WO2016201746A1 - Réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse, et son procédé de fabrication - Google Patents

Réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse, et son procédé de fabrication Download PDF

Info

Publication number
WO2016201746A1
WO2016201746A1 PCT/CN2015/083586 CN2015083586W WO2016201746A1 WO 2016201746 A1 WO2016201746 A1 WO 2016201746A1 CN 2015083586 W CN2015083586 W CN 2015083586W WO 2016201746 A1 WO2016201746 A1 WO 2016201746A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrode
flexible
flexible substrate
unit
layer
Prior art date
Application number
PCT/CN2015/083586
Other languages
English (en)
Chinese (zh)
Inventor
张贯京
陈兴明
葛新科
普拉纽克·克里斯基捏
古列莎·艾琳娜
波达别特·伊万
Original Assignee
深圳市华科安测信息技术有限公司
深圳市前海安测信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华科安测信息技术有限公司, 深圳市前海安测信息技术有限公司 filed Critical 深圳市华科安测信息技术有限公司
Publication of WO2016201746A1 publication Critical patent/WO2016201746A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes

Definitions

  • the invention relates to the field of biomedical devices, in particular to a flexible neural microelectrode array having a hollow convex structure and a preparation method thereof.
  • the presence of the insulating layer causes the metal electrode portion to be depressed. In the state, the electrode is difficult to form a good contact with the position to be measured as the size is reduced; 2. As the electrode size decreases, the surface impedance of the electrode increases, and the neuroelectrophysiological signal is generally weak, and the electrode surface An increase in impedance affects the measurement of the signal.
  • the main object of the present invention is to provide a flexible neural microelectrode array having a hollow convex structure capable of reducing contact resistance and a preparation method thereof, which can effectively improve the contact area between the flexible neural microelectrode and the part to be tested, and reduce the flexible nerve microelectrode. Contact impedance with the part to be tested.
  • the present invention can also reduce the mechanical strength of the microelectrode site, and ensure that no damage is caused to the site to be tested while being in good contact with the site to be tested.
  • the present invention provides a flexible neural microelectrode array having a hollow convex structure, comprising a flexible substrate, an insulating layer, a microelectrode unit, a wire and a wire bonding pad, the microelectrode unit, the wire and the lead a solder joint is disposed on the flexible substrate, the microelectrode unit and the lead solder joint are connected by the wire, and the insulating layer covers the flexible substrate, The microelectrode unit is exposed on the insulating layer, and the flexible substrate is provided with a plurality of hollow protrusions exposed on the insulating layer, and the microelectrode unit is disposed on the hollow protrusion of the flexible substrate on.
  • an adhesive layer is disposed on the hollow protrusion of the insulating layer, and the microelectrode unit is disposed on the adhesive layer.
  • the insulating layer is provided with an opening at a position of the wire bonding point, and the wire bonding point is exposed through an opening of the insulating layer.
  • an adhesive layer is disposed on the hollow protrusion of the insulating layer, and the microelectrode unit is disposed on the adhesive layer.
  • the material of the adhesion layer comprises titanium, chromium, or an alloy containing one or two of the two elements, and the microelectrode unit is made of gold.
  • the material of the flexible substrate comprises polydimethylsiloxane
  • the material of the insulating layer comprises a photolithographic polydimethylsiloxane
  • the present invention also provides a method for preparing a flexible neural microelectrode array having a hollow convex structure, comprising the following steps:
  • step S300 laying an insulating layer on the flexible substrate layer processed in step S200, and opening the insulating layer at the position of the microelectrode unit and the lead solder joint to make the microelectrode unit and the wire bonding Point is exposed through the insulating layer;
  • step S200 before the microelectrode unit is deposited on the convex portion of the flexible substrate layer, an adhesion layer is first deposited on the convex portion of the flexible substrate layer, and then the microelectrode unit is deposited on the adhesion layer.
  • the material of the microelectrode unit is gold
  • the material of the flexible substrate is polydimethylsiloxane
  • the material of the insulating layer is lithable polydimethyl. Silicone.
  • step S200 a metal template having the same shape as that of the microelectrode is first used, and a preset position of the microelectrode unit, the wire, and the lead pad on the template is formed on the metal template with the microelectrode.
  • step S200 before the microelectrode unit is deposited on the convex portion of the flexible substrate layer, an adhesion layer is first deposited on the convex portion of the flexible substrate layer, and then the microelectrode unit is deposited on the adhesion layer.
  • the material of the adhesion layer comprises titanium, chromium, or an alloy containing one or both of these two elements.
  • the material of the microelectrode unit is gold
  • the material of the flexible substrate is polydimethylsiloxane
  • the material of the insulating layer is lithable polydimethyl. Silicone.
  • the invention provides a flexible neural microelectrode array having a hollow convex structure, which comprises a flexible substrate, an insulating layer, a microelectrode unit, a wire and a lead solder joint, and the microelectrode unit, the wire and the lead solder joint are all disposed on the flexible substrate
  • the microelectrode unit and the lead solder joint are connected by wires, the insulating layer is covered on the flexible substrate, and the microelectrode unit is exposed on the insulating layer.
  • the flexible substrate in the present invention is provided with a plurality of hollow convex portions exposed on the insulating layer.
  • the microelectrode unit is disposed on the hollow protrusion of the flexible substrate.
  • the microelectrode unit is disposed on the hollow protrusion on the flexible substrate in the present invention, compared to the planar type.
  • the flexible substrate microelectrode, the microelectrode on the protrusion increases the surface area of the electrical stimulation site, can effectively reduce the contact resistance, and since the protrusion on the flexible substrate in the present invention is hollow, it can lower the microelectrode site The overall strength makes it difficult to damage the measured position during use;
  • the invention also provides a method for preparing a flexible neural microelectrode array having a hollow convex structure, using a plate-shaped microelectrode with a plurality of protrusions to form a template, and spin coating a flexible base layer on the microelectrode fabrication template, and then A wire and a wire bonding spot are laid on the flexible substrate layer, a micro electrode unit is deposited on the convex portion of the flexible substrate layer, and an insulating layer is laid on the flexible substrate layer, and the convex portion and the convex portion of the flexible substrate layer are microscopically The electrode unit is exposed to the insulating layer, and the manufacturing process is simple and quick, and the cost is low.
  • FIG. 1 is a schematic perspective view of a flexible neural microelectrode array having a hollow convex structure in the present invention
  • FIG. 2 is a side cross-sectional view showing a flexible neural microelectrode array having a hollow convex structure in the present invention
  • FIG. 3 is a schematic side view showing the structure of a template prepared by using a microelectrode used in a method for preparing a flexible neural microelectrode array having a hollow convex structure according to the present invention
  • FIG. 4 is a schematic flow chart of a preparation method of a first embodiment of a method for preparing a flexible neural microelectrode array having a hollow convex structure according to the present invention
  • FIG. 5 is a schematic flow chart of a preparation method of a second embodiment of a method for preparing a flexible neural microelectrode array having a hollow convex structure according to the present invention.
  • the present invention provides a flexible neural microelectrode array (hereinafter referred to as a microelectrode array) having a hollow convex structure.
  • a microelectrode array (hereinafter referred to as a microelectrode array) having a hollow convex structure.
  • FIG. 1 is a flexible neural microelectrode array having a hollow convex structure in the present invention.
  • FIG. 2 is a side cross-sectional view of a flexible neural microelectrode array having a hollow convex structure according to the present invention.
  • the flexible neural microelectrode array having a hollow convex structure includes a flexible substrate 1, an insulating layer 2, and a microelectrode.
  • a unit 3 a wire 4 and a wire bonding point 5, the microelectrode unit 3, the wire 4 and the wire bonding pad 5 are disposed on the flexible substrate 1, the microelectrode unit 3 and the wire bonding point 5 is connected by the wire 4, the insulating layer 2 is covered on the flexible substrate 1, and the microelectrode unit 3 is exposed on the insulating layer 2, the flexible substrate 1 A plurality of hollow protrusions 7 exposed to the insulating layer 2 are provided, and the microelectrode unit 3 is disposed on the hollow protrusions 7 of the flexible substrate.
  • the flexible neural microelectrode array having a hollow convex structure employs a flexible substrate 1 having a hollow convex structure, the microelectrode unit 3 is deposited on the hollow projection on the flexible substrate 1, the wire 4 and the wire bonding
  • the arrangement of the point 5 is similar to that of the conventional microelectrode array.
  • the microelectrode unit 3 and the lead solder joint 5 can be connected by the wire 4 according to the corresponding arrangement of different kinds of microelectrode arrays, and the insulating layer 2 is covered on the flexible substrate 1 And the microelectrode unit 3 is exposed to the insulating layer 2, and when used, when the microelectrode array is attached to the portion to be tested, the microelectrode unit 3 of the present invention can be compared with the conventional microelectrode unit 3
  • the portion to be tested forms a larger contact area, that is, the microelectrode unit 3 on the convex structure of the flexible substrate 1 can increase the surface area of the electrode stimulation site, lower the contact resistance, and the hollow protrusion on the flexible substrate 1.
  • the structure can also reduce the strength of the electrode sites of the microelectrode unit 3 without causing any damage to the measured position.
  • the insulating layer 2 is provided with an opening at the position of the lead solder joint 5, and the lead solder joint 5 is exposed through the opening of the insulating layer 2.
  • the insulating layer 2 can also use a plurality of insulating layers of a single sheet structure. At this time, after the flexible substrate 1 is fabricated and the microelectrode unit 3, the wires, and the wire bonding pads 5 are laid on the flexible substrate 1, only A plurality of individual sheet-like insulating layers 2 are covered on the flexible substrate 1 to cover the wires 4, and the microelectrode unit 3 and the lead pads 5 are exposed.
  • an adhesive layer 6 is disposed on the hollow protrusion 7 of the insulating layer 2, and the microelectrode unit 3 is disposed on the adhesion layer 6, the microelectrode unit 3 and the adhesion layer. 6 is easier to combine, improving the stability of the microelectrode unit 3, making the microelectrode unit 3 more robust.
  • the material of the adhesive layer 6 comprises titanium, chromium, or an alloy containing one or two of the two elements, and the microelectrode unit 3 is made of gold. .
  • the material of the flexible substrate 1 comprises polydimethylsiloxane
  • the material of the insulating layer comprises a photolithographic polydimethylsiloxane
  • the shape of the protrusion on the flexible substrate 1 is not limited to the hollow hemisphere given in the drawings, and may be a hollow conical shape, a hollow pyramid, a quadrangular pyramid, a polygonal pyramid or the like, and The effect is similar to the hollow hemispherical projections of the present invention and is an equivalent replacement for the present invention and will not be enumerated here.
  • the invention also provides a preparation method of a flexible nerve microelectrode array having a hollow convex structure, and a schematic diagram of a preparation method of the first embodiment is shown in FIG. 4, and the template 8 is fabricated using a microelectrode, and the side structure diagram thereof is as follows. As shown in FIG. 3, the whole is plate-shaped, and a plurality of protrusions 801 are provided on the surface thereof.
  • the preparation method of the flexible nerve microelectrode array having the hollow convex structure is prepared by the following steps:
  • step S300 laying an insulating layer on the flexible substrate layer processed in step S200, and opening the insulating layer at the position of the microelectrode unit and the lead solder joint to make the microelectrode unit and the wire bonding Point is exposed through the insulating layer;
  • the template is first fabricated using the microelectrode shown in FIG. 3, and the flexible substrate is spin-coated on the microelectrode fabrication template. Since the microelectrode is formed with a plurality of protrusions on the template, the plurality of protrusions and the preparation to be prepared The hollow convex shape of the flexible neural microelectrode array having the hollow convex structure is matched, so after the spin-coated flexible substrate, the flexible substrate forms a plurality of hollow convex structures, and then the microelectrode unit is deposited on the hollow convex structure.
  • the flexible neural microelectrode array having a hollow convex structure the preparation method of the flexible neural microelectrode array having the hollow convex structure in the invention is simple and fast It is easy to make, and it is cheap to produce and has high production efficiency.
  • a production process flow chart of the second embodiment is shown in FIG. 5, and the template 8 is fabricated using a microelectrode, and the side structure diagram thereof is as follows. As shown in Fig. 3, the whole is a plate shape, and a plurality of protrusions 801 are provided on the surface thereof, and are produced by the following steps:
  • step S300 laying an insulating layer on the flexible substrate layer processed by step S200', and opening the insulating layer at a position of the microelectrode unit and the lead solder joint to make the microelectrode unit and the lead wire Solder joints are exposed through the insulating layer;
  • a metal template having the same shape as the microelectrode is used, and the metal template is fabricated on the microelectrode.
  • a layer of titanium or chromium is deposited as an adhesion layer, and then a layer of gold is deposited on the adhesion layer as a microelectrode unit, wires and lead pads are laid on the flexible substrate layer, and the microelectrode unit and the lead pad are connected by wires.
  • an optional material of the adhesive layer in the present invention includes titanium, chromium, or an alloy containing one or both of these two elements, and magnetron sputtering may be used for titanium or Chromium or an alloy containing one or both of these two elements is deposited on the convex portion of the flexible substrate, the material of the microelectrode unit is gold, and the materials of the flexible substrate may include but are not limited to Polydimethylsiloxane, the insulating layer may be selected from materials including, but not limited to, photolithographic polydimethylsiloxane.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

L'invention concerne un réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse. Le réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse comprend un substrat souple (1), une couche isolante (2), des unités de microélectrodes (3), des fils (4), et des points de soudure de fil (5). Les unités de microélectrodes (3), les fils (4), et les points de soudure de fil (5) sont disposés sur le substrat souple (1). Les unités de microélectrodes (5) et les points de soudure de fil (5) sont reliés au moyen des fils (4). La couche isolante (2) recouvre le substrat souple (1). Les unités de microélectrodes (3) sont exposées en s'exposant hors de la couche isolante (2). Le substrat souple (1) est pourvu de multiples saillies creuses (7) exposées hors de la couche isolante (2). Les unités de microélectrodes (3) sont agencées sur les saillies creuses (7) du substrat souple (1). La résistance au contact et la résistance mécanique des microélectrodes peuvent être efficacement réduites. L'invention concerne également un procédé de fabrication du réseau de microélectrodes neuronales. Le procédé comprend les étapes consistant : à recouvrir du substrat souple (1) une matrice par centrifugation, puis à poser les unités de microélectrodes (3), les fils (4) et les points de soudure de fil (5), puis à poser la couche isolante (2), et à exposer les unités de microélectrodes (3) hors de la couche isolante (2). Le procédé de fabrication est simple, rapide et commode, et le coût est faible.
PCT/CN2015/083586 2015-06-13 2015-07-08 Réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse, et son procédé de fabrication WO2016201746A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510328823.1A CN105147280A (zh) 2015-06-13 2015-06-13 具有空心凸起结构的柔性神经微电极阵列及其制备方法
CN201510328823.1 2015-06-13

Publications (1)

Publication Number Publication Date
WO2016201746A1 true WO2016201746A1 (fr) 2016-12-22

Family

ID=54788593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083586 WO2016201746A1 (fr) 2015-06-13 2015-07-08 Réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse, et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN105147280A (fr)
WO (1) WO2016201746A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204767032U (zh) * 2015-06-13 2015-11-18 深圳市易特科信息技术有限公司 一种柔性神经微电极阵列
CN105640535B (zh) * 2016-03-17 2018-05-08 镇江市高等专科学校 生物体表电信号探测电极阵列
CN106236086B (zh) * 2016-08-19 2020-02-28 京东方科技集团股份有限公司 生物电波检测设备、识别传感器、其干性电极及制作方法
CN106388807B (zh) * 2016-08-30 2019-12-20 中国科学院深圳先进技术研究院 一种表面帖附电极阵列制备方法
CN106510678B (zh) * 2016-09-12 2020-09-25 国家纳米科学中心 一种褶皱神经电极阵列***及其制备方法
CN106645349A (zh) * 2016-12-28 2017-05-10 业成科技(成都)有限公司 血糖试片及其制作方法
CN106680323B (zh) * 2017-01-19 2023-12-15 中国人民解放军军事医学科学院卫生装备研究所 微小液滴蒸发过程的阵列式检测方法
CN107485386B (zh) * 2017-09-21 2021-03-19 中国科学院电子学研究所 颅内皮层神经信息检测电极、电极阵列及其制备方法
CN108553755A (zh) * 2018-05-03 2018-09-21 国家纳米科学中心 一种柔性三维神经电极及其制备方法
CN109745045A (zh) * 2019-01-31 2019-05-14 苏州大学 一种肌电电极贴片及无声语音识别设备
CN110143569A (zh) * 2019-05-29 2019-08-20 京东方科技集团股份有限公司 微电极膜片的制备方法
CN111564509B (zh) * 2020-06-16 2022-02-15 山东大学 一种全氧化物柔性光电探测器及其制备方法与应用
CN112675423B (zh) * 2020-12-23 2023-08-11 北京印刷学院 一种电刺激微电极及制备方法
CN112811386A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学(深圳) 3d微电极的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852634A (zh) * 2006-04-29 2006-10-25 中国科学院上海微***与信息技术研究所 一种基于聚合物基底的凸起电极、制作方法及应用
CN101149559A (zh) * 2007-10-18 2008-03-26 上海交通大学 用光刻胶热熔法制备球形凸起生物微电极阵列的方法
CN101172184A (zh) * 2007-10-10 2008-05-07 中国科学院上海微***与信息技术研究所 一种三维柔性神经微电极及制作方法
WO2008101225A2 (fr) * 2007-02-16 2008-08-21 Second Sight Medical Products, Inc. Ensemble d'électrodes à circuit flexible avec support de film ou fil
CN102179000A (zh) * 2011-03-09 2011-09-14 中国科学院上海微***与信息技术研究所 一种基于碳膜的柔性神经微电极及其制作方法
CN102271755A (zh) * 2008-12-11 2011-12-07 诺基亚公司 用于提供神经刺激的装置和相关方法
CN204767032U (zh) * 2015-06-13 2015-11-18 深圳市易特科信息技术有限公司 一种柔性神经微电极阵列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100534404C (zh) * 2007-01-18 2009-09-02 上海交通大学 人造视网膜神经柔性阵列微电极芯片及其制造方法
CN101380257B (zh) * 2008-10-09 2010-07-28 上海交通大学 柔性视网膜凸点微电极芯片及其制作方法
CN102544052A (zh) * 2012-03-08 2012-07-04 中国科学院深圳先进技术研究院 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
KR20120085692A (ko) * 2012-06-18 2012-08-01 연세대학교 산학협력단 바이오 장치, 그의 제조방법 및 이를 이용한 신경세포 성장 및 감지방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852634A (zh) * 2006-04-29 2006-10-25 中国科学院上海微***与信息技术研究所 一种基于聚合物基底的凸起电极、制作方法及应用
WO2008101225A2 (fr) * 2007-02-16 2008-08-21 Second Sight Medical Products, Inc. Ensemble d'électrodes à circuit flexible avec support de film ou fil
CN101172184A (zh) * 2007-10-10 2008-05-07 中国科学院上海微***与信息技术研究所 一种三维柔性神经微电极及制作方法
CN101149559A (zh) * 2007-10-18 2008-03-26 上海交通大学 用光刻胶热熔法制备球形凸起生物微电极阵列的方法
CN102271755A (zh) * 2008-12-11 2011-12-07 诺基亚公司 用于提供神经刺激的装置和相关方法
CN102179000A (zh) * 2011-03-09 2011-09-14 中国科学院上海微***与信息技术研究所 一种基于碳膜的柔性神经微电极及其制作方法
CN204767032U (zh) * 2015-06-13 2015-11-18 深圳市易特科信息技术有限公司 一种柔性神经微电极阵列

Also Published As

Publication number Publication date
CN105147280A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2016201746A1 (fr) Réseau de microélectrodes neuronales souple pourvu d'une structure saillante creuse, et son procédé de fabrication
CN108553102B (zh) 一种柔性可拉伸多通道凸形表面肌电极及其制备方法
CN108751116B (zh) 用于生物电记录或电刺激的翘曲型柔性电极及其制备方法
Khodagholy et al. Highly conformable conducting polymer electrodes for in vivo recordings
Cho et al. 3D electrodes for bioelectronics
EP2582289B1 (fr) Ensemble multiélectrodes et chémotrodes extensibles et à base de pdms pour enregistrement neuronal épidural et sous-dural, stimulation électrique et administration de médicament
CN108324274B (zh) 一种基于网状结构设计的类皮肤多通道表面肌电极及其制备方法
CN104340956B (zh) 可植入多通道柔性微管电极及其制备方法
CN110327544B (zh) 一种植入式高密度电极点柔性探针电极及制备方法
US20060173263A1 (en) Neural interface assembly and method for making and implanting the same
JP2020534067A (ja) 2d金属炭化物と窒化物(mxenes)を使用する埋め込み型装置
JPH10502552A (ja) 軟質人造神経板
WO2016202021A1 (fr) Réseau de microélectrode neurale flexible
JP2004504877A (ja) 非侵入神経の位置と画像装置のための電極配列とセンサー装着システム
KR20110036922A (ko) 다전극 복합 시스템 및 심전도 검출 시스템에서의 사용방법
Morikawa et al. Donut‐shaped stretchable kirigami: Enabling electronics to integrate with the deformable muscle
US20110307042A1 (en) Electrode arrays based on polyetherketoneketone
CN106178259B (zh) 大鼠腿部肌肉电刺激和肌电信号采集柔性器件及制备方法
Poppendieck et al. Development, manufacturing and application of double-sided flexible implantable microelectrodes
Baek et al. Interconnection of multichannel polyimide electrodes using anisotropic conductive films (ACFs) for biomedical applications
CN112617749A (zh) 一种生理与生化监测装置
CN110301909A (zh) 一种抗干扰柔性生物电干电极及其制备方法
Kim et al. Emerging Bio‐Interfacing Wearable Devices for Signal Monitoring: Overview of the Mechanisms and Diverse Sensor Designs to Target Distinct Physiological Bio‐Parameters
WO2018004313A1 (fr) Capteur d'électromyogramme de surface à canaux multiples
CN116763318A (zh) 一种凝胶层及设有该凝胶层的植入式柔性脑机接口电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895319

Country of ref document: EP

Kind code of ref document: A1