaturated bond.
  • R 4 has the same meaning as R 1 in Formula (1).
  • the two benzene rings to which R 4 is bonded may be a single ring or may be condensed. Moreover, you may have a substituent each independently.
  • the substituent that the two benzene rings to which R 4 is bonded may have, but is not particularly limited to, for example, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, A hetero atom, a nitro group, a hydroxyl group, a halogen atom, a —C ( ⁇ O) — group and the like can be mentioned.
  • the content of the partial structure (P1) and / or the partial structure (P4) in the alignment film composition in the present invention is 0.5% by mass or more with respect to the entire alignment film composition excluding the solvent. It is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 20% by mass or more. Moreover, it is preferable that it is 99 mass% or less, It is more preferable that it is 90 mass% or less, 85 mass% or less is still more preferable, 80 mass% or less is especially preferable. By being in these ranges, the solubility in a solvent or the like is improved, and there is a tendency to impart a high alignment regulating force to the alignment film obtained by curing the alignment film composition. In addition, when 2 or more types of partial structure (P1) and / or partial structure (P4) are contained in the composition for alignment films of this invention, it is preferable that the total amount is the said range.
  • Compound E is a compound having an epoxy group and a partial structure represented by Formula (8).
  • ring Y 4 represents a heterocyclic ring which may have a substituent.
  • the partial structure represented by the formula (8) forms an anisotropic ordered structure, and the compound E can have an association site or a sequence site. Furthermore, an alignment film having an association site or an array site can be formed by reacting an epoxy group. Moreover, when an epoxy group reacts and opens a ring, it becomes a flexible fatty chain structure. Therefore, it becomes easier to form an anisotropic ordered structure in which the regularity of the partial structure represented by the formula (8) is increased during reaction of the alignment film or surface treatment such as rubbing. It can be increased.
  • the ring Y 4 in the formula (8) has the same meaning as the ring Y 1 in the formula (3), and the preferred range and the preferred reason are the same.
  • the position at which the ring Y 4 and the benzene ring condensed with the ring Y 4 are connected to the structure in the other epoxy reactant is not particularly limited, and the aspect ratio of the molecule containing the partial structure represented by the formula (8) It is preferable that the partial structures are connected so that the (molecular length uniaxial ratio) is large because molecular linearity is obtained and the orientation function to the anisotropic dye film tends to be improved. As one aspect, there may be mentioned those represented by formula (3).
  • the benzene ring condensed with the ring Y 4 and the ring Y 4 may have a substituent.
  • substituents include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, a hetero atom, a nitro group, a hydroxyl group, a halogen atom, and —C ( ⁇ O ) -Group and the like.
  • the number of partial structures represented by formula (8) contained in one molecule of compound E may be one or more. In the case of a plurality, the partial structures represented by the formula (8) may be the same or different. Among these, having two or more partial structures represented by the formula (8) in one molecule of the compound E facilitates the formation of an anisotropic ordered structure of the partial structure represented by the formula (8). Therefore, it is preferable. Moreover, there is no particular upper limit in one molecule of the compound E having the partial structure represented by the formula (8), but it is preferably 5 or less for reasons of ease of synthesis.
  • Compound E may have one or more epoxy groups in one molecule of compound E. Those having a plurality of epoxy groups are preferred because they tend to form a network structure and tend to increase the strength of the alignment film.
  • the number of epoxy groups in one molecule is preferably 6 or less, more preferably 4 or less, and still more preferably 2 or less. By being in these ranges, the network does not become too dense, and tends to prevent the formation of the anisotropic ordered structure of the partial structure represented by the formula (8). Further, the curing reaction proceeds sufficiently, and the thermal stability of the obtained alignment film tends to be improved. Therefore, there is a tendency that the anisotropic regular structure of the partial structure represented by the formula (8) can be efficiently formed while increasing the strength of the alignment film and improving the film formability.
  • the epoxy group in the present invention is preferably located at the end of the molecule of the compound E because it tends to facilitate formation of an anisotropic ordered structure having a partial structure represented by the formula (8).
  • the bonding position or the like of the epoxy group in compound E and the partial structure represented by the formula (8) is not particularly limited, and may be bonded at an arbitrary position and number.
  • the bonding form between the epoxy group in compound E and the partial structure represented by formula (8) may be directly bonded or may be bonded via any group. Examples of the case where an arbitrary group is interposed include an example in which the partial structure represented by the formula (8) is bonded to the combination of the epoxy group and the arbitrary group mentioned in the partial structure including the epoxy group. .
  • the weight average molecular weight (Mw) of compound E is usually 200 or more, preferably 250 or more. Moreover, it is 100,000 or less normally, Preferably it is 50,000 or less. This range is preferable because the composition for an alignment film of the present invention is cured as an alignment film and has sufficient mechanical properties. Moreover, epoxy equivalent is 100 or more and 20000 or less normally, Preferably it is 10,000 or less, More preferably, it is 7000 or less. This range is preferable because the composition for an alignment film of the present invention is cured as an alignment film and has sufficient mechanical properties.
  • the melting point of Compound E is usually 350 ° C. or lower, preferably 300 ° C. or lower. By being in these ranges, the composition for an alignment film of the present invention is cured as a transparent and uniform alignment film without precipitates at a low temperature, and tends to have sufficient mechanical properties and solvent resistance.
  • Compound E is preferably dissolved or dispersed in a commonly used solvent in an amount of usually 3% by mass or more, preferably 4% by mass or more. By being in these ranges, it becomes possible to apply the compound E in a state dissolved or dispersed in a solvent. In particular, when it is applied in a dissolved state, a transparent and uniform alignment film is easily obtained, which is preferable.
  • a solvent the solvent mentioned later is mentioned as a solvent which the composition for alignment films may contain, for example.
  • Compound F is a compound having a functional group (R) that reacts with an epoxy group and a partial structure represented by Formula (8). Since compound F has the same partial structure represented by formula (8) as exemplified in reaction mixture D, as in the case of compound E, the association site and sequence of the partial structure represented by formula (8) It is easy to form a part. On the other hand, since compound F has a functional group (R), it can form an alignment film in combination with compound G described later. That is, the compound F can form a regular structure of molecular orientation in the present invention, and at the same time, can act as a curing agent for the compound F to form an alignment film having sufficient strength.
  • the alignment film obtained by using the compound F has regularity like that obtained by curing the compound E, and the composition for anisotropic dye film described later is used as an existing alignment film for liquid crystal. It becomes possible to orient more easily than the above.
  • the alignment film composition often has an aromatic ring or a hetero atom, and thus has a bias in charge.
  • the epoxy group when the epoxy group is in the alignment film composition, the epoxy group reacts to generate a hydroxyl group. Therefore, in the wet film forming method described later, an anisotropic dye having an aromatic ring described later is used. It is excellent in interaction and can be formed with good affinity even when the composition for anisotropic dye film is applied.
  • the number of partial structures represented by the formula (8) contained in one molecule of compound F in the composition for alignment films of the present invention may be one or plural. In the case of a plurality, the partial structures represented by the formula (8) may be the same or different. Among these, it is preferable to have two or more partial structures represented by Formula (8) because an anisotropic ordered structure can be easily formed.
  • the upper limit of the number of partial structures (P) is not particularly limited, but is preferably 5 or less for reasons of ease of synthesis.
  • the compound F contained in the composition for alignment films of the present invention may be one kind, it may be a combination of a plurality of different kinds.
  • the compound F may have one or more functional groups (R) per molecule of the compound F.
  • the number of functional groups (R) in one molecule is preferably 6 or less, more preferably 4 or less, and still more preferably 2 or less.
  • a network structure having a plurality of functional groups (R) tends to form a network structure and tends to increase the strength of the alignment film and improve the film formability.
  • the network is not too dense, and it becomes easier to form an anisotropic regular structure in which the regularity of the partial structure represented by the formula (8) is increased in the surface treatment such as the rubbing or the curing of the alignment film, It becomes possible to increase the regularity of the obtained alignment film.
  • the epoxy group in the present invention is preferably located at the end of the molecule of the compound F because it tends to facilitate formation of an anisotropic ordered structure having a partial structure represented by the formula (8).
  • the bonding position of the functional group (R) and the partial structure represented by the formula (8) in the compound F of the present invention is not particularly limited, and the partial structure represented by the functional group (R) and the formula (8). May be directly bonded, or may be bonded via any group. As an arbitrary group, the group quoted by the compound E is mentioned, A preferable group is also the same.
  • the melting point (or softening point) of Compound F is usually 350 ° C. or lower, preferably 300 ° C. or lower. By being in this range, the composition for alignment film of the present invention is cured at a low temperature as a transparent and uniform alignment film without precipitates, and tends to have sufficient mechanical properties and solvent resistance.
  • Compound F is preferably dissolved or dispersed in a solvent that is usually used in an amount of usually 3% by mass or more, preferably 4% by mass or more. By being in these ranges, it becomes possible to apply the compound F in a state of being dissolved or dispersed in a solvent. In particular, when it is applied in a dissolved state, a transparent and uniform alignment film is easily obtained, which is preferable.
  • the solvent which is usually used is the same as the solvent mentioned in Compound A.
  • the formula (8) is independently linked to the benzene ring as represented by the following formula (9).
  • the partial structure represented by Formula (9) it tends to be easy to form an anisotropic ordered structure with increased regularity in the alignment film.
  • the ring Y 4 represents a heterocyclic ring which may have a substituent.
  • Ring Y 4 has the same meaning as ring Y 1 in formula (8), and the preferred range, substituents that may be present, the connecting position, and the like are also the same.
  • the rings included in Formula (9) may each independently have a substituent. Examples of the substituent that may be included include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an amino group, a hetero atom, a nitro group, a hydroxyl group, a halogen atom, and —C ( ⁇ O ) -Group and the like.
  • the formula (8) is independently linked as represented by the following formula (10).
  • the partial structure represented by the formula (10) it tends to be easy to form an anisotropic ordered structure with increased regularity in the alignment film.
  • ring Y 5 and ring Y 6 each independently represent an optionally substituted heterocyclic ring.
  • R 6 represents an arbitrary divalent group.
  • Ring Y 5 , Ring Y 6 and R 1 have the same meanings as Ring Y 2 , Ring Y 3 and R 2 in Formula (5), respectively, and preferred ranges, substituents that may be present, coupling positions, and the like are also synonymous. It is.
  • the compound G is a compound having an epoxy group and does not have the partial structure represented by the formula (8) and the functional group (R).
  • the compound G is not particularly limited, but preferably has at least two epoxy groups in one molecule of the compound F. Specific examples thereof include those exemplified as Compound C.
  • Compound G may be used alone or in combination of two or more in any ratio. Among these, from the viewpoint of the reactivity, uniformity and transparency of the entire alignment film composition, it is preferable to have a group or structure compatible with the partial structure represented by the formula (8), Specifically, it preferably has an aromatic ring.
  • the alignment film compositions of Case (5) to Case (7) containing at least one of the compounds E to G are represented as follows.
  • the alignment film composition of the present invention includes at least one of compound group III and compound group IV.
  • the composition for the alignment film contains at least one of the compound group III or the compound group IV
  • the resulting alignment film is cured as a transparent and uniform film without precipitates, and has sufficient mechanical properties, solvent resistance, and anisotropic properties. It has the ability to regulate the orientation of the composition for functional dye film.
  • compound group III is compound E having an epoxy group and a partial structure represented by the following formula (8)
  • compound group IV is represented by a functional group that reacts with the epoxy group and the following formula (8).
  • ring Y 4 represents a heterocyclic ring which may have a substituent.
  • the charge ratio (F / G) between the compound F and the compound G is large in that the epoxy group contained in the compound G hardly remains unreacted and can be sufficiently cured in a short time. Is preferred.
  • the functional group (R) of the compound F is small in that it is difficult to remain unreacted in the alignment film obtained by curing the alignment film composition of the present invention.
  • the equivalent ratio of the functional group (R) of the compound F to the epoxy group contained in the compound G of the present invention is preferably 0.8 or more, and 0.9 or more. More preferably, it is used.
  • the total amount of the respective equivalents is preferably within the above range.
  • the charge ratio (E / F) between compound E and compound F is small in that the epoxy group contained in compound E hardly remains unreacted and can be sufficiently cured in a short time. Is preferred.
  • the functional group (R) of the compound F is unreacted and hardly remains in the alignment film obtained by curing the alignment film composition of the present invention.
  • the equivalent ratio of the functional group (R) of the compound F to the epoxy group contained in the compound E of the present invention is preferably 0.8 or more, and 0.9 or more. More preferably, it is used. Moreover, it is preferable to use it so that it may become 1.5 or less, and it is still more preferable to use it so that it may become 1.2 or less.
  • the total amount of each equivalent is preferably in the above range. .
  • the weight average molecular weight of at least one compound or reaction mixture is preferably 200 or more, more preferably 250 or more. . Moreover, it is 200,000 or less normally, Preferably it is 100,000 or less, More preferably, it is 50,000 or less. By being in these ranges, it may have the effect of suppressing film repelling and film defects when the alignment film composition is applied, and improving film formability.
  • the alignment film composition of the present invention may contain a curing agent.
  • the curing agent that may be contained in the alignment film composition of the present invention may be any substance that contributes to the reaction of the epoxy group possessed by Compound A, Compound C, Compound E, Compound G, etc. Also included are those generally known as curing accelerators such as curing agents. Examples of the curing agent according to the present invention include the following three. 1) A substance that contributes to the reaction between epoxy groups of Compound A, Compound C, Compound E, or Compound G contained in the alignment film composition of the present invention.
  • curing agent there is no restriction
  • curing agent should just be performed according to balance, such as physical properties, such as hardening conditions, the shape of hardened
  • the curing agent include an addition polymerization type curing agent that contributes to a reaction between epoxy groups and a catalyst type curing agent that promotes an addition reaction between epoxy group-containing compounds.
  • phenolic curing agents such as aliphatic amines, polyether amines, alicyclic amines, aromatic amines, acid anhydride curing agents, amide curings.
  • Agents active ester curing agents, organic acid dihydrazides, mercaptan curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
  • the catalyst-type curing agent include imidazole and derivatives thereof, tertiary amines, organic phosphines, phosphonium salts, tetraphenylboron salts, and boron halide amine complexes.
  • an orientation film excellent in adhesiveness and bending strength tends to be easily obtained.
  • curing agent tends to obtain the composition for alignment films excellent in workability.
  • Primary and secondary amine curing agents are easy to obtain alignment films having excellent heat resistance, and acid anhydride curing agents are excellent in liquid curing processes.
  • an amorphous curing agent when used, it tends to be easy to obtain an alignment film excellent in workability and an alignment film excellent in bending strength. is there.
  • a crystalline curing agent when a crystalline curing agent is used, an orientation film excellent in heat resistance and mechanical properties tends to be obtained.
  • a catalyst-type curing agent By using a catalyst-type curing agent, it tends to be easy to obtain an alignment film having excellent heat resistance and chemical resistance. Since the curing temperature and the curing speed of the catalytic curing agent differ depending on the type, an appropriate curing condition may be selected depending on the process.
  • the catalyst type curing agents imidazole type is preferable.
  • 2-ethyl-4-methylimidazole tends to increase the curing rate and can be cured at low temperature and low cost.
  • 1-cyanoethyl-2-undecylimidazole tends to have a wide range of applicable types of epoxy group-containing compounds and alignment film shapes.
  • the curing agent used in the present invention is preferably an addition polymerization type curing agent because it easily obtains mechanical properties, solvent resistance, and orientation regulating power to the composition for anisotropic dye film.
  • a phenol type, an amine type, or an acid anhydride type is preferable, and an amine type or an acid anhydride type is particularly preferable.
  • the structure having high compatibility with the partial structure (P) is one in which the curing agent has an aromatic ring from the viewpoint of uniformity of the alignment film, transparency, reactivity, and the like.
  • the melting point is preferably not more than the curing temperature.
  • a substance (curing accelerator) that exhibits a function of promoting the addition reaction may be added.
  • a substance (curing accelerator) that exhibits a function of promoting the addition reaction include one or more selected from amines, phenols, imidazoles, and phosphonium salts.
  • a phosphonium salt system is preferable from the viewpoints of reactivity that can be cured at a low temperature and stability of the compound.
  • a curing accelerator When a curing accelerator is used, it is preferably used in an amount of 0.1 parts by weight or more, more preferably 0.2 parts by weight or more with respect to 100 parts by weight of the alignment film composition excluding the solvent. Is more preferable. Moreover, it is preferable to use it so that it may become 20 weight part or less, and it is still more preferable to use it so that it may become 10 weight part or less. By being in these ranges, there is a tendency that reactivity that can be cured even at a low temperature and stability of the compound can be obtained.
  • phenolic curing agents include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-ke Zole novolak, xylenol novolak, poly-p-hydroxystyrene, hydroquinone, re
  • amine curing agent examples include aliphatic amines such as ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, Examples include diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine, and the like.
  • polyether amines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamines, and the like.
  • Cycloaliphatic amines include isophorone diamine, metacene diamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino). (Propyl) -2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine and the like.
  • Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2,4 -Toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, ⁇ - (m-aminophenyl) ethylamine,
  • the acid anhydride-based curing agent include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecane diacid) anhydride, poly (phenylhexadecane diacid) Anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Hexahydrophthalic anhydride, Methylhymic anhydride, Tetrahydrophthalic anhydride, Trialkyltetrahydrophthalic anhydride, Methylcyclohexene dicarboxylic anhydride, Methylcyclohexene tetracarboxylic Acid anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol
  • amide type curing agent examples include dicyandiamide and polyamide resin.
  • tertiary amines include 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and the like. .
  • imidazole and its derivatives examples include 1-cyanoethyl-2-phenylimidazole, 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazo Lithium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methyl Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-d
  • organic phosphines include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine.
  • phosphonium salt examples include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, methyltributylphosphonium dimethylphosphate, and tetrabutylphosphonium benzotriazolate.
  • tetraphenylboron salt include 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine / tetraphenylborate and the like.
  • the content ratio (epoxy group / functional group (R)) of the functional group (R) contained in the curing agent with respect to all epoxy groups in the composition for the alignment film is short because the epoxy group is not easily left unreacted. The smaller one is preferable in that it can be sufficiently reacted in time. On the other hand, it is preferable that the functional group (R) is unreacted and hardly remains in the alignment film obtained by curing the alignment film composition of the present invention.
  • an addition polymerization type curing agent it is preferably used so that the equivalent ratio of the functional group (R) of the curing agent to the epoxy group in the alignment film composition is 0.8 or more. More preferably, it is used as described above.
  • the curing agent in an amount of 0.1 parts by weight or more, based on 100 parts by weight of the composition for an alignment film excluding the solvent, and 0.2 parts by weight or more. More preferably, it is used. Moreover, it is preferable to use it so that it may become 20 weight part or less, and it is still more preferable to use it so that it may become 15 weight part or less.
  • the alignment film composition of the present invention may contain a solvent.
  • a solvent When a solvent is used, various materials of the alignment film composition are used in a state of being dissolved or dispersed in the solvent.
  • the solvent preferably has a boiling point (under a pressure of 1013.15 [hPa], the same applies to the boiling points hereinafter) of 80 ° C. or higher, more preferably 100 ° C. or higher.
  • Examples of the solvent include the following. Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol-mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, methoxymethylpentanol, propylene Glycol monoalkyl ethers such as glycol monoethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, tripropylene glycol monomethyl ether; Glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl
  • the solvent preferably has a boiling point of 100 ° C. or higher, and preferably 120 ° C. or higher. Moreover, it is preferable that it is 200 degrees C or less, and it is more preferable that it is 170 degrees C or less.
  • a lower limit coating unevenness and the like tend to be suppressed.
  • drying becomes easy, and it tends to be applied to a substrate having particularly low heat resistance.
  • glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate, N , N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like are preferred.
  • the composition for an alignment film of the present invention preferably contains a surfactant in order to improve wettability, applicability and the like when applying the anisotropic dye film.
  • a surfactant for example, an anionic, cationic, nonionic or amphoteric surfactant can be used.
  • a nonionic surfactant in view of the applicability of the alignment film as an anisotropic dye film, and it is preferable to use a fluorine-based or silicon-based surfactant among the alignment film compositions. It is also effective in terms of applicability.
  • fluorine-based surfactant examples include perfluoroalkyl sulfonic acid, perfluoroalkyl carboxylic acid, and fluorine telomer alcohol.
  • silicon surfactants include polyether-modified silicon having various linear and branched chains.
  • surfactants examples include, for example, TSF4460 (manufactured by GE Toshiba Silicone), BYK-300, BYK-325, BYK-330 (manufactured by BYK Chemie), KP340 (manufactured by Shin-Etsu Silicone), SH7PA, in the case of silicon.
  • a fluorine-based surfactant having a polymerizable group is preferable in terms of dispersibility, reduction of defects due to aggregation, and continuity of the effect of the surface active action.
  • Examples of the polymerizable group possessed by the fluorosurfactant include those exemplified in the following formulas U-1 to U-5.
  • a surfactant examples include the Megafac series manufactured by DIC Corporation.
  • the content thereof is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, with respect to the alignment film composition excluding the solvent, 0.01% More preferably, it is more preferably at least 0.03% by mass.
  • 10 mass% or less is preferable, 1 mass% or less is more preferable, 0.5 mass% or less is further more preferable, and 0.3 mass% or less is especially preferable.
  • content of surfactant is the said range.
  • an adhesion improver such as a silane coupling agent
  • examples of the silane coupling agent include epoxy, (meth) acrylic, amino and the like. These may be used alone or in combination of two or more.
  • Preferred silane coupling agents include, for example, (meth) acryloxysilanes such as 3-methacryloxypropylmethyldimethoxysilane and 3-methacryloxypropyltrimethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane Epoxy silanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; and ureidosilanes such as 3-ureidopropyltriethoxysilane Isocyanate isocyanates such as 3-isocyanatopropyltriethoxysilane; Among these, epoxysilane silane coupling agents are particularly preferable.
  • the content thereof is preferably 0.05% by mass or more, more preferably 0.1% by mass or more with respect to the alignment film composition excluding the solvent. Moreover, 10 mass% or less is preferable and 7 mass% or less is more preferable.
  • the composition for alignment film of the present invention may contain a compound having a partial structure (P) and not having an epoxy group and a functional group (R).
  • a compound having an epoxy group or a functional group (R) can be used in combination or added to cases (1) to (7).
  • a compound having a partial structure (P) and not having an epoxy group and a functional group (R) is limited to the structure, molecular weight, physical properties, etc., as long as the composition can be controlled within the preferred range of the alignment film composition. Rather, it can be used arbitrarily.
  • commercially available products can also be used.
  • commercially available polymers such as polyimide, polyamide, polyester, and polycarbonate having a partial structure (P) can be used.
  • the alignment film composition of the present invention may contain a filler for the purpose of improving the strength.
  • a filler for the purpose of improving the strength.
  • the fillers it is preferable to use an inorganic filler.
  • the inorganic filler include alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), silica (SiO 2 ), and the like.
  • Al 2 O 3 , AlN, BN or SiO 2 is preferable, and Al 2 O 3 , BN or SiO 2 is particularly preferable.
  • These inorganic fillers may be used alone or in a combination of two or more in any combination and ratio.
  • a granular or flat inorganic filler it is preferable to use one having an average particle diameter of about 0.05 to 1000 ⁇ m.
  • an aggregated inorganic filler having an average crystal diameter of 0.01 to 5 ⁇ m and an average aggregate diameter of 1 to 1000 ⁇ m.
  • the content of the filler in the alignment film composition of the present invention is preferably 5 parts by weight or more and more preferably 10 parts by weight or more with respect to 100 parts by weight of the alignment film composition excluding the solvent. Moreover, 1900 weight part or less is preferable and 1800 weight part or less is more preferable.
  • the filler content is not less than the above lower limit, thermal conductivity due to the filler tends to be obtained, and when it is not more than the above upper limit, the curability and physical properties of the alignment film tend to be obtained.
  • the above-described composition for an alignment film of the present invention can produce an alignment film having a high alignment regulating force on the composition for an anisotropic dye film even at a low temperature, and the anisotropic dye film formed on the alignment film It has high orientation characteristics.
  • the alignment film obtained from the alignment film composition of the present invention can easily form an anisotropic ordered structure in which the regularity of the partial structure (P) is increased by performing a surface treatment such as rubbing. It becomes possible to increase the regularity of the alignment film.
  • the alignment film composition of the present invention is particularly useful for an alignment film for an anisotropic dye film, which will be described later, and is suitably used for forming an optical element, particularly a polarizing element, in combination with the anisotropic dye. Can do.
  • An optical element including an alignment film formed from the alignment film composition of the present invention, an anisotropic dye film formed from a dye, and the like is provided.
  • an alignment film formed from the alignment film composition of the present invention an anisotropic dye film formed from a dye, and the like is provided.
  • the composition for an alignment film of the present invention can be obtained by mixing the above compound, reaction mixture, solvent and the like. Moreover, the solid content concentration of the composition for alignment films of the present invention is usually 1% by mass or more, and preferably 3% by mass or more. Moreover, it is 50 mass% or less normally, Preferably it is 30 mass% or less.
  • the composition for an alignment film of the present invention is prepared by using a solvent so as to be in the above range. In the curing of the alignment film composition of the present invention, a method in which the alignment film composition mixed in a predetermined composition is applied to a material to be coated (substrate) by the method and conditions described below and then thermally cured.
  • the manufacturing method of the compound contained in the composition for alignment films of this invention is not specifically limited, It can manufacture using a well-known method.
  • the structure construction method of the compound containing the partial structure (P) is not particularly limited, and construction using a known method and induction into the compound are possible.
  • a partial structure (P) is constructed by using a component having another functional group that can introduce a functional group (R) as a starting material. Later, the functional group (R) may be derivatized.
  • the manufacture example of the compound A and the compound B is shown, the compound E and the compound F can also be obtained by the same method, respectively.
  • Compound A As one specific production example of Compound A, a method for inducing Compound A (Exemplary Compound A3) containing a phthalimide structure as the partial structure (P) will be described.
  • Compound E can also be produced by the same method.
  • the imide skeleton is derived by condensation of an acid anhydride or dicarboxylic acid with an amine, alkylation of a hydrogenated imide, or reaction with an amino group.
  • Method for producing reaction mixture D> There is also a method in which the mixed alignment film composition is caused to undergo a curing reaction at a low reaction rate in advance, and then applied to a material to be coated (substrate), and then heated again to be completely cured.
  • this method is not particularly limited, simple methods include two methods: method (1) phenoxy resin formation and method (2) oligomerization.
  • phenoxy resinization refers to heating a bifunctional epoxy compound together with an addition-type curing agent to induce a soluble linear resin (referred to as a polymer-type epoxy resin or phenoxy resin).
  • the alignment film composition is converted into a phenoxy resin before coating.
  • it is suitable for a combination of a bifunctional epoxy compound and a bifunctional curing agent. If it is the said composition for alignment films, the reaction conversion rate of phenoxy resinification will not be specifically limited.
  • the reaction conversion rate between the epoxy group and the curing agent can be appropriately controlled by reaction conditions such as a catalyst, temperature, and time.
  • a phenoxy resin derived from an epoxy compound having a phthalimide group as a partial structure (P) and a phenol curing agent as shown in the following formula is applied to a coating agent, thereby An alignment film can be obtained.
  • Method (2) is a method using an oligomer solution obtained by heat-curing the alignment film composition adjusted to a predetermined mixing ratio at a low reaction rate before coating. In particular, it can be particularly preferably carried out when a solvent is used for the composition for alignment film.
  • Examples of the method (2) include a method in which the compound A29 exemplified as the compound A and an acid anhydride curing agent are heated for several hours in the presence of a curing aid.
  • the reaction rate of oligomerization can be estimated from the residual epoxy group in the reaction product by 1 H-NMR.
  • the alignment film of the present invention can be formed by applying the alignment film composition of the present invention to a material to be coated.
  • the coating method is not particularly limited as long as it can form a layer having a uniform thickness, for example, die coating, spin coating, screen printing, flexographic printing, spraying, a casting method using an applicator, a method using a coater, Examples thereof include a spraying method, a dipping method, a calendar method, and a casting method.
  • the substrate of the material to be coated for example, glass such as float glass or soda glass, a transparent substrate made of plastic such as polyethylene terephthalate, polycarbonate, polyolefin, or the like can be used.
  • a functional silane-containing compound or a functional titanium-containing compound can be applied in advance to the surface of the substrate. Further, ultraviolet treatment, plasma treatment, or the like can be performed.
  • a step of volatilizing the solvent may be added.
  • a method for volatilizing the solvent is not particularly limited. Usually, it is dried using a hot plate, an infrared oven, a convection oven, hot air heating, microwave heating, a hot roll, a vacuum dryer, a heating vacuum dryer or the like.
  • the degree of reduced pressure is preferably 0.01 to 500 mmHg, and the drying time is selected in the range of 1 second to 10 minutes.
  • the heating temperature when heating to volatilize the solvent can be a suitable temperature depending on the type of the solvent, but is usually 20 ° C. or higher, preferably 40 ° C. or higher, more preferably 60 ° C. or higher. Further, it is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower. When heating temperature is more than the said minimum, it is preferable at the point from which a solvent is fully volatilized.
  • the heating temperature is equal to or lower than the above upper limit, it is preferable because it is possible to suppress deterioration in performance of each material when an alignment film is formed on a material having low heat resistance, for example, a polyester resin or a polyolefin resin.
  • the drying time is usually selected in the range of 15 seconds to 10 minutes, preferably in the range of 30 seconds to 5 minutes, depending on the type of the solvent component, the performance of the dryer used, and the like.
  • a method of drying under reduced pressure and a method of heating may be used in combination, or any of them may be used.
  • the dried coating film is usually cured by further heating.
  • the heating temperature at the time of curing is usually 60 ° C. or higher, preferably 80 ° C. or higher.
  • the temperature is usually 250 ° C. or lower, preferably 230 ° C. or lower, more preferably 200 ° C. or lower, particularly preferably 180 ° C. or lower, and most preferably 150 ° C. or lower.
  • the heating time is not particularly limited, but is 10 minutes to 5 hours, preferably 30 minutes to 4 hours.
  • the heating temperature and time depend on the partial structure (P), the type of curing agent, the type of solvent, etc., but the mechanical properties of the resulting alignment film, the orientation regulating force on the anisotropic dye composition, the surface of rubbing, etc.
  • the heat-resistant temperature of the substrate the heat-resistant temperature of other materials for liquid crystal displays, and the reduction of energy used
  • the above ranges are preferred.
  • the partial structure (P) cures while forming an anisotropic ordered structure, so the resulting alignment film has a domain with an anisotropic ordered structure and is formed on its surface.
  • the orientation of the anisotropic dye film can be increased.
  • the alignment film has an anisotropic regular structure and has an appropriate film strength, so that regularity is further increased by surface treatment such as rubbing, and is formed on the surface.
  • the orientation of the anisotropic dye film can be increased.
  • the reaction of the epoxy group proceeds at an appropriate rate, and the alignment film tends to form a regular structure and tends to have a strength that is easy to surface treatment such as rubbing. is there.
  • productivity tends to be excellent.
  • the heating method for curing is not particularly limited, but by gradually raising the temperature from a low temperature, the anisotropic ordered structure of the partial structure (P) tends to be more easily formed.
  • the thickness of the alignment film is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more so that the film can be uniformly formed and sufficient alignment characteristics are exhibited. Usually, it is 10 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 500 nm or less.
  • the coated surface obtained above is rubbed in a certain direction with a roll wound with a cloth made of fibers such as nylon, rayon, cotton, etc., irradiated with linearly polarized light, etc. It can be performed by orienting the molecules by applying a surface treatment or applying an external force such as a magnetic field. By performing these treatments, it is possible to produce an alignment film having a higher alignment regulating force on the anisotropic dye film composition.
  • the anisotropic dye film used in combination with the alignment film composition of the present invention is formed by a wet film formation method.
  • the anisotropic dye film is obtained by using an anisotropic dye film composition containing a dye and a solvent. Moreover, binder resin, a monomer, a hardening
  • the anisotropic dye film composition may be in the form of a solution or gel.
  • the composition for anisotropic dye film may be in a state in which a dye or the like is dissolved or dispersed in a solvent.
  • the composition for an anisotropic dye film is in a liquid crystal phase state if the concentration is changed, or is formed after the solvent in the composition is evaporated to be in a liquid crystal phase state as a composition.
  • the state of the liquid crystal phase refers to the state described on pages 1 to 16 of “Basics and Applications of Liquid Crystals” (Shinichi Matsumoto, Ryo Tsunoda, 1991). Say. In particular, the nematic phase described on page 3 is preferred.
  • the dye a dichroic dye is usually used.
  • the dye is preferably a dye having a liquid crystal phase.
  • the dye having a liquid crystal phase means a dye exhibiting lyotropic liquid crystallinity in a solvent.
  • the lyotropic liquid crystalline compound used in the present invention is preferably soluble in water or an organic solvent, and particularly preferably water-soluble, for use in the wet film forming method described later.
  • Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984).
  • the molecular weight is preferably 200 or more, and particularly preferably 300 or more.
  • the molecular weight is preferably 1500 or less, and particularly preferably 1200 or less.
  • water-soluble means that the compound is usually dissolved in water at 0.1% by mass or more, preferably 1% by mass or more at room temperature. Only one type of lyotropic liquid crystalline compound may be used, or two or more types may be used in combination.
  • the dye examples include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene, oxazine, indanthrone, and the like). Since these dyes are water-soluble, it preferably has a sulfo group.
  • an azo dye that can take a high molecular arrangement in the anisotropic dye film by the combination of the alignment film composition of the present invention is preferable.
  • An azo dye means a dye having at least one azo group.
  • the number of azo groups in one molecule is preferably 2 or more, preferably 6 or less, and more preferably 4 or less, from the viewpoints of color tone and production.
  • the dye used in the present invention is not particularly limited, and a known dye can be used.
  • Examples of the dye include, for example, Japanese Unexamined Patent Publication No. 2006-0799030, Japanese Unexamined Patent Publication No. 2010-168570, Japanese Unexamined Patent Publication No. 2007-302807, Japanese Unexamined Patent Publication No. 2008-081700, Japanese Unexamined Patent Publication No.
  • azo dyes disazo, trisazo and tetrakisazo dyes having the structure of the following formula (12) in the form of free acid have low wavelength dispersibility and a color tone having a wide absorption in the visible region. This is preferable.
  • E 1 represents any organic group
  • R 30 and R 31 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • p and q are each independently an integer of 0 to 6, and p + q is 6 or less.
  • p and q are each independently preferably an integer of 0 to 2. Further, p + q is preferably 1 or more, and more preferably 2 or more. Further, p + q is preferably 4 or less. By being in the above range, the solubility of the dye in water or an organic solvent and the association characteristics tend to be obtained.
  • each of the disazo, trisazo and tetrakisazo dyes having the partial structure of the formula (13) in the form of a free acid has low wavelength dispersion and absorbs a wide range in the visible region.
  • E 2 represents any organic group
  • R 32 and R 33 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or a phenyl group which may have a substituent.
  • the dye in the present embodiment may be used in the form of a free acid, or a part of the acid group may have a salt form. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form.
  • a salt-type exchange method a known method can be arbitrarily used, and examples thereof include the following methods.
  • a strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and then the dye is added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • a method of neutralizing acidic groups and salt exchange is performed.
  • a neutral salt eg, lithium chloride
  • An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). ) To neutralize the acidic group of the dye and perform salt exchange. 4) A method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • the acidic group of the dye in the present embodiment is a free acid type or a salt type depends on the pKa of the dye and the pH of the aqueous dye solution.
  • the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts.
  • the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • dye can be used independently, these 2 or more types may be used together, and pigment
  • Examples of blending dyes when blending other dyes include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct Yellow 132, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I.
  • the concentration of the dye in the composition for the anisotropic dye film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and particularly preferably 5% by weight or more, although it depends on the film forming conditions. More preferably, it is 7 mass% or more. Further, it is preferably 50% by weight or less, more preferably 30% by weight or less.
  • the dye concentration is in the above range, the viscosity does not become too high, and a uniform thin film can be applied.
  • solvent water, a water-miscible organic solvent, a mixture thereof and the like are suitable.
  • organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl cellosolve and ethyl cellosolve. These may be used alone or in combination of two or more.
  • the anisotropic dye film composition may further contain additives such as a surfactant, a leveling agent, a coupling agent, and a pH adjusting agent. Depending on the additive, wettability, applicability and the like may be improved.
  • a surfactant any of anionic, cationic and nonionic properties can be used.
  • the addition concentration is not particularly limited, but it is usually preferably 0.05% by weight or more and 0.5% by weight or less as the concentration in the composition for anisotropic dye film. By being in these ranges, it is sufficient to obtain the added effect and does not tend to inhibit the orientation of the dye molecules.
  • a known pH adjuster such as acid / alkali is added to the anisotropic dye. It may be added either before or after mixing the components of the film composition or during mixing.
  • “Additive for Coating”, Edited by J. et al. Known additives described in Bieleman, Willy-VCH (2000) can also be used.
  • anthraquinone compound may be blended in the anisotropic dye film composition of the present invention in accordance with the methods described in Japanese Patent Application Publication No. 2007-199333 and Japanese Patent Application Publication No. 2008-101154. Furthermore, the methods described in Japanese Unexamined Patent Publication No. 2006-3864 and Japanese Unexamined Patent Publication No. 2006-323377 may be used. Further, the composition for anisotropic dye film of the present invention is based on the acidic group of the azo compound in the composition for anisotropic dye film as described in Japanese Patent Application Laid-Open No. 2007-178993. A cation of 0.9 equivalent or more, 0.99 equivalent or less, and a strongly acidic anion of 0.02 equivalent or more and 0.1 equivalent or less, etc. It is possible to control the defects of the anisotropic dye film by setting the time until the relaxation elastic modulus G after applying the strain to 0.01 seconds after the strain application is reduced to 1/10, 0.1 seconds or less.
  • the wet film-forming method referred to in the present invention is a method in which an anisotropic dye film composition is applied to an alignment film by any method, and a dye is aligned and laminated on a substrate through a process of drying a solvent. is there.
  • the anisotropic dye film composition when the anisotropic dye film composition is formed on the substrate, the dye itself self-associates in the anisotropic dye film composition or in the process of drying the solvent. By doing so, orientation in a minute area occurs.
  • an anisotropic dye film having desired performance can be obtained by orienting in a constant direction in a macro region.
  • PVA polyvinyl alcohol
  • the external field includes the influence of a treatment layer such as an alignment film previously applied on the substrate, shear force, magnetic field, etc., and these may be used alone or in combination. Good.
  • the process of forming the composition for an anisotropic dye film on the substrate, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
  • Examples of the method for applying the anisotropic dye film composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like. There is also a method of transferring the anisotropic dye film thus obtained to another substrate.
  • the present invention preferably uses a coating method.
  • An anisotropic dye film can be formed by applying the composition for anisotropic dye film to a material to be coated.
  • the orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction.
  • the orientation direction of the anisotropic dye film is, for example, a transmission axis or absorption axis of polarized light in the case of an anisotropic dye film, and a fast axis or in the case of a retardation film. It is the slow axis.
  • the anisotropic dye film in the present embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as a film forming process and a substrate or organic film.
  • a composition containing a compound pigment or transparent material
  • it can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy.
  • the method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited.
  • Yuji Harasaki's “Coating Engineering” (Asakura Shoten Co., Ltd., published on March 20, 1971), pages 253-277, supervised by Kunihiro Ichimura, “Creation and Application of Molecular Cooperative Materials” MC Publishing, published on March 3, 1998)
  • the coating method include a bar coating method, a roll coating method, a blade coating method, a curtain coating method, a fountain method, and a dip method.
  • the slot die coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
  • the method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film continuously are not particularly limited. Since the coating liquid supply operation is simplified and fluctuations in the coating film thickness at the start and stop of the coating liquid tend to be suppressed. It is desirable to apply while supplying the composition for anisotropic dye film.
  • the speed at which the composition for anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more, and usually 1000 mm / second or less, preferably 200 mm / second or less.
  • coating speed is at least the above lower limit, the anisotropy of the anisotropic dye film tends to be easily obtained.
  • coating temperature of the composition for anisotropic dye films it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less.
  • it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80 RH% or less.
  • the film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 ⁇ m or less, more preferably 1 ⁇ m or less. When the film thickness of the anisotropic dye film is in an appropriate range, there is a tendency that uniform orientation of molecules and a uniform film thickness can be obtained in the film.
  • the anisotropic dye film may be insolubilized.
  • Insolubilization means a treatment step that increases the stability of the film by controlling the elution of the compound from the anisotropic dye film by reducing the solubility of the compound in the anisotropic dye film.
  • an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups.
  • a replacement process is listed.
  • the obtained anisotropic dye film is treated by a method described in Japanese Patent Application Laid-Open No. 2007-241267, etc. to obtain an anisotropic dye film insoluble in water. It is preferable in terms of ease and durability.
  • the transmittance in the visible light wavelength region of the anisotropic dye film of the present invention is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable.
  • permeability should just be an upper limit according to a use. For example, when increasing the degree of polarization, it is preferably 50% or less.
  • the transmittance is in a specific range, it is useful as the following optical element, and particularly useful as an optical element for a liquid crystal display used for color display.
  • the optical element is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, a phase difference element, or an element having functions such as refractive anisotropy and conduction anisotropy. These functions can be appropriately adjusted depending on the film formation process and the selection of the composition containing the substrate and organic compound (pigment or transparent material). In the present invention, it is preferably used as a polarizing element.
  • the polarizing element of the present invention is not particularly limited as long as it has at least an alignment film formed from the alignment film composition of the present invention and an anisotropic dye film containing a dye, and any other film (layer) may be used. You may have. For example, it can be produced by forming an anisotropic dye film on the surface of the alignment film formed by the above method as described above.
  • an overcoat layer in addition to the alignment film and the anisotropic dye film, an overcoat layer, an adhesive layer, an antireflection layer, a layer having a function as a retardation film, and a brightness enhancement film
  • Layers with various functions such as a layer having a function as a reflective film, a layer having a function as a reflective film, a layer having a function as a transflective film, a layer having a function as a diffusion film, etc. are laminated by coating or bonding. It may be formed and used as a laminate.
  • These layers having an optical function can be formed, for example, by the following method.
  • the layer having a function as a retardation film can be formed by bonding a retardation film obtained by the following method to another layer constituting the polarizing element.
  • the retardation film is subjected to stretching treatment described in, for example, JP-A-2-59703, JP-A-4-230704, or the like, or described in JP-A-7-230007. It can be formed by processing.
  • the layer having a function as a brightness enhancement film can be formed by bonding the brightness enhancement film obtained by the following method to another layer constituting the polarizing element.
  • the brightness enhancement film is formed by forming micropores by a method as described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 and Japanese Patent Application Laid-Open No. 2003-29030, or the central wavelength of selective reflection is different. It can be formed by overlapping two or more cholesteric liquid crystal layers.
  • a layer having a function as a reflective film or a transflective film can be formed, for example, by bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. it can.
  • the layer having a function as a diffusion film can be formed, for example, by coating the other layer constituting the polarizing element with a resin solution containing fine particles.
  • the layer having a function as a retardation film or an optical compensation film is formed by applying and aligning a liquid crystalline compound such as a discotic liquid crystalline compound or a nematic liquid crystalline compound on another layer constituting the polarizing element. be able to.
  • the anisotropic dye film in the present embodiment is used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly anisotropic on the surface of the electrode substrate or the like constituting these display elements.
  • a dye film can be formed, or a substrate on which an anisotropic dye film is formed can be used as a constituent member of these display elements.
  • the optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming it on a substrate by coating or the like.
  • Z 1 represents a divalent group having a cyclic imide structure
  • Z 2 and Z 3 each independently represent a direct bond or any divalent group
  • Z 4 represents a divalent group having an aromatic ring
  • n represents an integer of 1 or more and 500 or less.
  • (Z 1 ) Z 1 is a divalent group having a cyclic imide structure.
  • the cyclic imide structure may be a single ring or may have a plurality of rings.
  • the number of rings that the cyclic imide structure has is not particularly limited, but is preferably 3 or less. Further, the position at which Z 1 is connected to Z 2 and Z 3 is not particularly limited.
  • Specific examples of the cyclic imide structure include phthalimide, succinimide, glutarimide, 3-methylglutarimide, maleimide, dimethylmaleimide, trimellitimide, and pyromelliticimide. Among these, it is preferable to have a phthalimide structure.
  • Z 1 may have other groups besides the cyclic imide structure.
  • aromatic hydrocarbon groups such as benzene ring and naphthalene ring
  • aromatic heterocyclic groups such as pyridine and pyrimidine
  • alkylene groups having 1 to 8 carbon atoms alkenylene groups having 1 to 8 carbon atoms
  • heteroatoms amides Group
  • ester group and the like said group may have a substituent, for example, a hetero atom, an amino group, etc. are mentioned.
  • a group other than the cyclic imide structure a group having a benzene ring, an unsaturated bond and / or a hetero atom is preferable.
  • Examples of the group having an unsaturated bond and / or a hetero atom include —O—C ( ⁇ O) —, —NH—C ( ⁇ O) —, —C ( ⁇ O) —, —C ⁇ C— And C ( ⁇ O) —, — (O ⁇ ) S ( ⁇ O) —, —O— and the like.
  • Examples of Z 1 include a structure represented by the following formula (16).
  • (Z 2 and Z 3 ) Z 2 and Z 3 each independently represent a direct bond or an arbitrary divalent group.
  • Aromatic hydrocarbon groups such as a benzene ring and a naphthalene ring
  • Aromatic heterocyclic groups such as a pyridine and a pyrimidine
  • C1-C8 alkylene group The alkenylene group of 8 or less or more; the group which combined these, etc. are mentioned.
  • said group may have a substituent, for example, a hetero atom, an amino group, etc. are mentioned.
  • an aromatic hydrocarbon group and / or an alkylene group having 1 to 8 carbon atoms is preferable.
  • (Z 4 ) Represents a divalent group having an aromatic ring.
  • the divalent group having an aromatic ring is not particularly limited, and examples thereof include an aromatic hydrocarbon group such as a benzene ring and a naphthalene ring, an aromatic heterocyclic group such as pyridine and pyrimidine, and combinations of the above groups.
  • the ring may be condensed with an aliphatic ring. Furthermore, you may use combining the said ring, a C1-C8 alkylene group, a C1-C8 alkenylene group, etc.
  • the above groups and rings may have a substituent, and examples thereof include an alkyl group having 1 to 8 carbon atoms, a hetero atom, and an amino group.
  • the precipitate was filtered off and washed with methanol.
  • the obtained solid was dissolved in 300 ml of DMF, added little by little in 600 ml of methanol, and the precipitate was filtered off. After washing with methanol and drying, 15 g of a pale yellow powder of dicarboxylic acid which is a precursor of Compound 3 was obtained. After dissolving 3.0 g (5.5 mmol) of the dicarboxylic acid obtained above in 50 ml of NMP, 1.52 g (11 mmol) of potassium carbonate was added. After stirring at an internal temperature of 50 ° C.
  • the silica gel column was purified with a chloroform-toluene mixed solvent, and 1.0 g of 2- [3- [4- (5-oxiranylmethoxycarbonyl-1,3-dihydro-1,3-dioxo-2H] was obtained.
  • 2- [3- [4- (5-oxiranylmethoxycarbonyl-1,3-dihydro-1,3-dioxo-2H] was obtained.
  • -Isoindole-2-yl) phenoxy] phenyl] -2,3-dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acid oxiranyl methyl ester (compound 3) was obtained.
  • Example 1 The compound and curing agent shown in Example 1 of Table 1 are weighed into a sample bottle, dissolved in the solvent described in Example 1 of Table 1 so as to have a solid content concentration of 7 wt%, and then filtered to obtain an orientation. A film composition 1 was obtained. This alignment film composition 1 was applied onto a glass substrate by a spin coating method, heated at 80 ° C. for 1 minute, and then cured with the curing time described in Table 1, thereby obtaining alignment film 1. The alignment film 1 was rubbed in one direction using a rayon cloth.
  • the anisotropic dye film composition is applied using a die coater having a slot width of 50 ⁇ m, and then naturally dried, whereby the anisotropic dye film is dried. 1 was obtained.
  • compositions for alignment films 11 and 12, alignment films 11 and 12, and anisotropic dye films 11 and 12 were obtained.
  • the alignment film was evaluated by evaluating the optical performance of the obtained anisotropic dye film.
  • the optical performance was evaluated as follows based on the single transmittance and the degree of polarization of the anisotropic dye film. Evaluation was carried out as follows from the single transmittance and the degree of polarization.
  • C Single transmittance of 36% or more Polarization degree is less than 95.5%
  • the single transmittance and the degree of polarization were determined using a spectrophotometer equipped with a Gram-Thomson polarizer (product name “RETS-100” manufactured by Otsuka Electronics Co., Ltd.).
  • the linearly polarized measuring light was incident on the anisotropic dye film and the transmittance was measured.
  • the degree of polarization at 620 nm which is the maximum absorption wavelength of the anisotropic dye film, was calculated by the following equation.
  • Polarization degree (P) (%) ⁇ (Ty ⁇ Tz) / (Ty + Tz) ⁇ 1/2 ⁇ 100
  • Tz transmittance for polarized light in the direction of the absorption axis of the anisotropic dye film
  • Ty transmittance for polarized light in the direction of the polarization axis of the anisotropic dye film
  • the alignment film of the present invention has a high alignment regulating force on the composition for anisotropic dye films.
  • the alignment films of Comparative Example 1 and Comparative Example 2 that do not have the partial structure (P) have low optical characteristics of the anisotropic dye film, and have an alignment regulating force on the composition for the anisotropic dye film. It was shown not enough.
  • (*) indicates the ratio (mass%) of the partial structure (P1) and / or partial structure (P2) in the cured alignment film and in the alignment film composition excluding the solvent of each compound or reaction mixture. Represents. Moreover, (***) represents the ratio (mass%) of the partial structure (P1) and / or the partial structure (P2) in the cured alignment film and the alignment film composition excluding the solvent.
  • Compound A in Examples 1, 2, and 6 also belongs to Compound E
  • Compound B in Examples 4 to 9 also belongs to Compound F
  • Compound C in Examples 4, 5, and 7 are compounds G Also belongs to.
  • TG3DAS Tetraglycidyl 3,3'-diaminodiphenyl sulfone (manufactured by Konishi Chemical Co., Ltd.)
  • V8005 Polyamideimide (manufactured by DIC Corporation) jER828: Bisphenol A type epoxy (Mitsubishi Chemical Corporation) YX4000: Biphenyl type epoxy (manufactured by Mitsubishi Chemical Corporation) BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane (manufactured by Tokyo Chemical Industry Co., Ltd.) TPP: Triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) DBU: 1,8-diazabicyclo [5.4.0] -7-undecene (manufactured by Tokyo Chemical Industry Co., Ltd.) Hishicolin 4MP: Methyltributylphosphonium dimethyl phosphate (manufactured by Nippon Chemical Industry Co., Ltd.) YH300: Tetrahydromethylphthalic anhydride (Mitsubishi Chemical Corporation) Catechol: Tokyo Kasei Co., Ltd. NMP: 1-methyl-2-pyrrolidon
  • the present invention can be used in any industrial field, but can be suitably used in, for example, a field where an alignment film having a high alignment regulating force for an anisotropic dye film composition is required. Specifically, it can be particularly suitably used in the optical field, for example, a field where an optical element such as a display is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

