CN112811386A - 3d微电极的制备方法 - Google Patents

3d微电极的制备方法 Download PDF

Info

Publication number
CN112811386A
CN112811386A CN202011622362.6A CN202011622362A CN112811386A CN 112811386 A CN112811386 A CN 112811386A CN 202011622362 A CN202011622362 A CN 202011622362A CN 112811386 A CN112811386 A CN 112811386A
Authority
CN
China
Prior art keywords
microelectrode
preparing
flexible
conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011622362.6A
Other languages
English (en)
Inventor
朱永刚
陈超湛
陈华英
冉斌
刘波
吕传文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN202011622362.6A priority Critical patent/CN112811386A/zh
Publication of CN112811386A publication Critical patent/CN112811386A/zh
Priority to US18/019,447 priority patent/US20230286799A1/en
Priority to PCT/CN2021/119872 priority patent/WO2022142511A1/zh
Priority to EP21913256.0A priority patent/EP4166498A4/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/026Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明公开了一种3d微电极的制备方法,包括以下步骤:(1)制备3d微电极的3d模型;(2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;(3)对所述柔性模具进行硅烷化处理,然后在所述柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;(4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。本发明采用3d打印技术和两次倒模的方式,能够制备出超高微柱高度的3d微电极,同时由于使用柔性材料作为基底,形成的3d微电极具备低成本、快速、高精度和柔性的特质,可用于在可穿戴设备上的电化学分析领域。

Description

3d微电极的制备方法
技术领域
本发明涉及电极的制备,尤其是涉及一种3d微电极的制备方法。
背景技术
电化学研究是利用物质的电化学性质进行表征和测量的分析方法。采用电化学的分析方法不但可以实现自动记录分析结果,而且还有利于对痕量物质的检测,包括葡萄糖、肌氨酸和尿素等,在工业、农业、食品安全等方面应用广泛。
目前,微柱阵列电极主要是通过复杂的光刻工艺制造的,包括类似LIGA的工艺,碳化在基板上构图的光刻胶以及同质外延生长。Prehn等人已有报道利用光刻,金属化和电沉积技术制造了具有10μm柱高的微柱阵列电极。其次,Sanchez-Molas等人用溅射和深反应离子刻蚀(DRIE)制备了具有更高微柱(最大125μm)的微柱阵列电极,这种方法显示出更好的清晰度和可重复性。然而,制造过程通常不仅昂贵而且耗时。另外,纵横比和立柱高度都受到光刻工艺的限制。此外,单纯使用3d技术制备电化学检测传感器,则需要购买高昂的3d打印机,且打印传感器的耗费时间长。由于制备高的微柱高度可获得更大的电极表面积,更大的表面积有利于获得更大的响应电流,因此制备具有更高微柱的微柱阵列电极对于开发用于化学和生物物质的低成本和高灵敏度微传感器至关重要。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种3d微电极的制备方法,能够制备高达500um到2mm的超高微柱阵列电极,具备低成本、快速、高精度和柔性的特质,可用于可穿戴设备领域的电化学分析。
本发明的第一方面,提供一种3d微电极的制备方法,包括以下步骤:
(1)制备3d微电极的3d模型;
(2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;
(3)对所述柔性模具进行硅烷化处理,然后在所述柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;
(4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。
根据本发明实施例的3d微电极的制备方法,至少具有如下有益效果:
本发明实施例首先利用第一次浇铸柔性材料来复制获取3d微电极的形貌,然后进行硅烷化处理,使柔性模具表面形成一层高分子膜,在第二次浇铸柔性材料后该高分子膜能够使得前后两次的模型分离,本发明实施例两次倒模的方式,能够制备出超高微柱高度的3d微电极,同时由于使用柔性材料作为基底,形成的3d微电极具备低成本、快速、高精度和柔性的特质,可用于可穿戴设备领域的电化学分析。
根据本发明的一些实施例,所述柔性材料选自PDMS、PET、聚酰亚胺中的任一种。
根据本发明的一些实施例,所述3d微电极为阵列电极。
根据本发明的一些实施例,所述阵列电极中单个电极的柱高范围为5μm~2mm。
根据本发明的一些实施例,所述阵列电极中的单个电极为圆锥形电极。
根据本发明的一些实施例,所述圆锥形电极的底圆半径为10~100μm,高度为100μm~2mm,圆台形电极之间的距离为100~500μm。
根据本发明的一些实施例,采用3d打印的方式制备3d微电极的3d模型。
根据本发明的一些实施例,步骤(4)中所述导电层为导电金属层或导电聚合物层。
根据本发明的一些实施例,导电层的厚度为150~250μm。
根据本发明的一些实施例,导电金属层的材料包括金、铂、氧化铟锡等。
根据本发明的一些实施例,步骤(4)中采用磁控溅射的工艺制备导电金属层,或涂覆导电聚合物制备导电聚合物层。
根据本发明的一些实施例,所述3d微电极具有基底部分和固定在所述基底部分上的凸起部分,还包括在所述基底部分上制备非导电隔离层的步骤。
根据本发明的一些实施例,所述非导电隔离层的材料选自氮化硅、二氧化硅、不导电聚合物的至少一种。
根据本发明的一些实施例,采用化学气相沉积和剥离技术在所述基底部分上制备非导电隔离层。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例3d微电极的一种结构示意图;
图2为图1中A部分的局部放大图;
图3为本发明实施例3d微电极的制备过程示意图;
图4为本发明实施例具有非导电隔离层的3d微电极的结构示意图。
附图标记:3d模型100、PDMS柔性模具200、空腔210、PDMS柔性3d微电极基底300、导电层400、凸起部分510、基底部分520、非导电隔离层600。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
参见图1,图1示出了3d微电极的一种结构示意图,图2为图1中A部分的局部放大图,该示例中的3d微电极为阵列电极,该3d微电极包括基底部分520和固定在基底部分520的凸起部分510,单个电极呈圆台形。可以理解的是,单个电极的形状不限于圆台形,根据实际需求可以更改为圆锥形、圆柱形、三角柱形、棱柱形、球形等。
以下结合图3,具体描述图1中的3d微电极的制备过程:
(1)根据图1中3d微电极的结构设计,使用3d打印机打印出3d模型100,3d模型100中单个圆锥形电极的底圆半径为50μm,高度为500μm,圆锥形电极之间的距离为150μm。
(2)按照PDMS预聚体:固化剂的质量比=10:1的比例混合形成PDMS溶液,以打印完成的3d模型100为模具,在3d模型100上浇铸PDMS溶液,脱模后形成PDMS柔性模具200,该PDMS柔性模具200具有空腔210,并且由于PDMS柔性模具200是以3d模型100为模具脱模制得,因此空腔210与3d模型100能够贴合。
(3)对PDMS柔性模具200具有空腔210的一侧进行硅烷化处理,本实施例中使用全氟辛基三氯硅烷试剂对模具真空沉积20分钟以进行硅烷化处理,处理后PDMS柔性模具200的表面会形成一层高分子膜,这一层高分子膜可以使后续浇铸的PDMS与PDMS柔性模具200分离。在PDMS柔性模具200具有空腔210的一面浇铸步骤(2)配制的PDMS溶液,脱模后形成PDMS柔性3d微电极基底300。
(4)利用磁控溅射技术在PDMS柔性3d微电极基底300上溅射一层导电层400,本实施例中导电层400的厚度为200nm,导电层400的材料为金,清洗后即完成了整个3d微电极的制备。
本发明实施例利用3d打印技术打印精度高的特点,能够精准打印出与目标3d微电极尺寸一致的3d模型,同时利用3d打印技术能够灵活设计出具有超高微柱高度的3d模型,然后结合两次PDMS倒模,进而制备出具有超高微柱高度的3d微电极,该3d微电极的微柱高度不受工艺的限制,由于制备高的微柱高度可获得更大的电极表面积,更大的表面积有利于获得更大的响应电流,因此制备具有更高微柱的微柱阵列电极对于开发用于化学和生物物质的低成本和高灵敏度微传感器至关重要,利用本发明实施例的制备方法能够制备出超高微柱高度的3d微电极,在电化学分析领域具有较好的应用前景,可用于痕量物质的电化学分析。并且由于3d微电极是以柔性材料作为基底,如图3的PDMS柔性3d微电极基底300,因此形成的3d微电极为柔性电极,可用于可穿戴设备上的电化学分析领域。
参见图4,为增强电极的电流密度和避开微柱阵列自身带有的扩散重叠,实现更有效的电化学检测,可以在3d微电极的基底部分520上制备一层非导电隔离层600,而3d微电极的凸起部分510则裸露出来,非导电隔离层600可以用不同的不导电材料,例如氮化硅,二氧化硅,不导电聚合物等。具体可采用化学气相沉积(PECVD)和剥离技术(lift-off)技术结合实现非导电隔离层600的制备,具体包括以下步骤:在3d微电极的基底部分520上旋涂一层正性光刻胶,利用设计好的掩膜板进行对准曝光,该掩模板对应3d微电极的凸起部分510的区域不透光,经过显影、烘烤后,去除对应基底部分520上固化的正性光刻胶,然后再通过等离子体增强化学气相沉积二氧化硅获得非导电隔离层600。最后,使用丙酮剥离对应凸起部分510区域上未固化的正性光刻胶之后,即可获得具有非导电隔离层600的柔性基底的微柱阵列电极。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

1.一种3d微电极的制备方法,其特征在于,包括以下步骤:
(1)制备3d微电极的3d模型;
(2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;
(3)对所述柔性模具进行硅烷化处理,然后在所述柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;
(4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。
2.根据权利要求1所述的3d微电极的制备方法,其特征在于,所述柔性材料选自PDMS、PET、聚酰亚胺中的任一种。
3.根据权利要求1所述的3d微电极的制备方法,其特征在于,所述3d微电极为阵列电极。
4.根据权利要求3所述的3d微电极的制备方法,其特征在于,所述阵列电极中的单个电极为圆台形电极;优选所述圆台形电极的底圆半径为10~100μm,高度为100μm~2mm,圆台形电极之间的距离为100~500μm。
5.根据权利要求1所述的3d微电极的制备方法,其特征在于,采用3d打印的方式制备3d微电极的3d模型。
6.根据权利要求1所述的3d微电极的制备方法,其特征在于,步骤(4)中所述导电层为导电金属层或导电聚合物层。
7.根据权利要求6所述的3d微电极的制备方法,其特征在于,步骤(4)中采用磁控溅射的工艺制备导电金属层,或涂覆导电聚合物制备导电聚合物层。
8.根据权利要求1至7任一项所述的3d微电极的制备方法,其特征在于,所述3d微电极具有基底部分和固定在所述基底部分上的凸起部分,还包括在所述基底部分上制备非导电隔离层的步骤。
9.根据权利要求8所述的3d微电极的制备方法,其特征在于,所述非导电隔离层的材料选自氮化硅、二氧化硅、不导电聚合物的至少一种。
10.根据权利要求8所述的3d微电极的制备方法,其特征在于,采用化学气相沉积和剥离技术在所述基底部分上制备非导电隔离层。
CN202011622362.6A 2020-12-30 2020-12-30 3d微电极的制备方法 Pending CN112811386A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011622362.6A CN112811386A (zh) 2020-12-30 2020-12-30 3d微电极的制备方法
US18/019,447 US20230286799A1 (en) 2020-12-30 2021-09-23 Manufacturing method for 3d microelectrode
PCT/CN2021/119872 WO2022142511A1 (zh) 2020-12-30 2021-09-23 3d微电极的制备方法
EP21913256.0A EP4166498A4 (en) 2020-12-30 2021-09-23 METHOD FOR MANUFACTURING 3D MICROELECTRODE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011622362.6A CN112811386A (zh) 2020-12-30 2020-12-30 3d微电极的制备方法

Publications (1)

Publication Number Publication Date
CN112811386A true CN112811386A (zh) 2021-05-18

Family

ID=75854528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011622362.6A Pending CN112811386A (zh) 2020-12-30 2020-12-30 3d微电极的制备方法

Country Status (4)

Country Link
US (1) US20230286799A1 (zh)
EP (1) EP4166498A4 (zh)
CN (1) CN112811386A (zh)
WO (1) WO2022142511A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001845A (zh) * 2021-10-22 2022-02-01 北京航空航天大学杭州创新研究院 基于高密度微结构阵列电极的力敏传感器的制备方法
WO2022142511A1 (zh) * 2020-12-30 2022-07-07 哈尔滨工业大学(深圳) 3d微电极的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29717809U1 (de) * 1997-10-07 1998-03-05 Kurt-Schwabe-Institut für Meß- und Sensortechnik e.V., 04736 Meinsberg Elektrochemische Arrayelektrode
WO2014144219A1 (en) * 2013-03-15 2014-09-18 University Of Washington Through Its Center For Commercialization Device and methods comprising microelectrode arrays for electroconductive cells
CN105147280A (zh) * 2015-06-13 2015-12-16 深圳市前海安测信息技术有限公司 具有空心凸起结构的柔性神经微电极阵列及其制备方法
CN106946221A (zh) * 2017-03-20 2017-07-14 中北大学 基于“v”型槽阵列电极的柔性压力传感器制作方法
CN108975266A (zh) * 2018-07-17 2018-12-11 中北大学 基于针尖阵列结构的石墨烯-pdms柔性衬底心电干电极及其制备方法
CN109970023A (zh) * 2017-12-28 2019-07-05 中国科学院沈阳自动化研究所 一种柔性微电极的制造方法
CN112138145A (zh) * 2020-08-11 2020-12-29 兰州大学 一种用于治疗复发性阿弗他溃疡的可溶性载药微针贴片及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591806B2 (en) * 2004-05-18 2009-09-22 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
KR100957487B1 (ko) * 2009-10-07 2010-05-14 주식회사 엔엔피 플라스틱 전극필름 제조방법
US20110319786A1 (en) * 2009-11-20 2011-12-29 Rebello Keith J Apparatus and Method for Measuring Physiological Functions
CN105615874A (zh) * 2016-03-01 2016-06-01 中国科学院半导体研究所 可用于动态心电测量的柔性心电电极及制作方法
CN108831627B (zh) * 2018-06-12 2019-10-25 青岛理工大学 基于3d打印和液桥转印制造大面积透明电极的方法
CN109186817B (zh) * 2018-09-13 2022-10-11 深圳光韵达机电设备有限公司 一种电容式柔性压力传感器及其制造方法
CN109115376A (zh) * 2018-09-28 2019-01-01 清华大学深圳研究生院 一种电容式柔性压力传感器及其制备方法
CN109998533B (zh) * 2019-01-11 2020-09-04 休美(北京)微***科技有限公司 一种柔性微针电极阵列装置及制备方法
CN112811386A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学(深圳) 3d微电极的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29717809U1 (de) * 1997-10-07 1998-03-05 Kurt-Schwabe-Institut für Meß- und Sensortechnik e.V., 04736 Meinsberg Elektrochemische Arrayelektrode
WO2014144219A1 (en) * 2013-03-15 2014-09-18 University Of Washington Through Its Center For Commercialization Device and methods comprising microelectrode arrays for electroconductive cells
CN105147280A (zh) * 2015-06-13 2015-12-16 深圳市前海安测信息技术有限公司 具有空心凸起结构的柔性神经微电极阵列及其制备方法
CN106946221A (zh) * 2017-03-20 2017-07-14 中北大学 基于“v”型槽阵列电极的柔性压力传感器制作方法
CN109970023A (zh) * 2017-12-28 2019-07-05 中国科学院沈阳自动化研究所 一种柔性微电极的制造方法
CN108975266A (zh) * 2018-07-17 2018-12-11 中北大学 基于针尖阵列结构的石墨烯-pdms柔性衬底心电干电极及其制备方法
CN112138145A (zh) * 2020-08-11 2020-12-29 兰州大学 一种用于治疗复发性阿弗他溃疡的可溶性载药微针贴片及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋丽华;曹毅;郑小林;: "柔性印刷电路板技术在生物医学工程领域的应用", 生物医学工程学杂志, no. 03 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022142511A1 (zh) * 2020-12-30 2022-07-07 哈尔滨工业大学(深圳) 3d微电极的制备方法
CN114001845A (zh) * 2021-10-22 2022-02-01 北京航空航天大学杭州创新研究院 基于高密度微结构阵列电极的力敏传感器的制备方法

Also Published As

Publication number Publication date
EP4166498A4 (en) 2024-02-07
EP4166498A1 (en) 2023-04-19
WO2022142511A1 (zh) 2022-07-07
US20230286799A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
CN112811386A (zh) 3d微电极的制备方法
US20070266871A1 (en) Diagnostic test media and methods for the manufacture thereof
JP4753672B2 (ja) 樹脂製マイクロチャネルアレイの製造方法及びこれを用いた血液測定方法
WO2013055234A1 (en) Arrays and methods of manufacture
US20130206595A1 (en) Biosensor with three-dimensional structure and manufacturing method thereof
US20070231850A1 (en) Patterned Cell Network Substrate Interface and Methods and Uses Thereof
CA2434214A1 (en) Device and method for analyzing ion channels in membranes
CN203929645U (zh) 微流控表面增强拉曼测试芯片
EP2245454B1 (en) Micro-electrode array based on optically transparent polymeric conductive materials, and method for the manufacturing thereof
CN115803624A (zh) 纳米孔支撑结构及其制造
US20110074449A1 (en) Apparatus and method for recording electrical activity in cells
Park et al. Micropatterning of poly (dimethylsiloxane) using a photoresist lift-off technique for selective electrical insulation of microelectrode arrays
KR101512906B1 (ko) 다공성 3차원 미세전극 구조물 및 이의 제조방법
KR100532812B1 (ko) 블록 공중합체의 나노패턴을 이용한 나노-바이오칩의제조방법
CN107192747B (zh) 一种可变电容式微纳米生物检测芯片及其加工方法
Doan et al. Low-cost photolithographic fabrication of nanowires and microfilters for advanced bioassay devices
Schurink Microfabrication and microfluidics for 3D brain-on-chip
JP2003287513A (ja) 生体試料用アレイ電極及びその作製方法
CN105092555A (zh) 微流控表面增强拉曼测试芯片及其制备方法
KR102315907B1 (ko) 대면적 이방성 전도체 제조 방법 및 이를 통해 제조된 이방성 전도체를 이용한 감압 소재 어레이
CN105658782B (zh) 膜囊泡回收设备、膜囊泡回收方法及膜囊泡分析方法
JP2017150967A (ja) バイオセンサチップの製造方法
CA2565855A1 (en) Patterned cell network substrate interface and methods and uses thereof
KR101483964B1 (ko) 습식 두드림을 통한 나노전극 제조방법 및 이를 통해 제조된 나노전극
Castro et al. Microfabrication and Characterization of Micro-Stereolithographically 3d Printed, and Double Metallized Bioplates with 3D Microelectrode Arrays for In-Vitro Analysis of Cardiac Organoids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination