WO2016188437A1 - 脱水机 - Google Patents

脱水机 Download PDF

Info

Publication number
WO2016188437A1
WO2016188437A1 PCT/CN2016/083395 CN2016083395W WO2016188437A1 WO 2016188437 A1 WO2016188437 A1 WO 2016188437A1 CN 2016083395 W CN2016083395 W CN 2016083395W WO 2016188437 A1 WO2016188437 A1 WO 2016188437A1
Authority
WO
WIPO (PCT)
Prior art keywords
laundry
duty ratio
motor
control unit
detection
Prior art date
Application number
PCT/CN2016/083395
Other languages
English (en)
French (fr)
Inventor
川口智也
佐藤弘树
Original Assignee
海尔亚洲株式会社
青岛海尔洗衣机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015106538A external-priority patent/JP6350874B2/ja
Application filed by 海尔亚洲株式会社, 青岛海尔洗衣机有限公司 filed Critical 海尔亚洲株式会社
Priority to US15/576,592 priority Critical patent/US20180155862A1/en
Priority to CN201680028339.XA priority patent/CN107709650B/zh
Priority to KR1020177037320A priority patent/KR102005360B1/ko
Priority to EP16799324.5A priority patent/EP3305959A4/en
Publication of WO2016188437A1 publication Critical patent/WO2016188437A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/04Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/62Stopping or disabling machine operation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/007Methods for washing, rinsing or spin-drying for spin-drying only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F49/00Domestic spin-dryers or similar spin-dryers not suitable for industrial use

Definitions

  • the invention relates to a dehydrator.
  • Patent Document 1 listed below discloses a washing machine having a dehydrating function.
  • the motor that rotates the washing and dewatering tub in which the laundry is stored is rotated at a constant speed of 120 rpm by controlling the duty ratio of the applied voltage, and then rotated at a constant speed of 240 rpm. Rotate at a constant speed of 800 rpm.
  • the duty ratio at the time point of 3.6 seconds after the rotation speed of the motor was accelerated from 120 rpm to 240 rpm was taken as the reference duty ratio.
  • a target value related to the duty ratio that changes with time in a state where the motor rotates at a constant speed of 240 rpm is obtained as a comparison duty ratio based on the reference duty ratio.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2011-240040
  • the washing machine of Patent Document 1 judges that the rotational speed of the motor reaches 240 rpm at a time point of 3.6 seconds after the rotational speed of the motor starts to accelerate from 120 rpm to 240 rpm, and the duty ratio at this time point is regarded as the reference duty ratio.
  • the reference duty ratio is an important factor in the detection accuracy of whether or not the laundry is biased.
  • the duty ratio is not considered, and the duty ratio at the time point of 3.6 seconds from the start of acceleration of the motor is uniformly regarded as the reference duty ratio. Therefore, when the reference duty ratio is a duty ratio obtained at a timing deviated from the correct timing due to the influence of the load amount, there is a possibility that the detection accuracy of the laundry may be adversely affected.
  • the problem that is always solved is to shorten the time of the dehydration operation.
  • the present invention has been made in view of the background, and an object thereof is to provide a dehydrator capable of improving the detection accuracy of whether or not a laundry is biased.
  • the present invention is a dewatering machine, comprising: a dewatering bucket for containing laundry, rotating to dehydrate the laundry; an electric motor to rotate the dewatering bucket; and a load measuring unit when the dewatering bucket starts At the time of rotation, the load amount of the laundry in the dewatering tub is measured; and the drive control unit controls the duty ratio of the voltage applied to the motor after the load amount is measured by the load amount measuring unit.
  • the motor rotates at a constant speed at a first rotational speed, and then the motor is rotated at a second rotational speed higher than the first rotational speed to cause the laundry to be officially dehydrated;
  • the acquisition unit is to be in the motor a duty ratio of a voltage applied to the motor in an acceleration state accelerated to the first rotational speed is taken as a reference duty ratio; and a timing determining unit determines a timing at which the acquisition unit acquires the reference duty ratio;
  • the determining unit after the obtaining unit acquires the reference duty ratio, is based on the electric power applied to the motor to maintain the first rotational speed for a predetermined period of time Determining whether or not the laundry in the dewatering bucket is biased with respect to an index of a change in the duty ratio; and stopping the control unit, determining that there is a bias of the laundry in the determining unit Lowering the rotation of the dewatering tub, the timing determining unit detecting the load according to the load amount measuring unit The amount of load determines a timing at which the acquisition unit acquire
  • the present invention is characterized in that it includes an execution unit that selectively performs dehydration for restarting dehydration of laundry according to the index in a case where the stop control unit stops rotation of the dewatering tub The rotation of the tub and the process of correcting the bias of the laundry in the dewatering tub.
  • the present invention is characterized in that the drive control unit causes the motor to rotate at a constant speed lower than a predetermined speed lower than the first rotation speed before the motor is rotated at a constant speed at the first rotation speed,
  • the execution unit shortens a length of time at which the motor is rotated at a constant speed at the predetermined speed in a case where rotation of the dewatering tub for restarting dehydration of the laundry is performed.
  • the dehydrator of the present invention is characterized by comprising: a dewatering tub for containing laundry, rotating to dehydrate the laundry; an electric motor for rotating the dewatering tub; and a drive control unit for applying the motor to the motor a duty ratio of the voltage, causing the motor to rotate at a constant speed at a first rotational speed, and then rotating the motor at a second rotational speed higher than the first rotational speed to formally dehydrate the laundry;
  • the acquisition unit acquires the duty ratio once every predetermined timing for a predetermined period of time after the motor starts to accelerate to the first rotation speed; and the counting unit obtains a duty ratio greater than that obtained by the acquisition unit When the duty ratio obtained last time is equal to 1, the count value whose initial value is zero is incremented by one, and when the duty ratio obtained by the acquisition unit is smaller than the duty ratio obtained last time, the count value is reset to The initial value; the determining unit, when the count value is greater than or equal to a predetermined threshold, determining that there is a bias of the laundry in
  • the present invention is a dehydrator characterized by comprising: a dewatering tub for containing laundry, rotating to dehydrate the laundry; an electric motor for rotating the dewatering tub; and a drive control unit for controlling the a duty ratio of a voltage applied by the motor, causing the motor to rotate at a constant speed at a first rotational speed, and then rotating the motor at a second rotational speed higher than the first rotational speed to make the laundry officially a dehydrating unit that acquires the duty ratio every predetermined timing during a period in which the rotational speed of the motor is from the first rotational speed to the second rotational speed; the determining unit, when the obtaining When the duty ratio obtained by the unit is greater than or equal to a predetermined threshold, determining that there is a bias of the laundry in the dewatering bucket; stopping the control unit, and causing the dehydration if the determining unit determines that there is a bias of the laundry The rotation of the tub is stopped; the receiving unit receives a selection related to the dehydration condition of the motor
  • the present invention is a dehydrator characterized by comprising: a dewatering tub for containing laundry, rotating to dehydrate the laundry; an electric motor for rotating the dewatering tub; and a drive control unit for controlling the a duty ratio of a voltage applied by the motor, causing the motor to rotate at a constant speed at a first rotational speed, and then rotating the motor at a second rotational speed higher than the first rotational speed to make the laundry officially a dehydration unit that takes a maximum value of the duty ratio in an acceleration state in which the motor is accelerated to the first rotation speed, and a calculation unit that obtains the maximum value in the acquisition unit After the duty ratio, calculating an integrated value of the difference between the duty ratio and the maximum duty ratio per predetermined time; and determining, when the accumulated value is less than a predetermined threshold, determining that the dewatering bucket exists a bias of the laundry; and a stop control unit that stops the rotation of the dewatering tub when the judging unit judges that there is a bias of the laundry.
  • the present invention is characterized in that the threshold value is obtained by an equation in which a count value and the maximum duty ratio are variables, wherein the count value is incremented once every predetermined time.
  • the present invention is characterized in that the drive control unit controls the duty ratio in such a manner that the rotation speed resonates with the dehydration barrel in an acceleration state in which the motor is accelerated to the first rotation speed
  • the maximum duty cycle is generated when the rotational speed is slightly lower.
  • the motor is rotated at a constant speed at the first rotation speed by controlling the duty ratio of the voltage applied to the electric motor that rotates the dehydration tub, and then the motor is made to rotate at a higher speed than the first rotation speed.
  • the high second rotation speed is rotated at a constant speed, whereby the laundry in the dewatering tank is officially dehydrated.
  • the reference duty ratio is obtained by the acquisition unit in the acceleration state until the motor accelerates to the first rotation speed. Then, after the acquisition unit acquires the reference duty ratio, the index indicating a change in the duty ratio of the voltage applied to the motor to maintain the first rotation speed with respect to the reference duty ratio is changed within a predetermined period of time. Determine whether the laundry in the dewatering bucket is biased. In the case where it is judged that there is a bias of the laundry, the rotation of the dewatering tub is stopped.
  • the timing determining means determines the timing at which the acquiring means obtains the reference duty ratio based on the measured load amount.
  • the refreshing is performed based on the index indicating that the duty ratio changes with respect to the reference duty ratio.
  • the process of correcting the bias of the laundry is not always performed. Therefore, when the index is an index indicating that the deviation of the laundry is small, the dewatering tub is immediately rotated to restart the dehydration, whereby the time for realizing the dehydration operation is shortened.
  • the step is The length of time is shortened, so that the time for the dehydration operation is further shortened.
  • the motor is rotated at a constant speed at the first rotational speed, and then the motor is made A second rotation speed having a high rotation speed is rotated at a constant speed, whereby the laundry in the dewatering tank is officially dehydrated.
  • the duty ratio is obtained every predetermined timing for a predetermined period, and each duty ratio is on The duty ratios obtained at one time are compared. Specifically, when the obtained duty ratio is greater than or equal to the duty ratio obtained last time, the count value whose initial value is zero is incremented by one, and when the obtained duty ratio is smaller than the duty ratio obtained last time, the count is counted. The value is reset to the initial value.
  • the motor is rotated at a constant speed at the first rotation speed by controlling the duty ratio of the voltage applied to the electric motor that rotates the dehydration tub, and then, the electric power is made.
  • the machine rotates at a constant speed at a second rotation speed higher than the first rotation speed, whereby the laundry in the dewatering tank is officially dehydrated.
  • the duty ratio is obtained once every predetermined timing during the period from the first rotation speed to the second rotation speed of the rotation speed of the motor.
  • the duty ratio is greater than or equal to a predetermined threshold, it is determined that there is a bias of the laundry in the dewatering bucket, and the rotation of the dewatering bucket is stopped.
  • the dehydrator can receive a selection relating to the dehydration condition of the laundry by the receiving unit, and can change the threshold according to the received dehydration condition. Therefore, since it is possible to detect whether or not the laundry is biased by the threshold value appropriate for each dehydration condition in the dehydration operation under each dehydration condition, the detection accuracy of the presence or absence of the laundry can be improved.
  • the motor is rotated at a constant speed at the first rotational speed by controlling the duty ratio of the voltage applied to the electric motor that rotates the dewatering tub, and then the motor is made to be the first
  • the second rotational speed at which the rotational speed is high is rotated at a constant speed, whereby the laundry in the dewatering tub is officially dehydrated.
  • the maximum value of the duty ratio in the acceleration state until the motor is accelerated to the first rotational speed is taken as the maximum duty ratio, and then the maximum duty is calculated.
  • the cumulative value of the difference from the duty ratio per predetermined time is taken as the maximum duty ratio, and then the maximum duty is calculated.
  • the threshold value is incremented by one count value and maximum duty ratio every predetermined time. It is obtained as a formula of a variable.
  • the maximum duty ratio differs depending on the amount of load of the laundry in the dewatering tub. Therefore, the threshold value is set differently depending on the amount of load.
  • the duty ratio is set to generate a maximum duty ratio at a rotational speed slightly lower than the rotational speed at which the dewatering barrel resonates. At this time, resonance occurs early after the maximum duty ratio is generated. Therefore, it is very fast that the cumulative value is difficult to increase. Therefore, the bias of the laundry in the dewatering bucket can be detected early and correctly.
  • Fig. 1 is a schematic longitudinal cross-sectional right side view showing a dehydrator 1 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the electrical configuration of the dehydrator 1.
  • FIG. 3 is a timing chart showing a state of the number of revolutions of the motor 6 in the spin-drying operation performed by the dehydrator 1.
  • FIG. 5A is a flowchart showing an outline of detection 1 to detection 4 for detecting whether or not the laundry in the dewatering tank 4 is biased during the dehydrating operation.
  • FIG. 5B is a flowchart showing an outline of detection 1 to detection 4 for detecting whether or not the laundry in the dewatering tank 4 is biased during the dehydrating operation.
  • FIG. 6A is a flowchart showing the related control operations of the detection 1 and the detection 2.
  • FIG. 6B is a flowchart showing the related control operations of the detection 1 and the detection 2.
  • FIG. 7 is a graph showing the relationship between the rotational speed of the motor 6 and the rotational speed Sn in association with the detection 1.
  • FIG. 8 is a graph showing the relationship between the number of revolutions of the motor 6 and the cumulative value U of the absolute value of the difference with respect to the difference S in association with the detection 2.
  • FIG. 9A is a flowchart showing the related control operations of the detection 3 and the detection 4.
  • FIG. 9B is a flowchart showing the related control operations of the detection 3 and the detection 4.
  • FIG. 10 is a graph showing the relationship between time and the first count value E in association with the detection 3.
  • FIG. 11 is a graph showing the relationship between the time and the corrected duty ratio dn_diff in association with the detection 4.
  • FIG. 12 is a flowchart showing an outline of detection 5-1 and detection 5-2 for detecting whether or not the laundry in the dewatering tank 4 is biased during the dehydrating operation.
  • Fig. 13 is a flowchart showing the related control operation of the detection 5-1.
  • FIG. 14 is a graph showing the relationship between the rotational speed and the movement cumulative value Cn in association with the detection 5-1 and the detection 5-2.
  • Fig. 15 is a flowchart showing the related control operation of the detection 5-2.
  • Fig. 16 is a flow chart showing a control operation for detecting a bubble during a dehydrating operation.
  • FIG. 17 is a timing chart showing a state of the number of revolutions of the motor 6 in the middle of the dehydration operation by the dehydrator 1 in association with the detection 6.
  • FIG. 18 is a flowchart showing the related control operation of the detection 6.
  • FIG. 19 is a graph showing the relationship between the count value G and the cumulative value H in association with the detection 6.
  • FIG. 20 is a graph showing the relationship between the count value G and the duty ratio in association with the detection 6.
  • Fig. 1 is a schematic longitudinal sectional right side view of a dehydrator 1 according to an embodiment of the present invention.
  • the vertical direction of FIG. 1 is referred to as the vertical direction X of the dehydrator 1, and the horizontal direction of FIG. 1 is referred to as the front-rear direction Y of the dehydrator 1.
  • the upper side is referred to as an upper X1
  • the lower side is referred to as a lower X2.
  • the left side in Fig. 1 is called In the front Y1
  • the right side in Fig. 1 is referred to as the rear Y2.
  • the dehydrator 1 includes all means capable of performing the dehydration operation of the laundry Q. Therefore, the dehydrator 1 includes not only a device having only a dehydrating function but also a washing machine having a dehydrating function and a washer-dryer. Hereinafter, the dehydrator 1 will be described by taking a washing machine as an example.
  • the dehydrator 1 includes a casing 2, an outer tub 3, a dewatering tub 4, a rotary wing 5, an electric motor 6, and a transmission mechanism 7.
  • the casing 2 is made of, for example, metal and formed in a box shape.
  • the upper surface 2A of the casing 2 is formed to be inclined with respect to the front-rear direction Y so as to extend upward toward the rear side X2.
  • An opening 8 that communicates with the inside and outside of the casing 2 is formed on the upper surface 2A.
  • a door 9 that opens and closes the opening 8 is provided on the upper surface 2A.
  • an operation portion 20 composed of a liquid crystal operation panel or the like is provided in a region further forward than the opening 8 by Y1.
  • the outer tub 3 is made of, for example, a resin, and is formed into a bottomed cylindrical shape.
  • the outer tub 3 includes a substantially cylindrical circumferential wall 3A disposed along the vertical direction X, a bottom wall 3B that blocks the hollow portion of the circumferential wall 3A from the lower side X2, and an annular annular wall 3C that surrounds the circumferential wall 3A.
  • the end edge on the upper X1 side is wrapped and protrudes toward the center side of the circumferential wall 3A.
  • An inlet and outlet 10 that communicates with the hollow portion of the circumferential wall 3A from the upper side X1 is formed inside the annular wall 3C.
  • the doorway 10 is in a state of being opposed to the opening 8 of the casing 2 from the lower side X2.
  • a door 11 that opens and closes the inlet and outlet 10 is provided in the annular wall 3C.
  • the bottom wall 3B is formed in a disk shape extending substantially horizontally, and a through hole 3D penetrating the bottom wall 3B is formed at a center position of the bottom wall 3B.
  • the outer tub 3 can store water.
  • the outer tub 3 is connected to a water supply path 12 connected to a tap of tap water from the upper side X1, and tap water is supplied from the water supply path 12 into the outer tub 3.
  • a water supply valve 13 that opens and closes to start or stop water supply is provided in the middle of the water supply path 12.
  • the outer tub 3 is connected to the drain passage 14 from the lower side X2, and the water in the outer tub 3 is discharged from the drain passage 14 to the outside of the washing machine.
  • a drain valve 15 that opens and closes to start or stop draining is provided in the middle of the drain passage 14.
  • the dewatering tub 4 is made of, for example, metal, and has a bottomed cylindrical shape that is smaller than the outer tub 3, and can accommodate the laundry Q therein.
  • the dewatering tub 4 has a substantially cylindrical circumferential wall 4A disposed along the vertical direction X and a bottom wall 4B that blocks the hollow portion of the circumferential wall 4A from the lower side X2.
  • the inner circumferential surface of the circumferential wall 4A is the inner circumferential surface of the dewatering tub 4.
  • the end portion is an inlet and outlet 21 that exposes the hollow portion of the circumferential wall 4A upward.
  • the entrance and exit 21 is opposed to the inlet and outlet 10 of the outer tub 3 from the lower side X2.
  • the entrances and exits 10 and 21 are opened and closed by the door 11.
  • the user of the dehydrator 1 takes out the laundry Q into the dewatering tub 4 via the opened opening 8, the inlets 10 and 21.
  • the dewatering tub 4 is housed in the outer tub 3 coaxially.
  • the dewatering tub 4 in a state of being housed in the outer tub 3 is rotatable about an axis 16 constituting a central axis thereof and extending in the vertical direction X.
  • a plurality of through holes are formed in the circumferential wall 4A and the bottom wall 4B of the dewatering tub 4, and water in the outer tub 3 can pass between the outer tub 3 and the dewatering tub 4 through the through holes. Therefore, the water level in the outer tub 3 coincides with the water level in the dewatering tub 4.
  • the bottom wall 4B of the dewatering tub 4 is formed in a disk shape extending substantially in parallel with respect to the bottom wall 3B of the outer tub 3 so as to extend upward in the vertical direction, and is formed in the bottom wall 4B at a center position coincident with the axis 16
  • the through hole 4C that penetrates the bottom wall 4B.
  • the bottom wall 4B is provided with a tubular support shaft 17 that surrounds the through hole 4C and extends downward along the axis 16 toward the lower side X2.
  • the support shaft 17 is inserted into the through hole 3D of the bottom wall 3B of the outer tub 3, and the lower end portion of the support shaft 17 is located below the bottom wall 3B by X2.
  • the rotary blade 5, that is, the pulsator, is formed in a disk shape centered on the axis 16 and is disposed concentrically with the dewatering tub 4 along the bottom wall 4B in the dewatering tub 4.
  • a plurality of blades 5A arranged radially are provided on the upper surface of the inlet/outlet 21 facing the dewatering tub 4.
  • the rotary wing 5 is provided with a rotary shaft 18 extending from its center along the axis 16 to the lower side X2.
  • the rotating shaft 18 is inserted through the hollow portion of the support shaft 17, and the lower end portion of the rotating shaft 18 is located below the bottom wall 3B of the outer tub 3 by X2.
  • the motor 6 is realized by a variable frequency motor.
  • the motor 6 is disposed in the casing 2 below the lower portion X2 of the outer tub 3.
  • the motor 6 has an output shaft 19 that rotates about the axis 16 .
  • the transmission mechanism 7 is interposed between the lower end portion of each of the support shaft 17 and the rotary shaft 18 and the upper end portion of the output shaft 19.
  • the transmission mechanism 7 selectively transmits the driving force output from the output shaft 19 of the motor 6 to one or both of the support shaft 17 and the rotation shaft 18.
  • a well-known transmission mechanism can be used as the transmission mechanism 7, a well-known transmission mechanism can be used.
  • the dewatering tub 4 and the rotary vane 5 rotate about the axis 16.
  • the laundry Q in the dewatering tub 4 is agitated by the rotating dewatering tub 4 and the blades 5A of the rotary wing 5.
  • the dewatering tub 4 and the rotary vane 5 are integrally rotated at a high speed, and the laundry Q in the dewatering tub 4 is dehydrated.
  • FIG. 2 is a block diagram showing the electrical configuration of the dehydrator 1.
  • the dehydrator 1 includes a load amount measuring unit, a drive control unit, an acquisition unit, a timing determination unit, a determination unit, a stop control unit, an execution unit, a counting unit, a receiving unit, a threshold value changing unit, and a control unit as a calculation unit.
  • the control unit 30 is configured, for example, as a microcomputer including a memory 32 such as a CPU 31, a ROM, or a RAM, a timer 35, and a counter 36, and is built in the casing 2 (see FIG. 1).
  • the dehydrator 1 further includes a water level sensor 33 and a rotational speed reading device 34.
  • the water level sensor 33 and the rotational speed reading device 34, and the motor 6, the transmission mechanism 7, the water supply valve 13, the drain valve 15, and the operation unit 20 described above are electrically connected to the control unit 30, respectively.
  • the water level sensor 33 is a sensor that detects the water level of the outer tub 3 and the dewatering tub 4, and the detection result of the water level sensor 33 is input to the control unit 30 in real time.
  • the rotational speed reading device 34 is a device that reads the rotational speed of the motor 6, and strictly reads the rotational speed of the output shaft 19 of the motor 6, and is constituted by, for example, a Hall IC.
  • the rotational speed read by the rotational speed reading device 34 is input to the control unit 30 in real time.
  • the control unit 30 controls the duty ratio of the voltage applied to the motor 6 based on the input rotational speed to rotate the motor 6 at a desired rotational speed.
  • the control unit 30 controls the transmission mechanism 7 to switch the transmission target of the driving force of the motor 6 to one or both of the support shaft 17 and the rotation shaft 18.
  • the control unit 30 controls opening and closing of the water supply valve 13 and the drain valve 15. As described above, when the user operates the operation unit 20 to select the dehydration condition or the like of the laundry Q, the control unit 30 receives the selection.
  • FIG. 3 is a timing chart showing a state of the number of revolutions of the motor 6 in the spin-drying operation performed by the dehydrator 1.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the rotational speed (unit: rpm) of the motor 6.
  • the control unit 30 measures the amount of load of the laundry Q in the dewatering tub 4 when the dewatering tub 4 starts rotating. After the load amount is measured, the control unit 30 rotates the motor 6 at a constant speed of 120 rpm after raising the rotational speed of the motor 6 to a predetermined speed of 120 rpm. Then, the control unit 30 rotates the motor 6 at a constant speed of 240 rpm after raising the motor 6 from 120 rpm to 240 rpm. Then, the control unit 30 rotates the motor 6 at a constant speed of 800 rpm after raising the motor 6 from 240 rpm to a second rotation speed of 800 rpm.
  • the laundry Q in the dewatering tank 4 is officially dehydrated.
  • the dewatering tub 4 is laterally resonated, and when the rotational speed of the motor 6 is, for example, 200 rpm to 220 rpm, the dewatering tub 4 is longitudinally resonated.
  • control unit 30 detects whether or not the laundry Q in the dewatering tank 4 is biased in the middle of the dehydration operation, and stops the motor 6 when it is detected that there is a bias. As such detection, the control unit 30 performs five kinds of electrical detections of detection 1, detection 2, detection 3, detection 4, and detection 5.
  • the detection 1 to the detection 4 are executed in the low-speed eccentricity detection section which is constituted by an acceleration period from the rotation speed of the motor 6 from 120 rpm to 240 rpm and a predetermined period after the motor 6 starts to accelerate to 240 rpm.
  • the detection 5 is performed in a high-speed eccentricity detection section during a period in which the rotational speed of the motor 6 is from 240 rpm up to 800 rpm.
  • FIG. 4 is a graph showing the relationship between the weight of the laundry Q accommodated in the dewatering tub 4 and the load amount, which is detected by the dehydrator 1 in accordance with the weight of the laundry Q.
  • the horizontal axis represents the weight (unit: kg) of the laundry Q
  • the vertical axis represents the detected value of the load amount.
  • the control unit 30 measures the amount of load of the laundry Q in the dewatering tub 4 when the dewatering tub 4 starts rotating.
  • the control unit 30 rotates the dewatering tub 4 at a predetermined number of revolutions when the dewatering tub 4 starts to rotate, and detects a value obtained by accumulating the duty ratio of the voltage applied to the motor 6 at this time as a load amount.
  • the control unit 30 electrically measures the amount of load of the laundry Q.
  • 5A and 5B are flowcharts showing an outline of the detection 1 to the detection 4.
  • step S1 when the dehydration rotation of the dewatering tank 4 is started by starting the dehydration operation (step S1), as described above, the control unit 30 measures the load amount of the laundry Q in the dewatering tank 4 (step S2), Then, the motor 6 is rotated at a constant speed of 120 rpm for a predetermined time (step S3).
  • step S4 the control unit 30 starts accelerating the motor 6 to 240 rpm (step S4), and accelerates at the motor 6.
  • step S5 the result of the detection 1 is not "OK" (step S5: NO)
  • step S5: NO the result of the detection 1 is not "OK" (step S5: NO)
  • step S6 the control unit 30 stops the motor 6 to cause the dewatering tank 4
  • step S6 the control unit 30 stops the motor 6 to cause the dewatering tank 4
  • step S7 it is judged whether or not the dehydration operation can be restarted.
  • the restart of the dehydration operation means that the control unit 30 rotates the dewatering tub 4 immediately after stopping the rotation of the dewatering tub 4 to stop the dehydration operation to restart the dehydration operation. The details will be described later, and sometimes the restart will be performed according to the degree of deviation of the laundry Q.
  • step S8 the control unit 30 performs the restart (step S8).
  • the control unit 30 shortens the length of the constant rotation of 120 rpm in the restarting dehydration operation to be shorter than the length of the constant rotation of 120 rpm in the dehydration operation that has just been stopped.
  • the time for the dehydration operation can be shortened. It should be noted that such a shortened duration can also be performed in subsequent subsequent restarts.
  • step S9 the control unit 30 performs a process of unbalance correction (step S9).
  • the control unit 30 opens the water supply valve 13 after closing the drain valve 15, and supplies water to the predetermined water level in the dewatering tank 4, so that the laundry Q in the dewatering tank 4 is immersed in water to be easily released.
  • the control unit 30 rotates the dewatering tub 4 and the rotary blade 5 to peel off the laundry Q attached to the inner circumferential surface of the dewatering tub 4, thereby agitating the laundry Q in the dewatering tub 4. Bias.
  • step S5 YES
  • the control unit 30 determines that there is no bias of the laundry Q by the detection 1
  • the control unit 30 is in the motor.
  • the above-described detection 2 is carried out (step S10).
  • step S10 NO
  • the control unit 30 stops the motor 6 and the dewatering tub 4.
  • the dehydration operation is suspended (step S11).
  • the control unit 30 confirms whether or not the dehydration condition of the dehydration operation that was suspended this time is the "wool pattern" or the "single-off operation" (step S12).
  • the wool fabric pattern refers to a dewatering condition for dehydrating the laundry Q which is easily absorbed by wool or the like.
  • the dehydration condition is the wool fabric mode (step S12: YES), and the dehydration operation of this suspension is not implemented.
  • the control unit 30 executes a restart in which the length of the 120 rpm constant rotation is shortened (step S14).
  • the single-off operation does not refer to the dehydration operation performed following the washing operation and the rinsing operation, but refers to the dehydration condition in which the laundry Q that has been rinsed is put into the dewatering tank 4 and the laundry Q is dehydrated.
  • the dehydration condition is the single-off operation (step S12: YES) and it is before the restart (step S13: YES)
  • the control unit 30 performs the restart (step S14).
  • the control unit 30 may prompt the user to reset the laundry Q in the dewatering tub 4 by the display by the operation unit 20 or an error by a buzzer or the like. On the other hand, if it is not before the restart (step S13: No), the control unit 30 performs the imbalance correction (step S15).
  • step S12 determines that the dehydration condition is neither the wool fabric mode nor the single-off operation (step S12: NO).
  • the control unit 30 determines that the dehydration operation that was suspended this time is before the restart, and determines whether or not it is possible to restart next ( Step S16).
  • step S16 determines whether or not it is possible to restart next
  • step S16 executes a restart that shortens the duration of the 120 rpm constant rotation (step S17).
  • step S16: No the control unit 30 performs imbalance correction (step S18).
  • step S10 When the result of the detection 2 is "OK" (step S10: YES), that is, when the control unit 30 determines in the detection 2 that there is no bias of the laundry Q, the control unit 30 confirms the timer. Whether the value of 35 is equal to or higher than the set value per load amount (step S19). That is, the control unit 30 confirms in step S19 whether or not the measurement time of the timer 35 has reached the negative with the laundry Q in the dewatering tub 4. The set value corresponding to the charge.
  • the setting values are described in detail below.
  • step S19: YES When the value of the timer 35 is equal to or greater than the set value of the load amount (step S19: YES), the control unit 30 performs the above-described detection 3 and detection 4 in a state where the motor 6 is rotated at a constant speed of 240 rpm (step S20). .
  • step S20: NO When the result of the detection 3 and the detection 4 is not "OK" (step S20: NO), that is, when the control unit 30 determines that there is a bias of the laundry Q, the control unit 30 causes the motor 6 and the dewatering tank 4 The stop operation is stopped (step S11), and the corresponding processing is executed in steps S12 to S18.
  • step S20 determines in the detection 3 and the detection 4 that there is no bias of the laundry Q.
  • the control unit 30 rotates the motor 6 at a constant speed of 240 rpm, and continues dehydration at 240 rpm (step S21).
  • FIGS. 6A and 6B are flowcharts showing the related control operations of the detection 1 and the detection 2. First, the detection 1 and the detection 2 will be described with reference to FIGS. 6A and 6B.
  • the detection 1 and the detection 2 are detections of whether or not the laundry Q is biased by the rotational speed of the motor 6.
  • step S4 the control unit 30 starts accelerating the motor 6 to 240 rpm, and starts the detection 1 and the detection 2.
  • the control unit 30 starts the timer 35 to start counting, and the rotation speed reading device 34 measures the rotation speed V0 of the motor 6 at the start of acceleration (step S31).
  • the rotational speed V0 is about 120 rpm.
  • the value of the timer 35 that is, regarding the timing, the detection time of the detection 1 and the detection 2, that is, the acceleration time at which the motor 6 accelerates to 240 rpm differs depending on the amount of load.
  • the reason is that the more the amount of the laundry Q, the more time the motor 6 rotates at a speed of 240 rpm. Therefore, the set value per load amount related to the acceleration time of the motor 6 is obtained in advance by experiments or the like, and is stored in the memory 32.
  • control unit 30 starts counting by the counter 36 (step S32), and initializes the counter 36 every 0.3 seconds, thereby performing counting every 0.3 seconds (step S33 and step S34).
  • the control unit 30 measures the number of revolutions Vn (n: count value) of the motor 6 at the time of counting every time (step S35). In step S35, the control unit 30 calculates a difference Sn between the measured rotational speed Vn and the rotational speed Vn-1 measured once before Vn. Further, the control unit 30 also calculates the integrated value U of the absolute value of the difference between the difference Sn and the previous difference Sn-1 in step S35.
  • Step S36 corresponds to the above-described step S19 (refer to FIG. 5A).
  • step S36 determines whether or not the difference Sn just calculated falls within the range of the detection 1 (step S38). This predetermined amount is obtained in advance by experiments or the like and stored in the memory 32.
  • FIG. 7 is a graph showing the relationship between the number of revolutions of the motor 6 and the difference Sn in association with the detection 1.
  • the horizontal axis represents the rotational speed (unit: rpm)
  • the vertical axis represents the difference Sn (unit: rpm).
  • the control unit 30 determines that the difference Sn falls within the range of the detection 1 (step S38: YES). As described above, in the detection 1, the degree of instability of the acceleration of the dewatering tub 4 indicating whether or not the laundry Q is biased is detected based on the difference Sn.
  • step S38 YES
  • the rotation of the motor 6 is stopped (the above-described step S6), and the corresponding processing in the above-described steps S7 to S9 is executed (refer to FIG. 5A).
  • the processing of steps S31 to S38 is included in the above-described step S5 (refer to FIG. 5A).
  • control unit 30 determines that it does not fall within the range of the detection 1 by the difference Sn being higher than the threshold value (step S38: No), it is judged whether or not the accumulated value U just calculated falls within the range of the detection 2 (step S39).
  • step S37: NO when the load amount of the laundry Q in the dewatering tub 4 exceeds a certain amount (step S37: NO), the control unit 30 does not perform the determination by the detection 1 in step S38, but performs the detection 2 in step S39. The judgment made. The reason is that, in the case where the amount of the laundry Q is large enough to exceed a certain amount, the amount of water oozing out from the laundry Q or the bias of the laundry Q is slidly attached to the inner circumferential surface of the dewatering tub 4 by the laundry Q. It changes abruptly, so it may not be possible to perform detection 1 steadily. Therefore, in the case where the amount of the laundry Q exceeds a certain amount, the detection 1 is omitted.
  • FIG. 8 is a graph showing the relationship between the number of revolutions of the motor 6 and the cumulative value U in association with the detection 2.
  • the horizontal axis represents time (unit: sec)
  • the vertical axis represents integrated value U (unit: rpm).
  • the threshold value is set to two threshold values, a lower threshold indicated by a square point and an upper threshold indicated by a triangular point. The upper threshold is a value higher than the lower threshold.
  • the cumulative value U is lower than the lower threshold at any timing.
  • the cumulative value U is higher than the lower threshold at any timing as indicated by a broken line.
  • the control unit 30 determines that the integrated value U falls within the range of the detection 2 (step S39: YES). In this manner, the detection 2 detects the degree of instability of the acceleration of the dewatering tub 4 indicating whether or not the laundry Q is biased based on the integrated value U.
  • step S39 YES
  • the rotation of the motor 6 is stopped (step S11 described above), and the corresponding processing in steps S12 to S18 described above is executed.
  • the processing of steps S31 to S37 and step S39 is included in the above-described step S10 (refer to FIG. 5A).
  • step S12 determines in step S16 whether the deviation of the laundry Q is so large that the cumulative value U is equal to or higher than the upper threshold or Whether the dehydration operation of the second suspension has been restarted.
  • step S16 When the integrated value U is equal to or greater than the upper threshold or has been restarted (step S16: YES), the control unit 30 performs imbalance correction (step S18). When the cumulative value U is smaller than the upper threshold and the restart is not performed (step S16: No), the control unit 30 performs the restart (step S17).
  • the determination as to whether or not the cumulative value U is equal to or greater than the upper threshold is equivalent to the determination of whether or not the restart is possible in step S16 of FIG. 5B, and whether or not the restart has been performed corresponds to whether or not the determination is made before the restart in step S16 of FIG. 5B.
  • the control unit 30 determines whether the bias in the range of the detection 2 is small enough to be restarted or is large enough to perform the imbalance correction based on whether or not the integrated value U is equal to or greater than the upper threshold. Degree, and choose to perform restart and imbalance correction based on the size of the bias.
  • step S36 when the value of the timer 35 reaches the set value per load amount (step S36: YES), the control unit 30 ends the detection. 1 and detection 2 (step S40). Further, in step S40, the control unit 30 takes the duty ratio of the voltage applied to the motor 6 at the time when the value of the timer 35 reaches the set value as the reference duty ratio d0. When the value of the timer 35 reaches the set value and the process of step S40 is executed, the motor 6 is in an acceleration state up to 240 rpm.
  • the control unit 30 determines the timing at which the reference duty ratio d0 is obtained in step S40 based on the amount of load measured during the spin-drying rotation of the dewatering tub 4. In other words, the control unit 30 changes the timings of the detection 3 and the detection 4 after the end detection 1 and the detection 2 are started, based on the amount of load. Therefore, the detection 3 and the detection 4 can be performed at an optimum timing corresponding to the amount of the laundry Q.
  • FIGS. 9A and 9B are flowcharts showing the related control operations of the detection 3 and the detection 4.
  • the detection 3 and the detection 4 will be described with reference to FIGS. 9A and 9B.
  • the detection 3 and the detection 4 are detections of whether or not the laundry Q is biased by the duty ratio of the voltage applied to the motor 6.
  • the control unit 30 acquires the reference duty ratio d0 in the above-described step S40, and starts the detection 3 and the detection 4.
  • the rotational speed of the motor 6 is in a state of having reached 240 rpm, and the motor 6 is rotated at a constant speed of 240 rpm.
  • step S41 In association with the detection 3 and the detection 4, there are a first count value E and a second count value T, which are stored in the memory 32.
  • the control unit 30 resets the first count value E and the second count value T to the initial value 0 (zero), respectively (step S41).
  • control unit 30 starts the timer 35, starts counting (step S42), and monitors whether or not the value of the timer 35 exceeds 8.1 seconds.
  • the third detection and the fourth detection are performed within a predetermined period of 8.1 seconds after the reference duty ratio d0 is obtained.
  • control unit 30 starts counting by the counter 36 in step S42, and initializes the counter 36 every 0.3 seconds, thereby performing counting every 0.3 seconds (step S43 and step S44).
  • step S44 the control unit 30 increments the second count value T by 1 (+1) at the timing of initializing the counter 36, that is, every time the count is performed.
  • the control unit 30 acquires the duty ratio dn(n: count value) of the voltage applied to the motor 6 at the time of counting every time it counts (step S45). In other words, the control unit 30 obtains the duty ratio dn once every 0.3 seconds in the predetermined period of 8.1 seconds.
  • step S45 the control unit 30 calculates the correction duty dn_diff for every 0.3 second timing based on the following equations (1) and (2).
  • the correction duty ratio dn_diff is a value obtained by correcting the duty ratio dn obtained at the same timing so that the detection in the detection 4 can be performed with high precision.
  • a and B in the formulas (1) and (2) are constants obtained by experiments or the like.
  • Dn_diff A ⁇ dn-dn_x ...(1)
  • step S46: YES when the obtained duty ratio dn is equal to or greater than the duty ratio dn-1 obtained at the previous timing (step S46: YES), the control unit 30 increments the first count value E by 1 (+1) (step S47). . Further, in the third detection, the duty ratio dn initially obtained by the control unit 30 is the above-described reference duty ratio d0. On the other hand, when the obtained duty ratio dn is lower than the duty ratio dn-1 obtained at the previous timing (step S46: NO), the control unit 30 resets the first count value E to the initial value 0 (zero). (Step S48).
  • control unit 30 confirms whether or not the value of the timer 35 is 8.1 seconds or less, that is, whether the measurement time of the timer 35 exceeds 8.1 seconds (step S49).
  • step S49: YES when the value of the timer 35 is 8.1 seconds or less (step S49: YES), when the load amount of the laundry Q in the dewatering tub 4 is equal to or greater than a predetermined amount (step S50: YES), the control unit 30 determines the latest one. Whether the first count value E falls within the range of the detection 3 (step S51). This predetermined amount is obtained in advance by an experiment or the like and stored in the memory 32.
  • the first count value E is set in advance by a threshold value and stored in the memory 32.
  • FIG. 10 is a graph showing the relationship between time and the first count value E in association with the detection 3.
  • the horizontal axis represents time (unit: sec)
  • the vertical axis represents the first count value E.
  • the threshold value is set to a threshold value of a lower threshold value indicated by a one-dot chain line and an upper threshold value indicated by a two-dot chain line. Both the upper threshold and the lower threshold are independent of elapsed time and are fixed values.
  • the upper threshold is a value higher than the lower threshold.
  • the motor 6 can be rotated at a constant speed of 240 rpm even if the voltage is small, the duty ratio dn is gradually decreased. Thereby, the first count value E is stabilized at the initial value of 0 (zero) as indicated by the solid line.
  • the duty ratio dn does not decrease.
  • the first count value E does not return to the initial value but increases, as indicated by the broken line, above the lower threshold at any timing.
  • the bias of the object Q is large, the first count value E is also higher than the upper threshold.
  • step S51 YES
  • the control unit 30 determines that there is a bias of the laundry Q in the dewatering tub 4.
  • step S51: NO it is determined whether the corrected duty ratio dn_diff just calculated falls within the detection 4 Within the range.
  • step S50 when the load amount of the laundry Q in the dewatering tub 4 is less than a certain amount (step S50: NO), the control unit 30 does not perform the determination by the detection 3 in step S51, but performs the detection in step S52. 4 judgments made.
  • the reason for this is that when the detection 3 is performed with the amount of the laundry Q being less than a certain amount, the first count value E is unstable due to the convergence of the duty ratio dn at an earlier stage, and may be unstable. Perform test 3. Therefore, in the case where the amount of the laundry Q is less than a certain amount, the detection 3 is omitted.
  • FIG. 11 is a graph showing the relationship between the time and the corrected duty ratio dn_diff in association with the detection 4.
  • the horizontal axis represents time (unit: sec)
  • the vertical axis represents corrected duty ratio dn_diff.
  • the threshold value is set to a threshold value of a lower threshold value indicated by a one-dot chain line and an upper threshold value indicated by a two-dot chain line.
  • the upper threshold and the lower threshold are gradually increased with elapsed time, respectively.
  • the upper threshold is a value higher than the lower threshold.
  • the correction duty ratio dn_diff is lower than the lower threshold and gradually decreases as indicated by the solid line.
  • the correction duty ratio dn_diff does not decrease as indicated by a broken line. It will exceed the lower threshold.
  • the correction duty ratio dn_diff also exceeds the upper threshold. Therefore, returning to FIG. 9A, when the correction duty ratio dn_diff is equal to or higher than the lower threshold value, the control unit 30 determines that the correction duty ratio dn_diff falls within the range of the detection 4 (step S52: YES).
  • the correction duty ratio dn_diff obtained by the above equations (1) and (2) is set to be equal to or greater than the reference duty ratio d0 when the duty ratio dn is equal to or greater than the reference duty ratio d0.
  • the first count value E for detecting 3 and the correction duty ratio dn_diff for detecting 4 are the duty ratios of the voltages applied to the motor 6 in order to maintain 240 rpm for the predetermined period of 8.1 seconds described above.
  • the control unit 30 determines whether or not the laundry Q in the dewatering tub 4 is biased based on such an index.
  • the reference duty ratio d0 is a detection of whether or not the left and right laundry Q is biased. An important factor in accuracy.
  • the control unit 30 measures the load amount of the laundry Q in the dewatering tub 4 when the dewatering tub 4 starts to rotate (step S2 in FIG. 5A), and determines the acquisition based on the measured load amount. The timing of the reference duty ratio d0 (step S36 of Fig. 6A).
  • the reference duty ratio d0 is obtained at an appropriate timing in consideration of the influence of the load amount, it is possible to accurately perform the discrimination of the laundry Q in the detection 3 and the detection 4 based on the reference duty ratio d0. Detection. As a result, it is possible to improve the detection accuracy of whether or not the laundry Q is biased.
  • step S51: YES determines that the first count value E falls within the range of the detection 3
  • step S52: Yes determines that the correction duty ratio dn_diff falls within the range of the detection 4
  • step S52: Yes the control unit 30 stops.
  • the rotation of the motor 6 performs the corresponding processing in the above-described steps S12 to S18.
  • the processing of steps S40 to S52 is included in the above-described step S20 (refer to FIG. 5A).
  • Step S16A and step S16B in Fig. 9B are included in the above-described step S16 (refer to Fig. 5B). Specifically, the determination in step S16A corresponds to whether or not the determination is made before the restart in step S16 of FIG. 5B, and the determination in step S16B corresponds to the determination as to whether or not the restart can be performed in step S16 of FIG. 5B.
  • step S12 determines in step S16A whether or not the dehydration operation that was suspended this time is before the restart.
  • the control unit 30 determines whether the deviation of the laundry Q is as small as the first count value E and the correction duty ratio dn_diff are smaller than the respective upper thresholds.
  • step S16A YES
  • step S16B YES
  • step S18 the control unit 30 performs the imbalance correction (step S18). Further, even before the restart (step S16A: YES), when at least one of the first count value E and the correction duty ratio dn_diff is equal to or greater than the respective upper thresholds (step S16B: No), the control unit 30 executes Unbalance correction (step S18).
  • control unit 30 determines the fall detection 3 and the detection 4 based on the first count value E and the correction duty dn_diff in steps S16B to S18.
  • the bias is small enough to be restarted or large enough to require an imbalance correction.
  • control unit 30 selectively performs the restart and the imbalance correction based on the first count value E and the degree of the correction duty ratio dn_diff, in other words, based on whether or not the values are equal to or greater than the respective upper thresholds. Therefore, when it is judged that there is a bias of the laundry Q, it is not necessary to uniformly perform the imbalance correction. Therefore, when the first count value E and the correction duty ratio dn_diff are values indicating that the deviation of the laundry Q is small, the time for the dehydration operation can be shortened by immediately performing the restart.
  • step S49: NO when the value of the timer 35 has passed 8.1 seconds (step S49: NO), the control unit 30 ends the detection 3 and the detection 4 (step S53).
  • FIG. 12 is a flowchart showing an outline of the detection 5-1 and the detection 5-2.
  • the detection 5-1 and detecting 5-2 the laundry Q using the duty ratio is detected without bias.
  • the motor 6 is further rotated at a constant speed of 240 rpm for a predetermined time.
  • the control unit 30 accelerates the motor 6 from 240 rpm to the above-described target number of 800 rpm (step S60).
  • the control unit 30 takes the duty ratio of the voltage applied to the motor 6 at that time point as the ⁇ value (step S61).
  • 300rpm is off The state in which the water tub 4 is not stored in water and is most unaffected by the eccentricity of the dewatering tub 4. Therefore, the ⁇ value of 300 rpm is the duty ratio in the state which is most affected by the eccentricity of the dewatering tank 4 and is only affected by the load amount of the laundry Q.
  • step S62 the control unit 30 performs the above-described detection 5-1 while the number of rotations is from 600 pm to 729 rpm in a state where the motor 6 continues to accelerate (step S62).
  • step S62: NO the result of the detection 6-1 is not "OK"
  • step S62: NO the control unit 30 stops the motor 6, and stops the dehydration tank 4. Rotation (step S63). In this way, after the dehydration operation is suspended, the control unit 30 determines whether or not it is before the restart, that is, whether or not the dehydration operation that has been suspended this time has been restarted (step S64).
  • step S64 When it is before the restart (step S64: YES), the control section 30 performs a restart (step S65). When it is not before the restart (step S64: No), the control unit 30 performs the imbalance correction (step S66).
  • step S62 determines in the case of the detection 5-1 that there is no bias of the laundry Q.
  • the control unit 30 then performs the above-described detection 5-2 in a state where the motor 6 continues to accelerate from 730 rpm (step S67).
  • step S67 YES
  • the control unit 30 passes. After the motor 6 is accelerated to the target rotational speed (800 rpm), the motor 6 is rotated at a constant speed at the target rotational speed, thereby continuing the dehydration of the laundry Q (step S68).
  • step S67: NO when the result of the detection 5-2 is not "QK" (step S67: NO), that is, when the control unit 30 determines that there is a bias of the laundry Q, the control unit 30 The motor 6 is rotated at a constant speed equal to or lower than the above-described target rotation speed, and the dehydration of the laundry Q is continued (step S69).
  • Fig. 13 is a flowchart showing the related control operation of the detection 5-1.
  • control unit 30 starts the detection 5-1 as the number of revolutions of the motor 6 reaches 600 rpm in a state where the motor 6 is accelerated in the above-described step S61 (see Fig. 12) (step S70).
  • control unit 30 starts counting by the counter 36 (step S71), and initializes the counter 36 every 0.3 seconds, thereby performing counting every 0.3 seconds (step S72 and step S73).
  • the control unit 30 acquires the rotational speed of the motor 6 at the time of counting once and the duty ratio dn(n: count value) of the voltage applied to the motor 6 at the time of counting (step S74). In other words, the control unit 30 acquires the number of revolutions of the motor 6 and the duty ratio dn every predetermined timing while the rotational speed of the motor 6 is from 240 rpm to 800 rpm.
  • step S74 the control unit 30 calculates a correction value Bn obtained by correcting the duty ratio dn by the above-described ⁇ value based on the following equation (3).
  • X and Y in Formula (3) are the constants computed by experiment etc..
  • the correction value Bn obtained by correcting the duty ratio dn by changing the weight by the equation (3) can perform the detection 5-1 with high precision.
  • step S74 the control unit 30 calculates the movement integrated value Cn (n: count value) of the correction value Bn.
  • the movement cumulative value Cn (n: count value) is a value obtained by totaling five correction values Bn that are consecutive in the counting order. Further, for a certain movement integrated value Cn and the previous movement integrated value Cn-1, the rear four correction values Bn and the movement cumulative value Cn among the five correction values Bn constituting the movement integrated value Cn-1 The four correction values Bn on the front side of the five correction values Bn are the same value, respectively. It should be noted that the number of correction values Bn totaled to constitute the movement integrated value Cn is not limited to the above five.
  • control unit 30 calculates a threshold value of the movement integrated value Cn based on the following formula (4) (step S75).
  • Threshold (speed) ⁇ a + b... equation (4)
  • a and b in the formula (4) are constants obtained by experiments or the like, and are stored in the memory 32. Further, these constants a and b differ depending on the current number of revolutions of the motor 6 and the selected dewatering conditions. Therefore, the threshold here has multiple values at the same rotational speed. It should be noted that it is apparent from the formula (4) that the threshold value is a value that is not affected by the above-described ⁇ value.
  • control unit 30 confirms whether or not the current number of revolutions of the motor 6 is less than 730 rpm (step S76).
  • step S76 determines whether or not the latest moving integrated value Cn falls within the range of the detection 5-1 (step S77).
  • FIG. 14 is a graph showing the relationship between the rotational speed and the movement cumulative value Cn in association with the detection 5-1 and the detection 5-2.
  • the horizontal axis represents the number of revolutions (unit: rpm), and the vertical axis represents the movement cumulative value Cn.
  • two threshold values of a first threshold value indicated by a one-dot chain line and a second threshold value indicated by a two-dot chain line are set depending on, for example, a dehydration condition. First A threshold is higher than the second threshold.
  • the dehydration condition there is a dehydration condition in which the dewatering tank 4 is stored in water, and the dehydration operation is performed after the "normal rinsing" of the rinsing laundry Q, and the “water spray dehydration” is performed by spraying water to the laundry Q while performing the dehydration operation. And the above-mentioned “restart” and other dehydration conditions. These dehydration conditions are selected by the user by operating the operation unit 20, and the selection is received by the control unit 30.
  • the control unit 30 After the washing operation and the dehydration operation after the normal rinsing, since the detection is difficult to perform by using the second threshold value, the control unit 30 uses the first threshold value higher than the second threshold value. On the other hand, in the dehydration operation of the water spray dehydration and restart, since the detection is too loose using the first threshold value, the control unit 30 uses the second threshold value lower than the first threshold value. Therefore, in the case where the laundry Q contains a large amount of water, or in the case where the laundry Q is partially removed, the detection 5-1 is performed using a threshold suitable for each case.
  • the detection 5-1 since the second threshold is used, the detection is difficult, and thus the control is performed.
  • the portion 30 uses a first threshold that is higher than the second threshold. Further, in the case where the load amount of the laundry Q in the dewatering tub 4 is small, in the detection 5-1, since the detection is too loose using the first threshold value, the control section 30 uses the second threshold value lower than the first threshold value. . Therefore, the detection 5-1 is performed using threshold values appropriate for the case where the load amount of the laundry Q is different, respectively.
  • the threshold values of the first threshold and the second threshold are exemplified in FIG. 14
  • the threshold may be set to three or more types according to various dehydration conditions and load amounts.
  • the movement is accumulated at each rotation speed as compared with the case where the eccentricity is small and there is no bias of the laundry Q (refer to the solid line).
  • the value Cn is larger.
  • the movement cumulative value Cn exceeds the set threshold value, that is, the corresponding one of the first threshold and the second threshold.
  • control unit 30 determines that the moving integrated value Cn falls within the range of the detection 5-1 (step S77: YES).
  • step S77 YES
  • step S63 described above
  • steps S64 to S66 described above is executed.
  • steps S71 to S77 is included in the above-described step S62 (refer to FIG. 12).
  • step S76 NO
  • the control section 30 ends the detection 5-1, and then starts the detection 5-2 (step S78).
  • Fig. 15 is a flowchart showing the related control operation of the detection 5-2.
  • the control unit 30 starts the detection 5-2 as the number of revolutions of the motor 6 reaches 730 rpm (step S78 described above).
  • control unit 30 starts counting by the counter 36 (step S79), and initializes the counter 36 every 0.3 seconds, thereby performing counting every 0.3 seconds (step S80 and step S81).
  • control unit 30 acquires the rotation speed of the motor 6 at the time of counting and the duty ratio dn of the voltage applied to the motor 6 at the time of counting, and calculates the correction value Bn and The cumulative value Cn is moved (step S82).
  • the control unit 30 calculates a threshold value of the movement integrated value Cn based on the above formula (4) (step S83).
  • the constants a and b constituting the equation (4) are the same as the detection 5-1, and vary depending on the current number of revolutions of the motor 6 and the selected dehydration conditions. Therefore, the threshold here has a plurality of values at the same rotational speed like the first threshold and the second threshold described above.
  • control unit 30 confirms whether or not the current number of revolutions of the motor 6 has reached the target number of revolutions (800 rpm) (step S84).
  • step S84 determines whether or not the latest moving integrated value Cn falls within the detection 5-2, similarly to the case of the detection 5-1 (step S77). Within the range (step S85).
  • control unit 30 determines that the moving integrated value Cn falls within the range of the detection 5-2 (step S85: YES).
  • step S85 YES
  • step S86 the control unit 30 acquires the rotation speed L of the motor 6 at the time of detection 5-2 when the determination is made.
  • control unit 30 continues the spin-drying of the laundry Q by rotating the motor 6 at a constant speed at a rotational speed obtained by strictly setting the bit value of the rotational speed L to 0 (zero) at the obtained rotational speed L (Ste S69) above.
  • control unit 30 extends the dehydration time at the rotation speed L so as to obtain the same dehydration effect as when the dehydration is performed at the original target rotation speed.
  • step S84 the control unit 30 ends the detection 5-2 by making the motor at the target rotation speed. 6 Spinning at a constant speed, the dehydration of the laundry Q is continued (step S68 described above).
  • the control unit 30 changes the threshold value in accordance with the dehydration condition received by the operation unit 20 (steps S75 and S83).
  • the control unit 30 determines that the laundry Q is biased in the dewatering tank 4. .
  • it is possible to detect whether or not the laundry Q is biased by the threshold value appropriate for each dehydration condition during the dehydration operation of each dehydration condition it is possible to improve the detection accuracy of the presence or absence of the laundry Q.
  • control unit 30 can also perform control for detecting the bubble in the drain passage 14 in parallel with the above-described correlation control of the detections 1 to 5.
  • Fig. 16 is a flow chart showing a control operation for detecting a bubble during a dehydrating operation.
  • control unit 30 starts dehydration rotation of dewatering tank 4 by starting dehydration operation (step S1 described above). Thereby, the number of revolutions of the motor 6 rises as described above (see FIG. 3).
  • the control unit 30 acquires the duty ratio of the rotational speed of the motor 6 and the duty ratio of the voltage applied to the motor 6 at a predetermined timing in the dehydration operation (step S91).
  • the control unit 30 calculates the voltage limit value V_limit (step S93).
  • the voltage limit value V_limit is a duty ratio of the maximum voltage applied to the motor 6 at each rotation speed, and is calculated by substituting the rotation speed into a predetermined equation.
  • control unit 30 detects whether or not the applied voltage duty obtained in step S91 is equal to or greater than the voltage limit value V_limit at each timing (step S94).
  • step S94 determines that the foam is blocked by the drain passage 14 (step S94: YES).
  • step S94: NO the control unit 30 determines that the bubble is not in the state of the drain passage 14 (step S94: NO).
  • step S94 determines that the foam is clogged with the drain passage 14 (step S94: YES)
  • step S95 it is determined whether or not it is before the restart, that is, whether or not the restart is performed for the dehydration operation that has been suspended this time (step S95).
  • step S95 When it is before the restart (step S95: YES), the control section 30 performs a restart (step S96). When it is not before the restart (step S95: NO), the control section 30 performs the imbalance correction (step S97). Whether it is a restart or an imbalance correction, the dehydration operation will restart after a temporary suspension. Therefore, during the restart of the dehydration operation, the foam of the drainage path 14 naturally disappears.
  • step S92 when the number of rotations of the motor 6 is 600 rpm or more (step S92: No), the control unit 30 ends the process of detecting the bubble (step S98).
  • control of Fig. 16 can be used not only for the detection of the foam but also for detecting the phenomenon of "water retention” in which the water in the outer tub 3 cannot reach the drainage path 14 due to vibration or the like.
  • the detection 1 to the detection 4 are performed to electrically detect whether or not the laundry Q in the dewatering tank 4 is biased, but the detection 1 may be replaced by the detection 1
  • the detection 4 performs the detection 6 described below, and the detection 6 can be performed in parallel with the detection 1 to the detection 4.
  • FIG. 17 is a time chart showing a state in which the number of rotations of the motor 6 in the middle of the dehydration operation is detected in association with the detection 6, and in detail, a portion corresponding to the low-speed eccentricity detection section in FIG. 3 is extracted. Therefore, In the timing chart of Fig. 17, the same as Fig. 3, the horizontal axis represents the elapsed time, and the vertical axis represents the rotational speed (unit: rpm) of the motor 6. In addition, in FIG. 17, the state of the duty of the voltage applied to the motor 6 by the control part 30 is shown with the d
  • control unit 30 controls the duty ratio such that the maximum value of the duty ratio is generated in the middle of the acceleration state in which the motor 6 is accelerated from 120 rpm to 240 rpm in the low speed eccentricity detecting section. At this time, the acceleration of the motor 6 is controlled to be always fixed.
  • the maximum value of the duty ratio generated in the middle of the acceleration state of the motor 6 is referred to as the maximum duty ratio dmax.
  • the control unit 30 controls the generation of the maximum duty ratio dmax when the reciprocating barrel 4 resonates, and the rotational speed (for example, 180 rpm) which is slightly lower than the rotational speed (the above-described 200 rpm to 220 rpm) in which the longitudinal resonance occurs in detail is generated. Empty ratio.
  • control of the duty ratio is performed in common regardless of the magnitude of the load amount of the laundry Q in the dewatering tub 4. Further, in order to realize this control, the control unit 30 sets in advance a gain indicating the difference between the target number of revolutions of the motor 6 and the current actual number of revolutions, and the responsiveness indicating the change in the number of revolutions with respect to the duty ratio. It should be noted that, hereinafter, the rotational speed at which longitudinal resonance occurs is referred to as longitudinal resonance rotational speed.
  • the control unit 30 accelerates the motor 6 from 120 rpm, the duty ratio gradually increases as indicated by a broken line in FIG. Then, the maximum duty ratio dmax is generated when the rotational speed of the motor 6 reaches 180 rpm.
  • the duty ratio is gradually decreased as indicated by a broken line.
  • the vibration increases as the rotational speed of the motor 6 approaches the longitudinal resonance rotational speed. Therefore, since the duty ratio must be increased after the maximum duty ratio dmax is generated in order to accelerate the motor 6 to 240 rpm, the duty ratio after the maximum duty ratio dmax is generated is not easily reduced. Therefore, after the maximum duty ratio dmax is generated, the duty ratio is sometimes also shown as a 1-point lock line as shown in FIG. 17, and is maintained at a value slightly lower than the maximum duty ratio dmax without being reduced, or as shown in FIG. As indicated by the alternate long and short dash line, it increases after temporarily falling below the maximum duty ratio dmax. In the detection 6, by monitoring the relative change of the duty ratio with respect to the maximum duty ratio dmax after the maximum duty ratio dmax is generated, the laundry Q in the dewatering tank 4 is biased and electrically detected.
  • FIG. 18 is a flowchart showing the related control operation of the detection 6. The detection 6 will be described with reference to Fig. 18 .
  • step S4 the control unit 30 starts accelerating the motor 6 from 120 rpm to 240 rpm. Then, in the acceleration state when the motor 6 is accelerated to 240 rpm, when the rotation speed of the motor 6 reaches, for example, 180 rpm, the duty ratio is the maximum value, the control unit 30 takes the maximum value as the maximum duty ratio dmax (step S101). ).
  • step S101 In association with the detection 6, there is a count value G and an accumulated value H, which are stored in the memory 32.
  • the control unit 30 resets the count value G and the integrated value H to the initial value 0 (zero), respectively (step S101).
  • step S102 when the rotation speed of the motor 6 reaches the rotation speed (for example, 200 rpm) immediately before the longitudinal resonance occurs (step S102: YES), the control section 30 starts the timer 35 to start counting, and starts to pass.
  • the counter 36 counts (step S103). Thereby, the detection 6 is started.
  • the control unit 30 refers to the value of the timer 35 and initializes the counter 36 once every predetermined time (for example, 0.1 second), and counts it every 0.1 seconds (steps S104 and S105).
  • the control unit 30 increments the count value G by one (+1) once every time the timer 36 is initialized in step S105, that is, the timing of each count.
  • the control unit 30 acquires the duty ratio dg (g: count value G) of the voltage applied to the motor 6 at the time of counting every time (step S106). In other words, the control unit 30 obtains the duty ratio dg once every 0.1 second.
  • step S106 the control unit 30 acquires the duty ratio dg once every predetermined time, and calculates the integrated value H of the difference between the duty ratio dg and the previous maximum duty ratio dmax.
  • the difference is a value obtained by subtracting the duty ratio dg from the maximum duty ratio dmax
  • the cumulative value H is a value obtained by adding the latest difference value H to the latest difference value, and is updated every time the count value G is incremented by one.
  • FIG. 19 is a diagram showing the relationship between the count value G and the integrated value H in association with the detection 6.
  • the horizontal axis represents the count value G
  • the vertical axis represents the integrated value H.
  • the cumulative value H is set to a predetermined threshold.
  • This threshold value is obtained by the following equation (5) in which the count value G and the maximum duty ratio dmax which are added once every predetermined time are used as variables.
  • Threshold (K ⁇ G - L) - M ⁇ (N - dmax) ... (5)
  • K, L, M, and N in the formula (5) are constants obtained in advance by experiments or the like, and are stored in the memory 32. As indicated by a chain line in FIG. 19, the threshold value fluctuates in such a manner as to increase as the count value G increases.
  • the threshold value may be stored in the memory 32 in advance, or may be calculated by the control unit 30 based on the equation (5) every time the count value G fluctuates.
  • step S107 when the timing when the count value G reaches 20, specifically, the timing at which the longitudinal resonance starts is reached (step S107: YES), the control unit 30 confirms whether or not the latest integrated value H is smaller than that obtained by the equation (5).
  • the prescribed threshold step S108.
  • step S109 the control unit 30 determines that the laundry Q is biased in the dewatering tub 4, and stops the motor 6 (step S109). Thereby, the rotation of the dewatering tub 4 is stopped. After the motor 6 is stopped, the processes of steps S11 to S18 may be performed in the same manner as the detections 1 to 4 (see FIG. 5B).
  • step S108 When the cumulative value H is not lower than the predetermined threshold (step S108: NO), and the count value G reaches a prescribed value (for example, 81) (step S110: YES), the rotational speed of the motor 6 reaches 240 rpm, and the motor 6 is at a constant speed of 240 rpm. The state of rotation. In this case, the control unit 30 ends the detection 6 (step S111).
  • a prescribed value for example, 81
  • the duty ratio is set such that the maximum duty ratio dmax is generated at a rotational speed slightly lower than the longitudinal resonance rotational speed.
  • longitudinal resonance occurs at an earlier timing after the maximum duty ratio dmax is generated.
  • H cumulative value
  • the bias of the laundry Q in the dewatering tub 4 can be detected early and correctly.
  • the maximum duty ratio dmax is generated at the longitudinal resonance rotational speed, there is a possibility that the fluctuation of the subsequent rotational speed becomes unstable.
  • such a problem can be suppressed by generating the maximum duty ratio dmax at a rotational speed slightly lower than the longitudinal resonance rotational speed.
  • FIG. 20 is a diagram showing the relationship between the count value G and the duty ratio in association with the detection 6.
  • the horizontal axis represents the count value G
  • the vertical axis represents the duty ratio.
  • the difference R between the duty ratio dg and the maximum duty ratio dmax after a predetermined time elapses from the generation of the maximum duty ratio dmax is significantly smaller than the difference S when the load amount is large. Therefore, it is conceivable that the integrated value H when the load amount is small becomes difficult to increase as compared with the case where the load amount is large, and the integrated value H is lower than the threshold value even if there is no bias of the laundry Q. Thus, when the amount of load is small, the presence of the deviation of the laundry Q may be erroneously detected to stop the dehydration operation.
  • the threshold value is obtained by the equation (5) having the count value G and the maximum duty ratio dmax as variables as described above. Therefore, since the maximum duty ratio dmax varies depending on the amount of load of the laundry Q in the dewatering tub 4, the threshold value is determined depending on the amount of load. Thereby, the detection 6 detects whether or not the laundry Q is biased based on the optimum threshold value corresponding to the magnitude of the load amount of the laundry Q in the dewatering tub 4, so that it can be prevented even when the load amount is small. False detection. Therefore, it is possible to further improve the detection accuracy of the presence or absence of the laundry Q.
  • the motor 6 is controlled by the duty ratio on the premise that the motor 6 is a variable frequency motor.
  • the value applied to the motor 6 instead of the duty ratio is used. To control the motor 6.
  • the duty ratio may be obtained for various determinations, but the duty ratio may be original data of the obtained duty ratio, or may be a correction value corrected as necessary. It may be a value calculated from the duty ratio like the above-described movement integrated value Cn.
  • the dewatering tub 4 of the above-described embodiment is vertically disposed so as to be rotatable about the axis 16 extending in the vertical direction X.
  • the detent can be inclined by extending the axis 16 obliquely with respect to the vertical direction X. Bucket 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

本发明提供一种脱水机,其能实现洗涤物有无偏倚的检测精度的提高。脱水机(1)包括使脱水桶(4)旋转的电动电机(6)和控制部(30)。控制部(30)在脱水桶(4)开始旋转时,测定脱水桶(4)内的洗涤物(Q)的负荷量。控制部(30)在负荷量的测定完成之后,通过控制对电机(6)施加的电压的占空比,使电机(6)以第一旋转速度定速旋转,然后,使电机(6)以比第一旋转速度高的第二旋转速度定速旋转。控制部(30)在电机(6)加速至第一旋转速度为止的加速状态下,在根据测出的负荷量而确定的定时取得基准占空比。取得基准占空比之后,在规定期间内,控制部(30)基于表示占空比相对于基准占空比发生变化的情况的指标,判断脱水桶(4)内的洗涤物(Q)有无偏倚。

Description

脱水机 技术领域
本发明涉及一种脱水机。
背景技术
下述专利文献1公开了一种具有脱水功能的洗衣机。在该洗衣机中进行洗涤物的脱水运转时,使收容有洗涤物的洗涤脱水桶旋转的电机通过控制施加的电压的占空比,在以120rpm定速旋转后,以240rpm定速旋转,最后以800rpm定速旋转。
当洗涤脱水桶内的洗涤物在偏倚配置于洗涤脱水桶的圆周方向的不平衡状态下进行脱水运转时,振动、噪音变大。因此,在该洗衣机中检测洗涤脱水桶内的洗涤物有无偏倚。
具体而言,电机的旋转速度在从120rpm向240rpm开始加速之后经过了3.6秒的时间点的占空比被取作基准占空比。此外,与电机以240rpm定速旋转的状态下随着时间的推移而变化的占空比有关的目标值作为比较占空比,基于基准占空比运算而得。而且,当在电机以240rpm定速旋转的状态下每规定的定时取得一次的实际占空比与同一定时的比较占空比的差为规定阈值以上时,判断存在洗涤物的偏倚,停止电机的旋转。
现有技术文献
专利文献
专利文献1:日本特开2011-240040号公报
发明所要解决的问题
专利文献1的洗衣机判断电机的旋转速度在电机的旋转速度从120rpm向240rpm开始加速之后经过了3.6秒的时间点达到240rpm,该时间点的占空比被视为基准占空比。
但是,由于电机的旋转速度达到240rpm所需的时间会根据洗涤脱水桶内的洗涤物的负荷量的大小而发生变动,因此不一定限于上述的3.6秒。
基准占空比是左右洗涤物有无偏倚的检测精度的重要因素。但是,在专利文献1的情况下,未考虑负荷量的大小,而将从电机的加速开始经过了3.6秒的时间点的占空比一律视为基准占空比。因此,当该基准占空比为受负荷量的影响导致在偏离正确的定时的定时取得的占空比时,有可能会对洗涤物有无偏倚的检测精度产生不良影响。
此外,在像这样具有检测洗涤物有无偏倚的结构的情况下,始终谋求解决的问题是缩短脱水运转的时间。
发明内容
本发明是基于该背景而完成的技术方案,其目的在于提供一种能实现洗涤物有无偏倚的检测精度的提高的脱水机。
此外,本发明的目的还在于提供一种能实现脱水运转的时间缩短的脱水机。
用于解决问题的方案
本发明是一种脱水机,其特征在于,包括:脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;电动电机,使所述脱水桶旋转;负荷量测定单元,当所述脱水桶开始旋转时,测定所述脱水桶内的洗涤物的负荷量;驱动控制单元,在由所述负荷量测定单元进行负荷量的测定后,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;取得单元,将在所述电机加速至所述第一旋转速度为止的加速状态下对所述电机施加的电压的占空比取作基准占空比;定时确定单元,确定所述取得单元取得所述基准占空比的定时;判断单元,在所述取得单元取得所述基准占空比之后,在规定期间内,基于表示为了维持所述第一旋转速度而对所述电机施加的电压的占空比相对于所述基准占空比发生变化的情况的指标,判断所述脱水桶内的洗涤物有无偏倚;以及停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止,所述定时确定单元根据所述负荷量测定单元测出的 负荷量,确定所述取得单元取得所述基准占空比的定时。
此外,本发明的特征在于,包括:执行单元,其在所述停止控制单元使所述脱水桶的旋转停止的情况下,根据所述指标择一执行用于重启洗涤物的脱水的所述脱水桶的旋转、以及修正所述脱水桶内的洗涤物的偏倚的处理。
此外,本发明的特征在于,所述驱动控制单元在使所述电机以所述第一旋转速度定速旋转之前,使所述电机以比所述第一旋转速度低的规定速度定速旋转,所述执行单元在执行用于重启洗涤物的脱水的所述脱水桶的旋转的情况下,缩短使所述电机以所述规定速度定速旋转的时长。
此外,本发明的脱水机,其特征在于,包括:脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;电动电机,使所述脱水桶旋转;驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;取得单元,在所述电机开始向所述第一旋转速度加速后,在规定期间内,每规定的定时取得一次所述占空比;计数单元,当由所述取得单元取得的占空比大于等于上一次取得的占空比时,将初始值为零的计数值加1,当由所述取得单元取得的占空比小于上一次取得的占空比时,将所述计数值重置为所述初始值;判断单元,当所述计数值大于等于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;以及停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止。
此外,本发明是一种脱水机,其特征在于,包括:脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;电动电机,使所述脱水桶旋转;驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;取得单元,在所述电机的旋转速度从所述第一旋转速度直至达到所述第二旋转速度的期间内,每规定的定时取得一次所述占空比;判断单元,当所述取得单元取得的所述占空比大于等于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止;接收单元,接收与洗涤物的脱水条件有关的选择;以及阈值变更单元,根据所述接收单元所接收选择的脱水条件而变更 所述阈值。
此外,本发明是一种脱水机,其特征在于,具备:脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;电动电机,使所述脱水桶旋转;驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;取得单元,将在所述电机加速至所述第一旋转速度为止的加速状态下所述占空比的最大值取做最大占空比;计算单元,在所述取得单元取得所述最大占空比之后,计算出每规定时间的所述占空比与所述最大占空比的差分的累计值;判断单元,当所述累计值小于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;以及停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止。
此外,本发明的特征在于,所述阈值由以计数值和所述最大占空比作为变量的算式求出,其中,所述计数值为每所述规定时间加1一次。
此外,本发明的特征在于,所述驱动控制单元以如下方式控制所述占空比:在所述电机加速至所述第一旋转速度为止的加速状态下,在转速比所述脱水桶发生共振的转速稍低时,产生所述最大占空比。
发明效果
通过本发明,作为脱水机的脱水运转,通过控制施加给使脱水桶旋转的电动电机的电压的占空比,使电机以第一旋转速度定速旋转,然后,使电机以比第一旋转速度高的第二旋转速度定速旋转,由此,脱水桶内的洗涤物正式脱水。
与脱水桶内的洗涤物有无偏倚的检测相关联地,在电机加速至第一旋转速度为止的加速状态下,通过取得单元取得基准占空比。然后,在取得单元取得所述基准占空比之后,在规定期间内,基于表示为了维持第一旋转速度而对电机施加的电压的占空比相对于基准占空比发生变化的情况的指标,判断脱水桶内的洗涤物有无偏倚。在判断存在洗涤物的偏倚的情况下,停止脱水桶的旋转。
作为这样的有无偏倚的检测的一环,在脱水桶开始旋转时,测定脱水桶内的洗涤物的负荷量,定时确定单元根据测出的负荷量确定取得单元取得基准占空比的定时。由此,由于在考虑到负荷量的影响的正确的定时取得基准占空比, 因此能基于该基准占空比,精度良好地执行洗涤物有无偏倚的检测。其结果是,实现了洗涤物有无偏倚的检测精度的提高。
此外,通过本发明,在根据存在洗涤物的偏倚的判断而停止脱水桶的旋转的情况下,基于表示占空比相对于基准占空比发生变化的情况的指标,择一执行用于重启洗涤物的脱水的脱水桶的旋转、以及修正脱水桶内的洗涤物的偏倚的处理。
也就是说,当判断存在洗涤物的偏倚时,不一定一律执行修正洗涤物的偏倚的处理。因此,当该指标为洗涤物的偏倚较小的指标时,立即使脱水桶旋转,重启脱水,由此,实现脱水运转的时间缩短。
此外,通过本发明,在包括使电机以比第一旋转速度低的规定速度定速旋转的步骤的脱水运转中,执行用于重启洗涤物的脱水的脱水桶的旋转的情况下,由于该步骤的时长被缩短,因此进一步实现了脱水运转的时间缩短。
此外,通过本发明,作为脱水机中的脱水运转,通过控制施加给使脱水桶旋转的电动电机的电压的占空比,使电机以第一旋转速度定速旋转,然后,使电机以比第一旋转速度高的第二旋转速度定速旋转,由此,脱水桶内的洗涤物正式脱水。
与脱水桶内的洗涤物有无偏倚的检测相关联地,在所述电机开始向第一旋转速度加速之后,在规定期间内,每规定的定时取得一次占空比,各占空比与上一次取得的占空比进行比较。具体而言,当取得的占空比大于等于上一次取得的占空比时,将初始值为零的计数值加1,当取得的占空比小于上一次取得的占空比时,将计数值重置为初始值。
而且,当所述计数值大于等于规定的阈值时,判断脱水桶内存在洗涤物的偏倚,停止脱水桶的旋转。
只要是像这样始终监视定时相邻的占空比之间发生的变化,即使相对于检测开始时取得的最初的占空比的变化小,也能进行实时掌握了检测中途的占空比的变化的准确检测,因此能实现洗涤物有无偏倚的检测精度的提高。
此外,通过本发明,作为脱水机的脱水运转,通过控制施加给使脱水桶旋转的电动电机的电压的占空比,使电机以第一旋转速度定速旋转,然后,使电 机以比第一旋转速度高的第二旋转速度定速旋转,由此脱水桶内的洗涤物正式脱水。
与脱水桶内的洗涤物有无偏倚的检测相关联地,在电机的旋转速度从第一旋转速度直至达到第二旋转速度的期间内,每规定的定时取得一次占空比。当该占空比大于等于规定的阈值时,判断脱水桶内存在洗涤物的偏倚,停止脱水桶的旋转。
该脱水机能由接收单元接收与洗涤物的脱水条件有关的选择,能根据接收的脱水条件来变更阈值。由此,由于能在各个脱水条件下的脱水运转中,通过与各个脱水条件相适的阈值来检测洗涤物有无偏倚,因此能实现洗涤物有无偏倚的检测精度提高。
此外,通过本发明,作为脱水机的脱水运转,通过控制施加给使脱水桶旋转的电动电机的电压的占空比,使电机以第一旋转速度定速旋转,然后,使电机以比第一旋转速度高的第二旋转速度定速旋转,由此脱水桶内的洗涤物正式脱水。
与脱水桶内的洗涤物有无偏倚的检测相关联地,将电机加速至第一旋转速度为止的加速状态下占空比的最大值取作最大占空比,然后,计算出该最大占空比与每规定时间的占空比的差分的累计值。
当脱水桶内不存在洗涤物的偏倚时,在产生最大占空比之后,由于即使占空比较小,电机也能加速至第一旋转速度,因此占空比逐渐减小。由此,由于占空比与最大占空比的差分逐渐增大,因此累计值增加。但是,当脱水桶内存在洗涤物的偏倚时,由于电机为了加速至第一旋转速度,在产生最大占空比之后也必须增大占空比,因此产生最大占空比之后的占空比不容易减小。由此,由于占空比与最大占空比的差分不容易增大,因此累计值难以增加。
因此,当累计值小于规定的阈值时,判断脱水桶内存在洗涤物的偏倚,停止脱水桶的旋转。
只要采用像这样监视最大占空比产生之后的占空比相对于最大占空比的相对变化的新的结构,就能实现洗涤物有无偏倚的检测精度提高。
此外,通过本发明,阈值由以每规定时间加1一次的计数值和最大占空比 作为变量的算式而求得。最大占空比根据脱水桶内的洗涤物的负荷量的大小而不同。因此,阈值因负荷量而异地进行设定。由此,由于基于与脱水桶内的洗涤物的负荷量的大小对应的最佳的阈值进行了洗涤物有无偏倚的检测,因此能防止误检测。因此,实现了洗涤物有无偏倚的检测精度的进一步提高。
此外,通过本发明,占空比设定为在比脱水桶发生共振的转速稍低的转速时产生最大占空比。此时,在最大占空比产生之后的早期发生共振。因此,很快就发生累计值难以增加的现象。因此,能及早并且正确地检测出脱水桶内存在洗涤物的偏倚。
附图说明
图1是表示本发明的一实施方式的脱水机1的示意性纵剖右视图。
图2是表示脱水机1的电结构的框图。
图3是表示用脱水机1实施的脱水运转中的电机6的转速的状态的时间图。
图4是表示收容于脱水机1的脱水桶4的洗涤物的重量与根据洗涤物的重量由脱水机1检测到的负荷量的关系的图表。
图5A是表示用于在脱水运转中检测脱水桶4内的洗涤物有无偏倚的检测1~检测4的概要的流程图。
图5B是表示用于在脱水运转中检测脱水桶4内的洗涤物有无偏倚的检测1~检测4的概要的流程图。
图6A是表示检测1以及检测2的相关控制动作的流程图。
图6B是表示检测1以及检测2的相关控制动作的流程图。
图7是与检测1相关联地表示电机6的转速与转速的差分Sn的关系的图表。
图8是与检测2相关联地表示电机6的转速与关于差分S的差分的绝对值的累计值U的关系的图表。
图9A是表示检测3以及检测4的相关控制动作的流程图。
图9B是表示检测3以及检测4的相关控制动作的流程图。
图10是与检测3相关联地表示时间与第一计数值E的关系的图表。
图11是与检测4相关联地表示时间与校正占空比dn_diff的关系的图表。
图12是表示用于在脱水运转中检测脱水桶4内的洗涤物有无偏倚的检测5-1以及检测5-2的概要的流程图。
图13是表示检测5-1的相关控制动作的流程图。
图14是与检测5-1以及检测5-2相关联地表示转速与移动累计值Cn的关系的图表。
图15是表示检测5-2的相关控制动作的流程图。
图16是表示在脱水运转中检测泡沫的控制动作的流程图。
图17是与检测6相关联地表示用脱水机1实施的脱水运转的中途的电机6的转速的状态的时间图。
图18是表示检测6的相关控制动作的流程图。
图19是与检测6相关联地表示计数值G与累计值H的关系的图表。
图20是与检测6相关联地表示计数值G与占空比的关系的图表。
附图标记说明
1:脱水机;4:脱水桶;6:电机;30:控制部;dg:占空比;dmax:最大占空比;dn:占空比;d0:基准占空比;dn_diff:校正占空比;E:第一计数值;G:计数值;H:累计值;Q:洗涤物。
具体实施方式
以下,参照附图对本发明的实施方式进行具体说明。
图1是本发明的一实施方式的脱水机1的示意性纵剖右视图。
将图1的上下方向称为脱水机1的上下方向X,将图1的左右方向称为脱水机1的前后方向Y,首先,对脱水机1的概要进行说明。上下方向X中,将上方称为上方X1,将下方称为下方X2。前后方向Y中,将图1中的左方称为 前方Y1,将图1中的右方称为后方Y2。
脱水机1包括所有能进行洗涤物Q的脱水运转的装置。因此,脱水机1不仅包括只具有脱水功能的装置,还包括具有脱水功能的洗衣机、洗衣干衣机。以下,以洗衣机为例对脱水机1进行说明。
脱水机1包括机壳2、外桶3、脱水桶4、旋转翼5、电动电机6以及传递机构7。
机壳2例如为金属制,形成为箱状。机壳2的上表面2A以随着朝向后方Y2而向上方X1延伸的方式,相对于前后方向Y倾斜地形成。在上表面2A形成有连通机壳2的内外的开口8。在上表面2A设有对开口8进行开闭的门9。在上表面2A,于比开口8更靠前方Y1的区域,设有由液晶操作面板等构成的操作部20。使用者通过操作操作部20,能自由选择脱水条件或对脱水机1指示运转开始、运转停止等。
外桶3例如为树脂制,形成为有底圆筒状。外桶3具备:大致圆筒状的圆周壁3A,沿着上下方向X配置;底壁3B,从下方X2堵塞圆周壁3A的中空部分;以及环状的环状壁3C,将圆周壁3A的上方X1侧的端缘包边并且向圆周壁3A的圆心侧伸出。在环状壁3C的内侧形成有从上方X1连通圆周壁3A的中空部分的出入口10。出入口10从下方X2相对于机壳2的开口8呈对置并连通的状态。在环状壁3C设有对出入口10进行开闭的门11。底壁3B形成为大致水平地延伸的圆板状,在底壁3B的圆心位置,形成有贯通底壁3B的贯通孔3D。
外桶3内能蓄水。外桶3从上方X1连接有与自来水的水龙头相连的供水路12,自来水从供水路12供应到外桶3内。在供水路12的中途设有进行开闭以开始或停止供水的供水阀13。外桶3从下方X2连接有排水路14,外桶3内的水从排水路14排出到洗衣机外。在排水路14的中途设有进行开闭以开始或停止排水的排水阀15。
脱水桶4例如为金属制,形成为比外桶3小一圈的有底圆筒状,能在内部收容洗涤物Q。脱水桶4具有沿着上下方向X配置的大致圆筒状的圆周壁4A和从下方X2堵塞圆周壁4A的中空部分的底壁4B。
圆周壁4A的内圆周面是脱水桶4的内圆周面。圆周壁4A的内圆周面的上 端部是使圆周壁4A的中空部分向上方X1露出的出入口21。出入口21从下方X2相对于外桶3的出入口10呈对置并连通的状态。出入口10以及21通过门11一并开闭。脱水机1的使用者经由打开的开口8、出入口10以及21将洗涤物Q取出放入脱水桶4。
脱水桶4以同轴状收容于外桶3内。收容于外桶3内的状态下的脱水桶4能以构成其中心轴并在上下方向X上延伸的轴线16为中心进行旋转。此外,脱水桶4的圆周壁4A以及底壁4B形成有多个未图示的贯通孔,外桶3内的水能经由该贯通孔在外桶3与脱水桶4之间往来。因此,外桶3内的水位与脱水桶4内的水位一致。
脱水桶4的底壁4B相对于外桶3的底壁3B向上方X1隔开间隔并形成为大致平行地延伸的圆板状,在底壁4B,于与轴线16一致的圆心位置,形成有贯通底壁4B的贯通孔4C。底壁4B设有包围贯通孔4C并沿着轴线16向下方X2延伸出的管状的支承轴17。支承轴17插通外桶3的底壁3B的贯通孔3D,支承轴17的下端部位于比底壁3B更靠下方X2处。
旋转翼5也就是波轮,形成为以轴线16为圆心的圆盘状,在脱水桶4内沿着底壁4B与脱水桶4同心状地配置。在旋转翼5,于面向脱水桶4的出入口21的上表面,设有呈放射状配置的多个叶片5A。旋转翼5设有从其圆心沿着轴线16向下方X2延伸的旋转轴18。旋转轴18插通支承轴17的中空部分,旋转轴18的下端部位于比外桶3的底壁3B更靠下方X2处。
在本实施方式中,电机6通过变频电机实现。电机6在机壳2内配置于外桶3的下方X2。电机6具有以轴线16为中心进行旋转的输出轴19。传递机构7介于支承轴17以及旋转轴18各自的下端部与输出轴19的上端部之间。传递机构7将电机6从输出轴19输出的驱动力选择性地传递给支承轴17以及旋转轴18的一方或双方。作为传递机构7可以使用公知的传递机构。
当电机6的驱动力传递到支承轴17以及旋转轴18时,脱水桶4以及旋转翼5绕轴线16旋转。在洗涤运转以及漂洗运转中,脱水桶4内的洗涤物Q被旋转的脱水桶4以及旋转翼5的叶片5A搅拌。此外,在漂洗运转后的脱水运转中,通过脱水桶4以及旋转翼5一体地高速旋转,脱水桶4内的洗涤物Q被脱水。
图2是表示脱水机1的电结构的框图。
参照图2,脱水机1包括:负荷量测定单元、驱动控制单元、取得单元、定时确定单元、判断单元、停止控制单元、执行单元、计数单元、接收单元、阈值变更单元以及作为计算单元的控制部30。控制部30构成为例如包括CPU31、ROM或RAM等存储器32、计时器35以及计数器36的微机,内置于机壳2内(参照图1)。
脱水机1还包括水位传感器33和转速读取装置34。水位传感器33和转速读取装置34以及上述的电机6、传递机构7、供水阀13、排水阀15和操作部20分别与控制部30电连接。
水位传感器33是检测外桶3以及脱水桶4的水位的传感器,水位传感器33的检测结果实时输入控制部30。
转速读取装置34是读取电机6的旋转速度,严格来说读取电机6的输出轴19的转速的装置,由例如霍尔IC构成。转速读取装置34读取的转速实时输入控制部30。控制部30通过基于输入的转速控制施加给电机6的电压的占空比,使电机6以所希望的转速旋转。
控制部30通过控制传递机构7,将电机6的驱动力的传递目标切换到支承轴17以及旋转轴18的一方或双方。控制部30控制供水阀13以及排水阀15的开闭。如上所述,当使用者操作操作部20来选择洗涤物Q的脱水条件等时,控制部30接收该选择。
接下来,对脱水机1进行的脱水运转进行说明。
图3是表示由脱水机1实施的脱水运转中电机6的转速的状态的时间图。在图3的时间图中,横轴表示经过时间,纵轴表示电机6的转速(单位:rpm)。
参照图3,在脱水运转中,控制部30在脱水桶4开始旋转时测定脱水桶4内的洗涤物Q的负荷量。在测定了负荷量之后,控制部30在使电机6的旋转速度上升至120rpm这一规定速度之后使电机6以120rpm定速旋转。然后,控制部30在使电机6从120rpm上升到240rpm这一第一旋转速度后使电机6以240rpm定速旋转。然后,控制部30在使电机6从240rpm上升到800rpm这一第二旋转速度后使电机6以800rpm定速旋转。通过电机6以800rpm定速旋转, 脱水桶4内的洗涤物Q正式脱水。需要说明的是,在脱水运转时,在电机6的旋转速度为例如50rpm~60rpm时,脱水桶4发生横向共振,在电机6的旋转速度为例如200rpm~220rpm时,脱水桶4发生纵向共振。
当脱水桶4内的洗涤物Q处于偏倚配置于脱水桶4的圆周方向的状态时,脱水桶4内存在洗涤物Q的偏倚。当在该状态下进行脱水运转时,脱水桶4偏心旋转,由此,脱水桶4有可能大幅摆动,赋予脱水机1较大的振动,产生噪音。
因此,控制部30在脱水运转的中途,检测脱水桶4内的洗涤物Q有无偏倚,当检测到存在偏倚时,停止电机6。作为这样的检测,控制部30执行检测1、检测2、检测3、检测4以及检测5这五种电检测。
检测1~检测4在低速偏心检测区间内执行,该低速偏心检测区间由电机6的旋转速度从120rpm上升到240rpm为止的加速期间和电机6开始向240rpm加速之后的规定期间构成。检测5在电机6的旋转速度从240rpm直至达到800rpm的期间即高速偏心检测区间内执行。
图4是表示收容于脱水桶4的洗涤物Q的重量与负荷量的关系的图表,该负荷量根据洗涤物Q的重量由脱水机1检测到。在图4的图表中,横轴表示洗涤物Q的重量(单位:kg),纵轴表示负荷量的检测值。
参照图4,如上所述,控制部30在脱水桶4开始旋转时,测定脱水桶4内的洗涤物Q的负荷量。控制部30在脱水桶4开始旋转时使脱水桶4以规定转速旋转,作为负荷量检测出对此时施加给电机6的电压的占空比进行一定次数累计后得出的值。当洗涤物Q变重时,由于必须对电机6施加高电压以使脱水桶4旋转,因此随着电压升高,负荷量变大。如此,控制部30对洗涤物Q的负荷量进行电测量。
图5A以及图5B是表示检测1~检测4的概要的流程图。
参照图5A以及图5B,当通过开始脱水运转而开始脱水桶4的脱水旋转时(步骤S1),如上所述,控制部30测定脱水桶4内的洗涤物Q的负荷量(步骤S2),然后,使电机6以120rpm定速旋转规定时间(步骤S3)。
然后,控制部30开始将电机6向240rpm加速(步骤S4),在电机6的加速 期间,实施上述的检测1(步骤S5)。在检测1的结果不为“OK”的情况下(步骤S5:否),也就是说,在控制部30判断存在洗涤物Q的偏倚的情况下,控制部30停止电机6,使脱水桶4的旋转停止(步骤S6),然后,判断是否能重启脱水运转(步骤S7)。
脱水运转的重启是指控制部30在停止脱水桶4的旋转从而中止脱水运转之后,立即使脱水桶4旋转以重启脱水运转。详细的情况之后叙述,有时候也会根据洗涤物Q偏倚的程度,进行重启。
在重启前即未实施重启的情况下(步骤S7:是),控制部30执行重启(步骤S8)。控制部30在重启的脱水运转中将120rpm的定速旋转的时长缩短为比刚刚中止的脱水运转中的120rpm的定速旋转的时长短。在重启的情况下,由于洗涤物Q处于一定程度上贴附于脱水桶4的内圆周面并去除了大部分的水的状态,因此即使缩短120rpm的定速旋转的时长也无妨。由此,能实现脱水运转的时间缩短。需要说明的是,这样的时长缩短也可以在之后后续的各重启中执行。
当无法重启时(步骤S7:否),控制部30执行不平衡修正这一处理(步骤S9)。在不平衡修正中,控制部30通过在关闭排水阀15之后打开供水阀13并对脱水桶4内供水至规定水位,将脱水桶4内的洗涤物Q浸入水中使其容易松开。在该状态下,控制部30通过使脱水桶4以及旋转翼5旋转,将贴附于脱水桶4的内圆周面的洗涤物Q剥落进行搅拌,由此修正脱水桶4内的洗涤物Q的偏倚。
另一方面,在检测1的结果为“OK”的情况下(步骤S5:是),也就是说,在控制部30通过检测1判断不存在洗涤物Q的偏倚情况下,控制部30在电机6的加速期间,接着实施上述的检测2(步骤S10)。
在检测2的结果不为“OK”的情况下(步骤S10:否),也就是说,在控制部30判断存在洗涤物Q的偏倚的情况下,控制部30使电机6以及脱水桶4停止,中止脱水运转(步骤S11)。然后,控制部30确认这次中止的脱水运转的脱水条件是否为“毛织物模式”或者“单脱运转(步骤S12)。
毛织物模式是指对毛织物等容易吸水的洗涤物Q进行脱水的脱水条件。在脱水条件为毛织物模式(步骤S12:是),且这次中止的脱水运转为未实施重启 即重启前的情况下(步骤S13:是),控制部30执行将120rpm定速旋转的时长缩短了的重启(步骤S14)。
在毛织物模式的情况下,从毛织物渗出并积蓄于外桶3内的大量的水会阻碍脱水桶4的旋转,由此,有时控制部30会误判断检测2的结果不为“OK”。而且,当无论是否误判断都进行不平衡修正,毛织物再次大量吸水时,有可能会在之后的检测2中再次误判断。因此,在毛织物模式下判断检测2的结果不为“OK”的情况下,只要是未实施重启(步骤S13:是),就不进行不平衡修正而是进行重启(步骤S14)。另一方面,在不为重启前的情况下,也就是说,只要这次中止的脱水运转已实施了重启(步骤S13:否),控制部30就执行不平衡修正(步骤S15)。
单脱运转不是指接着洗涤运转以及漂洗运转而执行的脱水运转,而是指将已完成漂洗的洗涤物Q投入脱水桶4,将该洗涤物Q脱水的脱水条件。在脱水条件为单脱运转(步骤S12:是),且为重启前的情况下(步骤S13:是),控制部30执行重启(步骤S14)。
在单脱运转的情况下,当已完成漂洗的洗涤物Q通过不平衡修正被浸水时,事先准备已完成漂洗的洗涤物Q就毫无意义。因此,在单脱运转的过程中判断检测2的结果不为“OK”的情况下,只要未实施重启,就不进行不平衡修正而进行重启。需要说明的是,控制部30也可以通过由操作部20进行的显示、由蜂鸣器等进行的报错,提示使用者需要在脱水桶4内重置洗涤物Q。另一方面,在不为重启前的情况下(步骤S13:否),控制部30执行不平衡修正(步骤S15)。
另一方面,在脱水条件既不是毛织物模式也不是单脱运转的情况下(步骤S12:否),控制部30判断这次中止的脱水运转为重启前,并且判断是否接下来是否能重启(步骤S16)。当为重启前且可重启时(步骤S16:是),控制部30执行将120rpm定速旋转的时长缩短的重启(步骤S17)。当不满足重启前且可重启这一条件时(步骤S16:否),控制部30执行不平衡修正(步骤S18)。
而且,在检测2的结果为“OK”的情况下(步骤S10:是),也就是说,控制部30在检测2中判断不存在洗涤物Q的偏倚的情况下,控制部30确认计时器35的值是否为每负荷量的设定值以上(步骤S19)。也就是说,控制部30在步骤S19中确认计时器35的测量时间是否已达到与脱水桶4内的洗涤物Q的负 荷量对应的设定值。关于设定值,以下详细说明。
当计时器35的值为每负荷量的设定值以上时(步骤S19:是),在电机6以240rpm定速旋转的状态下,控制部30实施上述的检测3以及检测4(步骤S20)。在检测3以及检测4的结果不为“OK”的情况下(步骤S20:否),即,在控制部30判断存在洗涤物Q的偏倚的情况下,控制部30使电机6以及脱水桶4停止,中止脱水运转(步骤S11),在步骤S12~S18中执行相应处理。
另一方面,在检测3以及检测4的结果为“OK”的情况下(步骤S20:是),也就是说,控制部30在检测3和检测4中判断不存在洗涤物Q的偏倚的情况下,控制部30接着使电机6以240rpm定速旋转,继续进行240rpm下的脱水(步骤S21)。
接下来,分别对检测1~检测4进行详细说明。
图6A以及图6B是表示检测1以及检测2的相关控制动作的流程图。首先,参照图6A以及图6B,对检测1以及检测2进行说明。检测1以及检测2是利用电机6的旋转速度进行的洗涤物Q有无偏倚的检测。
控制部30在上述的步骤S4中,开始将电机6向240rpm加速,开始检测1以及检测2。首先,控制部30启动计时器35开始计时,并且通过转速读取装置34测定加速开始时电机6的转速V0(步骤S31)。转速V0为120rpm左右。
关于计时器35的值,也就是说,关于计时,检测1以及检测2的检测时间即电机6向240rpm加速的加速时长因负荷量而异。原因是洗涤物Q的量越多,电机6的旋转速度达到240rpm就越花时间。因此,与电机6的加速时长有关的每负荷量的设定值通过实验等预先求得,并存储于存储器32。
然后,控制部30通过计数器36开始计数(步骤S32),通过每0.3秒初始化一次计数器36,从而每0.3秒进行一次计数(步骤S33以及步骤S34)。
控制部30每次计数都测定一次计数时电机6的转速Vn(n:计数值)(步骤S35)。控制部30在步骤S35中,计算测出的转速Vn与在Vn之前一次测出的转速Vn-1的差分Sn。进而,控制部30还在步骤S35中就差分Sn与上一个差分Sn-1的差分的绝对值,计算其累计值U。
接着,控制部30确认计时器35的值是否已达到每负荷量的设定值以上, 也就是说,确认计时器35的测量时间是已否达到与脱水桶4内的洗涤物Q的负荷量对应的设定值(步骤S36)。步骤S36相当于上述的步骤S19(参照图5A)。
在计时器35的值低于每负荷量的设定值的情况下,也就是说,在计时器35的计时未达到对应的设定值的情况下(步骤S36:否),当脱水桶4内的洗涤物Q的负荷量为一定量以下时(步骤S37:是),控制部30判断刚才计算出的差分Sn是否落入检测1的范围内(步骤S38)。该一定量通过实验等预先求得,并存储于存储器32。
详细而言,差分Sn预先设定了阈值并存储于存储器32。图7是与检测1相关联地表示电机6的转速与差分Sn的关系的图表。在图7的图表中,横轴表示转速(单位:rpm),纵轴表示差分Sn(单位:rpm)。
参照在图7中用虚线箭头表示的转速的范围,在偏心较小而视为不存在洗涤物Q的偏倚的情况下,由于脱水桶4的加速稳定,因此如实线所示,差分Sn的偏差小。但是,在偏心较大而视为存在洗涤物Q的偏倚的情况下,由于脱水桶4的加速不稳定,因此如虚线所示,差分Sn的偏差大,差分Sn的最小值比阈值低。因此,回到图6A,当差分Sn小于等于阈值时,控制部30判断差分Sn落入检测1的范围内(步骤S38:是)。像这样,在检测1中,基于差分Sn来检测表示洗涤物Q有无偏倚的脱水桶4的加速的不稳定程度。
当控制部30判断差分Sn落入检测1的范围内时(步骤S38:是),停止电机6的旋转(所述的步骤S6),执行上述的步骤S7~S9中的相应处理(参照图5A)。步骤S31~步骤S38的处理包括在上述的步骤S5中(参照图5A)。
当控制部30通过差分Sn高于阈值从而判断其不落入检测1的范围内时(步骤S38:否),判断刚才计算出的累计值U是否落入检测2的范围内(步骤S39)。
此外,当脱水桶4内的洗涤物Q的负荷量超过一定量时(步骤S37:否),控制部30不执行步骤S38中的由检测1进行的判断,而执行步骤S39中的由检测2进行的判断。原因是,在洗涤物Q的量大到超过一定量的情况下,由于从洗涤物Q渗出的水量多或洗涤物Q的偏倚因洗涤物Q猛然贴附于脱水桶4的内圆周面而急剧变化,因此有可能无法稳定地执行检测1。因此,在洗涤物Q的量超过一定量的情况下,省略检测1。
与判断累计值U是否落入检测2的范围内相关,累计值U预先设定了阈值并存储于存储器32。图8是与检测2相关联地表示电机6的转速与累计值U的关系的图表。在图8的图表中,横轴表示时间(单位:sec),纵轴表示累计值U(单位:rpm)。参照图8,阈值设定有用四方点表示的下侧阈值和用三角点表示的上侧阈值这两种阈值。上侧阈值是比下侧阈值高的值。
在偏心小而不存在洗涤物Q的偏倚的情况下,由于脱水桶4的加速稳定,因此如实线所示,累计值U在任何定时都低于下侧阈值。但是,在偏心大而存在洗涤物Q的偏倚的情况下,由于脱水桶4的加速不稳定,因此如虚线所示,累计值U在任何定时都高于下侧阈值。当洗涤物Q的偏倚大时,累计值U高于上侧阈值。因此,回到图6A,当累计值U大于等于下侧阈值时,控制部30判断累计值U落入检测2的范围内(步骤S39:是)。像这样,检测2基于累计值U来检测表示洗涤物Q有无偏倚的脱水桶4的加速的不稳定程度。
当控制部30判断累计值U落入检测2的范围内时(步骤S39:是),停止电机6的旋转(所述的步骤S11),执行上述的步骤S12~S18中的相应处理。步骤S31~S37以及步骤S39的处理包含在上述的步骤S10中(参照图5A)。
在脱水条件既不是毛织物模式也不是单脱运转的情况下(步骤S12:否),控制部30在步骤S16中,判断洗涤物Q的偏倚是否大到累计值U为上侧阈值以上或者这次中止的脱水运转是否已进行了重启。
在累计值U为上侧阈值以上或已进行了重启的情况下(步骤S16:是),控制部30执行不平衡修正(步骤S18)。在累计值U小于上侧阈值并且未进行重启的情况下(步骤S16:否),控制部30执行重启(步骤S17)。累计值U是否为上侧阈值以上的判断相当于图5B的步骤S16中的能否重启的判断,是否已进行重启的判断相当于图5B的步骤S16中的是否为重启前的判断。
如此,控制部30在步骤S16~S18中,基于累计值U是否为上侧阈值以上来判断检测2的范围内的偏倚是小到接下来能进行重启的程度还是大到需要进行不平衡修正的程度,并根据偏倚的大小选择执行重启和不平衡修正。
而且,在检测1以及检测2中都判断不存在洗涤物Q的偏倚的状态下,当计时器35的值达到每负荷量的设定值时(步骤S36:是),控制部30结束检测 1以及检测2(步骤S40)。此外,控制部30在步骤S40中,将在计时器35的值达到设定值的时间点施加给电机6的电压的占空比取作基准占空比d0。在计时器35的值达到设定值并执行步骤S40的处理的时间点,电机6处于加速至240rpm为止的加速状态。
如上所述,步骤S36中的设定值因脱水桶4内的洗涤物Q的负荷量而异。因此,控制部30根据在脱水桶4的脱水旋转时测定的负荷量,确定在步骤S40中取得基准占空比d0的定时。换言之,控制部30根据负荷量对结束检测1以及检测2并开始之后的检测3以及检测4的定时进行变更。因此,能在与洗涤物Q的量相应的最佳定时执行检测3以及检测4。
图9A以及图9B是表示检测3以及检测4的相关控制动作的流程图。参照图9A以及图9B对检测3以及检测4进行说明。检测3以及检测4是利用了施加给电机6的电压的占空比进行的洗涤物Q有无偏倚的检测。
控制部30在上述的步骤S40中取得基准占空比d0,开始检测3以及检测4。在开始检测3以及检测4时,电机6的旋转速度处于已达到240rpm的状态,电机6以240rpm定速旋转。
与检测3以及检测4相关地,存在第一计数值E和第二计数值T,存储于存储器32。控制部30在开始检测3以及检测4时,将第一计数值E和第二计数值T分别复位到初始值0(零)(步骤S41)。
然后,控制部30启动计时器35,开始计时(步骤S42),并监视计时器35的值是否超过8.1秒。在取得基准占空比d0之后的8.1秒这一规定期间内执行第三检测以及第四检测。
此外,控制部30在步骤S42中通过计数器36开始计数,通过每0.3秒初始化一次计数器36,从而每0.3秒进行一次计数(步骤S43以及步骤S44)。控制部30在步骤S44中,在初始化计数器36的定时,即每次进行计数的定时,将第二计数值T加1(+1)。
控制部30在每次计数时取得一次在计数时对电机6施加的电压的占空比dn(n:计数值)(步骤S45)。也就是说,控制部30在上述的8.1秒这一规定期间内,每0.3秒这一规定的定时取得一次占空比dn。
此外,控制部30在步骤S45中,基于以下的式(1)以及(2),对每0.3秒的定时的校正占空比dn_diff进行运算。校正占空比dn_diff是对同一定时取得的占空比dn进行了校正的值,以便能精度良好地执行检测4中的检测。此外,式(1)以及(2)中的A以及B为通过实验等求出的常数。
dn_diff=A×dn-dn_x   ...式(1)
dn_x=(A×d0)-(B×T)   ...式(2)
接着,当取得的占空比dn大于等于在上一次定时取得的占空比dn-1时(步骤S46:是),控制部30将第一计数值E加1(+1)(步骤S47)。进而,在第三检测中,控制部30最初取得的占空比dn为上述的基准占空比d0。另一方面,当取得的占空比dn低于在上一次定时取得的占空比dn-1时(步骤S46:否),控制部30将第一计数值E复位到初始值0(零)(步骤S48)。
然后,控制部30确认计时器35的值是否为8.1秒以下,即计时器35的测量时间是否超过了8.1秒(步骤S49)。
在计时器35的值为8.1秒以下的情况下(步骤S49:是),当脱水桶4内的洗涤物Q的负荷量为一定量以上时(步骤S50:是),控制部30判断最新的第一计数值E是否落入检测3的范围内(步骤S51)。该一定量通过实验等预先求出,并存储于存储器32。
详细而言,第一计数值E预先设定了阈值,并存储于存储器32。图10是与检测3相关联地表示时间与第一计数值E的关系的图表。在图10的图表中,横轴表示时间(单位:sec),纵轴表示第一计数值E。参照图10,阈值设定有用单点划线表示的下侧阈值和用双点划线表示的上侧阈值这两种阈值。上侧阈值以及下侧阈值都与经过时间无关,为固定的值。上侧阈值为比下侧阈值高的值。
在偏心小而不存在洗涤物Q的偏倚的情况下,由于即使电压小,电机6也能以240rpm定速旋转,因此占空比dn逐渐减小。由此,第一计数值E如实线所示,稳定在初始值0(零)附近。
但是,在偏心大而存在洗涤物Q的偏倚的情况下,由于为了将电机6的旋转速度维持在240rpm需要高电压,因此占空比dn不减小。由此,第一计数值E不会回到初始值而是增大,如虚线所示,在任一定时都高于下侧阈值。当洗涤 物Q的偏倚大时,第一计数值E还会高于上侧阈值。
因此,回到图9A,当最新的第一计数值E大于等于下侧阈值时,控制部30判断第一计数值E落入检测3的范围内(步骤S51:是)。也就是说,当在上述的8.1秒这一规定期间内第一计数值E大于等于规定的阈值时,控制部30判断脱水桶4内存在洗涤物Q的偏倚。
只要是像检测3那样始终监视定时相邻的占空比dn之间的变化的结构,即使相对于检测开始时取得的最初的占空比dn即基准占空比d0的变化小,也能进行实时掌握了检测中途的占空比dn的变化的准确检测。由此,能实现洗涤物Q有无偏倚的检测精度的提高。
然后,当控制部30通过低于下侧阈值而判断第一计数值E不落入检测3的范围内时(步骤S51:否),判断刚才运算出的校正占空比dn_diff是否落入检测4的范围内(步骤S52)。
此外,当脱水桶4内的洗涤物Q的负荷量低于一定量时(步骤S50:否),控制部30不执行步骤S51中的由检测3进行的判断,而执行步骤S52中的由检测4进行的判断。其原因是,当在洗涤物Q的量少到低于一定量的情况下执行检测3时,第一计数值E由于占空比dn在较早阶段收敛而不稳定,有可能会无法稳定地执行检测3。因此,在洗涤物Q的量低于一定量的情况下,省略检测3。
关于校正占空比dn_diff是否落入检测4的范围内的判断,校正占空比dn_diff预先设定了阈值并存储于存储器32。图11是与检测4相关联地表示时间与校正占空比dn_diff的关系的图表。在图11的图表中,横轴表示时间(单位:sec),纵轴表示校正占空比dn_diff。参照图11,阈值设定有用单点划线表示的下侧阈值和用双点划线表示的上侧阈值这两种阈值。上侧阈值以及下侧阈值分别随着经过时间逐渐增大。上侧阈值为比下侧阈值高的值。
在偏心小而不存在洗涤物Q的偏倚的情况下,由于即使电压小,电机6也能以240rpm定速旋转,因此校正占空比dn_diff如实线所示,低于下侧阈值并且逐渐减小。
但是,在偏心大而存在洗涤物Q的偏倚的情况下,为了将电机6的旋转速度维持在240rpm,需要高电压,因此校正占空比dn_diff如虚线所示,不会减小 而会超过下侧阈值。当洗涤物Q的偏倚大时,校正占空比dn_diff还会超过上侧阈值。因此,回到图9A,当校正占空比dn_diff为下侧阈值以上时,控制部30判断校正占空比dn_diff落入检测4的范围内(步骤S52:是)。
需要说明的是,由上述的式(1)以及(2)求得的校正占空比dn_diff是设定为在占空比dn与基准占空比d0相同或比基准占空比d0大的情况下,随着时间经过而增大的值。因此,校正占空比dn_diff仅在占空比dn相对于基准占空比d0正常下降的情况下不落入阈值。
如上,用于检测3的第一计数值E和用于检测4的校正占空比dn_diff是指在上述的8.1秒这一规定期间内,为了维持240rpm而施加给电机6的电压的占空比dn相对于基准占空比d0发生变化的情况的指标。控制部30在检测3以及检测4中,基于这样的指标判断脱水桶4内的洗涤物Q有无偏倚。
此外,由于用于检测3的第一计数值E和用于检测4的校正占空比dn_diff根据基准占空比d0而求得,因此基准占空比d0为左右洗涤物Q有无偏倚的检测精度的重要因素。在脱水机1中,如上所述,控制部30在脱水桶4开始旋转时,测定脱水桶4内的洗涤物Q的负荷量(图5A的步骤S2),并根据测出的负荷量确定取得基准占空比d0的定时(图6A的步骤S36)。由此,由于基准占空比d0在考虑到负荷量的影响的适当的定时取得,因此能根据该基准占空比d0,在检测3以及检测4中精度良好地执行洗涤物Q有无偏倚的检测。其结果是,能实现洗涤物Q有无偏倚的检测精度的提高。
并且,当控制部30判断第一计数值E落入检测3的范围内时(步骤S51:是)、或判断校正占空比dn_diff落入检测4的范围内时(步骤S52:是),停止电机6的旋转(所述的步骤S11),执行上述的步骤S12~S18中相应的处理。步骤S40~S52的处理包括在上述的步骤S20中(参照图5A)。
图9B中的步骤S16A以及步骤S16B包括在上述的步骤S16中(参照图5B)。具体而言,步骤S16A中的判断相当于图5B的步骤S16中的是否为重启前这一判断,步骤S16B中的判断相当于图5B的步骤S16中的能否重启这一判断。
在脱水条件既不是毛织物模式也不是单脱运转的情况下(步骤S12:否),控制部30在步骤S16A中,判断这次中止的脱水运转是否为重启前。当判断为 重启前时(步骤S16A:是),控制部30判断洗涤物Q的偏倚是否小到第一计数值E以及校正占空比dn_diff都小于各自的上侧阈值的程度。
在为重启前(步骤S16A:是)且第一计数值E以及校正占空比dn_diff低于各自的上侧阈值的情况下(步骤S16B:是),控制部30执行重启(步骤S17)。
在不为重启前,即已完成重启的情况下(步骤S16A:否),控制部30执行不平衡修正(步骤S18)。此外,即使为重启前(步骤S16A:是),在第一计数值E以及校正占空比dn_diff的至少任一个为各自的上侧阈值以上的情况下(步骤S16B:否),控制部30执行不平衡修正(步骤S18)。
这样,控制部30在步骤S11中停止了脱水桶4的旋转的情况下,在步骤S16B~S18中,根据第一计数值E以及校正占空比dn_diff判断落入检测3、检测4的范围内的偏倚是小到能接着重启的程度、还是大到需要进行不平衡修正的程度。
也就是说,控制部30根据第一计数值E以及校正占空比dn_diff的程度,换言之根据这些值是否大于等于各自的上侧阈值,择一执行重启以及不平衡修正。因此,当判断存在洗涤物Q的偏倚时,不一定要一律执行不平衡修正。因此,当第一计数值E以及校正占空比dn_diff为表示洗涤物Q的偏倚小的值时,通过立即执行重启,能实现脱水运转的时间缩短。
并且,在检测3以及检测4都判断不存在洗涤物Q的偏倚的状态下,当计时器35的值经过了8.1秒时(步骤S49:否),控制部30结束检测3以及检测4(步骤S53)。
接下来,对检测5进行详细说明。具体而言,检测5分为检测5-1和检测5-2。图12是表示检测5-1以及检测5-2的概要的流程图。检测5-1以及检测5-2时利用了占空比的洗涤物Q有无偏倚的检测。
参照图12,在检测3以及检测4结束后,电机6还以240rpm的转速继续定速旋转规定时间。随着该规定时间期满,控制部30将电机6从240rpm加速至上述的800rpm这一目标转速(步骤S60)。
在电机6被加速的状态下,当电机6的旋转速度达到300rpm时,控制部30将在该时间点对电机6施加的电压的占空比取作α值(步骤S61)。300rpm是脱 水桶4未蓄水的状态且最不受脱水桶4的偏心的影响的转速。因此,300rpm的α值是最不受脱水桶4的偏心的影响而只受洗涤物Q的负荷量的影响的状态下的占空比。
然后,控制部30在电机6继续加速的状态下,在转速从600pm到729rpm的期间,实施上述的检测5-1(步骤S62)。在检测6-1的结果不为“OK”的情况下(步骤S62:否),即在控制部30判断存在洗涤物Q的偏倚的情况下,控制部30停止电机6,停止脱水桶4的旋转(步骤S63)。这样,在脱水运转中止之后,控制部30判断是否为重启前,也就是说,判断这次中止的脱水运转是否已执行重启(步骤S64)。
当为重启前时(步骤S64:是),控制部30执行重启(步骤S65)。当不为重启前时(步骤S64:否),控制部30执行不平衡修正(步骤S66)。
另一方面,在检测5-1的结果为“OK”的情况下(步骤S62:是),也就是说,控制部30在检测5-1中判断不存在洗涤物Q的偏倚的情况下,控制部30在电机6从730rpm继续加速的状态下接着实施上述的检测5-2(步骤S67)。
在检测5-2的结果为“OK”的情况下(步骤S67:是),也就是说,控制部30在检测5-2中判断不存在洗涤物Q的偏倚的情况下,控制部30通过在使电机6加速至目标转速(800rpm)之后,使电机6以目标转速定速旋转,从而继续进行洗涤物Q的脱水(步骤S68)。
另一方面,在检测5-2的结果不为“QK”的情况下(步骤S67:否),也就是说,在控制部30判断存在洗涤物Q的偏倚的情况下,控制部30通过使电机6以上述的目标转速以下的旋转速度定速旋转,继续进行洗涤物Q的脱水(步骤S69)。
接下来,对检测5-1以及检测5-2分别进行详细说明。
图13是表示检测5-1的相关控制动作的流程图。
参照图13,控制部30在过了上述的步骤S61(参照图12)而接着加速电机6的状态下,随着电机6的转速达到600rpm而开始检测5-1(步骤S70)。
然后,控制部30通过计数器36开始计数(步骤S71),通过每0.3秒初始化一次计数器36,从而每0.3秒进行一次计数(步骤S72以及步骤S73)。
控制部30每次计数都取得一次计数时的电机6的转速和在计数时对电机6施加的电压的占空比dn(n:计数值)(步骤S74)。也就是说,控制部30在电机6的旋转速度从240rpm直至达到800rpm的期间内,每规定的定时取得一次电机6的转速和占空比dn。
此外,控制部30在步骤S74中,基于以下的式(3),运算以上述的α值对占空比dn进行校正而获得的校正值Bn。需要说明的是,式(3)中的X以及Y为通过实验等求出的常数。与简单的比例计算不同,通过由式(3)来改变加权,对占空比dn进行校正而得到的校正值Bn,能精度良好地执行检测5-1。
Bn=dn-(α×X+Y)...式(3)
此外,在步骤S74中,控制部30计算校正值Bn的移动累计值Cn(n:计数值)。移动累计值Cn(n:计数值)为将按计数顺序连续的5个校正值Bn合计所得的值。而且,对于某个移动累计值Cn和上一个移动累计值Cn-1而言,构成移动累计值Cn-1的5个校正值Bn中的后侧4个校正值Bn和构成移动累计值Cn的5个校正值Bn的前侧4个校正值Bn分别为相同的值。需要说明的是,为了构成移动累计值Cn而合计的校正值Bn的数目不局限于上述的5个。
其次,控制部30基于以下的式(4),运算移动累计值Cn的阈值(步骤S75)。
阈值=(转速)×a+b...式(4)
式(4)中的a以及b是通过实验等求得的常数,并存储于存储器32。此外,这些常数a以及b因当前的电机6的转速、所选择的脱水条件而异。因此,此处的阈值在同一转速下存在多个值。需要说明的是,由式(4)明显可知,阈值为不受上述的α值影响的值。
然后,控制部30确认当前的电机6的转速是否小于730rpm(步骤S76)。
在当前的电机6的转速小于730rpm的情况下(步骤S76:是),控制部30判断最新的移动累计值Cn是否落入检测5-1的范围内(步骤S77)。
图14是与检测5-1以及检测5-2相关联地表示转速与移动累计值Cn的关系的图表。在图14的图表中,横轴表示转速(单位:rpm),纵轴表示移动累计值Cn。参照图14,对于在步骤S75中运算出的阈值,根据例如脱水条件的不同,设定用单点划线表示的第一阈值和用双点划线表示的第二阈值这两种阈值。第 一阈值比第二阈值高。
脱水条件中,存在对脱水桶4蓄水并在漂洗洗涤物Q的“普通漂洗”后进行脱水运转的脱水条件、一边排水一边对洗涤物Q喷水并进行脱水运转的“喷水脱水”、以及上述的“重启”等脱水条件。这些脱水条件由使用者通过操作操作部20来选择,该选择由控制部30接收。在洗涤运转后、普通漂洗后的脱水运转中,由于洗涤物含有大量水,因此电机6的加速需要力,在喷水脱水、重启的情况下,由于洗涤物处于一定程度上去除了水的状态,因此电机6的加速所需要的力很小即可。
在洗涤运转后、普通漂洗后的脱水运转中,由于使用第二阈值则检测难以进行,因此控制部30使用比第二阈值高的第一阈值。另一方面,在喷水脱水、重启的脱水运转中,由于使用第一阈值则检测过于宽松,因此控制部30使用比第一阈值低的第二阈值。因此,无论是在洗涤物Q中含有大量水的情况下,还是在洗涤物Q处于一定程度上去除了水的情况下,都使用与各自的情况相适宜的阈值来执行检测5-1。
此外,基于与这样的脱水条件的区分相同的宗旨,在脱水桶4内的洗涤物Q的负荷量多的情况下,在检测5-1中,由于使用第二阈值则检测难以进行,因此控制部30使用比第二阈值高的第一阈值。此外,在脱水桶4内的洗涤物Q的负荷量少的情况下,在检测5-1中,由于使用第一阈值则检测过于宽松,因此控制部30使用比第一阈值低的第二阈值。因此,使用分别与洗涤物Q的负荷量不同的情况相适宜的阈值来执行检测5-1。
需要说明的是,虽然在图14中,例示了第一阈值以及第二阈值这两种阈值,但该阈值也可以根据各种脱水条件、负荷量而设定为三种以上。
而且,在偏心大而存在洗涤物Q的偏倚的情况下(参照图14的虚线),与偏心小而不存在洗涤物Q的偏倚的情况(参照实线)相比,各转速下的移动累计值Cn更大。当洗涤物Q的偏倚大时,移动累计值Cn超过设定的阈值即第一阈值以及第二阈值中对应的一方。
因此,回到图13,当最新的移动累计值Cn为设定的阈值以上时,控制部30判断移动累计值Cn落入检测5-1的范围内(步骤S77:是)。
当控制部30判断移动累计值Cn落入检测5-1的范围内时(步骤S77:是),停止电机6的旋转(上述的步骤S63),执行上述的步骤S64~S66中相应的处理。步骤S71~S77的处理包括在上述的步骤S62中(参照图12)。
然后,在检测5-1判断不存在洗涤物Q的偏倚的状态下当电机6的转速达到730rpm时(步骤S76:否),控制部30结束检测5-1,接着开始检测5-2(步骤S78)。
图15是表示检测5-2的相关控制动作的流程图。
参照图15,控制部30在继续加速电机6的状态下,随着电机6的转速达到730rpm,开始检测5-2(上述的步骤S78)。
然后,控制部30通过计数器36开始计数(步骤S79),通过每0.3秒初始化一次计数器36,从而每0.3秒进行一次计数(步骤S80以及步骤S81)。
与检测5-1中的步骤S74相同,控制部30在每次计数时,取得一次计数时电机6的转速和计数时对电机6施加的电压的占空比dn,并运算出校正值Bn和移动累计值Cn(步骤S82)。
接着,控制部30根据上述的式(4),运算移动累计值Cn的阈值(步骤S83)。构成该式(4)的常数a以及b与检测5-1相同,因当前的电机6的转速、所选择的脱水条件而异。因此,此处的阈值在同一转速下像上述的第一阈值以及第二阈值那样存在多个值。
然后,控制部30确认当前的电机6的转速是否达到了目标转速(800rpm)(步骤S84)。
在当前的电机6的转速小于目标转速的情况下(步骤S84:是),控制部30与检测5-1的情况(步骤S77)相同,判断最新的移动累计值Cn是否落入检测5-2的范围内(步骤S85)。
具体而言,参照图14,在偏心大而存在洗涤物Q的偏倚的情况(参照图14的虚线)下,与偏心小而不存在洗涤物Q的偏倚的情况(参照实线)相比,各转速下的移动累计值Cn更大。当洗涤物Q的偏倚大时,移动累计值Cn超过设定的阈值即第一阈值以及第二阈值中对应的一方。
因此,回到图15,当最新的移动累计值Cn为设定的阈值以上时,控制部30判断移动累计值Cn落入检测5-2的范围内(步骤S85:是)。
控制部30在判断出移动累计值Cn落入检测5-2的范围内时(步骤S85:是),取得判断的时间点即检测5-2检测时的电机6的转速L(步骤S86)。
然后,控制部30通过以所取得的转速L,严格来说以将转速L的个位数值舍为0(零)而得到的转速使电机6定速旋转,从而继续进行洗涤物Q的脱水(上述的步骤S69)。此时,控制部30延长了转速L下的脱水时间,以便取得与以本来的目标转速进行脱水时相同的脱水效果。
然后,在检测5-2判断不存在洗涤物Q的偏倚的状态下,当电机6的转速达到目标转速时(步骤S84:否),控制部30结束检测5-2,通过以目标转速使电机6定速旋转,继续进行洗涤物Q的脱水(上述的步骤S68)。
如上所述,在检测5-1以及检测5-2中,控制部30根据操作部20所接收的脱水条件而变更阈值(步骤S75以及步骤S83)。而且,当取得的占空比dn,严格来说基于取得的占空比dn而算出的移动累计值Cn为变更了的规定阈值以上时,控制部30判断脱水桶4内存在洗涤物Q的偏倚。也就是说,由于能在各脱水条件的脱水运转中,通过与各脱水条件相适宜的阈值来检测洗涤物Q有无偏倚,因此能实现洗涤物Q有无偏倚的检测精度的提高。
本发明不局限于以上说明的实施方式,可以在权利要求书的范围内进行各种变更。
例如,在脱水运转期间,特别是电机6的转速低于600rpm的期间,有可能会发生泡沫堵塞排水路14的中途而不能顺利地排水的现象。因此,控制部30也可以与上述的检测1~5的相关控制并行地执行检测排水路14中的泡沫的控制。
图16是表示在脱水运转中检测泡沫的控制动作的流程图。
参照图16,控制部30通过开始脱水运转而开始脱水桶4的脱水旋转(上述的步骤S1)。由此,电机6的转速像上述那样上升(参照图3)。
控制部30在脱水运转中每规定的定时取得一次电机6的转速和施加给电机6的电压的占空比即施加电压占空比(步骤S91)。
当电机6的转速低于600rpm时(步骤S92:是),控制部30运算出电压限制值V_limit(步骤S93)。电压限制值V_limit为每转速下施加给电机6的最大电压的占空比,通过将转速代入规定的算式而算出。
而且,控制部30通过在各定时确认步骤S91中取得的施加电压占空比是否为电压限制值V_limit以上,检测排水路14中的泡沫(步骤S94)。
具体而言,由于在泡沫堵塞排水路14而不能排水的情况下,水存积于脱水桶4的底部,阻碍脱水桶4旋转,因此为了使脱水桶4旋转,必须对电机6施加与电压限制值V_limit以上的施加电压占空比相当的电压。因此,当施加电压占空比为电压限制值V_limit以上时,控制部30判断处于泡沫堵塞了排水路14的状态(步骤S94:是)。另一方面,当施加电压占空比小于电压限制值V_limit时,控制部30判断不处于泡沫堵塞排水路14的状态(步骤S94:否)。
当控制部30判断处于泡沫堵塞了排水路14的状态(步骤S94:是)时,判断是否为重启前,也就是说,判断对这次中止的脱水运转是否已执行了重启(步骤S95)。
当为重启前时(步骤S95:是),控制部30执行重启(步骤S96)。当不为重启前时(步骤S95:否),控制部30执行不平衡修正(步骤S97)。无论是执行重启还是不平衡修正,脱水运转都会在暂时中止后重启。因此,在脱水运转重启的期间,排水路14的泡沫会自然消失。
另一方面,当电机6的转速为600rpm以上时(步骤S92:否),控制部30结束检测泡沫的处理(步骤S98)。
此外,图16的控制不仅用于泡沫的检测,还能用于检测外桶3内的水由于振动等而不能到达排水路14的“滞水”这种现象。
此外,在脱水运转的上述低速偏芯检测区间(参照图3)中,为了对脱水桶4内的洗涤物Q有无偏倚进行电检测而执行了检测1~检测4,但也可以代替检测1~检测4执行以下说明的检测6,还可以将检测6与检测1~检测4并行执行。
图17是与检测6相关联地表示脱水运转中途的电机6的转速的状态的时间图,详细而言,是将相当于图3中的低速偏芯检测区间的部分抽出的图。因此, 在图17的时间图中,与图3相同,横轴表示经过时间,纵轴表示电机6的转速(单位:rpm)。需要说明的是,在图17中,除了用实线表示电机6的转速的状态之外,还用虚线等表示通过控制部30对电机6施加的电压的占空比的状态以作参考。
参照图17,控制部30以使在低速偏芯检测区间,在电机6从120rpm加速至240rpm的加速状态的中途产生占空比的最大值的方式控制占空比。此时,电机6的加速度被控制为始终固定。以下,将在电机6的加速状态的中途产生的占空比的最大值称为最大占空比dmax。具体而言,控制部30以在比脱水桶4发生共振,详细而言发生纵向共振的转速(所述200rpm~220rpm)稍低的转速(例如180rpm)时产生最大占空比dmax的方式控制占空比。
这样的占空比的控制无论脱水桶4内的洗涤物Q的负荷量的大小如何,都共通地执行。此外,为了实现该控制,在控制部30中,预先设定表示电机6的目标转速与现在的实际转速之差、表示转速相对于占空比的变化的响应性的增益等。需要说明的是,以下,将发生纵向共振的转速称为纵向共振转速。
当控制部30从120rpm开始加速电机6时,如图17中由虚线所示,占空比逐渐增大。然后,在电机6的转速达到180rpm时产生最大占空比dmax。当脱水桶4内不存在洗涤物Q的偏倚时,由于在产生最大占空比dmax之后,即使占空比较小电机6也能加速至240rpm,因此占空比如虚线所示,逐渐减小。
但是,当脱水桶4内存在洗涤物Q的偏倚时,振动随着电机6的转速接近纵向共振转速而增大。因此,由于为了将电机6加速至240rpm,在产生最大占空比dmax之后也必须增大占空比,因此产生最大占空比dmax之后的占空比不容易减小。因此,产生最大占空比dmax之后,占空比有时也会如图17中用1点锁线所示,维持比最大占空比dmax稍微低的值而不减小,或者如图17中用双点划线所示,在暂时低于最大占空比dmax之后增大。在检测6中,通过这样监视产生最大占空比dmax之后占空比相对于最大占空比dmax的相对变化,对脱水桶4内的洗涤物Q有无偏倚进行电检测。
图18是表示检测6的相关控制动作的流程图。参照图18,对检测6进行说明。
在上述步骤S4中,控制部30开始将电机6从120rpm向240rpm加速。然后,由于在电机6加速至240rpm为止的加速状态下,当电机6的转速达到例如180rpm时,占空比为最大值,因此控制部30将该最大值取作最大占空比dmax(步骤S101)。
与检测6相关联地,存在计数值G和累计值H,存储于存储器32。控制部30在取得最大占空比dmax时,分别将计数值G以及累计值H复位到初始值0(零)(步骤S101)。
然后,在取得最大占空比dmax之后,当电机6的转速达到马上要发生纵向共振之前的转速(例如200rpm)时(步骤S102:YES),控制部30启动计时器35开始计时,并且开始通过计数器36进行计数(步骤S103)。由此,开始检测6。控制部30参照计时器35的值,通过每规定时间(例如0.1秒)初始化一次计数器36,从而每0.1秒进行一次计数(步骤S104以及步骤S105)。控制部30在每次步骤S105中初始化计数器36的定时,即每次计数的定时,将计数值G加1(+1)一次。
控制部30每次计数都取得一次在计数时施加给电机6的电压的占空比dg(g:计数值G)(步骤S106)。换句话说,控制部30每0.1秒这一规定时间取得一次占空比dg。
此外,在步骤S106中,控制部30每规定时间取得一次占空比dg,同时计算出该占空比dg与之前的最大占空比dmax的差分的累计值H。该差分是最大占空比dmax减去占空比dg所得的值,累计值H是上一个累计值H加上最新的差分所得的值,每当计数值G加1时就更新。
图19是与检测6相关联地表示计数值G与累计值H的关系的图。在图19的图表中,横轴表示计数值G,纵轴表示累计值H。参照图19,当偏心较小而脱水桶4内不存在洗涤物Q的偏倚时,如上所述,占空比在产生最大占空比dmax之后逐渐减小。由此,由于占空比dg与最大占空比dmax的差分逐渐增大,因此累计值H如实线所示增大。另一方面,当偏心较大而脱水桶4内存在洗涤物Q的偏倚时,如上所述,产生最大占空比dmax之后的占空比不容易减小。因此,由于占空比dg与最大占空比dmax的差分不容易增大,因此累计值H如虚线所示难以增大。
累计值H设定了规定的阈值。该阈值由以每规定时间加1一次的计数值G和最大占空比dmax作为变量的以下的式(5)求出。
阈值=(K×G-L)-M×(N-dmax)...式(5)
式(5)中的K、L、M以及N是通过实验等预先求出的常量,存储于存储器32。如图19中由点划线所示,阈值以随着计数值G的增大而增大的方式变动。阈值可以预先存储于存储器32,也可以每当计数值G变动时,通过控制部30基于式(5)计算出来。
参照图18,当达到计数值G为例如20的定时,具体而言达到纵向共振开始的定时时(步骤S107:YES),控制部30确认最新的累计值H是否小于由式(5)求出的规定的阈值(步骤S108)。当累计值H小于阈值时(步骤S108:YES),控制部30判断脱水桶4内存在洗涤物Q的偏倚,停止电机6(步骤S109)。由此,脱水桶4的旋转停止。电机6停止后,与检测1~4相同,也可以执行步骤S11~S18的处理(参照图5B)。
当累计值H不低于规定的阈值(步骤S108:NO),并且计数值G达到规定值(例如81)时(步骤S110:YES),电机6的转速达到240rpm,电机6处于以240rpm定速旋转的状态。在这种情况下,控制部30结束检测6(步骤S111)。
如此,通过监视表示在产生最大占空比dmax之后占空比dg相对于最大占空比dmax的相对变化的指标即累计值H的检测6,能实现洗涤物Q有无偏倚的检测精度的提高。
特别是,在检测6中,占空比以在比纵向共振转速稍低的转速时产生最大占空比dmax的方式进行设定。此时,在产生最大占空比dmax之后的较早定时发生纵向共振。由此,较早发生累计值H难以增加的现象。因此,能及早并且正确地检测到脱水桶4内存在洗涤物Q的偏倚。此外,当在纵向共振转速时产生最大占空比dmax时,有可能会发生之后的转速的变动变得不稳定的不良状况。但是,在本实施方式中,通过在比纵向共振转速稍低的转速时产生最大占空比dmax,能抑制这样的不良状况。
图20是与检测6相关联地表示计数值G与占空比的关系的图。在图20的图中,横轴表示计数值G,纵轴表示占空比。参照图20,在负荷量较大时,如 实线所示,为了以固定的加速度加速电机6的转速,需要较大的占空比,最大占空比dmax与此相应地变大。另一方面,在负荷量较小时,如虚线所示,由于以固定的加速度加速电机6的转速所需的占空比较小即可,因此最大占空比dmax与此相应地变小。因此,对于从产生最大占空比dmax开始经过了规定时间后的占空比dg与最大占空比dmax的差分,负荷量较小时的差分R明显比负荷量较大时的差分S小。因此,可以想象,负荷量较小时的累计值H与负荷量较大时相比变得难以增大,即使不存在洗涤物Q的偏倚,累计值H也低于阈值。这样,在负荷量较小时,可能会误检测存在洗涤物Q的偏倚而停止脱水运转。
因此,阈值如上所述,由以计数值G和最大占空比dmax作为变量的式(5)求出。因此,由于最大占空比dmax因脱水桶4内的洗涤物Q的负荷量的大小而异,因此阈值因负荷量而异的进行确定。由此,检测6由于基于与脱水桶4内的洗涤物Q的负荷量的大小对应的最佳阈值进行洗涤物Q有无偏倚的检测,因此即使在负荷量较小的情况下,也能防止误检测。因此,能实现洗涤物Q有无偏倚的检测精度的进一步提高。
在以上的实施方式中,以电机6为变频电机为前提,使用占空比来控制电机6,但在电机6为有刷电机的情况下,取代占空比使用施加给电机6的电压的值来控制电机6。
此外,虽然在以上的说明中,对于转速使用了120rpm、240rpm、800rpm等具体的数值,但这些具体的数值为根据脱水机1的性能而变化的值。此外,在以上的说明中,有时会取得占空比用于各种判断,但该占空比可以是所取得的占空比的原始数据,也可以是根据需要进行了校正的校正值,还可以是像上述的移动累计值Cn那样根据占空比算出的值。
此外,以上的实施方式的脱水桶4虽然以能沿着上下方向X延伸的轴线16为中心进行旋转的方式垂直配置,但也可以通过将轴线16相对于上下方向X倾斜地延伸来倾斜配置脱水桶4。

Claims (8)

  1. 一种脱水机,其特征在于,具备:
    脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;
    电动电机,使所述脱水桶旋转;
    负荷量测定单元,在所述脱水桶开始旋转时,测定所述脱水桶内的洗涤物的负荷量;
    驱动控制单元,在由所述负荷量测定单元测出负荷量之后,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;
    取得单元,将在所述电机加速至所述第一旋转速度为止的加速状态下对所述电机施加的电压的占空比取作基准占空比;
    定时确定单元,确定所述取得单元取得所述基准占空比的定时;
    判断单元,在所述取得单元取得所述基准占空比之后,在规定期间内,基于表示为了维持所述第一旋转速度而对所述电机施加的电压的占空比相对于所述基准占空比发生变化的情况的指标,判断所述脱水桶内的洗涤物有无偏倚;以及
    停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止,
    所述定时确定单元根据所述负荷量测定单元测出的负荷量,确定所述取得单元取得所述基准占空比的定时。
  2. 根据权利要求1所述的脱水机,其特征在于,包括执行单元,所述执行单元在所述停止控制单元已使所述脱水桶的旋转停止的情况下,根据所述指标择一执行用于重启洗涤物的脱水的所述脱水桶的旋转、以及修正所述脱水桶内的洗涤物的偏倚的处理。
  3. 根据权利要求2所述的脱水机,其特征在于,
    所述驱动控制单元在使所述电机以所述第一旋转速度定速旋转之前,使所述电机以比所述第一旋转速度低的规定速度定速旋转,
    所述执行单元在执行用于重启洗涤物的脱水的所述脱水桶的旋转的情况下,缩短使所述电机以所述规定速度定速旋转的时长。
  4. 一种脱水机,其特征在于,具备:
    脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;
    电动电机,使所述脱水桶旋转;
    驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;
    取得单元,在所述电机开始向所述第一旋转速度加速后,在规定期间内,每规定的定时取得一次所述占空比;
    计数单元,当由所述取得单元取得的占空比大于等于上一次取得的占空比时,将初始值为零的计数值加1,当由所述取得单元取得的占空比小于上一次取得的占空比时,将所述计数值重置为所述初始值;
    判断单元,当所述计数值大于等于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;以及
    停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止。
  5. 一种脱水机,其特征在于,具备:
    脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;
    电动电机,使所述脱水桶旋转;
    驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;
    取得单元,在所述电机的旋转速度从所述第一旋转速度直至达到所述第二 旋转速度的期间内,每规定的定时取得一次所述占空比;
    判断单元,当所述取得单元取得的所述占空比大于等于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;
    停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止;
    接收单元,接收与洗涤物的脱水条件有关的选择;以及
    阈值变更单元,根据所述接收单元所接收选择的脱水条件而变更所述阈值。
  6. 一种脱水机,其特征在于,具备:
    脱水桶,收容洗涤物,进行旋转以将洗涤物脱水;
    电动电机,使所述脱水桶旋转;
    驱动控制单元,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度定速旋转,然后,使所述电机以比所述第一旋转速度高的第二旋转速度定速旋转以使洗涤物正式脱水;
    取得单元,将在所述电机加速至所述第一旋转速度为止的加速状态下所述占空比的最大值取做最大占空比;
    计算单元,在所述取得单元取得所述最大占空比之后,计算出每规定时间的所述占空比与所述最大占空比的差分的累计值;
    判断单元,当所述累计值小于规定的阈值时,判断所述脱水桶内存在洗涤物的偏倚;以及
    停止控制单元,在所述判断单元判断存在洗涤物的偏倚的情况下,使所述脱水桶的旋转停止。
  7. 根据权利要求6所述的脱水机,其特征在于,所述阈值由以计数值和所述最大占空比作为变量的算式求出,其中,所述计数值为每所述规定时间加1一次。
  8. 根据权利要求6或7所述的脱水机,其特征在于,所述驱动控制单元以如下方式控制所述占空比:在所述电机加速至所述第一旋转速度为止的加速状 态下,在转速比所述脱水桶发生共振的转速稍低时,产生所述最大占空比。
PCT/CN2016/083395 2014-06-30 2016-05-26 脱水机 WO2016188437A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/576,592 US20180155862A1 (en) 2014-06-30 2016-05-26 Dewatering Machine
CN201680028339.XA CN107709650B (zh) 2014-06-30 2016-05-26 脱水机
KR1020177037320A KR102005360B1 (ko) 2014-06-30 2016-05-26 탈수기
EP16799324.5A EP3305959A4 (en) 2015-05-26 2016-05-26 DRY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106538A JP6350874B2 (ja) 2014-06-30 2015-05-26 脱水機
JP2015-106538 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016188437A1 true WO2016188437A1 (zh) 2016-12-01

Family

ID=57395741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083395 WO2016188437A1 (zh) 2014-06-30 2016-05-26 脱水机

Country Status (2)

Country Link
EP (1) EP3305959A4 (zh)
WO (1) WO2016188437A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594673B2 (ja) * 2015-06-18 2019-10-23 アクア株式会社 洗濯機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035925A (ja) * 2006-08-02 2008-02-21 Sanyo Electric Co Ltd 洗濯機
JP2008307414A (ja) * 2008-09-26 2008-12-25 Sanyo Electric Co Ltd 洗濯機
CN102251367A (zh) * 2010-05-20 2011-11-23 三洋电机株式会社 洗衣机
CN102251369A (zh) * 2010-05-20 2011-11-23 三洋电机株式会社 洗衣机
JP2016026536A (ja) * 2014-06-30 2016-02-18 ハイアールアジア株式会社 脱水機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140481A (ja) * 1998-11-11 2000-05-23 Sanyo Electric Co Ltd ドラム式洗濯機
JP3641581B2 (ja) * 2000-10-24 2005-04-20 株式会社東芝 ドラム式洗濯機
KR100671193B1 (ko) * 2003-06-06 2007-01-18 산요덴키가부시키가이샤 드럼식 세탁기
JP2005046170A (ja) * 2003-06-06 2005-02-24 Sanyo Electric Co Ltd ドラム式洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035925A (ja) * 2006-08-02 2008-02-21 Sanyo Electric Co Ltd 洗濯機
JP2008307414A (ja) * 2008-09-26 2008-12-25 Sanyo Electric Co Ltd 洗濯機
CN102251367A (zh) * 2010-05-20 2011-11-23 三洋电机株式会社 洗衣机
CN102251369A (zh) * 2010-05-20 2011-11-23 三洋电机株式会社 洗衣机
JP2016026536A (ja) * 2014-06-30 2016-02-18 ハイアールアジア株式会社 脱水機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305959A4 *

Also Published As

Publication number Publication date
EP3305959A1 (en) 2018-04-11
EP3305959A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
KR101287536B1 (ko) 세탁기 및 그 제어방법
JP4943772B2 (ja) 洗濯機及び布量算出方法
WO2016000479A1 (zh) 脱水机
KR101156713B1 (ko) 드럼 세탁기 및 그 제어방법
KR20180029333A (ko) 세탁장치의 탈수행정 제어방법
JP2005199090A (ja) 脱水機のアンバランス補正装置
WO2016188437A1 (zh) 脱水机
KR101917973B1 (ko) 탈수기
JP3416573B2 (ja) 洗濯機
JP2002028393A (ja) 全自動洗濯機
WO2003046271A1 (en) Method for determining unbalanced load
US11952699B2 (en) Washing machine and control method thereof
KR101447148B1 (ko) 세탁기 및 그 제어방법
KR101386506B1 (ko) 세탁기 및 그 제어방법
JP2000102691A (ja) ドラム式洗濯機
JP2001062185A (ja) ドラム式洗濯機
JP3600000B2 (ja) 洗濯機
CN118223236A (zh) 一种衣物处理设备的控制方法及衣物处理设备
KR20080057709A (ko) 드럼세탁기의 언밸런스 감지방법
JPH11226295A (ja) ドラム式洗濯機
JPH11319368A (ja) 洗濯機
JPH07144088A (ja) 全自動洗濯機における制御方法
JPH07178281A (ja) 全自動洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037320

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016799324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP