WO2016193037A1 - Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop - Google Patents

Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop Download PDF

Info

Publication number
WO2016193037A1
WO2016193037A1 PCT/EP2016/061581 EP2016061581W WO2016193037A1 WO 2016193037 A1 WO2016193037 A1 WO 2016193037A1 EP 2016061581 W EP2016061581 W EP 2016061581W WO 2016193037 A1 WO2016193037 A1 WO 2016193037A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
beam path
wide
chromatic
wide field
Prior art date
Application number
PCT/EP2016/061581
Other languages
German (de)
English (en)
French (fr)
Inventor
Helmut Lippert
Nils Langholz
Ralf Netz
Ralf Wolleschensky
Original Assignee
Carl Zeiss Microscopy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Microscopy Gmbh filed Critical Carl Zeiss Microscopy Gmbh
Priority to CN201680029710.4A priority Critical patent/CN107710046B/zh
Priority to JP2017556932A priority patent/JP6595618B2/ja
Publication of WO2016193037A1 publication Critical patent/WO2016193037A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Definitions

  • the invention relates to a method for determining a spatially resolved height information of a sample with a
  • optical section The determination of a spatially resolved height information of a sample is also referred to as an optical section. Such optical sections are used in particular in microsopy to determine topographies of a sample or
  • the sample is sampled in all three spatial directions, i. it is a matter of
  • Point-scanning systems in which an optical beam is guided in the x / y direction over the sample.
  • the height information and thus the topography can be derived for each x-y location.
  • a disadvantage of this method is, among other things, the long time spent by the raster scan for a 3D topography
  • Sample light is detected correspondingly with two photomultiplier tubes (PMT x s), wherein one filter is connected upstream of the one PMT. From the intensity ratio of the two PMTs, the transmission of the filter and thus the detected wavelength and, finally, a height information is determined.
  • PMT x s photomultiplier tubes
  • the transmission of the filter and thus the detected wavelength and, finally, a height information is determined.
  • confocal wide-field systems which are based on structured illumination.
  • Illumination light is obtained height information from the sample.
  • DE 10 2007 018 048 A1 describes such a system in which two illumination patterns are projected onto the sample.
  • optical sections can be generated.
  • the focus variation should be mentioned, in which the image sharpness is evaluated as a function of z in order to calculate a maximum similar to the confocal case. It also spatial information of the system are used. With regard to susceptibility to vibration, the same problems exist as in the aforementioned methods.
  • the object is achieved by a method according to claim 1 and by a wide field microscope according to claim 7.
  • the chromatic confocal principle is applied to a wide-field optical cross-sectional imaging method and
  • Wavelength-dependent filters in the detection beam path are Wavelength-dependent filters in the detection beam path
  • the illumination beam path becomes chromatic
  • At least one far field image is detected by detecting sample light reflected or emitted by the sample in a detection beam path.
  • Sample light (eg when using a Nipkow disc), but also be composed of confocal and non-focal portions of the sample light.
  • observation beam path and / or in the illumination or excitation beam path is at least one
  • Wavelength-dependent filter function or spectral distribution are used and for each pixel in the x-y direction, at least two measuring operations are carried out with the different filters or spectral distributions. These measurements can take place in parallel (when using several image sensors) or sequentially. For example, if the ratio of the intensities of the at least two measurements in each pixel of the
  • the intensity signal is in the invention
  • Device may also depend on x, y
  • Measuring process or chromatic modulation also includes beam splitters, etc.
  • the ratio can be formed to:
  • a wavelength-dependent filter for example, with the aid of two similar detectors and a beam splitter, wherein only in one beam path, a wavelength-dependent filter is used.
  • Another possibility is to use only one channel and two sequential measurements with and without or with two different wavelength-dependent filters
  • Another special case is the use of two spectrally offset bandpass filters in excitation and / or detection. In the detection is also here next to one
  • An example of the parallel arrangement is the use of a Bayer pattern color camera with two color channels each.
  • a first preferred embodiment of a wide field microscope according to the invention an embodiment variant with parallel detectors; an embodiment variant with parallel detectors and filters in the detection beam path; an embodiment variant with a switching element in the detection beam path; an embodiment variant with a chip splitter detector; a second preferred embodiment of a microscope according to the invention; a third preferred embodiment of a microscope according to the invention; an advantageous embodiment variant of the illumination beam path with a switching element; an advantageous embodiment variant of the illumination beam path with two equal moistening light sources; an advantageous embodiment variant of the illumination beam path with two spectrally different illumination light sources.
  • FIG. 1 shows a first preferred embodiment of a wide field microscope according to the invention.
  • a polychromatic light source 1 z. Ex. Broadband laser, halogen lamp, superluminescent diode, ...), wherein in this embodiment, different spectral distributions can be selected by a selection element 2 ⁇ .
  • This selection element 2 can be, for example, an AOTF (acousto-optical tunable filter), a prism, a grating or also a filter selection unit.
  • the illumination light can then be deflected by a deflection unit 3 in different directions.
  • Deflection unit 3 for example, provides a fast
  • switchable mirrors e.g., galvo mirrors
  • AOD Acoustic-optic deflector
  • polarization rotation e.g., polarization rotation
  • a structured element 4 is arranged in a plane A conjugate to a sample plane P.
  • the structured element 4 represents a transmissive 1D or 2D lattice structure.
  • the structure is imaged into the sample space via refractive and / or diffractive longitudinal chromatic aberration-inducing elements 6, 7 (objective), so that here a chromatic splitting 8 is generated in z-direction, ie the focus shifts in dependence on the wavelength in the z-direction.
  • Optical fiber 9 is arranged. But it can be in others
  • Embodiments for this purpose a simple free beam guidance based on mirrors are used.
  • Optical fibers 9 can optionally be made a polarization filtering.
  • the deflection unit 3 it is possible to sequentially illuminate the structured element 4 by means of a respective collimating lens 11 from two sides (dashed representation).
  • the structured element 4 is executed mirror-coated, it can accordingly be imaged two grid phases in the sample space or the sample plane P. Is this
  • structured element 4 is not mirrored, so eliminates the deflection unit 3 and the dashed lines shown optics.
  • a beam splitter 12 is used to combine the transmission and reflection beam path.
  • Illumination light is then passed through a beam splitter 13 on to a sample 14 positioned in the sample space P, the beam splitter 13 advantageously being referred to as
  • Polarization beam splitter is executed. Namely, it can continue to be a lambda / 4 plate 16 is arranged in the beam path, so that the sample 14 going to the illumination light and the sample 14 reflected or emitted to be detected sample light having a 90 ° to each other rotated polarization and so well at the beam splitter 13 from each other can be separated.
  • a polarization filter 18 can furthermore be arranged in front of the detector unit 17.
  • Detection unit 17 may be a simple camera with
  • FIG. 2 describes an arrangement in which the sample light is first guided through a color splitter 19, so that two detection channels are operated, each comprising an imaging optic 21 and a camera 22.
  • a filter 26 may also be arranged in channel II (T2 would then not be constant, if there is no filter 26, T2 would be constant).
  • a switching element 27 serves for the sequential switching of filter functions.
  • Switching element 27 can in this case e.g. a fast filter wheel or an AOTF or a suitable beam splitter arrangement with
  • Switching mirror arrangement be.
  • the evaluation of the image data takes place in such a way that the wavelength at which the optical sectional image signal becomes maximum is determined for each pixel. From this, the function z (x, y) or the surface topography can be directly deduced. This is done for example by
  • At least two measuring processes are evaluated and from this directly on the wavelength is closed.
  • HDR imaging for example, by multiple measurements with different exposure times is also useful, so that the noise for each pixel is essentially shot-noise limited. Sometimes a calibration is sufficient regardless of the function g as well as the function P is not enough, so these two functions as device properties still have to be included.
  • Wavelength may then be determined not directly, but using an iterative method.
  • Measuring range exceeds, so if necessary, a z-stitching is required, in which similar measurements at
  • the filter functions are usefully like that
  • Beam paths can be realized, including, for example, an electro-optical modulator (EOM) or an acousto-optic modulator (AOD) can be used.
  • EOM electro-optical modulator
  • AOD acousto-optic modulator
  • Modulation in the pupil plane of the lens 7 causes.
  • One Grid is here according to the Fourier transform in
  • the structured element 4 which may also be formed by a 2D pinhole arrangement, is moved to different positions, and corresponding images are taken with the detector unit 17, but in this case only one light channel of the illumination is used ,
  • the detector unit 17 can also be used as a digital PH, so that a truly confocal image
  • the evaluation with regard to the wavelength takes place as described above.
  • the structure 4 is completely eliminated and a sharpening function over the wavelength is determined in each case only for each local image area.
  • the structured element 4 can also represent an element for targeted introduction of a speckle pattern, which can be completely removed from the beam path.
  • FIG. 6 shows a further exemplary embodiment of a
  • Chromatic wide field microscope which corresponds to the combination of the aperture correlation principle with the chromatic confocal technology.
  • a rotatable disk 31 with a mirrored structure 32 is arranged here.
  • the sample light (detection beam path) reflected or emitted back from the sample 14 is detected in two illustrated camera channels in the example shown, a first detector 33 passing through the disc 31
  • polarization filters 18 can also be arranged in the detection beam path here.
  • both a wide-field image and a confocal image can be calculated.
  • the intensity information as a function of the wavelength yields the sought height information for each detection pixel.
  • the resulting color image can also be used directly to represent a color image with extended depth of field information.
  • structures are possible in which the two channels are arranged on only one camera chip.
  • FIG. 7 shows a further exemplary embodiment in which, for example, a pinhole array 41 or a Nipkow disk is used.
  • a detection of the entire sample surface is achieved by a movement (rotation,
  • the pinhole array 41 is a Nipkow disk and designed as such with structured and unstructured sectors, this embodiment also provides a special case of the aperture correlation in which the confocality evaluation is carried out by offsetting sequentially or parallel recorded structured and non-structured illuminated images.
  • An interferometer element 43 is optionally provided to increase the measurement accuracy. This may also be present in all other embodiments.
  • FIGS. 8 to 10 show possible design variants for the use of filter functions or different spectral distributions in the illumination beam path.
  • FIG. 8 shows the polychromatic light source 1, whose light can be conducted with a fast switching element 44 into different channels, which in turn is the same as the two measuring processes in analogy to the one discussed above.
  • filters 46 and 47 are now different filters 46 and 47.
  • the filters 46, 47 may possibly be dispensed with, which corresponds in its overall effect to the case described in FIG. 2 in a sequential design.
  • Fig. 9 shows an embodiment variant of the invention, in which two similar light sources 1 with, respectively
  • downstream filters 46, 47 are used, which are connected in quick succession.
  • FIG. 10 A further advantageous embodiment variant is shown in FIG. 10 again.
  • the beam combining element 53 is now designed as a pure beam combiner.
  • the spectral characteristics already yield the desired filter functions. For example, the spectra of the
  • Illumination sources 51, 52 are slightly shifted from each other and gaussförmig. From the intensity ratio of the two with each one of the illumination sources 51, 52 coupled

