WO2016186410A1 - 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛 - Google Patents

파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛 Download PDF

Info

Publication number
WO2016186410A1
WO2016186410A1 PCT/KR2016/005156 KR2016005156W WO2016186410A1 WO 2016186410 A1 WO2016186410 A1 WO 2016186410A1 KR 2016005156 W KR2016005156 W KR 2016005156W WO 2016186410 A1 WO2016186410 A1 WO 2016186410A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective polarizing
sheet
polarizing sheet
reflective
Prior art date
Application number
PCT/KR2016/005156
Other languages
English (en)
French (fr)
Inventor
민지홍
이은미
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US15/574,899 priority Critical patent/US10191321B2/en
Priority to CN201680028836.XA priority patent/CN107636523B/zh
Priority to JP2017560241A priority patent/JP6745819B2/ja
Publication of WO2016186410A1 publication Critical patent/WO2016186410A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to a reflective polarizing module having a separate particle and a backlight unit having the same. More specifically, the light is collected by a coating layer provided with a separate particle in a reflective polarizing sheet for transmitting only light having a specific polarization.
  • the present invention relates to a reflective polarization module for diffusing light and a backlight unit having the same.
  • liquid crystal display requires a backlight unit that provides uniform light to the entire screen, unlike a conventional CRT.
  • the backlight unit is configured to provide uniform light at the rear side of the liquid crystal display, and an LED, which is a light source, is disposed on one side of the light guide plate, and the light guide plate is provided with a reflector on the bottom surface, so that the light emitted from the light source is upward. It is configured to deliver.
  • the light generated by the light source in the state configured as described above is transmitted to the upper portion by the light guide plate and the reflecting plate, and the transmitted light passes through the condensing sheet again and uniformly moves upward.
  • the light collecting sheet may be a sheet on which a general prism is formed.
  • the luminance of the liquid crystal display may be increased.
  • the backlight unit is configured such that the light generated from the light source provided at the side is transferred upward by the light guide plate and the reflecting plate, and the transmitted light is uniformly collected through the light collecting sheet.
  • the reflective polarizing sheet is provided in the backlight unit, since the luminance of the LCD may be increased, the upper end of the prism having the inclined surface when the condensing sheet having the plurality of prisms and the reflective polarizing sheet is bonded is used. It forms a bonding surface and disappears.
  • the upper end of the prism is lost, and the bonding surface is formed to form a bonding surface with the reflective polarizing sheet, whereby the reflective polarizing sheet and the light collecting sheet can be stably maintained.
  • the surface of the bonding surface is visually recognized or a color shift phenomenon occurs due to optical interference of the reflective polarizing sheet composed of multilayer thin films.
  • the problem of deterioration of the screen quality occurs, and an unintended moiré phenomenon caused by optical interference with the liquid crystal panel occurs.
  • the technical problem of the present invention is to solve the problems mentioned in the background art, and includes a separate coating layer provided with particles on the reflective polarizing sheet to diffuse light transmitted through the reflective polarizing sheet to generate a bonding line with the prism.
  • the present invention provides a reflective polarizing module including particles and a backlight unit having the same, which prevents moiré phenomenon caused by a bonding line.
  • the reflective polarization module a plurality of layers having different refractive indices are stacked to selectively transmit light, the polarizing sheet, the cross-sectional area is reduced toward the top
  • a first condensing sheet having a first structured pattern in which one unit condenser is continuously repeated, and a first condensing sheet and the reflection of which an upper end portion of the first unit condenser has a first width in a transverse direction from a lower portion of the reflective polarizing sheet;
  • Located on the upper surface of the polarizing sheet and comprises a coating layer having a plurality of particles for diffusing the light transmitted through the reflective polarizing sheet, at least some of the plurality of particles are formed relatively smaller in diameter than the first width It is characterized by.
  • the coating layer may be characterized in that a plurality of diffusion patterns protruding from the upper surface is formed to diffuse the light transmitted through the reflective polarizing sheet.
  • the diffusion pattern may be formed non-uniformly, the width along each transverse direction may be formed to be relatively smaller than the first width.
  • the display device may further include an adhesive layer positioned on a lower surface of the reflective polarizing sheet and buried and bonded to have an upper end portion of the first unit condenser having a boundary surface corresponding to a second width in a transverse direction, and at least a portion of the plurality of particles. It may be characterized in that the diameter is formed relatively smaller than the second width.
  • the adhesive layer may have a plurality of non-uniform bonding patterns and may be positioned on a lower surface of the reflective polarizing sheet.
  • the diameter in the transverse direction of the bonding pattern formed on the adhesive layer may be characterized in that it is formed relatively smaller than the second width.
  • the adhesive layer may be characterized in that a plurality of the particles are provided therein.
  • the particles may be made of a material having a different refractive index than the coating layer.
  • the first structured pattern may be characterized in that the vertical distance from the lowermost part to the uppermost part of each of the first unit condensers on the vertical cross section is non-uniform.
  • the first structured pattern may be repeatedly formed in a form in which the first unit condenser is elongated and its height is changed in the extending direction.
  • the backlight unit for solving the above problems, the light guide plate which is provided with a light source on one side to transfer the light generated from the light source, laminated on the lower surface of the light guide plate and transmitted through the light guide plate
  • a reflector plate for reflecting light upwards, a diffusion sheet stacked on top of the light guide plate to diffuse light evenly from the bottom, and a second unit condenser coupled to an upper portion of the diffusion sheet, the cross-sectional area of which decreases toward the top thereof, continuously
  • An optical module including a second light collecting sheet having a second structured pattern repeated as a plurality of layers and a reflective polarizing sheet for selectively transmitting light by stacking a plurality of layers having different refractive indices, and crossing from a lower portion of the reflective polarizing sheet to an upper portion thereof
  • the first unit condenser having a reduced area has a first structured pattern that is repeated continuously, An upper end of the first unit condenser is disposed on an upper surface of the first condensing
  • the reflective polarizing sheet is diffused by providing a coating layer having particles on the upper surface of the reflective polarizing sheet, the moiré phenomenon generated by a periodic pattern formed by the bonding surface of the reflective polarizing sheet and the light collecting sheet is eliminated. There is an advantage that can be reduced.
  • a coating layer having particles is provided on the reflective polarizing sheet, and the light is diffused by the particles, so that the ends of the structured patterns formed on the reflective polarizing sheet and the light collecting sheet are lost to reduce the light collection efficiency due to the bonding surface. There is an advantage that can be minimized.
  • FIG. 1 is an exploded perspective view schematically showing the configuration of a backlight unit equipped with a reflective polarization module according to the present invention
  • FIG. 2 is a view schematically illustrating the configuration of a reflective polarization module and an optical module in the backlight unit of FIG. 1;
  • FIG. 3 is a view showing that the reflective polarizing sheet transmits and reflects incident light in the backlight unit of FIG. 1;
  • FIG. 4 is a view illustrating a state in which a particle inside a coating layer is formed to be relatively smaller than a first width of a first unit light collector in the reflective polarizing sheet of FIG. 1;
  • FIG. 5 is a view illustrating a state in which a separate diffusion pattern is formed on a coating layer in the reflective polarization module of FIG. 1;
  • FIG. 6 is a view illustrating a separate adhesive layer formed on a bottom surface of a reflective polarizing sheet in the backlight unit of FIG. 1;
  • FIG. 7 is a side view of the reflective polarization module of FIG. 6;
  • FIG. 8 is a view illustrating a state in which a separate bonding pattern is formed on an adhesive layer formed on a lower surface of the reflective polarizing sheet of FIG. 6;
  • FIG. 9 is a view illustrating a state in which the vertical heights of the first unit light collectors are irregularly formed in the reflective polarization module of FIG. 1;
  • FIG. 10 is a view illustrating a form in which the heights of the first unit light collectors in the reflective polarization module of FIG. 1 change according to the federal direction.
  • a backlight unit having a reflective polarization module according to an embodiment of the present invention will be described by taking an example that is applied to a flat panel liquid crystal display device such as an LCD or an LED panel.
  • the present invention is not necessarily limited thereto, and may be used alone as an optical sheet, or may be a backlight unit applied to other apparatuses other than the liquid crystal display device, or the characteristics and paths of light such as lighting fixtures may be Any device that changes can be applied.
  • FIGS. 1 to 4 a schematic configuration of a backlight unit to which a reflective polarization module according to an embodiment of the present invention is applied will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is an exploded perspective view schematically illustrating a configuration of a backlight unit having a reflective polarization module according to the present invention
  • FIG. 2 is a view schematically illustrating a configuration of a reflective polarization module and an optical module in the backlight unit of FIG. 1.
  • FIG. 3 is a view showing that the reflective polarizing sheet transmits and reflects the incident light in the backlight unit of FIG. 1
  • FIG. 4 is a first width of the first unit condenser having particles inside the coating layer in the reflective polarizing sheet of FIG. 1. It is a figure which shows the state formed relatively smaller.
  • a backlight unit for providing light to the liquid crystal panel.
  • a backlight unit includes a light source 100, a light guide plate 200, a reflective plate 500, an optical module 300, and a reflective polarization module 400.
  • the light source 100 generally generates light at the side of the light guide plate 200 and transmits light to the light guide plate 200.
  • a light emitting diode (LED) and a cold cathode fluorescent lamp (CCFL) may be selectively used.
  • the light incident on the light guide plate 200 proceeds with total reflection inside the light guide plate 200, and the light incident on the surface of the light guide plate 200 is transmitted at the angle of incidence smaller than the critical angle without being totally reflected. Is released.
  • the reflector 500 reflects the light emitted downward and re-enters the light guide plate 200 to improve light efficiency. Through this process, the light guide plate 200 transmits the incident light toward the optical module 300.
  • the optical module 300 is disposed on the light guide plate 200 to diffuse light transmitted from the light guide plate 200, and condense the diffused light again to transfer the light to the top.
  • the second light collecting sheet 320 is included.
  • the diffusion sheet 310 is disposed on the light guide plate 200 to diffuse light and to be evenly transferred to the second light collecting sheet 320.
  • the diffusion sheet 310 evenly spreads the light transmitted to the upper part through the light guide plate 200 and the reflecting plate 500 provided at the lower part and transmits the light to the second light collecting sheet 320 positioned at the upper part.
  • a nonuniform diffusion pattern is formed on the upper or lower surface to diffuse the light.
  • the second light collecting sheet 320 has a second structured pattern 322 that is coupled to the upper portion of the diffusion sheet 310 and the second unit light collecting body 322a of which cross-sectional area decreases toward the top is continuously repeated. .
  • the second light collecting sheet 320 largely includes a second base film 324 and a second structured pattern 322.
  • a light transmissive film is generally used to easily transmit light incident from the bottom.
  • An upper surface of the second base film 324 is formed such that the second structured pattern 322, which refracts and collects incident light, is integrated with the second base film 324.
  • the second structured pattern 322 is continuously repeated on the upper surface of the second base film 324 and the plurality of second unit condensers 322a having an inclined surface which protrudes in an upper direction and has a smaller cross sectional area toward an upper portion thereof. It is composed of
  • the second unit light collector 322a refracts and condenses the light transmitted through the second base film 324 and transmits the light to the upper portion.
  • the second structured pattern 322 includes a plurality of prismatic shapes formed so that the upper and lower end surfaces of the triangular shape extend in one direction.
  • the second unit light collector 322a may be configured in plural and may have the same size and shape.
  • the second unit light collectors 322a may have different sizes and inclination angles of inclined surfaces.
  • the second unit light collector 322a may have a double inclined surface and may have a polygonal cross-sectional shape along the vertical direction so that each of the second unit light collectors 322a has different inclination angles.
  • the second unit light collecting body 322a is formed to extend in one direction along the upper surface of the second light collecting sheet 320, and a plurality of the second light collecting sheets 322a are continuously arranged.
  • the optical module 300 is disposed on the diffusion sheet 310 and the diffusion sheet 310 to diffuse the light transmitted through the light guide plate 200 and the reflective plate 500 to diffuse the light.
  • the optical module 300 Including the second condensing sheet 320 to condense and transmit to the upper side, the light transmitted from the lower side condenses and transmits to the upper side.
  • the reflective polarization module 400 is arranged in a stacked form in the upper portion of the above-described optical module 300 and condenses and polarizes the light transmitted from the bottom to transmit the light uniformly, in the present invention,
  • the reflective polarizing sheet 420, the first light collecting sheet 410, and the coating layer 430 are largely included.
  • the reflective polarizing sheet 420 transmits only light having a specific polarization among the light collected and transmitted by the optical module 300 and reflects the rest back to the bottom, and is stacked on the optical module 300. Are combined.
  • the reflective polarizing sheet 420 may operate as a reflective polarizer or a mirror reflecting light of a specific polarization in a stack composed of multiple layers. It can also function as a wavelength selective reflector, such as a 'cold mirror' that reflects visible light and passes infrared light or a 'hot mirror' that passes visible light and reflects infrared light.
  • the reflective polarizing sheet 420 as used in the present invention has a high reflectance not only for normal light but also for an off angle, and shows a low absorption rate for incident light. This property typically determines whether the reflective polarizing sheet 420 is used for simple reflection or reflective polarization of light.
  • the reflective polarizing sheet 420 is formed by stacking tens, hundreds, or thousands of layers of different high refractive index films and low refractive index films.
  • the reflective polarizing sheet 420 has a state in which the light directed toward the reflective polarizing sheet 420 is mixed with light of different polarizations as shown in FIG. 3. It consists of the light of P1 which has the polarization of the area
  • the light passing through the first light collecting sheet 410 and the second light collecting sheet 320 is a mixed state of P1 and P2, but the reflective polarizing sheet 420 transmits only P1 light and the light of P2 Reflect again in the downward direction.
  • the light of P1 is emitted to the outside, but the light of P2 is reflected and returned to the lower side, and again, the first light collecting sheet 410, the second light collecting sheet 320, the light guide plate 200, the reflecting plate 500, and the like. Is reflected back to the top.