配向規制力が高い配向膜及び低温でも異方性色素膜用組成物等への配向規制力が高い配向膜を作製できる組成物を提供することを課題とする。本発明は、部分構造(P1)及び部分構造(P2)の少なくとも一方を含むエポキシ樹脂硬化配向膜であって、エポキシ樹脂硬化配向膜中の部分構造(P1)及び部分構造(P2)の少なくとも一方の割合が、0.5質量%以上である、エポキシ樹脂硬化配向膜に関する。但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、部分構造(P2)は、下記式(1)で表されるものである。(式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)

Description

配向膜及び配向膜用組成物
 本発明は、湿式成膜法により形成される異方性色素膜を形成する際に用いる配向膜用組成物、該配向膜用組成物を用いて得られた配向膜及び光学素子に関する。
 液晶ディスプレイ(LCD)では、表示における旋光性や複屈折性を制御するために直線偏光膜や円偏光膜が用いられている。有機発光ダイオード(OLED)等の発光型表示素子やタッチパネル等の入出力素子においても、外光の反射防止のために円偏光膜が使用されている。 
 従来、これらの偏光膜(異方性色素膜)にはポリビニルアルコール(PVA)をヨウ素で染色し、延伸、架橋して作製するヨウ素系偏光フィルムが広く使用されてきた。しかしながら、このフィルムの2色性物質として使用されているヨウ素は昇華性が大きいために、偏光膜に使用した場合、その耐熱性や耐光性が十分ではなかった。そのため、有機系色素を2色性物質として使用する偏光膜が検討されている。 
 そのような偏光膜の製造方法の1つとして、2色性を有する有機系色素を、ポリビニルアルコールに溶解又は吸着させ、一方向にフィルム状に延伸させることにより色素を配向させて、偏光膜を得る方法が挙げられる(特許文献1)。しかし、ポリビニルアルコールを用いた偏光膜は、温湿度変化に伴うフィルムの収縮等が発生しやすい問題がある。例えば、液晶テレビ等の大型表示素子やカーナビゲーション用モニター等の高温時の耐久性が必要とされる車載用表示素子においては、額縁故障あるいは額縁むらと呼ばれる欠陥が生じる問題がある。
 また、別の方法として、ガラスや透明フィルム等の基板上に、湿式成膜法を用いて色素を含む膜を形成し、分子間相互作用等を利用して色素を配向させることにより偏光膜を得る方法が挙げられている(特許文献2)。この方法では、下地の基材に配向処理をすることにより色素の配向を制御できることが知られており、光配向膜を使用する検討はなされてきた。しかし、一般的な配向膜の作製法であるラビング処理に使用する基材については、使用する基材自体をラビングするか、液晶用配向膜が転用されるのみであった(特許文献3及び4)。
 一方、液晶用配向膜としては、一般にポリイミドが多く用いられているが、エポキシ樹脂を用いたものも検討されている(特許文献5)。しかし、被配向材料や、求められる特性等が異なるため、液晶用配向膜を湿式成膜法にて得られる異方性色素膜の配向膜として適用することは難しい。例えば、異方性色素膜に2色性色素としてリオトロピック液晶を用いる場合、該リオトロピック液晶は分子がカラム構造を形成するため、サーモトロピックネマティック液晶とはメソゲンの大きさが異なる。したがって、サーモトロピックネマティック液晶に適した配向膜では、湿式成膜法を用いて得られる異方性色素膜用の配向膜として用いることはできない。また、湿式成膜法を用いて得られる異方性色素膜においては、配向膜上に水溶性被配向材料(色素)を塗布することがあり、液晶用配向膜では求められなかった特性等も必要となる。
 一方、近年、液晶ディスプレイの軽量化や耐衝撃性の向上、フレキシブル化への展開に対応するために基板をプラスチックにする検討もなされている。また、湿式成膜法を用いて得られた異方性色素膜用組成物を、ポリエチレンテレフタレート等のポリマー表面へ塗布することで偏光膜を作成する技術も紹介されている(特許文献2)。これらに使用するプラスチック基板は耐熱性が低いことから、液晶ディスプレイの作製工程の温度の低温化が求められている。また、液晶ディスプレイを高輝度化するために、カラーフィルターの着色剤を染料にすることが検討されている。しかし、染料は耐熱性が低いためカラーフィルター作製後の工程の温度を、従来用いられている温度より低い、180℃以下にすることが求められている(特許文献6)。したがって、異方性色素膜用の配向膜も、従来用いられている温度より低い温度にて製造することが求められる。
日本国特開平3-12606号公報 日本国特表平8-511109号公報 日本国特開平1-161202号公報 日本国特開2010-72521号公報 日本国特開平10-330756号公報 日本国特開2011-253054号公報
 配向規制力が高い配向膜及び低温でも異方性色素膜用組成物等への配向規制力が高い配向膜を作製できる組成物を提供することを課題とする。
 本発明者らは上記課題を達成すべく鋭意検討した結果、配向膜に特定の組成物を用いることで、低温でも異方性色素膜用組成物への配向規制力が高い配向膜を作製でき、該配向膜の上に形成された異方性色素膜の配向特性が高いことを見出した。さらに、本発明の配向膜は、ラビング等の表面処理を行うことで、異方性色素膜用組成物等への配向規制力が増し、該配向膜の上に形成された異方性色素膜の配向特性をさらに高めることができる。本発明はこれらの知見に基づいて成し遂げられたものである。
 すなわち、本発明の要旨は、以下の〔1〕~〔8〕に存する。
〔1〕
 部分構造(P1)及び部分構造(P2)の少なくとも一方を含むエポキシ樹脂硬化配向膜であって、
 エポキシ樹脂硬化配向膜中の部分構造(P1)及び部分構造(P2)の少なくとも一方の割合が、0.5質量%以上である、エポキシ樹脂硬化配向膜。
 但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
 部分構造(P2)は、下記式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000007
 (式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
〔2〕
 下記式(2)で表される部分構造を含むものである、エポキシ樹脂硬化配向膜。
Figure JPOXMLDOC01-appb-C000008
(式(2)において、環Yは置換基を有していてもよい複素環を表す。)
〔3〕
 異方性色素膜用である、〔1〕又は〔2〕に記載のエポキシ樹脂硬化配向膜。
〔4〕
 〔1〕又は〔2〕に記載のエポキシ樹脂硬化配向膜上に異方性色素膜を積層したものである、光学素子。
〔5〕
 化合物群I及び化合物群IIの少なくとも一方を含む配向膜用組成物であって、
 溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P3)の少なくとも一方の割合が、0.5質量%以上である、配向膜用組成物。
 但し、化合物群Iは、エポキシ基と、部分構造(P1)及び部分構造(P3)の少なくとも一方とを有する化合物Aであり、
 化合物群IIは、エポキシ基と反応する官能基と、部分構造(P1)及び部分構造(P3)の少なくとも一方とを有する化合物B、並びにエポキシ基を有する化合物Cであり、
 部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
 部分構造(P3)は、下記式(6)で表されるものである。
Figure JPOXMLDOC01-appb-C000009
(式(6)において、Rはヘテロ原子を含む、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
〔6〕
 部分構造(P1)及び部分構造(P4)の少なくとも一方を有する反応混合物を含む配向膜用組成物であって、
 溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P4)の少なくとも一方の割合が、0.5質量%以上である、配向膜用組成物。
 但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
 部分構造(P4)は、下記式(7)で表されるものである。
Figure JPOXMLDOC01-appb-C000010
 (式(7)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表す。)
〔7〕
 化合物群III及び化合物群IVの少なくとも1方を含む、配向膜用組成物。
 但し、化合物群IIIは、エポキシ基及び下記式(8)で表される部分構造を有する化合物Eであり、
 化合物群IVは、エポキシ基と反応する官能基及び下記式(8)で表される部分構造を有する化合物F、並びにエポキシ基を有する化合物Gである。
Figure JPOXMLDOC01-appb-C000011
(式(8)において、環Yは置換基を有していてもよい複素環を表す。)
〔8〕
 下記式(15)で表される化合物。
Figure JPOXMLDOC01-appb-C000012
 (式(15)において、Zは、環状イミド構造を有する2価の基を表し、
 Z及びZは、それぞれ独立に、直接結合又は任意の2価の基を表し、
 Zは、芳香環を有する2価の基を表し、nは1以上、500以下の整数を表す。)
 本発明の配向膜を用いることにより、該配向膜上に形成された異方性色素膜の配向特性を高くすることができる。また、本発明の配向膜用組成物を用いることにより、低温でも異方性色素膜用組成物への配向規制力が高い配向膜を作製できる。さらに、本発明の配向膜用組成物から得られる膜は、ラビングなどの表面処理を行うことで、異方性色素膜用組成物への配向規制力を増し、該配向膜の上に形成された異方性色素膜の配向特性をさらに高めることができる。
 なお、本発明でいう異方性色素膜とは、色素膜の厚み方向及び任意の直交する面内2方向の立体座標系における合計3方向から選ばれる任意の2方向における電磁気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質等が挙げられる。吸収、屈折等の光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜、位相差膜、導電異方性膜等がある。
 以下、本発明の実施の形態について説明するが、以下に例示する物や方法等は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を逸脱しない限り、これらの内容に限定されない。
 ここで、本明細書において“質量%”と“重量%”、及び“質量部”と“重量部”とは、それぞれ同義である。
<<配向膜>>
 本発明の配向膜は、後述する湿式成膜法により形成される異方性色素膜等に配向機能を与える膜である。
 本発明の配向膜は、エポキシ樹脂硬化配向膜であり、
 前記配向膜中に、部分構造(P1)及び部分構造(P2)の少なくとも一方を含み、
 前記配向膜中の部分構造(P1)及び部分構造(P2)の少なくとも一方の割合が、0.5質量%以上である。
 但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、部分構造(P2)は、下記式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000013
(式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
<エポキシ樹脂硬化配向膜>
 本発明の配向膜は、エポキシ樹脂硬化配向膜である。エポキシ樹脂硬化配向膜は、分子内にエポキシ基を有するエポキシモノマー及び/又はエポキシオリゴマーを硬化させたものを含む。エポキシ樹脂硬化配向膜であるかは、IR、固体NMR等で確認することができる。
(エポキシ樹脂硬化配向膜(1))
 前記エポキシ樹脂硬化配向膜は、以下部分構造(P1)及び部分構造(P2)の少なくとも一方(以下、「分子配向性の部分構造」又は「部分構造(P)」と表すことがある。)を含む。本発明の配向膜が、湿式成膜法により形成される異方性色素膜等に高い配向機能を与える理由は定かではないが、以下が考えられる。
 本発明において「分子配向性」とは、例えば、有機エレクトロニクスにおける分子配向技術(シーエムシー出版刊、2007年)に詳しく記載されているように、分子、分子鎖等が特定の方向に配列し、異方性の構造体を形成する性質をいう。
 分子内に芳香環が存在する場合は、π―π相互作用により、分子間または分子内で凝集や会合がおこり、分子が配列しやすくなる。また、分子内に芳香環が複数、連続して存在する場合は、分子の平面性及び剛直性が増し、更にπ―π相互作用が強くなる。一方、分子内にヘテロ原子が存在する場合は、電荷の偏り(分極)構造が形成され、水素結合やドナーアクセプター相互作用による分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる。また、芳香環内又は芳香環の連結基にヘテロ原子が存在する場合は、上記の効果が相乗し、分子間又は分子内の相互作用が更に強くなり、分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる。従って部分構造(P)は、異方性規則構造を形成することができ、これにより、異方性色素膜用組成物への配向規制力を高くすることができる。
 さらに、配向膜にラビング等の表面処理を行うことで、異方性規則性が更に増した構造を形成し、異方性色素膜用組成物への配向規制力を増す。従って、配向膜の表面に形成される異方性色素膜の配向特性をさらに高めることができる。
 なお、異方性色素は液晶分子と異なり、異方性色素が会合した百~数百Å程度の比較的大きな会合(カラム)構造をとるために、長軸方向の分子長が数十Åのサーモトロピックネマティック液晶と比べて、配向膜に追随して配向しにくいと考えられる。そのため、異方性色素を含む異方性色素膜用組成物を配向させるためには、高い配向規制力を有する配向膜が必要であるが、本発明の配向膜は上記の理由により、異方性色素膜用組成物への配向規制力が高いものである。
 エポキシ樹脂硬化配向膜中における、前記の部分構造(P1)及び部分構造(P2)の割合は、0.5質量%以上である。好ましくは1質量%以上であり、より好ましくは5質量%以上であり、更に好ましくは10質量%以上であり、特に好ましくは20質量%以上である。また、好ましくは99質量%以下であり、より好ましくは90質量%以下であり、更に好ましくは85質量%以下であり、特に好ましくは80質量%以下である。この範囲であることで、膜が形成し易く、且つ、異方性色素膜用組成物への配向規制力を向上できる傾向にある。なお、上記割合は、エポキシ樹脂硬化配向膜中における前記部分構造(P1)及び部分構造(P2)の和の割合を示し、エポキシ樹脂硬化配向膜中に部分構造(P1)又は部分構造(P2)の一方を含む場合も、上記範囲と同様である。
[部分構造(P1)]
 部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環である。部分構造(P1)は芳香族性を有していれば、単環でも縮合環でも特に限定されず、芳香環と脂環の縮合環でもよい。
 配向膜が部分構造(P1)を有することにより、分子配向性の部分構造の骨格の剛直性が高く、電荷の偏り(分極)構造が形成され、水素結合やドナーアクセプター相互作用による分子間又は分子内での凝集や会合、又は、分子配向性の部分構造の自発的な配列を取りやすくなる。
 部分構造(P1)が縮合環の場合、有する縮合環の環数は特に限定されないが、2以上であり、好ましくは5以下、更に好ましくは3以下である。この範囲であることで、平面性、剛直性を高めつつ、分子配向性の部分構造の自発的な配列を取りやすい傾向にある。
 ヘテロ原子は、特に限定されないが、O、S及びNからなる群より選択される1つを含むことが分子内の分極性を高めるため好ましい。また、部分構造(P1)が含むヘテロ原子の数も特に限定されないが、1以上であり、好ましくは4以下、更に好ましくは3以下である。この範囲であることで、電荷の偏り(分極)構造が形成され易くなる傾向にある。
 部分構造(P1)は、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ビフェニレン環、フルオレン環等の芳香環と、窒素、酸素、硫黄等のヘテロ原子を環内にもつ複素環との縮合環;ピリミジン、ピラジン、ピリダジン、イミダゾール、トリアジン、ナフチリジン、4H-キノリジン等のヘテロ原子を環内にもつ芳香族複素環;等が挙げられる。これらの中でも、芳香環と複素環との縮合環であることが、複数の環を有することで分子の平面性及び剛直性が増し、分子の自発的配列が促進される傾向にあるため好ましい。また、下記に示すフタルイミド、ベンゾオキサゾール、ベンゾイミダゾール、トリアジン、キノキサリン等が分子間又は分子内の相互作用が更に強くなり、分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる傾向にあるため特に好ましい。
Figure JPOXMLDOC01-appb-C000014
 部分構造(P1)は、下記式(2)で表される構造であることが特に好ましい。なぜなら、分子の平面性及び剛直性が増し、分子が配列しやすくなる傾向にあるためである。
Figure JPOXMLDOC01-appb-C000015
(式(2)において、環Yは置換基を有していてもよい複素環を表す。)
 環Yは後記の式(3)の環Yと同義であり、好ましい範囲も同じである。また、環Y及び環Yと縮合しているベンゼン環が有していてもよい置換基も同義である。さらに環Y及び環Yと縮合しているベンゼン環が、その他のエポキシ樹脂硬化配向膜中の構造と連結する位置も同義である。
[部分構造(P2)]
 部分構造(P2)は、下記式(1)で表される部分構造である。エポキシ樹脂硬化配向膜中に部分構造(P2)を有することで、エポキシ樹脂硬化配向膜中において、分子配向性の部分構造の電荷の偏り(分極)構造が更に大きくなり、異方性規則構造を形成しやすくなる。
Figure JPOXMLDOC01-appb-C000016
(式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
 式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表す。不飽和結合とは、隣接する原子間において2価以上で結合している化学結合を表し、-C=C-等の炭素同士の結合、-C(=O)-等の炭素とヘテロ原子の結合、-(O=)S(=O)-等のヘテロ原子同士の結合等が挙げられる。Rがヘテロ原子を含み、不飽和結合を有する2価の基であることで、R部分に平面性及び分極性を有し、分子間又は分子内の相互作用が更に強くなる傾向にある。
 2価の基はヘテロ原子及び不飽和結合を有していれば特に限定されず、炭化水素基及びヘテロ原子で構成されていてもよい。2価の基がヘテロ原子を含む炭化水素基の場合、炭素数は1以上であり、炭素数の上限は好ましくは5以下であり、更に好ましくは4以下である。これらの範囲であることで、分子の平面性が得られる傾向にある。
 ヘテロ原子は特に限定されないが、O、S及びNからなる群より選択される1つを含むことが分子内の分極性を高めるため好ましい。
 式(1)において、Rが結合している2つのベンゼン環は単環である。後記のようにエポキシ樹脂硬化配向膜中に部分構造(P1)及び部分構造(P2)の両方の構造を有する場合は、縮合していてもよい。また、それぞれ独立に、置換基を有していてもよい。
 Rが結合している2つのベンゼン環が有していてもよい置換基は、特に限定されないが、例えば、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 式(1)で表される部分構造として、特に限定されないが、下記に示す芳香族フェニルエステル、芳香族フェニルアミド、カルコン類、ジフェニルケトン類、ジフェニルスルホン類等が、分子の平面性及び剛直性が増し、電荷の偏り(分極)構造が形成され、分子間又は分子内の相互作用が更に強くなる傾向にあるため特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 エポキシ樹脂硬化配向膜は、上記部分構造(P1)及び部分構造(P2)を含んでいればよいが、さらに両方の構造を有していることが分子間又は分子内の相互作用が更に強くなり、分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる傾向にあるため好ましい。また、エポキシ樹脂硬化配向膜中の部分構造(P1)及び部分構造(P2)の存在比に限定はなく、任意の割合で設定することができる。なお、部分構造(P1)及び部分構造(P2)の両方の構造を有している場合は、部分構造(P2)の式(1)において、Rが結合している2つのベンゼン環は、部分構造(P1)の一部となっていてもよい。
 部分構造(P1)及び部分構造(P2)の両方の構造を有している部分構造の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(エポキシ樹脂硬化配向膜(2))
 本発明のエポキシ樹脂硬化配向膜は、下記式(3)で表される部分構造を含むものである。
 式(3)で表される部分構造を含むことで、分子の平面性及び剛直性が増し、π―π相互作用が強くなる。さらに、分子内に電荷の偏り(分極)構造が形成され、水素結合やドナーアクセプター相互作用による分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる。
Figure JPOXMLDOC01-appb-C000020
(式(3)において、環Yは置換基を有していてもよい複素環を表す。)
 環Yが有するヘテロ原子は特に限定されないが、好ましくは、O、S及びNからなる群より選択される1つを含むことが分子内の分極性を高めるため好ましい。また、環Yが含むヘテロ原子の数も特に限定されないが、1以上であり、好ましくは4以下、更に好ましくは3以下である。この範囲であることで、電荷の偏り(分極)構造が形成され易くなる傾向にある。
 環Yの環を形成している原子の数は特に限定されず、3(3員環)以上であり、好ましくは4(4員環)以上である。また、好ましくは8(8員環)以下であり、更に好ましくは6(6員環)以下である。この範囲であることで、分子の平面性及び剛直性が増す傾向にある。
 環Y及び環Yと縮合しているベンゼン環は、置換基を有していてもよい。有していてもよい置換基としては、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 環Y及び環Yと縮合しているベンゼン環が、その他のエポキシ樹脂硬化配向膜中の構造と連結する位置は特に限定されないが、式(3)で表される部分構造を含む分子のアスペクト比(分子長単軸比)が大きくなるように部分構造(3)が連結していることが、分子の直線性が得られ、異方性色素膜への配向機能が向上する傾向にあるため好ましい。例えば、分子との連結位置は、式(3)の環Yと芳香環との縮合位置から離れた元素に置換していることが好ましい。連結の一態様としては、下記式(3)’のα位及び/又はβ位の位置で連結していることが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記構造であることで、分子直線性が高いため、結晶性が高くなり、異方性色素への配向規制力が向上する傾向にある。また、ラビング等の表面処理時に、式(3)で表される部分構造の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 式(3)で表される部分構造がエポキシ樹脂硬化配向膜中に存在する割合は特に限定されないが、0.5質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上が更に好ましく、10質量%以上であることがより更に好ましく、20質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下が更に好ましく、80質量%以下が特に好ましい。これらの範囲であることで、膜が形成し易く、且つ、異方性色素等に対して高い配向規制力を有する傾向にある。なお、本発明の配向膜に2種以上の部分構造(3)が含まれている場合は、その合計量が上記範囲であることが好ましい。
 本発明の配向膜は、式(3)で表される部分構造に加え、更にベンゼン環を有していることが分子の平面性及び剛直性が増す傾向にあるため好ましい。該部分構造は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000022
(式(4)において、環Yは置換基を有していてもよい複素環を表す。)
 環Yは式(3)の環Yと同義であり、好ましい範囲も同じである。環Y及び環Yと連結又は縮合しているベンゼン環が、その他のエポキシ反応物中の構造と連結する位置は特に限定されない。その中でも、式(4)で表される部分構造を含む分子のアスペクト比(分子長単軸比)が大きくなるように部分構造(4)が連結していることが、分子の直線性が得られ、異方性色素膜への配向機能が向上する傾向にあるため好ましい。例えば、分子との連結位置は、式(4)の環Yと芳香環との縮合位置から離れた元素に置換していることが好ましい。連結の一態様としては、下記式(4)’のα位及び/又はβ位、α’位及び/又はβ’位、α”位及び/又はβ”位の位置で連結していることが挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記構造であることで、分子直線性が高いため、結晶性が高くなり、異方性色素への配向規制力が向上する傾向にある。また、ラビング等の表面処理時に、式(4)で表される部分構造の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 式(4)中に含まれる環は、それぞれ独立に置換基を有していてもよい。有していてもよい置換基としては、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 式(4)で表される部分構造がエポキシ樹脂硬化配向膜中に存在する割合は特に限定されないが、0.5質量%以上が好ましく、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上であることが更に好ましく、20質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下が更に好ましく、60質量%以下が特に好ましい。これらの範囲であることで、異方性色素等に対して高い配向規制力を有する傾向にある。なお、本発明の配向膜に2種以上の部分構造(4)が含まれている場合は、その合計量が上記範囲であることが好ましい。
(エポキシ樹脂硬化配向膜(3))
 本発明の配向膜は、エポキシ反応物を含み、前記エポキシ反応物が、下記式(5)で表される部分構造を含むものである。
 式(5)で表される部分構造を含むことで、分子の平面性及び剛直性が増し、π―π相互作用が強くなる。さらに、分子内に電荷の偏り(分極)構造が形成され、水素結合やドナーアクセプター相互作用による分子間又は分子内での凝集や会合がおこり、分子が配列しやすくなる。
(式(5)において、環Y及び環Yはそれぞれ独立に、置換基を有していてもよい複素環を表す。Rは、直接結合又は任意の2価の基を表す。)
 環Y及び環Yはそれぞれ独立に、式(3)の環Yと同義であり、好ましい範囲も同じである。これらの中でも特に、環Y及び環Yは同じであることが好ましい。環Y及び環Yが同じであることで、製造が容易となり、また、分子間で会合する際に構造が同じであるとサイズが同じであることから会合しやすく、さらに、Rを挟んだ両側の電子密度が同じになり、分子の配列や会合が容易になる傾向にある。
 環Y及び環Yが、その他のエポキシ反応物中の構造と連結する位置は特に限定されない。また、Rがベンゼン環と連結する位置も特に限定されない。その中でも、式(5)で表される部分構造を含む分子のアスペクト比(分子長単軸比)が大きくなるように部分構造(5)が連結していることが、分子の直線性が得られ、異方性色素膜への配向機能が向上する傾向にあるため好ましい。例えば、分子との連結位置は、式(5)の環Y及び/又は環Yと芳香環との縮合位置から離れた元素に置換していることが好ましい。連結の一態様としては、下記式(5)’のα位及び/又はβ位、α’位及び/又はβ’位の位置で連結していることが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記構造であることで、分子直線性が高いため、結晶性が高くなり、異方性色素への配向規制力が向上する傾向にある。また、ラビング等の表面処理時に、式(5)で表される部分構造の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 式(5)中に含まれる環は、それぞれ独立に置換基を有していてもよい。有していてもよい置換基としては、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 Rは、直接結合又は任意の2価の基を表す。任意の2価の基としては特に限定されないが、炭素数1以上8以下のアルキレン基、炭素数1以上8以下のアルケニレン基、炭素原子、酸素原子、イオウ原子、2価のアミノ基、エステル結合等が挙げられる。また、上記の基は置換基を有していてもよく、例えばヘテロ原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルケニル基、アミノ基等が挙げられる。これらの中でも、配向膜中の異方性規則構造を形成し易くなり、異方性色素膜用組成物等への配向規制力を高くすることができるため、ヘテロ原子を有していることが好ましく、不飽和結合を有していることが更に好ましい。
 具体的には、-O-C(=O)-、-NH-C(=O)-、-O-C(=O)-、-C(=O)-、-C=C-C(=O)-、-(O=)S(=O)-、-O-等が挙げられる。
 式(5)で表される部分構造がエポキシ樹脂硬化配向膜中に存在する割合は特に限定されないが、0.5質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上が更に好ましく、10質量%以上であることがより更に好ましく、20質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下が更に好ましく、60質量%以下が特に好ましい。これらの範囲であることで、異方性色素等に対して高い配向規制力を有する傾向にある。なお、本発明の配向膜に2種以上の部分構造(5)が含まれている場合は、その合計量が上記範囲であることが好ましい。
[エポキシ樹脂硬化配向膜中に含まれる構造]
 エポキシ樹脂硬化配向膜において、前記の部分構造(P1)、部分構造(P2)、式(2)、式(3)、式(4)及び式(5)で表される部分構造以外の構造は、本発明の効果を著しく損なわない限り特に限定されない。例えば、ヘテロ原子を有しない芳香族炭化水素基、脂肪族炭化水素基、脂環構造、芳香族性のない複素環等が挙げられる。
 部分構造(P1)、部分構造(P2)、式(2)、式(3)、式(4)及び式(5)で表される部分構造は、エポキシ樹脂硬化配向膜に含まれていれば特に限定されないが、特に、エポキシ樹脂硬化配向膜中のエポキシ樹脂(エポキシ基を有するエポキシモノマー及び/又はエポキシオリゴマーが反応したもの)に含まれることが、本願発明の効果を得られ易い傾向にあるため好ましい。エポキシ硬化配向膜中のエポキシ樹脂の量は特に限定されないが、0.5質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上が更に好ましく、10質量%以上であることがより更に好ましく、20質量%以上であることが特に好ましい。また、上限は特に限定されず、100質量%であってもよい。
[エポキシ樹脂硬化配向膜のその他の成分]
 本発明のエポキシ樹脂硬化配向膜は、本発明の効果を著しく損なわなければ、上記部分構造以外にも他の成分を含んでいてもよい。例えば、フィラー、硬化剤、界面活性剤、硬化促進剤、及びこれら由来の成分等が挙げられる。具体的には、後記の配向膜用組成物のその他の成分が挙げられる。
[エポキシ樹脂硬化配向膜の製造方法]
 本発明のエポキシ樹脂硬化配向膜を得る方法は特に限定されない。前記の部分構造(P1)、部分構造(P2)、式(2)、式(3)、式(4)及び式(5)で表される部分構造は、エポキシ樹脂硬化配向膜を形成する配向膜用組成物に含まれる化合物及び/又は反応混合物が有しているものである。例えば、エポキシ基を有するエポキシモノマー、エポキシ基を有するオリゴマ-、フェノキシ樹脂、硬化剤、添加剤等に上記部分構造が含まれていればよい。具体的には、後述する配向膜用組成物において説明する。
<<配向膜用組成物>>
 本発明の配向膜用組成物は、後述する湿式成膜法により形成される異方性色素膜等に配向機能を与える配向膜を形成する際に用いる。
 配向膜用組成物は、部分構造(P1)及び部分構造(P3)の少なくとも一方(以下、「分子配向性の部分構造」又は「部分構造(P)」と表すことがある。)を特定質量%以上、並びにエポキシ基及び/又は官能基(R)を有する化合物を有してしていればよい。部分構造(P1)、部分構造(P3)、エポキシ基及び官能基(R)は、配向膜用組成物中に含まれる化合物が有していればよく、上記部分構造等を有する化合物、1つの化合物が有する上記部分構造等の組合せは特に限定されない。
 但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、部分構造(P3)は、下記式(6)で表されるものである。 
Figure JPOXMLDOC01-appb-C000026
(式(6)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
 部分構造(P3)は、部分構造(P2)と同義である。式(6)のRは、式(1)のRと同義である。また、Rと結合している環についても式(1)と同義である。
 本発明の配向膜用組成物は、得られる配向膜が析出物のない透明で均一な膜として硬化し、十分な機械物性、耐溶媒性及び異方性色素膜用組成物への配向規制力を有するためには、部分構造(P)及びエポキシ基を有する化合物(以下、「化合物A」又は「化合物E」と表す。)、部分構造(P)及び官能基(R)を有する化合物(以下、「化合物B」又は「化合物F」と表す。)等を用いることが好ましい。これらの化合物は、単独で用いても、組合せて用いてもよい。
 また、部分構造(P)、エポキシ基、官能基(R)の3つの部分構造を持つ化合物又は反応混合物を用いることも好ましい。さらに、部分構造(P)、エポキシ基、官能基(R)のどれか1つを有する化合物を組合せて用いることも好ましい。さらに、これらの化合物又は反応混合物を、上記化合物A、B等と組合せて用いてもよい。例えば、部分構造(P)を有する化合物、エポキシ基を有する化合物(以下、エポキシ基を有し、部分構造(P)及び官能基(R)を有さない化合物を「化合物C」又は「化合物G」と表すことがある。)、官能基(R)を有する化合物の3つの化合物を組み合わせて用いてもよく、部分構造(P)を有する化合物と上記化合物A及び化合物Bを組み合わせて用いてもよく、部分構造(P)を有する化合物と上記化合物A及び化合物Cを組み合わせて用いてもよい。
 本発明における配向膜用組成物中の、部分構造(P1)及び/又は部分構造(P3)の含有量は、溶媒を除いた配向膜用組成物全体に対して0.5質量%以上であり、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上であることが更に好ましく、20質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下が更に好ましく、80質量%以下が特に好ましい。これらの範囲であることで、溶媒等への溶解性が向上し、また、配向膜用組成物を硬化させて得られる配向膜に高い配向規制力を付与する傾向にある。なお、本発明の配向膜用組成物に2種以上の部分構造(P1)及び/又は部分構造(P3)が含まれている場合は、その合計量が上記範囲であることが好ましい。
<エポキシ基>
 本発明においてエポキシ基とは、一般的にオキシラン環と呼ばれる構造を表す。オキシラン環が連結する位置及び価数は特に限定されない。オキシラン環は置換基を有していてもよい。
 本発明の配向膜用組成物に含まれるエポキシ基が反応し、化合物が高分子量化することで硬化する。硬化することによって、異方性色素膜用組成物への配向規制力を与える配向膜を形成することができる。一般に、エポキシ基は反応して開環するとフレキシブルな脂肪鎖構造となる。従って、配向膜の硬化時やラビング等の表面処理時に、部分構造(P1)及び/又は部分構造(P2)がより配列しやすく、異方性規則構造をより形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。これらのことより、本発明の配向膜は、異方性色素膜用組成物を、既存の液晶用配向膜に比べて容易に配向させることが可能となる。
 また、エポキシ基が反応して生成する水酸基は、基板との密着性を向上させる効果を得られる場合がある。なお、この水酸基は反応性が低いが、条件によってエポキシ基と反応する場合もあり、膜の機械的強度を制御するのに利用できる場合もある。さらに、エポキシ基が反応して生成する水酸基は、後述する湿式製膜法において、異方性色素膜用組成物を塗布する際にも親和性良く製膜する効果を得られる場合もある。
 本発明における配向膜用組成物中のエポキシ基は、溶媒を除いた配向膜用組成物全体に対して0.1mmol/g以上が好ましく、0.3mmol/g以上がより好ましく、1.0mmol/g以上が更に好ましい。また、20mmol/g以下が好ましく、15mmol/g以下であることが更に好ましい。なお、溶媒を除いた配向膜用組成物中のエポキシ基の含有量としては、例えば、オキシラン基は44g/molであるので、0.1mmol/g以上の場合は、0.44質量%以上が好ましい範囲となる。これらの範囲であることで、異方性色素膜用の配向膜として用いるのに特に適した、機械的強度、ラビング等の表面処理の効果を得ることができる傾向にある。
 エポキシ基を含む部分構造としては、以下式(14)で表される部分構造が挙げられる。式(14)において、X~Xの少なくとも1つが、直接結合又は炭素数1~6のアルキレン基を表し、これらを介して他の部分構造と結合している。
Figure JPOXMLDOC01-appb-C000027
 式(14)において、X~Xはそれぞれ独立に、水素原子、炭素数1~6のアルキル基、直接結合又は炭素数1~6のアルキレン基を表す。炭素数1~6のアルキレン基の炭素数は、6以下であり、4以下が更に好ましく、3以下が特に好ましい。
 炭素数1~6のアルキル基及び炭素数1~6のアルキレン基は直鎖でも分岐していてもよい。X~Xは同じであっても異なっていてもよく、またそれらが任意の位置及び/又は組み合わせて環構造を形成していてもよい。以下にエポキシ基を含む部分構造の具体例を示す。
Figure JPOXMLDOC01-appb-C000028
 X~Xの内1つを介し、介するX~Xがメチレン基の場合、このエポキシ基にメチレン基が結合した構造を一般にグリシジル基と称する。X~Xの少なくとも1つを介して、他の部分構造と結合するエポキシ基を含む部分構造の好ましい例としては、下記構造式で示されるものが挙げられる。例えば、直接結合したもの、グリシジル基、グリシジルエーテル基、グリシジルアミノ基、グリシジルエステル基、グリシジルアミド基、グリシジルスルホンアミド基、シクロヘキセンオキシド基等が例示される。
Figure JPOXMLDOC01-appb-C000029
 上記の内、反応性の良さや合成上の容易性から、グリシジルエーテル基、グリシジルアミノ基、グリシジルスルホンアミド基又はグリシジルエステル基がより好ましい。
<エポキシ基と反応する官能基(R)>
 本発明においてエポキシ基と反応する官能基(本明細書中では、官能基(R)と表すことがある。)とは、エポキシ基の硬化反応に関与する構造を表す。特に限定されないが、一般にエポキシ硬化剤と呼ばれる化合物が有する官能基が例示される。
 具体的には、フェノール性水酸基、一級アミノ基、チオール基、カルボキシル基、シアネート基、イソシアネート基等が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記のうち、好ましくはフェノール性水酸基、一級アミノ基、チオール基、カルボキシル基が原料入手の観点から好ましく、フェノール性水酸基、一級アミノ基が化合物の安定性及び合成上の容易性の観点からより好ましい。
 本発明における配向膜用組成物中の官能基(R)は、配向膜用組成物を異方性色素膜用配向膜として用いる際に適した、機械的強度、ラビング等の表面処理の効果を得やすくするために、溶媒を除いた配向膜用組成物全体に対して0.1mmol/g以上が好ましく、0.3mmol/g以上がより好ましく、1.0mmol/g以上が更に好ましい。また、20mmol/g以下が好ましく、15mmol/g以下であることが更に好ましい。なお、溶媒を除いた配向膜用組成物中のエポキシ基と反応する反応基(R)の含有量としては、例えば、アミノ基は14g/molであるので、0.1mmol/g以上の場合は、0.14質量%以上が好ましい範囲となる。
<配向膜用組成物が有する化合物又は反応混合物>
 本発明の配向膜用組成物として、以下に示すケース(1)~(7)が具体的な組み合わせ例として挙げられる。しかし、配向膜用組成物中の化合物又は反応混合物の組合せは、ケース(1)~(7)に限定されず任意に組合せることができる。またこれらの組み合わせに、後述する溶剤、硬化剤、他の添加剤等を混合し配向膜用組成物として用いることができる。
ケース(1)化合物A
ケース(2)化合物B及び化合物C
ケース(3)化合物A及び化合物B
ケース(4)反応混合物D
ケース(5)化合物E
ケース(6)化合物F及び化合物G
ケース(7)化合物E及び化合物F
[化合物A]
 本発明において、部分構造(P1)及び/又は部分構造(P3)並びにエポキシ基とを有する化合物を「化合物A」と表す。分子配向性の部分構造(P)を有することで、前記のように、部分構造(P)が異方性規則構造を形成し、化合物Aが会合部位や配列部位を有することができる。さらに、エポキシ基を反応させることで、会合部位や配列部位を有する配向膜を形成することができる。また、エポキシ基は反応して開環するとフレキシブルな脂肪鎖構造となる。従って、配向膜の反応時やラビング等の表面処理時に、部分構造(P)の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 化合物Aの1分子中に含まれる部分構造(P1)及び/又は部分構造(P3)の数は1つでも、複数でもよい。また、複数の場合、部分構造(P1)及び/又は部分構造(P3)はそれぞれ同一でも異なっていてもよい。
 これらの中でも、部分構造(P)を化合物Aの1分子中に2つ以上有することが、部分構造(P)の異方性規則構造を形成しやすくなるため好ましい。また、部分構造(P)の化合物Aの1分子中の上限は特にないが、5以下であることが合成容易性の理由から好ましい。
 化合物Aの1分子中に含まれる部分構造(P)の数が複数の場合、部分構造(P1)及び部分構造(P3)を併せ持つことがより好ましい。この構造であることで、部分構造(P)の規則性が増した構造を形成できるため、配向膜として、特に異方性色素膜用組成物への配向規制力が得られる傾向にある。
 また、本発明の配向膜用組成物中に含まれる化合物Aは1種類でもよいが、複数の異なる種類の組合せであってもよい。例えば、部分構造(P1)を有する化合物(以下、A-Iと表す)と、部分構造(P3)を有する化合物(以下、A-IIと表す)が、任意の存在比で含まれていてもよい。それらの組合せ及び存在比に限定はない。
 化合物Aが有するエポキシ基は、化合物Aの1分子中に1つでもよく、複数であってもよい。エポキシ基を複数有するものの方がネットワーク構造を形成しやすく、配向膜の強度を高める傾向にあるので好ましい。1分子中のエポキシ基の数として好ましくは6以下であり、より好ましくは4以下であり、更に好ましくは2以下である。これらの範囲であることで、ネットワークが密になり過ぎず、部分構造(P)の異方性規則構造の形成を妨げない傾向にある。また、硬化反応が十分進行し、得られた配向膜の熱安定性が向上する傾向にある。従って、配向膜の強度を高め成膜性を向上させつつ、効率よく部分構造(P)の異方性規則構造を形成させることができる傾向にある。
 また、本発明におけるエポキシ基は化合物Aの分子の末端にある方が、部分構造(P)の異方性規則構造の形成が容易になる傾向にあるため好ましい。
 化合物Aにおけるエポキシ基と部分構造(P)の結合位置等は特に限定されず、任意の位置及び数で結合していてもよい。化合物Aにおけるエポキシ基と分子配向性の部分構造(P)との結合形態としては、直接結合していてもよく、任意の基を介して結合していてもよい。任意の基を介する場合としては、前述のエポキシ基を含む部分構造にて挙げたエポキシ基と任意の基の組合せに、部分構造(P)が結合している例が挙げられる。
 化合物Aの重量平均分子量(Mw)は、通常200以上であり、好ましくは250以上である。また、通常10万以下であり、好ましくは5万以下である。本発明の配向膜用組成物が配向膜として硬化し、十分な機械物性を有するために、この範囲が好ましい。
 またエポキシ当量は、通常100以上、20000以下であり、好ましくは10000以下、より好ましくは7000以下である。本発明の配向膜用組成物が配向膜として硬化し、十分な機械物性を有するために、この範囲が好ましい。
 化合物Aの融点は、通常350℃以下、好ましくは300℃以下である。これらの範囲であることで、本発明の配向膜用組成物が低い温度で、析出物のない透明で均一な配向膜として硬化し、十分な機械物性や耐溶媒性を有する傾向にある。
 化合物Aは、通常用いられるような溶剤に、通常3質量%以上、好ましくは4質量%以上溶解又は分散することが好ましい。これらの範囲であることで、化合物Aを溶媒に溶解又は分散した状態で塗布することが可能となる。特に、溶解している状態で塗布する場合は、透明で均一な配向膜が得られやすく、好ましい。
 溶剤としては、例えば、配向膜用組成物が含んでいてもよい溶剤として後述する溶媒が挙げられる。
 本発明の化合物Aとしては、例えば、グリシジルエーテル基を有する以下に示す化合物群A1~A21、A24~A33が例示できる。これらの中でも化合物A構造の剛直性、凝集性、会合性などの観点からはA1~A11が好ましく、電荷の偏りなどの観点からはA12~A21が好ましい。さらにはそれらを併せ持つことから、A24~A33がより好ましい。下記化合物群A1~A21、A24~A33中、l~l33、m~m33、o18及びo20は、それぞれ独立に1又は2の整数を表し、同じであっても異なっていてもよい。化合物A1~A17、A19、A21、A24~A33中において、l+m(例えば、化合物A1はl+m)は4以下である。また、化合物A18及び化合物A20において、l+m+o(例えば、化合物A18はl18+m18+o18)は6以下である。n、n、n及びn11はそれぞれ独立に、2以上、12以下の整数である。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
[化合物B]
 本発明の化合物Bは、官能基(R)と部分構造(P1)及び/又は部分構造(P3)を有する化合物である。
 化合物Bは、化合物Aで例示したものと同じ部分構造(P)を有するため、化合物Aで述べた場合と同じく、部分構造(P)の会合部位や配列部位を形成しやすい。
 一方、化合物Bは、官能基(R)を有するため、後述する化合物Cと組合せて配向膜を形成することができる。すなわち化合物Bは、本発明における分子配向性の規則構造を形成すると同時に、化合物Cの硬化剤として作用し、十分な強度の配向膜を形成することができる。化合物Cと組合せる場合、化合物Cが有するエポキシ基が反応して開環するとフレキシブルな脂肪鎖構造となる。従って、配向膜の硬化時やラビング等の表面処理時に、部分構造(P)がより凝集し、会合性を増して、規則構造を形成しやすくなり、特に、異方性色素膜用組成物への配向規制力を増すことが可能となる。また、化合物Bの分子量が大きい場合などは、化合物Bのみで配向膜を形成することも可能である。
 化合物Bを用いて得られる配向膜は、化合物Aを硬化させて得られるものと同様に、規則性を有しており、後述する異方性色素膜用組成物を、既存の液晶用配向膜に比べて容易に配向させることが可能となる。
 特に、化合物Bとエポキシ基を有する化合物、反応混合物等を組み合わせる場合、配向膜用組成物中には、芳香環やヘテロ原子を有する場合が多いことから、電荷の偏りを有する。また、エポキシ基が配向膜用組成物中にある場合には、エポキシ基が反応して水酸基を生成することから、後述する湿式製膜法において、後述する芳香環を有する異方性色素との相互作用に優れ、異方性色素膜用組成物を塗布する際にも親和性良く製膜することが可能となる。
 本発明の配向膜用組成物中の化合物Bの1分子中に含まれる部分構造(P)の数は1つでも、複数でもよい。また、複数の場合、部分構造(P)はそれぞれ同一でも異なっていてもよい。
 これらの中でも、部分構造(P)を2つ以上有することが異方性規則構造を形成しやすくなるため好ましい。また、部分構造(P)の数の上限は特にないが、5以下であることが合成容易性の理由から好ましい。
 化合物Bの1分子中に含まれる部分構造(P)が複数の場合、部分構造(P1)及び部分構造(P3)を併せ持つことがより好ましい。この構造であることで、より規則性を増した異方性規則構造を形成できるため、異方性色素膜用組成物への配向規制力が高い傾向にある。
 本発明の配向膜用組成物中に含まれる化合物Bは1種類でもよいが、複数の異なる種類の組合せであってもよい。たとえば、部分構造(P1)を有する化合物(以下、化合物B-Iと表す)と、部分構造(P3)を有する化合物(以下、化合物B-IIと表す)が、任意の存在比で含まれていてもよい。それらの組合せ及び存在比に限定はない。
 化合物Bが有する官能基(R)は、化合物Bの1分子中に1つでもよく、複数であってもよい。1分子中の官能基(R)の数は好ましくは6以下であり、より好ましくは4以下であり、更に好ましくは2以下である。これらの範囲であることで、官能基(R)を複数有する方がネットワーク構造を形成しやすく、配向膜の強度を高め成膜性を向上させる傾向にある。また、ネットワークが密になり過ぎず、配向膜の硬化時やラビング等の表面処理において、部分構造(P)の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる
 また、本発明におけるエポキシ基は化合物Bの分子の末端にある方が、部分構造(P)の異方性規則構造の形成が容易になる傾向にあるため好ましい。
 本発明の化合物Bにおける、官能基(R)と部分構造(P)との結合位置等は特に限定されず、官能基(R)と部分構造(P)が直接結合していてもよく、任意の基を介し結合していてもよい。
 任意の基としては、具体的には炭素数1~10のアルキレン基、炭素数1~10のアルキレンアミノ基、炭素数1~10のアルキレンオキシ基、炭素数6~12のアリールアリーレン基、炭素数2~10のアルケニレン基、ケトン基、スルホニル基、エステル基、アミド基、スルホニルエステル基、スルホンアミド基等が例示され、化合物構造や目的に応じて自由に選定できる。上記炭素数1~10のアルキレン基、炭素数1~10のアルキレンアミノ基、炭素数1~10のアルキレンオキシ基の構造は特に限定されず、直鎖、分岐又は環状のいずれの構造であってもよい。これらの中でも、炭素数2~10のアルキレン基、炭素数1~10のアルキレンアミノ基、炭素数1~10のアルキレンオキシ基、スルホンアミド基が合成上の容易性や原料入手性の観点から好ましい。
 上記の炭素数2~10のアルキレン基、炭素数1~10のアルキレンアミノ基、炭素数1~10のアルキレンオキシ基、アリール基及びアルケニレン基は置換基を有していてもよい。有していてもよい置換基としては、炭素数1~10のアルキル基、ハロゲン基、アリール基等が挙げられる。上記の中でも、直接結合、置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよいアリール基が、合成上の容易性、原料入手性、エポキシ基との反応性等の理由で好ましい。
 化合物Bの重量平均分子量(Mw)は、通常200以上、好ましくは250以上であり、通常10万以下、好ましくは5万以下である。この範囲であることで、本発明の配向膜用組成物が膜として硬化し、十分な機械物性を有する傾向にある。
 化合物Bの融点(又は軟化点)は、通常350℃以下、好ましくは300℃以下である。この範囲であることで、本発明の配向膜用組成物が低い温度で、析出物のない透明で均一な配向膜として硬化し、十分な機械物性や耐溶媒性を有する傾向にある。
 化合物Bは、通常用いられるような溶剤に、通常3質量%以上、好ましくは4質量%以上、溶解又は分散することが好ましい。これらの範囲であることで、化合物Bを溶媒に溶解又は分散した状態で塗布することが可能となる。特に、溶解している状態で塗布する場合は、透明で均一な配向膜が得られやすく、好ましい。
 なお、通常用いられるような溶剤は、化合物Aにおいて挙げた溶剤と同意である。
 本発明の化合物Bは、例えば以下に示す化合物群B1~B20、B23~B32が例示できる。化合物B1~B20、B23~B32中のR~R32は、化合物Bの有する官能基(R)を表す。これらの中でも化合物B構造の剛直性、凝集性、会合性などの観点からはB1~B11が好ましく、電荷の偏りの観点からはB12~B20が好ましい。さらには、それらを併せ持つことから、B23~B32がより好ましい。
 下記化合物群B1~B20、B23~B32中、e~e32、f~f32は、それぞれ独立に1又は2の整数を表し、同じであっても異なっていてもよい。化合物B1~B16、B19~B20、B23~B32において、e+f(例えば、化合物B1はe+f)は4以下である。また、化合物B17、化合物B18及び化合物B20において、e+f+h(例えば、化合物A17はe17+f17+h17)は6以下である。g、g、g及びg11はそれぞれ独立に、2以上、12以下の整数である。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 本発明の化合物Bは、市販品を用いてもよい。例えば、官能基(R)としてカルボキシル基を有するポリアミドイミド樹脂(DIC株式会社、UNIDIC V-8000シリーズ)、またはRとして芳香族ヒドロキシ基を有するフェノールイミド(群栄化学工業株式会社 フェノールイミド GPIシリーズ)などが例示できる。
[化合物C]
 化合物Cは、エポキシ基を有する化合物であり、部分構造(P1)、部分構造(P3)及び官能基(R)を有さないものである。
 化合物Cは、特に限定されないが、化合物Cの1分子内に少なくとも2つのエポキシ基を有するものが好ましい。具体的には、ビスフェノールA、ビスフェノールF、ナフタレンジオール、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂等のグリシジルエーテル;ビフェノール、アルキル置換ビフェノール等のジグリシジルエーテル;トリフェノールメタン等のトリグリシジルエーテル;テトラグリシジルジアミノジフェニルメタン;トリグリシジルアミノフェノール;ジシクロペンタジエン型エポキシ樹脂等の各種エポキシ化合物等を挙げることができる。また、「プラスチック機能性高分子材料辞典」(第1版、産業調査会、2004年)448-465頁、「総説エポキシ樹脂 第1巻~第4巻」(第1版、エポキシ樹脂技術協会、2003年)、「総説エポキシ樹脂 最近の進捗I」(第1版、エポキシ樹脂技術協会、2009年)等に記載されているエポキシ化合物を用いてもよい。なお、これらは1種のみでも、2種以上を任意の組合せと比率で用いてもよい。
 これらの中でも、配向膜用組成物全体の反応性、均一性及び透明性の点から、部分構造(P)と相溶性を持つ基又は構造を有していることが好ましく、具体的には、芳香環を有していることが好ましい。
 上記化合物AからCの少なくとも1つを含む、ケース(1)~ケース(3)の配向膜用組成物は以下で表される。本発明の配向膜用組成物は、 化合物群I及び化合物群IIの少なくとも一方を含む配向膜用組成物であって、溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P3)の少なくとも一方の割合が、0.5質量%以上である。
 但し、化合物群Iは、エポキシ基、並びに部分構造(P1)及び部分構造(P3)の少なくとも一方を有する化合物Aであり、
 化合物群IIは、エポキシ基と反応する官能基、並びに部分構造(P1)及び部分構造(P3)の少なくとも一方を有する化合物B、及びエポキシ基を有する化合物Cであり、
 部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
 部分構造(P3)は、下記式(6)で表されるものである。
Figure JPOXMLDOC01-appb-C000037
 (式(6)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
 式(6)において、Rは 式(1)のRと同義である。また、Rと結合している環についても式(1)と同義である。
 配向膜用組成物がI又はIIの化合物群の少なくとも一方を含むことで、得られる配向膜が析出物のない透明で均一な膜として硬化し、十分な機械物性、耐溶媒性及び異方性色素膜用組成物等への配向規制力を有することができる。
 なお、化合物A、化合物B及び化合物Cは上述した通りである。
 ケース(2)の場合、化合物Bと化合物Cとの仕込み比(B/C)は、化合物Cに含まれるエポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では大きい方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、化合物Bの有する官能基(R)が未反応のまま残留し難い点では小さいことが好ましい。具体的には、本発明の化合物Cに含まれるエポキシ基に対する化合物Bの有する官能基(R)との当量比で、0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。配向膜用組成物中に複数の種類の化合物Bやエポキシ化合物Cを含む場合も、それぞれの当量の合計量が上記範囲であることが好ましい。
 ケース(3)の場合、化合物A及び化合物Bとの仕込み比(A/B)は、化合物Aに含まれるエポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では小さい方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、化合物Bの有する官能基(R)が未反応のまま残留し難い点では大きいことが好ましい。具体的には、本発明の化合物Aに含まれるエポキシ基に対する化合物Bの有する官能基(R)との当量比で、0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。配向膜用組成物中に複数の種類の化合物A及び/又は化合物Bを含む場合も、それぞれの当量の合計量が上記範囲であることが好ましい。
[反応混合物D]
 反応混合物Dとは、前記の配向膜用組成物中のケース(1)、ケース(2)及びケース(3)の各々において、後述するその他の成分(硬化剤、溶剤、他の添加剤等)を混合して得られる配向膜用組成物を、後述する配向膜用組成物の製造方法((a)フェノキシ樹脂化、(b)オリゴマー化等で処理)により得られる反応混合物のことを示す。すなわち、反応混合物Dとは、本発明における配向膜用組成物を反応させたものである。
 反応混合物Dのように、あらかじめ部分構造(P)と他の構造、基等を部分的に反応しておくことにより、融点が低下又は消失する傾向にある。これにより、配向膜の形成時の結晶析出を抑制したり、硬化温度を低下させたり、成膜性を向上させる効果を得られる場合がある。
 ケース(4)の反応混合物Dとは、上記のような化合物を組み合わせたものを、下記(a)、(b)等の方法を用いて得られる混合物のことを表す。
(a)二官能性エポキシ化合物を付加型の硬化剤と共に加熱して、可溶性の線状樹脂(一般に高分子型エポキシ樹脂あるいはフェノキシ樹脂と呼ばれる)へ誘導するフェノキシ化を利用する方法。
(b)所定の混合比に調整した配向膜用組成物を、塗布前に低い反応率で加熱反応させるオリゴマー化(一般に「プレポリマー化」とも言われている)を利用する方法。
 ケース(4)の場合、配向膜用組成物全体における、エポキシ基に対する官能基(R)との当量比(エポキシ基/官能基(R))は、エポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では多い方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、化合物Bの有する官能基(R)が未反応のまま残留し難い点では少ないことが好ましい。具体的には0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。
 また、前記反応混合物Dを用いた上記ケース(4)の配向膜用組成物の一形態として、以下の配向膜用組成物が挙げられる。
 部分構造(P1)及び部分構造(P4)の少なくとも一方を有する反応混合物を含む配向膜用組成物であって、
 溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P4)の少なくとも一方の割合が、0.5質量%以上である。
 但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
 部分構造(P4)は、下記式(7)で表されるものである。
Figure JPOXMLDOC01-appb-C000038
(式(7)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表す。)
 式(7)において、Rは 式(1)のRと同義である。
 式(7)において、Rが結合している2つのベンゼン環は単環でもよく、縮合していてもよい。また、それぞれ独立に、置換基を有していてもよい。
 Rが結合している2つのベンゼン環が有していてもよい置換基は、特に限定されないが、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 本発明における配向膜用組成物中の、部分構造(P1)及び/又は部分構造(P4)の含有量は、溶媒を除いた配向膜用組成物全体に対して0.5質量%以上であり、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上であることが更に好ましく、20質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下が更に好ましく、80質量%以下が特に好ましい。これらの範囲であることで、溶媒等への溶解性が向上し、また、配向膜用組成物を硬化させて得られる配向膜に高い配向規制力を付与する傾向にある。なお、本発明の配向膜用組成物に2種以上の部分構造(P1)及び/又は部分構造(P4)が含まれている場合は、その合計量が上記範囲であることが好ましい。
[化合物E]
 化合物Eは、エポキシ基及び式(8)で表される部分構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000039
(式(8)において、環Yは置換基を有していてもよい複素環を表す。)
 式(8)で表される部分構造を有することで、式(8)で表される部分構造が異方性規則構造を形成し、化合物Eが会合部位や配列部位を有することができる。さらに、エポキシ基を反応させることで、会合部位や配列部位を有する配向膜を形成することができる。また、エポキシ基は反応して開環するとフレキシブルな脂肪鎖構造となる。従って、配向膜の反応時やラビング等の表面処理時に、式(8)で表される部分構造の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 式(8)の環Yは式(3)の環Yと同義であり、好ましい範囲及び好ましい理由等も同じである。
 環Y及び環Yと縮合しているベンゼン環が、その他のエポキシ反応物中の構造と連結する位置は特に限定されず、式(8)で表される部分構造を含む分子のアスペクト比(分子長単軸比)が大きくなるように部分構造が連結していることが、分子の直線性が得られ、異方性色素膜への配向機能が向上する傾向にあるため好ましい。一態様としては、式(3)で示したものが挙げられる。
 環Y及び環Yと縮合しているベンゼン環は、置換基を有していてもよい。有していてもよい置換基としては、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 化合物Eの1分子中に含まれる式(8)で表される部分構造の数は1つでも、複数でもよい。また、複数の場合、式(8)で表される部分構造はそれぞれ同一でも異なっていてもよい。
 これらの中でも、式(8)で表される部分構造を化合物Eの1分子中に2つ以上有することが、式(8)で表される部分構造の異方性規則構造を形成しやすくなるため好ましい。また、式(8)で表される部分構造の化合物Eの1分子中の上限は特にないが、5以下であることが合成容易性の理由から好ましい。
 化合物Eが有するエポキシ基は、化合物Eの1分子中に1つでもよく、複数であってもよい。エポキシ基を複数有するものの方がネットワーク構造を形成しやすく、配向膜の強度を高める傾向にあるので好ましい。1分子中のエポキシ基の数として好ましくは6以下であり、より好ましくは4以下であり、更に好ましくは2以下である。これらの範囲であることで、ネットワークが密になり過ぎず、式(8)で表される部分構造の異方性規則構造の形成を妨げない傾向にある。また、硬化反応が十分進行し、得られた配向膜の熱安定性が向上する傾向にある。従って、配向膜の強度を高め成膜性を向上させつつ、効率よく式(8)で表される部分構造の異方性規則構造を形成させることができる傾向にある。
 また、本発明におけるエポキシ基は化合物Eの分子の末端にある方が、式(8)で表される部分構造の異方性規則構造の形成が容易になる傾向にあるため好ましい。
 化合物Eにおけるエポキシ基と式(8)で表される部分構造の結合位置等は特に限定されず、任意の位置及び数で結合していてもよい。化合物Eにおけるエポキシ基と式(8)で表される部分構造との結合形態としては、直接結合していてもよく、任意の基を介して結合していてもよい。任意の基を介する場合としては、前述のエポキシ基を含む部分構造にて挙げたエポキシ基と任意の基の組合せに、式(8)で表される部分構造が結合している例が挙げられる。
 化合物Eの重量平均分子量(Mw)は、通常200以上であり、好ましくは250以上である。また、通常10万以下であり、好ましくは5万以下である。本発明の配向膜用組成物が配向膜として硬化し、十分な機械物性を有するために、この範囲が好ましい。
 またエポキシ当量は、通常100以上、20000以下であり、好ましくは10000以下、より好ましくは7000以下である。本発明の配向膜用組成物が配向膜として硬化し、十分な機械物性を有するために、この範囲が好ましい。
 化合物Eの融点は、通常350℃以下、好ましくは300℃以下である。これらの範囲であることで、本発明の配向膜用組成物が低い温度で、析出物のない透明で均一な配向膜として硬化し、十分な機械物性や耐溶媒性を有する傾向にある。
 化合物Eは、通常用いられるような溶剤に、通常3質量%以上、好ましくは4質量%以上溶解又は分散することが好ましい。これらの範囲であることで、化合物Eを溶媒に溶解又は分散した状態で塗布することが可能となる。特に、溶解している状態で塗布する場合は、透明で均一な配向膜が得られやすく、好ましい。
 溶剤としては、例えば、配向膜用組成物が含んでいてもよい溶剤として後述する溶媒が挙げられる。
 化合物Eの具体例としては、化合物Aの具体例として前述したものが挙げられる。
[化合物F]
 化合物Fはエポキシ基と反応する官能基(R)及び式(8)で表される部分構造を有する化合物である。
 化合物Fは反応混合物Dで例示したものと同じ式(8)で表される部分構造を有するため、化合物Eで述べた場合と同じく、式(8)で表される部分構造の会合部位や配列部位を形成しやすい。
 一方、化合物Fは、官能基(R)を有するため、後述する化合物Gと組合せて配向膜を形成することができる。すなわち化合物Fは、本発明における分子配向性の規則構造を形成すると同時に、化合物Fの硬化剤として作用し、十分な強度の配向膜を形成することができる。化合物Gと組合せる場合、化合物Fが有するエポキシ基が反応して開環するとフレキシブルな脂肪鎖構造となる。従って、配向膜の硬化時やラビング等の表面処理時に、式(7)で表される部分構造がより凝集、会合性を増して、規則構造を形成しやすくなり、特に、異方性色素膜用組成物への配向規制力を増すことが可能となる。また、化合物Fの分子量が大きい場合などは、化合物Fのみで配向膜を形成することも可能である。
 化合物Fを用いて得られる配向膜は、化合物Eを硬化させて得られるものと同様に、規則性を有しており、後述する異方性色素膜用組成物を、既存の液晶用配向膜に比べて容易に配向させることが可能となる。
 特に、化合物Eとエポキシ基を有する化合物、反応混合物等を組み合わせる場合、配向膜用組成物中には、芳香環やヘテロ原子を有する場合が多いことから、電荷の偏りを有する。また、エポキシ基が配向膜用組成物中にある場合には、エポキシ基が反応して水酸基を生成することから、後述する湿式製膜法において、後述する芳香環を有する異方性色素との相互作用に優れ、異方性色素膜用組成物を塗布する際にも親和性良く製膜することが可能となる。
 本発明の配向膜用組成物中の化合物Fの1分子中に含まれる式(8)で表される部分構造の数は1つでも、複数でもよい。また、複数の場合、式(8)で表される部分構造はそれぞれ同一でも異なっていてもよい。
 これらの中でも、式(8)で表される部分構造を2つ以上有することが異方性規則構造を形成しやすくなるため好ましい。また、部分構造(P)の数の上限は特にないが、5以下であることが合成容易性の理由から好ましい。
 本発明の配向膜用組成物中に含まれる化合物Fは1種類でもよいが、複数の異なる種類の組合せであってもよい。
 化合物Fが有する官能基(R)は、化合物Fの1分子中に1つでもよく、複数であってもよい。1分子中の官能基(R)の数は好ましくは6以下であり、より好ましくは4以下であり、更に好ましくは2以下である。これらの範囲であることで、官能基(R)を複数有する方がネットワーク構造を形成しやすく、配向膜の強度を高め成膜性を向上させる傾向にある。また、ネットワークが密になり過ぎず、配向膜の硬化時やラビング等の表面処理において、式(8)で表される部分構造の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。
 また、本発明におけるエポキシ基は化合物Fの分子の末端にある方が、式(8)で表される部分構造の異方性規則構造の形成が容易になる傾向にあるため好ましい。
 本発明の化合物Fにおける、官能基(R)と式(8)で表される部分構造との結合位置等は特に限定されず、官能基(R)と式(8)で表される部分構造が直接結合していてもよく、任意の基を介し結合していてもよい。
 任意の基としては、化合物Eで挙げた基が挙げられ、好ましい基も同じである。
 化合物Fの融点(又は軟化点)は、通常350℃以下、好ましくは300℃以下である。この範囲であることで、本発明の配向膜用組成物が低い温度で、析出物のない透明で均一な配向膜として硬化し、十分な機械物性や耐溶媒性を有する傾向にある。
 化合物Fは、通常用いられるような溶剤に、通常3質量%以上、好ましくは4質量%以上、溶解又は分散することが好ましい。これらの範囲であることで、化合物Fを溶媒に溶解又は分散した状態で塗布することが可能となる。特に、溶解している状態で塗布する場合は、透明で均一な配向膜が得られやすく、好ましい。
 なお、通常用いられるような溶剤は、化合物Aにおいて挙げた溶剤と同意である。
 化合物E及び化合物Fにおいて、それぞれ独立に、式(8)は、下記式(9)で表されるようにベンゼン環と連結していることが好ましい。式(9)で表される部分構造を有することで、配向膜中において規則性が増した異方性規則構造を形成しやすくなる傾向にある。
Figure JPOXMLDOC01-appb-C000040
 式(9)において、環Yは置換基を有していてもよい複素環を表す。環Yは、式(8)の環Yと同義であり、好ましい範囲、有していてもよい置換基、連結位置等も同義である。
 式(9)に含まれる環は、それぞれ独立に置換基を有していてもよい。有していてもよい置換基としては、例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基、ヘテロ原子、ニトロ基、水酸基、ハロゲン原子、-C(=O)-基等が挙げられる。
 化合物E及び化合物Fにおいて、それぞれ独立に、式(8)は、下記式(10)で表されるように連結していることが好ましい。式(10)で表される部分構造を有することで、配向膜中において規則性が増した異方性規則構造を形成しやすくなる傾向にある。
Figure JPOXMLDOC01-appb-C000041
(式(10)において、環Y及び環Yはそれぞれ独立に、置換基を有していてもよい複素環を表す。Rは任意の2価の基を表す。)
 環Y、環Y及びRは、式(5)の環Y、環Y及びRとそれぞれ同義であり、好ましい範囲、有していてもよい置換基、連結位置等も同義である。
[化合物G]
 化合物Gは、エポキシ基を有する化合物であり、式(8)で表される部分構造及び官能基(R)を有さないものである。化合物Gは、特に限定されないが、化合物Fの1分子内に少なくとも2つのエポキシ基を有するものが好ましい。具体的には、化合物Cとして例示したものが挙げられる。なお、化合物Gは1種のみでも、2種以上を任意の組合せと比率で用いてもよい。
 これらの中でも、配向膜用組成物全体の反応性、均一性及び透明性の点から、式(8)で表される部分構造と相溶性を持つ基又は構造を有していることが好ましく、具体的には、芳香環を有していることが好ましい。
 上記化合物E~Gの少なくとも1つを含む、ケース(5)~ケース(7)の配向膜用組成物は以下で表される。
 本発明の配向膜用組成物は、化合物群III及び化合物群IVの少なくとも1方を含む。
 配向膜用組成物が化合物群III又は化合物群IVの少なくとも一方を含むことで、得られる配向膜が析出物のない透明で均一な膜として硬化し、十分な機械物性、耐溶媒性及び異方性色素膜用組成物等への配向規制力を有することができる。
 但し、化合物群IIIは、エポキシ基及び下記式(8)で表される部分構造を有する化合物Eであり、化合物群IVは、エポキシ基と反応する官能基及び下記式(8)で表される部分構造を有する化合物F、並びにエポキシ基を有する化合物Gである。
Figure JPOXMLDOC01-appb-C000042
(式(8)において、環Yは置換基を有していてもよい複素環を表す。)
 ケース(6)の場合、化合物Fと化合物Gとの仕込み比(F/G)は、化合物Gに含まれるエポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では大きい方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、化合物Fの有する官能基(R)が未反応のまま残留し難い点では小さいことが好ましい。具体的には、本発明の化合物Gに含まれるエポキシ基に対する化合物Fの有する官能基(R)との当量比で、0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。配向膜用組成物中に複数の種類の化合物Fやエポキシ化合物Gを含む場合も、それぞれの当量の合計量が上記範囲であることが好ましい。
 ケース(7)の場合、化合物E及び化合物Fとの仕込み比(E/F)は、化合物Eに含まれるエポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では小さい方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、化合物Fの有する官能基(R)が未反応のまま残留し難い点では大きいことが好ましい。具体的には、本発明の化合物Eに含まれるエポキシ基に対する化合物Fの有する官能基(R)との当量比で、0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。配向膜用組成物中に複数の種類の化合物E及び/又は化合物Fを含む場合も、それぞれの当量の合計量が上記範囲であることが好ましい。    
 配向膜用組成物に含まれる化合物A~C、化合物E~G及び反応混合物Dのうち、少なくとも1つの化合物又は反応混合物の重量平均分子量が好ましくは200以上であり、更に好ましくは250以上である。また、通常20万以下であり、好ましくは10万以下であり、更に好ましくは5万以下である。これらの範囲であることで、配向膜用組成物を塗布した際のハジキや膜欠陥を抑制し、成膜性を向上させる効果を有する場合がある。
<その他の成分>
[硬化剤]
 本発明の配向膜用組成物は硬化剤を含んでいてもよい。
 本発明の配向膜用組成物に含まれていてもよい硬化剤は、化合物A、化合物C、化合物E、化合物G等が有するエポキシ基の反応に寄与する物質であればよく、後述するエポキシ樹脂硬化剤等の一般的に硬化促進剤として知られているもの等も含める。本発明に係る硬化剤は、以下3つが挙げられる。
1)本発明の配向膜用組成物に含まれる化合物A、化合物C、化合物E又は化合物Gが有するエポキシ基同士の反応に寄与する物質。
2)本発明の配向膜用組成物に含まれる化合物A、化合物C、化合物E又は化合物Gが有するエポキシ基と、化合物B又は化合物Fの有する官能基(R)との付加反応に寄与する物質。
3)本発明の配向膜用組成物に含まれる化合物A、化合物C、化合物E又は化合物Gが有するエポキシ基と硬化剤との付加反応を促進させる機能を発現する物質。
 本発明の配向膜用組成物に硬化剤が含まれることにより、配向膜の強度や耐溶剤性を向上させることができる。
 硬化剤としては、特に制限はなく、硬化剤の種類の選択は、硬化条件、硬化物の形状、硬化物の接着性や強度等の物性等のバランスに応じて行えばよい。硬化剤としては、例えば、エポキシ基間の反応に寄与する付加重合型硬化剤、エポキシ基含有化合物同士の付加反応を促進させる触媒型硬化剤が挙げられる。具体的には、付加重合型硬化剤として、フェノール系硬化剤、脂肪族アミン、ポリエーテルアミン、脂環式アミン、芳香族アミン等のアミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、活性エステル硬化剤、有機酸ジヒドラジド、メルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。
 触媒型硬化剤として、イミダゾール及びその誘導体、第3級アミン、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、ハロゲン化ホウ素アミン錯体等が挙げられる。
 付加重合型の硬化剤を用いることにより、接着性や曲げ強度に優れた配向膜を得やすい傾向にある。また、フェノール系硬化剤は加工性に優れた配向膜用組成物を得やすい傾向にある。
 一級及び二級アミン系硬化剤は耐熱性に優れた配向膜を得やすく、酸無水物系硬化剤は液状での硬化プロセスに優れている。また、同系統の硬化剤であっても、一般的に、非晶性の硬化剤を用いた場合は、加工性に優れる配向膜用組成物や曲げ強度等に優れる配向膜を得やすい傾向にある。一方、結晶性の硬化剤を用いた場合は、耐熱性及び機械特性に優れた配向膜を得やすい傾向にある。
 触媒型硬化剤を用いることにより、耐熱性や耐薬品性等に優れた配向膜を得やすい傾向にある。触媒的型の硬化剤は、その種類に応じて硬化温度や硬化速度が異なるため、プロセスに応じて適切な硬化条件を選択すればよい。
 触媒型硬化剤の中でも、イミダゾール系が好ましい。例えば、2-エチル-4-メチルイミダゾールは、硬化速度が速くなる傾向にあり、低温で低コストに硬化することができる。また、1-シアノエチル-2-ウンデシルイミダゾールは、適用可能なエポキシ基含有化合物の種類や配向膜の形状の選択肢が広くなる傾向にある。
 本発明に用いる硬化剤は、機械的物性、耐溶剤性及び異方性色素膜用組成物への配向規制力を得やすいことから、付加重合型硬化剤が好ましい。それらの中でも、フェノール系、アミン系又は酸無水物系が好ましく、特にアミン系又は酸無水物系が好ましい。また、部分構造(P)と相溶性の高い構造が、配向膜の均一性、透明性、反応性等の点から硬化剤が芳香環を有するものが好ましい。
 また、低い温度で硬化するためには、融点を持つ化合物の場合は、その融点が硬化温度以下であることが好ましい。
 また、付加重合型硬化剤を用いる場合は、付加反応を促進させる機能を発現する物質(硬化促進剤)を添加してもよい。具体的には、アミン系、フェノール系、イミダゾール系及びホスホニウム塩系から選ばれる1つ以上が挙げられる。これらの中でも、低温でも硬化可能な反応性及び化合物の安定性という観点から、ホスホニウム塩系が好ましい。
 硬化促進剤を使用する場合、溶媒を除いた配向膜用組成物100重量部に対して0.1重量部以上となるように用いることが好ましく、0.2重量部以上となるように用いることが更に好ましい。また、20重量部以下となるように用いることが好ましく、10重量部以下となるように用いることが更に好ましい。これらの範囲であることで、低温でも硬化可能な反応性及び化合物の安定性が得られる傾向にある。
 フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が例示される。
 アミン系硬化剤の具体例として、脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が例示される。ポリエーテルアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が例示される。
 脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が例示される。
 芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニソール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1,2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等が例示される。
 酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン2酸)無水物、ポリ(フェニルヘキサデカン2酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート2無水物、無水ヘット酸、無水ナジック酸、無水メチルナジック酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸2無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸2無水物等が例示される。
 アミド系硬化剤としては、ジシアンジアミド、ポリアミド樹脂等が例示される。
 第3級アミンとしては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等が例示される。
 イミダゾール及びその誘導体としては、1-シアノエチル-2-フェニルイミダゾール、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が例示される。
 有機ホスフィン類としては、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等が例示される。
 ホスホニウム塩としては、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート、メチルトリブチルホスホニウムジメチルホスフェート、テトラブチルホスホニウムベンゾトリアゾラート等が例示さる。
 テトラフェニルボロン塩としては、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等が例示される。
 配向膜用組成物中の、全エポキシ基に対する硬化剤に含まれる官能基(R)との含有比(エポキシ基/官能基(R))は、エポキシ基が未反応のまま残留し難く、短時間で十分に反応させやすい点では小さい方が好ましい。一方、本発明の配向膜用組成物を硬化させた配向膜に、官能基(R)が未反応のまま残留し難い点では大きいことが好ましい。
 付加重合型硬化剤を用いる場合、配向膜用組成物中のエポキシ基に対する硬化剤の有する官能基(R)との当量比で、0.8以上となるように用いることが好ましく、0.9以上となるように用いることが更に好ましい。また、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。
 触媒型硬化剤を用いる場合、溶媒を除いた配向膜用組成物100重量部に対して、硬化剤が0.1重量部以上となるように用いることが好ましく、0.2重量部以上となるように用いることが更に好ましい。また、20重量部以下となるように用いることが好ましく、15重量部以下となるように用いることが更に好ましい。
 上記範囲にすることで、硬化温度が低温でも、十分に硬化することができ、効率よく配向膜の異方性規則構造を形成させつつ、配向膜の強度を高め、成膜性を向上させる効果を得られる傾向にある。
[溶剤]
 本発明の配向膜用組成物は、溶剤を含有していてもよく、溶剤を用いる場合は、配向膜用組成物の各種材料が、溶剤に溶解又は分散した状態で使用される。
 溶剤としては、沸点(圧力1013.25[hPa]条件下。以下、沸点に関しては全て同様。)が80℃以上であることが好ましく、100℃以上であることがより好ましい。また、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることが更に好ましい。これらの範囲であることで、配向膜を形成する際に、塗布等により基材上に配向膜用組成物をムラや凹凸なく適用でき、適用後に溶剤を乾燥しやすい傾向にある。
 溶剤としては、例えば以下が挙げられる。
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコール-モノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、メトキシメチルペンタノール、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリプロピレングリコールモノメチルエーテル等のグリコールモノアルキルエーテル類;
 エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のグリコールジアルキルエーテル類;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート等のグリコールアルキルエーテルアセテート類;
 ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテル等のエーテル類;
 アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトン等のケトン類;
 エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン等の1価又は多価アルコール類;
 n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカン等の脂肪族炭化水素類;
 シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルの等の脂環式炭化水素類;
 ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素類;
 アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトンのような鎖状又は環状エステル類;
 3-メトキシプロピオン酸、3-エトキシプロピオン酸等のアルコキシカルボン酸類;
 ブチルクロライド、アミルクロライド等のハロゲン化炭化水素類;
 メトキシメチルペンタノン等のエーテルケトン類;
 アセトニトリル、ベンゾニトリル等のニトリル類:
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類:
 ジメチルスルホキシド等の非プロトン系溶剤:
 等から選択される。これらは、単独で用いてもよく、2種以上を併用してもよい。
 配向膜を、後述するスピンコート法、ダイコート法、ロールコート法等の塗布方式で形成する場合は、溶剤としては沸点が100℃以上であることが好ましく、120℃以上であることが好ましい。また、200℃以下であることが好ましく、170℃以下であることがより好ましい。上記下限以上であることで、塗布ムラ等が抑制できる傾向にある。また、上記上限以下であることで、乾燥が容易となり、特に耐熱性の低い基材に適用しやすい傾向にある。
 上記溶剤のうち、塗布性、表面張力等のバランスがよく、配向膜用組成物中の構成成分の溶解度が比較的高い傾向にあるため、プロピレングリコールモノメチルエーテルアセテート等のグリコールアルキルエーテルアセテート類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類が好ましい。
[界面活性剤]
 本発明の配向膜用組成物は、異方性色素膜を塗布する際の濡れ性、塗布性等を向上させるため、界面活性剤を含有することが好ましい。
 界面活性剤としては、例えば、アニオン系、カチオン系、非イオン系、両性界面活性剤等を用いることができる。中でも、異方性色素膜用としての配向膜の適用性から、非イオン系界面活性剤を用いるのが好ましく、中でもフッ素系やシリコン系の界面活性剤を用いることが、配向膜用組成物の塗布性の面でも効果的である。
 フッ素系界面活性剤としては、ペルフルオロアルキルスルホン酸、ペルフルオロアルキルカルボン酸、フッ素テロマーアルコール等が挙げられる。シリコン系界面活性剤としては、種々の直鎖、及び分岐鎖を持つポリエーテル変性シリコン等が挙げられる。
 このような界面活性剤としては、例えば、シリコン系では、TSF4460(ジーイー東芝シリコーン社製)、BYK-300、BYK-325、BYK-330(ビックケミー社製)、KP340(信越シリコーン社製)、SH7PA(トーレシリコーン社製)、L-77(日本ユニカー社製)、フッ素系ではFC4430(住友3M社製)、DFX-18(ネオス社製)、F-470、F-475、F-478及びF-559(いずれも、DIC(株)製)、DS-401(ダイキン社製)等が挙げられる。
 なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
 中でも、重合性基を有するフッ素系界面活性剤が、分散性、凝集に起因する欠陥の低減及び界面活性作用の効果継続性の点で好ましい。フッ素系界面活性剤の有する重合性基としては、下記式U-1~U-5に例示のものが挙げられる。
Figure JPOXMLDOC01-appb-C000043
 このような界面活性剤としては、DIC(株)製のメガファックシリーズが挙げられる。
 界面活性剤を用いる場合、その含有量は、溶媒を除いた配向膜用組成物に対して、0.001質量%以上であることが好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.03質量%以上が特に好ましい。また、10質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.3質量%以下が特に好ましい。界面活性剤の含有量が上記範囲であることで、配向膜の平滑性及び均一性が得られる傾向がある。
[密着向上剤]
 配向膜用組成物の密着性を改善するため、例えば、シランカップリング剤等の密着向上剤を含有することができる。
 シランカップリング剤の種類としては、エポキシ系、(メタ)アクリル系、アミノ系等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 好ましいシランカップリング剤として、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシシラン類;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、等のエポキシシラン類;3-ウレイドプロピルトリエトキシシラン等のウレイドシラン類;3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン類が挙げられる。
 これらの中でも、エポキシシラン類のシランカップリング剤が特に好ましい。
 密着向上剤を用いる場合、その含有量は、溶媒を除いた配向膜用組成物に対し0.05質量%以上が好ましく、0.1質量%以上がより好ましい。また、10質量%以下が好ましく、7質量%以下がより好ましい。密着向上剤を上記範囲で含有することで、配向膜の機械的及び化学的接着性向上の効果を得られる傾向にある。
[その他の添加物]
 本発明の配向膜用組成物には、部分構造(P)を有し、且つ、エポキシ基及び官能基(R)は有しない化合物が含まれていてもよい。その場合は、エポキシ基や官能基(R)を有する化合物を併用するか、ケース(1)~(7)等に添加して使用することができる。
 部分構造(P)を有し、且つ、エポキシ基及び官能基(R)を有さない化合物は、配向膜用組成物の好適範囲に含まれる組成に制御できれば、構造、分子量、物性等に制限はなく、任意に使用することができる。またその場合、市販品を使用することもでき、例えば部分構造(P)を有する、ポリイミドやポリアミド、ポリエステル、ポリカーボネート等の市販ポリマーが使用可能である。
[フィラー]
 本発明の配向膜用組成物は、フィラーを強度の向上を目的に含んでいてもよい。フィラーの中でも、無機フィラーを用いることが好ましい。
 無機フィラーとしては、アルミナ(Al)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化ケイ素(Si)、シリカ(SiO)等が挙げられる。これらのなかでも、Al、AlN、BN又はSiOが好ましく、特にAl、BN又はSiOが好ましい。これらの無機フィラーは、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で混合して用いてもよい。
 粒状や扁平状の無機フィラーであれば、平均粒径0.05~1000μm程度のものを用いることが好ましい。上記上限以下であることで、配向膜中にボイドが残留し難い傾向にある。また、上記下限以上であることで、配向膜用組成物中での凝集を抑制し、分散性を向上することができる傾向にある。
 また、凝集状の無機フィラーであれば、平均結晶径が0.01μm~5μmで、平均凝集径が1~1000μmのものを用いることが好ましい。
 本発明の配向膜用組成物中のフィラーの含有量は、溶媒を除いた配向膜用組成物100重量部に対して、5重量部以上が好ましく、10重量部以上がより好ましい。また、1900重量部以下が好ましく、1800重量部以下がより好ましい。フィラーの含有量が上記下限以上であることで、フィラーによる熱伝導性が得られる傾向にあり、上記上限以下であることで、配向膜の硬化性及び物性が得られる傾向にある。
<<配向膜用組成物の用途及び利用形態>>
 上記した本発明の配向膜用組成物は、低温でも異方性色素膜用組成物への配向規制力が高い配向膜を作製でき、該配向膜の上に形成された異方性色素膜の配向特性が高いものである。また、本発明の配向膜用組成物から得られる配向膜は、ラビングなどの表面処理を行うことで、部分構造(P)の規則性が増した異方性規則構造を形成しやすくなり、得られる配向膜の規則性を増すことが可能となる。本発明の配向膜用組成物は、後述の異方性色素膜用の配向膜に特に有用であり、該異方性色素と組合せて、光学素子、特に偏光素子の形成用に好適に用いることができる。
 本発明の配向膜用組成物から形成された配向膜、色素等から形成された異方性色素膜等を含む光学素子が提供される。以下、これらの発明について、さらに詳細に説明する。
<<配向膜用組成物の製造方法>>
 本発明の配向膜用組成物は、上記の化合物、反応混合物、溶剤等を混合することで得られる。また、本発明の配向膜用組成物の固形分濃度は、通常1質量%以上であり、好ましくは3質量%以上である。また、通常50質量%以下であり、好ましくは30質量%以下である。本発明の配向膜用組成物は、溶剤を使用して、上記範囲となるように、調液され、使用される。
 本発明の配向膜用組成物の硬化においては、所定の組成で混合した配向膜用組成物を後述する方法及び条件で被塗布材料(基板)に塗布してから熱硬化する方法が挙げられる。   
<化合物A及び化合物Bの製造方法>
 本発明の配向膜用組成物に含まれる化合物の製造方法は特に限定されず、公知の方法を用いて製造することができる。
 例えば、部分構造(P)を含む化合物は、その構造構築法は特に制限されず、公知の方法を用いた構築と化合物への誘導が可能である。また、例えば、部分構造(P)及び官能基(R)を含む化合物は、部分構造(P)と官能基(R)との導入順序に制限はなく、原料入手や加工上の容易性及び反応性に応じて実施することができる。エポキシ基と反応する官能基を有する成分を出発物質に用いても、後から官能基(R)を導入可能な別の官能基を有する成分を出発物質に用い、部分構造(P)を構築したのちに官能基(R)へ誘導化してもよい。
 化合物A及び化合物Bの製造例を示すが、化合物E及び化合物Fもそれぞれ同様の方法で得ることができる。
[化合物Aの製造例]
 化合物Aの具体的な製造例の1つとして、部分構造(P)としてフタルイミド構造を含む化合物A(例示化合物A3)の誘導方法について説明する。なお、化合物Eについても同様の方法で製造することができる。
 一般に、イミド骨格は、酸無水物又はジカルボン酸とアミンとの縮合、水素化イミドのアルキル化又はアミノ基との反応で誘導することが知られている。そこで、エポキシ基を導入することができる官能基として水酸基を有する一級アミンとフタル酸無水物との反応により、水酸基を有するフタルイミド構造を構築したのち、水酸基のグリシジル化又は水酸基のアリル化を行う。さらに、引き続く公知の酸化剤を用いたアリル基の酸化により、エポキシ基を導入でき、化合物A3(l=m=1)を製造することができる。
Figure JPOXMLDOC01-appb-C000044
 次に、部分構造(P)としてベンゾオキサゾール構造を含む化合物A(例示化合物A8)の誘導方法について説明する。一般に、ベンゾオキサゾール骨格は、o-アミノフェノールとカルボン酸又はカルボン酸誘導体との縮合反応で誘導できることが知られている。そこで、エポキシ基へ誘導可能な官能基としてアリル基を有するカルボン酸と、o-アミノフェノール誘導体とを反応させてアリル基を有するベンゾオキサゾール誘導体を得て、それを公知の酸化剤を用いてエポキシ化することにより、化合物A8(l=m=1)を製造することができる。
Figure JPOXMLDOC01-appb-C000045
 [化合物Bの製造例]
 化合物Bの具体的な製造例を説明する。なお、化合物Fについても同様の方法で製造することができる。
 部分構造(P)としてフタルイミド構造を含み、官能基(R)として水酸基を有する化合物B(例示化合物B3)の場合を説明する。化合物B3は、化合物A3の製造例で挙げたフタルイミド構造を構築した際に得られた中間体をそのまま化合物B3(R=OH、e=f=1)として用いることができる。
Figure JPOXMLDOC01-appb-C000046
 また、部分構造(P)としてフタルイミド構造を含み、官能基(R)としてカルボン酸を有する化合物B(例示化合物B6)の場合を説明する。トリメリット酸無水物を一級アミン化合物と反応させることで、1工程で、官能基(R)としてカルボン酸を有する化合物B6(R=COOH、e=f=1、gが2以上、12以下の整数)を製造することができる。
Figure JPOXMLDOC01-appb-C000047
<反応混合物Dの製造方法>
 混合した配向膜用組成物を予め低い反応率で硬化反応を起こさせておき、その後被塗布材料(基板)に塗布し、再度加熱して完全に熱硬化するという方法も挙げられる。この方法としては特に限定されないが、簡便な方法としては、方法(1)フェノキシ樹脂化、方法(2)オリゴマー化の二つが挙げられる。
[方法(1)フェノキシ樹脂化]
 フェノキシ樹脂化とは、一般に二官能性エポキシ化合物を付加型の硬化剤と共に加熱して、可溶性の線状樹脂(高分子型エポキシ樹脂又はフェノキシ樹脂と呼ばれる)へ誘導することである。方法(1)では、配向膜用組成物を、塗布前にフェノキシ樹脂化するものである。特に、二官能性のエポキシ化合物と二官能性の硬化剤との組合せにおいて好適である。前記の配向膜用組成物であれば、フェノキシ樹脂化の反応転化率は特に限定されない。エポキシ基と硬化剤との反応転化率は、触媒、温度、時間等の反応条件で適宜制御することができる。
 方法(1)としては、例えば下式に示すような、部分構造(P)としてフタルイミド基を有するエポキシ化合物とフェノール硬化剤とから誘導したフェノキシ樹脂を被塗布剤に塗布することで、本発明の配向膜を得ることが可能である。
Figure JPOXMLDOC01-appb-C000048
[方法(2)オリゴマ―化]
 方法(2)は、所定の混合比に調整した配向膜用組成物を、塗布前に低い反応率で加熱硬化させたオリゴマー溶液を用いる方法である。特に、配向膜用組成物に溶媒を使用する場合に特に好適に実施できる。
 方法(2)としては、例えば、化合物Aとして例示した化合物A29と酸無水物硬化剤とを硬化助剤の存在下で数時間加熱処理する方法が挙げられる。
 オリゴマー化の反応率はH-NMRによる反応物中のエポキシ基の残存から推算できる。本発明においてオリゴマー化の反応率に特に制限はなく、得られるオリゴマーが本発明における配向膜組成物として問題なく使用できる範囲の反応率を選択すればよい。例えば、50%以下の反応率で得られるオリゴマーを用いることで、本発明の異方性色素膜用配向膜の形成が容易となる。
<<配向膜の形成方法及び配向膜>>
 本発明の配向膜は、被塗布材料に対して本発明の配向膜用組成物を塗布することによる形成できる。
 塗布方法は、均一な厚さの層を形成できる方法であれば特に限定されないが、例えば、ダイコーティング、スピンコーティング、スクリーン印刷、フレキソ印刷、スプレー、アプリケーターを用いたキャスティング法、コーターを用いる方法、吹き付けによる方法、浸漬法、カレンダー法、流延法等が挙げられる。
 被塗布材料の基板としては、例えば、フロートガラス、ソーダガラス等のガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリオレフィン等のプラスチックからなる透明基板等を用いることができる。本発明の配向膜用組成物を塗布する際には、基板の表面に、官能性シラン含有化合物、官能性チタン含有化合物をあらかじめ塗布することもできる。また紫外線処理、プラズマ処理等を行うこともできる。
 配向膜用組成物を塗布した後、溶剤を揮発させる工程を加えてもよい。この溶媒を揮発させる方法も特に限定されない。通常は、ホットプレート、赤外線 オーブン、コンベクションオーブン、熱風加熱、マイクロ波加熱、ホットロール、減圧乾燥機、加熱減圧乾燥機等を使用して乾燥される。溶剤を減圧下で揮発させる場合、溶剤の沸点にもよるが、減圧度は0.01~500mmHgが好ましく、乾燥時間は、1秒~10分間の範囲で選ばれる。
 溶媒を揮発させるために加熱する場合の加熱温度は、溶媒の種類に応じて好適な温度を用いることができるが、通常20℃以上、好ましくは40℃以上、さらに好ましくは60℃以上である。また、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。加熱温度が上記下限以上である場合、溶媒が十分揮発される点で好ましい。また、加熱温度が上記上限以下である場合、耐熱性の低い材料、例えばポリエステル樹脂やポリオレフィン樹脂等の被塗布材料に配向膜を形成した際の各材料の性能低下を抑えることができるため、好ましい。
 乾燥時間は、溶剤成分の種類、使用する乾燥機の性能等に応じて、通常は、15秒~10分間の範囲で選ばれ、好ましくは30秒~5分間の範囲で選ばれる。
 溶剤の乾燥には、減圧下乾燥させる方法と加熱による方法を併用してもよいし、いずれかを用いてもよい。
 乾燥後の塗膜は、通常、更に加熱することにより硬化される。硬化時の加熱温度は、通常60℃以上であり、好ましくは80℃以上である。また、通常250℃以下であり、好ましくは230℃以下、更に好ましくは200℃以下、特に好ましくは180℃以下、最も好ましくは150℃以下である。加熱時間は特に限定されないが、10分~5時間であり、好ましくは30分~4時間である。加熱温度及び時間は、部分構造(P)、硬化剤の種類、溶媒の種類等にもよるが、得られる配向膜の機械物性や異方性色素組成物への配向規制力、ラビング等の表面処理の効果、基材の耐熱温度、液晶ディスプレイ用の他の材料の耐熱温度、使用エネルギーの低減の観点から、上記範囲が好ましい。
 この温度範囲で硬化することにより、部分構造(P)が異方性規則構造を形成しながら硬化が進むため、得られる配向膜が異方性規則構造のあるドメインを有し、その表面に形成される異方性色素膜の配向を高めることができる。また、この温度範囲で硬化することにより、配向膜が異方性規則構造を有し、適度な膜強度となることで、ラビング等の表面処理によりさらに規則性が増し、その表面に形成される異方性色素膜の配向性を高めることができる。
 また、硬化温度及び硬化時間が上記範囲であることで、エポキシ基の反応が適当な速度で進み、配向膜が、規則構造を形成しやすく、ラビング等の表面処理のし易い強度となる傾向にある。また、生産性に優れる傾向にある。
 硬化の加熱方法は特に限定されないが、低温から徐々に昇温することにより、部分構造(P)の異方性規則構造をさらに形成しやすくなる傾向にある。
 配向膜の厚さは、膜が均一に作製でき、かつ十分な配向特性を発現するために通常1nm以上、好ましくは5nm以上、さらに好ましくは10nm以上であり、液晶セルやディスプレイを薄くするために通常10μm以下、好ましくは1μm以下、さらに好ましくは500nm以下である。
 配向膜の配向特性を上げるために、上記で得られた塗布面を、例えばナイロン、レーヨン、コットン等の繊維からなる布を巻きつけたロールで一定方向に擦るラビング処理、直線偏光を照射する等の表面処理を行ったり、磁場等の外力をかけたりして、分子を配向させることにより行うことができる。これらの処理を行うことで、異方性色素膜用組成物への配向規制力がより高い配向膜を作製することができる。
<<異方性色素膜>>
 本発明の配向膜用組成物と組合せて用いる異方性色素膜は、湿式成膜法にて形成される。異方性色素膜は、色素及び溶剤を含む異方性色素膜用組成物を用いて得られる。また、異方性色素膜用組成物には、必要に応じ、バインダー樹脂、モノマー、硬化剤、添加剤等が配合されてもよい。異方性色素膜用組成物の態様としては、溶液状であってもよいし、ゲル状であってもよい。異方性色素膜用組成物は、溶剤中に色素等が溶解又は分散している状態であってもよい。
 ここで、異方性色素膜用組成物は、濃度を変更すれば液晶相の状態になるか、又は、組成物として液晶相の状態であることが、組成物中の溶剤が蒸発した後に形成される異方性色素膜の配向特性を高くする観点から好ましい。なお、本実施の形態において、液晶相の状態であるとは、『液晶の基礎と応用』(松本正一・角田市良著、1991)の1~16ページに記載されている状態のことをいう。特に3ページに記載されているネマティック相が好ましい。
<色素>
 色素については、通常、2色性色素が用いられる。本発明において、色素は、液晶相を有する色素であることが好ましい。ここで、液晶相を有する色素とは、溶剤中でリオトロピック液晶性を示す色素を意味する。
 また、本発明で用いられるリオトロピック液晶性化合物としては、後述の湿式成膜法に供するために、水や有機溶媒に可溶であることが好ましく、特に水溶性であることが好ましい。さらに好ましいものは、「有機概念図-基礎と応用」(甲田善生著、三共出版、1984年)で定義される無機性値が有機性値よりも小さな化合物である。また、塩型をとらない遊離の状態で、その分子量が200以上であるのが好ましく、300以上であるのが特に好ましい。一方、分子量が1500以下であるのが好ましく、1200以下であるのが特に好ましい。なお、水溶性とは、室温で化合物が水に、通常0.1質量%以上、好ましくは1質量%以上溶解することをいう。
 リオトロピック液晶性化合物は1種のみを用いてもよいし、2種以上を組合せて用いてもよい。
 色素として、具体的には、アゾ系色素、スチルベン系色素、シアニン系色素、フタロシアニン系色素、縮合多環系色素(ペリレン系、オキサジン系、インダンスロン系等)等が挙げられる。これらの色素が水溶性であるために、スルホ基を有していることが好ましい。これら色素の中でも、本発明の配向膜用組成物の組み合わせにより異方性色素膜中で高い分子配列を取り得るアゾ系色素が好ましい。アゾ系色素とは、アゾ基を少なくとも1個以上持つ色素をいう。その一分子中のアゾ基の数は、色調及び製造面の観点から、2以上が好ましく、6以下が好ましく、更に好ましくは4以下である。
 本発明に用いられる色素は特に限定されず、公知の色素を用いることができる。
 色素としては、例えば、日本国特開2006-079030号公報、日本国特開2010-168570号公報、日本国特開2007-302807号公報、日本国特開2008-081700号公報、日本国特開平09-230142号公報、日本国特開2007-272211号公報、日本国特開2007-186428号公報、日本国特開2008-69300号公報、日本国特開2009-169341号公報、日本国特開2009-161722号公報、日本国特開2009-173849号公報、日本国特開2010-039154号公報、日本国特開2010-180314号公報、日本国特開2010-266769号公報、日本国特開2010-031268号公報、日本国特開2011-012152号公報、日本国特開2011―016922号公報、日本国特開2010-100059号公報、日本国特開2011-141331号公報、日本国特開2011-190313号公報、日本国特表平08-511109号公報、日本国特表2001-504238号公報、日本国特開2006-48078号公報、日本国特開2006-98927号公報、日本国特開2006-193722号公報、日本国特開2006-206878号公報、日本国特開2005-255846号公報、日本国特開2007-145995号公報、日本国特開2007-126628号公報、日本国特開2008-102417号、日本国特開2012-194357号公報、日本国特開2012-194297号公報、日本国特開2011-034061号公報、日本国特開2009-110902号公報、日本国特開2011-100059号公報、日本国特開2012-194365号公報、日本国特開2011-016920号公報等に記載の色素が挙げられる。
 アゾ系色素のなかでも、遊離酸の形で以下式(12)の構造を有する、ジスアゾ、トリスアゾ及びテトラキスアゾの各色素が、波長分散性が低く、可視領域に広域に吸収を有する色調が得られることから好ましい。
Figure JPOXMLDOC01-appb-C000049
[上記式(12)において、
 Eは任意の有機基を表し、
 R30及びR31は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
 p及びqは、それぞれ独立に0~6の整数であり、p+qは6以下である。]
 上記式(12)において、p及びqは、それぞれ独立に、好ましくは0~2の整数である。さらにp+qが1以上が好ましく、2以上がより好ましい。また、p+qは4以下が好ましい。上記範囲であることで、色素の水や有機溶媒への溶解性と会合特性が得られる傾向にある。
 さらに式(12)の構造の中でも、以下遊離酸の形で式(13)の部分構造を有する、ジスアゾ、トリスアゾ及びテトラキスアゾの各色素が、波長分散性が低く、可視領域に広域に吸収を有する色調が得られ、かつ偏光膜にした場合に高い2色性が得られることから特に好ましい。 
Figure JPOXMLDOC01-appb-C000050
[上記式(13)において、
 Eは任意の有機基を表し、
 R32及びR33は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいフェニル基を表す。]
 本実施の形態における色素は、遊離酸の形のまま使用してもよく、酸基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混在していてもよい。また、製造時に塩型で得られた場合はそのまま使用してもよいし、所望の塩型に変換してもよい。塩型の交換方法としては、公知の方法を任意に用いることができ、例えば以下の方法が挙げられる。
 1)塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 2)塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩(例えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換を行う方法。
 3)塩型で得られた色素の水溶液を、強酸性陽イオン交換樹脂で処理し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 4)予め所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で処理した強酸性陽イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換を行う方法。
 また、本実施の形態における色素が有する酸性基が遊離酸型となるか、塩型となるかは、色素のpKaと色素水溶液のpHに依存する。
 上記の塩型の例としては、Na、Li、K等のアルカリ金属の塩、アルキル基もしくはヒドロキシアルキル基で置換されていてもよいアンモニウムの塩又は有機アミンの塩が挙げられる。有機アミンの例として、炭素数1~6の低級アルキルアミン、ヒドロキシ置換された炭素数1~6の低級アルキルアミン、カルボキシ置換された炭素数1~6の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は1種類に限られず複数種混在していてもよい。
 また、本発明において、色素は単独で使用することができるが、これらの2種以上を併用してもよく、また、配向を低下させない程度に上記例示色素以外の色素を配合して用いることもできる。これにより各種の色相を有する異方性色素膜を製造することができる。
 他の色素を配合する場合の配合用色素の例としては、C.I.Direct Yellow 12、C.I.Direct Yellow 34、C.I.Direct Yellow 86、C.I.Direct Yellow 142、C.I.Direct
 Yellow 132、C.I.Acid Yellow 25、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 79、C.I.Acid Orange 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct Red 81、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Acid Red 37、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue 1、C.I.Direct Blue 67、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59等が挙げられる。
[異方性色素膜用組成物中の色素の濃度]
 異方性色素膜用組成物中の色素の濃度としては、成膜条件にもよるが、好ましくは0.01重量%以上、更に好ましくは0.1重量%以上、特に好ましくは5質量%以上、より好ましくは7質量%以上である。また、好ましくは50重量%以下、更に好ましくは30重量%以下である。色素濃度が上記範囲であることで、粘度が高くなり過ぎず、均一な薄膜塗布ができる。また、異方性色素膜用組成物中で色素が析出することを抑制する傾向にある。さらに、得られる異方性色素膜において十分な二色比等の異方性を得ることができる傾向にある。
[異方性色素膜用組成物の溶媒]
 溶媒としては、水、水混和性のある有機溶剤、これらの混合物等が適している。有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類、エチレングリコール、ジエチレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類等が挙げられる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
[異方性色素膜用組成物の添加剤]
 異方性色素膜組成物には、さらに必要に応じて、界面活性剤、レベリング剤、カップリング剤、pH調整剤等の添加剤を配合することができる。添加剤により、濡れ性、塗布性等を向上させ得る場合がある。
 界面活性剤としては、アニオン性、カチオン性及びノニオン性のいずれも使用可能である。その添加濃度は、特に限定されるものではないが、異方性色素膜用組成物中の濃度として通常、0.05重量%以上、0.5重量%以下であることが好ましい。これらの範囲であることで、添加した効果を得るために十分であって、且つ、色素分子の配向を阻害しない傾向にある。
 また、異方性色素膜用組成物中での色素の造塩や凝集等の不安定性を抑制する等の目的のために、公知の酸/アルカリ等のpH調整剤等を、異方性色素膜用組成物の構成成分の混合の前後又は混合中のいずれかで添加してもよい。なお、上記以外の添加剤として“Additive for Coating”, Edited by J.Bieleman,Willey-VCH(2000)記載の公知の添加剤を用いることもできる。
 本発明の異方性色素膜用組成物には、日本国特開2007-199333号公報及び日本国特開2008-101154号公報に記載の方法に従い、アントラキノン化合物を配合してもよい。さらに、日本国特開2006-3864号公報及び日本国特開2006-323377号公報に記載の方法を用いてもよい。
 また、本発明の異方性色素膜用組成物は、日本国特開2007-178993号公報に記載されているように、異方性色素膜用組成物中のアゾ系化合物の酸性基に対して、カチオン0.9当量以上、0.99当量以下、及び強酸性アニオン0.02当量以上、0.1当量以下を含有させる等して、異方性色素膜用組成物の温度5℃、歪印加後0.01秒後の緩和弾性率Gが10分の1に低下するまでの時間を0.1秒以下とし、異方性色素膜の欠陥を制御することができる。
<異方性色素膜の形成方法>
 本発明においては、湿式成膜法により、本発明の配向膜上に異方性色素膜を形成することが好ましい。本発明でいう湿式成膜法とは、異方性色素膜用組成物を配向膜上に何らかの手法により適用し、溶剤が乾燥する過程を経て色素等を基材上で配向・積層させる方法である。
 湿式成膜法では、異方性色素膜用組成物が基材上に形成されると、すでに異方性色素膜用組成物中で、又は、溶剤が乾燥する過程で、色素自体が自己会合することにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域でー定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、いわゆるポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。なお、ここで外場とは、あらかじめ基材上に施された配向膜等の処理層の影響、せん断力、磁場等が挙げられ、これらを単独で用いてもよく、複数組合せて用いてもよい。
 また、異方性色素膜用組成物を基材上に形成する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜用組成物の基材上への適用方法としては、例えば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。またこのようにして得た異方性色素膜を別の基材に転写する方法もある。これらの中でも、本発明は塗布法を用いることが好ましい。
 上記異方性色素膜用組成物を、被塗布材料に対して塗布することにより異方性色素膜を形成することができる。
 異方性色素膜の配向方向は、通常、塗布方向と一致するが、塗布方向と異なっていてもよい。なお、本実施の形態において異方性色素膜の配向方向とは、例えば、異方性色素膜であれば、偏光の透過軸又は吸収軸であり、位相差膜であれば、進相軸又は遅相軸のことである。
 本実施の形態における異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜又は位相差膜として機能する他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性膜として機能化が可能である。
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されない。例えば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁~277頁に記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁~149頁に記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。中でも、スロットダイコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 異方性色素膜用組成物を連続的に塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作を簡易にし、塗布液の開始時と停止時の塗布膜厚の変動を抑制することができる傾向があるため、異方性色素膜の膜厚が薄い時には、特に連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。
 異方性色素膜用組成物を塗布する速度としては、通常1mm/秒以上、好ましくは5mm/秒以上であり、通常、1000mm/秒以下、好ましくは200mm/秒以下である。塗布速度が上記下限以上であることで、異方性色素膜の異方性が得られ易い傾向にある。また、上記上限以下であることで、均一に塗布できる傾向にある。
 なお、異方性色素膜用組成物の塗布温度としては、通常0℃以上80℃以下、好ましくは40℃以下である。また、異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上、さらに好ましくは30%RH以上であり、好ましくは80RH%以下である。
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、さらに好ましくは50nm以上である。一方、好ましくは30μm以下、さらに好ましくは1μm以下である。異方性色素膜の膜厚が適当な範囲にあることで、膜内で分子の均一な配向及び均一な膜厚を得られる傾向にある。
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、該化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理工程を意味する。具体的には、例えば少ない価数のイオンを、それより大きい価数のイオンに置き換える(例えば、1価のイオンを多価のイオンに置き換える)処理や、イオン基を複数有する有機分子やポリマーに置き換える処理が挙げられる。このような処理方法としては、例えば、細田豊著「理論製造 染色化学」(技報堂、1957年)435~437頁等に記載されている処理工程等の公知の方法を用いることができる。
 好ましくは、得られた異方性色素膜を、日本国特開2007-241267号公報等に記載の方法で処理し、水に対して不溶性の異方性色素膜とすることが、後工程の容易さ及び耐久性等の点から好ましい。
 また、本発明の異方性色素膜の可視光波長域における透過率は、好ましくは25%以上である。35%以上が更に好ましく、40%以上が特に好ましい。また、透過率は用途に応じた上限であればよい。 
 例えば、偏光度を高くする場合には、50%以下であることが好ましい。透過率が特定範囲であることで、下記の光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用の光学素子として有用である。
<<光学素子>>
 光学素子は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子である。これらの機能は、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。本発明では、偏光素子として用いることが好ましい。
<<偏光素子>>
 本発明の偏光素子は、本発明の配向膜用組成物から形成された配向膜及び色素を含む異方性色素膜を少なくとも有するものであれば特に制限されず、他の如何なる膜(層)を有するものであってもよい。例えば、上記方法により形成された配向膜の表面に、上記のとおり異方性色素膜を形成することにより製造することができる。本実施の形態における偏光素子においては、配向膜、異方性色素膜以外に必要に応じて、オーバーコート層、粘着層、反射防止層、位相差フィルムとしての機能を持つ層、輝度向上フィルムとしての機能を持つ層、反射フィルムとしての機能を持つ層、半透過反射フィルムとしての機能を持つ層、拡散フィルムとしての機能を持つ層等、様々な機能をもつ層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これら光学機能を有する層は、例えば以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、以下のような方法で得られた位相差フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 位相差フィルムは、例えば、日本国特開平2-59703号公報、日本国特開平4-230704号公報等に記載の延伸処理を施したり、日本国特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
 輝度向上フィルムとしての機能を有する層は、以下のような方法で得られた輝度向上フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 輝度向上フィルムは、例えば、日本国特開2002-169025号公報及び日本国特開2003-29030号公報に記載されるような方法で微細孔を形成すること、又は、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
 反射フィルム又は半透過反射フィルムとしての機能を有する層は、例えば、蒸着やスパッタリング等で得られた金属薄膜を、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 拡散フィルムとしての機能を有する層は、例えば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。
 位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。
 本実施の形態における異方性色素膜をLCDやOLED等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接異方性色素膜を形成したり、異方性色素膜を形成した基板をこれら表示素子の構成部材として用いたりすることができる。
 本発明の光学素子は、基板上に塗布等により形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
<<新規化合物>>
 下記式(15)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000051
 (式(15)において、Zは、環状イミド構造を有する2価の基を表し、
 Z及びZは、それぞれ独立に、直接結合又は任意の2価の基を表し、
 Zは、芳香環を有する2価の基を表し、nは1以上、500以下の整数を表す。)
(Z
 Zは、環状イミド構造を有する2価の基である。環状イミド構造としては、単環でもよく、複数の環を有していてもよい。環状イミド構造が有する環の数は特に限定されないが、3以下が好ましい。また、ZがZ及びZと連結する位置は特に限定されない。
 環状イミド構造の具体例としては、フタルイミド、スクシンイミド、グルタルイミド、3-メチルグルタルイミド、マレイミド、ジメチルマレイミド、トリメリットイミド、ピロメリットイミド等が挙げられる。これらの中でもフタルイミド構造を有することが好ましい。
 Zは、環状イミド構造以外にも他の基を有していてもよい。例えば、ベンゼン環、ナフタレン環等の芳香族炭化水素基;ピリジン、ピリミジン等の芳香族複素環基;炭素数1以上8以下のアルキレン基;炭素数1以上8以下のアルケニレン基;ヘテロ原子;アミド基;エステル基等が挙げられる。また、上記の基は置換基を有していてもよく、例えば、ヘテロ原子、アミノ基等が挙げられる。
 環状イミド構造以外の基としては、ベンゼン環、不飽和結合及び/又はヘテロ原子を有している基等が好ましい。
 不飽和結合及び/又はヘテロ原子を有している基としては、-O-C(=O)-、-NH-C(=O)-、-C(=O)-、-C=C-C(=O)-、-(O=)S(=O)-、-O-等が挙げられる。
 Zとしては、例えば、以下式(16)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000052
[式(16)において、R10は、直接結合、炭素数1以上8以下のアルキレン基、炭素数1以上8以下のアルケニレン基、炭素原子、酸素原子、イオウ原子、アミノ基、-(O=)S(=O)-又は=C(=O)-を表す]
(Z及びZ
 Z及びZは、それぞれ独立に、直接結合又は任意の2価の基を表す。任意の2価の基としては特に限定されないが、ベンゼン環、ナフタレン環等の芳香族炭化水素基;ピリジン、ピリミジン等の芳香族複素環基;炭素数1以上8以下のアルキレン基;炭素数1以上8以下のアルケニレン基;これらを組み合わせた基等が挙げられる。また、上記の基は置換基を有していてもよく、例えば、ヘテロ原子、アミノ基等が挙げられる。
 上記の中でも、芳香族炭化水素基及び/又は炭素数1以上8以下のアルキレン基が好ましい。
(Z
 芳香環を有する2価の基を表す。芳香環を有する2価の基としては特に限定されないが、ベンゼン環、ナフタレン環等の芳香族炭化水素基、ピリジン、ピリミジン等の芳香族複素環基、上記基の組合せ等が挙げられる。
 また、上記環は、脂肪族環と縮合していてもよい。さらに、上記環と、炭素数1以上8以下のアルキレン基、炭素数1以上8以下のアルケニレン基等を組み合わせて用いてもよい。
 上記の基及び環は置換基を有していてもよく、例えば、炭素数1以上、8以下のアルキル基、ヘテロ原子、アミノ基等が挙げられる。
 式(15)で表される化合物の製造方法は特に限定されないが、上記反応混合物Dの製造方法で示した方法を用いることができる。
 実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 なお、以下の記載において、「部」は「質量部」を示す。
[化合物の製造]
(化合物1(化合物B28(R28=OH、e28=f28=1))の合成)
 3,3’,4,4’-ベンゾフェノン四酢酸二無水4.83g(15.0mmol)、4-アミノ-2-メチルフェノール3.71g(30.0mmol)及びNMP120mlを200ml四つ口フラスコに仕込み、50℃にて1時間撹拌した。続けて昇温し、内温150℃にて4時間反応させ、放冷した。反応液を水/メタノール=5/1 500ml中へ投入し、析出物をろ別した。得られた固体をメタノールにて懸濁洗浄し、ろ別乾燥後、5,5’-カルボニルビス[2-(4-ヒドロキシ-2-メチルフェニル)-1H-イソインドール-1,3(2H)-ジオン](化合物1)6.6gを得た。
Figure JPOXMLDOC01-appb-C000053
H-NMR(DMSO-d6):δ9.77(s,2H)、8.27(d,J=8.0Hz,2H)、8.17(m,4H)、7.15(d,J=8.5Hz,2H)、6.78(d,J=2.5Hz,2H)、6.71(dd,J1=2.5Hz、J2=8.5Hz,2H)、2.04(S,6H)。
(化合物2(化合物A29(l29=m29=1))の合成) 
 3.23g(6.0mmol)の化合物1をDMF70ml中に溶解させた後、40℃にて、ベンジルトリエチルアンモニウムクロリド0.25g(1.1mmol)、エピクロロヒドリン20ml(227mmol)を添加した。さらに、ナトリウムメトキシド28%メタノール溶液2.4g(12.4mmol)を添加し、内温45℃にて6時間反応させ、放冷した。反応液を水/メタノール=1/1 300ml中へ激しく撹拌しながら投入し、析出物をろ別した。得られた固体をメタノールに懸濁させ十分に洗浄した後、クロロホルムに溶解させ、不溶物を除去した。濃縮後、クロロホルム-トルエン混合溶媒にてシリカゲルカラム精製を行い、2.4gの5,5’-カルボニルビス[2-(2-メチル-4-オキシラニルメトキシフェニル)-1H-イソインドール-1,3(2H)-ジオン](化合物2)を得た。
Figure JPOXMLDOC01-appb-C000054
 H-NMR(DMSO-d6):δ8.28(d,J=7.8Hz,2H)、8.19(m,4H)、7.30(d,J=8.8Hz,2H)、7.02(d,J=2.5Hz,2H)、6.94(dd,J1=2.5Hz、J2=8.8Hz,2H)、4.40(dd,J1=2.5Hz,J2=11.6Hz,2H)、3.92-3.86(m,2H)、3.33-3.41(m,2H)、2.87(m,2H)、2.73(m,2H)、2.16(S,6H)
(化合物3((化合物A31(l31=m31=1))の合成) 
 トリメリット酸無水物15g(78mmol)及び3,4’-ジアミノフェニルエーテル7.82g(39mmol)、酢酸/ピリジン=3/2(体積比)混合溶媒300mlを500ml四つ口フラスコに仕込み、60℃にて1時間撹拌した。続けて昇温し、還流下で10時間反応させ、放冷した。反応液を水600ml中へ投入し、濃塩酸5mlを添加して、1時間撹拌した。析出物をろ別し、メタノールで洗浄した。得られた固体をDMF300mlに溶解し、メタノール600ml中に少量ずつ添加し、析出物をろ別した。メタノール洗浄、乾燥後、化合物3の前駆体であるジカルボン酸の淡黄色紛体15gを得た。
 上記で得られたジカルボン酸3.0g(5.5mmol)をNMP40mlに50℃にて溶解させた後、炭酸カリウム1.52g(11mmol)を添加した。内温50℃にて2時間撹拌した後、ベンジルトリエチルアンモニウムクロリド0.12g(0.53mmol)、エピクロロヒドリン40ml(227mmol)を添加した。内温90℃にて1時間反応させた後、さらに昇温し110℃で2時間撹拌した。放冷後、反応液を水/メタノール=1/1 200ml中へ撹拌しながら投入し、析出物をろ別した。得られた固体をメタノールに懸濁させ十分に洗浄した後、クロロホルムに溶解させ、不溶物を除去した。濃縮後、クロロホルム-トルエン混合溶媒にてシリカゲルカラム精製を行い、1.0gの2-[3-[4-(5-オキシラニルメトキシカルボニル-1,3-ジヒドロ-1,3-ジオキソ-2H-イソインドール-2-イル)フェノキシ]フェニル]-2,3-ジヒドロ-1,3-ジオキソ-1H-イソインドール-5-カルボン酸オキシラニルメチルエステル(化合物3)を得た。
Figure JPOXMLDOC01-appb-C000055
H-NMR(CDCl):δ8.63(s,2H)、8.52(dd,J1=1.5Hz,J2=7.8Hz、2H)、8.05(d,J=7.8Hz,2H)、7.52(t,J=8.1Hz,1H)、7.44(d,J=8.8Hz,2H)、7.25-7.18(m,2H)、7.22(d,H=8.8Hz,2H)、7.12-7.17(m,1H)、4.75(td,J1=2.8Hz,J2=12.1Hz,2H)、4.27-4.21(m,2H)、3.42-3.37(m,2H)、2.95(m,2H)、2.76(m,2H)。
(化合物4の合成:方法(2)オリゴマー化による製造例) 
 0.609g(0.95mmol)の化合物2、メチルテトラヒドロ無水フタル酸0.295g(1.77mmol)、メチルトリブチルホスホニウムジメチルホスフェート(商品名ヒシコーリンPX-4MP)0.011gを反応容器に仕込み、NMP 5.184gを加えて40℃にて撹拌し、均一な溶液とした。この溶液を130℃にて5時間撹拌し、室温まで冷却し、オリゴマー(化合物4)の15wt% NMP溶液を得た。H-NMRより、得られたオリゴマー中のエポキシ基残存率は41%、メチルテトラヒドロ無水フタル酸の残存率は18%であった。
Figure JPOXMLDOC01-appb-C000056
(化合物5の合成:方法(1)フェノキシ樹脂化による製造例)  
 日本国特開2014-132074号公報に記載の方法で、2官能エポキシ樹脂にテトラメチルビフェノール型エポキシ(商品名YX4000)を、化合物B5(R=OH、e=f=1)であるN,N’-ビス(2-メチル-4-ヒドロキシフェニル)-4,4’-ジフタルイミドを用いて、フェノキシ樹脂(化合物5)を得た。
Figure JPOXMLDOC01-appb-C000057
(化合物6の合成:方法(1)フェノキシ樹脂化による製造例)
 1.0g(1.86mmol)の化合物1、NMP8ml及びシクロヘキサノン5mlを反応器に仕込み、100℃に加温して均一な溶液とした。この溶液に40重量%テトラブチルホスホニウムヒドロキシド水溶液0.026mlを添加し、30分間還流させ、シクロヘキサノンの一部を留去した。この溶液を100℃まで冷却し、3,3’,5,5’-テトラメチル-4,4’-ビフェノールグリシジルエーテル(商品名YX-4000)0.83g(2.22mmol)を添加して、還流下8時間撹拌した。放冷後、水/メタノール=1/1 100ml中へ撹拌子ながら少量ずつ投入し、析出物をろ別した。得られた固体をメタノールに懸濁させ十分に洗浄した後、ろ別、乾燥後、フェノキシ樹脂(化合物6)を得た。得られたフェノキシ樹脂は、H-NMRより、数平均分子量は約4500、分子末端比率は、エポキシ/フェノール性水酸基/エポキシ加水分解による水酸基=36/47/17であった。
Figure JPOXMLDOC01-appb-C000058
[実施例1]
 表1の実施例1に示す化合物及び硬化剤をサンプル瓶に秤量し、固形分濃度7wt%となるように表1の実施例1に記載の溶媒に溶解させた後、ろ過をして、配向膜用組成物1を得た。
 この配向膜用組成物1をガラス基板上にスピンコート法により塗布し、80℃で1分間加熱後、表1に記載の硬化時間で硬化し、配向膜1を得た。この配向膜1に、レーヨン布を用いて、一方向にラビングを施した。
(異方性色素膜の作製)
 水79部に、式(21)で表されるアゾ化合物20部と、式(22)で表される化合物1部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより異方性膜用組成物を得た。
Figure JPOXMLDOC01-appb-C000059
(異方性色素膜用組成物の塗布)
 上記の方法で作製された配向膜1上に、上記の異方性色素膜用組成物をスロット幅50μmのダイコーターを用いて塗布したで塗布した後、自然乾燥することにより異方性色素膜1を得た。
[実施例2~10]
 実施例1と同様の方法で、配向膜用組成物2~10、配向膜2~10及び異方性色素膜2~10を得た。
[比較例1及び2]
 実施例1と同様の方法で、配向膜用組成物11及び12、配向膜11及び12並びに異方性色素膜11及び12を得た。
(配向膜の評価)
 配向膜の評価は、得られた異方性色素膜の光学性能評価により行った。光学性能は、異方性色素膜の単体透過率と偏光度で以下のように評価した。
 単体透過率及び偏光度から以下のように評価を行った。
A:単体透過率40%以上で偏光度99.9%以上
B:単体透過率が36%以上で偏光度が99.5%以上、99.9%未満
C:単体透過率が36%以上で偏光度が95.5%未満
 単体透過率と偏光度は、グラムトムソン偏光子を備える分光光度計(大塚電子(株)製、製品名「RETS-100」)を用い求めた。異方性色素膜に直線偏光の測定光を入射して、透過率を測定した後、次式により計算し、異方性色素膜の極大吸収波長である620nmにおける偏光度を算出した。
 偏光度(P)(%)={(Ty-Tz)/(Ty+Tz)}1/2×100
   Tz:異方性色素膜の吸収軸方向の偏光に対する透過率
   Ty:異方性色素膜の偏光軸方向の偏光に対する透過率
 実施例で製造された異方性色素膜の光学特性が優れることから、本発明の配向膜は、異方性色素膜用組成物への配向規制力が高いことが示された。
 一方、部分構造(P)を有していない、比較例1及び比較例2の配向膜は、異方性色素膜の光学特性が低く、異方性色素膜用組成物への配向規制力が十分でないことが示された。
Figure JPOXMLDOC01-appb-T000060
 表1において、(注*)は各化合物又は反応混合物の、硬化配向膜中及び溶媒を除いた配向膜組成物中における部分構造(P1)及び/又は部分構造(P2)の割合(質量%)を表す。また、(注**)は、硬化配向膜中及び溶媒を除いた配向膜組成物中における、部分構造(P1)及び/又は部分構造(P2)の割合(質量%)を表す。
 なお、実施例1、2及び6の化合物Aは、化合物Eにも属し、実施例4~9の化合物Bは、化合物Fにも属し、実施例4、5及び7の化合物Cは、化合物Gにも属す。
 表1中に示された物質、化合物名は以下を表す。
TG3DAS:テトラグリシジルー3,3’-ジアミノジフェニルスルフォン(小西化学工業(株)製)
Figure JPOXMLDOC01-appb-C000061
V8005:ポリアミドイミド(DIC(株)製)
jER828:ビスフェノールA型エポキシ(三菱化学(株)製)
YX4000:ビフェニル型エポキシ(三菱化学(株)製)
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(東京化成(株)製)
TPP:トリフェニルホスフィン(東京化成(株)製)
DBU:1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(東京化成(株)製)
ヒシコーリン4MP:メチルトリブチルホスホニウムジメチルホスフェート(日本化学工業(株)製)
YH300:テトラヒドロメチル無水フタル酸(三菱化学(株)製)
カテコール:東京化成(株)製
NMP:1-メチル-2-ピロリドン(東京化成(株)製)
DMAc:N,N’-ジメチルアセトアミド(東京化成(株)製)
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年6月16日出願の日本特許出願(特願2015-121357)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は産業上の任意の分野に使用可能であるが、例えば、異方性色素膜用組成物への配向規制力の高い配向膜が必要とされる分野において好適に使用することができる。具体的には、光学分野、例えば、ディスプレイ等の光学素子が必要とされる分野において、特に好適に使用することができる。

Claims (8)

  1.  部分構造(P1)及び部分構造(P2)の少なくとも一方を含むエポキシ樹脂硬化配向膜であって、
     エポキシ樹脂硬化配向膜中の部分構造(P1)及び部分構造(P2)の少なくとも一方の割合が、0.5質量%以上である、エポキシ樹脂硬化配向膜。
     但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
     部分構造(P2)は、下記式(1)で表されるものである。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
  2.  下記式(2)で表される部分構造を含むものである、エポキシ樹脂硬化配向膜。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、環Yは置換基を有していてもよい複素環を表す。)
  3.  異方性色素膜用である、請求項1又は2に記載のエポキシ樹脂硬化配向膜。
  4.  請求項1又は2に記載のエポキシ樹脂硬化配向膜上に異方性色素膜を積層したものである、光学素子。
  5.  化合物群I及び化合物群IIの少なくとも一方を含む配向膜用組成物であって、
     溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P3)の少なくとも一方の割合が、0.5質量%以上である、配向膜用組成物。
     但し、化合物群Iは、エポキシ基と、部分構造(P1)及び部分構造(P3)の少なくとも一方とを有する化合物Aであり、
     化合物群IIは、エポキシ基と反応する官能基と、部分構造(P1)及び部分構造(P3)の少なくとも一方とを有する化合物B、並びにエポキシ基を有する化合物Cであり、
     部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
     部分構造(P3)は、下記式(6)で表されるものである。
    Figure JPOXMLDOC01-appb-C000003
    (式(6)において、Rはヘテロ原子を含む、不飽和結合を有する2価の基を表し、Rと結合している環は単環である。)
  6.  部分構造(P1)及び部分構造(P4)の少なくとも一方を有する反応混合物を含む配向膜用組成物であって、
     溶媒を除いた前記配向膜用組成物において、部分構造(P1)及び部分構造(P4)の少なくとも一方の割合が、0.5質量%以上である、配向膜用組成物。
     但し、部分構造(P1)は、ヘテロ原子を含む芳香族性を有する環であり、
     部分構造(P4)は、下記式(7)で表されるものである。
    Figure JPOXMLDOC01-appb-C000004
     (式(7)において、Rはヘテロ原子を含み、不飽和結合を有する2価の基を表す。)
  7.  化合物群III及び化合物群IVの少なくとも1方を含む、配向膜用組成物。
     但し、化合物群IIIは、エポキシ基及び下記式(8)で表される部分構造を有する化合物Eであり、
     化合物群IVは、エポキシ基と反応する官能基及び下記式(8)で表される部分構造を有する化合物F、並びにエポキシ基を有する化合物Gである。
    Figure JPOXMLDOC01-appb-C000005
    (式(8)において、環Yは置換基を有していてもよい複素環を表す。)
  8.  下記式(15)で表される化合物。
    Figure JPOXMLDOC01-appb-C000006
     (式(15)において、Zは、環状イミド構造を有する2価の基を表し、
     Z及びZは、それぞれ独立に、直接結合又は任意の2価の基を表し、
     Zは、芳香環を有する2価の基を表し、nは1以上、500以下の整数を表す。)
PCT/JP2016/067803 2015-06-16 2016-06-15 配向膜及び配向膜用組成物 WO2016204178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680031589.9A CN107683427B (zh) 2015-06-16 2016-06-15 取向膜以及取向膜用组合物
JP2017525261A JP6922736B2 (ja) 2015-06-16 2016-06-15 配向膜及び配向膜用組成物
KR1020177036033A KR102560883B1 (ko) 2015-06-16 2016-06-15 배향막 및 배향막용 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121357 2015-06-16
JP2015-121357 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016204178A1 true WO2016204178A1 (ja) 2016-12-22

Family

ID=57546565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067803 WO2016204178A1 (ja) 2015-06-16 2016-06-15 配向膜及び配向膜用組成物

Country Status (4)

Country Link
JP (1) JP6922736B2 (ja)
KR (1) KR102560883B1 (ja)
CN (1) CN107683427B (ja)
WO (1) WO2016204178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131619A (ja) * 2017-02-14 2018-08-23 味の素株式会社 樹脂組成物

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270618A (ja) * 1986-05-19 1987-11-25 Nippon Telegr & Teleph Corp <Ntt> エポキシ樹脂組成物
JPS6395220A (ja) * 1986-10-11 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> エポキシイミドおよびその製造方法
JPH0288623A (ja) * 1988-09-26 1990-03-28 Hitachi Ltd エポキシ化合物と組成物及びそれらの用途
JPH0462522A (ja) * 1990-07-02 1992-02-27 Toshiba Chem Corp 電気光学用電極基板
JP2009282377A (ja) * 2008-05-23 2009-12-03 Jsr Corp 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP2010018759A (ja) * 2008-07-14 2010-01-28 Japan Epoxy Resin Kk イミド骨格樹脂、硬化性樹脂組成物、およびその硬化物
WO2010029855A1 (ja) * 2008-09-11 2010-03-18 ジャパン エポキシ レジン株式会社 可溶性イミド骨格樹脂、可溶性イミド骨格樹脂溶液組成物、硬化性樹脂組成物、およびその硬化物
JP2010072521A (ja) * 2008-09-22 2010-04-02 Hitachi Displays Ltd 偏光子、および液晶表示装置
KR20100036151A (ko) * 2008-09-29 2010-04-07 (주)켐넥스 액정 배향막 제조용 화합물
WO2010067933A1 (en) * 2008-12-12 2010-06-17 Cheil Industries Inc. Liquid crystal photo-alignment agent, liquid crystal photo-alignment film manufactured using the same
JP2010152363A (ja) * 2008-12-23 2010-07-08 Cheil Industries Inc 液晶光配向剤用エポキシ化合物、液晶光配向剤、及び液晶光配向膜
JP2011116828A (ja) * 2009-12-01 2011-06-16 Nitto Denko Corp エポキシ化合物およびその製造法
JP2011208126A (ja) * 2010-03-08 2011-10-20 Mitsubishi Chemicals Corp エポキシ樹脂用硬化剤、硬化性樹脂組成物、およびその硬化物
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2011237483A (ja) * 2010-05-06 2011-11-24 Jsr Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2012177061A2 (ko) * 2011-06-23 2012-12-27 주식회사 동진쎄미켐 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20130054846A (ko) * 2011-11-17 2013-05-27 제일모직주식회사 신규 에폭시 화합물, 액정 배향제, 액정 배향막 및 액정표시소자
JP2014112196A (ja) * 2012-11-07 2014-06-19 Jsr Corp 液晶配向剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568869B2 (ja) 1987-12-18 1997-01-08 日本化薬株式会社 偏光板
JP2622748B2 (ja) 1989-06-12 1997-06-18 日本化薬株式会社 水溶性アゾ染料及びこれを含有する偏光膜
RU2047643C1 (ru) 1993-05-21 1995-11-10 Хан Ир Гвон Материал для поляризующих покрытий
JPH10330756A (ja) 1997-06-05 1998-12-15 Sumitomo Bakelite Co Ltd 液晶配向剤及びそれを用いた液晶表示素子
JP5510080B2 (ja) 2010-06-02 2014-06-04 Jsr株式会社 カラーフィルタ用着色組成物、カラーフィルタ及びカラー液晶表示素子

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270618A (ja) * 1986-05-19 1987-11-25 Nippon Telegr & Teleph Corp <Ntt> エポキシ樹脂組成物
JPS6395220A (ja) * 1986-10-11 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> エポキシイミドおよびその製造方法
JPH0288623A (ja) * 1988-09-26 1990-03-28 Hitachi Ltd エポキシ化合物と組成物及びそれらの用途
JPH0462522A (ja) * 1990-07-02 1992-02-27 Toshiba Chem Corp 電気光学用電極基板
JP2009282377A (ja) * 2008-05-23 2009-12-03 Jsr Corp 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP2010018759A (ja) * 2008-07-14 2010-01-28 Japan Epoxy Resin Kk イミド骨格樹脂、硬化性樹脂組成物、およびその硬化物
WO2010029855A1 (ja) * 2008-09-11 2010-03-18 ジャパン エポキシ レジン株式会社 可溶性イミド骨格樹脂、可溶性イミド骨格樹脂溶液組成物、硬化性樹脂組成物、およびその硬化物
JP2010072521A (ja) * 2008-09-22 2010-04-02 Hitachi Displays Ltd 偏光子、および液晶表示装置
KR20100036151A (ko) * 2008-09-29 2010-04-07 (주)켐넥스 액정 배향막 제조용 화합물
WO2010067933A1 (en) * 2008-12-12 2010-06-17 Cheil Industries Inc. Liquid crystal photo-alignment agent, liquid crystal photo-alignment film manufactured using the same
JP2010152363A (ja) * 2008-12-23 2010-07-08 Cheil Industries Inc 液晶光配向剤用エポキシ化合物、液晶光配向剤、及び液晶光配向膜
JP2011116828A (ja) * 2009-12-01 2011-06-16 Nitto Denko Corp エポキシ化合物およびその製造法
JP2011208126A (ja) * 2010-03-08 2011-10-20 Mitsubishi Chemicals Corp エポキシ樹脂用硬化剤、硬化性樹脂組成物、およびその硬化物
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2011237483A (ja) * 2010-05-06 2011-11-24 Jsr Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2012177061A2 (ko) * 2011-06-23 2012-12-27 주식회사 동진쎄미켐 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20130054846A (ko) * 2011-11-17 2013-05-27 제일모직주식회사 신규 에폭시 화합물, 액정 배향제, 액정 배향막 및 액정표시소자
JP2014112196A (ja) * 2012-11-07 2014-06-19 Jsr Corp 液晶配向剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIKIARIS, D. ET AL., JOURNAL OF APPLIED POLYMER SCIENCE, vol. 70, no. 4, 1998, pages 797 - 803 *
BIKIARIS, D. ET AL.: "Chain extension of polyesters PET and PBT with two new diimidodiepoxides. II", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, vol. 34, no. 7, 1996, pages 1337 - 1342, XP055339072 *
BIKIARIS, D. ET AL.: "Chain Extension of Polyesters PET and PBT withN,N’-Bis(glycidy1 ester) Pyromellitimides", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, vol. 33, no. 10, 1995, pages 1705 - 1714, XP055339071 *
DIE ANGEWANDTE MAKROMOLEKULARE CHEMIE, vol. 148, 1987, pages 149 - 160 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131619A (ja) * 2017-02-14 2018-08-23 味の素株式会社 樹脂組成物
JP7151092B2 (ja) 2017-02-14 2022-10-12 味の素株式会社 樹脂組成物

Also Published As

Publication number Publication date
CN107683427A (zh) 2018-02-09
JPWO2016204178A1 (ja) 2018-04-12
KR102560883B1 (ko) 2023-07-31
JP6922736B2 (ja) 2021-08-18
KR20180018564A (ko) 2018-02-21
CN107683427B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
JP5061709B2 (ja) 液晶配向膜用組成物、液晶配向膜および液晶表示素子
TWI475073B (zh) Silicone liquid crystal aligning agent and liquid crystal alignment film
WO2009096598A1 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
TW201400951A (zh) 液晶配向劑、液晶配向膜、相位差膜、相位差膜的製造方法、液晶顯示元件及聚合物
JP7494837B2 (ja) 樹脂組成物、樹脂膜及び液晶表示素子
TWI771380B (zh) 化合物、液晶組成物及液晶顯示元件
JP2012180482A (ja) マレイミド系高分子を含有する組成物、およびマレイミド系高分子共重合体の製造方法
CN103687911B (zh) 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件
CN113544184B (zh) 膜形成用组合物、硬化膜、液晶取向膜及相位差膜
CN102159669B (zh) 液晶光取向剂、用该液晶光取向剂制造的液晶光取向膜
WO2019022202A1 (ja) 樹脂組成物、樹脂膜及び液晶表示素子
JP6922736B2 (ja) 配向膜及び配向膜用組成物
CN105659154A (zh) 液晶取向处理剂、液晶取向膜和液晶表示元件
CN104961894B (zh) 用作取向膜材料的聚合物及取向膜的制备方法
CN109791332A (zh) 具备具有曲面形状的液晶面板的液晶表示元件及用于其的液晶取向剂
JP2011184508A (ja) ポリイミド樹脂硬化膜及び光学補償部材
TWI747863B (zh) 液晶顯示元件、液晶光學元件及液晶構造體安定化膜用組成物
CN109384688A (zh) 单体、聚合物、补偿膜、光学膜和显示设备
JP5574122B2 (ja) 熱硬化膜形成用ポリエステル組成物
JP2012150503A (ja) 液晶配向膜用組成物、液晶配向膜および液晶表示素子
TW201500424A (zh) 組成物、液晶配向處理劑、液晶配向膜及液晶顯示元件
JP6756141B2 (ja) 液晶配向剤、保護膜形成用重合体組成物、保護膜及びその製造方法、並びに液晶素子
WO2019116702A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
TW201842066A (zh) 熱硬化性樹脂組成物、硬化膜、帶硬化膜基板、電子零件及噴墨用墨水
JP7226429B2 (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525261

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811652

Country of ref document: EP

Kind code of ref document: A1