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
PCT/EP2016/061581 2015-06-01 2016-05-23 Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop WO2016193037A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680029710.4A CN107710046B (zh) 2015-06-01 2016-05-23 用于使用宽场显微镜确定样本的空间分辨高度信息的方法和宽场显微镜
JP2017556932A JP6595618B2 (ja) 2015-06-01 2016-05-23 広視野顕微鏡を用いて試料の空間分解された高さ情報を確定するための方法および広視野顕微鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015210016.2 2015-06-01
DE102015210016.2A DE102015210016A1 (de) 2015-06-01 2015-06-01 Verfahren zum Ermitteln einer ortsaufgelösten Höheninformation einer Probe mit einem Weitfeldmikroskop und Weitfeldmikroskop

Publications (1)

Publication Number Publication Date
WO2016193037A1 true WO2016193037A1 (de) 2016-12-08

Family

ID=56092898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/061581 WO2016193037A1 (de) 2015-06-01 2016-05-23 Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop

Country Status (4)

Country Link
JP (1) JP6595618B2 (ja)
CN (1) CN107710046B (ja)
DE (1) DE102015210016A1 (ja)
WO (1) WO2016193037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008134A (zh) * 2019-12-20 2021-06-22 卡尔蔡司显微镜有限责任公司 用于成像深度测量的测量装置、光学显微镜和测量方法
DE102020200214A1 (de) 2020-01-09 2021-07-15 Hochschule für angewandte Wissenschaften Kempten Körperschaft des öffentlichen Rechts Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127281A1 (de) * 2018-10-31 2020-04-30 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren zur Mikroskopie
DE102018219450A1 (de) * 2018-11-14 2020-05-14 Robert Bosch Gmbh Verfahren zum Erzeugen eines Spektrums und Spektrometereinheit
LU101084B1 (de) * 2018-12-21 2020-06-22 Abberior Instruments Gmbh Verfahren und Vorrichtung zum punktförmigen Beleuchten einer Probe in einem Mikroskiop
EP3786573A1 (de) * 2019-08-30 2021-03-03 Klingelnberg GmbH Optische koordinaten-messvorrichtung und verfahren zum betreiben einer solchen vorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055215A1 (en) * 2013-08-20 2015-02-26 National Taiwan University Differential filtering chromatic confocal microscopic system
DE102013016368A1 (de) * 2013-09-30 2015-04-02 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911667B1 (en) * 1997-10-22 2003-04-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Programmable spatially light modulated microscope and microscopy method
DE102007018048A1 (de) 2007-04-13 2008-10-16 Michael Schwertner Verfahren und Anordnung zur optischen Abbildung mit Tiefendiskriminierung
DE102012009836A1 (de) * 2012-05-16 2013-11-21 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Verfahren zur Bildaufnahme mit einem Lichtmikroskop
US9860520B2 (en) * 2013-07-23 2018-01-02 Sirona Dental Systems Gmbh Method, system, apparatus, and computer program for 3D acquisition and caries detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055215A1 (en) * 2013-08-20 2015-02-26 National Taiwan University Differential filtering chromatic confocal microscopic system
DE102013016368A1 (de) * 2013-09-30 2015-04-02 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAR TIEN ANG ET AL: "Note: Development of high speed confocal 3D profilometer", REVIEW OF SCIENTIFIC INSTRUMENTS., vol. 85, no. 11, 1 November 2014 (2014-11-01), US, pages 116103, XP055293847, ISSN: 0034-6748, DOI: 10.1063/1.4901518 *
TAEJOONG KIM ET AL: "Chromatic confocal microscopy with a novel wavelength detection method using transmittance", OPTICS EXPRESS, vol. 21, no. 5, 5 March 2013 (2013-03-05), pages 6286, XP055285256, ISSN: 2161-2072, DOI: 10.1364/OE.21.006286 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008134A (zh) * 2019-12-20 2021-06-22 卡尔蔡司显微镜有限责任公司 用于成像深度测量的测量装置、光学显微镜和测量方法
DE102019135521A1 (de) * 2019-12-20 2021-06-24 Carl Zeiss Microscopy Gmbh Messanordnung, Lichtmikroskop und Messverfahren zur bildgebenden Tiefenmessung
US20210199946A1 (en) * 2019-12-20 2021-07-01 Carl Zeiss Microscopy Gmbh Measuring arrangement, light microscope and measuring method for imaging depth measurement
DE102020200214A1 (de) 2020-01-09 2021-07-15 Hochschule für angewandte Wissenschaften Kempten Körperschaft des öffentlichen Rechts Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche
WO2021140052A1 (de) 2020-01-09 2021-07-15 Hochschule für angewandte Wissenschaften Kempten Körperschaft des öffentlichen Rechts Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche

Also Published As

Publication number Publication date
CN107710046B (zh) 2021-08-31
JP2018520337A (ja) 2018-07-26
CN107710046A (zh) 2018-02-16
DE102015210016A1 (de) 2016-12-01
JP6595618B2 (ja) 2019-10-23

Similar Documents

Publication Publication Date Title
EP2137488B1 (de) Verfahren und anordnung zur optischen abbildung mit tiefendiskriminierung
WO2013171309A1 (de) Lichtmikroskop und verfahren zur bildaufnahme mit einem lichtmikroskop
WO2016193037A1 (de) Verfahren zum ermitteln einer ortsaufgelösten höheninformation einer probe mit einem weitfeldmikroskop und weitfeldmikroskop
EP1984770B1 (de) Verfahren und anordnung zur schnellen und robusten, chromatisch-konfokalen 3d-messtechnik
EP2592462B1 (de) Verfahren und Anordnung zur Autofokussierung eines Mikroskops
DE102013016368B4 (de) Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe
EP3058414B1 (de) Scanmikroskop und verfahren zum bestimmung der punkt-spreiz-funktion (psf) eines scanmikroskops
DE102006050834A1 (de) Grabenmesssystem mit einem chromatischen konfokalen Höhensensor und einem Mikroskop
EP2863167B1 (de) Verfahren und Vorrichtung zur Messung der Ablenkung von Lichtstrahlen durch eine Objektstruktur oder ein Medium
EP3435027B1 (de) Konfokalmikroskop zur schichtdickenmessung und mikroskopieverfahren zur schichtdickenmessung
EP3948392B1 (de) Verfahren und vorrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv
DE102013016367A1 (de) Lichtmikroskop und Verfahren zum Untersuchen einer Probe mit einem Lichtmikroskop
EP1882970A1 (de) Laser-Scanning-Mikroskop zur Fluoreszenzuntersuchung
EP3101385B1 (de) Vorrichtung und verfahren zur erfassung von oberflächentopographien
DE10118463A1 (de) Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe
WO2020207795A1 (de) Lichtblattmikroskop und verfahren zuur bestimmung der brechungsindices von objekten im probenraum
DE102010016462A1 (de) Schichtmessverfahren und Messvorrichtung
EP1678544A1 (de) Verfahren zur probenuntersuchung und mikroskop mit evaneszenter probenbeleuchtung
EP3867630B1 (de) Verfahren und mikroskop zur bestimmung des brechungsindex eines optischen mediums
DE102007054734B4 (de) Verfahren zum Erfassen eines Oberflächenprofils
DE10321886A1 (de) Robuster interferometrischer Sensor und Verfahren zur Objektabtastung
DE10260887A1 (de) Kohärenzmikroskop
WO2007131602A1 (de) Anordnung und verfahren zur konfokalen durchlicht-mikroskopie, insbesondere auch zur vermessung von bewegten phasenobjekten
DE102008059876B4 (de) Ophthalmoskopie-System und Ophthalmoskopie-Verfahren
DE102019111557A1 (de) Sensor und Verfahren zur Bestimmung von geometrischen Eigenschaften eines Messobjekts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16726059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16726059

Country of ref document: EP

Kind code of ref document: A1