WO2016187914A1 - 一种用于放射性废水深度处理的活化剂及其应用 - Google Patents

一种用于放射性废水深度处理的活化剂及其应用 Download PDF

Info

Publication number
WO2016187914A1
WO2016187914A1 PCT/CN2015/081900 CN2015081900W WO2016187914A1 WO 2016187914 A1 WO2016187914 A1 WO 2016187914A1 CN 2015081900 W CN2015081900 W CN 2015081900W WO 2016187914 A1 WO2016187914 A1 WO 2016187914A1
Authority
WO
WIPO (PCT)
Prior art keywords
activator
waste water
radioactive waste
water
added
Prior art date
Application number
PCT/CN2015/081900
Other languages
English (en)
French (fr)
Inventor
李福志
赵璇
张猛
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US15/264,580 priority Critical patent/US10315938B2/en
Publication of WO2016187914A1 publication Critical patent/WO2016187914A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids

Definitions

  • the invention belongs to the field of wastewater treatment, and particularly relates to an activator for advanced treatment of radioactive waste water and an application thereof.
  • Radionuclide ions in radioactive wastewater can reach high levels of radioactivity at very low mass concentrations, for example, when radioactive wastewater contains 1 ⁇ g/L of Co-60, the resulting radioactivity It will reach a level of 4.18 ⁇ 10 7 Bq / L.
  • the requirements for the level of radioactivity in environmental emission standards or drinking water standards are very strict. For example, the limits of total beta radioactivity in drinking water are stipulated in the National Standard of the People's Republic of China, Sanitary Standard for Drinking Water (GB5749-2006). It is 1Bq/L, so it is necessary to ensure that the radionuclide ions are at a trace concentration level.
  • Radionuclide is a special inorganic salt, so the treatment of radioactive wastewater belongs to a desalting process.
  • the main radioactive wastewater treatment processes including evaporation, ion exchange, reverse osmosis, continuous electric desalination, etc., are essentially desalting processes.
  • the pure water produced by the relatively fine desalination process is high-purity water.
  • the purity of high-purity water is usually expressed by its resistivity. Under the condition of 25 °C, the ultimate resistivity of high-purity water is 18.2 M ⁇ cm. In high-purity water with a resistivity of up to 16-18 M ⁇ cm, the ion content in the water may still reach the level of ⁇ g/L.
  • the salt content and radioactivity level are reduced to a relatively low level, and it is very difficult to further reduce the radioactivity level.
  • the mass concentration of radionuclide ions in the water is at a level of 10 -4 to 10 -3 ng / L, and the activity is at a level of tens to hundreds of Bq / L.
  • the innovation of the present invention is that in order to enable the very low content of radionuclide ions in the radioactive water to be captured by the treatment process, a certain amount of inorganic salt ions are added to the water before further finishing treatment.
  • the inorganic salt ions of a kind are present in water at a specific concentration, the thickness of the hydrated molecular layer can be minimized, thereby greatly increasing the probability that the nuclide ions are captured by the treatment process.
  • an activator for advanced treatment of radioactive waste water wherein the activator is prepared by pure water having a resistivity of more than 0.5 M ⁇ cm and different kinds of inorganic salts, and the activator contains ions Ca 2+ , Na + , Sr 2+ , Zn 2+ , Mg 2+ , Fe 2+ and K + , the anion type is not limited, the concentration of the activator stock solution is related to the dosage, ensuring that the activator is added to the radioactive waste water and mixed uniformly, and the radioactive waste water contains The ion concentration is as follows:
  • K + 100 to 150 ⁇ g / L.
  • the total content of cations in the radioactive waste water after the addition of the activator is more than 0.1 mg/L and less than or equal to 10 mg/L.
  • the total content of cations in the uniformly mixed radioactive waste water to which the activator is added is preferably more than 0.6 mg/L and less than or equal to 1.0 mg/L.
  • an activator is prepared by using high-purity water having a resistivity of more than 0.5 M ⁇ cm and different kinds of inorganic salts, and the activator contains ions Ca 2+ , Na + , Sr 2+ , Zn 2+ , Mg 2+ , Fe 2 . + and K + , the concentration range is as follows,
  • the type of anion in the activator is not limited;
  • the activator is added in a certain proportion in the radioactive waste water to be subjected to advanced treatment, and the radioactive waste water is treated by the present invention, and the resistivity of the radioactive waste water to be treated should be greater than 0.5 M ⁇ cm.
  • the dosage ratio of the activator that is, the volume ratio of the activator to the radioactive waste water is 0.02% to 1%, and the ratio of the activator to the original concentration is matched to ensure that after the activator is added to the radioactive waste water and uniformly mixed,
  • concentration of ions contained in the radioactive waste water is as follows:
  • K + 100 to 150 ⁇ g / L;
  • the total content of cations in the radioactive waste water after mixing is more than 0.1 mg / L, less than or equal to 10 mg / L, preferably, the total content of cations in the radioactive waste water after mixing is more than 0.6 mg / L and less than or equal to 1.0 mg / L;
  • the above-mentioned radioactive waste water to which the activator is added is subjected to continuous electric desalination apparatus and its treatment Method for processing;
  • the fourth step after the third step of the radioactive waste water, two liquid streams are generated, and the radioactive level of the purified water reaches the natural background radioactive level, and the concentrated water is returned to the previous process for further treatment.
  • the continuous electric desalination device is described in the patent application ZL200920093102.1, and the technical solution of the present application is used in combination therewith.
  • the total ⁇ is 1.22Bq/L, and an activator of the present invention is added to the waste water, and a continuous electric power invented by our ZL200920093102.1 is utilized.
  • the total beta activity of freshwater effluent reached 2.73 ⁇ 10 -2 Bq/L, which was lower than the total ⁇ background level of local tap water by 3.23 ⁇ 10 -2 Bq/L.
  • the radioactive wastewater can be treated to the natural background radioactivity level.
  • the total ⁇ is 1.22Bq/L.
  • high-purity water having a resistivity of 10 M ⁇ cm and Ca(NO 3 ) 2 , NaNO 3 , Sr(NO 3 ) 2 , Zn(NO 3 ) 2 , Mg(NO 3 ) 2 , Fe are used.
  • (NO 3 ) 2 , KNO 3 to prepare an activator the concentration of cations in the activator is as follows:
  • the activator is added to the radioactive waste water at a ratio of 1:1000 (volume ratio of activator to radioactive waste water), and after being uniformly mixed, it is treated by a continuous electric desalination device described in ZL200920093102.1, and fresh water is discharged after treatment.
  • the total beta activity level in water reached 2.73 ⁇ 10 -2 Bq/L, which was lower than the total ⁇ background level of local tap water by 3.23 ⁇ 10 -2 Bq/L.
  • the total ⁇ is 19.7 Bq/L.
  • high purity water with a resistivity of 10 M ⁇ cm and Ca(NO 3 ) 2 , NaCl, Sr(NO 3 ) 2 , ZnCl 2 , Mg(NO 3 ) 2 , Fe(NO 3 ) 2 are used.
  • KCl formulated activator the concentration of cations in the activator is as follows:
  • the activator is added to the radioactive waste water at a ratio of 1:200 (volume ratio of activator to radioactive waste water), and after being uniformly mixed, it is treated by a continuous electric desalination device described in ZL200920093102.1, and fresh water is discharged after treatment.
  • the total beta activity level in water reached 4.56 ⁇ 10 -2 Bq/L, which was lower than the total ⁇ background level of local tap water by 7.28 ⁇ 10 -2 Bq/L.
  • the radioactive wastewater after evaporation treatment was treated by an ion exchange process, and the total beta activity level of the effluent after treatment was 3.28 Bq/L, which was much higher than that achieved by the method provided by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种用于放射性废水深度处理的活化剂被公开,该活化剂主要用于放射性废水的深度处理,对于含有极少量离子态放射性核素的放射性废水,利用该活化剂进行深度处理后,可以将放射性废水处理到天然本底放射性水平。另外一种利用该活化剂进行放射性废水深度处理的应用被公开。

Description

一种用于放射性废水深度处理的活化剂及其应用 技术领域
本发明属于废水处理领域,具体涉及一种用于放射性废水深度处理的活化剂及其应用。
背景技术
放射性废水中的放射性核素离子在极低的质量浓度条件下即可达到很高的放射性活度水平,例如,当放射性废水中含有1μg/L的Co-60时,由此产生的放射性活度将达到4.18×107Bq/L的水平。而环境排放标准或者饮用水标准中对放射性活度水平的要求非常严格,例如中华人民共和国国家标准《生活饮用水卫生标准》(GB5749-2006)中规定,生活饮用水中总β放射性的限值为1Bq/L,因此就需要保证其中的放射性核素离子处于痕量浓度水平。
放射性核素是一种特殊的无机盐,因此放射性废水的处理属于一种脱盐过程。主要的放射性废水处理过程,包括蒸发、离子交换、反渗透、连续电除盐等,本质上都是脱盐过程。
在民用领域,比较精细的脱盐过程所产生的纯水为高纯水,高纯水的纯度通常以其电阻率来表示,25℃条件下,高纯水的极限电阻率为18.2MΩ·cm。在电阻率高达16~18MΩ·cm的高纯水中,水中离子的含量仍旧可能达到μg/L的级别。
当放射性废水经过蒸发、离子交换、反渗透、连续电除盐等工艺处理后, 其中的含盐量和放射性水平都降到了比较低的水平,要进一步降低其放射性水平存在非常大的难度。其原因是:经过上述工艺处理后,水中放射性核素离子的质量浓度在10-4~10-3ng/L的水平上,放射性活度在几十到几百Bq/L的水平上。由于此时水中无机盐的含量很低,在μg/L或者更低的水平上,液态水中以离子为核心的水合离子层的厚度增加,水中的放射性核素离子被大量的水分子包围形成水合离子,这种水合离子电性弱、水分子层厚,不易被处理工艺所捕获。
在脱盐工艺中,为了获得纯度更高的高纯水,必须通过多级工艺不断脱除水中的盐分以期获得无机盐含量更低、水纯度更高的高纯水。与此相反,本发明的创新之处在于,为了使放射性水中含量极低的核素离子能够被处理工艺所捕获,在进行进一步的精处理之前向水中加入了一定量的无机盐离子,这些不同种类的无机盐离子以特定的浓度存在于水中时,能够将水合分子层的厚度降至最低,从而大大增加核素离子被处理工艺捕获的几率。
在脱盐的过程中为了获得更高的脱盐效率而向水中增加盐的浓度,这一创新性的思维以前未见报道。
发明内容
针对现有技术中的不足,本发明的目的在于提供一种用于放射性废水深度处理的活化剂及其应用。
为了实现上述目的,本发明采取的技术方案是:
一种用于放射性废水深度处理的活化剂,所述活化剂由电阻率大于0.5MΩ·cm的纯水与不同种类的无机盐配制而成,活化剂中含有离子Ca2+、Na+、 Sr2+、Zn2+、Mg2+、Fe2+和K+,阴离子种类不限,活化剂原液浓度与投加剂量相关,保证在活化剂加入放射性废水中并混合均匀后,放射性废水中含有的离子浓度如下:
Ca2+:0.1~0.2mg/L;
Na+:0.2~0.3mg/L;
Sr2+:8~9μg/L;
Zn2+:18~20μg/L;
Mg2+:0.2~0.25mg/L;
Fe2+:0.04~0.05mg/L;
K+:100~150μg/L。
加入所述活化剂的混合均匀后的放射性废水中阳离子的总含量大于0.1mg/L,小于等于10mg/L。
加入所述活化剂的混合均匀后的放射性废水中阳离子总含量优选大于0.6mg/L且小于等于1.0mg/L。
所述活化剂的应用,所述应用步骤如下:
第一步,利用电阻率大于0.5MΩ·cm的高纯水和不同种类的无机盐配制活化剂,活化剂中含有离子Ca2+、Na+、Sr2+、Zn2+、Mg2+、Fe2+和K+,其浓度范围如下,
Ca2+:0.01~1g/L;
Na+:0.02~1.5g/L;
Sr2+:0.8~45mg/L;
Zn2+:1.8~100mg/L;
Mg2+:0.02~1.25g/L;
Fe2+:4~250mg/L;
K+:10~750mg/L;
活化剂中的阴离子种类不限;
第二步,在需要进行深度处理的放射性废水中按照一定的比例投加所述活化剂,要利用本发明对放射性废水进行处理,待处理的放射性废水的电阻率应大于0.5MΩ·cm,所述活化剂的投加比例,即活化剂与放射性废水的体积比,为0.02%~1%,活化剂的投加比例与其原始浓度相配合,保证在活化剂加入放射性废水中并混合均匀后,放射性废水中含有的离子浓度如下:
Ca2+:0.1~0.2mg/L;
Na+:0.2~0.3mg/L;
Sr2+:8~9μg/L;
Zn2+:18~20μg/L;
Mg2+:0.2~0.25mg/L;
Fe2+:0.04~0.05mg/L;
K+:100~150μg/L;
混合均匀后的放射性废水中阳离子的总含量大于0.1mg/L,小于等于10mg/L,优选,混合均匀后的放射性废水中阳离子总含量大于0.6mg/L且小于等于1.0mg/L;
第三步,将上述投加了活化剂的放射性废水利用连续电除盐装置及其处理 方法进行处理;
第四步,放射性废水经过第三步处理后产生两股液流,净化水的放射性水平达到天然本底放射性水平,浓水则返回前续工艺进行再处理。
所述的连续电除盐装置在专利申请ZL200920093102.1中有相关介绍,本申请技术方案与其联合使用。
有益效果
将某放射性废水经两级反渗透+连续电除盐工艺处理后,总β为1.22Bq/L,在废水中加入本发明的一种活化剂,利用我方ZL200920093102.1发明的一种连续电除盐装置进行处理,淡水出水中总β放射性活度水平达到2.73×10-2Bq/L,低于当地自来水的总β本底水平3.23×10-2Bq/L。
利用本发明所提供的活化剂和方法进行深度处理后,可以将放射性废水处理到天然本底放射性水平。
具体实施方式
实施例1:
某放射性废水经两级反渗透+连续电除盐工艺处理后,总β为1.22Bq/L。为了进一步降低其放射性活度,利用电阻率为10MΩ·cm的高纯水和Ca(NO3)2、NaNO3、Sr(NO3)2、Zn(NO3)2、Mg(NO3)2、Fe(NO3)2、KNO3配制活化剂,活化剂中阳离子的浓度如下:
Ca2+:0.1g/L;
Na+:0.2g/L;
Sr2+:8mg/L;
Zn2+:18mg/L;
Mg2+:200mg/L;
Fe2+:40mg/L;
K+:100mg/L;
将该活化剂以1:1000的比例(活化剂与放射性废水的体积比)投加到放射性废水中,混合均匀后,利用ZL200920093102.1所述的连续电除盐装置进行处理,处理后淡水出水中总β放射性活度水平达到2.73×10-2Bq/L,低于当地自来水的总β本底水平3.23×10-2Bq/L。
实施例2:
某放射性废水经蒸发工艺处理后,总β为19.7Bq/L。为了进一步降低其放射性活度,利用电阻率为10MΩ·cm的高纯水和Ca(NO3)2、NaCl、Sr(NO3)2、ZnCl2、Mg(NO3)2、Fe(NO3)2、KCl配制活化剂,活化剂中阳离子的浓度如下:
Ca2+:1g/L;
Na+:1.5g/L;
Sr2+:45mg/L;
Zn2+:100mg/L;
Mg2+:1.2g/L;
Fe2+:250mg/L;
K+:750mg/L;
将该活化剂以1:200的比例(活化剂与放射性废水的体积比)投加到放射性废水中,混合均匀后,利用ZL200920093102.1所述的连续电除盐装置进行 处理,处理后淡水出水中总β放射性活度水平达到4.56×10-2Bq/L,低于当地自来水的总β本底水平7.28×10-2Bq/L。
作为对比,经蒸发处理后的放射性废水利用离子交换工艺进行处理,处理后出水中总β放射性活度水平为3.28Bq/L,远远高于本发明所提供的方法所达到的效果。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本申请所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请型的保护范围之中。

Claims (4)

  1. 一种用于放射性废水深度处理的活化剂,其特征在于:所述活化剂由电阻率大于0.5MΩ·cm的纯水与不同种类的无机盐配制而成,活化剂中含有离子Ca2+、Na+、Sr2+、Zn2+、Mg2+、Fe2+和K+,阴离子种类不限,活化剂原液浓度与投加剂量相关,保证在活化剂加入放射性废水中并混合均匀后,放射性废水中含有的离子浓度如下:
    Ca2+:0.1~0.2mg/L;
    Na+:0.2~0.3mg/L;
    Sr2+:8~9μg/L;
    Zn2+:18~20μg/L;
    Mg2+:0.2~0.25mg/L;
    Fe2+:0.04~0.05mg/L;
    K+:100~150μg/L。
  2. 根据权利要求1所述的活化剂,其特征在于:加入所述活化剂的混合均匀后的放射性废水中阳离子的总含量大于0.1mg/L,小于等于10mg/L。
  3. 根据权利要求2所述的活化剂,其特征在于:加入所述活化剂的混合均匀后的放射性废水中阳离子总含量优选大于0.6mg/L且小于等于1.0mg/L。
  4. 权利要求1所述活化剂的应用,其特征在于,所述应用步骤如下:
    第一步,利用电阻率大于0.5MΩ·cm的高纯水和不同种类的无机盐配制活化剂,活化剂中含有离子Ca2+、Na+、Sr2+、Zn2+、Mg2+、Fe2+和K+,其浓度范围如下,
    Ca2+:0.01~1g/L;
    Na+:0.02~1.5g/L;
    Sr2+:0.8~45mg/L;
    Zn2+:1.8~100mg/L;
    Mg2+:0.02~1.25g/L;
    Fe2+:4~250mg/L;
    K+:10~750mg/L;
    活化剂中的阴离子种类不限;
    第二步,在需要进行深度处理的放射性废水中按照一定的比例投加所述活化剂,要利用本发明对放射性废水进行处理,待处理的放射性废水的电阻率应大于0.5MΩ·cm,所述活化剂的投加比例,即活化剂与放射性废水的体积比,为0.02%~1%,活化剂的投加比例与其原始浓度相配合,保证在活化剂加入放射性废水中并混合均匀后,放射性废水中含有的离子浓度如下:
    Ca2+:0.1~0.2mg/L;
    Na+:0.2~0.3mg/L;
    Sr2+:8~9μg/L;
    Zn2+:18~20μg/L;
    Mg2+:0.2~0.25mg/L;
    Fe2+:0.04~0.05mg/L;
    K+:100~150μg/L;
    混合均匀后的放射性废水中阳离子的总含量大于0.1mg/L,小于等于10mg/L,优选,混合均匀后的放射性废水中阳离子总含量大于0.6mg/L且小于等于1.0mg/L;
    第三步,将上述投加了活化剂的放射性废水利用连续电除盐装置及其处理方法进行处理;
    第四步,放射性废水经过第三步处理后产生两股液流,净化水的放射性水平达到天然本底放射性水平,浓水则返回前续工艺进行再处理。
PCT/CN2015/081900 2015-05-26 2015-06-19 一种用于放射性废水深度处理的活化剂及其应用 WO2016187914A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/264,580 US10315938B2 (en) 2015-05-26 2016-09-13 Activating agent for treatment of radioactive wastewater and method using the same for radioactive wastewater treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015102717051 2015-05-26
CN201510271705.1A CN104966539B (zh) 2015-05-26 2015-05-26 一种用于放射性废水深度处理的活化剂及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/264,580 Continuation-In-Part US10315938B2 (en) 2015-05-26 2016-09-13 Activating agent for treatment of radioactive wastewater and method using the same for radioactive wastewater treatment

Publications (1)

Publication Number Publication Date
WO2016187914A1 true WO2016187914A1 (zh) 2016-12-01

Family

ID=54220566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081900 WO2016187914A1 (zh) 2015-05-26 2015-06-19 一种用于放射性废水深度处理的活化剂及其应用

Country Status (3)

Country Link
US (1) US10315938B2 (zh)
CN (1) CN104966539B (zh)
WO (1) WO2016187914A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349690B (zh) * 2018-04-03 2021-09-21 清华大学 放射性废液处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146403C1 (ru) * 1998-06-08 2000-03-10 Государственное предприятие Ленинградская атомная электростанция им.В.И.Ленина Способ очистки воды от радионуклидов
JP2002267796A (ja) * 2001-03-13 2002-09-18 Chiyoda Technol Corp 固体材料とそれを使用した放射性物質含有廃液処理方法
CN101894597A (zh) * 2010-06-04 2010-11-24 清华大学 一种放射性废水的预处理方法
CN102730812A (zh) * 2012-07-26 2012-10-17 长沙矿冶研究院有限责任公司 可用于处理含复杂重金属和/或放射性废水的复合药剂及其应用
CN103170301A (zh) * 2012-11-24 2013-06-26 青岛大学 一种核废水中131i-高效吸附剂的制备方法
CN103578594A (zh) * 2013-10-30 2014-02-12 清华大学 一种使用纳米Fe3O4-CeO2材料去除放射性核素的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2320266A1 (fr) * 1975-08-06 1977-03-04 Quienot Jean Procede de solidification de dechets de nature et origine diverses
JPS53106682A (en) * 1977-03-01 1978-09-16 Hitachi Ltd Supporting method for hydrated metal oxide on carrier
CN100482598C (zh) * 2007-06-08 2009-04-29 清华大学 一种低含盐量的小水分子团簇活化水
CN101618921B (zh) * 2009-06-25 2010-12-08 山东国信环境***有限公司 Tdi废水深度处理方法
US20130022795A1 (en) * 2011-07-21 2013-01-24 Bo Wang Method for high resolution sublimation printing
CN103693819B (zh) * 2014-01-02 2015-03-04 中南大学 一种含铊重金属废水深度处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146403C1 (ru) * 1998-06-08 2000-03-10 Государственное предприятие Ленинградская атомная электростанция им.В.И.Ленина Способ очистки воды от радионуклидов
JP2002267796A (ja) * 2001-03-13 2002-09-18 Chiyoda Technol Corp 固体材料とそれを使用した放射性物質含有廃液処理方法
CN101894597A (zh) * 2010-06-04 2010-11-24 清华大学 一种放射性废水的预处理方法
CN102730812A (zh) * 2012-07-26 2012-10-17 长沙矿冶研究院有限责任公司 可用于处理含复杂重金属和/或放射性废水的复合药剂及其应用
CN103170301A (zh) * 2012-11-24 2013-06-26 青岛大学 一种核废水中131i-高效吸附剂的制备方法
CN103578594A (zh) * 2013-10-30 2014-02-12 清华大学 一种使用纳米Fe3O4-CeO2材料去除放射性核素的方法

Also Published As

Publication number Publication date
US10315938B2 (en) 2019-06-11
US20170001891A1 (en) 2017-01-05
CN104966539B (zh) 2017-08-11
CN104966539A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
Singh et al. Removal of fluoride from aqueous solution: status and techniques
CN102145947B (zh) 一种原位产生纳米铁锰氧化物除Tl+和/或Cd2+的水处理方法
CN102145948B (zh) 一种原位产生纳米二氧化锰吸附除Tl+和/或Cd2+的水处理方法
CN103833123A (zh) 一种络合化学镍电镀废水的处理方法
CN106179174A (zh) 用于去除水中污染物的层状复合金属氢氧化物及其制备方法和应用
CN103626340B (zh) 含钼水源水的处理方法
CN108479689A (zh) 一种去除废水中砷酸根离子的吸附剂
CN108069473A (zh) 一种新型的污水处理净化用净水剂
WO2016187914A1 (zh) 一种用于放射性废水深度处理的活化剂及其应用
CN103449581A (zh) 一种废水处理剂及其制备方法
JP6587973B2 (ja) 放射性廃液の処理装置及び処理方法
CN102872789A (zh) 一种去除天然水体中硒离子的复合吸附材料及其制备方法
CN108452764A (zh) 一种去除废水中卤素离子的吸附剂
CN106186232A (zh) 一种絮凝剂及其制备方法
Zhai et al. Research on coagulation/sedimentation process for simulation of fluorine-containing wastewater treatment
RU2528692C2 (ru) Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов
CN107515254B (zh) 一种降低水中邻苯二甲酸酯含量的方法
CN108640332B (zh) 一种处理废水中次磷和亚磷的方法及其装置
TWM597770U (zh) 含硼/氟廢水處理系統
CN104014305A (zh) 去除水中五价无机砷的吸附剂及其应用方法
CN103922512A (zh) 一种水中微量锑的去除方法
Yadav et al. Study of the aluminum ammonium sulphate as defluoridated agent in drinking water earthenware
CN110937699A (zh) 一种复配型阻垢缓蚀剂
TWI720863B (zh) 利用藥劑去除廢水中大部分硼離子之藥劑之製備方法
CN103214119A (zh) 一种去除含溴离子饮用水中溴离子的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892995

Country of ref document: EP

Kind code of ref document: A1