WO2016194110A1 - 単焦点光学系及びそれを備えた光学装置 - Google Patents

単焦点光学系及びそれを備えた光学装置 Download PDF

Info

Publication number
WO2016194110A1
WO2016194110A1 PCT/JP2015/065798 JP2015065798W WO2016194110A1 WO 2016194110 A1 WO2016194110 A1 WO 2016194110A1 JP 2015065798 W JP2015065798 W JP 2015065798W WO 2016194110 A1 WO2016194110 A1 WO 2016194110A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
lens component
group
focus optical
Prior art date
Application number
PCT/JP2015/065798
Other languages
English (en)
French (fr)
Inventor
市川啓介
三原伸一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/065798 priority Critical patent/WO2016194110A1/ja
Publication of WO2016194110A1 publication Critical patent/WO2016194110A1/ja
Priority to US15/800,347 priority patent/US10191258B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the present invention relates to a single focus optical system and an optical apparatus including the same.
  • the Gauss type optical system includes, in order from the object side, an object side group having a positive refractive power and an image side group having a positive refractive power.
  • the object side group is composed of two to three positive lenses and one negative lens. This negative lens may be cemented with the immediately preceding positive lens.
  • the image side group includes one negative lens and two to three positive lenses. This negative lens may also be cemented with the positive lens immediately after.
  • the shape on the object side and the shape on the image side are generally symmetrical and concentric with respect to the center.
  • the center of curvature of the two lens surfaces is located near the center of each lens.
  • each aberration can be corrected to some extent even with a large aperture ratio.
  • a limit of an angle of view of less than 50 degrees is the limit in a Gauss type optical system. If an angle of view of 50 degrees or more is to be realized with a Gauss type optical system, it is particularly difficult to correct spherical aberration and coma.
  • the optical system tends to be large.
  • the Zoner type and the Ernostar type are also known as the imaging optical system type. Since these types tend to shorten the back focus, adopting these types in the optical system is advantageous in terms of shortening the overall length of the optical system. However, these types have a disadvantage that the angle of view cannot be easily widened.
  • Patent Document 3 Patent Document 4, Patent Document 5, and Patent Document 6, the F number is 1.4, but the F number is further decreased or the field angle is increased. This makes it more difficult to correct the various aberrations described above.
  • the present invention has been made in view of such a problem, and has a wide angle of view and a small F number, and a single focus optical system in which various aberrations are well corrected, and an optical apparatus including the same.
  • the purpose is to provide.
  • the single-focus optical system of the present invention includes: A single-focus optical system that forms a conjugate relationship between a conjugate point on the enlargement side with a longer distance and a conjugate point on the reduction side with a shorter distance, Single-focus optical systems, in order from the magnification side, A first lens group; A second lens group having a positive refractive power, The lens component is a single lens or a cemented lens, The first lens group has a reduction-side negative lens component on the most reduction side, Furthermore, the first lens group has three or more negative lens components including a reduction-side negative lens component, The second lens group includes, in order from the magnification side, a first positive lens, a second positive lens, a first negative lens, and a third positive lens. All the air gaps in the second lens group are constant during focusing or zooming.
  • the optical device of the present invention is An optical system, and an imaging device disposed on the reduction side,
  • the imaging element has an imaging surface, and converts an image formed on the imaging surface by an optical system into an electrical signal,
  • the optical system is the above-described single focus optical system.
  • Another optical device of the present invention is An optical system, and a display element disposed on the reduction side, The display element has a display surface, The image displayed on the display surface is projected to the enlargement side by the optical system,
  • the optical system is the above-described single focus optical system.
  • FIG. 2 is a cross-sectional view and aberration diagrams of a single focus optical system according to Example 1, wherein (a) is a lens cross-sectional view when focusing on an object at infinity, and (b), (c), (d) and (e) These are aberration diagrams when focusing on an object at infinity.
  • FIG. 6 is a cross-sectional view and aberration diagrams of a single focus optical system according to Example 2, wherein (a) is a lens cross-sectional view when focusing on an object at infinity, and (b), (c), (d) and (e) These are aberration diagrams when focusing on an object at infinity.
  • FIG. 6A is a cross-sectional view and aberration diagrams of a single focus optical system according to Example 3, wherein FIG. 5A is a lens cross-sectional view at the time of focusing on an object at infinity, and FIG. These are aberration diagrams when focusing on an object at infinity.
  • FIG. 6A is a cross-sectional view and aberration diagrams of a single focus optical system according to Example 4, wherein FIG. 5A is a lens cross-sectional view when focusing on an object at infinity, and FIG. These are aberration diagrams when focusing on an object at infinity.
  • It is sectional drawing of an imaging device. It is a front perspective view which shows the external appearance of an imaging device. It is a back perspective view of an imaging device. It is a block diagram of the internal circuit of the main part of the imaging apparatus. It is sectional drawing of a projection apparatus.
  • the single-focus optical system of the present embodiment is a single-focus optical system that forms a conjugate relationship between a conjugate point on the enlargement side with a longer distance and a conjugate point on the reduction side with a shorter distance.
  • the first lens group includes three or more negative lens components including the reduction side negative lens component
  • the second lens group includes the first lens unit in order from the magnification side. It consists of a positive lens, a second positive lens, a first negative lens, and a third positive lens, and all air intervals in the second lens group are constant during focusing or zooming. To do.
  • the single-focus optical system of the present embodiment is based on an Elnostar type optical system, a Zoner type optical system or an optical system having a configuration equivalent thereto.
  • a high-performance afocal system with a magnification of less than 1 is added. Since the refractive power in the afocal system may be approximately zero, the afocal system may have some positive refractive power or negative refractive power.
  • spherical aberration, coma, axial chromatic aberration, and lateral chromatic aberration can be corrected extremely well.
  • a single-focus optical system that has an imaging performance higher than that of a conventional Gauss type optical system.
  • an F number smaller than 1.4 and a field angle of 50 ° or more can be secured.
  • the single focus optical system of the present embodiment in the category of the standard lens to the wide angle lens, the single focus optical system having an F number smaller than 1.4 and extremely high aberration correction potential. Can be provided. In particular, in terms of imaging performance, it can have imaging performance at a level that surpasses the conventional single focus optical system for 35 mm film size.
  • the second positive lens and the first negative lens are cemented with each other.
  • the first lens group includes a first sub group and a second sub group in order from the magnification side, and the second sub group includes only a negative lens component. Preferably it is.
  • moving the negative lens component along the optical axis can reduce the weight of the moving lens. As a result, it is possible to focus at a high speed with very little aberration fluctuation.
  • the first lens group is composed of a first subgroup and a second subgroup in order from the magnification side, and the second subgroup is composed of only a negative lens component,
  • the second sub group preferably includes a meniscus negative lens component having a concave surface facing the reduction side.
  • moving the negative lens component along the optical axis can reduce the weight of the moving lens. As a result, it is possible to focus at a high speed with very little aberration fluctuation.
  • each aberration can be improved even when the aperture ratio is made larger or the field angle is made wider. It can be corrected.
  • the first lens group is composed of a first subgroup and a second subgroup in order from the magnification side, and the second subgroup is composed of only a negative lens component, It is preferable to perform focusing by moving the second subgroup on the optical axis.
  • moving the negative lens component along the optical axis enables focusing with very little aberration fluctuation. Furthermore, since the lens to be moved can be reduced in weight, the load on the drive mechanism can be reduced. As a result, high-speed focusing becomes possible.
  • the first lens group is composed of a first sub group and a second sub group in order from the magnification side, and the first sub group is the most positive on the reduction side. It is preferable that the lens has a lens component and the second sub group is composed of only a negative lens component.
  • the first lens group is composed of a first subgroup and a second subgroup in order from the magnification side, and the second subgroup is composed of only a negative lens component, It is preferable that the distance between the first sub group and the second sub group and the distance between the second sub group and the second lens group change during focusing.
  • the first sub group and the second lens group are fixed at the time of focusing.
  • the first lens group includes a first sub group and a second sub group in order from the magnification side, and the first sub group is the magnification side lens on the most magnification side.
  • the magnification side lens component is a negative single lens
  • the second sub group is composed of only the negative lens component.
  • the first lens group includes a first sub group and a second sub group in order from the magnification side, and the first sub group includes a cemented lens
  • the cemented lens of the sub group is composed of a negative lens and a positive lens in order from the magnification side.
  • the shape of the cemented lens of the first sub group is a meniscus shape with the concave surface facing the magnification side, and the second sub group is negative. It is preferable that the lens is composed only of lens components.
  • the first lens group includes a first sub group and a second sub group in order from the magnification side, and the first sub group includes a cemented lens and a reduction side lens.
  • the cemented lens of the first subgroup includes a negative lens and a positive lens in order from the magnification side, and the shape of the cemented lens of the first subgroup is a meniscus shape with the concave surface facing the magnification side.
  • the reduction-side lens component is disposed adjacent to the cemented lens of the first subgroup on the magnification side of the cemented lens of the first subgroup, and the shape of the reduction-side lens component is a meniscus with a convex surface facing the magnification side.
  • the second subgroup is composed of only a negative lens component.
  • spherical aberration, coma, astigmatism, curvature of field, axial chromatic aberration, and lateral chromatic aberration are improved even when the aperture ratio is increased or the angle of view is increased. Can be corrected.
  • the first lens group is composed of a first sub group and a second sub group in order from the magnification side, and the second sub group is composed of only one negative lens component. It is preferable that
  • moving the second subgroup along the optical axis enables focusing with very little aberration fluctuation. Furthermore, since the lens to be moved can be reduced in weight, the load on the drive mechanism can be reduced. As a result, high-speed focusing becomes possible.
  • the first lens group includes a first sub group and a second sub group in order from the magnification side, and the first sub group includes a cemented lens in order from the magnification side.
  • a plurality of positive lens components the plurality of positive lens components includes all adjacent positive lens components, and the cemented lens of the first subgroup includes a negative lens and a positive lens in order from the magnification side.
  • the cemented lens of the first sub group has a meniscus shape with a concave surface facing the enlargement side, and the second sub group is composed of only a negative lens component.
  • Astigmatism is particularly easily corrected by making sure that the upper limit of conditional expression (1) is not exceeded. By making sure that the lower limit value of conditional expression (1) is not exceeded, it is particularly easy to correct barrel distortion.
  • conditional expression (1 ′) instead of conditional expression (1). 0.85 ⁇ SF 11 ⁇ 3.0 (1 ′)
  • conditional expression (1 ′′) is satisfied instead of conditional expression (1). 0.95 ⁇ SF 11 ⁇ 2.7 (1 ")
  • conditional expression (2) 1.6 ⁇ SF 12 ⁇ 10 (2 ′)
  • conditional expression (2 ′′) is satisfied instead of conditional expression (2).
  • conditional expression (3) ⁇ 12 ⁇ SF 13 ⁇ 2.5 (3 ′)
  • conditional expression (3 ′′) is satisfied instead of conditional expression (3).
  • the plurality of positive lens components has a front positive lens component located closest to the enlargement side and a rear positive lens component located closest to the reduction side, and the following It is preferable to satisfy conditional expression (4).
  • SF 14 (R F14 + R R14 ) / (R F14 -R R14 )
  • SF 15 (R F15 + R R15 ) / (R F15 -R R15 )
  • R F14 is the radius of curvature of the enlarged side surface of the front positive lens component
  • R R14 is the radius of curvature of the reduction side surface of the front positive lens component
  • R F15 is the radius of curvature of the enlarged side surface of the rear positive lens component
  • R R15 is the radius of curvature of the reduction side surface in the rear positive lens component
  • the axial ray height is high at a position where a plurality of positive lens components are arranged. For this reason, the shape of each lens component in the plurality of positive lens components is closely related to correction of spherical aberration that affects the sharpness of the entire image.
  • this axial ray bundle is in a divergent state on the magnification side of a plurality of positive lens components.
  • the positive lens components are arranged so that the shaping factor of each positive lens component is in the negative direction from the enlargement side to the reduction side. Good. And it is necessary to take an appropriate value with a difference in shaping factor between the positive lens components located at both ends of the plurality of positive lens components.
  • conditional expression (4 ′) instead of conditional expression (4). 0.30 ⁇ SF 14 -SF 15 ⁇ 6.0 (4 ′)
  • conditional expression (4 ′′) is satisfied instead of conditional expression (4). 0.45 ⁇ SF 14 -SF 15 ⁇ 5.5 (4 ")
  • conditional expression (5) 0.85 ⁇ SF 16 ⁇ 3.0 (5 ′)
  • conditional expression (5 ′′) 0.90 ⁇ SF 16 ⁇ 2.5 (5 ")
  • the first lens group is composed of a first sub group and a second sub group in order from the magnification side, and the first sub group is the most positive on the reduction side.
  • the reduction-side positive lens component is a positive single lens
  • the second subgroup is composed of only a negative lens component
  • the horizontal axis is Nd 1PR
  • the vertical axis is ⁇ d 1PR
  • Nd 1PR ⁇ ⁇ ⁇ d 1PR + ⁇ 1PR
  • ⁇ 0.01 is set
  • Nd 1PR and ⁇ d 1PR of the reduction-side positive lens component are included in both the region determined by a certain straight line and the region determined by the following conditional expressions (12) and (13).
  • Nd 1PR is the refractive index of the reduction-side positive lens component
  • ⁇ d 1PR is the Abbe number of the positive lens component on the reduction side, It is.
  • the axial ray height is high at a position where a plurality of positive lens components are arranged. For this reason, axial chromatic aberration and chromatic aberration such as spherical aberration are particularly likely to occur in a plurality of positive lens components.
  • the reduction-side positive lens component is located closest to the reduction side in the first subgroup. This position is the position farthest from the first sub group cemented lens.
  • the reduction-side positive lens component In order to reduce the size and weight of the first lens group, it is preferable to configure the reduction-side positive lens component with a single lens.
  • chromatic aberration is likely to occur at the position where the reduction-side positive lens component is disposed. Therefore, when the reduction-side positive lens component is composed of a single lens, the refractive index and Abbe number of the reduction-side positive lens component are included in the region determined by the conditional expressions (11), (12), and (13). To do. By doing so, it is possible to suppress the occurrence of longitudinal chromatic aberration and spherical aberration.
  • the second sub group is composed of one negative lens component
  • the negative lens component that is the second sub group is a single lens
  • the horizontal axis is Nd 1NR
  • the vertical axis is
  • Nd 1NR ⁇ ⁇ ⁇ d 1NR + ⁇ 1NR
  • ⁇ d 1NR is preferably included.
  • Nd 1NR is the refractive index of the negative lens component of the second subgroup
  • ⁇ d 1NR is the Abbe number of the negative lens component of the second subgroup, It is.
  • the refractive index and the Abbe number of the negative lens component of the second subgroup are included in the region determined by the conditional expressions (14), (15), and (16). By doing so, it is possible to suppress the occurrence of axial chromatic aberration, lateral chromatic aberration, chromatic aberration of spherical aberration, or color coma.
  • the first lens group has a magnifying side lens component on the most magnifying side and satisfies the following conditional expression (A). 0 ⁇ f / e N1F ⁇ 2 (A) here, f is the focal length of the entire single-focus optical system when focusing on an object at infinity, e N1F is the maximum effective aperture of the magnification side lens component of the first lens group, It is.
  • conditional expression (A) If the upper limit of conditional expression (A) is exceeded, it becomes difficult to widen the angle of view. That is, if the field angle is increased, spherical aberration, distortion, and astigmatism are likely to occur. On the other hand, if the lower limit of conditional expression (A) is not reached, the optical system tends to be enlarged in the radial direction.
  • conditional expression (A ′) instead of the conditional expression (A).
  • conditional expression (A ′′) is satisfied instead of conditional expression (A).
  • the single focus optical system of the present embodiment it is preferable to have an aperture stop and satisfy the following conditional expression (B). 0 ⁇ (f / e AS ) / Fno ⁇ 2 (B) here, f is the focal length of the entire single-focus optical system when focusing on an object at infinity, e AS is the maximum diameter of the aperture stop, Fno is the F number of the entire single-focus optical system when focusing on an object at infinity, It is.
  • conditional expression (B) If the upper limit of conditional expression (B) is exceeded, it will be difficult to widen the angle of view. That is, if the angle of view is increased, it is difficult to correct spherical aberration and chromatic aberration. On the other hand, if the lower limit of conditional expression (B) is not reached, the optical system tends to be enlarged in the radial direction.
  • conditional expression (B ′) it is preferable to satisfy the following conditional expression (B ′) instead of the conditional expression (B). 0.2 ⁇ (f / e AS ) / Fno ⁇ 1 (B ′) Further, it is more preferable that the following conditional expression (B ′′) is satisfied instead of conditional expression (B). 0.3 ⁇ (f / e AS ) / Fno ⁇ 0.9 (B ′′)
  • the single focus optical system of this embodiment satisfies the following conditional expression (C). 0 ⁇ T air_max / ⁇ d ⁇ 0.27 (C) here, T air — max is the largest on-axis air interval between the surface located on the most enlargement side and the surface located on the most reduction side of the single focus optical system, ⁇ d is the axial distance from the surface located closest to the magnification side to the surface located closest to the reduction side of the single focus optical system, It is.
  • Conditional expression (C) is a conditional expression that is advantageous for securing high optical performance, shortening the overall length of the optical system, and reducing the outer diameter of the imaging optical system.
  • ⁇ d that is, the axial distance from the lens surface located closest to the enlargement side to the lens surface located closest to the reduction side of the single focus optical system
  • the air performance between the lenses is excessively widened to improve the optical performance. Securing easily leads to an increase in the total length of the optical system and an increase in the diameter of the optical system.
  • conditional expression (C) is advantageous in securing the number of lenses necessary for realizing high optical performance while shortening the overall length and reducing the diameter of the optical system.
  • conditional expression (C ′) it is preferable to satisfy the following conditional expression (C ′) instead of the conditional expression (C). 0.03 ⁇ T air_max / ⁇ d ⁇ 0.2 ( C ′) Further, it is more preferable that the following conditional expression (C ′′) is satisfied instead of conditional expression (C). 0.07 ⁇ T air_max / ⁇ d ⁇ 0.18 ( C ′′)
  • the optical device includes an optical system and an image sensor disposed on the reduction side,
  • the image pickup device has an image pickup surface, converts an image formed on the image pickup surface by the optical system into an electric signal, and the optical system is the above-described single focus optical system.
  • a wide imaging range can be imaged with low noise and high resolution.
  • the optical device of the present embodiment has an optical system and a display element arranged on the reduction side,
  • the display element has a display surface, and an image displayed on the display surface is projected on the enlargement side by an optical system, and the optical system is the above-described single focus optical system.
  • an image can be projected with a low noise and a high resolution over a wide projection range.
  • the above-described single focus optical system and optical apparatus may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good single-focus optical system and optical apparatus. Moreover, the combination of a preferable structure is arbitrary. For each conditional expression, only the upper limit value or lower limit value of the numerical range of the more limited conditional expression may be limited.
  • Examples 1 to 4 of the single focus optical system will be described with reference to the drawings.
  • the single focus optical systems of Examples 1 to 4 are all single focus optical systems having an F number of less than 1.5.
  • the lens sectional view is a lens sectional view at the time of focusing on an object at infinity.
  • FIGS. 1B to 4B show spherical aberration (SA) in the single focus optical system of each example, and FIGS. 1C to 4C show astigmatism (AS).
  • FIGS. 1 (d) to 4 (d) show distortion aberration (DT)
  • FIGS. 1 (e) to 4 (e) show distortion aberration (DT).
  • SA spherical aberration
  • AS astigmatism
  • FIGS. 1 (d) to 4 (d) show distortion aberration (DT)
  • FIGS. 1 (e) to 4 (e) show distortion aberration (DT).
  • Each aberration diagram is an aberration diagram at the time of focusing on an object at infinity. “ ⁇ ” represents a half angle of view.
  • the first lens group is indicated by G1
  • the second lens group is indicated by G2
  • the cover glass is indicated by C
  • the image plane is indicated by I.
  • a parallel plate constituting a low-pass filter may be disposed between the second lens group G2 and the image plane I.
  • the cover glass C may have a low-pass filter action.
  • FIG. 1A is a lens cross-sectional view of the single focus optical system according to the first embodiment.
  • FIGS. 1B, 1 ⁇ / b> C, 1 ⁇ / b> D, and 1 ⁇ / b> E are aberration diagrams of the single focus optical system according to Example 1.
  • FIGS. 1B, 1 ⁇ / b> C, 1 ⁇ / b> D, and 1 ⁇ / b> E are aberration diagrams of the single focus optical system according to Example 1.
  • FIGS. 1A is a lens cross-sectional view of the single focus optical system according to the first embodiment.
  • FIGS. 1B, 1 ⁇ / b> C, 1 ⁇ / b> D, and 1 ⁇ / b> E are aberration diagrams of the single focus optical system according to Example 1.
  • FIGS. 1A is a lens cross-sectional view of the single focus optical system according to the first embodiment.
  • the single focus optical system according to Example 1 includes a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power in order from the object side. And is composed of.
  • the first lens group G1 includes an aperture stop S.
  • the first lens group G1 includes a first sub group and a second sub group.
  • the first subgroup includes a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconvex positive lens L3, a biconcave negative lens L4, and a biconcave negative lens.
  • the second subgroup includes a negative meniscus lens L9 having a convex surface directed toward the object side.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the second lens group G2 includes a biconvex positive lens L10, a biconvex positive lens L11, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the negative meniscus lens L9 moves to the image side along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the aspheric surfaces are provided on a total of four surfaces including both surfaces of the negative meniscus lens L2 and both surfaces of the negative meniscus lens L9.
  • FIG. 2A is a lens cross-sectional view of the single focus optical system according to the second embodiment.
  • 2B, 2C, 2D, and 2E are aberration diagrams of the single focus optical system according to Example 2.
  • FIG. 2A is a lens cross-sectional view of the single focus optical system according to the second embodiment.
  • 2B, 2C, 2D, and 2E are aberration diagrams of the single focus optical system according to Example 2.
  • FIG. 2A is a lens cross-sectional view of the single focus optical system according to the second embodiment.
  • 2B, 2C, 2D, and 2E are aberration diagrams of the single focus optical system according to Example 2.
  • FIG. 2A is a lens cross-sectional view of the single focus optical system according to the second embodiment.
  • 2B, 2C, 2D, and 2E are aberration diagrams of the single focus optical system according to Example 2.
  • the single focus optical system according to Example 2 includes a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power in order from the object side. And is composed of.
  • the first lens group G1 includes an aperture stop S.
  • the first lens group G1 includes a first sub group and a second sub group.
  • the first subgroup includes a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconvex positive lens L3, a biconcave negative lens L4, and a biconcave negative lens.
  • the second subgroup includes a negative meniscus lens L9 having a convex surface directed toward the object side.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the second lens group G2 includes a biconvex positive lens L10, a biconvex positive lens L11, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the negative meniscus lens L9 moves to the image side along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the aspheric surfaces are provided on a total of four surfaces including both surfaces of the negative meniscus lens L2 and both surfaces of the negative meniscus lens L9.
  • FIG. 3A is a lens cross-sectional view of the single focus optical system according to Example 3.
  • FIG. 3S. 3B, 3C, 3D, and 3E are aberration diagrams of the single focus optical system according to Example 3.
  • FIGS. 3B, 3C, 3D, and 3E are aberration diagrams of the single focus optical system according to Example 3.
  • the single focus optical system according to Example 3 includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. And is composed of.
  • the first lens group G1 includes an aperture stop S.
  • the first lens group G1 includes a first sub group and a second sub group.
  • the first subgroup includes a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconvex positive lens L3, a biconcave negative lens L4, and a biconcave negative lens.
  • the second subgroup includes a negative meniscus lens L9 having a convex surface directed toward the object side.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the second lens group G2 includes a biconvex positive lens L10, a biconvex positive lens L11, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the negative meniscus lens L9 moves to the image side along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the aspheric surfaces are provided on a total of four surfaces including both surfaces of the negative meniscus lens L2 and both surfaces of the negative meniscus lens L9.
  • FIG. 4A is a lens cross-sectional view of the single focus optical system according to Example 4.
  • FIG. FIGS. 4B, 4C, 4D, and 4E are aberration diagrams of the single focus optical system according to Example 4.
  • FIGS. 4B, 4C, 4D, and 4E are aberration diagrams of the single focus optical system according to Example 4.
  • the single focus optical system according to Example 4 includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. And is composed of.
  • the first lens group G1 includes an aperture stop S.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, a positive meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side.
  • the second subgroup includes a negative meniscus lens L9 having a convex surface directed toward the object side.
  • the positive meniscus lens L3 and the negative meniscus lens L4 are cemented.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the second lens group G2 includes a positive meniscus lens L10 having a convex surface directed toward the image side, a biconvex positive lens L11, a biconcave negative lens L12, and a biconvex positive lens L13.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the negative meniscus lens L9 moves to the image side along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the aspheric surfaces are provided on both sides of the negative meniscus lens L9.
  • r1, r2,... are the curvature radii of the lens surfaces, d1, d2,... Are the thickness or air spacing of each lens, and nd1, nd2,. , ⁇ d1, ⁇ d2,... Are Abbe numbers of the respective lenses, and * is an aspherical surface.
  • f is the focal length of the entire single-focus optical system, FNO. Is the F number, ⁇ is the half angle of view, IH is the image height, FB is the back focus, f1, f2,... Are the focal lengths of the lens groups.
  • the total length is obtained by adding back focus to the distance from the lens front surface to the lens final surface.
  • the back focus represents the distance from the last lens surface to the paraxial image surface in terms of air.
  • the unit of angle is ° (degrees).
  • infinity represents when an object at infinity is in focus
  • short distance represents when an object at near distance is in focus.
  • the value at the short distance is the distance from the object to the image.
  • the aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficients are A4, A6, A8, and A10. .
  • z (y 2 / r) / [1+ ⁇ 1 ⁇ (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10
  • “en” (n is an integer) represents “10 ⁇ n ”.
  • the symbols of these specification values are common to the numerical data of the examples described later.
  • Examples of the optical device according to the present embodiment include an imaging device and a projection device. Hereinafter, specific examples of the imaging device and the projection device will be described.
  • FIG. 5 is a cross-sectional view of a single lens mirrorless camera as an imaging device.
  • a photographing optical system 2 is disposed in the lens barrel of the single lens mirrorless camera 1.
  • the mount unit 3 allows the photographing optical system 2 to be attached to and detached from the body of the single lens mirrorless camera 1.
  • a screw type mount, a bayonet type mount, or the like is used as the mount unit 3.
  • a bayonet type mount is used.
  • An imaging element surface 4 and a back monitor 5 are disposed on the body of the single lens mirrorless camera 1.
  • a small CCD or CMOS is used as the image sensor.
  • the photographing optical system 2 of the single-lens mirrorless camera 1 for example, the single focus optical system shown in the first to fourth embodiments is used.
  • FIG. 6 and 7 are conceptual diagrams of the configuration of the imaging apparatus.
  • FIG. 6 is a front perspective view showing an appearance of a single-lens mirrorless camera 40 as an imaging device
  • FIG. 7 is a rear perspective view of the same.
  • the single focus optical system shown in the first to fourth embodiments is used for the photographing optical system 41 of the single-lens mirrorless camera 40.
  • the single-lens mirrorless camera 40 includes a photographing optical system 41 located on the photographing optical path 42, a shutter button 45, a liquid crystal display monitor 47, and the like, and a shutter button 45 disposed above the single-lens mirrorless camera 40.
  • photographing optical system 41 for example, the single focus optical system of the first embodiment in conjunction therewith.
  • An object image formed by the photographing optical system 41 is formed on an image sensor (photoelectric conversion surface) provided in the vicinity of the imaging surface.
  • the object image received by the image sensor is displayed on the liquid crystal display monitor 47 provided on the back of the camera as an electronic image by the processing means.
  • the taken electronic image can be recorded in the storage means.
  • FIG. 8 is a block diagram showing an internal circuit of a main part of the single-lens mirrorless camera 40.
  • the processing means described above is configured by, for example, the CDS / ADC unit 24, the temporary storage memory 17, the image processing unit 18, and the like, and the storage unit is configured by the storage medium unit 19 or the like.
  • the single-lens mirrorless camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15.
  • the image pickup drive circuit 16 the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 are provided.
  • the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 can input and output data with each other via the bus 22.
  • a CCD 49 and a CDS / ADC unit 24 are connected to the imaging drive circuit 16.
  • the operation unit 12 includes various input buttons and switches, and notifies the control unit 13 of event information input from the outside (camera user) via these buttons.
  • the control unit 13 is a central processing unit composed of, for example, a CPU and has a built-in program memory (not shown) and controls the entire single-lens mirrorless camera 40 according to a program stored in the program memory.
  • the CCD 49 is an image pickup element that is driven and controlled by the image pickup drive circuit 16, converts the light amount of each pixel of the object image formed via the photographing optical system 41 into an electric signal, and outputs the electric signal to the CDS / ADC unit 24.
  • the CDS / ADC unit 24 amplifies the electrical signal input from the CCD 49 and performs analog / digital conversion, and raw video data (Bayer data, hereinafter referred to as RAW data) obtained by performing the amplification and digital conversion. Is output to the temporary storage memory 17.
  • the temporary storage memory 17 is a buffer made of, for example, SDRAM, and is a memory device that temporarily stores RAW data output from the CDS / ADC unit 24.
  • the image processing unit 18 reads out the RAW data stored in the temporary storage memory 17 or the RAW data stored in the storage medium unit 19, and includes distortion correction based on the image quality parameter designated by the control unit 13. It is a circuit that performs various image processing electrically.
  • the storage medium unit 19 is detachably mounted with a card-type or stick-type recording medium made of, for example, a flash memory, and the RAW data transferred from the temporary storage memory 17 or the image processing unit 18 to these flash memories. Image-processed image data is recorded and held.
  • the display unit 20 includes a liquid crystal display monitor 47 and the like, and displays captured RAW data, image data, an operation menu, and the like.
  • the setting information storage memory unit 21 includes a ROM unit that stores various image quality parameters in advance, and a RAM unit that stores image quality parameters read from the ROM unit by an input operation of the operation unit 12.
  • the single focus optical system of the present invention can also be used in an image pickup apparatus having a quick return mirror.
  • FIG. 9 is a sectional view of a projector as a projection apparatus.
  • the projector 100 includes a light source unit 110, an illumination unit 120, an image forming unit 130, and a projection unit 140.
  • the light source unit 110 includes a light source 111 and a reflecting member 112. Illumination light is emitted from the light source 111.
  • the illumination light is white light.
  • the illumination light is reflected by the reflecting member 112 and enters the illumination unit 120.
  • the illumination unit 120 includes a first dichroic mirror 121, a second dichroic mirror 122, a third dichroic mirror 123, a first reflecting member 124, and a second reflecting member 125.
  • the first dichroic mirror 121 transmits light in the red wavelength range (hereinafter referred to as “red light”) and reflects light in other wavelength ranges.
  • the second dichroic mirror 122 reflects light in the green wavelength range (hereinafter referred to as “green light”) and transmits light in other wavelength ranges.
  • the third dichroic mirror 123 reflects light in the blue wavelength range (hereinafter referred to as “blue light”) and transmits light in other wavelength ranges. Red light, green light, and blue light are incident on the image forming unit 130. Instead of the third dichroic mirror 123, a normal plane reflecting mirror may be used.
  • the image forming unit 130 includes a first display element 131, a second display element 132, and a third display element 133.
  • the first display element 131 is irradiated with red light through the first reflecting member 124.
  • the second display element 132 is irradiated with green light.
  • the third display element 133 is irradiated with blue light through the second reflecting member 125.
  • the same image is displayed on the first display element 131, the second display element 132, and the third display element 133. Therefore, a red image is displayed on the first display element 131, a green image is displayed on the second display element 132, and a blue image is displayed on the third display element 133.
  • the light emitted from the first display element 131, the second display element 132, and the third display element 133 is incident on the projection unit 140.
  • the projection unit 140 includes a dichroic prism 141 and a projection optical system 142.
  • the light emitted from the first display element 131, the second display element 132, and the third display element 133 is synthesized by the dichroic prism 141.
  • the image forming unit 130 displays a red image, a green image, and a blue image. Three images are synthesized by the dichroic prism 141.
  • Projection optical system 142 projects the combined three images at a predetermined position.
  • this projection optical system 142 for example, the single focus optical system shown in the first to fourth embodiments is used.
  • the image forming unit 130 may be a light valve such as a DMD (digital mirror device).
  • the light from the light source unit 110 may be reflected by the light valve, and the image from the light valve may be enlarged and projected by the projection unit 140.
  • the projector 100 configured as described above, by adopting the single focus optical system of the present invention as the projection optical system 142, it is possible to project an image with low noise and high resolution over a wide projection range.
  • the single focus optical system according to the present invention is suitable for a single focus optical system in which various aberrations are well corrected while having a wide angle of view and a small F number.
  • the optical device according to the present invention is suitable for an imaging device that captures a wide imaging range with low noise and high resolution, and a projection device that projects an image with low noise and high resolution over a wide projection range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

単焦点光学系は、拡大側から順に、第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、から構成され、レンズ成分は、単レンズ又は接合レンズであり、第1レンズ群G1は、最も縮小側に縮小側負レンズ成分を有し、更に、第1レンズ群G1は、縮小側負レンズ成分を含めて3つ以上の負レンズ成分を有し、第2レンズ群G2は、拡大側から順に、第1正レンズと、第2正レンズと、第1負レンズと、第3正レンズと、からなり、第2レンズ群G2内の全ての空気間隔は、フォーカス時あるいは変倍時に一定である。

Description

単焦点光学系及びそれを備えた光学装置
 本発明は、単焦点光学系及びそれを備えた光学装置に関する。
 高い結像性能を有する結像光学系のタイプとして、ガウスタイプが知られている。ガウスタイプの光学系は、物体側から順に、正の屈折力を有する物体側群と、正の屈折力を有する像側群と、より構成されている。
 物体側群は、2枚乃至3枚の正レンズと、1枚の負レンズとからなる。この負レンズは、直前の正レンズと接合されている場合がある。また、像側群は、1枚の負レンズと、2枚乃至3枚の正レンズと、からなる。この負レンズも、直後の正レンズと接合されている場合がある。
 また、ガウスタイプの光学系は、その中央部を境に物体側の形状と像側の形状がおおむね対称で、且つコンセントリックな形状になっている。コンセントリックな形状では、各レンズで、2つのレンズ面における曲率中心が中央部の近くに位置している。
 これにより、ガウスタイプの光学系では、大口径比であっても、各収差がある程度良好に補正できている。しかし、従来以上の結像性能を実現しようとすると、ガウスタイプの光学系では画角50度弱が限界である。ガウスタイプの光学系で50度以上の画角を実現しようとすると、特に球面収差やコマ収差の補正が困難になる。また、ガウスタイプをベースにした光学系では、光学系が大型化しやすい。
 一方、Fナンバーが小さいという観点では、結像光学系のタイプとしてガウスタイプの他に、ゾナータイプやエルノスタータイプも知られている。これらのタイプではバックフォーカスが短くなりやすいので、これらのタイプを光学系に採用することは、光学系の全長短縮の点では有利である。しかしながら、これらのタイプには、容易に画角を広げることができないという短所がある。
 これらの問題を解決した広角撮影レンズが、各種提案されている。提案されている広角撮影レンズでは、Fナンバーが1.4程度になっている。画角が広くFナンバーが小さい広角撮影レンズの光学系として、特許文献1~6に開示された光学系がある。
特開2012-226309号公報 特開2004-101880号公報 特開2009-109723号公報 特開2010-039340号公報 特開2010-097207号公報 特開2011-059290号公報
 特許文献1や特許文献2の光学系ではFナンバーが1.24であるため、Fナンバーが小さい光学系が実現できている。しかしながら、画角が63.6°であるため、特許文献1や特許文献2の光学系では、画角が十分に広い光学系が実現できていない。
 また、特許文献3、特許文献4、特許文献5及び特許文献6の光学系では、Fナンバーが1.4であるが、これ以上Fナンバーを小さくしようとするか、又は画角を広くしようとすると、上述した諸収差の補正がさらに困難となる。
 本発明は、このような課題に鑑みてなされたものであって、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された単焦点光学系及びそれを備えた光学装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の単焦点光学系は、
 距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する単焦点光学系であって、
 単焦点光学系は、拡大側から順に、
 第1レンズ群と、
 正の屈折力を有する第2レンズ群と、から構成され、
 レンズ成分は、単レンズ又は接合レンズであり、
 第1レンズ群は、最も縮小側に縮小側負レンズ成分を有し、
 更に、第1レンズ群は、縮小側負レンズ成分を含めて3つ以上の負レンズ成分を有し、
 第2レンズ群は、拡大側から順に、第1正レンズと、第2正レンズと、第1負レンズと、第3正レンズと、からなり、
 第2レンズ群内の全ての空気間隔は、フォーカス時あるいは変倍時に一定であることを特徴とする。
 また、本発明の光学装置は、
 光学系と、縮小側に配置された撮像素子と、を有し、
 撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、
 光学系が上述の単焦点光学系であることを特徴とする。
 また、本発明の別の光学装置は、
 光学系と、縮小側に配置された表示素子と、を有し、
 表示素子は表示面を有し、
 表示面上に表示された画像は、光学系によって拡大側に投影され、
 光学系が上述の単焦点光学系であることを特徴とする。
 本発明によれば、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された単焦点光学系及びそれを備えた光学装置を提供することができる。
実施例1に係る単焦点光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例2に係る単焦点光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例3に係る単焦点光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例4に係る単焦点光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 撮像装置の断面図である。 撮像装置の外観を示す前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。 投影装置の断面図である。
 以下に、本発明に係る単焦点光学系及びそれを備えた光学装置の実施形態及び実施例を、図面に基づいて詳細に説明する。なお、この実施形態及び実施例によりこの発明が限定されるものではない。
 本実施形態の単焦点光学系は、距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する単焦点光学系であって、単焦点光学系は、拡大側から順に、第1レンズ群と、正の屈折力を有する第2レンズ群と、から構成され、レンズ成分は、単レンズ又は接合レンズであり、第1レンズ群は、最も縮小側に縮小側負レンズ成分を有し、更に、第1レンズ群は、縮小側負レンズ成分を含めて3つ以上の負レンズ成分を有し、第2レンズ群は、拡大側から順に、第1正レンズと、第2正レンズと、第1負レンズと、第3正レンズと、からなり、第2レンズ群内の全ての空気間隔は、フォーカス時あるいは変倍時に一定であることを特徴とする。
 本実施形態の単焦点光学系は、エルノスタータイプの光学系、ゾナータイプの光学系あるいはそれに準ずる構成を持つタイプの光学系をベースにしたもので、ベースにしたレンズ系の拡大側に、角倍率が1未満の高性能アフォーカル系を付加したものである。なお、アフォーカル系における屈折力は概略ゼロであれば良いので、アフォーカル系は、多少の正の屈折力あるいは負の屈折力を持っても構わない。
 このようにすることで、特に、球面収差、コマ収差、軸上色収差及び倍率色収差を極めて良好に補正できる。その結果、結像性能も従来のガウスタイプの光学系よりも高い結像を有する単焦点光学系を実現することができる。例えば、単焦点光学系において、1.4よりも小さいFナンバーと、50°以上画角を確保することができる。
 このように、本実施形態の単焦点光学系によれば、標準レンズから広角レンズのカテゴリーにおいて、1.4よりも小さいFナンバーを有し、かつ、収差補正のポテンシャルが極めて高い単焦点光学系を提供することができる。特に、結像性能においては、従来の35mmフィルムサイズ用の単焦点光学系を凌駕するレベルの結像性能を有することができる。
 また、本実施形態の単焦点光学系では、第2正レンズと第1負レンズとは互いに接合されていることが好ましい。
 このようにすることで、軸上色収差、倍率色収差及び像面湾曲をバランスよく補正できる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第2副群は負レンズ成分のみから構成されていることが好ましい。
 口径比が大きい光学系では、特に、球面収差、コマ収差及び非点収差については、良好に補正することが厳しく求められる。そこで、このようにすることで、第1副群でこれらの収差が残存しても、残存した収差を第2副群でほとんど打ち消すことが可能となる。このとき、第2副群を、少ないレンズ枚数で構成しても、第1副群における残存収差を、第2副群で補正することができる。
 あるいは、インナーフォーカスを行うことを考えた場合には、この負レンズ成分を光軸に沿って移動することにより、移動させるレンズを軽量にすることができる。その結果、高速で、且つ収差変動の極めて少ないフォーカスも可能となる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第2副群は負レンズ成分のみから構成され、第2副群は、縮小側に凹面を向けたメニスカス形状の負レンズ成分を含むことが好ましい。
 口径比が大きい光学系では、特に、球面収差、コマ収差及び非点収差については、良好に補正することが厳しく求められる。そこで、このようにすることで、第1副群でこれらの収差が残存しても、残存した収差を第2副群でほとんど打ち消すことが可能となる。このとき、第2副群を、少ないレンズ枚数で構成しても、第1副群における残存収差を、第2副群で補正することができる。
 あるいは、インナーフォーカスを行うことを考えた場合には、この負レンズ成分を光軸に沿って移動することにより、移動させるレンズを軽量にすることができる。その結果、高速で、且つ収差変動の極めて少ないフォーカスも可能となる。
 更に、第2副群の負レンズ成分の形状を縮小側に凹面を向けたメニスカス形状にすることで、口径比をより大きくした場合や、画角をより広くした場合でも、各収差を良好に補正することができる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第2副群は負レンズ成分のみから構成され、第2副群が光軸上を移動することにより合焦を行うことが好ましい。
 口径比が大きい光学系では、特に、球面収差、コマ収差及び非点収差については、良好に補正することが厳しく求められる。そこで、このようにすることで、第1副群でこれらの収差が残存しても、残存した収差を第2副群でほとんど打ち消すことが可能となる。このとき、第2副群を、少ないレンズ枚数で構成しても、第1副群における残存収差を、第2副群で補正することができる。
 あるいは、インナーフォーカスを行うことを考えた場合には、この負レンズ成分を光軸に沿って移動することにより、収差変動の極めて少ないフォーカスも可能となる。更に、移動させるレンズを軽量にすることができるので、駆動機構における負荷の負担を低減できる。その結果、高速でのフォーカスが可能となる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、最も縮小側に縮小側正レンズ成分を有し、第2副群は負レンズ成分のみから構成されていることが好ましい。
 このようにすることで、口径比をより大きくした場合や、画角をより広くした場合でも、十分なバックフォーカスを確保しつつ、球面収差、コマ収差、非点収差及び像面湾曲、更には軸上色収差や倍率色収差をより良好に補正できる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第2副群は負レンズ成分のみから構成され、フォーカス時に、第1副群と第2副群との間隔、及び第2副群と第2レンズ群との間隔が変化することが好ましい。
 口径比が大きい光学系では、特に、球面収差、コマ収差及び非点収差については、良好に補正することが厳しく求められる。そこで、このようにすることで、極めて少ない収差変動にてフォーカスが可能である。
 また、本実施形態の単焦点光学系では、第1副群と第2レンズ群はフォーカス時には固定であることが好ましい。
 このようにすることで、フォーカス時に移動させるレンズ群の数を少なくし、かつ、極めて少ない収差変動にてフォーカスが可能である。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、最も拡大側に拡大側レンズ成分を有し、拡大側レンズ成分は負の単レンズであり、第2副群は負レンズ成分のみから構成されていることが好ましい。
 このようにすることで、光学系を広角化しても、第1レンズ群の大型化を防止することができる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、接合レンズを含み、第1副群の接合レンズは、拡大側から順に、負レンズと正レンズとからなり、第1副群の接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、第2副群は負レンズ成分のみから構成されていることが好ましい。
 このようにすることで、球面収差、コマ収差、非点収差及び像面湾曲、更には軸上色収差や倍率色収差をより良好に補正できる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、接合レンズと、縮小側レンズ成分と、を含み、第1副群の接合レンズは、拡大側から順に、負レンズと正レンズとからなり、第1副群の接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、縮小側レンズ成分は、第1副群の接合レンズの拡大側に、第1副群の接合レンズと隣接して配置され、縮小側レンズ成分の形状は、拡大側に凸面を向けたメニスカス形状であり、第2副群は負レンズ成分のみから構成されていることが好ましい。
 このようにすることで、口径比をより大きくした場合や、画角をより広くした場合でも、球面収差、コマ収差、非点収差及び像面湾曲、更には軸上色収差や倍率色収差をより良好に補正できる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第2副群は1つの負レンズ成分のみから構成されていることが好ましい。
 口径比が大きい光学系では、特に、球面収差、コマ収差及び非点収差については、良好に補正することが厳しく求められる。そこで、このようにすることで、第1副群でこれらの収差が残存しても、残存した収差を第2副群でほとんど打ち消すことが可能となる。このとき、第2副群を、少ないレンズ枚数で構成しても、第1副群における残存収差を、第2副群で補正することができる。その結果、球面収差、コマ収差及び非点収差を、全体としてバランス良く補正することができる。
 あるいは、インナーフォーカスを行うことを考えた場合には、第2副群を光軸に沿って移動することにより、収差変動の極めて少ないフォーカスも可能となる。更に、移動させるレンズを軽量にすることができるので、駆動機構における負荷の負担を低減できる。その結果、高速でのフォーカスが可能となる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、拡大側から順に、接合レンズと、複数の正レンズ成分と、を含み、その複数の正レンズ成分は、隣り合う全ての正レンズ成分を含み、第1副群の接合レンズは、拡大側から順に、負レンズと正レンズとからなり、第1副群の接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、第2副群は負レンズ成分のみから構成されていることが好ましい。
 このようにすることで、口径比をより大きくした場合や、画角をより広くした場合でも、十分なバックフォーカスを確保しつつ、球面収差、コマ収差、非点収差及び像面湾曲、更には軸上色収差や倍率色収差をより良好に補正できる。
 また、本実施形態の単焦点光学系は、以下の条件式(1)を満足することが好ましい。
 0.75<SF11<3.5   (1)
 ここで、
 SF11=(RF11+RR11)/(RF11-RR11)であり、
 RF11は、拡大側レンズ成分における拡大側面の曲率半径、
 RR11は、拡大側レンズ成分における縮小側面の曲率半径、
である。
 条件式(1)の上限値を上回らないようにすることで、特に非点収差の補正が容易になる。条件式(1)の下限値を下回らないようにすることで、特に樽型の歪曲収差の補正が容易になる。
 ここで、条件式(1)に代えて、以下の条件式(1’)を満足するとより良い。
 0.85<SF11<3.0   (1’)
 また、条件式(1)に代えて、以下の条件式(1”)を満足するとなお良い。
 0.95<SF11<2.7   (1”)
 また、本実施形態の単焦点光学系は、第1副群の接合レンズの拡大側に、縮小側レンズ成分を有し、縮小側レンズ成分の形状は、拡大側に凸面を向けたメニスカス形状であり、以下の条件式(2)を満足することが好ましい。
 1.4<SF12<15   (2)
 ここで、
 SF12=(RF12+RR12)/(RF12-RR12)であり、
 RF12は、縮小側レンズ成分における拡大側面の曲率半径、
 RR12は、縮小側レンズ成分における縮小側面の曲率半径、
である。
 条件式(2)の上限値を上回らないようにするか、又は条件式(2)の下限値を下回らないようにすることで、口径比を大きくすると共に、画角を広くしても、球面収差とコマ収差とをバランスよく補正することが容易になる。
 ここで、条件式(2)に代えて、以下の条件式(2’)を満足するとより良い。
 1.6<SF12<10   (2’)
 また、条件式(2)に代えて、以下の条件式(2”)を満足するとなお良い。
 1.8<SF12<8.0   (2”)
 また、本実施形態の単焦点光学系は、以下の条件式(3)を満足することが好ましい。
 -15<SF13<-2.0   (3)
 ここで、
 SF13=(RF13+RR13)/(RF13-RR13)であり、
 RF13は、第1副群の接合レンズにおける拡大側面の曲率半径、
 RR13は、第1副群の接合レンズにおける縮小側面の曲率半径、
である。
 条件式(3)の上限値を上回らないようにするか、又は条件式(3)の下限値を下回らないようにすることで、口径比を大きくすると共に、画角を広くしても、球面収差とコマ収差とをバランスよく補正することが容易になる。
 ここで、条件式(3)に代えて、以下の条件式(3’)を満足するとより良い。
 -12<SF13<-2.5   (3’)
 また、条件式(3)に代えて、以下の条件式(3”)を満足するとなお良い。
 -10<SF13<-3.0   (3”)
 また、本実施形態の単焦点光学系では、複数の正レンズ成分は、最も拡大側に位置する前側正レンズ成分と、最も縮小側に位置する後側正レンズ成分と、を有し、以下の条件式(4)を満足することが好ましい。
 0.10<SF14-SF15<7.0   (4)
 ここで、
 SF14=(RF14+RR14)/(RF14-RR14)、
 SF15=(RF15+RR15)/(RF15-RR15)であり、
 RF14は、前側正レンズ成分における拡大側面の曲率半径、
 RR14は、前側正レンズ成分における縮小側面の曲率半径、
 RF15は、後側正レンズ成分における拡大側面の曲率半径、
 RR15は、後側正レンズ成分における縮小側面の曲率半径、
である。
 第1レンズ群において、複数の正レンズ成分が配置されている位置では、軸上光線高が高くなっている。そのため、複数の正レンズ成分における各レンズ成分の形状は、像全体の鮮鋭性に影響のある球面収差の補正に関係が深い。
 また、この軸上光線束は、複数の正レンズ成分の拡大側では発散状態になっている。複数の正レンズ成分では、発散状態を収斂状態に転じさせるために、各正レンズ成分のシェーピングファクターが拡大側から縮小側にて負の方向になるように、正レンズ成分の各々を並べるのがよい。そして、複数の正レンズ成分のうち、両端に位置する正レンズ成分のシェーピングファクターの差がある適当な値をとることが必要である。
 条件式(4)の上限値を上回らないようにするか、又は条件式(4)の下限値を下回らないようにすることで、口径比を大きくすると共に、画角を広くしても、球面収差を補正することが容易になる。
 ここで、条件式(4)に代えて、以下の条件式(4’)を満足するとより良い。
 0.30<SF14-SF15<6.0   (4’)
 また、条件式(4)に代えて、以下の条件式(4”)を満足するとなお良い。
 0.45<SF14-SF15<5.5   (4”)
 また、本実施形態の単焦点光学系では、第2副群は、1つの負レンズ成分のみで構成され、以下の条件式(5)を満足することが好ましい。
 0.80<SF16<4.0   (5)
 ここで、
 SF16=(RF16+RR16)/(RF16-RR16)であり、
 RF16は、第2副群の負レンズ成分における拡大側面の曲率半径、
 RR16は、第2副群の負レンズ成分における縮小側面の曲率半径、
である。
 インナーフォーカスを用いる場合には、収差変動が問題となる。インナーフォーカスにおいて、光軸上を移動する群を第2副群にすると、収差変動を最も少なくできる。よって、安定したフォーカスが行える。更に、条件式(5)を満足することで、収差変動を十分に抑えることができる。
 条件式(5)の上限値を上回らないようにすることで、非点収差の変動の増大を抑えることができる。条件式(5)の下限値を下回らないようにすることで、球面収差の変動の増大を抑えることができる。
 ここで、条件式(5)に代えて、以下の条件式(5’)を満足するとより良い。
 0.85<SF16<3.0   (5’)
 また、条件式(5)に代えて、以下の条件式(5”)を満足するとなお良い。
 0.90<SF16<2.5   (5”)
 また、本実施形態の単焦点光学系では、第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、第1副群は、最も縮小側に縮小側正レンズ成分を有し、縮小側正レンズ成分は正の単レンズであり、第2副群は負レンズ成分のみから構成され、横軸をNd1PR、及び縦軸をνd1PRとする直交座標系において、Nd1PR=α×νd1PR+β1PR、但し、α=-0.01、で表される直線を設定したときに、以下の条件式(11)の範囲の下限値β1PR=2.25であるときの直線で定まる領域と、以下の条件式(12)及び(13)で定まる領域との両方の領域に、縮小側正レンズ成分のNd1PR及びνd1PRが含まれることが好ましい。
 2.25≦β1PR   (11)
 1.40<Nd1PR   (12)
 35<νd1PR   (13)
 ここで、
 Nd1PRは、縮小側正レンズ成分の屈折率、
 νd1PRは、縮小側正レンズ成分のアッベ数、
である。
 第1副群において、複数の正レンズ成分が配置されている位置では、軸上光線高が高くなっている。そのため、複数の正レンズ成分では、特に、軸上色収差や球面収差の色収差が発生しやすい。
 縮小側正レンズ成分は、第1副群において最も縮小側に位置している。この位置は、第1副群の接合レンズから最も離れた位置である。
 第1レンズ群の小型化と軽量化のためには、縮小側正レンズ成分を単レンズにて構成することが好ましい。ただし、縮小側正レンズ成分が配置されている位置では、上述のように色収差が発生し易い。そこで、縮小側正レンズ成分を単レンズで構成する場合、この縮小側正レンズ成分の屈折率とアッベ数が、条件式(11)、(12)、(13)で決まる領域に含まれるようにする。このようにすることで、軸上色収差や球面収差の色収差の発生を抑えることができる。
 また、本実施形態の単焦点光学系では、第2副群は1つの負レンズ成分からなり、第2副群である負レンズ成分は単レンズであり、横軸をNd1NR、及び縦軸をνd1NRとする直交座標系において、Nd1NR=α×νd1NR+β1NR、但し、α=-0.01、で表される直線を設定したときに、以下の条件式(14)の範囲の下限値β1NR=2.15であるときの直線で定まる領域と、以下の条件式(15)及び(16)で定まる領域との両方の領域に、第2副群の負レンズ成分のNd1NR及びνd1NRが含まれることが好ましい。
 2.15≦β1NR   (14)
 1.45<Nd1NR   (15)
 25<νd1NR   (16)
 ここで、
 Nd1NRは、第2副群の負レンズ成分の屈折率、
 νd1NRは、第2副群の負レンズ成分のアッベ数、
である。
 第2副群がフォーカス時に移動する場合、色収差の変動の小さいことが望まれる。第2副群の負レンズ成分の屈折率とアッベ数が、条件式(14)、(15)、(16)で決まる領域に含まれるようにする。このようにすることで、軸上色収差、倍率色収差、球面収差の色収差、あるいは色コマの発生を抑えることができる。
 また、本実施形態の単焦点光学系では、第1レンズ群は、最も拡大側に拡大側レンズ成分を有し、以下の条件式(A)を満足することが好ましい。
 0<f/eN1F<2   (A)
 ここで、
 fは、無限遠物体合焦時の単焦点光学系全系の焦点距離、
 eN1Fは、第1レンズ群の拡大側レンズ成分における最大有効口径、
である。
 条件式(A)の上限値を上回ると、画角を広げることが困難になる。すなわち、画角を広げようとすると、球面収差、歪曲収差及び非点収差が発生し易い。一方、条件式(A)の下限値を下回ると、光学系が径方向に大型化し易い。
 ここで、条件式(A)に代えて、以下の条件式(A’)を満足すると良い。
 0.1<f/eN1F<1.5   (A’)
 また、条件式(A)に代えて、以下の条件式(A’’)を満足するとなお良い。
 0.2<f/eN1F<1   (A’’)
 また、本実施形態の単焦点光学系では、開口絞りを有し、以下の条件式(B)を満足することが好ましい。
 0<(f/eAS)/Fno<2   (B)
 ここで、
 fは、無限遠物体合焦時の単焦点光学系全系の焦点距離、
 eASは、開口絞りの最大直径、
 Fnoは、無限遠物体合焦時の単焦点光学系全系のFナンバー、
である。
 条件式(B)の上限値を上回ると、画角を広くすることが困難になる。すなわち、画角を広げようとすると、球面収差と色収差の補正が困難になる。一方、条件式(B)の下限値を下回ると、光学系が径方向に大型化し易い。
 ここで、条件式(B)に代えて、以下の条件式(B’)を満足すると良い。
 0.2<(f/eAS)/Fno<1   (B’)
 また、条件式(B)に代えて、以下の条件式(B’’)を満足するとなお良い。
 0.3<(f/eAS)/Fno<0.9   (B’’)
 また、本実施形態の単焦点光学系は、以下の条件式(C)を満足することが好ましい。
 0<Tair_max/Σd≦0.27   (C)
 ここで、
 Tair_maxは、単焦点光学系の最も拡大側に位置する面から最も縮小側に位置する面までの間で最も大きい軸上空気間隔、
 Σdは、単焦点光学系の最も拡大側に位置する面から最も縮小側に位置する面までの軸上間隔、
である。
 条件式(C)は、高い光学性能の確保、光学系の全長の短縮化及び結像光学系の外径の小径化に有利となる条件式である。
 レンズ同士の空気間隔を適度に広くすることは、光学性能の向上に繋がる。ただし、Σd、すなわち、単焦点光学系の最も拡大側に位置するレンズ面から最も縮小側に位置するレンズ面までの軸上間隔に対して、レンズ同士の空気間隔を過剰に広げて光学性能を確保することは、光学系の全長の増加と光学系の大口径化につながり易い。
 そこで、条件式(C)を満足することで、光学系の全長の短縮化と小径化を行いつつ、高い光学性能の実現に必要なレンズ枚数の確保に有利となる。
 ここで、条件式(C)に代えて、以下の条件式(C’)を満足すると良い。
 0.03<Tair_max/Σd≦0.2(C’)
 また、条件式(C)に代えて、以下の条件式(C’’)を満足するとなお良い。
 0.07<Tair_max/Σd≦0.18(C’’)
 また、本実施形態の光学装置は、光学系と、縮小側に配置された撮像素子と、を有し、
 撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、光学系が上述の単焦点光学系であることを特徴とする。
 本実施形態の光学装置によれば、広い撮影範囲を、低ノイズ、高解像度で撮像することができる。
 また、本実施形態の光学装置は、光学系と、縮小側に配置された表示素子と、を有し、
 表示素子は表示面を有し、表示面上に表示された画像は、光学系によって拡大側に投影され、光学系が上述の単焦点光学系であることを特徴とする。
 本実施形態の光学装置によれば、広い投影範囲に、低ノイズ、高解像度で像を投影することができる。
 なお、上述の単焦点光学系や光学装置は、複数の構成を同時に満足してもよい。このようにすることが、良好な単焦点光学系や光学装置を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値又は下限値のみを限定しても構わない。
 以下に、単焦点光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 以下、単焦点光学系の実施例1~4を図面に基づいて説明する。実施例1~4の単焦点光学系は、いずれもFナンバーが1.5を下回る単焦点光学系である。
 図1(a)~図4(a)は、各実施例の単焦点光学系におけるレンズ断面図を示している。なお、レンズ断面図は、無限遠物体合焦時のレンズ断面図である。
 また、図1(b)~図4(b)は、各実施例の単焦点光学系における球面収差(SA)を示し、図1(c)~図4(c)は非点収差(AS)を示し、図1(d)~図4(d)は歪曲収差(DT)を示し、図1(e)~図4(e)は歪曲収差(DT)を示している。なお、各収差図は、無限遠物体合焦時の収差図である。また“ω”は半画角を表している。
 また、各実施例のレンズ断面図では、第1レンズ群をG1、第2レンズ群をG2、カバーガラスをC、像面をIで示してある。
 また、図示しないが、第2レンズ群G2と像面Iとの間に、ローパスフィルタを構成する平行平板が配置されていても良い。なお、平行平板の表面に、赤外光を制限する波長域制限コートを施しても良い。また、カバーガラスCの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCにローパスフィルタ作用を持たせるようにしてもよい。
 また、単焦点光学系を撮像に用いる場合、像面Iには撮像素子が配置される。一方、単焦点光学系を投影に用いる場合、像面Iには表示素子が配置される。各実施例の構成の説明では、単焦点光学系を撮像に用いることを前提に説明する。よって、拡大側を物体側、縮小側を像側とする。
 実施例1に係る単焦点光学系について説明する。図1(a)は、実施例1に係る単焦点光学系のレンズ断面図である。図1(b)、(c)、(d)及び(e)は実施例1に係る単焦点光学系の収差図である。
 実施例1に係る単焦点光学系は、図1(a)に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、で構成されている。第1レンズ群G1は開口絞りSを含んでいる。
 第1レンズ群G1は、第1副群と、第2副群と、で構成されている。第1副群は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、で構成されている。第2副群は、物体側に凸面を向けた負メニスカスレンズL9で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。また、両凹負レンズL5と両凸正レンズL6とが接合されている。
 第2レンズ群G2は、両凸正レンズL10と、両凸正レンズL11と、両凹負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、で構成されている。ここで、両凸正レンズL11と両凹負レンズL12とが接合されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL9が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL9の両面と、の合計4面に設けられている。
 次に、実施例2に係る単焦点光学系について説明する。図2(a)は、実施例2に係る単焦点光学系のレンズ断面図である。図2(b)、(c)、(d)及び(e)は実施例2に係る単焦点光学系の収差図である。
 実施例2に係る単焦点光学系は、図2(a)に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、で構成されている。第1レンズ群G1は開口絞りSを含んでいる。
 第1レンズ群G1は、第1副群と、第2副群と、で構成されている。第1副群は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、で構成されている。第2副群は、物体側に凸面を向けた負メニスカスレンズL9で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。また、両凹負レンズL5と両凸正レンズL6とが接合されている。
 第2レンズ群G2は、両凸正レンズL10と、両凸正レンズL11と、両凹負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、で構成されている。ここで、両凸正レンズL11と両凹負レンズL12とが接合されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL9が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL9の両面と、の合計4面に設けられている。
 次に、実施例3に係る単焦点光学系について説明する。図3(a)は、実施例3に係る単焦点光学系のレンズ断面図である。図3(b)、(c)、(d)及び(e)は実施例3に係る単焦点光学系の収差図である。
 実施例3に係る単焦点光学系は、図3(a)に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、で構成されている。第1レンズ群G1は開口絞りSを含んでいる。
 第1レンズ群G1は、第1副群と、第2副群と、で構成されている。第1副群は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、で構成されている。第2副群は、物体側に凸面を向けた負メニスカスレンズL9で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。また、両凹負レンズL5と両凸正レンズL6とが接合されている。
 第2レンズ群G2は、両凸正レンズL10と、両凸正レンズL11と、両凹負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、で構成されている。ここで、両凸正レンズL11と両凹負レンズL12とが接合されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL9が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL9の両面と、の合計4面に設けられている。
 次に、実施例4に係る単焦点光学系について説明する。図4(a)は、実施例4に係る単焦点光学系のレンズ断面図である。図4(b)、(c)、(d)及び(e)は実施例4に係る単焦点光学系の収差図である。
 実施例4に係る単焦点光学系は、図4(a)に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、で構成されている。第1レンズ群G1は開口絞りSを含んでいる。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、で構成されている。第2副群は、物体側に凸面を向けた負メニスカスレンズL9で構成されている。ここで、正メニスカスレンズL3と負メニスカスレンズL4とが接合されている。また、両凹負レンズL5と両凸正レンズL6とが接合されている。
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、両凹負レンズL12と、両凸正レンズL13と、で構成されている。ここで、両凸正レンズL11と両凹負レンズL12とが接合されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL9が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL9の両面に設けられている。
 次に、上記各実施例の単焦点光学系を構成する光学部材の数値データを掲げる。なお、各実施例の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッベ数、*印は非球面である。また、各種データにおいて、fは単焦点光学系全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高、FBはバックフォーカス、f1、f2…は各レンズ群の焦点距離である。なお、全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。バックフォーカスは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、角度の単位は°(度)である。また、無限遠は無限遠物体合焦時、近距離は近距離物体合焦時を表す。また、近距離における値は、物体から像までの距離である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10
 また、非球面係数において、「e-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位  mm
 
面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      45.946      1.50     1.48749    70.23
      2      14.406      9.15
      3*    130.753      1.20     1.58313    59.38
      4*     27.135      0.76
      5      28.653      6.18     2.00069    25.46
      6     -33.821      1.20     1.58144    40.75
      7      20.407      5.07
      8     -25.734      1.20     1.80518    25.42
      9      25.000      6.18     1.69680    55.53
     10     -35.122      0.20
     11      63.389      5.66     1.72916    54.68
     12     -31.891      0.70
     13(絞り)  ∞        0.40
     14      35.850      2.94     1.49700    81.61
     15     244.348      可変
     16*     92.337      1.20     1.85400    40.39
     17*     25.577      可変
     18      54.229      4.71     1.59522    67.74
     19     -43.438      0.20
     20      30.927      5.69     2.00100    29.13
     21     -89.137      1.20     1.80518    25.42
     22      18.359      1.76
     23      36.962      2.79     1.72916    54.68
     24    1389.522     11.49
     25        ∞        2.66     1.51633    64.14
     26        ∞        1.00
   像面        ∞
 
非球面データ
第3面
k=0.000
A4=-1.99067e-05,A6=6.32029e-09,A8=-1.75482e-10
第4面
k=0.000
A4=-5.57900e-06,A6=-7.59483e-09,A8=-1.60555e-10
第16面
k=0.000
A4=-2.38100e-06,A6=4.81486e-09,A8=-7.43803e-14
第17面
k=0.000
A4=3.21789e-06,A6=3.58266e-09,A8=7.48716e-12
 
各種データ
    f                17.27
    FNO.           1.29
    2ω              72.96
    IH              11.15
    FB(in air)      14.25
    全長(in air)      86.58
 
                  無限遠    近距離
      d15          2.62      6.20
      d17          9.83      6.25
      
各群焦点距離
f1=132.31   f2=26.68
数値実施例2
単位  mm
 
面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      40.000      1.50     1.48749    70.23
      2      14.959     10.01
      3*    284.838      1.20     1.49700    81.61
      4*     24.501      1.55
      5      30.509      6.26     2.00069    25.46
      6     -32.686      1.30     1.58144    40.75
      7      22.918      4.80
      8     -27.864      1.20     1.85478    24.80
      9      25.040      6.47     1.69680    55.53
     10     -34.741      0.20
     11      55.767      5.17     1.72916    54.68
     12     -35.759      0.20
     13      36.555      3.19     1.43875    94.93
     14    4229.057      0.62
     15(絞り)  ∞        可変
     16*    112.818      1.20     1.85400    40.39
     17*     25.701      可変
     18      70.785      3.81     1.72916    54.68
     19     -48.006      0.20
     20      28.778      5.11     2.00100    29.13
     21     -53.599      1.20     1.85478    24.80
     22      18.702      1.95
     23      38.612      2.63     1.72916    54.68
     24   13210.087     11.35
     25        ∞        2.66     1.51633    64.14
     26        ∞        1.00
   像面        ∞
 
非球面データ
第3面
k=0.000
A4=-1.98270e-05,A6=-1.62289e-08,A8=-6.87416e-11
第4面
k=0.000
A4=-4.30732e-06,A6=-4.24639e-08,A8=-4.55491e-11
第16面
k=0.000
A4=-1.79188e-06,A6=1.11638e-10
第17面
k=0.000
A4=3.97297e-06,A6=-1.99307e-10
 
各種データ
    f                17.27
    FNO.           1.29
    2ω              72.65
    IH              11.15
    FB(in air)      14.11
    全長(in air)      86.46
 
                  無限遠    近距離
      d15          3.41      6.92
      d17          9.16      5.65
 
各群焦点距離
f1=145.14   f2=25.48
数値実施例3
単位  mm
 
面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1    1822.498      1.50     1.48749    70.23
      2      24.046      4.33
      3*    104.293      1.20     1.49700    81.61
      4*     85.426      0.40
      5      33.165      6.73     2.00069    25.46
      6     -41.379      1.20     1.58144    40.75
      7      21.826      6.38
      8     -26.782      1.20     1.85478    24.80
      9      25.731      7.42     1.69680    55.53
     10     -36.641      0.20
     11      52.705      5.13     1.72916    54.68
     12     -51.343      0.20
     13      46.341      3.42     1.43875    94.93
     14    -290.158      0.60
     15(絞り)  ∞        可変
     16*     70.509      1.20     1.74320    49.34
     17*     24.442      可変
     18     466.560      3.82     1.72916    54.68
     19     -36.184      0.20
     20      22.789      5.31     2.00100    29.13
     21    -224.725      1.20     1.85478    24.80
     22      16.310      2.53
     23      40.941      1.79     1.72916    54.68
     24      84.296     11.94
     25        ∞        2.66     1.51633    64.14
     26        ∞        1.00
   像面        ∞
 
非球面データ
第3面
k=0.000
A4=-1.20042e-05,A6=2.38213e-09,A8=-2.73467e-12
第4面
k=0.000
A4=-5.23359e-07,A6=7.45881e-09,A8=1.61344e-11
第16面
k=0.000
A4=-1.14003e-05,A6=1.53037e-08
第17面
k=0.000
A4=-7.07063e-06,A6=7.53398e-09
 
各種データ
    f                24.59
    FNO.           1.29
    2ω              51.63
    IH              11.15
    FB(in air)      14.70
    全長(in air)      86.58
 
                  無限遠    近距離
      d15          3.40      9.24
      d17         12.53      6.69
 
各群焦点距離
f1=119.93   f2=31.32
数値実施例4
単位  mm
 
面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1     848.636      1.50     1.48749    70.23
      2      26.057      1.34
      3      30.008      4.14     2.00100    29.13
      4      79.152      0.40
      5      31.332      3.61     2.00069    25.46
      6      72.289      1.50     1.58144    40.75
      7      14.571     10.23 
      8     -26.712      1.50     1.85478    24.80
      9      34.227      8.21     1.69680    55.53
     10     -37.482      0.20
     11      52.231      5.56     1.69680    55.53
     12     -44.033      0.20
     13      30.054      3.96     1.43875    94.93
     14     169.005      1.03
     15(絞り)  ∞        可変 
     16*   1643.120      1.20     1.74320    49.34
     17*     24.933      可変
     18    -933.181      3.97     1.72916    54.68
     19     -31.002      0.20
     20      22.554      5.95     2.00100    29.13
     21    -178.529      1.20     1.85478    24.80
     22      17.042      2.82
     23      59.139      2.97     1.72916    54.68
     24    -698.477     11.56
     25        ∞        2.66     1.51633    64.14
     26        ∞        1.00
   像面        ∞
 
非球面データ
第16面
k=0.000
A4=-1.06473e-05,A6=2.88989e-08,A8=-8.90399e-12
第17面
k=0.000
A4=-2.82395e-06,A6=9.74767e-09,A8=1.85663e-12
 
各種データ
    f                25.77
    FNO.           1.29
    2ω              48.87
    IH              11.15
    FB(in air)      14.31
    全長(in air)      88.04
 
                  無限遠    近距離
      d15          2.90      7.95
      d17          9.15      4.10
 
各群焦点距離
f1=515.10   f2=25.80
 次に、各実施例における条件式(1)~(5)、(11)~(16)、(A)~(C)の値を掲げる。-(ハイフン)は対応値がないことを示す。
条件式          実施例1      実施例2      実施例3
(1)SF11           1.913         2.195         1.027
(2)SF12           5.950         7.039         4.850
(3)SF13          -6.483        -9.103        -6.433
(4)SF14-SF15       1.674         1.236         0.738
(5)SF16           1.766         1.590         2.061
(11)β1PR          2.313         2.388         2.388
(12)Nd1PR          1.497         1.43875       1.43875
(13)νd1PR        81.61         94.93         94.93
(14)β1NR          2.258         2.258         2.276
(15)Nd1NR          1.854         1.854         1.72916
(16)νd1NR        40.39         40.39         54.68
(A)f/eN1F          0.5423631     0.5218127     0.7857366
(B)(f/eAS)/Fno    0.5729585     0.6086666     0.7636523
(C)Tair_max/Σd     0.1359051     0.1383453     0.1743081
 
条件式          実施例4
(1)SF11           1.063
(2)SF12           2.739
(3)SF13          -5.960
(4)SF14-SF15       1.518
(5)SF16           1.031
(11)β1PR          2.388
(12)Nd1PR          1.43875
(13)νd1PR        94.93
(14)β1NR          2.237
(15)Nd1NR          1.7432
(16)νd1NR        49.34
(A)f/eN1F          0.7343145
(B)(f/eAS)/Fno    0.8667391
(C)Tair_max/Σd     0.1388118
 本実施形態の光学装置としては、例えば、撮像装置や投影装置がある。以下、撮像装置と投影装置の具体例を説明する。
 図5は、撮像装置としての一眼ミラーレスカメラの断面図である。図5において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影光学系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
 そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例1~4に示した単焦点光学系が用いられる。
 図6、図7は、撮像装置の構成の概念図を示す。図6は撮像装置としての一眼ミラーレスカメラ40の外観を示す前方斜視図、図7は同後方斜視図である。この一眼ミラーレスカメラ40の撮影光学系41に、上記実施例1~4に示した単焦点光学系が用いられている。
 この実施形態の一眼ミラーレスカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、一眼ミラーレスカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1の単焦点光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記憶手段に記録することができる。
 図8は、一眼ミラーレスカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
 図8に示すように、一眼ミラーレスカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
 上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
 操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、一眼ミラーレスカメラ40全体を制御する。
 CCD49は、撮像駆動回路16により駆動制御され、撮影光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
 CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
 一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
 記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
 表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
 このように構成された一眼ミラーレスカメラ40では、撮影光学系41として本発明の単焦点光学系を採用することで、広い撮影範囲を、低ノイズ、高解像度で撮像することができる。なお、本発明の単焦点光学系は、クイックリターンミラーを持つタイプの撮像装置にも用いることができる。
 図9は、投影装置としてのプロジェクタの断面図である。図9に示すように、プロジェクタ100は、光源部110と、照明部120と、画像形成部130と、投射部140と、を有する。
 光源部110は、光源111と反射部材112とを有する。光源111からは照明光が出射する。照明光は白色光である。照明光は反射部材112で反射され、照明部120に入射する。
 照明部120は、第1のダイクロイックミラー121と、第2のダイクロイックミラー122と、第3のダイクロイックミラー123と、第1の反射部材124と、第2の反射部材125と、を有する。
 第1のダイクロイックミラー121では、赤色の波長域の光(以下、「赤色光」という)が透過され、それ以外の波長域の光は反射される。第2のダイクロイックミラー122では、緑色の波長域の光(以下、「緑色光」という)が反射され、それ以外の波長域の光は透過される。第3のダイクロイックミラー123では、青色の波長域の光(以下、「青色光」という)が反射され、それ以外の波長域の光は透過される。赤色光、緑色光および青色光は、画像形成部130に入射する。なお、第3のダイクロイックミラー123の代わりに、通常の平面反射鏡を用いても良い。
 画像形成部130は、第1の表示素子131と、第2の表示素子132と、第3の表示素子133と、を有する。
 第1の表示素子131には、第1の反射部材124を介して赤色光が照射される。第2の表示素子132には緑色光が照射される。第3の表示素子133には、第2の反射部材125を介して青色光が照射される。
 ここで、第1の表示素子131、第2の表示素子132及び第3の表示素子133には、同じ画像が表示されている。よって、第1の表示素子131では赤色の画像が表示され、第2の表示素子132では緑色の画像が表示され、第3の表示素子133では青色の画像が表示される。
 第1の表示素子131、第2の表示素子132及び第3の表示素子133から出射した光は、投射部140に入射する。
 投射部140は、ダイクロイックプリズム141と、投影光学系142と、を有する。
 第1の表示素子131、第2の表示素子132及び第3の表示素子133から出射した光は、ダイクロイックプリズム141で合成される。上述のように、画像形成部130では、赤色の画像、緑色の画像及び青色の画像が表示されている。ダイクロイックプリズム141によって、3つの画像が合成される。
 投影光学系142は、合成された3つの画像を所定の位置に投影する。この投影光学系142に、例えば上記実施例1~4に示した単焦点光学系が用いられている。
 なお、画像形成部130は、DMD(デジタルミラーデバイス)等のライトバルブとしても良い。この場合、光源部110からの光をライトバルブで反射させ、ライトバルブからの画像を、投射部140にて拡大投影するように構成すれば良い。
 このように構成されたプロジェクタ100では、投影光学系142として本発明の単焦点光学系を採用することで、広い投影範囲に、低ノイズ、高解像度で像を投影することができる。
 以上のように、本発明に係る単焦点光学系は、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された単焦点光学系に適している。また、本発明に係る光学装置は、広い撮影範囲を、低ノイズ、高解像度で撮像する撮像装置や、広い投影範囲に、低ノイズ、高解像度で像を投影する投影装置に適している。
 G1 第1レンズ群
 G2 第2レンズ群
 S 明るさ(開口)絞り
 I 像面
 1 一眼ミラーレスカメラ
 2 撮影光学系
 3 鏡筒のマウント部
 4 撮像素子面
 5 バックモニタ
 12 操作部
 13 制御部
 14、15 バス
 16 撮像駆動回路
 17 一時記憶メモリ
 18 画像処理部
 19 記憶媒体部
 20 表示部
 21 設定情報記憶メモリ部
 22 バス
 24 CDS/ADC部
 40 一眼ミラーレスカメラ
 41 撮影光学系
 42 撮影用光路
 45 シャッターボタン
 47 液晶表示モニター
 49 CCD
 100 プロジェクタ
 110 光源部
 111 光源
 112 反射部材
 120 照明部
 121 第1のダイクロイックミラー
 122 第2のダイクロイックミラー
 123 第3のダイクロイックミラー
 124 第1の反射部材
 125 第2の反射部材
 130 画像形成部
 131 第1の表示素子
 132 第2の表示素子
 133 第3の表示素子
 140 投射部
 141 ダイクロイックプリズム
 142 投影光学系

Claims (25)

  1.  距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する単焦点光学系であって、
     前記単焦点光学系は、拡大側から順に、
     第1レンズ群と、
     正の屈折力を有する第2レンズ群と、から構成され、
     レンズ成分は、単レンズ又は接合レンズであり、
     前記第1レンズ群は、最も縮小側に縮小側負レンズ成分を有し、
     更に、前記第1レンズ群は、前記縮小側負レンズ成分を含めて3つ以上の負レンズ成分を有し、
     前記第2レンズ群は、拡大側から順に、第1正レンズと、第2正レンズと、第1負レンズと、第3正レンズと、からなり、
     前記第2レンズ群内の全ての空気間隔は、フォーカス時あるいは変倍時に一定であることを特徴とする単焦点光学系。
  2.  前記第2正レンズと前記第1負レンズとは互いに接合されていることを特徴とする請求項1の単焦点光学系。
  3.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  4.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第2副群は負レンズ成分のみから構成され、
     前記第2副群は、縮小側に凹面を向けたメニスカス形状の負レンズ成分を含むことを特徴とする請求項1又は2に記載の単焦点光学系。
  5.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、       
     前記第2副群は負レンズ成分のみから構成され、
     前記第2副群が光軸上を移動することにより合焦を行うことを特徴とする請求項1又は2に記載の単焦点光学系。
  6.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、最も縮小側に縮小側正レンズ成分を有し、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  7.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第2副群は負レンズ成分のみから構成され、
     フォーカス時に、前記第1副群と前記第2副群との間隔、及び前記第2副群と前記第2レンズ群との間隔が変化することを特徴とする請求項1又は2に記載の単焦点光学系。
  8.  前記第1副群と前記第2レンズ群はフォーカス時には固定であることを特徴とする請求項7に記載の単焦点光学系。
  9.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、最も拡大側に拡大側レンズ成分を有し、
     前記拡大側レンズ成分は負の単レンズであり、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  10.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、接合レンズを含み、
     前記第1副群の前記接合レンズは、拡大側から順に、負レンズと正レンズとからなり、
     前記第1副群の前記接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  11.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、接合レンズと、縮小側レンズ成分と、を含み、
     前記第1副群の前記接合レンズは、拡大側から順に、負レンズと正レンズとからなり、
     前記第1副群の前記接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、
     前記縮小側レンズ成分は、前記第1副群の前記接合レンズの拡大側に、前記第1副群の前記接合レンズと隣接して配置され、
     前記縮小側レンズ成分の形状は、拡大側に凸面を向けたメニスカス形状であり、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  12.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第2副群は1つの負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  13.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、拡大側から順に、接合レンズと、複数の正レンズ成分と、を含み、
     前記複数の正レンズ成分は、隣り合う全ての正レンズ成分を含み、
     前記第1副群の前記接合レンズは、拡大側から順に、負レンズと正レンズとからなり、
     前記第1副群の前記接合レンズの形状は、拡大側に凹面を向けたメニスカス形状であり、
     前記第2副群は負レンズ成分のみから構成されていることを特徴とする請求項1又は2に記載の単焦点光学系。
  14.  以下の条件式(1)を満足することを特徴とする請求項9に記載の単焦点光学系。
     0.75<SF11<3.5   (1)
     ここで、
     SF11=(RF11+RR11)/(RF11-RR11)であり、
     RF11は、前記拡大側レンズ成分における拡大側面の曲率半径、
     RR11は、前記拡大側レンズ成分における縮小側面の曲率半径、
    である。
  15.  前記第1副群の前記接合レンズの拡大側に、縮小側レンズ成分を有し、
     前記縮小側レンズ成分の形状は、拡大側に凸面を向けたメニスカス形状であり、
     以下の条件式(2)を満足することを特徴とする請求項10に記載の単焦点光学系。
     1.4<SF12<15   (2)
     ここで、
     SF12=(RF12+RR12)/(RF12-RR12)であり、
     RF12は、前記縮小側レンズ成分における拡大側面の曲率半径、
     RR12は、前記縮小側レンズ成分における縮小側面の曲率半径、
    である。
  16.  以下の条件式(3)を満足することを特徴とする請求項10に記載の単焦点光学系。
     -15<SF13<-2.0   (3)
     ここで、
     SF13=(RF13+RR13)/(RF13-RR13)であり、
     RF13は、前記第1副群の前記接合レンズにおける拡大側面の曲率半径、
     RR13は、前記第1副群の前記接合レンズにおける縮小側面の曲率半径、
    である。
  17.  前記複数の正レンズ成分は、最も拡大側に位置する前側正レンズ成分と、最も縮小側に位置する後側正レンズ成分と、を有し、
     以下の条件式(4)を満足することを特徴とする請求項13に記載の単焦点光学系。
     0.10<SF14-SF15<7.0   (4)
     ここで、
     SF14=(RF14+RR14)/(RF14-RR14)、
     SF15=(RF15+RR15)/(RF15-RR15)であり、
     RF14は、前記前側正レンズ成分における拡大側面の曲率半径、
     RR14は、前記前側正レンズ成分における縮小側面の曲率半径、
     RF15は、前記後側正レンズ成分における拡大側面の曲率半径、
     RR15は、前記後側正レンズ成分における縮小側面の曲率半径、
    である。
  18.  前記第2副群は、1つの負レンズ成分のみで構成され、
     以下の条件式(5)を満足することを特徴とする請求項5に記載の単焦点光学系。
     0.80<SF16<4.0   (5)
     ここで、
     SF16=(RF16+RR16)/(RF16-RR16)であり、
     RF16は、前記第2副群の前記負レンズ成分における拡大側面の曲率半径、
     RR16は、前記第2副群の前記負レンズ成分における縮小側面の曲率半径、
    である。
  19.  前記第1レンズ群は、拡大側から順に、第1副群と第2副群と、からなり、
     前記第1副群は、最も縮小側に縮小側正レンズ成分を有し、
     前記縮小側正レンズ成分は正の単レンズであり、
     前記第2副群は負レンズ成分のみから構成され、
     横軸をNd1PR、及び縦軸をνd1PRとする直交座標系において、
     Nd1PR=α×νd1PR+β1PR、但し、α=-0.01、で表される直線を設定したときに、
     以下の条件式(11)の範囲の下限値β1PR=2.25であるときの直線で定まる領域と、以下の条件式(12)及び(13)で定まる領域との両方の領域に、前記縮小側正レンズ成分のNd1PR及びνd1PRが含まれることを特徴とする請求項1に記載の単焦点光学系。
     2.25≦β1PR   (11)
     1.40<Nd1PR   (12)
     35<νd1PR   (13)
     ここで、
     Nd1PRは、前記縮小側正レンズ成分の屈折率、
     νd1PRは、前記縮小側正レンズ成分のアッベ数、
    である。
  20.  前記第2副群は1つの負レンズ成分からなり、前記第2副群である前記負レンズ成分は単レンズであり、
     横軸をNd1NR、及び縦軸をνd1NRとする直交座標系において、
     Nd3PF=α×νd1NR+β1NR、但し、α=-0.01、で表される直線を設定したときに、
     以下の条件式(14)の範囲の下限値β1NR=2.15であるときの直線で定まる領域と、以下の条件式(15)及び(16)で定まる領域との両方の領域に、前記第2副群の前記負レンズ成分のNd1NR及びνd1NRが含まれることを特徴とする請求項7又は8に記載の単焦点光学系。
     2.15≦β1NR   (14)
     1.45<Nd1NR   (15)
     25<νd1NR   (16)
     ここで、
     Nd1NRは、前記第2副群の前記負レンズ成分の屈折率、
     νd1NRは、前記第2副群の前記負レンズ成分のアッベ数、
    である。
  21.  前記第1レンズ群は、最も拡大側に拡大側レンズ成分を有し、
     以下の条件式(A)を満足することを特徴とする請求項1乃至20のいずれか一項に記載の単焦点光学系。
     0<f/eN1F<2   (A)
     ここで、
     fは、無限遠物体合焦時の前記単焦点光学系全系の焦点距離、
     eN1Fは、前記第1レンズ群の前記拡大側レンズ成分における最大有効口径、
    である。
  22.  開口絞りを有し、
     以下の条件式(B)を満足することを特徴とする請求項1乃至21のいずれか一項に記載の単焦点光学系。
     0<(f/eAS)/Fno<2   (B)
     ここで、
     fは、無限物体合焦時の前記単焦点光学系全系の焦点距離、
     eASは、前記開口絞りの最大直径、
     Fnoは、無限物体合焦時の前記単焦点光学系全系のFナンバー、
    である。
  23.  以下の条件式(C)を満足することを特徴とする請求項1乃至22のいずれか一項に記載の単焦点光学系。
     0<Tair_max/Σd≦0.27   (C)
     ここで、
     Tair_maxは、前記単焦点光学系の最も拡大側に位置する面から最も縮小側に位置する面までの間で最も大きい軸上空気間隔、
     Σdは、前記単焦点光学系の最も拡大側に位置する面から最も縮小側に位置する面までの軸上間隔、
    である。
  24.  光学系と、縮小側に配置された撮像素子と、を有し、
     前記撮像素子は撮像面を有し、且つ前記光学系によって前記撮像面上に形成された像を電気信号に変換し、
     前記光学系が請求項1乃至23のいずれか一項に記載の単焦点光学系であることを特徴とする光学装置。
  25.  光学系と、縮小側に配置された表示素子と、を有し、
     前記表示素子は表示面を有し、
     前記表示面上に表示された画像は、前記光学系によって拡大側に投影され、
     前記光学系が請求項1乃至23のいずれか一項に記載の単焦点光学系であることを特徴とする光学装置。
PCT/JP2015/065798 2015-06-01 2015-06-01 単焦点光学系及びそれを備えた光学装置 WO2016194110A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/065798 WO2016194110A1 (ja) 2015-06-01 2015-06-01 単焦点光学系及びそれを備えた光学装置
US15/800,347 US10191258B2 (en) 2015-06-01 2017-11-01 Single-focus optical system and optical apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065798 WO2016194110A1 (ja) 2015-06-01 2015-06-01 単焦点光学系及びそれを備えた光学装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/800,347 Continuation US10191258B2 (en) 2015-06-01 2017-11-01 Single-focus optical system and optical apparatus using the same

Publications (1)

Publication Number Publication Date
WO2016194110A1 true WO2016194110A1 (ja) 2016-12-08

Family

ID=57440934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065798 WO2016194110A1 (ja) 2015-06-01 2015-06-01 単焦点光学系及びそれを備えた光学装置

Country Status (2)

Country Link
US (1) US10191258B2 (ja)
WO (1) WO2016194110A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194112A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
JP6546656B2 (ja) * 2015-06-01 2019-07-17 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
WO2016194113A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
WO2016194111A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349719A (ja) * 1986-08-20 1988-03-02 Olympus Optical Co Ltd ズ−ムレンズ
JPH02232613A (ja) * 1989-03-07 1990-09-14 Konica Corp コンパクトなズームレンズ
JPH04246606A (ja) * 1991-01-31 1992-09-02 Copal Co Ltd 超広角レンズ
JPH06289295A (ja) * 1993-04-07 1994-10-18 Olympus Optical Co Ltd ズームレンズ
JPH08327902A (ja) * 1995-06-01 1996-12-13 Nikon Corp ズームレンズ
JP2007079108A (ja) * 2005-09-14 2007-03-29 Fujinon Corp 2群ズーム投影レンズおよび投写型表示装置
JP2007127989A (ja) * 2005-11-07 2007-05-24 Pentax Corp 大口径ズームレンズ系
JP2008070450A (ja) * 2006-09-12 2008-03-27 Canon Inc ズームレンズ
JP2013025255A (ja) * 2011-07-25 2013-02-04 Ricoh Co Ltd 広角レンズおよび全天球型撮像装置
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978150A (en) 1995-06-01 1999-11-02 Nikon Corporation Zoom lens
JP4217040B2 (ja) 2002-09-10 2009-01-28 株式会社コシナ 大口径広角レンズ
US7123421B1 (en) * 2005-04-22 2006-10-17 Panavision International, L.P. Compact high performance zoom lens system
JP5111056B2 (ja) 2007-10-30 2012-12-26 キヤノン株式会社 光学系及びそれを有する撮像装置
EP2149808B1 (en) * 2008-08-02 2015-11-25 Ricoh Company, Ltd. Retrofocus type of imaging lens
JP5441377B2 (ja) 2008-08-07 2014-03-12 キヤノン株式会社 単焦点光学系及びそれを有する撮像装置
JP5476881B2 (ja) 2008-09-18 2014-04-23 株式会社ニコン 広角レンズ、光学装置、広角レンズのフォーカシング方法
JP5399175B2 (ja) 2009-09-09 2014-01-29 コニカミノルタ株式会社 広角レンズ,撮像光学装置及びデジタル機器
JP2011209377A (ja) * 2010-03-29 2011-10-20 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
JP2012226309A (ja) 2011-04-07 2012-11-15 Panasonic Corp インナーフォーカスレンズ、交換レンズ装置及びカメラシステム
JP5587513B2 (ja) * 2011-11-01 2014-09-10 富士フイルム株式会社 対物光学系およびこれを用いた内視鏡装置
US9019621B2 (en) * 2011-11-11 2015-04-28 Olympus Corporation Objective optical system and observation apparatus provided with the same
KR102018812B1 (ko) * 2012-05-22 2019-09-05 삼성전자주식회사 망원렌즈 시스템
WO2016194113A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
WO2016194111A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
JP6546656B2 (ja) * 2015-06-01 2019-07-17 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置
WO2016194112A1 (ja) * 2015-06-01 2016-12-08 オリンパス株式会社 単焦点光学系及びそれを備えた光学装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349719A (ja) * 1986-08-20 1988-03-02 Olympus Optical Co Ltd ズ−ムレンズ
JPH02232613A (ja) * 1989-03-07 1990-09-14 Konica Corp コンパクトなズームレンズ
JPH04246606A (ja) * 1991-01-31 1992-09-02 Copal Co Ltd 超広角レンズ
JPH06289295A (ja) * 1993-04-07 1994-10-18 Olympus Optical Co Ltd ズームレンズ
JPH08327902A (ja) * 1995-06-01 1996-12-13 Nikon Corp ズームレンズ
JP2007079108A (ja) * 2005-09-14 2007-03-29 Fujinon Corp 2群ズーム投影レンズおよび投写型表示装置
JP2007127989A (ja) * 2005-11-07 2007-05-24 Pentax Corp 大口径ズームレンズ系
JP2008070450A (ja) * 2006-09-12 2008-03-27 Canon Inc ズームレンズ
JP2013025255A (ja) * 2011-07-25 2013-02-04 Ricoh Co Ltd 広角レンズおよび全天球型撮像装置
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置

Also Published As

Publication number Publication date
US20180052310A1 (en) 2018-02-22
US10191258B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
US9952416B2 (en) Imaging optical system and optical apparatus including the same
JP6558838B2 (ja) 単焦点光学系及びそれを備えた光学装置
JP5750729B2 (ja) リアフォーカスレンズ系及びそれを備えた撮像装置
US10274705B2 (en) Single-focus optical system and optical apparatus using the same
US10197768B2 (en) Single focus optical system and optical apparatus using the same
JP6400104B2 (ja) 結像光学系及びそれを備えた光学装置
JP5638889B2 (ja) 撮像装置
JP2011123464A (ja) ズームレンズおよびそれを備えた撮像装置
JP2010002684A (ja) ズームレンズ及びそれを用いた撮像装置
JP2009036961A (ja) 2群ズームレンズ及びそれを用いた撮像装置
JP2010217478A (ja) ズームレンズ及びそれを備える撮像装置
JP2009037125A (ja) 3群ズームレンズ及びそれを備えた撮像装置
US10191253B2 (en) Single focus optical system and optical apparatus using the same
JP2006301154A (ja) ズームレンズとそれを用いた電子撮像装置
JP2009020324A (ja) 3群ズームレンズ及びそれを用いた撮像装置
US10191258B2 (en) Single-focus optical system and optical apparatus using the same
JP6511044B2 (ja) 複数の撮像光学系の製造方法
JP5613070B2 (ja) ズームレンズ及びそれを備えた撮像装置
WO2016021222A1 (ja) 結像光学系及びそれを備えた光学装置
JP6605120B2 (ja) 単焦点光学系及びそれを備えた光学装置
JP2012252253A (ja) ズームレンズ及びそれを有する撮像装置
JP5695433B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5638973B2 (ja) ズームレンズ及びそれを備えた撮像装置
WO2017130265A1 (ja) 単焦点光学系及びそれを備えた光学装置
JP2010060915A (ja) ズームレンズおよびそれを備えた撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP