WO2016194106A1 - ハイブリッド車両の発電制御装置 - Google Patents

ハイブリッド車両の発電制御装置 Download PDF

Info

Publication number
WO2016194106A1
WO2016194106A1 PCT/JP2015/065777 JP2015065777W WO2016194106A1 WO 2016194106 A1 WO2016194106 A1 WO 2016194106A1 JP 2015065777 W JP2015065777 W JP 2015065777W WO 2016194106 A1 WO2016194106 A1 WO 2016194106A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
engagement
clutch
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2015/065777
Other languages
English (en)
French (fr)
Inventor
月▲崎▼ 敦史
古閑 雅人
秀和 八木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112017025559-6A priority Critical patent/BR112017025559B1/pt
Priority to US15/572,810 priority patent/US10293811B2/en
Priority to KR1020177036182A priority patent/KR101849896B1/ko
Priority to PCT/JP2015/065777 priority patent/WO2016194106A1/ja
Priority to EP15894141.9A priority patent/EP3305612B1/en
Priority to MYPI2017704506A priority patent/MY169000A/en
Priority to JP2017521365A priority patent/JP6350750B2/ja
Priority to CA2987875A priority patent/CA2987875C/en
Priority to RU2017145589A priority patent/RU2660326C1/ru
Priority to MX2017015268A priority patent/MX361126B/es
Priority to CN201580080556.9A priority patent/CN107614338B/zh
Publication of WO2016194106A1 publication Critical patent/WO2016194106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/427Control of clutch touch point, e.g. kiss point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/946Characterized by control of driveline clutch

Definitions

  • the present invention relates to a power generation control device for a hybrid vehicle that generates electric power by an electric motor in response to a driving force from an internal combustion engine based on a power generation request while the vehicle is stopped.
  • a generation control device In a hybrid vehicle including an electric motor and an internal combustion engine as a motive power source, a generation control device generates idle power by driving the motor with the internal combustion engine and disconnecting the electric motor and a clutch connecting the internal combustion engine and driving wheels while stopping.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 1 has no preventive measures, leaving room for improvement.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a power generation control device for a hybrid vehicle that prevents an unintended engagement of a disengaged clutch during idle power generation.
  • the hybrid vehicle of the present invention includes an electric motor and an internal combustion engine as power sources, and a transmission that implements a plurality of shift speeds in the drive system from the power source to the drive wheels is mounted.
  • the transmission has an engaging clutch engaged and engaged by a stroke from the release position as a shift element for switching the shift position.
  • a power generation controller is provided which generates electric power by a motor in response to a power generation request and receiving driving force from an internal combustion engine.
  • the power generation controller operates the internal combustion engine in a rotational speed range in which the differential rotation speed of the engaged clutch being released becomes equal to or higher than a differential rotation threshold that is not engaged even by the stroke when idle power is generated by the motor while the vehicle is stopped.
  • the internal combustion engine is operated in a rotational speed range in which the differential rotation speed of the engaged clutch being released becomes equal to or higher than the differential rotation threshold which is not engaged even by the stroke. That is, during idle power generation, the differential rotation speed of the disengaged engagement clutch is maintained at or above the differential rotation threshold which is not engaged even by the stroke. As a result, during idle power generation, it is possible to prevent an unintended engagement of the releasing engagement clutch.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of a hybrid vehicle to which a power generation control device of an embodiment is applied.
  • FIG. 1 is a control system configuration diagram showing a configuration of a transmission control system of a multistage gear transmission mounted on a hybrid vehicle to which a power generation control device of an embodiment is applied.
  • FIG. 7 is a transmission pattern diagram showing a transmission pattern according to switching positions of three engaging clutches in the multi-stage gear transmission mounted on the hybrid vehicle to which the power generation control device of the embodiment is applied. It is a torque flow figure showing the flow of the engine torque in the multistage gear transmission under idle power generation control. It is a flowchart which shows the flow of the idle electric power generation control processing performed by the transmission control unit of an Example.
  • FIG. 1 It is a schematic diagram which shows the structure of the engagement clutch which connects an internal combustion engine and a driving wheel among the engagement clutches which the multistage gear transmission of the Example has. It is the elements on larger scale of the engagement clutch shown in FIG. It is the elements on larger scale which show the structure of the engagement clutch which connects an electric motor and a driving wheel among the engagement clutches which the multistage gear transmission of the Example has.
  • a power generation control device is a hybrid vehicle (one example of a hybrid vehicle) including a drive system component including one engine, two motor generators, and a multistage gear transmission having three engaging clutches. It is applied.
  • the configuration of the power generation control device of the hybrid vehicle in the embodiment is divided into “overall system configuration”, “shift control system configuration”, “shift pattern configuration”, “idle power generation control processing configuration”, and “engagement clutch configuration” Explain.
  • FIG. 1 shows a drive system and control system of a hybrid vehicle to which the power generation control device of the embodiment is applied.
  • the entire system configuration will be described based on FIG.
  • the drive system of the hybrid vehicle is a multistage gear having an internal combustion engine ICE, a first motor generator MG1 (electric motor), a second motor generator MG2, and three engaging clutches C1, C2, C3. And a transmission 1.
  • ICE is an abbreviation of "Internal-Combustion Engine”.
  • the internal combustion engine ICE is, for example, a gasoline engine, a diesel engine, or the like disposed in the front room of a vehicle with the direction of the crankshaft as the vehicle width direction.
  • the internal combustion engine ICE is connected to a transmission case 10 of the multistage gear transmission 1, and an internal combustion engine output shaft is connected to a first shaft 11 of the multistage gear transmission 1.
  • Internal combustion engine ICE basically starts MG2 using second motor generator MG2 as a starter motor. However, the starter motor 2 is left in preparation for the case where the MG 2 start using the high-power battery 3 can not be secured as in a very low temperature.
  • Each of the first motor generator MG1 and the second motor generator MG2 is a three-phase alternating current permanent magnet synchronous motor using the high voltage battery 3 as a common power source.
  • the stator of the first motor generator MG1 is fixed to the case of the first motor generator MG1, and the case is fixed to the transmission case 10 of the multistage gear transmission 1.
  • a first motor shaft integral with the rotor of the first motor generator MG1 is connected to the second shaft 12 of the multi-stage gear transmission 1.
  • the stator of the second motor generator MG 2 is fixed to the case of the second motor generator MG 2, and the case is fixed to the transmission case 10 of the multistage gear transmission 1.
  • the second motor shaft integral with the rotor of the second motor generator MG2 is connected to the sixth shaft 16 of the multistage gear transmission 1.
  • a first inverter 4 is connected to the stator coil of the first motor generator MG1 via the first AC harness 5 for converting direct current into three-phase alternating current during power running and converting three-phase alternating current into direct current during regeneration.
  • a second inverter 6 is connected to a stator coil of the second motor generator MG2 to convert direct current into three-phase alternating current during power running and convert three-phase alternating current into direct current during regeneration via the second AC harness 7.
  • the high-power battery 3 and the first inverter 4 and the second inverter 6 are connected by the DC harness 8 via the junction box 9.
  • the multi-stage gear transmission 1 is a normally meshed transmission having a plurality of gear pairs having different gear ratios, and is disposed parallel to each other in the transmission case 10, and provided with six gear shafts 11 to 16 provided with gears. , And three engaging clutches C1, C2, and C3 for selecting a gear pair.
  • As the gear shaft a first shaft 11, a second shaft 12, a third shaft 13, a fourth shaft 14, a fifth shaft 15, and a sixth shaft 16 are provided.
  • As the engagement clutch a first engagement clutch C1 (an engagement clutch for idle power generation), a second engagement clutch C2 and a third engagement clutch C3 (an engagement clutch) are provided.
  • the transmission case 10 is additionally provided with an electric oil pump 20 for supplying lubricating oil to bearing portions in the case and meshing portions of gears.
  • the first shaft 11 is a shaft to which the internal combustion engine ICE is connected, and the first gear 101, the second gear 102, and the third gear 103 are disposed on the first shaft 11 in order from the right side of FIG. .
  • the first gear 101 is provided integrally (including integrally fixed) with the first shaft 11.
  • the second gear 102 and the third gear 103 are free-wheeling gears in which bosses projecting in the axial direction are inserted on the outer periphery of the first shaft 11, and with respect to the first shaft 11 via the second engagement clutch C2. Drive connection is provided.
  • the second shaft 12 is a cylindrical shaft coaxially disposed with the first motor generator MG1 connected thereto and having its axis aligned with the outer position of the first shaft 11, and the second shaft 12 is the right side of FIG.
  • the fourth gear 104 and the fifth gear 105 are disposed in this order from the top.
  • the fourth gear 104 and the fifth gear 105 are provided integrally (including integrally fixed) with the second shaft 12.
  • the third shaft 13 is a shaft disposed on the output side of the multi-stage gear transmission 1, and the third gear 13 includes, in order from the right in FIG. 1, the sixth gear 106, the seventh gear 107, and the eighth gear. 108, a ninth gear 109, and a tenth gear 110 are disposed.
  • the sixth gear 106, the seventh gear 107, and the eighth gear 108 are provided integrally (including integrally fixed) with the third shaft 13.
  • the ninth gear 109 and the tenth gear 110 are free-wheeling gears in which bosses projecting in the axial direction are inserted on the outer periphery of the third shaft 13 and with respect to the third shaft 13 via the third engagement clutch C3. Drive connection is provided.
  • the sixth gear 106 meshes with the second gear 102 of the first shaft 11, the seventh gear 107 meshes with the sixteenth gear 116 of the differential gear 17, and the eighth gear 108 meshes with the third gear 103 of the first shaft 11.
  • the ninth gear 109 meshes with the fourth gear 104 of the second shaft 12, and the tenth gear 110 meshes with the fifth gear 105 of the second shaft 12.
  • the fourth shaft 14 is a shaft whose both ends are supported by the transmission case 10, and an eleventh gear 111, a twelfth gear 112, and a thirteenth gear 113 are provided on the fourth shaft 14 in order from the right side of FIG. Be placed.
  • the eleventh gear 111 is provided integrally (including integrally fixed) with the fourth shaft 14.
  • the twelfth gear wheel 112 and the thirteenth gear wheel 113 are free-wheeling gears in which axially projecting bosses are inserted on the outer periphery of the fourth shaft 14 and with respect to the fourth shaft 14 via the first engagement clutch C1. Drive connection is provided.
  • the eleventh gear 111 meshes with the first gear 101 of the first shaft 11
  • the twelfth gear 112 meshes with the second gear 102 of the first shaft 11
  • the thirteenth gear 113 is the fourth gear 104 of the second shaft 12. Engage with.
  • the fifth shaft 15 is a shaft whose both ends are supported by the transmission case 10, and a fourteenth gear 114 meshing with the eleventh gear 111 of the fourth shaft 14 is integrally provided (including integral fixing).
  • the sixth shaft 16 is a shaft to which the second motor generator MG2 is connected, and a fifteenth gear 115 meshing with the fourteenth gear 114 of the fifth shaft 15 is integrally provided (including integrally fixed).
  • the second motor generator MG2 and the internal combustion engine ICE are mechanically connected by a gear train formed of a fifteenth gear 115, a fourteenth gear 114, an eleventh gear 111, and a first gear 101, which mesh with each other.
  • This gear train serves as a reduction gear train that reduces the MG2 rotational speed at the time of MG2 start of the internal combustion engine ICE by the second motor generator MG2, and generates MG2 at the time of MG2 power generation that generates the second motor generator MG2 by driving the internal combustion engine ICE. It becomes an accelerating gear train that accelerates the number.
  • the first engagement clutch C1 is interposed between the twelfth gear 112 and the thirteenth gear 113 of the fourth shaft 14, and is engaged by the meshing stroke in the rotation synchronization state by not having the synchronization mechanism. Dog clutch.
  • the first engagement clutch C1 is in the left engagement position (Left)
  • the fourth shaft 14 and the thirteenth gear 113 are drivingly connected.
  • the first engagement clutch C1 is in the neutral position (N)
  • the fourth shaft 14 and the twelfth gear 112 are released, and the fourth shaft 14 and the thirteenth gear 113 are released.
  • the first engagement clutch C1 is in the right engagement position (Right)
  • the fourth shaft 14 and the twelfth gear 112 are drivingly connected.
  • the second engagement clutch C2 is interposed between the second gear 102 and the third gear 103 of the first shaft 11, and is engaged by the meshing stroke in the rotation synchronization state by not having the synchronization mechanism. Dog clutch.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the left engagement position (Left), the first shaft 11 and the third gear 103 are drivingly connected.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the neutral position (N), the first shaft 11 and the second gear 102 are released, and the first shaft 11 and the third gear 103 are released.
  • the second engagement clutch C2 is in the right engagement position (Right), the first shaft 11 and the second gear 102 are drivingly connected.
  • the third engagement clutch C3 is interposed between the ninth gear 109 and the tenth gear 110 of the third shaft 13, and is engaged by the meshing stroke in the rotation synchronization state by not having the synchronization mechanism. Dog clutch.
  • the third engagement clutch C3 is in the left engagement position (Left)
  • the third shaft 13 and the tenth gear 110 are drivingly connected.
  • the third engagement clutch C3 is in the neutral position (N)
  • the third shaft 13 and the ninth gear 109 are released, and the third shaft 13 and the tenth gear 110 are released.
  • the third engagement clutch C3 is in the right engagement position (Right)
  • the third shaft 13 and the ninth gear 109 are drivingly connected.
  • the sixteenth gear 116 meshing with the seventh gear 107 provided integrally (including integrally fixed) to the third shaft 13 of the multi-stage gear transmission 1 is connected to the left and right via the differential gear 17 and the left and right drive shafts 18. Is connected to the drive wheel 19 of FIG.
  • the control system of the hybrid vehicle includes a hybrid control module 21, a motor control unit 22, a transmission control unit 23, and an engine control unit 24.
  • the hybrid control module 21 (abbreviation: "HCM”) is an integrated control unit that has a function of appropriately managing the energy consumption of the entire vehicle.
  • the hybrid control module 21 is connected to another control unit (a motor control unit 22, a transmission control unit 23, an engine control unit 24 or the like) and a CAN communication line 25 so as to allow bidirectional information exchange.
  • the “CAN” of the CAN communication line 25 is an abbreviation of “Controller Area Network”.
  • the motor control unit 22 (abbreviation: "MCU”) performs powering control, regeneration control, and the like of the first motor generator MG1 and the second motor generator MG2 according to control commands to the first inverter 4 and the second inverter 6.
  • MCU motor control unit 22
  • torque control performs control to make the actual motor torque follow the target motor torque when the target motor torque to be shared with the target driving force is determined.
  • the target motor rotational speed to rotate and synchronize the clutch input / output rotational speed is determined.
  • Control is performed to output the FB torque so that the rotational speed converges to the target motor rotational speed.
  • the transmission control unit 23 (abbreviation: "TMCU”) outputs a current command to the electric actuators 31, 32, 33 (see FIG. 2) based on predetermined input information, thereby changing the speed of the multistage gear transmission 1. Perform shift control to switch patterns.
  • the engagement clutches C1, C2, and C3 are selectively engaged and disengaged, and a gear pair involved in power transmission is selected from a plurality of gear pairs.
  • the rotational frequency FB control rotational synchronization control
  • the engine control unit 24 (abbreviation: "ECU”) outputs a control command to the motor control unit 22, an ignition plug, a fuel injection actuator or the like based on predetermined input information to control start of the internal combustion engine ICE or internal combustion. It performs stop control and fuel cut control of the engine ICE.
  • the multistage gear transmission 1 of the embodiment is characterized in that efficiency is improved by reducing drag by adopting engagement clutches C1, C2, C3 (dog clutches) by meshing engagement as a transmission element. Then, when there is a shift request for engaging and engaging any of the engagement clutches C1, C2 and C3, the differential rotation speed of the clutch input / output is set to the first motor generator MG1 (at the time of engagement of the engagement clutch C3) or the second motor The rotation is synchronized by the generator MG2 (at the time of engagement of the engagement clutches C1 and C2), and the gear shift is realized by starting the meshing stroke when the rotational speed falls within the synchronous determination rotational speed range.
  • the transmission control system includes a first engagement clutch C1, a second engagement clutch C2 and a third engagement clutch C3 as engagement clutches.
  • a first electric actuator 31, a second electric actuator 32, and a third electric actuator 33 are provided.
  • a first engagement clutch operation mechanism 41, a second engagement clutch operation mechanism 42, and a third engagement clutch operation mechanism 43 are provided as mechanisms for converting the actuator operation into a clutch engagement / release operation.
  • a transmission control unit 23 is provided as a control means of the first electric actuator 31, the second electric actuator 32 and the third electric actuator 33.
  • the first engagement clutch C1, the second engagement clutch C2 and the third engagement clutch C3 have a neutral position (N: release position), a left engagement position (left: left clutch engagement engagement position), and a right engagement position (Right: right clutch engagement engagement position).
  • the engagement clutches C1, C2 and C3 all have the same configuration, and include coupling sleeves 51, 52 and 53, left dog clutch rings 54, 55 and 56, and right dog clutch rings 57, 58 and 59.
  • the coupling sleeves 51, 52, 53 are provided so as to be axially strokeable by spline connection via a hub (not shown) fixed to the fourth shaft 14, the first shaft 11, and the third shaft 13, It has dog teeth 51a, 51b, 52a, 52b, 53a, 53b with flat top surfaces on both sides.
  • fork grooves 51c, 52c and 53c are provided at circumferentially central portions of the coupling sleeves 51, 52 and 53, respectively.
  • the left dog clutch rings 54, 55 and 56 are fixed to the bosses of the respective gears 113, 103 and 110 which are left idle gears of the engaged clutches C1, C2 and C3 and have flat top surfaces facing the dog teeth 51a, 52a and 53a. Dog teeth 54a, 55a, 56a.
  • the right dog clutch rings 57, 58, 59 are fixed to the bosses of the gears 112, 102, 109, which are the right freewheels of the engaged clutches C1, C2, C3, and have flat top surfaces facing the dog teeth 51b, 52b, 53b. Dog teeth 57b, 58b, and 59b according to FIG.
  • the first engagement clutch operation mechanism 41, the second engagement clutch operation mechanism 42, and the third engagement clutch operation mechanism 43 perform rotational operations of the electric actuators 31, 32, and 33 by using coupling sleeves 51, 52, and 53, respectively. It is a mechanism to convert into the axial stroke motion of
  • the respective engaging clutch operating mechanisms 41, 42, 43 have the same configuration, and are provided with rotating links 61, 62, 63, shift rods 64, 65, 66 and shift forks 67, 68, 69.
  • One end of the turning links 61, 62, 63 is provided on the actuator shaft of the electric actuator 31, 32, 33, and the other end is connected to the shift rods 64, 65, 66 so as to be relatively displaceable.
  • the shift rods 64, 65, 66 are provided with springs 64a, 65a, 66a at rod dividing positions, and can be expanded or contracted according to the magnitude and direction of the rod transmission force.
  • One end of the shift forks 67, 68, 69 is fixed to the shift rods 64, 65, 66, and the other end is disposed in the fork grooves 51c, 52c, 53c of the coupling sleeves 51, 52, 53.
  • the transmission control unit 23 includes a vehicle speed sensor 71, an accelerator opening sensor 72, a transmission output shaft rotational speed sensor 73, an engine rotational speed sensor 74, an MG1 rotational speed sensor 75, an MG2 rotational speed sensor 76, an inhibitor switch 77, etc. Input sensor signal and switch signal from.
  • the transmission output shaft rotational speed sensor 73 is provided at an end of the third shaft 13 and detects the rotational speed of the third shaft 13.
  • a position servo control unit (for example, a position servo system based on PID control) that controls engagement and disengagement of the engagement clutches C1, C2, and C3 determined by the positions of the coupling sleeves 51, 52, and 53 is provided.
  • the position servo control unit receives sensor signals from the first sleeve position sensor 81, the second sleeve position sensor 82, and the third sleeve position sensor 83. Then, the sensor values of the respective sleeve position sensors 81, 82, 83 are read, and the electric currents are supplied to the electric actuators 31, 32, 33 so that the positions of the coupling sleeves 51, 52, 53 become the fastening position or release position by the meshing stroke. give. That is, the idle gear is brought into the engaged state in the meshing position where both the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are in mesh with each other. 14, drivingly connected to the first shaft 11 and the third shaft 13.
  • the multi-stage gear transmission 1 of the embodiment reduces power transmission loss by not having a rotational difference absorbing element such as a fluid coupling, and reduces the ICE gear by performing motor assist of the internal combustion engine ICE, thereby making the system compact (EV It is characterized in that the gear position: 1-2 speed, ICE gear position: 1-4 speed).
  • a typical transmission pattern configuration of the multistage gear transmission 1 will be described based on FIG.
  • FIG. 3 A shift pattern that can be obtained by the multi-stage gear transmission 1 having the engagement clutches C1, C2, C3 is shown in FIG. Note that “Lock” in FIG. 3 represents an interlock pattern not established as a shift pattern, “EV-” represents a state in which the first motor generator MG1 is not drivingly connected to the drive wheel 19, and “ICE- “Represents that the internal combustion engine ICE is not drivingly connected to the drive wheel 19. Further, in the shift control, it is not necessary to use all of the shift patterns shown in FIG. 3, and it is of course possible to select from these shift patterns as needed. Each shift pattern will be described below.
  • the shift pattern of "EV- ICEgen” is selected at the time of stopping, at the time of MG1 idle power generation generated by the first motor generator MG1 by the internal combustion engine ICE, or at the double idle power generation of MG1 power generation plus MG2 power generation It is a pattern.
  • the shift pattern of “Neutral” is a pattern selected at the time of MG2 idle power generation generated by the second motor generator MG2 by the internal combustion engine ICE while the vehicle is stopped.
  • FIG. 4 is a diagram showing the flow of ICE torque of the internal combustion engine ICE in the multistage gear transmission 1 at the time of the above-described MG1 idle power generation (during the shift pattern of “EV-ICEgen”).
  • the ICE torque is calculated from the internal combustion engine ICE from the first shaft 11 ⁇ the first gear 101 ⁇ the eleventh gear 111 ⁇ the fourth shaft 14 ⁇ the thirteenth gear 113 ⁇
  • the current flows from the fourth gear 104 to the second shaft 12 to the first motor generator MG1.
  • the transmission pattern of “EV1st ICE-” is a pattern of “EV mode” in which the internal combustion engine ICE is stopped and traveled by the first motor generator MG1 or while power generation is performed by the second motor generator MG2 by the internal combustion engine ICE.
  • 10 is a pattern of “series HEV mode” in which the 1st-speed EV traveling is performed by the first motor generator MG1.
  • the first engagement clutch C1 is switched from the “N” position to the “left” position based on deceleration due to lack of driving force. In this case, the vehicle shifts to “parallel HEV mode (first gear)” traveling according to the “EV1st ICE1st” shift pattern in which the driving force is secured.
  • the shift speeds shown in FIG. 3 can be established in accordance with the positions of the first, second, and third engagement clutches C1, C2, and C3.
  • the contents of each shift pattern are not directly related to the subject matter of the present invention, and thus further detailed description will be omitted.
  • FIG. 5 shows a flow of idle power generation control processing executed by the transmission control unit 23 (start controller) of the embodiment.
  • start controller the transmission control unit 23
  • step S1 it is determined whether the vehicle is at a stop. Since the idle power generation control is executed while the vehicle is stopped, the process proceeds to step S2 in the case of YES (during vehicle stop), and in the case of NO (during vehicle travel), the following steps are skipped and the program is ended.
  • step S2 it is determined whether there is an idle power generation request.
  • the presence or absence of the idle power generation request is determined based on a signal from a switch (not shown) operable by the driver, the battery remaining charge SOC (State of Charge) of the high-power battery 3, and the like.
  • step S2 When the determination in step S2 is NO (for example, the SOC is equal to or higher than the threshold value), it is not necessary to execute the idle power generation control, so the following processing is skipped and the program is ended.
  • step S2 if the determination in step S2 is YES (with idle power generation request), the process proceeds to step S3, and a shift pattern (EV-ICEgen) at idle power generation is established. That is, the first engagement clutch C1 is switched to the "Left" position, the second engagement clutch C2 is switched to the "N" position, and the third engagement clutch C3 is switched to the "N" position.
  • a shift pattern EV-ICEgen
  • step S4 the internal combustion engine ICE is started, its rotational speed is increased, and the process proceeds to step S5.
  • step S5 it is determined whether or not the input / output differential rotation speed of the second engagement clutch C2 connecting the internal combustion engine ICE and the drive wheel 19 is equal to or greater than a threshold (differential rotation threshold).
  • the differential rotation threshold is set to such a value that it can be determined that the second engagement clutch C2 can not be engaged even if the second electric actuator 32 is driven to make the second engagement clutch C2 stroke. That is, in the meshing type engagement clutch, when the input / output differential rotation speed is large, even if the dog teeth (meshing teeth) are brought close to each other, the dog teeth can not be meshed (engaged with the clutch).
  • the rotational speed of the internal combustion engine ICE is increased, thereby rotating the elements connected to the internal combustion engine ICE, thereby making the input / output of the second engagement clutch C2.
  • the difference rotational speed is increased to a threshold value or more.
  • the differential rotation threshold value is based on the shape (pitch width, backlash size, etc.) of dog teeth to be engaged, the stroke speed of the electric actuators 32, 33 driving the engagement clutches C2, C3, etc. It is determined by experiments.
  • steps S4 to S5 are repeatedly executed until the determination in step S5 is YES (C2 input / output differential rotation ⁇ differential rotation threshold).
  • step S5 determines whether or not the input / output differential rotation speed of the third engagement clutch C3 connecting the first motor generator MG1 and the drive wheel 19 is a threshold (differential rotation threshold) or more To judge.
  • the threshold value is set to such a value that it can be determined that the third engagement clutch C3 can not be engaged even if the third electric actuator 33 is driven to make the third engagement clutch C3 stroke.
  • steps S4 to S6 are also repeatedly executed until the determination in step S6 is YES (C3 input / output differential rotation ⁇ differential rotation threshold).
  • step S6 determines whether the determination in step S6 is YES. If the determination in step S6 is YES, the process proceeds to step S7, where idle power generation is started, and idle power generation is continued until it is determined in step S8 that idle power generation is completed.
  • step S7 idle power generation is started, and idle power generation is continued until it is determined in step S8 that idle power generation is completed.
  • the driving range (D, R) is changed by the driver.
  • FIG. 6 is a schematic view showing dog teeth 52a, 52b, 55a, 58b of the second engagement clutch C2 according to the embodiment, and FIG. 7 is a partially enlarged view thereof.
  • FIG. 8 is a partially enlarged view showing dog teeth 53a, 53b, 56a of the third engagement clutch C3 in an enlarged manner.
  • Arrows in the drawing indicate the rotational directions of the coupling sleeves 52 and 53 of the second and third engagement clutches C2 and C3. Since the second engagement clutch C2 is rotated by the internal combustion engine ICE, it rotates only in one direction at all times. On the other hand, the third engagement clutch C3 is rotated by the first motor generator MG1, and the rotational direction is reversed between forward and reverse.
  • FIG. 6 and 7 show the case where the second engagement clutch C2 of the embodiment is switched to the "Left" position.
  • the tip of the dog teeth 52a and the dog teeth 55a facing the dog teeth 52a It collides with the tip.
  • the corner 52a1 located on the rotational direction side of the coupling sleeve 52 and the coupling between the two corners 55a1 and 55a2 at the tip of the opposite dog tooth 55a
  • the corner 55a2 opposite to the rotational direction of the sleeve 52 collides with the second engagement clutch C2 when engaging and engaging.
  • the collision force generated by the collision of the corner portions 52a1 and 55a2 of the dog teeth 52a and 55a is converted into an axial force of the first shaft 11 supporting the second engagement clutch C2.
  • the above-described collision force is converted into an axial force in which the dog teeth 52a and 55a are separated from each other.
  • the rotational direction is reversed between forward and reverse. That is, the collision parts of the opposing dog teeth 53a and 56a differ between forward and reverse. Therefore, in the third engagement clutch C3, the shapes of the two corner portions 53a1 and 53a2 and 56a1 and 56a2 at the tips of the dog teeth 53a and 56a are arc surfaces.
  • the dog teeth 53b and the dog teeth 59b which collide with each other when the third engagement clutch C3 is switched to the "Right" position, are similarly configured. Further, depending on the ease of processing the dog tooth shape, etc., the shapes of the two corner portions 52a1, 52a2 and 55a1, 55a2 of the second engagement clutch C2 may be arc surfaces as in the third engagement clutch C3.
  • the operation of the power generation control device of the hybrid vehicle of the embodiment will be described by being divided into “generation control processing operation”, “feature operation of generation control”, and “engagement clutch operation”.
  • step S3 the internal combustion engine ICE and the first motor generator MG1 are connected by switching the first engagement clutch C1 to the "Left" position. Further, during idle power generation, in order to prevent the internal combustion engine ICE from moving the vehicle, the second and third engagement clutches C2 and C3 connecting the internal combustion engine ICE and the drive wheel 19 are released.
  • the rotational speed of the internal combustion engine ICE is increased until the input / output differential rotational speeds of the second and third engagement clutches C2, C3 become equal to or greater than the differential rotational speed threshold (steps S4 to S6).
  • the second and third engagement clutches C2 and C3 are intended by the abnormality of the second and third electric actuators 32 and 33 for causing the second and third engagement clutches C2 and C3 to travel to the engagement / release position. Even when the vehicle travels toward the fastening position, it is possible to prevent the second and third engagement clutches C2 and C3 from being engaged.
  • step S7 When the input / output differential rotation speed of each of the second and third engagement clutches C2 and C3 becomes equal to or more than the threshold value, the process proceeds to step S7 to start idle power generation, and idle power generation until it is determined that the request for idle power Execute control. That is, in the embodiment, the idle power generation control is executed only when it is determined that the input and output rotational speeds of the second and third engagement clutches C2 and C3 are equal to or greater than the threshold.
  • the second and third engagement clutches that couple the internal combustion engine ICE and the drive wheel 19 during execution of the idle power generation control It is possible to prevent C2 and C3 from unintentionally fastening. Therefore, it is possible to prevent the vehicle from unintentionally moving up during execution of the idle power generation control.
  • the internal combustion engine ICE when executing the idle power generation control, the internal combustion engine ICE is operated such that the input / output differential rotation speed of the second and third engagement clutches C2, C3 becomes equal to or higher than the differential rotation threshold. This makes it possible to prevent the second and third engagement clutches C2 and C3 from engaging unintentionally even when an abnormality occurs in the second and third electric actuators 32 and 33. Therefore, it is possible to prevent the vehicle from unintentionally moving during execution of the idle power generation control.
  • idle power generation is started by the first motor generator MG1. That is, after it is determined that the second and third engagement clutches C2 and C3 are unintentionally engaged and not engaged, idle power generation is started. Therefore, even if an abnormality occurs in the second and third electric actuators 32, 33 during execution of the idle power generation control, preventing the second and third engagement clutches C2, C3 from engaging unintentionally Can. Therefore, it is possible to prevent the vehicle from unintentionally moving during execution of the idle power generation control.
  • the first engagement clutch C1 connecting the internal combustion engine ICE and the first motor generator MG1 among the first to third engagement clutches C1, C2, C3 is used.
  • the internal combustion engine ICE After engaging and releasing the internal combustion engine ICE and the second and third engagement clutches C2 and C3 connecting the first motor generator MG1 and the drive wheel 19, the internal combustion engine ICE is started. That is, the first engagement clutch C1 is engaged to connect the internal combustion engine ICE and the first motor generator MG1 so that the first motor generator MG1 performs idle power generation by the rotation of the internal combustion engine ICE.
  • the internal combustion engine ICE is started for idle power generation by releasing the second and third engagement clutches C2 and C3 connecting the power source (the internal combustion engine ICE and the first motor generator MG1) and the drive wheel 19 It was configured so that the vehicle would not move even if it was Therefore, it is possible to prevent the vehicle from moving unintentionally at the start of the idle power generation control.
  • the second and third engagement clutches C2 and C3 are configured by a pair of dog teeth (for example, 52a and 55a) disposed to face each other, and the second and third engagement clutches C2 and C3 are When there is a differential rotation speed due to the operation of the internal combustion engine ICE between a pair of dog teeth (for example, 52a and 55a) during release, the tooth collision force in the meshing start area is set to dog teeth (for example, 52a and 55a). ) Has a dog tooth shape that converts it into axial forces that separate from each other.
  • the shape of the dog teeth is configured such that the collision force of the teeth can be converted from the rotation direction of the engagement clutches C2 and C3 to the axial direction (more precisely, the axial direction in which the dog teeth move away from each other). This makes it more difficult to mesh the dog teeth of the engagement clutches C2, C3. Therefore, the engagement clutches C2 and C3 can be effectively prevented from being engaged unintentionally. Further, since it becomes difficult to engage the second and third engagement clutches C2 and C3, it becomes possible to set the above-mentioned differential rotation threshold value to a smaller value.
  • the second and third engagement clutches C2 and C3 are configured to have a dog tooth shape in which an arc surface is formed on at least one of the tip portions (corners, for example 52a1 and 52a2) of the dog teeth.
  • the engagement start area of the second and third engagement clutches C2 and C3 it is possible to convert the tooth impact force of the opposing dog tooth tips in the axial direction in which the dog teeth are separated from each other. Therefore, unintentional engagement of the second and third engagement clutches C2 and C3 can be more effectively prevented.
  • a transmission (multi-stage gear transmission 1) including a motor (first motor generator MG1) and an internal combustion engine ICE as power sources and realizing a plurality of shift speeds in the drive system from the power source to the drive wheels 19 is mounted And
  • the transmission (multi-stage gear transmission 1) has an engagement clutch (second and third engagement clutches C2 and C3) engaged and engaged by a stroke from a release position as a shift element for switching the shift position.
  • a power generation controller transmission control unit 23 for transmitting the driving force from the internal combustion engine ICE to the electric motor based on the electric power generation request and generating electric power by the electric motor (first motor generator MG1).
  • the engagement clutch (second and third engagement clutches C2 and C3) is a clutch that couples the power source (first motor generator MG1 and internal combustion engine ICE) to the drive wheel 19, and
  • the power generation controller (transmission control unit 23) performs input / output of the engagement clutch (second and third engagement clutches C2 and C3) when the electric motor (first motor generator MG1) generates idle power while the vehicle is stopped.
  • the internal combustion engine ICE is operated such that the differential rotation speed is equal to or higher than a differential rotation threshold at which the engagement clutches (second and third engagement clutches C2 and C3) are not engaged (S4 to S6 in FIG. 5).
  • the idle power generation engagement clutch (the multistage gear transmission 1) is engaged and engaged by a stroke from the release position to connect the internal combustion engine ICE and the electric motor (the first motor generator MG1) Having a first engagement clutch C1),
  • the power generation controller (transmission control unit 23) engages the idle power generation engagement clutch (first engagement clutch C1) when there is an idle power generation request while the vehicle is stopped, and the engagement clutches (second and second clutches) After releasing the three-engagement clutch C2, C3), the internal combustion engine ICE is started (S3 to S4 in FIG. 5). That is, in addition to the effect of (2), idle power generation is performed only when it is determined that the second and third engagement clutches C2 and C3 are not unintentionally engaged.
  • the engagement clutch (the second and third engagement clutches C2 and C3) is constituted by a pair of dog teeth (for example, dog teeth 52a and 55a) disposed to face each other in the clutch portion, and the engagement
  • a tooth collision in the meshing start area It has a dog tooth shape that converts the force into an axial force that separates the dog teeth from one another (FIGS. 6-8). Therefore, in addition to the effects of (1) to (3), it becomes more difficult for the dog teeth of the engagement clutches C2 and C3 to mesh.
  • a transmission (multi-stage gear transmission 1) including a motor (first motor generator MG1) and an internal combustion engine ICE as power sources and realizing a plurality of gear stages in the drive system from the power source to the drive wheels is mounted
  • the transmission (multi-stage gear transmission 1) has an engagement clutch (second and third engagement clutches C2 and C3) engaged and engaged by a stroke from a release position as a shift element for switching the shift position.
  • the engagement clutches (second and third engagement clutches C2 and C3) connecting the power source and the drive wheel are released to receive the driving force from the internal combustion engine.
  • a power generation controller (transmission control unit 23) for idle power generation by the motor (first motor generator MG1) is provided.
  • the engagement clutch is constituted by a pair of dog teeth disposed so as to face each other in the clutch portion, and the engagement clutch (the second and third engagement clutches C2 and C3) is being released and the internal combustion engine ICE
  • the engagement clutch When there is a differential rotation speed between the pair of dog teeth by the operation of (1), it has a dog tooth shape that converts the tooth collision force in the meshing start area into an axial force where the pair of dog teeth separate from each other 6-8). Therefore, it is possible to effectively prevent the engagement clutches C2 and C3 from being engaged unintentionally. Further, since it becomes difficult to engage the second and third engagement clutches C2 and C3, it becomes possible to set the above-mentioned differential rotation threshold value to a smaller value.
  • the engagement clutch has a dog tooth shape in which an arc surface is formed on at least one of the tip portions (corners 52a1, 55a2, 53a1, 53a2, 56a1, 56a2, etc.) of the dog teeth (FIG. 6 to FIG. 8). Therefore, unintentional engagement of the second and third engagement clutches C2 and C3 can be more effectively prevented.
  • the differential rotation threshold may be different depending on the shape of the corresponding dog clutch, the stroke speed of the electric actuator, or the like.
  • the shape of the tip (corner) of the dog tooth is a circular arc surface.
  • any shape may be used as long as the tooth impact force between the pair of dog teeth can be converted into an axial force in which the dog teeth are separated from each other.
  • the shape may be a chamfered shape.
  • the radii of the arc surfaces of dog teeth (for example, 52b and 58b, 53b and 59b) which collide with each other may be the same or may be different from each other.
  • the power generation control device of the present invention is applied to a hybrid vehicle including, as a drive system component, one engine, two motor generators, and a multistage gear transmission having three engaging clutches. An example is shown. However, the power generation control device of the present invention can also be applied to a vehicle.
  • the multistage gear transmission 1 including the EV 1-2-th gear as the EV gear and the ICE 1-4-th gear as the ICE gear is applied.
  • the power generation control device of the present invention can be applied to any multi-stage gear transmission as long as idle power generation control can be executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

アイドル発電中、解放している係合クラッチの意図しない締結を防止するハイブリッド車両の発電制御装置を提供する。 アイドル発電するとき、動力源(第1モータジェネレータ(MG1)、内燃機関(ICE))と駆動輪とを連結する係合クラッチ(第2、第3係合クラッチ(C2,C3))の入出力差回転数が、前記係合クラッチ(第2、第3係合クラッチ(C2,C3))が締結しない差回転閾値以上となるように内燃機関(ICE)を運転する。

Description

ハイブリッド車両の発電制御装置
 本発明は、停車中の発電要求に基づき、内燃機関からの駆動力を受けて電動機によりアイドル発電するハイブリッド車両の発電制御装置に関する。
 従来から、動力源として電動機と内燃機関を備えたハイブリッド車両において、停車中に電動機及び内燃機関と駆動輪とを接続するクラッチを切断し、内燃機関でモータを駆動してアイドル発電する発電制御装置が知られている(例えば、特許文献1)。
特開2011-161939号公報
 特許文献1記載の装置の如く、アイドル発電中に電動機及び内燃機関と駆動輪とを接続するクラッチを切断しておけば、内燃機関で発生する駆動力によって車両が動き出すのを防ぐことができる。
 しかしながら、当該クラッチを締結・解放する動力(アクチュエータ等)に異常が発生し、アイドル発電中に当該クラッチを締結させる指令が出てしまうと、車両が突然動き出してしまう虞がある。この点について、特許文献1の装置は何ら防止策がとられておらず、改良の余地を残していた。
 本発明は、上記問題に着目してなされたもので、アイドル発電中、解放している係合クラッチの意図しない締結を防止するハイブリッド車両の発電制御装置を提供することを目的とする。
 上記目的を実現するため、本発明のハイブリッド車両は、動力源として電動機と内燃機関を備え、動力源から駆動輪までの駆動系に複数の変速段を実現する変速機が搭載される。
変速機は、変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有する。
 このハイブリッド車両において、発電要求に基づき、内燃機関からの駆動力を受けて電動機により発電する発電コントローラを設ける。
 発電コントローラは、停車中に電動機によりアイドル発電するとき、解放している係合クラッチの差回転数が、ストロークによっても締結しない差回転閾値以上になる回転数域で内燃機関を運転する。
 よって、停車中に電動機によりアイドル発電するとき、解放している係合クラッチの差回転数が、ストロークによっても締結しない差回転閾値以上になる回転数域で内燃機関が運転される。
 即ち、アイドル発電中、解放している係合クラッチの差回転数が、ストロークによっても締結しない差回転閾値以上に保たれる。
 この結果、アイドル発電中、解放している係合クラッチの意図しない締結を防止することができる。
実施例の発電制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。 実施例の発電制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。 実施例の発電制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において3つの係合クラッチの切り替え位置による変速パターンを示す変速パターン図である。 アイドル発電制御中の多段歯車変速機におけるエンジントルクの流れを示すトルクフロー図である。 実施例の変速機コントロールユニットで実行されるアイドル発電制御処理の流れを示すフローチャートである。 実施例の多段歯車変速機が有する係合クラッチのうち、内燃機関と駆動輪を連結する係合クラッチの構成を示す模式図である。 図6に示す係合クラッチの部分拡大図である。 実施例の多段歯車変速機が有する係合クラッチのうち、電動機と駆動輪を連結する係合クラッチの構成を示す部分拡大図である。
 以下、本発明のハイブリッド車両の発電制御装置を実現する最良の形態を、図面に示す実施例に基づいて説明する。
 まず、構成を説明する。
 実施例の発電制御装置は、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両(ハイブリッド車両の一例)に適用したものである。以下、実施例におけるハイブリッド車両の発電制御装置の構成を、「全体システム構成」、「変速制御系構成」、「変速パターン構成」、「アイドル発電制御処理構成」、「係合クラッチ構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例の発電制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す。以下、図1に基づき、全体システム構成を説明する。
 ハイブリッド車両の駆動系は、図1に示すように、内燃機関ICEと、第1モータジェネレータMG1(電動機)と、第2モータジェネレータMG2と、3つの係合クラッチC1,C2,C3を有する多段歯車変速機1と、を備えている。なお、「ICE」は「Internal-Combustion Engine」の略称である。
 前記内燃機関ICEは、例えば、クランク軸方向を車幅方向として車両のフロントルームに配置したガソリンエンジンやディーゼルエンジン等である。この内燃機関ICEは、多段歯車変速機1の変速機ケース10に連結されると共に、内燃機関出力軸が、多段歯車変速機1の第1軸11に接続される。なお、内燃機関ICEは、基本的に、第2モータジェネレータMG2をスタータモータとしてMG2始動する。但し、極低温時などのように強電バッテリ3を用いたMG2始動が確保できない場合に備えてスタータモータ2を残している。
 前記第1モータジェネレータMG1及び第2モータジェネレータMG2は、いずれも強電バッテリ3を共通の電源とする三相交流の永久磁石型同期モータである。第1モータジェネレータMG1のステータは、第1モータジェネレータMG1のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第1モータジェネレータMG1のロータに一体の第1モータ軸が、多段歯車変速機1の第2軸12に接続される。第2モータジェネレータMG2のステータは、第2モータジェネレータMG2のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第2モータジェネレータMG2のロータに一体の第2モータ軸が、多段歯車変速機1の第6軸16に接続される。第1モータジェネレータMG1のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第1インバータ4が、第1ACハーネス5を介して接続される。第2モータジェネレータMG2のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第2インバータ6が、第2ACハーネス7を介して接続される。強電バッテリ3と第1インバータ4及び第2インバータ6は、ジャンクションボックス9を介してDCハーネス8により接続される。
 前記多段歯車変速機1は、変速比が異なる複数の歯車対を有する常時噛み合い式変速機であり、変速機ケース10内に互いに平行に配置され、歯車が設けられる6つの歯車軸11~16と、歯車対を選択する3つの係合クラッチC1,C2,C3と、を備える。歯車軸としては、第1軸11と、第2軸12と、第3軸13と、第4軸14と、第5軸15と、第6軸16が設けられる。係合クラッチとしては、第1係合クラッチC1(アイドル発電用係合クラッチ)と、第2係合クラッチC2及び第3係合クラッチC3(係合クラッチ)が設けられる。なお、変速機ケース10には、ケース内の軸受け部分や歯車の噛み合い部分に潤滑オイルを供給する電動オイルポンプ20が付設される。
 前記第1軸11は、内燃機関ICEが連結される軸であり、第1軸11には、図1の右側から順に、第1歯車101、第2歯車102、第3歯車103が配置される。第1歯車101は、第1軸11に対して一体(一体化固定を含む)に設けられる。第2歯車102と第3歯車103は、軸方向に突出するボス部が第1軸11の外周に挿入される遊転歯車であり、第2係合クラッチC2を介し第1軸11に対して駆動連結可能に設けられる。
 前記第2軸12は、第1モータジェネレータMG1が連結され、第1軸11の外側位置に軸心を一致させて同軸配置された円筒軸であり、第2軸12には、図1の右側から順に、第4歯車104、第5歯車105が配置される。第4歯車104と第5歯車105は、第2軸12に対して一体(一体化固定を含む)に設けられる。
 前記第3軸13は、多段歯車変速機1の出力側に配置された軸であり、第3軸13には、図1の右側から順に、第6歯車106、第7歯車107、第8歯車108、第9歯車109、第10歯車110が配置される。第6歯車106と第7歯車107と第8歯車108は、第3軸13に対して一体(一体化固定を含む)に設けられる。第9歯車109と第10歯車110は、軸方向に突出するボス部が第3軸13の外周に挿入される遊転歯車であり、第3係合クラッチC3を介し第3軸13に対して駆動連結可能に設けられる。そして、第6歯車106は第1軸11の第2歯車102に噛み合い、第7歯車107はデファレンシャル歯車17の第16歯車116と噛み合い、第8歯車108は第1軸11の第3歯車103に噛み合う。第9歯車109は第2軸12の第4歯車104に噛み合い、第10歯車110は第2軸12の第5歯車105に噛み合う。
 前記第4軸14は、変速機ケース10に両端が支持された軸であり、第4軸14には、図1の右側から順に、第11歯車111、第12歯車112、第13歯車113が配置される。第11歯車111は、第4軸14に対して一体(一体化固定を含む)に設けられる。第12歯車112と第13歯車113は、軸方向に突出するボス部が第4軸14の外周に挿入される遊転歯車であり、第1係合クラッチC1を介し第4軸14に対して駆動連結可能に設けられる。そして、第11歯車111は第1軸11の第1歯車101に噛み合い、第12歯車112は第1軸11の第2歯車102と噛み合い、第13歯車113は第2軸12の第4歯車104と噛み合う。
 前記第5軸15は、変速機ケース10に両端が支持された軸であり、第4軸14の第11歯車111と噛み合う第14歯車114が一体(一体化固定を含む)に設けられる。
 前記第6軸16は、第2モータジェネレータMG2が連結される軸であり、第5軸15の第14歯車114と噛み合う第15歯車115が一体(一体化固定を含む)に設けられる。
 前記第2モータジェネレータMG2と内燃機関ICEは、互いに噛み合う第15歯車115、第14歯車114、第11歯車111、第1歯車101により構成されるギヤ列により機械的に連結されている。このギヤ列は、第2モータジェネレータMG2による内燃機関ICEのMG2始動時、MG2回転数を減速する減速ギヤ列となり、内燃機関ICEの駆動で第2モータジェネレータMG2を発電するMG2発電時、機関回転数を増速する増速ギヤ列となる。
 前記第1係合クラッチC1は、第4軸14のうち、第12歯車112と第13歯車113の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第1係合クラッチC1が左側締結位置(Left)のとき、第4軸14と第13歯車113を駆動連結する。第1係合クラッチC1が中立位置(N)のとき、第4軸14と第12歯車112を解放すると共に、第4軸14と第13歯車113を解放する。第1係合クラッチC1が右側締結位置(Right)のとき、第4軸14と第12歯車112を駆動連結する。
 前記第2係合クラッチC2は、第1軸11のうち、第2歯車102と第3歯車103の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第2係合クラッチC2が左側締結位置(Left)のとき、第1軸11と第3歯車103を駆動連結する。第2係合クラッチC2が中立位置(N)のとき、第1軸11と第2歯車102を解放すると共に、第1軸11と第3歯車103を解放する。第2係合クラッチC2が右側締結位置(Right)のとき、第1軸11と第2歯車102を駆動連結する。
 前記第3係合クラッチC3は、第3軸13のうち、第9歯車109と第10歯車110の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第3係合クラッチC3が左側締結位置(Left)のとき、第3軸13と第10歯車110を駆動連結する。第3係合クラッチC3が中立位置(N)のとき、第3軸13と第9歯車109を解放すると共に、第3軸13と第10歯車110を解放する。第3係合クラッチC3が右側締結位置(Right)のとき、第3軸13と第9歯車109を駆動連結する。そして、多段歯車変速機1の第3軸13に一体(一体化固定を含む)に設けられた第7歯車107に噛み合う第16歯車116は、デファレンシャル歯車17及び左右のドライブ軸18を介して左右の駆動輪19に接続されている。
 ハイブリッド車両の制御系は、図1に示すように、ハイブリッドコントロールモジュール21と、モータコントロールユニット22と、変速機コントロールユニット23と、エンジンコントロールユニット24と、を備えている。
 前記ハイブリッドコントロールモジュール21(略称:「HCM」)は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段である。このハイブリッドコントロールモジュール21は、他のコントロールユニット(モータコントロールユニット22、変速機コントロールユニット23、エンジンコントロールユニット24など)とCAN通信線25により双方向情報交換可能に接続されている。なお、CAN通信線25の「CAN」とは、「Controller Area Network」の略称である。
 前記モータコントロールユニット22(略称:「MCU」)は、第1インバータ4と第2インバータ6に対する制御指令により第1モータジェネレータMG1と第2モータジェネレータMG2の力行制御や回生制御などを行う。第1モータジェネレータMG1及び第2モータジェネレータMG2に対する制御モードとしては、「トルク制御」と「回転数FB制御」がある。「トルク制御」は、目標駆動力に対して分担する目標モータトルクが決まると、実モータトルクを目標モータトルクに追従させる制御を行う。「回転数FB制御」は、走行中に係合クラッチC1,C2,C3の何れかを噛み合い締結する変速要求があると、クラッチ入出力回転数を回転同期させる目標モータ回転数を決め、実モータ回転数を目標モータ回転数に収束させるようにFBトルクを出力する制御を行う。
 前記変速機コントロールユニット23(略称:「TMCU」)は、所定の入力情報に基づいて電動アクチュエータ31,32,33(図2参照)へ電流指令を出力することにより、多段歯車変速機1の変速パターンを切り替える変速制御を行う。この変速制御では、係合クラッチC1,C2,C3を選択的に噛み合い締結/解放させ、複数対の歯車対から動力伝達に関与する歯車対を選択する。ここで、解放されている係合クラッチC1,C2,C3の何れかを締結する変速要求時には、クラッチ入出力の差回転数を抑えて噛み合い締結を確保するために、第1モータジェネレータMG1又は第2モータジェネレータMG2の回転数FB制御(回転同期制御)を併用する。
 前記エンジンコントロールユニット24(略称:「ECU」)は、所定の入力情報に基づいてモータコントロールユニット22や点火プラグや燃料噴射アクチュエータなどへ制御指令を出力することにより、内燃機関ICEの始動制御や内燃機関ICEの停止制御や燃料カット制御などを行う。
 [変速制御系構成]
 実施例の多段歯車変速機1は、変速要素として、噛み合い締結による係合クラッチC1,C2,C3(ドグクラッチ)を採用することにより引き摺りを低減することで効率化を図った点を特徴とする。そして、係合クラッチC1,C2,C3のいずれかを噛み合い締結させる変速要求があると、クラッチ入出力の差回転数を、第1モータジェネレータMG1(係合クラッチC3の締結時)又は第2モータジェネレータMG2(係合クラッチC1,C2の締結時)により回転同期させ、同期判定回転数範囲内になると噛み合いストロークを開始することで変速を実現している。又、締結されている係合クラッチC1,C2,C3のいずれかを解放させる変速要求があると、解放クラッチのクラッチ伝達トルクを低下させ、解放トルク判定値以下になると解放ストロークを開始することで実現している。以下、図2に基づき、多段歯車変速機1の変速制御系構成を説明する。
 変速制御系は、図2に示すように、係合クラッチとして、第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3を備えている。アクチュエータとして、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33を備えている。そして、アクチュエータ動作をクラッチ係合/解放動作に変換する機構として、第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43を備えている。さらに、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33の制御手段として、変速機コントロールユニット23を備えている。
 前記第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3は、ニュートラル位置(N:解放位置)と、左側締結位置(Left:左側クラッチ噛み合い締結位置)と、右側締結位置(Right:右側クラッチ噛み合い締結位置)と、を切り替えるドグクラッチである。各係合クラッチC1,C2,C3は何れも同じ構成であり、カップリングスリーブ51,52,53と、左側ドグクラッチリング54,55,56と、右側ドグクラッチリング57,58,59と、を備える。カップリングスリーブ51,52,53は、第4軸14,第1軸11,第3軸13に固定された図外のハブを介してスプライン結合により軸方向にストローク可能に設けられたもので、両側に平らな頂面によるドグ歯51a,51b,52a,52b,53a,53bを有する。さらに、カップリングスリーブ51,52,53の周方向中央部にフォーク溝51c,52c,53cを有する。左側ドグクラッチリング54,55,56は、各係合クラッチC1,C2,C3の左側遊転歯車である各歯車113,103,110のボス部に固定され、ドグ歯51a,52a,53aに対向する平らな頂面によるドグ歯54a,55a,56aを有する。右側ドグクラッチリング57,58,59は、各係合クラッチC1,C2,C3の右側遊転歯車である各歯車112,102,109のボス部に固定され、ドグ歯51b,52b,53bに対向する平らな頂面によるドグ歯57b,58b,59bを有する。
 前記第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43は、電動アクチュエータ31,32,33の回動動作を、カップリングスリーブ51,52,53の軸方向ストローク動作に変換する機構である。各係合クラッチ動作機構41,42,43は何れも同じ構成であり、回動リンク61,62,63と、シフトロッド64,65,66と、シフトフォーク67,68,69と、を備える。回動リンク61,62,63は、一端が電動アクチュエータ31,32,33のアクチュエータ軸に設けられ、他端がシフトロッド64,65,66に相対変位可能に連結される。シフトロッド64,65,66は、ロッド分割位置にスプリング64a,65a,66aが介装され、ロッド伝達力の大きさと方向に応じて伸縮可能とされている。シフトフォーク67,68,69は、一端がシフトロッド64,65,66に固定され、他端がカップリングスリーブ51,52,53のフォーク溝51c,52c,53cに配置される。
 前記変速機コントロールユニット23は、車速センサ71、アクセル開度センサ72、変速機出力軸回転数センサ73、エンジン回転数センサ74、MG1回転数センサ75、MG2回転数センサ76、インヒビタースイッチ77、などからのセンサ信号やスイッチ信号を入力する。なお、変速機出力軸回転数センサ73は、第3軸13の軸端部に設けられ、第3軸13の軸回転数を検出する。そして、カップリングスリーブ51,52,53の位置によって決まる係合クラッチC1,C2,C3の噛み合い締結と解放を制御する位置サーボ制御部(例えば、PID制御による位置サーボ系)を備えている。この位置サーボ制御部は、第1スリーブ位置センサ81、第2スリーブ位置センサ82、第3スリーブ位置センサ83からのセンサ信号を入力する。そして、各スリーブ位置センサ81,82,83のセンサ値を読み込み、カップリングスリーブ51,52,53の位置が噛み合いストロークによる締結位置又は解放位置になるように、電動アクチュエータ31,32,33に電流を与える。即ち、カップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯との双方が噛合した噛み合い位置にある締結状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13に駆動連結する。一方、カップリングスリーブ51,52,53が、軸線方向へ変位することでカップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯が非噛み合い位置にある解放状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13から切り離す。
 [変速パターン構成]
 実施例の多段歯車変速機1は、流体継手などの回転差吸収要素を持たないことで動力伝達損失を低減すると共に、内燃機関ICEをモータアシストすることでICE変速段を減らし、コンパクト化(EV変速段:1-2速、ICE変速段:1-4速)を図った点を特徴とする。以下、図3に基づき、多段歯車変速機1の代表的な変速パターン構成を説明する。
 係合クラッチC1,C2,C3を有する多段歯車変速機1により得ることが可能な変速パターンを図3に示す。なお、図3中の「Lock」は、変速パターンとして成立しないインターロックパターンを表し、「EV-」は、第1モータジェネレータMG1が駆動輪19に駆動連結されていない状態を表し、「ICE-」は、内燃機関ICEが駆動輪19に駆動連結されていない状態を表す。そして、変速制御では、図3に示す変速パターンの全てを用いる必要は無く、これらの変速パターンから必要に応じて選択しても勿論良い。以下、各変速パターンについて説明する。
 第2係合クラッチC2が「N」位置で、第3係合クラッチC3が「N」位置のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」位置であれば「EV- ICEgen」、第1係合クラッチC1が「N」位置であれば「Neutral」、第1係合クラッチC1が「Right」位置であれば「EV- ICE3rd」である。
 ここで、「EV- ICEgen」の変速パターンは、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電時、又は、MG1発電にMG2発電を加えたダブルアイドル発電時に選択されるパターンである。「Neutral」の変速パターンは、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択されるパターンである。
 図4は、上記したMG1アイドル発電時(「EV- ICEgen」の変速パターン時)の多段歯車変速機1における内燃機関ICEのICEトルクの流れを示した図である。
 図4に示すように、「EV- ICEgen」の変速パターンでは、ICEトルクは、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第4軸14→第13歯車113→第4歯車104→第2軸12→第1モータジェネレータMG1へと流れる。
 第2係合クラッチC2が「N」位置で、第3係合クラッチC3が「Left」位置のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」位置であれば「EV1st ICE1st」、第1係合クラッチC1が「N」位置であれば「EV1st ICE-」、第1係合クラッチC1が「Right」位置であれば「EV1st ICE3rd」である。
 ここで、「EV1st ICE-」の変速パターンは、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のパターン、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で1速EV走行を行う「シリーズHEVモード」のパターンである。
 例えば、「EV1st ICE-」による「シリーズHEVモード」を選択しての走行中、駆動力不足による減速に基づいて第1係合クラッチC1を「N」位置から「Left」位置に切り替える。この場合、駆動力が確保される「EV1st ICE1st」の変速パターンによる「パラレルHEVモード(1速)」の走行に移行する。
 このように、第1、第2、第3係合クラッチC1,C2,C3の位置に応じて図3に示す変速段を確立することができる。なお、各変速パターンの内容は、本願発明の要旨と直接関連しないため、これ以上の詳細な説明は省略する。
 [アイドル発電制御処理構成]
 図5は、実施例の変速機コントロールユニット23(発進コントローラ)で実行されるアイドル発電制御処理の流れを示す。以下、アイドル発電制御処理構成の一例をあらわす図5の各ステップについて説明する。
 ステップS1では、車両が停止しているか否かを判断する。アイドル発電制御は車両が停車中に実行されることから、YES(車両停止中)の場合はステップS2へ進み、NO(車両走行中)の場合は以下のステップをスキップしてプログラムを終了する。
 ステップS2では、アイドル発電要求があるか否かを判断する。アイドル発電要求の有無は、運転者によって操作可能なスイッチ(図示せず)からの信号や、強電バッテリ3のバッテリ残量SOC(State of Charge)等に基づいて判断される。
 ステップS2の判断がNO(例えば、SOCが閾値以上)の場合はアイドル発電制御を実行する必要がないため、以下の処理をスキップしてプログラムを終了する。他方、ステップS2の判断がYES(アイドル発電要求あり)の場合はステップS3に進み、アイドル発電時の変速パターン(EV- ICEgen)を確立する。
 即ち、第1係合クラッチC1を「Left」位置に、第2係合クラッチC2を「N」位置に、第3係合クラッチC3を「N」位置に、それぞれ切り替える。
 次いでステップS4に進み、内燃機関ICEを始動し、その回転数を上昇させ、ステップS5に進む。
 ステップS5では、内燃機関ICEと駆動輪19とを連結する第2係合クラッチC2の入出力差回転数が閾値(差回転閾値)以上か否かを判断する。差回転閾値は、第2電動アクチュエータ32を駆動して第2係合クラッチC2をストロークさせても、第2係合クラッチC2を締結できないと判断できる値に設定される。
 即ち、噛み合い式係合クラッチにおいては、入出力差回転数が大きいと、ドグ歯(噛み合い歯)同士を近づけてもドグ歯を噛み合わせる(クラッチを締結させる)ことができない。
 この実施例では、噛み合い式係合クラッチのかかる特性を利用し、内燃機関ICEの回転数を上昇させ、よって内燃機関ICEと連結する要素を回転させることにより、第2係合クラッチC2の入出力差回転数を閾値以上にまで増加させることとしている。
 なお、差回転閾値は、具体的には噛合するドグ歯の形状(ピッチ幅、バックラッシュの大きさ等)や、係合クラッチC2,C3を駆動する電動アクチュエータ32,33のストローク速度等に基づいて実験により求められる。
 ステップS4からS5の処理は、ステップS5の判断がYES(C2入出力差回転≧差回転閾値)となるまで繰り返し実行される。
 ステップS5の判断がYESとなると、次いでステップS6に進み、第1モータジェネレータMG1と駆動輪19を連結する第3係合クラッチC3の入出力差回転数が閾値(差回転閾値)以上か否かを判断する。閾値は、第3電動アクチュエータ33を駆動して第3係合クラッチC3をストロークさせても、第3係合クラッチC3を締結できないと判断できる値に設定される。
 ステップS4からS6の処理も、ステップS6の判断がYES(C3入出力差回転≧差回転閾値)となるまで繰り返し実行される。
 ステップS6の判断がYESとなると、次いでステップS7に進み、アイドル発電を開始し、ステップS8においてアイドル発電終了と判断されるまでアイドル発電を継続する。
 なお、この実施例にあっては、運転者からの要求がなくなったとき、強電バッテリ3のバッテリ残量SOCが十分に多いと判断されたとき、又は運転者によって走行レンジ(D,R)が選択されたとき、アイドル発電を終了し、プログラムを終了する。
 [係合クラッチ構成]
 図6は実施例に係る第2係合クラッチC2のドグ歯52a,52b,55a,58bを示す模式図、図7はその部分拡大図である。また、図8は第3係合クラッチC3のドグ歯53a,53b、56aを拡大して示す部分拡大図である。
 なお、図中の矢印は、第2、第3係合クラッチC2,C3の各カップリングスリーブ52,53の回転方向を示す。第2係合クラッチC2は内燃機関ICEによって回転されるため、常に一方向にのみ回転する。一方、第3係合クラッチC3は第1モータジェネレータMG1によって回転され、前進時と後進時において回転方向が逆転する。
 図6、図7は実施例の第2係合クラッチC2が「Left」位置に切り替えられる場合を示す。図7に良く示すように、第2係合クラッチC2(カップリングスリーブ52)の噛み合い締結開始時(噛み合い開始域)には、ドグ歯52aの先端と、ドグ歯52aに対向するドグ歯55aの先端とが衝突する。具体的には、ドグ歯52a先端の両隅部52a1,52a2のうちカップリングスリーブ52の回転方向側にある隅部52a1と、対向するドグ歯55a先端の両隅部55a1,55a2のうちカップリングスリーブ52の回転方向と反対側にある隅部55a2とが、第2係合クラッチC2の噛み合い締結時に衝突する。
 ここで、この実施例においては、ドグ歯52a,55aの隅部52a1,55a2の衝突による生じる衝突力を、第2係合クラッチC2を支持する第1軸11の軸方向の力に変換するように構成する。
 具体的には、隅部52a1,55a2の形状を円弧面とすることにより、上記した衝突力を、ドグ歯52a,55aが互いに離間する軸方向の力に変換するように構成した。
 なお、第2係合クラッチC2が「Right」位置に切り替えられる場合に互いに衝突する、ドグ歯52b及びドグ歯58bにおいても同様に構成されることは言うまでもない。
 一方、第3係合クラッチC3の場合、前進時と後進時とで回転方向が逆転する。即ち、前進時と後進時とで、対向するドグ歯53a,56aの衝突部が異なる。そこで、第3係合クラッチC3にあっては、ドグ歯53a,56a先端の両隅部53a1,53a2及び56a1,56a2の形状を円弧面とする。
 なお、第3係合クラッチC3が「Right」位置に切り替えられる場合に互いに衝突する、ドグ歯53b及びドグ歯59bにおいても同様に構成されることは言うまでもない。
また、ドグ歯形状の加工のし易さなどに応じて、第3係合クラッチC3同様、第2係合クラッチC2の両隅部52a1,52a2及び55a1,55a2の形状を円弧面としても良い。
 次に、作用を説明する。
 実施例のハイブリッド車両の発電制御装置における作用を、「発電制御処理作用」、「発電制御の特徴作用」、「係合クラッチ作用」に分けて説明する。
 [発電制御処理作用]
 以下、図5に示すフローチャートに基づき、アイドル発電時の発電制御処理作用を説明する。
 停車中に第1モータジェネレータMG1による発電要求があると、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進む。ステップS3では、第1係合クラッチC1を「Left」位置に切り替えることにより内燃機関ICEと第1モータジェネレータMG1とを連結する。また、アイドル発電中に、内燃機関ICEによって車両が動き出すことを防ぐため、内燃機関ICEと駆動輪19とを連結する第2、第3係合クラッチC2,C3を解放する。
 次いで、第2、第3係合クラッチC2,C3の各入出力差回転数が差回転閾値以上になるまで内燃機関ICEの回転数を上昇させる(ステップS4~S6)。
 この結果、第2、第3係合クラッチC2,C3を締結・解放位置にストロークさせる第2、第3電動アクチュエータ32,33の異常により、第2、第3係合クラッチC2,C3が意図せず締結位置に向かってストロークした場合であっても、第2、第3係合クラッチC2,C3が締結するのを防ぐことができる。
 第2、第3係合クラッチC2,C3の各入出力差回転数が閾値以上になると、ステップS7に進みアイドル発電を開始し、ステップS8でアイドル発電の要求がなくなったと判断されるまでアイドル発電制御を実行する。即ち、実施例では第2、第3係合クラッチC2,C3の各入出力回転数が閾値以上であると判断される場合に限りアイドル発電制御を実行する。
これにより、第2、第3電動アクチュエータ32,33に異常が発生した場合であっても、アイドル発電制御の実行中に内燃機関ICEと駆動輪19とを連結する第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。したがって、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 [発電制御の特徴作用]
 以上のように、実施例では、停車中に第1モータジェネレータMG1によりアイドル発電するとき、第2、第3係合クラッチC2,C3の入出力差回転数が、当該係合クラッチC2,C3が締結しない差回転閾値以上となるように内燃機関ICEを運転する構成とした。
 即ち、アイドル発電制御を実行するときは、車両の動き出しを避けるため、第2、第3係合クラッチC2,C3を解放して駆動輪19と動力源(内燃機関ICE)とを非連結状態にしておく必要がある。しかし、第2、第3係合クラッチC2,C3を駆動する第2、第3電動アクチュエータ32,33に異常が発生すると、第2、第3係合クラッチC2,C3が意図せず締結してしまう虞がある。
 これに対し、この実施例においては、アイドル発電制御を実行するとき、第2、第3係合クラッチC2,C3の入出力差回転数が差回転閾値以上となるように内燃機関ICEを運転することで、第2、第3電動アクチュエータ32,33に異常が発生した場合であっても、第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。
従って、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 実施例では、第2、第3係合クラッチC2,C3の入出力差回転数が差回転閾値以上であると判断したとき、第1モータジェネレータMG1によりアイドル発電を開始する構成とした。
 即ち、第2、第3係合クラッチC2,C3が意図せず締結されることのない状態に至ったことを判断した後にアイドル発電を開始するようにした。
 従って、アイドル発電制御実行中に第2、第3電動アクチュエータ32,33の異常が発生した場合であっても、第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。よって、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 実施例では、停車中にアイドル発電要求があると、第1から第3係合クラッチC1,C2,C3のうち、内燃機関ICEと第1モータジェネレータMG1とを連結する第1係合クラッチC1を締結し、内燃機関ICE及び第1モータジェネレータMG1と駆動輪19とを連結する第2、第3係合クラッチC2,C3を解放した後、内燃機関ICEを始動する構成とした。
 即ち、内燃機関ICEの回転により第1モータジェネレータMG1でアイドル発電をするべく、第1係合クラッチC1を締結して内燃機関ICEと第1モータジェネレータMG1とを連結する。また、動力源(内燃機関ICE及び第1モータジェネレータMG1)と駆動輪19とを連結する第2、第3係合クラッチC2,C3を解放することにより、アイドル発電のために内燃機関ICEを始動させても車両が動き出すことのないように構成した。
 従って、アイドル発電制御の開始時に意図せず車両が動き出すことを防ぐことができる。
 [係合クラッチ作用]
 実施例では、第2、第3係合クラッチC2,C3は、対向して配置された一対のドグ歯(例えば、52aと55a)により構成され、第2、第3係合クラッチC2,C3が解放中であって一対のドグ歯(例えば、52aと55a)の間に内燃機関ICEの運転により差回転数があるとき、噛み合い開始域での歯衝突力を、ドグ歯(例えば、52aと55a)が互いに離間する軸方向の力に変換するドグ歯形状を有する構成とした。
 即ち、一対のドグ歯が差回転数をもって噛み合い締結する場合、噛み合い締結を開始する領域(噛み合い開始域)において、ドグ歯の先端が互いに衝突して歯衝突力が発生する。実施例では、この歯衝突力を係合クラッチC2,C3の回転方向から軸方向(正確には、ドグ歯が互いに離間する軸方向)に変換できるようにドグ歯の形状を構成した。
 これにより、係合クラッチC2,C3のドグ歯を噛み合わせることがより困難になる。従って、係合クラッチC2,C3が意図せず締結されるのを効果的に防ぐことができる。
 また、第2、第3係合クラッチC2,C3の締結が困難になることから、上記した差回転閾値の値をより小さな値に設定することが可能となる。
 実施例では、第2、第3係合クラッチC2,C3は、ドグ歯の先端部(隅部。例えば52a1,52a2)の少なくとも一方に円弧面を形成したドグ歯形状を有する構成とした。
 これにより、第2、第3係合クラッチC2,C3の噛み合い開始域において、対向するドグ歯先端の歯衝突力を、ドグ歯が互いに離間する軸方向に変換することができる。
従って、第2、第3係合クラッチC2,C3が意図せず締結されることを一層効果的に防止することができる。
 次に、効果を説明する。
 実施例のハイブリッド車両の発電制御装置にあっては、下記に列挙する効果が得られる。
 (1)動力源として電動機(第1モータジェネレータMG1)と内燃機関ICEを備え、動力源から駆動輪19までの駆動系に複数の変速段を実現する変速機(多段歯車変速機1)が搭載され、
 前記変速機(多段歯車変速機1)は、変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチ(第2、第3係合クラッチC2,C3)を有するハイブリッド車両において、
 発電要求に基づき、前記内燃機関ICEからの駆動力を前記電動機に伝達し、前記電動機(第1モータジェネレータMG1)により発電する発電コントローラ(変速機コントロールユニット23)を設け、
 前記係合クラッチ(第2、第3係合クラッチC2,C3)は、前記動力源(第1モータジェネレータMG1、内燃機関ICE)と前記駆動輪19とを連結するクラッチであって、
 前記発電コントローラ(変速機コントロールユニット23)は、停車中に前記電動機(第1モータジェネレータMG1)によりアイドル発電するとき、前記係合クラッチ(第2、第3係合クラッチC2,C3)の入出力差回転数が、前記係合クラッチ(第2、第3係合クラッチC2,C3)が締結しない差回転閾値以上となるように前記内燃機関ICEを運転する(図5のS4~S6)。
  このため、第2、第3電動アクチュエータ32,33に異常が発生した場合であっても、第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。
従って、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 (2)前記発電コントローラ(変速機コントロールユニット23)は、前記係合クラッチ(第2、第3係合クラッチC2,C3)の入出力差回転数が前記差回転閾値以上であると判断したとき、前記電動機(第1モータジェネレータMG1)により前記アイドル発電を開始する(図5のS4~S7)。
  このため、(1)の効果に加え、アイドル発電制御実行中に第2、第3電動アクチュエータ32,33の異常が発生した場合であっても、第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。よって、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 (3)前記変速機(多段歯車変速機1)は、解放位置からのストロークにより噛み合い締結して前記内燃機関ICEと前記電動機(第1モータジェネレータMG1)とを連結するアイドル発電用係合クラッチ(第1係合クラッチC1)を有し、
 前記発電コントローラ(変速機コントロールユニット23)は、停車中にアイドル発電要求があると、前記アイドル発電用係合クラッチ(第1係合クラッチC1)を締結し、前記係合クラッチ(第2、第3係合クラッチC2,C3)を解放した後、前記内燃機関ICEを始動する(図5のS3~S4)。
 即ち、(2)の効果に加え、第2、第3係合クラッチC2,C3が意図せず締結されることのない状態に至ったと判断された場合に限りアイドル発電を実行する。
従って、アイドル発電制御実行中に第2、第3電動アクチュエータ32,33の異常が発生した場合であっても、第2、第3係合クラッチC2,C3が意図せず締結するのを防ぐことができる。よって、アイドル発電制御の実行中に車両が意図せず動き出すのを防止することができる。
 (4)前記係合クラッチ(第2、第3係合クラッチC2,C3)は、クラッチ部を対向して配置された一対のドグ歯(例えば、ドグ歯52a,55a)により構成し、前記係合クラッチ(第2、第3係合クラッチC2,C3)が解放中であって前記一対のドグ歯の間に前記内燃機関ICEの運転により差回転数があるとき、噛み合い開始域での歯衝突力を、前記一対のドグ歯が互いに離間する軸方向の力に変換するドグ歯形状を有する(図6~図8)。
  このため、(1)~(3)の効果に加え、係合クラッチC2,C3のドグ歯が噛み合わせることがより困難になる。従って、係合クラッチC2,C3が意図せず締結されるのをより効果的に防ぐことができる。
また、第2、第3係合クラッチC2,C3の締結が困難になることから、上記した差回転閾値の値をより小さな値に設定することが可能となる。
ことができる。
 (5)動力源として電動機(第1モータジェネレータMG1)と内燃機関ICEを備え、動力源から駆動輪までの駆動系に複数の変速段を実現する変速機(多段歯車変速機1)が搭載され、
 前記変速機(多段歯車変速機1)は、変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチ(第2、第3係合クラッチC2,C3)を有するハイブリッド車両において、
 停車中のアイドル発電要求に基づき、前記動力源と前記駆動輪を連結する前記係合クラッチ(第2、第3係合クラッチC2,C3)を解放し、前記内燃機関からの駆動力を受けて前記電動機(第1モータジェネレータMG1)によりアイドル発電する発電コントローラ(変速機コントロールユニット23)を設け、
 前記係合クラッチは、クラッチ部を対向して配置された一対のドグ歯により構成し、前記係合クラッチ(第2、第3係合クラッチC2,C3)が解放中であって前記内燃機関ICEの運転により前記一対のドグ歯の間に差回転数があるとき、噛み合い開始域での歯衝突力を、前記一対のドグ歯が互いに離間する軸方向の力に変換するドグ歯形状を有する(図6~図8)。
  このため、係合クラッチC2,C3が意図せず締結されるのを効果的に防ぐことができる。
また、第2、第3係合クラッチC2,C3の締結が困難になることから、上記した差回転閾値の値をより小さな値に設定することが可能となる。
 (6) 前記係合クラッチは、ドグ歯の先端部(隅部。52a1,55a2,53a1,53a2,56a1,56a2等)の少なくとも一方に円弧面を形成したドグ歯形状を有する(図6~図8)。
 このため、第2、第3係合クラッチC2,C3が意図せず締結されることを一層効果的に防止することができる。
 以上、本発明の電動車両の発電制御装置を実施例に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例では、第2係合クラッチC2の差回転閾値と第3係合クラッチC3の差回転閾値としていずれも同一の値を用いる例を示した。しかし、差回転閾値は対応するドグクラッチの形状や電動アクチュエータのストローク速度等に応じて異なるものとしても良い。
 実施例では、ドグ歯の先端部(隅部)の形状を円弧面とする例を示した。しかし、一対のドグ歯同士の歯衝突力を、ドグ歯が互いに離間する軸方向の力に変換できる形状であれば良く、例えば、面取り形状としても良い。
 なお、互いに衝突するドグ歯(例えば52b及び58b、53b及び59b)の円弧面の半径は、同一でも良く、また、互いに異なる半径としても良い。
 実施例では、本発明の発電制御装置を、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両に適用する例を示した。しかし、本発明の発電制御装置は、車両に対しても適用することができる。
 実施例では、EV変速段としてEV1-2速、ICE変速段としてICE1-4速からなる多段歯車変速機1を適用する例を示した。しかし、本発明の発電制御装置は、アイドル発電制御が実行できる構成であれば、どのような多段歯車変速機に対しても適用することができる。

Claims (6)

  1.  動力源として電動機と内燃機関を備え、動力源から駆動輪までの駆動系に複数の変速段を実現する変速機が搭載され、
     前記変速機は、変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有するハイブリッド車両において、
     発電要求に基づき、前記内燃機関からの駆動力を前記電動機に伝達し、前記電動機により発電する発電コントローラを設け、
     前記係合クラッチは、前記動力源と前記駆動輪とを連結するクラッチであって、
     前記発電コントローラは、停車中に前記電動機によりアイドル発電するとき、前記係合クラッチの入出力差回転数が、前記係合クラッチが締結しない差回転閾値以上となるように前記内燃機関を運転する
     ことを特徴とするハイブリッド車両の発電制御装置。
  2.  請求項1に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、前記係合クラッチの入出力差回転数が前記差回転閾値以上であると判断したとき、前記電動機により前記アイドル発電を開始する
     ことを特徴とするハイブリッド車両の発電制御装置。
  3.  請求項2に記載されたハイブリッド車両の発電制御装置において、
     前記変速機は、解放位置からのストロークにより噛み合い締結して前記内燃機関と前記電動機とを連結するアイドル発電用係合クラッチを有し、
     前記発電コントローラは、停車中にアイドル発電要求があると、前記アイドル発電用係合クラッチを締結し、前記係合クラッチを解放した後、前記内燃機関を始動する
     ことを特徴とするハイブリッド車両の発電制御装置。
  4.  請求項1から請求項3までの何れか一項に記載されたハイブリッド車両の発電制御装置において、
     前記係合クラッチは、クラッチ部を対向して配置された一対のドグ歯により構成し、前記係合クラッチが解放中であって前記一対のドグ歯の間に前記内燃機関の運転により差回転数があるとき、噛み合い開始域での歯衝突力を、前記一対のドグ歯が互いに離間する軸方向の力に変換するドグ歯形状を有する
     ことを特徴とするハイブリッド車両の発電制御装置。
  5.  動力源として電動機と内燃機関を備え、動力源から駆動輪までの駆動系に複数の変速段を実現する変速機が搭載され、
     前記変速機は、変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有するハイブリッド車両において、
     停車中のアイドル発電要求に基づき、前記動力源と前記駆動輪を連結する前記係合クラッチを解放し、前記内燃機関からの駆動力を受けて前記電動機によりアイドル発電する発電コントローラを設け、
     前記係合クラッチは、クラッチ部を対向して配置された一対のドグ歯により構成し、前記係合クラッチが解放中であって前記内燃機関の運転により前記一対のドグ歯の間に差回転数があるとき、噛み合い開始域での歯衝突力を、前記一対のドグ歯が互いに離間する軸方向の力に変換するドグ歯形状を有する
     ことを特徴とするハイブリッド車両の発電制御装置。
  6.  請求項5に記載されたハイブリッド車両の発電制御装置において、
     前記係合クラッチは、ドグ歯の先端部の少なくとも一方に円弧面を形成したドグ歯形状を有する
     ことを特徴とするハイブリッド車両の発電制御装置。
PCT/JP2015/065777 2015-06-01 2015-06-01 ハイブリッド車両の発電制御装置 WO2016194106A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112017025559-6A BR112017025559B1 (pt) 2015-06-01 2015-06-01 Dispositivo de controle de geração de potência para um veículo híbrido
US15/572,810 US10293811B2 (en) 2015-06-01 2015-06-01 Hybrid vehicle power generation control device
KR1020177036182A KR101849896B1 (ko) 2015-06-01 2015-06-01 하이브리드 차량의 발전 제어 장치
PCT/JP2015/065777 WO2016194106A1 (ja) 2015-06-01 2015-06-01 ハイブリッド車両の発電制御装置
EP15894141.9A EP3305612B1 (en) 2015-06-01 2015-06-01 Hybrid vehicle start control device
MYPI2017704506A MY169000A (en) 2015-06-01 2015-06-01 Power generation control device for a hybrid vehicle
JP2017521365A JP6350750B2 (ja) 2015-06-01 2015-06-01 ハイブリッド車両の発電制御装置
CA2987875A CA2987875C (en) 2015-06-01 2015-06-01 Power generation control device for a hybrid vehicle
RU2017145589A RU2660326C1 (ru) 2015-06-01 2015-06-01 Устройство управления генерированием мощности для гибридного транспортного средства
MX2017015268A MX361126B (es) 2015-06-01 2015-06-01 Dispositivo de control de arranque de vehículo híbrido.
CN201580080556.9A CN107614338B (zh) 2015-06-01 2015-06-01 混合动力车辆的发电控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065777 WO2016194106A1 (ja) 2015-06-01 2015-06-01 ハイブリッド車両の発電制御装置

Publications (1)

Publication Number Publication Date
WO2016194106A1 true WO2016194106A1 (ja) 2016-12-08

Family

ID=57441882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065777 WO2016194106A1 (ja) 2015-06-01 2015-06-01 ハイブリッド車両の発電制御装置

Country Status (10)

Country Link
US (1) US10293811B2 (ja)
EP (1) EP3305612B1 (ja)
JP (1) JP6350750B2 (ja)
KR (1) KR101849896B1 (ja)
CN (1) CN107614338B (ja)
BR (1) BR112017025559B1 (ja)
CA (1) CA2987875C (ja)
MX (1) MX361126B (ja)
RU (1) RU2660326C1 (ja)
WO (1) WO2016194106A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142296A (ja) * 2018-02-16 2019-08-29 本田技研工業株式会社 変速機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218115A1 (de) * 2016-09-21 2018-03-22 Voith Patent Gmbh Verfahren zum Schalten eines Klauenschaltelements
CN107867169A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动***以及车辆
US11365785B2 (en) * 2016-11-30 2022-06-21 Dana Heavy Vehicle Systems Group, Llc Electric axle transmission for electric and hybrid electric vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122664A1 (ja) * 2009-04-24 2010-10-28 トヨタ自動車株式会社 回転噛合式係合装置
JP2013141938A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp ハイブリッド車両の発進制御装置
JP2015096759A (ja) * 2013-11-15 2015-05-21 トヨタ自動車株式会社 係合装置及びハイブリッド車両用駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161939A (ja) 2010-02-04 2011-08-25 Aisin Ai Co Ltd ハイブリッド車用動力伝達装置
US8948945B2 (en) * 2010-03-31 2015-02-03 Honda Motor Co., Ltd Hybrid vehicle
DE102010030573A1 (de) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Hybridantrieb mit einem automatisierten Schaltgetriebe
FR2966786A3 (fr) * 2010-11-03 2012-05-04 Renault Sa Systeme de motorisation hybride pour vehicule automobile
FR2973299B1 (fr) * 2011-04-01 2013-08-16 Renault Sa Transmission hybride pour vehicule automobile et procede de commande
US8793436B2 (en) 2011-05-23 2014-07-29 International Business Machines Corporation Cache management of tracks in a first cache and a second cache for a storage
US9650036B2 (en) * 2012-05-04 2017-05-16 Ford Global Technologies, Llc Methods and systems for adjusting cylinder air charge
DE102012020884A1 (de) * 2012-10-24 2014-04-24 Audi Ag Geschwindigkeits-Wechselgetriebe für Kraftfahrzeuge
CN104837699B (zh) * 2012-12-07 2018-05-01 日产自动车株式会社 混合动力车辆的模式切换控制装置
FR3007696B1 (fr) 2013-06-26 2015-06-26 Renault Sa Transmission hybride avec une machine electrique additionnelle et procede de commande
DE102015208160A1 (de) * 2014-09-25 2016-03-31 Deere & Company Getriebesteuerverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122664A1 (ja) * 2009-04-24 2010-10-28 トヨタ自動車株式会社 回転噛合式係合装置
JP2013141938A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp ハイブリッド車両の発進制御装置
JP2015096759A (ja) * 2013-11-15 2015-05-21 トヨタ自動車株式会社 係合装置及びハイブリッド車両用駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305612A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142296A (ja) * 2018-02-16 2019-08-29 本田技研工業株式会社 変速機

Also Published As

Publication number Publication date
EP3305612A1 (en) 2018-04-11
RU2660326C1 (ru) 2018-07-05
KR20180002873A (ko) 2018-01-08
BR112017025559A2 (ja) 2018-08-07
EP3305612A4 (en) 2018-06-06
CA2987875A1 (en) 2016-12-08
CN107614338A (zh) 2018-01-19
CA2987875C (en) 2018-04-24
BR112017025559B1 (pt) 2022-11-01
MX2017015268A (es) 2018-02-19
KR101849896B1 (ko) 2018-04-17
JPWO2016194106A1 (ja) 2018-02-01
EP3305612B1 (en) 2020-07-22
US10293811B2 (en) 2019-05-21
CN107614338B (zh) 2018-12-14
JP6350750B2 (ja) 2018-07-04
US20180154886A1 (en) 2018-06-07
MX361126B (es) 2018-11-28

Similar Documents

Publication Publication Date Title
EP3309032B1 (en) Energy management control device for hybrid vehicle
EP3305615B1 (en) Mode transition control device for hybrid vehicle
EP3315822B1 (en) Gear-shift control device for hybrid vehicle
KR20170128545A (ko) 전동 차량의 발진 제어 장치
EP3305616B1 (en) Start control device for hybrid vehicle
US10160348B2 (en) Starting control device for electrically driven vehicle
WO2016194106A1 (ja) ハイブリッド車両の発電制御装置
JPWO2016167201A1 (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521365

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15572810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015268

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2987875

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036182

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015894141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017145589

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025559

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025559

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171128