  • the light of P2 is changed in the polarization state, and through this repetition, the light of the polarization sheet 420 is converted into the polarization state suitable for transmission.
  • the coating layer 430 according to the present invention is located on the upper surface of the reflective polarizing sheet 420 is configured to diffuse the light transmitted through the reflective polarizing sheet 420, the plurality of particles ( 432).
  • the particle 432 is formed in various forms and is made of a material different from the coating layer 430 is configured to diffuse the light transmitted through the reflective polarizing sheet 420.
  • the particle 432 is composed of a plurality is included in the coating layer 430, it is disposed unevenly within the coating layer 430.
  • the particle 432 is configured to have a different material or different refractive index than the coating layer 430.
  • the light transmitted through the reflective polarizing sheet 420 is stably diffused.
  • the particle 432 is formed in a spherical shape is configured to diffuse the light transmitted through the reflective polarizing sheet 420 by reflecting or refracting the light at various angles.
  • the particles 432 are not spherical, but may be formed in various forms of polygons or asymmetrical shapes.
  • the first light collecting sheet 410 is configured to have the first structured pattern 412 in which the first unit light collector 412a, the cross-sectional area of which decreases toward the upper portion, is continuously repeated, so that the second light collecting sheet 410 is formed. It is disposed on the upper surface of the sheet 320.
  • the second light collecting sheet 320 is configured to condense and transmit the light transmitted from the second light collecting sheet 320 to the upper portion.
  • the first unit condenser 412a may be formed in the same manner as the second unit condenser 322a described above or may be formed differently.
  • the first light collecting sheet 410 includes the first base film 414 and the first structured pattern 412 similar to the second light collecting sheet 320 described above.
  • the first structured pattern 412 is disposed under the reflective polarization sheet 420 and is formed on an upper surface of the first base film 414.
  • the first light collecting sheet 410 formed as described above is disposed in a stacked form below the reflective polarizing sheet 420, and at least a portion of the first unit light collecting body 412a is bonded to the reflective polarizing sheet 420. do.
  • the first light collecting sheet 410 and the reflective polarizing sheet 420 are stably bonded while maintaining an adhesive state.
  • each of the first structured pattern 412 and the second structured pattern 322 is formed to extend in the transverse direction, and the extending direction of the first structured pattern 412 is the first direction.
  • the two structured patterns 322 are disposed in a direction intersecting with an extension direction.
  • the extending direction of the first structured pattern 412 and the second structured pattern 322 is disposed to vertically intersect.
  • the first structured pattern 412 and the second structured pattern 322 may be arranged to be simply crossed.
  • the light diffused from the diffusion sheet 310 may be stably collected through the first unit light collector 412a and the second unit light collector 322a.
  • the first light collecting sheet 410 is bonded so that the upper end portion of the first structured pattern 412 has a first width in the transverse direction at the bottom of the reflective polarizing sheet 420.
  • the first unit light collector 412a is bonded to the lower surface of the reflective polarizing sheet 420, and a part of the upper end portion is lost and bonded when the bonding is performed.
  • the width along the transverse direction of the missing upper end of the first unit light collector 412a is configured to have a first width.
  • the first unit light collector 412a is bonded to the lower surface of the reflective polarizing sheet 420 and then bonded so that the lateral length of the bonded portion is the first width.
  • the first unit light collector 412a is directly bonded to the lower surface of the reflective polarizing sheet 420 as shown, and the upper end portion of the first unit light collector 412a is lost and serves as an adhesive. At this time, the first width of the portion bonded to the lower surface of the reflective polarizing sheet 420 is L1.
  • the particle 432 provided inside the coating layer 430 described above is configured to have a diameter of at least some of the plurality of particles relatively smaller than the first width.
  • the maximum diameter of the particle 432 is L2, which is relatively smaller than the first width L1.
  • the particle 432 may be a result of diffusion particles such as beads diffused into the polymer resin, and a part of the diffusion particles may be embedded in the polymer resin, and only the remaining parts may be exposed.
  • the maximum diameter of the particle 432 is configured to be smaller than the first width L1. Accordingly, light passing through the first unit light collector 412a and transmitted to the reflective polarizing sheet 420. It is possible to prevent the luminance from being lowered by refracting upward from the particle 432.
  • the angle of the light refracted by the first unit light collector 412a is refracted by the particle 432 at a larger angle.
  • the light is refracted to the side rather than the center.
  • the luminance of the light passing through the coating layer 430 is reduced overall.
  • the maximum diameter L2 of the particle 432 is formed to be smaller than the first width L1, so that the light refracted and transmitted from the first unit light collector 412a is transmitted to the particle 432. The light is diffused upwards.
  • the light passing through the coating layer 430 by the particles 432 minimizes the decrease in luminance and at the same time, internal diffusion occurs to bond the first unit light collector 412a to the reflective polarizing sheet 420. It is possible to prevent quality deterioration such as moiré phenomenon caused by cotton.
  • the coating layer 430 is formed on the upper surface of the reflective polarizing sheet 420 having a plurality of the particles 432, the diameter of the particle 432 is formed relatively smaller than the first width, thereby The light passing through the coating layer 432 may be prevented from being diffused to the side other than the center to prevent the luminance from being reduced.
  • the backlight unit of the present invention configured as described above is stacked and coupled in the order of the reflecting plate 500, the light guide plate 200, the optical module 300 and the reflective polarization module 400, respectively, the light source 100
  • the light generated from the light may be stably diffused and collected and transmitted, and the light passing through the reflective polarizing sheet 420 may be diffused to the center by the particles 432.
  • the particles 432 are provided in the coating layer 430, the light passing through the first light collecting sheet 410 and the reflective polarizing sheet 420 is diffused at a predetermined angle, such as a bonding line. To shield defects that are problematic for quality deterioration.
  • the first light collecting sheet 410 and the reflective polarizing sheet 420 are bonded to each other, a portion of the upper end portion of the first unit light collecting body 412a is lost, and thus an inclined surface refracting light transmitted from the lower portion. The part where light is not condensed by the absence of the is generated.
  • the first light collecting sheet ( The particle 432 together with the 410 may focus and diffuse the light transmitted from the bottom at a predetermined angle.
  • the coating layer It is diffused by the particles 432 provided in the 430 can be prevented from decreasing the brightness.
  • the light passing through the coating layer 432 may be prevented from being diffused to a side other than the center to prevent the luminance from being reduced.
  • the diameter of the particle 432 of the largest size among the plurality of particles 432 is preferably smaller than the first width. Accordingly, the first unit light collector 412a and Through the reflective polarizing sheet 420, light may be stably diffused so that shadows due to the bonding surface do not occur.
  • the diameter of the particle 432 is smaller than the first width, so that at least one or more of the particles 432 are disposed on an upper surface of the bonding surface of the first unit light collector 412a and the reflective polarizing sheet 420. This is arranged, whereby light can be stably diffused.
  • the diameter of the particle 432 is formed to be relatively smaller than the first width and at the same time may have a variety of sizes in the coating layer 430, when manufacturing the coating layer 430 to adjust the size of the brightness You can also adjust.
  • the coating layer 430 is provided with the particles 432 and has a diameter relatively smaller than the first width, whereby the bonding surface of the first light collecting sheet 410 and the reflective polarizing sheet 420 is formed. It is possible to diffuse the light that has not been collected. Accordingly, the light passing through the first light collecting sheet 410 and the reflective polarizing sheet 420 is diffused at a predetermined angle so that a moire phenomenon or color occurs in the liquid crystal display device. A shift phenomenon can be prevented from occurring.
  • the coating layer 430 having the particles 432 is provided on the reflective polarizing sheet 420, the light is diffused by the particles 432, the reflective polarizing sheet 420 and the first light collecting sheet 410 An end portion of the first structured pattern 412 formed at the end of the bonding layer may be lost, thereby reducing the reduction of light collection efficiency due to the bonding surface.
  • FIG. 5 is a view illustrating a state in which the diffusion pattern 434 is formed on the coating layer 430 in the reflective polarization module 400 of FIG. 1.
  • a separate diffusion pattern 434 is further formed on the coating layer 430 provided with the particles 432 on the upper surface of the reflective polarizing sheet 420.
  • the diffusion pattern 434 is formed to protrude on the upper surface of the coating layer 430 is composed of a plurality, it is configured to have a non-uniform pattern.
  • the diffusion pattern 434 is formed as a general spherical protrusion as shown, and is irregularly arranged on the top surface of the coating layer 430. At this time, the size of the diffusion pattern 434 is not uniform and has a non-uniform size, the width along each transverse direction is formed relatively smaller than the first width described above.
  • the particles 432 transmit light transmitted through the reflective polarizing sheet 420 without being collected by the first light collecting sheet 410. Can be spread together.
  • the first structured pattern 412 and the reflective polarizing sheet 420 are formed by forming a maximum size L3 in the transverse direction of the diffusion pattern 434 formed in the shape of a protrusion relatively smaller than the first width L1. It is possible to diffuse the light transmitted without being focused through the bonding surface generated by the adhesion of the lower surface.
  • the diffusion pattern 434 may be formed by a method of replicating using a master, or may be formed using a separate processing roll.
  • the adhesive layer 440 is further included in the reflective polarization module 400 according to the present invention with reference to FIGS. 6 to 8.
  • FIG. 6 is a view illustrating a state in which the adhesive layer 440 is formed on a lower surface of the reflective polarizing sheet 420 in the backlight unit of FIG. 1, and FIG. 7 is a side view of the reflective polarizing module 400 of FIG. 6.
  • FIG. 8 is a view illustrating a state in which the bonding pattern 442 is formed on the adhesive layer 440 formed on the bottom surface of the reflective polarizing sheet 420 of FIG. 6.
  • a separate adhesive layer 440 is further included in the backlight unit of the present invention.
  • the coating layer 430 is formed on the upper surface of the reflective polarizing sheet 420.
  • the adhesive layer 440 is formed on the bottom surface of the reflective polarizing sheet 420.
  • the adhesive layer 440 may be disposed on a part or the whole of the lower surface of the reflective polarizing sheet 420 and may have a uniform thickness or a non-uniform thickness.
  • the adhesive layer 440 is provided on the bottom surface of the reflective polarizing sheet 420 with a uniform thickness, and an upper end of the first structured pattern 412 formed on the first light collecting sheet 410 is It is embedded into the adhesive layer 440.
  • an upper end portion of the first unit light collector 412a embedded in the adhesive layer 440 disposed on the bottom surface of the reflective polarizing sheet 420 crosses the boundary surface of the second width in the transverse direction with the adhesive layer 440. It is desirable to be buried as much as it has.
  • the horizontal length of the buried portion becomes L3 having the second width, and the particles 432 included in the coating layer 430. It is formed relatively smaller than the diameter of L2.
  • the light transmitted from the lower portion may be diffused by the diffusion pattern 434 or the particle 432. Can be.
  • the adhesion area between the first light collecting sheet 410 and the reflective polarizing sheet 420 is increased, thereby increasing adhesive strength.
  • the adhesion state of the first light collecting sheet 410 and the reflective polarizing sheet 420 may be maintained more stably.
  • the adhesive layer 440 may be made of the same material as the first light collecting sheet 410 or may be made of a material having different refractive indices.
  • a plurality of non-uniform bonding patterns 442 may be further formed on the adhesive layer 440.
  • the bonding pattern 442 is protruded downwardly in the form of a protrusion like the diffusion pattern 434 described above, and a plurality of the bonding patterns 442 are formed, and the diameter of each of the protrusions in the transverse direction is relatively larger than that of the second width L3. It can be formed small.
  • the bonding pattern 442 is formed on the adhesive layer 440 as described above, even if a bonding surface is generated by a portion in which the first unit light collector 412a is embedded, the light transmitted from the lower portion is diffused.
  • the light is diffused by the pattern 434 or the particle 432, and as a part of the first unit light collector 412a is embedded in the adhesive layer 440, the loss of the inclined surface may be minimized to increase the light condensing effect. Can be.
  • a plurality of particles 432 are provided not only in the coating layer 430 but also in the adhesive layer 440 to collect the light collected by the first light collecting sheet 410. It may also be configured to diffuse.
  • FIG. 9 is a diagram illustrating a state in which the first structured pattern 412 of the plurality of first unit light collectors 412a is unevenly formed in the reflective polarization module 400 of FIG. 1, and FIG. 10 is illustrated in FIG. 10.
  • FIG. 1 is a view illustrating a shape in which the respective heights of the reflective polarization module 400 in the extending direction of the first unit light collector 412a are changed.
  • a plurality of first unit light collectors 412a are spaced apart from each other along the upper surface of the first base film 414.
  • each of the plurality of first unit light collectors 412a may be disposed to be spaced apart from each other on an upper surface of the first base film 414.
  • the plurality of first unit light collectors 412a have a non-uniform vertical distance from the lowermost part to the uppermost part.
  • the plurality of first unit condensers 412a may be configured to have non-uniform vertical heights, such that the first base film 414 and the reflective polarizing sheet 420 are bonded to each other. Only a part of the unit light collector 412a is bonded to the reflective polarizing sheet 420, and the other part is not bonded.
  • the optical module 300 It is possible to minimize the reduction in the light collection effect of the transmitted light.
  • the first unit condenser 412a is deformed on an upper surface of the first base film 414, and a plurality of the first unit condensers 412a are formed on the first base film 414. It is formed to extend along the upper surface of the base film 414, each of which is repeatedly arranged along the transverse direction.
  • the plurality of first unit light collectors 412a are formed to have a nonuniform height along the extending direction, so that only a part of the first unit light collectors 412a are bonded to the bottom surface of the reflective polarizing sheet 420.
  • the plurality of first unit condensers 412a have a predetermined pattern and are uniformly spaced apart from each other, and each of the first unit condensers 412a is formed to have a non-uniform height along the extending direction. Only one portion of the first unit light collector 412a is bonded to the bottom surface of the reflective polarizing sheet 420.
  • each of the first unit light collectors 412a may be changed with a constant period P, but the height may be changed irregularly along the extension direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 굴절률이 서로 다른 복수 개의 레이어가 적층되어 광을 선택적으로 투과시키는 반사편광시트, 상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴을 가지며, 상기 제1단위집광체의 상측 끝단부가 상기 반사편광시트의 하부에서 횡 방향으로 제1폭을 가지도록 접합되는 제1집광시트 및 상기 반사편광시트의 상면에 위치하며, 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 복수 개의 파티클을 가지는 코팅층; 을 포함하며, 상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 하는 반사편광모듈이 제공된다.

Description

파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛
본 발명은 별도의 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛에 관한 것으로서, 좀 더 자세하게는 특정 편광의 광만을 투과시키는 반사편광시트에 별도의 파티클이 구비된 코팅층을 구비하여 집광되는 광을 확산시키는 반사편광모듈 및 이를 구비한 백라이트 유닛에 관한 것이다.
근래에 들어 평판 디스플레이 패널의 사용이 확대되고 있으며, 그 중 대표적으로 액정표시장치가 있다.
일반적으로, 상기 액정표시장치(LCD)는 종래의 브라운관 방식(CRT)와는 달리 화면 전체에 균일한 광을 제공하는 백라이트 유닛이 필요하다.
구체적으로 백라이트 유닛은, 액정표시장치의 후면에서 균일한 광을 제공하는 구성으로써, 광원인 LED가 도광판의 한 측면에 배치되어 있고, 도광판은 하면에 반사판이 구비되어 광원에서 출사된 광을 상부로 전달 시키도록 구성된다.
그리고 이와 같이 구성된 상태에서 광원에 의해 발생된 광은 도광판 및 반사판에 의해 상부로 전달되고, 전달된 광은 다시 집광시트를 거치며 균일하게 상부로 이동한다.
상기 집광시트는 일반적인 프리즘이 형성된 시트가 적용될 수 있다.
이와 함께 집광시트의 상부에는 별도의 반사편광시트가 구비하는 경우, 액정표시장치의 휘도를 상승시킬 수 있다.
이와 같이, 백라이트 유닛은 측면에 구비된 광원에서 발생된 광은 도광판 및 반사판에 의해 상부로 전달되고, 전달된 광은 다시 집광시트를 거치며 균일하게 집광되도록 구성된다.
한편, 백라이트 유닛에서 반사편광시트를 구비하는 경우, 액정표시장치의휘도를 상승시킬 수 있기 때문에 많이 사용되고 있으나, 복수 개의 프리즘을 가진 집광시트와 반사편광시트의 접합 시 경사면을 가진 프리즘의 상측 끝단부가 접합면을 형성하며 소실된다.
이와 같이 프리즘의 상측 끝단부가 소실되며 반사편광시트와의 접합면을 형성하여 접합됨으로써, 반사편광시트와 집광시트가 안정적으로 접합상태를 유지할 수 있다.
하지만, 이와 같이 집광시트의 상측 끝단부가 반사편광시트와 접합에 의해 소실됨에 따라, 접합면을 형성한 부분은 경사면이 사라지게 되고 이에 따라 집광시트가 하부로부터 전달되는 광을 집광하는 효율이 저감된다.
특히, 반사편광시트와 프리즘이 접합된 접합면을 통해서 광이 투과되는 경우 접합면 라인이 시인되거나, 다층 박막으로 구성된 반사편광시트의 광 간섭현상에 의한 컬러 쉬프트(color shift) 현상이 발생하여 디스플레이의 화면 품질이 저하되는 문제점이 발생하며, 액정패널과의 광 간섭에 의한 의도하지 않은 모아레 현상이 발생하게 된다.
본 발명의 기술적 과제는, 배경기술에서 언급한 문제점을 해결하기 위한 것으로, 반사편광시트에 파티클이 구비된 별도의 코팅층을 구비하여 반사편광시트를 투과한 광을 확산시켜 프리즘과의 접합 라인이 발생하지 않도록 하며 접합 라인에 의해 발생되는 모아레 현상을 방지하는 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛을 제공함에 있다.
또한, 프리즘의 상측 끝단부가 반사편광시트의 하면과 접합에 의해 소실되는 부분을 최소화시킴으로써 휘도 저하가 발생하는 것을 방지할 수 있는 반사편광모듈 및 이를 구비한 백라이트 유닛을 제공함에 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일측면에 따른 반사편광모듈은, 굴절률이 서로 다른 복수 개의 레이어가 적층되어 광을 선택적으로 투과시키는 반사편광시트, 상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴을 가지며, 상기 제1단위집광체의 상측 끝단부가 상기 반사편광시트의 하부에서 횡 방향으로 제1폭을 가지도록 접합되는 제1집광시트 및 상기 반사편광시트의 상면에 위치하며, 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 복수 개의 파티클을 가지는 코팅층을 포함하며, 상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 한다.
또한, 상기 코팅층은 상면에 돌출 형성된 복수 개의 확산패턴이 형성되어 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 것을 특징으로 할 수 있다.
또한, 상기 확산패턴은 불균일하게 형성되며, 각각의 횡 방향에 따른 폭이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 할 수 있다.
또한, 상기 반사편광시트의 하면에 위치하여 상기 제1단위집광체의 상측 끝단부가 횡 방향으로 제2폭만큼의 경계면을 가지도록 매립되어 접합되는 접착층을 더 포함하고, 상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제2폭보다 상대적으로 작게 형성되는 것을 특징으로 할 수 있다.
또한, 상기 접착층은 불균일한 복수 개의 접합패턴을 가지며 상기 반사편광시트의 하면에 위치하는 것을 특징으로 할 수 있다.
또한, 상기 접착층에 형성된 상기 접합패턴의 횡 방향에 따른 직경이 상기 제2폭 보다 상대적으로 작게 형성되는 것을 특징으로 할 수 있다.
또한, 상기 접착층은 내부에 복수 개의 상기 파티클이 구비되는 것을 특징으로 할 수 있다.
또한, 상기 파티클은 상기 코팅층과 굴절률이 다른 재질로 구성되는 것을 특징으로 할 수 있다.
또한, 상기 제1구조화패턴은 수직 단면상에서, 각 상기 제1단위집광체의 최하단부에서 최상단부에 이르는 수직거리가 불균일하게 구성되는 것을 특징으로 할 수 있다.
또한, 상기 제1구조화패턴은 제1단위집광체가 길게 연장된 형태로 반복하여 형성되며 연장방향을 따라 높이가 변화되는 것을 특징으로 할 수 있다.
한편, 상기한 과제를 해결하기 위한 본 발명의 다른 측면에 따른 백라이트 유닛은, 일측에 광원이 구비되어 상기 광원으로부터 발생되는 광을 전달하는 도광판, 상기 도광판의 하면에 적층되어 상기 도광판을 통과하여 전달되는 광을 상부로 반사시키는 반사판, 상기 도광판의 상부에 적층되어 하부로부터 전달되는 광을 고르게 확산시키는 확산시트 및 상기 확산시트의 상부에 결합되며 상부로 갈수록 횡단면적이 감소하는 제2단위집광체가 연속적으로 반복되는 제2구조화패턴을 가지는 제2집광시트를 포함하는 광학모듈 및 굴절률이 서로 다른 복수 개의 레이어가 적층되어 광을 선택적으로 투과시키는 반사편광시트, 상기 반사편광시트의 하부에서 상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴을 가지며, 상기 제1단위집광체의 상측 끝단부가 상기 반사편광시트의 하부에서 횡 방향으로 제1폭을 가지도록 접합되는 제1집광시트 및 상기 반사편광시트의 상면에 위치하며, 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 복수 개의 파티클을 가지는 코팅층을 포함하는 반사편광모듈을 가지며, 상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 한다.
상기 문제점을 해결하기 위해 본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 반사편광시트의 상면에 파티클이 구비된 코팅층을 구비하여 반사편광시트를 통과한 광이 확산됨으로써, 반사편광시트와 집광시트의 접합면에 의해 형성되는 주기적인 패턴에 의해 발생되는 모아레 현상을 저감할 수 있는 이점이 있다.
둘째, 반사편광시트를 투과한 광의 컬러가 쉬프트되는 것을 저감시킬 수 있는 이점이 있다.
셋째, 반사편광시트의 상부에 파티클이 구비된 코팅층이 구비되어, 파티클에 의해 광이 확산됨으로써 반사편광시트와 집광시트에 형성된 구조화패턴의 접합 시 끝단부가 소실되어 접합면에 의한 집광효율의 감소를 최소화할 수 있는 이점이 있다.
본 발명의 효과들은 상기 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 따른 반사편광모듈이 구비된 백라이트 유닛의 구성을 개략적으로 나타낸 분해 사시도;
도 2는 도 1의 백라이트 유닛에서 반사편광모듈과 광학모듈의 구성을 개략적으로 나타낸 도면;
도 3은 도 1의 백라이트 유닛에서 반사편광시트가 입사된 광을 투과반사시키는 것을 나타낸 도면;
도 4는 도 1의 반사편광시트에서 코팅층 내부의 파티클이 제1단위집광체의 제1폭보다 상대적으로 작게 형성된 상태를 나타낸 도면;
도 5은 도 1의 반사편광모듈에서 코팅층에 별도의 확산패턴이 형성된 상태를 나타낸 도면;
도 6은 도 1의 백라이트 유닛에서 반사편광시트의 하면에 별도의 접착층이 형성된 상태를 나타낸 도면;
도 7은 도 6의 반사편광모듈의 측면을 나타낸 도면;
도 8는 도 6의 반사편광시트의 하면에 형성된 접착층에 별도의 접합패턴이 형성된 상태를 나타낸 도면;
도 9은 도 1의 반사편광모듈에서 각 제1단위집광체의 수직 높이가 불균일하게 형성된 상태를 나타낸 도면; 및
도 10은 도 1의 반사편광모듈에서 제1단위집광체의 연방방향에 따른 각각의 높이가 변화하는 형태에 대해서 나타낸 도면.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
이하의 설명에서, 본 발명의 일 실시예에 따른 반사편광모듈을 구비한 백라이트 유닛은, LCD나 LED 패널 등의 평판 액정표시장치에 적용되는 것을 예로 들어 설명하기로 한다. 허나, 본 발명은 반드시 이에 한정되는 것은 아니며, 광학시트 단독으로 사용될 수도 있으며, 또는, 액정표시장치에 적용되는 것이 아닌 다른 기구에 적용되는 백라이트 유닛일 수도 있으며, 또는 조명기구 등 광의 특성 및 경로를 변화시키는 장치라면 어느 것에도 적용될 수도 있다.
<구성>
먼저, 도 1 내지 도 4를 참조하여 본 발명의 실시예에 따른 반사편광모듈이 적용된 백라이트 유닛의 개략적인 구성에 대해서 살펴보면 다음과 같다.
도 1은 본 발명에 따른 반사편광모듈이 구비된 백라이트 유닛의 구성을 개략적으로 나타낸 분해 사시도이고, 도 2는 도 1의 백라이트 유닛에서 반사편광모듈과 광학모듈의 구성을 개략적으로 나타낸 도면이다.
그리고 도 3은 도 1의 백라이트 유닛에서 반사편광시트가 입사된 광을 투과반사시키는 것을 나타낸 도면이며, 도 4는 도 1의 반사편광시트에서 코팅층 내부의 파티클이 제1단위집광체의 제1폭보다 상대적으로 작게 형성된 상태를 나타낸 도면이다.
도 1에 도시된 바와 같이, 액정표시장치를 구성함에 있어서, 액정패널에 광을 제공하는 백라이트 유닛(BLU: Back Light Unit)이 필수적으로 구비되어야 한다. 이와 같은 백라이트 유닛은 크게 광원(100), 도광판(200), 반사판(500), 광학모듈(300) 및 반사편광모듈(400)을 포함한다.
상기 광원(100)은 일반적으로 상기 도광판(200)의 측부에서 광을 발생시키며, 상기 도광판(200)으로 광을 전달한다. 이러한 광원(100)으로는 LED(Light Emitting Diode) 및 냉음극형광램프(Cold Cathode Fluorescent Lamp: CCFL) 등이 선택적으로 사용될 수 있다.
상기 도광판(200)으로 입사된 광은 도광판(200) 내부에서 전반사를 일으키며 진행하며, 임계각 보다 작은 각도의 입사각으로 도광판(200)의 표면에 입사되는 광은 전반사 되지 않고 투과되므로, 상측과 하측으로 방출된다. 이때, 상기 반사판(500)은 하측으로 방출된 광을 반사하여 도광판(200)으로 재 입사시켜 광효율을 향상시킨다. 이러한 과정을 통해 상기 도광판(200)은 입사된 광을 상기 광학모듈(300) 방향으로 전달시키게 된다.
상기 광학모듈(300)은 상기 도광판(200)의 상부에 배치되어 상기 도광판(200)로부터 전달되는 광을 확산시키고, 확산된 광을 다시 집광하여 상부로 전달하는 구성으로써, 확산시트(310) 및 제2집광시트(320)를 포함한다.
상기 확산시트(310)는, 상기 도광판(200)의 상부에 배치되어 광을 확산시키며 상기 제2집광시트(320)로 고르게 전달되도록 한다.
구체적으로 상기 확산시트(310)는, 하부에 구비된 상기 도광판(200) 및 상기 반사판(500)을 통해 상부로 전달되는 광을 고르게 확산하여 상부에 위치한 상기 제2집광시트(320)로 전달하는 구성으로써, 상면 또는 하면에 불균일한 확산 패턴이 형성되어 광을 확산시킨다.
상기 제2집광시트(320)는 상기 확산시트(310)의 상부에 결합되며 상부로 갈수록 횡단면적이 감소하는 제2단위집광체(322a)가 연속적으로 반복되는 제2구조화패턴(322)을 가진다.
본 발명에서 상기 제2집광시트(320)는 크게 제2베이스필름(324) 및 제2구조화패턴(322)을 포함한다.
상기 제2베이스필름(324)은 하부로부터 입사되는 광이 용이하게 투과할 수 있도록 광 투과성 필름이 사용되는 것이 일반적이다. 상기 제2베이스필름(324)의 상면에는 입사된 광을 굴절 및 집광시키는 상기 제2구조화패턴(322)이 상기 제2베이스필름(324)과 일체화 되도록 형성된다.
상기 제2구조화패턴(322)은 상기 제2베이스필름(324)의 상면에서 연속적으로 반복되며 상부방향으로 돌출되어 상부로 갈수록 횡단면적이 작아지는 경사면이 형성된 복수 개의 상기 제2단위집광체(322a)로 구성된다.
상기 제2단위집광체(322a)는 상기 제2베이스필름(324)을 투과한 광을 굴절 및 집광시켜 상부로 전달한다.
여기서, 상기 제2구조화패턴(322)은 삼각형상의 상하단면이 일 방향을 따라 연장되도록 형성된 복수개의 프리즘 형상을 포함한다.
이때, 상기 제2단위집광체(322a)는 복수 개로 구성되어 각각이 동일한 크기 및 형상을 가질 수 있으며, 이와 달리 서로 다른 크기 및 경사면의 경사각도를 가지도록 구성될 수도 있다.
또한, 상기 제2단위집광체(322a)는 경사면이 이중으로 구성되어 각각이 서로 다른 경사각도를 가지도록 상하방향에 따른 단면 형상이 다각형 형태로 형성될 수도 있다.
본 실시예에서 상기 제2단위집광체(322a)는 상기 제2집광시트(320)의 상면을 따라 일방향으로 길게 연장되어 형성되며, 복수 개가 연속하여 배치된다.
이와 같이 상기 광학모듈(300)은 상기 도광판(200) 및 상기 반사판(500)을 통해 전달되는 광을 확산시키는 상기 확산시트(310) 및 상기 확산시트(310)의 상부에 배치되어 확산된 광을 상부로 집광시켜 전달하는 상기 제2집광시트(320)를 포함하여 하부로부터 전달되는 광을 상부로 집광시켜 전달한다.
한편, 상기 반사편광모듈(400)은 상술한 상기 광학모듈(300)의 상부에서 적층 형태로 배치되며 하부에서 전달되는 광을 집광 및 편광시켜 균일하게 광을 상부로 전달하는 구성으로써, 본 발명에서는 크게 반사편광시트(420), 제1집광시트(410) 및 코팅층(430)을 포함한다.
상기 반사편광시트(420)는 상술한 상기 광학모듈(300)에서 집광되어 전달되는 광 중 특정 편광의 광 만을 투과시키고 나머지는 다시 하부로 반사시키는 구성으로써, 상기 광학모듈(300)의 상부에 적층되어 결합된다.
일반적으로 상기 반사편광시트(420)는 다층의 레이어로 구성된 스택으로 특정 편광의 광을 반사하는 반사성 편광판 또는 미러로서 동작할 수 있다. 또한, 가시광선은 반사하고 적외선은 통과시키는 '콜드 미러'나 가시광선은 통과시키고 적외선은 반사하는 '핫 미러'와 같은 파장 선택성 반사경으로서 기능을 할 수도 있다.
본 발명에 사용된 바와 같은 상기 반사편광시트(420)는 정상광선은 물론이고 오프 각에도 고반사율이면서, 입사광선에 대해서는 낮은 흡수율을 보인다. 이러한 특성은 통상, 상기 반사편광시트(420)가 광의 단순한 반사 또는 반사성 편광에 사용되는지의 여부를 결정한다.
이와 같은 상기 반사편광시트(420)는 서로 다른 고굴절률 필름과 저굴절률 필름이 수십, 수백 또는 수천 개의 레이어가 적층되어 구성된다.
이와 같이 구성된 본 발명에서 상기 반사편광시트(420)는 도 3에 도시된 바와 같이 상기 반사편광시트(420)로 향하는 광은 서로 다른 편광의 광이 혼합된 상태로써 상기 반사편광시트(420)가 투과시키는 영역의 편광을 가진 P1의 광과 상기 반사편광시트(420)가 투과시키지 않는 영역의 편광을 가진 P2의 광으로 구성된다.
도시된 바와 같이, 상기 제1집광시트(410) 및 상기 제2집광시트(320)를 통과한 광은 P1 및 P2의 혼합상태이지만 상기 반사편광시트(420)는 P1 광만 투과시키고 P2의 광은 다시 하부방향으로 반사를 시킨다.
그래서 P1의 광은 외부로 방출되지만 P2의 광은 반사되어 하부로 되돌아가고 다시 상기 제1집광시트(410), 상기 제2집광시트(320), 상기 도광판(200) 및 상기 반사판(500) 등에 의해 반사되어 다시 상부로 이동한다. 이 과정을 통해서 P2의 광은 편광 상태가 변하게 되고 이와 같은 반복을 통해 상기 반사편광시트(420)가 투과시키기에 알맞은 편광 상태로 변환된다.
한편, 본 발명에 따른 상기 코팅층(430)은 상기 반사편광시트(420)의 상면에 위치하여 상기 반사편광시트(420)를 투과하여 전달되는 광을 확산시키는 구성으로써, 내부에 복수 개의 상기 파티클(432)을 가진다.
여기서, 상기 파티클(432)은, 다양한 형태로 형성되며 상기 코팅층(430)과 다른 재질로 구성되어 상기 반사편광시트(420)를 투과한 광을 확산시키도록 구성된다.
상기 파티클(432)은 복수 개로 구성되어 상기 코팅층(430) 내부에 포함되며, 상기 코팅층(430) 내부에서 불균일하게 배치된다. 여기서, 상기 파티클(432)은 상기 코팅층(430)과 다른 소재 또는 다른 굴절률을 가지도록 구성된다.
이에 따라 상기 반사편광시트(420)를 투과해서 전달되는 광을 안정적으로 확산시킨다.
본 실시예에서 상기 파티클(432)은 구 형태로 형성되어 다양한 각도로 광을 반사 또는 굴절시킴으로써 상기 반사편광시트(420)를 투과하여 전달되는 광을 확산시키도록 구성된다.
이와 달리 상기 파티클(432)은 구 형태가 아니라 다양한 형태의 다각형이나, 비대칭적인 형태로 형성될 수도 있다.
한편, 상기 제1집광시트(410)는 상부로 갈수록 횡단면적이 감소하는 상기 제1단위집광체(412a)가 연속적으로 반복되는 상기 제1구조화패턴(412)을 가지도록 구성되어 상기 제2집광시트(320)의 상면에 배치된다.
그리고 상기 제2집광시트(320)에서 집광되어 전달되는 광을 다시 집광하여 상부로 전달하도록 구성된다.
이때, 상기 제1단위집광체(412a)는 상술한 상기 제2단위집광체(322a)와 동일하게 형성될 수도 있고 이와 다르게 형성될 수도 있다.
본 발명에서 상기 제1집광시트(410)는 상술한 상기 제2집광시트(320)와 유사하게 상기 제1베이스필름(414) 및 상기 제1구조화패턴(412)을 포함하여 구성된다.
여기서, 상기 제1구조화패턴(412)은, 상기 반사편광시트(420)의 하부에 배치되며 상기 제1베이스필름(414)의 상면에 형성되어 있다.
이와 같이 형성된 상기 제1집광시트(410)는 상기 반사편광시트(420)의 하부에 적층 형태로 배치되며, 상기 제1단위집광체(412a) 중 적어도 일부가 상기 반사편광시트(420)와 접합된다.
이에 따라 상기 제1집광시트(410)와 상기 반사편광시트(420)가 접착상태를 유지하며 안정적으로 접합된다.
한편, 본 실시예에서 각각의 상기 제1구조화패턴(412) 및 상기 제2구조화패턴(322)은 횡 방향을 따라 길게 연장되어 형성되며, 상기 제1구조화패턴(412)의 연장방향은 상기 제2구조화패턴(322)의 연장방향과 교차되는 방향으로 배치된다.
본 실시예에서 상기 제1구조화패턴(412)과 상기 제2구조화패턴(322)의 연장방향이 수직으로 교차되도록 배치되며, 이와 달리 수직이 아니라 단순히 교차되는 방향으로도 배치될 수도 있다.
이에 따라 상기 확산시트(310)에서 확산되어 상부로 전달되는 광은 상기 제1단위집광체(412a) 및 상기 제2단위집광체(322a)를 경유하며 안정적으로 집광될 수 있다.
한편, 본 발명에 따른 상기 제1집광시트(410)는 상기 제1구조화패턴(412)의 상측 끝단부가 상기 반사편광시트(420)의 하부에서 횡 방향으로 제1폭을 가지도록 접합된다.
구체적으로 상기 제1단위집광체(412a)는 상기 반사편광시트(420)의 하면에 접합되며, 접합 시 상측 끝단부의 일부가 소실되며 접합된다.
이때, 상기 제1단위집광체(412a)의 소실된 상측 끝단부의 횡 방향에 따른 폭이 제1폭을 가지도록 구성된다.
즉, 상기 제1단위집광체(412a)가 상기 반사편광시트(420)의 하면에 접합된 후 접합된 부분의 횡 방향 길이가 상기 제1폭이 되도록 접합된다.
본 실시예에서 상기 제1단위집광체(412a)는 도시된 바와 같이 상기 반사편광시트(420)의 하면에 직접 접합되며, 접합 시 상측 끝단부가 소실되며 접착제 역할을 하게 된다. 이때, 상기 반사편광시트(420)의 하면에 접합된 부분의 상기 제1폭은 L1이 된다
이와 함께 상술한 상기 코팅층(430) 내부에 구비된 상기 파티클(432)은 복수 개 중 적어도 일부의 직경이 상기 제1폭 보다 상대적으로 작게 구성된다.
본 실시예에서는 도시된 바와 같이 상기 파티클(432)의 최대 직경이 L2로 상기 제1폭인 L1보다 상대적으로 작게 구성된다.
여기서 상기 파티클(432)은 비드와 같은 확산입자가 고분자 수지에 확산된 결과일 수도 있으며, 확산입자의 일부분은 고분자 수지 내부에 매립되고, 나머지 부분만 노출된 형태로 형성될 수도 있다
이와 같이 상기 파티클(432)의 최대 직경이 상기 제1폭(L1)보다 상대적으로 작게 구성되며, 이에 따라 상기 제1단위집광체(412a)를 통과하여 상기 반사편광시트(420)로 전달된 광이 상기 파티클(432)에서 상부방향으로 굴절됨으로써 휘도가 저하되는 것을 방지할 수 있다.
구체적으로 상기 파티클(432)의 최대 직경(L2)이 상기 제1폭인 L1보다 큰 경우, 상기 제1단위집광체(412a)에서 굴절된 광의 각도가 상기 파티클(432)에 의해 더 큰 각도로 굴절됨으로써 중심이 아닌 사이드로 광이 굴절된다.
이에 따라 상기 코팅층(430)을 통과하는 광의 휘도가 전체적으로 감소하게 된다.
하지만, 본 출원발명과 같이 상기 파티클(432)의 최대 직경인 L2가 상기 제1폭인 L1보다 작게 형성됨으로써, 상기 제1단위집광체(412a)에서 굴절되어 전달되는 광이 상기 파티클(432)에 의해 상부방향으로 광이 확산된다.
따라서 상기 파티클(432)에 의해 상기 코팅층(430)을 통과하는 광은 휘도 저하를 최소로 함과 동시에 내부확산이 발생하여 상기 제1단위집광체(412a)와 상기 반사편광시트(420)의 접합면에 의해 발생되는 모아레 현상 등의 품질저하를 방지할 수 있다.
뿐만 아니라, 상기 파티클(432)의 직경(size)을 조절함으로써, 상기 반사편광시트(420)를 통과한 광의 휘도를 조절하고 이에 따라 백라이트 유닛의 휘도 저하를 개선시킬 수 있다.
즉, 상기 코팅층(430)이 복수 개의 상기 파티클(432)을 가지며 상기 반사편광시트(420)의 상면에 형성되고, 상기 파티클(432)의 직경이 상기 제1폭보다 상대적으로 작게 형성됨으로써, 상기 코팅층(432)을 통과하는 광이 중심이 아닌 사이드로 확산되는 것을 방지하여 휘도가 저감되는 것을 방지할 수 있다.
이와 같이 구성된 본 발명의 백라이트 유닛은 상술한 상기 반사판(500), 상기 도광판(200), 상기 광학모듈(300) 및 상기 반사편광모듈(400) 순으로 각각 적층되어 결합되며, 상기 광원(100)으로부터 발생된 광을 안정적으로 확산 및 집광시켜 전달할 수 있으며, 상기 반사편광시트(420)를 통과한 광은 상기 파티클(432)에 의해 중심부로 확산될 수 있다.
<효과>
한편, 상술한 바와 같이 상기 코팅층(430) 내에 상기 파티클(432)이 구비됨에 따라 상기 제1집광시트(410) 및 반사편광시트(420)를 통과한 광을 일정각도로 확산시켜 접합라인 등의 품질저하에 문제가 되는 결함(defect)을 차폐시킨다.
일반적으로 상기 제1집광시트(410)와 상기 반사편광시트(420)가 접합됨에 따라 상기 제1단위집광체(412a)의 상측 끝단부 일부가 소실되며 이에 따라 하부에서 전달되는 광을 굴절시키는 경사면의 부재에 의해 광이 집광되지 않는 부분이 발생한다.
이에 따라 백라이트 유닛을 이용한 액정표시장치에서 모아레 현상이나 컬러 쉬프트 및 접합라인에 의한 음영 등이 발생하여 디스플레이 품질을 저하시킨다.
하지만, 본 발명에 따른 상기 반사편광모듈(400)과 같이 복수 개의 상기 파티클(432)이 구비된 상기 코팅층(430)을 상기 반사편광시트(420)의 상면에 위치함으로써, 상기 제1집광시트(410)와 함께 상기 파티클(432)이 하부에서 전달되는 광을 일정각도로 집광 및 확산시킬 수 있다.
즉, 상기 광학모듈(300)에서 전달되는 광이 상기 제1단위집광체(412a)와 상기 반사편광시트(420)의 하면이 접착함에 따라 발생하는 접합면에 의해 일부가 집광되지 않더라도 상기 코팅층(430)에 구비된 상기 파티클(432)에 의해 확산되어 휘도 저하를 방지할 수 있다.
그리고 이와 같이 상기 코팅층(430)에 상기 파티클(432)이 구비됨으로써 상기 코팅층(432)을 통과하는 광이 중심이 아닌 사이드로 확산되는 것을 방지하여 휘도가 저감되는 것을 방지할 수 있다.
여기서, 상술한 바와 같이 복수 개의 상기 파티클(432) 중에서 최대 크기의 상기 파티클(432) 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것이 바람직하며, 이에 따라 상기 제1단위집광체(412a)와 상기 반사편광시트(420)를 통해 접합면에 의한 음영이 발생하지 않도록 광을 안정적으로 확산시킬 수 있다.
이와 같이, 상기 파티클(432)의 직경이 상기 제1폭보다 작게 형성됨으로써, 상기 제1단위집광체(412a)와 상기 반사편광시트(420)의 접합면 상부에 적어도 하나 이상의 상기 파티클(432)이 배치되고, 이에 따라 안정적으로 광을 확산시킬 수 있다.
물론, 상기 파티클(432)의 직경이 상기 제1폭보다 상대적으로 작게 형성됨과 동시에 상기 코팅층(430) 내부에서 다양한 크기를 가질 수 있으며, 상기 코팅층(430)의 제작 시 그 크기를 조절하여 휘도를 조절할 수도 있다.
이와 같이 상기 코팅층(430)에 상기 파티클(432)이 구비되며 상기 제1폭보다 상대적으로 작은 직경을 가짐으로써, 상기 제1집광시트(410)에서 상기 반사편광시트(420)와의 접합면에 의해 집광되지 못한 광을 확산시킬 수 있으며, 이에 따라 상기 제1집광시트(410) 및 반사편광시트(420)를 통과한 광을 일정각도로 확산시켜 액정표시장치에 줄무늬 등이 발생하는 모아레 현상이나 컬러 쉬프트 현상이 발생하는 것을 방지할 수 있다.
또한, 반사편광시트(420)의 상부에 파티클(432)이 구비된 코팅층(430)이 구비되어, 파티클(432)에 의해 광이 확산됨으로써 반사편광시트(420)와 제1집광시트(410)에 형성된 제1구조화패턴(412)의 접합 시 끝단부가 소실되어 접합면에 의한 집광효율의 감소를 저하 시킬 수 있는 이점이 있다.
<변형예>
다음으로, 도 5을 참조하여 본 발명에 따른 상기 코팅층(430)의 변형된 형태에 대해서 살펴보면 다음과 같다.
도 5은 도 1의 반사편광모듈(400)에서 상기 코팅층(430)에 별도의 상기 확산패턴(434)이 형성된 상태를 나타낸 도면이다.
도시된 도면을 살펴보면 상술한 바와 같이 상기 반사편광시트(420)의 상면에 상기 파티클(432)이 구비된 상기 코팅층(430)에 별도의 상기 확산패턴(434)이 더 형성된다.
구체적으로 상기 확산패턴(434)은 상기 코팅층(430)의 상면에 돌출 형성되어 복수 개로 구성되며, 불균일한 패턴을 가지도록 구성된다.
본 실시예에서 상기 확산패턴(434)은 도시된 바와 같이 일반적인 구 형태의 돌기로 형성되며, 불규칙적으로 상기 코팅층(430)의 상면에 배열된다. 이때, 상기 확산패턴(434)의 크기는 균일하지 않고 불균일한 크기를 가지며, 각각의 횡 방향에 따른 폭이 상술한 제1폭보다 상대적으로 작게 형성된다.
이와 같이 상기 확산패턴(434)이 상기 코팅층(430) 상면에 형성됨에 따라 상기 제1집광시트(410)에서 집광되지 않고 상기 반사편광시트(420)을 투과해 전달되는 광을 상기 파티클(432)과 함께 확산시킬 수 있다.
여기서, 돌기 형태로 형성된 상기 확산패턴(434)의 횡 방향에 따른 최대 크기인 L3가 상기 제1폭인 L1보다 상대적으로 작게 형성됨으로써, 상기 제1구조화패턴(412)과 상기 반사편광시트(420)의 하면의 접착에 의해 발생되는 접합면을 통해 집광되지 않고 투과되는 광을 확산시킬 수 있다.
본 실시예에 따른 상기 코팅층(430)에서 상기 확산패턴(434)은 마스터를 이용해서 복제하는 방법으로 형성될 수도 있고, 별도의 가공롤을 이용해서 형성될 수도 있다.
이어서, 도 6 내지 도 8를 참조하여 본 발명에 따른 상기 반사편광모듈(400)에서 별도의 상기 접착층(440)이 더 포함된 상태를 살펴보면 다음과 같다.
도 6은 도 1의 백라이트 유닛에서 상기 반사편광시트(420)의 하면에 별도의 상기 접착층(440)이 형성된 상태를 나타낸 도면이고, 도 7은 도 6의 반사편광모듈(400)의 측면을 나타낸 도면이며, 도 8는 도 6의 상기 반사편광시트(420)의 하면에 형성된 상기 접착층(440)에 별도의 상기 접합패턴(442)이 형성된 상태를 나타낸 도면이다.
먼저, 도 6 및 도 7을 살펴보면 본 발명의 백라이트 유닛에서 별도의 상기 접착층(440)이 더 포함된 상태를 나타낸 것으로, 상기 반사편광시트(420)의 상면에 상기 코팅층(430)이 형성됨과 동시에 상기 반사편광시트(420)의 하면에 상기 접착층(440)이 형성된다.
구체적으로, 상기 접착층(440)은 상기 반사편광시트(420)의 하면에서 일부 또는 전체에 위치할 수 있으며 균일한 두께 또는 불균일한 두께를 가질 수 있다.
본 실시예에서는 상기 반사편광시트(420)의 하면에 균일한 두께로 상기 접착층(440)이 구비되고, 상기 제1집광시트(410)에 형성된 상기 제1구조화패턴(412)의 상측 끝단부가 상기 접착층(440) 내부로 매립된다.
여기서, 상기 반사편광시트(420)의 하면에 위치한 상기 접착층(440) 내부로 매립되는 상기 제1단위집광체(412a)의 상측 끝단부가 상기 접착층(440)과 횡 방향으로 제2폭의 경계면을 가지도록 만큼 매립되는 것이 바람직하다.
즉, 상기 제1단위집광체(412a)가 상기 접착층(440) 내부로 매립 시 매립된 부분의 횡 방향 길이가 상기 제2폭인 L3가 되고, 상기 코팅층(430) 내에 포함된 상기 파티클(432)의 직경 크기인 L2보다 상대적으로 작게 형성된다.
이에 따라, 상기 접착층(440) 내부로 상기 제1단위집광체(412a)가 매립됨에 의해 접합면이 발생하더라도 하부에서 전달되는 광은 상기 확산패턴(434) 또는 상기 파티클(432)에 의해 확산될 수 있다.
이와 같이 상기 반사편광모듈(400)에 별도의 상기 접착층(440)이 더 구비됨에 따라 상기 제1집광시트(410)와 상기 반사편광시트(420)의 접착 면적이 증가하여 접착력이 증가하고 이에 따라 보다 안정적으로 상기 제1집광시트(410)와 상기 반사편광시트(420)의 접착상태를 유지할 수 있다.
그리고 상기 접착층(440)은 상기 제1집광시트(410)와 동일한 소재로 구성될 수도 있고 이와 달리 굴절률이 서로 다른 소재로 구성될 수도 있다.
한편, 이와 달리 도 8를 살펴보면 상기 접착층(440)에 불균일한 복수 개의 상기 접합패턴(442)이 더 형성될 수 있다.
여기서, 상기 접합패턴(442)은 상술한 상기 확산패턴(434)과 마찬가지로 돌기 형태로 하부방향으로 돌출되어 복수 개가 형성되며, 각각의 돌기의 횡 방향에 따른 직경은 상기 제2폭인 L3보다 상대적으로 작게 형성될 수 있다.
이와 같이 상기 접착층(440)에 상기 접합패턴(442)이 형성됨에 따라 상술한 바와 같이 상기 제1단위집광체(412a)가 매립되는 부분에 의해 접합면이 발생하더라도 하부에서 전달되는 광은 상기 확산패턴(434) 또는 상기 파티클(432)에 의해 확산되며, 이와 함께 상기 제1단위집광체(412a)의 일부만 상기 접착층(440) 내부로 매립됨에 따라 경사면의 소실을 최소화시켜 광의 집광효과를 증가시킬 수 있다.
한편, 본 실시예에서 도면에 도시되지는 않았지만, 상기 파티클(432)은 상기 코팅층(430) 뿐만 아니라 상기 접착층(440) 내부에도 복수 개가 구비되어 상기 제1집광시트(410)에서 집광된 광을 확산시키도록 구성될 수도 있다.
다음으로, 도 9 및 도 10을 참조하여 본 발명에 따른 상기 반사편광모듈(400)에서 상기 제1구조화패턴(412)의 변형된 형태에 대해서 살펴보면 다음과 같다.
도 9은 도 1의 반사편광모듈(400)에서 상기 제1구조화패턴(412)이 복수개의 제1단위집광체(412a) 각각의 수직 높이가 불균일하게 형성된 상태를 나타낸 도면이고, 도 10은 도 1의 반사편광모듈(400)에서 상기 제1단위집광체(412a)의 연장방향에 따른 각각의 높이가 변화하는 형태에 대해서 나타낸 도면이다.
먼저, 도 9을 살펴보면 상기 제1단위집광체(412a)는 상술한 바와 달리 복수 개가 상기 제1베이스필름(414)의 상면을 따라 복수 개가 이격되어 배치된다. 여기서, 도시되지는 않았지만 복수 개의 상기 제1단위집광체(412a)의 각각은 상기 제1베이스필름(414)의 상면을 서로 이격되어 배치된다.
이때, 도시된 바와 같이 복수 개의 상기 제1단위집광체(412a)는 최하단부에서 최상단부에 이르는 수직거리가 불균일하게 구성된다.
이와 같이 복수 개의 상기 제1단위집광체(412a)가 균일하지 않은 상하방향 높이를 가지도록 구성됨으로써, 상기 제1베이스필름(414)과 상기 반사편광시트(420)의 접합 시 복수 개의 상기 제1단위집광체(412a) 중 일부만 상기 반사편광시트(420)에 접합되고, 나머지는 접합되지 않는다.
이와 같이 상기 제1단위집광체(412a)의 일부만 상기 반사편광시트(420)의 하면에 접합됨에 따라, 상기 제1집광시트(410)에서 경사면의 소실이 적어지므로, 상기 광학모듈(300)에서부터 전달되는 광의 집광효과 감소를 최소화 시킬 수 있다.
다음으로 도 10을 살펴보면, 상기 제1베이스필름(414)의 상면에 상기 제1단위집광체(412a)가 변형된 행태를 나타낸 것으로서, 복수 개의 상기 제1단위집광체(412a)가 상기 제1베이스필름(414)의 상면을 따라 길게 연장되어 형성되며 각각이 횡 방향을 따라 반복하여 배치된다.
이때, 복수 개의 상기 제1단위집광체(412a)는 연장방향을 따라 높이가 불균일하게 형성되어 일부만 상기 반사편광시트(420)의 하면에 접합되도록 구성된다.
즉, 복수 개의 상기 제1단위집광체(412a)는 일정한 패턴을 가지며 균일하게 이격되어 배치되며, 각각의 상기 제1단위집광체(412a)는 연장방향을 따라 불균일한 높이를 가지도록 형성됨으로써, 하나의 상기 제1단위집광체(412a)에서 일부만 상기 반사편광시트(420)의 하면에 접합되는 형태가 된다.
이때 각각의 상기 제1단위집광체(412a)의 높이는 일정한 주기(P)를 가지면서 변화될 수 있으나, 높이가 연장방향을 따라서 불규칙하게 변화될 수도 있다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (11)

  1. 굴절률이 서로 다른 복수 개의 레이어가 적층되어 광을 선택적으로 투과시키는 반사편광시트;
    상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴을 가지며, 상기 제1단위집광체의 상측 끝단부가 상기 반사편광시트의 하부에서 횡 방향으로 제1폭을 가지도록 접합되는 제1집광시트; 및
    상기 반사편광시트의 상면에 위치하며, 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 복수 개의 파티클을 가지는 코팅층; 을 포함하며,
    상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 하는 반사편광모듈.
  2. 제1항에 있어서,
    상기 코팅층은,
    상면에 돌출 형성된 복수 개의 확산패턴이 형성되어 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 것을 특징으로 하는 반사편광모듈.
  3. 제2항에 있어서,
    상기 확산패턴은,
    불균일하게 형성되며, 각각의 횡 방향에 따른 폭이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 하는 반사편광모듈.
  4. 제1항에 있어서,
    상기 반사편광시트의 하면에 위치하여 상기 제1단위집광체의 상측 끝단부가 횡 방향으로 제2폭만큼의 경계면을 가지도록 매립되어 접합되는 접착층을 더 포함하는 것을 특징으로 하는 반사편광모듈.
  5. 제4항에 있어서,
    상기 접착층은,
    불균일한 복수 개의 접합패턴을 가지며 상기 반사편광시트의 하면에 위치하는 것을 특징으로 하는 반사편광모듈.
  6. 제5항에 있어서,
    상기 접착층에 형성된 상기 접합패턴의 횡 방향에 따른 직경이 상기 제2폭 보다 상대적으로 작게 형성되는 것을 특징으로 하는 반사편광모듈.
  7. 제4항에 있어서,
    상기 접착층은,
    내부에 복수 개의 상기 파티클이 구비되는 것을 특징으로 하는 반사편광모듈.
  8. 제1항에 있어서,
    상기 파티클은,
    상기 코팅층과 굴절률이 다른 재질로 구성되는 것을 특징으로 하는 반사편광모듈.
  9. 제1항에 있어서,
    상기 제1구조화패턴은,
    수직 단면상에서, 각 제1단위집광체의 최하단부에서 최상단부에 이르는 수직거리가 불균일하게 형성되는 것을 특징으로 하는 반사편광모듈.
  10. 제8항에 있어서,
    상기 제1구조화패턴은,
    상기 제1단위집광체가 길게 연장된 형태로 반복하여 형성되며 연장방향을 따라 높이가 변화되는 것을 특징으로 하는 반사편광모듈.
  11. 일측에 광원이 구비되어 상기 광원으로부터 발생되는 광을 전달하는 도광판;
    상기 도광판의 하면에 적층되어 상기 도광판을 통과하여 전달되는 광을 상부로 반사시키는 반사판;
    상기 도광판의 상부에 적층되어 하부로부터 전달되는 광을 고르게 확산시키는 확산시트 및 상기 확산시트의 상부에 결합되며 상부로 갈수록 횡단면적이 감소하는 제2단위집광체가 연속적으로 반복되는 제2구조화패턴을 가지는 제2집광시트를 포함하는 광학모듈; 및
    굴절률이 서로 다른 복수 개의 레이어가 적층되어 광을 선택적으로 투과시키는 반사편광시트, 상기 반사편광시트의 하부에서 상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴을 가지며, 상기 제1단위집광체의 상측 끝단부가 상기 반사편광시트의 하부에서 횡 방향으로 제1폭을 가지도록 접합되는 제1집광시트 및 상기 반사편광시트의 상면에 위치하며, 상기 반사편광시트를 투과하여 전달되는 광을 확산시키는 복수 개의 파티클을 가지는 코팅층을 포함하는 반사편광모듈을 가지며,
    상기 복수 개의 파티클 중 적어도 일부는 직경이 상기 제1폭보다 상대적으로 작게 형성되는 것을 특징으로 하는 백라이트 유닛.
PCT/KR2016/005156 2015-05-18 2016-05-16 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛 WO2016186410A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/574,899 US10191321B2 (en) 2015-05-18 2016-05-16 Reflective polarizing module having particles and backlight unit including same
CN201680028836.XA CN107636523B (zh) 2015-05-18 2016-05-16 具有颗粒的反射型偏振模块及具备其的背光单元
JP2017560241A JP6745819B2 (ja) 2015-05-18 2016-05-16 パーティクルが備えられた反射偏光モジュール及びこれを備えたバックライトユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150069000A KR101728678B1 (ko) 2015-05-18 2015-05-18 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛
KR10-2015-0069000 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016186410A1 true WO2016186410A1 (ko) 2016-11-24

Family

ID=57320701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005156 WO2016186410A1 (ko) 2015-05-18 2016-05-16 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛

Country Status (5)

Country Link
US (1) US10191321B2 (ko)
JP (1) JP6745819B2 (ko)
KR (1) KR101728678B1 (ko)
CN (1) CN107636523B (ko)
WO (1) WO2016186410A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018179450A1 (ja) * 2017-04-01 2020-02-13 サンテックオプト株式会社 積層光学シート

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691541B1 (ko) * 2015-06-04 2016-12-30 주식회사 엘엠에스 확산패턴을 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛
KR102413241B1 (ko) 2017-06-23 2022-06-27 삼성디스플레이 주식회사 복합 광학 시트 및 이를 포함하는 액정 표시 장치
KR102482724B1 (ko) * 2017-12-19 2022-12-28 엘지디스플레이 주식회사 광학 필름 및 그를 이용한 백라이트 유닛과 표시 장치
KR102062668B1 (ko) * 2017-12-29 2020-01-06 주식회사 엘엠에스 차폐 성능이 향상된 확산시트 및 이를 구비한 백라이트 유닛
KR102041304B1 (ko) * 2018-04-10 2019-11-06 기민전자주식회사 투명 이중유리에 나노입자가 증착된 에너지절감형 양방향 투명 디스플레이 모듈
KR20210004032A (ko) * 2019-07-03 2021-01-13 삼성전자주식회사 디스플레이 장치 및 이에 구비되는 확산판
WO2021191749A1 (en) * 2020-03-24 2021-09-30 3M Innovative Properties Company Optical stack featuring truncated structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080008065A (ko) * 2006-07-19 2008-01-23 삼성전자주식회사 휴대 단말기용 백라이트 유닛
KR20080042908A (ko) * 2005-08-30 2008-05-15 미츠비시 레이온 가부시키가이샤 광편향 시트와 그 제조 방법
KR20090116002A (ko) * 2008-05-06 2009-11-11 엘지전자 주식회사 광학시트와 이를 이용한 액정표시장치
KR20090123748A (ko) * 2008-05-27 2009-12-02 엘지전자 주식회사 광학시트 및 이를 이용한 액정표시장치
KR20140071737A (ko) * 2012-12-04 2014-06-12 신화인터텍 주식회사 복합 광학 시트, 이를 포함하는 광원 어셈블리 및 액정 표시 장치
KR20150034553A (ko) * 2013-09-26 2015-04-03 제일모직주식회사 복합광학시트 및 이를 포함하는 액정표시장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122808B2 (ja) * 2002-03-26 2008-07-23 セイコーエプソン株式会社 液晶表示装置および電子機器
US6846089B2 (en) * 2003-05-16 2005-01-25 3M Innovative Properties Company Method for stacking surface structured optical films
US7446827B2 (en) * 2004-10-15 2008-11-04 3M Innovative Properties Company Direct-lit liquid crystal displays with laminated diffuser plates
KR100660707B1 (ko) * 2004-11-18 2006-12-21 엘지전자 주식회사 백라이트 유닛
US20060226583A1 (en) * 2005-04-04 2006-10-12 Marushin Patrick H Light directing film
US8035774B2 (en) * 2005-04-18 2011-10-11 3M Innovative Properties Company Multifunctional thick film reflective polarizer for displays
US20070030415A1 (en) * 2005-05-16 2007-02-08 Epstein Kenneth A Back-lit displays with high illumination uniformity
CN101300508A (zh) * 2005-08-30 2008-11-05 三菱丽阳株式会社 光偏转片及其制造方法
JP4957195B2 (ja) * 2006-11-09 2012-06-20 ソニー株式会社 液晶表示装置
EP2128661A1 (en) * 2008-05-27 2009-12-02 LG Electronics Inc. Optical sheet and liquid crystal display including the same
CN101344679A (zh) * 2008-07-11 2009-01-14 上海赞高光学材料有限公司 一种光学复合薄膜及使用该光学复合薄膜的液晶显示装置
JP2010107902A (ja) * 2008-10-31 2010-05-13 Nippon Zeon Co Ltd 光学部材及び液晶表示装置
JP2011215352A (ja) * 2010-03-31 2011-10-27 Sony Corp 光学シート積層体、照明装置および表示装置
TWI514045B (zh) * 2011-12-08 2015-12-21 Lms Co Ltd 多層光學片組件
KR101268083B1 (ko) * 2012-06-25 2013-05-29 주식회사 엘엠에스 적층형 광학시트모듈
WO2014092507A1 (ko) * 2012-12-14 2014-06-19 제일모직 주식회사 복합광학시트 및 이를 포함하는 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080042908A (ko) * 2005-08-30 2008-05-15 미츠비시 레이온 가부시키가이샤 광편향 시트와 그 제조 방법
KR20080008065A (ko) * 2006-07-19 2008-01-23 삼성전자주식회사 휴대 단말기용 백라이트 유닛
KR20090116002A (ko) * 2008-05-06 2009-11-11 엘지전자 주식회사 광학시트와 이를 이용한 액정표시장치
KR20090123748A (ko) * 2008-05-27 2009-12-02 엘지전자 주식회사 광학시트 및 이를 이용한 액정표시장치
KR20140071737A (ko) * 2012-12-04 2014-06-12 신화인터텍 주식회사 복합 광학 시트, 이를 포함하는 광원 어셈블리 및 액정 표시 장치
KR20150034553A (ko) * 2013-09-26 2015-04-03 제일모직주식회사 복합광학시트 및 이를 포함하는 액정표시장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018179450A1 (ja) * 2017-04-01 2020-02-13 サンテックオプト株式会社 積層光学シート

Also Published As

Publication number Publication date
CN107636523A (zh) 2018-01-26
US20180164637A1 (en) 2018-06-14
KR101728678B1 (ko) 2017-05-02
US10191321B2 (en) 2019-01-29
KR20160135546A (ko) 2016-11-28
JP6745819B2 (ja) 2020-08-26
CN107636523B (zh) 2021-01-12
JP2018515814A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2016195300A1 (ko) 확산패턴을 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛
WO2016186410A1 (ko) 파티클이 구비된 반사편광모듈 및 이를 구비한 백라이트 유닛
KR101184449B1 (ko) 패턴 도광판, 그 제조방법 및 이를 이용한 액정표시장치 백라이트 유닛
WO2014003386A1 (ko) 서로 다른 두께의 광학시트를 가지는 광학시트 모듈
WO2014003389A1 (ko) 적층형 광학시트모듈
WO2019059605A2 (ko) 일체형 광학시트 모듈 및 이를 구비한 백라이트 유닛
WO2020184903A1 (ko) 미니 led 또는 마이크로 led를 광원으로 하는 백라이트 유닛
WO2013095012A1 (ko) 조명용 광학 플레이트 및 이를 이용한 조명장치
WO2016114597A1 (ko) 광 리사이클링 향상 시트를 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛
WO2013105683A1 (ko) 마이크로 렌즈 어레이 시트 및 이를 포함하는 백라이트 유닛
WO2014069730A1 (ko) 도광판 및 이를 포함하는 투명 디스플레이 장치
WO2014104772A1 (ko) 광학시트 모듈
WO2016208892A1 (ko) 벤딩 저감이 가능한 반사편광모듈 및 이를 구비한 백라이트 유닛
WO2015105318A1 (ko) 적층형 광학시트모듈
WO2019132367A1 (ko) 차폐 성능이 향상된 확산시트 및 이를 구비한 백라이트 유닛
WO2019141269A1 (en) Display system
WO2013168990A1 (ko) 광학시트유닛
WO2018221878A1 (ko) 차폐부가 형성된 광전달유닛, 이를 이용한 백라이트모듈 및 광전달유닛의 제조방법
WO2020171506A1 (en) Optical structure for light-emitting diode device and light-emitting diode device for lighting application including the same
WO2012039532A1 (en) Optical sheet, optical unit and lighting device using the same
WO2009151260A2 (ko) 광학소자, 이를 포함하는 백라이트 유닛 및 액정표시장치
WO2018021774A1 (ko) 접합형 광학시트 모듈
WO2010005205A2 (ko) 고확산 집광 렌즈 시트 및 이를 이용한 백라이트 어셈블리
WO2012153891A1 (ko) 광학부재 및 그 제조방법
WO2014007483A1 (ko) 도광판 및 이를 포함하는 백라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560241

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796737

Country of ref document: EP

Kind code of ref document: A1