WO2016186377A1 - Distance measurement device using free running femtosecond laser-based real-time determination of synthetic wave - Google Patents

Distance measurement device using free running femtosecond laser-based real-time determination of synthetic wave Download PDF

Info

Publication number
WO2016186377A1
WO2016186377A1 PCT/KR2016/005028 KR2016005028W WO2016186377A1 WO 2016186377 A1 WO2016186377 A1 WO 2016186377A1 KR 2016005028 W KR2016005028 W KR 2016005028W WO 2016186377 A1 WO2016186377 A1 WO 2016186377A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
femtosecond laser
synthesized wave
distance
Prior art date
Application number
PCT/KR2016/005028
Other languages
French (fr)
Korean (ko)
Inventor
김승우
한성흠
장윤수
장희숙
이근우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016186377A1 publication Critical patent/WO2016186377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems

Definitions

  • the present invention relates to a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser.
  • the configuration is simple by measuring the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free running femtosecond laser.
  • the present invention relates to a distance measuring device using a free-running femtosecond laser-based real-time synthesized wave crystal capable of measuring distance with high resolution.
  • the present invention relates to a femtosecond laser synthetic wavelength interferometer which generates a long wavelength synthesized wave of a radio wave band from interference between numerous modes of a femtosecond laser and uses the distance to measure it.
  • the synthesized waves having a specific wavelength suitable for the measurement distance are selected.
  • the desired distance can be measured by comparing the progress of the reference arm and the measurement arm.
  • the wavelength of the selected synthesized waves does not change with time. Since the wavelength of the selected synthesized waves depends on the interval between frequency modes determined by the optical path length of the femtosecond laser resonator, a technique for keeping the optical path length of the resonator constant is required.
  • the interval between frequency modes is the repetition rate at which the laser pulse is generated ( Same as), and the repetition rate ( )silver (Round) or It can be represented as (linear).
  • Is the luminous flux inside the resonator Is the length of the femtosecond laser resonator.
  • Length of resonator due to changes in temperature and environment When the change is made, the repetition rate of the femtosecond laser is also changed. In this case, the repetition rate of the femtosecond laser can be stabilized by controlling the length of the laser resonator so that the laser pulse can be phase locked to the atomic clock.
  • the conventional femtosecond laser uses a femtosecond laser with a stable repetition rate in a distance measuring method using a femtosecond laser.
  • complex devices such as piezoelectric elements, voltage amplifiers, function generators, and phase locked loop circuits are required.
  • the driving range of the piezoelectric element is limited to a level within 10 ⁇ m, it is possible to stabilize the repetition rate when the temperature change of the surrounding environment occurs several degrees or more. It can be out of control and, in more severe cases, even the generation of femtosecond laser pulses becomes impossible. In this case, the conventional distance measuring method using femtosecond lasers can no longer be used.
  • Korean Patent Publication No. 1448831 is a device for measuring distance using a femtosecond laser-based synthesized wave interferometer, and discloses a distance measuring technique using a femtosecond laser-based phase locked synthesized wave interferometer and eliminates nonlinear errors according to phases. have.
  • the present invention measures the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free running femtosecond laser in real time, thereby realizing a free-running femtosecond laser-based real-time synthesized wave capable of measuring distance with high resolution.
  • An object of the present invention is to provide a distance measuring device using crystals.
  • a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser comprising: a free running femtosecond laser light source for emitting laser light; A light splitter configured to split the laser light into reference light and measurement light reflected from a measurement target; A reference photodetector for detecting the reference light; A measurement photodetector for detecting the measurement light; A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order; A phase measuring unit configured to mix the detected reference light and the measured light with a high frequency signal, respectively, and pass the mixed reference light and the mixed measurement light through a low pass filter to measure a phase difference between the extracted reference synthesized wave and the measured synthesized wave; And a distance calculator configured to calculate distance information between the optical splitter and the measurement target using the repetition rate, the phase difference, and the order of the synthesized wave
  • the measurement target may be a mirror.
  • a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser, Free running femtosecond laser light source for emitting a laser light A multi-channel light splitter configured to split the laser light into two or more measurement beams incident to the reference light and to different measurement targets; A reference photodetector for detecting the reference light; A multi-channel photodetector comprising one or more measurement photodetectors each having one-to-one correspondence with the measurement lights and detecting the measurement light; A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order; A multi-channel phase measuring unit for mixing the detected reference light and measurement light with the high frequency signal, respectively, and passing the mixed reference light and the mixed measurement light through a low pass filter to measure phase differences between the extracted reference synthesized waves and the respective measured synthesized waves.
  • the free-running femtosecond laser light source may be an erbium fiber femtosecond laser having a center wavelength of 1550 nm, a bandwidth of 50 nm, and a pulse width of 100 fs.
  • the free running femtosecond laser light source may be an ytterbium fiber femtosecond laser having a center wavelength of 1030 nm, a bandwidth of 50 nm, and a pulse width of 50 fs.
  • the free running femtosecond laser light source may be a titanium: sapphire femtosecond laser having a center wavelength of 800 nm, a bandwidth of 100 nm, and a pulse width of 10 fs.
  • the present invention measures the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free-running femtosecond laser in real time, so that the configuration is simple and high-resolution femtosecond laser-based distance can be measured. It is possible to provide a distance measuring device using a real-time synthesized wave determination.
  • FIG. 1 is a block diagram of a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a case in which a mirror is omitted in a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a case in which an optocoupler is added in a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
  • Applicant has contemplated how to improve the economics and performance by simplifying the device to stabilize the femtosecond laser when measuring the distance by using the composite wave of the femtosecond laser, free running without stabilizing the repetition rate instead of the conventional femtosecond laser
  • the present invention has been completed by using a femtosecond laser and adding a device for measuring the frequency of a free running femtosecond laser.
  • a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser may include a free running femtosecond laser light source 110, a light splitter 120, and a reference photodetector 130. ), A measurement photodetector 150, a measurement target 140, a frequency measuring unit 220, a phase measuring unit 230, a distance calculator 300, and a reference clock 210.
  • the free running femtosecond laser light source 110 is a laser light source used for distance measurement, and may be a laser that generates a laser pulse having a pulse width of femtosecond level and does not control the repetition rate at which the pulse is generated.
  • the free running femtosecond laser light source 110 is an optical fiber femtosecond laser having a center wavelength of 1550 nm, a bandwidth of 60 nm, and a pulse width of 150 fs, or a titanium: sapphire femtosecond laser having a center wavelength of 800 nm, a bandwidth of 100 nm, and a pulse width of 100 fs. Can be.
  • the optical splitter 120 is a device for splitting laser light into space, and includes a beam splitter, diffraction optics, a beam diffuser, a beam expander, and a fiber coupler. ) May be implemented.
  • the reference photodetector 130 may detect a portion of the laser light at the reference point and transmit the detected signal to the phase measurement unit 230 using a wired or wireless communication technology.
  • the detected signal may be an electrical signal.
  • the measurement target 140 is an object placed at a position for distance measurement, and preferably, a mirror or the like capable of reflecting laser light may be selected.
  • the distance calculator 300 may calculate distance information between the light splitter 120 and the measurement target by using the measured repetition rate, the phase difference, and the order of the synthesized wave.
  • the reference clock 210 is an atomic clock used to provide a clock to the frequency measuring unit 220 and the phase measuring unit 230.
  • the reference clock 210 has a frequency of 10 MHz and may be used to increase the accuracy and long-term stability of the distance measurement. . Since the free running femtosecond laser light source 110 is not stabilized in the atomic clock by using a resonator, even if a reference clock is not provided, distance measurement using a real-time synthesized wave crystal based on a free running femtosecond laser according to an embodiment of the present invention. The device may operate.
  • the laser light is emitted from the free running femtosecond laser light source 110, and the laser light emitted from the free running femtosecond laser light source 110 is reflected by the light splitter 120 from the reference light and the measurement target (that is, the measurement light). Measurement light which is directed to and reflected from the measurement target).
  • the signals detected by the detectors may be input to the phase measuring unit 230.
  • the distance calculator 300 may calculate distance information between the optical splitter 120 and the measurement target from the repetition rate, the phase difference, and the order of the synthesized wave.
  • the distance calculation unit 300 calculates the distance information as follows: This can be used.
  • the length corresponding to the integral multiple of the wavelength of the synthesized wave must be determined. In other words, it is determined how many synthesized wavelengths are needed to be closest to the distance to be measured, You must decide. remind The determination of the value can be determined by measuring twice with different repetition rates of the laser.
  • the wavelength of the initial synthesized wave ( Using) Next, change the repetition rate of the femtosecond laser and measure the wavelength of the synthesized wave Once again away After measuring and Alliance distance Wow Can be determined.
  • the limit of the maximum measurement distance at which the distance value can be determined as one is May appear. That is, the amount of change in repetition rate
  • the distance can be determined with a unique value within 1.5 km at 100 kHz, 15 km at 10 kHz, and 150 km at 1 kHz.
  • the maximum measurement distance, which can determine the distance measurement value is complementary to the measurement accuracy. In the actual experiment, the distance was determined as the only value within 1.35km when the measurement precision was 42 ⁇ m.
  • the distance can be measured without ambiguity, and the higher-order synthesized waves can be measured with higher resolution. By using both low-order and high-order synthesized waves simultaneously, longer distances can be measured with higher resolution.
  • the auxiliary measuring means may be a conventional distance measuring tool such as a tape measure.
  • the auxiliary measuring means that can be used up to 1.5 m should be able to produce measurements of less than 1.5 m error, which may be sufficient as a commonly used tape measure.
  • FIG. 2 is a block diagram of a case in which a mirror is omitted in a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. Comparing FIG. 1 and FIG. 2, it can be seen that the mirror positioned at the measurement target is omitted and replaced by the photodetector 150 for measurement.
  • the laser light is emitted from the free running femtosecond laser light source 110, and the laser light emitted from the free running femtosecond laser light source 110 is incident to the reference photodetector 130 by the light splitter 120. It is separated into the measurement light incident on the measuring photodetector 150. After the reference light is incident on the reference photodetector 130 and the measurement light is incident on the measurement photodetector 150, signals detected by the photodetectors are input to the phase measuring unit 230.
  • the phase measuring unit 230 mixes the detected reference light and the measurement light with the high frequency signal, respectively, and passes the mixed reference light and the mixed measurement light through the low pass filter to extract the reference synthesized wave and the measured synthesized wave, respectively.
  • the phase measurer 230 measures a phase difference between the synthesized reference light (ie, the reference synthesized wave) and the synthesized measurement light (ie, the measured synthesized wave), and the frequency measurer 220 measures the free running femtosecond laser in real time. While measuring the repetition rate, determine the order of the synthesized wave to be extracted.
  • the phase measurer 230 inputs the phase difference to the distance calculator 300
  • the frequency measurer 220 inputs the repetition rate and the order of the summation wave to the distance calculator 300.
  • the distance calculator 300 may calculate distance information between the optical splitter 120 and the measurement target from the repetition rate, the phase difference, and the order of the synthesized wave.
  • the distance calculation unit 300 calculates the distance information as follows: This can be used.
  • Is distance information determined by the difference in the optical path between the reference photodetector 130 and the measurement photodetector 150, Is a free running femtosecond laser Wavelength of difference wave, silver An integer value that, when multiplied by, produces the largest value that does not exceed the distance information, Is selected Synthesized Wave of Differential Reference Light and Selected Phase difference of the synthesized wave of the difference measurement light, Is the speed of light in the atmosphere ( speed of light in vacuum / refractive index of air), Is the repetition rate of the free running femtosecond laser.
  • Equation used in calculating distance information Except that, in the embodiment shown in FIG. The determination and the overall operation of the distance measuring apparatus corresponds to that described above with reference to FIG.
  • FIG. 3 is a block diagram when an optical coupler 160 is added to a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. Comparing FIG. 1 and FIG. 3, it can be seen that the optocoupler 160 is disposed between the free running femtosecond laser light source 110 and the light splitter 120.
  • the arrangement of the optical coupler 160 is to prevent an error caused by mixing the reference light and the measurement light by preventing the reference light and the measurement light from mixing with each other.
  • the optical coupler 160 is added in the distance measuring device using the free-running femtosecond laser-based real-time synthesized wave determination according to the embodiment of FIG. 3, the equations used in calculating distance information and synthesis Order of the wave and Determination and the overall operation of the distance measuring device is the same as the embodiment described above with reference to Figure 1, so a detailed description thereof will be omitted.
  • the operation principle of the distance measuring device shown in FIG. 4 is the same as that of the distance measuring device shown in FIG. 2, it may be sufficient to extend the above description of the distance measuring device shown in FIG. 2 to a plurality of measurement targets.
  • the multi-channel splitter 121 and Distance information of the first measurement target ( ) In the multi-channel phase measurement unit 231 The phase difference between the synthesized wave of the reference light and the synthesized wave of the measured light ), Such as Subscripts may be added to indicate that the variable is related to the first measurement target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention relates to a distance measurement device using a free running femtosecond laser-based real-time determination of a synthetic wave, which is capable of measuring a long distance with high resolution by real-time measurement of the wavelength and phase of a long-wavelength synthetic wave generated due to interference between frequency modes in a free running femtosecond laser. In the distance measurement device according to the present invention, a free running femtosecond laser light source emits laser light; a light splitting device splits the laser light emitted from the free running femtosecond laser light source into reference light and measurement light reflected from a measurement target; a reference light detector and a measurement light detector respectively detect the reference light and the measurement light, and respectively convert the reference light and the measurement light to electrical signals; a frequency measurement unit measures the repetition rate of the free running femtosecond laser and also determines the degree of the synthetic wave to be extracted; a phase measurement unit synthesizes the detected reference light and measurement light respectively with a high frequency signal, and measures a phase difference between the synthesized reference light and the synthesized measurement light; and a distance calculation unit calculates information regarding a distance between the light splitting device and the measurement target using the repetition rate, the degree of the synthetic wave and the phase difference.

Description

프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치Distance measuring device using real-time synthesized wave determination based on free running femtosecond laser
본 발명은 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에 관한 것으로, 프리러닝하는 펨토초 레이저에서 주파수 모드간의 간섭으로 생성된 합성파의 파장과 위상을 실시간으로 측정함으로써, 구성이 단순하면서도 고분해능으로 거리를 측정할 수 있는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에 관한 것이다.The present invention relates to a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser. The configuration is simple by measuring the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free running femtosecond laser. The present invention relates to a distance measuring device using a free-running femtosecond laser-based real-time synthesized wave crystal capable of measuring distance with high resolution.
본 발명은 펨토초 레이저의 수많은 모드간의 간섭으로부터 라디오파 대역의 긴 파장의 합성파를 생성하고, 이를 이용해서 거리를 측정하는 펨토초 레이저 합성파 간섭계(synthetic wavelength interferometer)와 관련된다.The present invention relates to a femtosecond laser synthetic wavelength interferometer which generates a long wavelength synthesized wave of a radio wave band from interference between numerous modes of a femtosecond laser and uses the distance to measure it.
일반적으로 펨토초 레이저 합성파 간섭계는 주파수 모드간의 간섭에 의하여 파장이 서로 다른 합성파들이 펨토초 레이저에서 생성되면, 이 가운데 측정거리에 적합한 특정한 파장의 합성파들을 선택하여, 선택된 합성파들이 간섭계의 기준팔(reference arm)과 측정팔(measurement arm)에서의 진행하는 과정을 비교하여 원하는 거리를 측정할 수 있다. In general, when femtosecond laser synthesized interferometers with different wavelengths are generated by a femtosecond laser due to interference between frequency modes, the synthesized waves having a specific wavelength suitable for the measurement distance are selected. The desired distance can be measured by comparing the progress of the reference arm and the measurement arm.
종래의 펨토초 레이저를 이용한 거리측정 방법에서는 선택된 합성파들의 파장이 시간에 따라 변화하지 않는 것으로 가정하였다. 그리고 선택된 합성파들의 파장은 펨토초 레이저 공진기의 광경로 길이에 의해서 결정되는 주파수 모드간 간격에 의존하기 때문에, 공진기의 광경로 길이를 일정하게 유지시키기 위한 기술이 필요하였다. In the conventional distance measuring method using a femtosecond laser, it is assumed that the wavelength of the selected synthesized waves does not change with time. Since the wavelength of the selected synthesized waves depends on the interval between frequency modes determined by the optical path length of the femtosecond laser resonator, a technique for keeping the optical path length of the resonator constant is required.
구체적으로 공진기의 길이와 주파수 모드간 간격의 관계에 대해서 설명하면, 주파수 모드간의 간격은 레이저 펄스가 생성되는 반복률(
Figure PCTKR2016005028-appb-I000001
)과 동일하고, 공진기의 구조에 따라 반복률(
Figure PCTKR2016005028-appb-I000002
)은
Figure PCTKR2016005028-appb-I000003
(원형) 또는
Figure PCTKR2016005028-appb-I000004
(선형)로 나타낼 수 있다. 여기서,
Figure PCTKR2016005028-appb-I000005
는 공진기 내부에서의 광속이고,
Figure PCTKR2016005028-appb-I000006
은 펨토초 레이저 공진기의 길이이다. 온도 및 환경의 변화로 인해서 공진기의 길이
Figure PCTKR2016005028-appb-I000007
이 변하게 되면, 펨토초 레이저의 반복률도 함께 변화하게 되는데, 이 경우 레이저 펄스가 원자시계에 위상 잠금될 수 있도록 레이저 공진기의 길이를 제어함으로써, 펨토초 레이저의 반복률을 안정화할 수 있다.
Specifically, the relationship between the length of the resonator and the interval between frequency modes will be described. The interval between frequency modes is the repetition rate at which the laser pulse is generated (
Figure PCTKR2016005028-appb-I000001
Same as), and the repetition rate (
Figure PCTKR2016005028-appb-I000002
)silver
Figure PCTKR2016005028-appb-I000003
(Round) or
Figure PCTKR2016005028-appb-I000004
It can be represented as (linear). here,
Figure PCTKR2016005028-appb-I000005
Is the luminous flux inside the resonator,
Figure PCTKR2016005028-appb-I000006
Is the length of the femtosecond laser resonator. Length of resonator due to changes in temperature and environment
Figure PCTKR2016005028-appb-I000007
When the change is made, the repetition rate of the femtosecond laser is also changed. In this case, the repetition rate of the femtosecond laser can be stabilized by controlling the length of the laser resonator so that the laser pulse can be phase locked to the atomic clock.
상기와 같은 원리를 통해서 펨토초 레이저 반복률의 주파수 안정도를 높일 수 있으므로, 종래의 펨토초 레이저를 이용한 거리측정 방법에서는 반복률이 안정화된 펨토초 레이저를 사용하고 있다. 다만, 반복률을 안정화시키기 위해서는, 공진기의 길이를 미세하게 제어할 수 있어야 하므로, 압전소자, 전압증폭기, 함수 발생기, 위상동기루프(phase locked loop)회로 등과 같은 복잡한 장치들이 필요하였다. Since the frequency stability of the femtosecond laser repetition rate can be increased through the above principle, the conventional femtosecond laser uses a femtosecond laser with a stable repetition rate in a distance measuring method using a femtosecond laser. However, in order to stabilize the repetition rate, since the length of the resonator must be finely controlled, complex devices such as piezoelectric elements, voltage amplifiers, function generators, and phase locked loop circuits are required.
그런데 상기의 장치들을 이용함으로써 높은 수준으로 반복률을 안정화하는 것이 가능하더라도, 압전소자의 구동범위가 10μm 이내의 수준으로 제한되기 때문에, 주변 환경의 온도변화가 수 ℃ 이상 발생할 때는 반복률을 안정화할 수 있는 제어범위를 벗어나게 되며, 더 심한 경우에는 펨토초 레이저 펄스의 생성조차도 불가능해지는 상황이 발생할 수 있다. 이와 같은 경우에는 종래의 펨토초 레이저를 이용한 거리측정 방법은 더 이상 사용이 불가능하게 된다.However, even if it is possible to stabilize the repetition rate to a high level by using the above devices, since the driving range of the piezoelectric element is limited to a level within 10 μm, it is possible to stabilize the repetition rate when the temperature change of the surrounding environment occurs several degrees or more. It can be out of control and, in more severe cases, even the generation of femtosecond laser pulses becomes impossible. In this case, the conventional distance measuring method using femtosecond lasers can no longer be used.
뿐만 아니라, 종래의 펨토초 레이저 합성파를 이용한 거리 측정 방법의 경우에는 전자기기나 광학기기에서 발생하는 누화(cross talk)에 의해 수 mm 이상의 주기적인 오차(cyclic error)도 발생한다.In addition, in the conventional distance measuring method using a femtosecond laser synthesis wave, a cyclic error of several mm or more occurs due to cross talk occurring in an electronic device or an optical device.
따라서, 펨토초 레이저 공진기의 길이 조절에 대한 한계를 극복하고, 전자기기나 광학기기의 누화에 따라 발생하는 주기적인 오차를 줄이기 위한 거리측정 방법이 필요하다.Accordingly, there is a need for a distance measuring method that overcomes limitations on the length control of a femtosecond laser resonator and reduces periodic errors caused by crosstalk of electronic devices and optical devices.
한국등록특허공보 제1448831호는 펨토초 레이저 기반의 합성파 간섭계를 이용하여 거리를 측정하는 장치로서, 펨토초 레이저 기반의 위상 잠금 합성파 간섭계를 이용하면서도 위상에 따른 비선형오차를 제거한 거리측정 기술을 개시하고 있다.Korean Patent Publication No. 1448831 is a device for measuring distance using a femtosecond laser-based synthesized wave interferometer, and discloses a distance measuring technique using a femtosecond laser-based phase locked synthesized wave interferometer and eliminates nonlinear errors according to phases. have.
다만, 펨토초 레이저 공진기의 길이 조절에 대한 한계는 극복하지 못하였다.However, the limitation on the length control of the femtosecond laser resonator could not be overcome.
이에 본 발명은 프리러닝하는 펨토초 레이저에서 주파수 모드간의 간섭으로 생성된 합성파의 파장과 위상을 실시간으로 측정함으로써, 구성이 단순하면서도 고분해능으로 거리를 측정할 수 있는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention measures the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free running femtosecond laser in real time, thereby realizing a free-running femtosecond laser-based real-time synthesized wave capable of measuring distance with high resolution. An object of the present invention is to provide a distance measuring device using crystals.
본 발명의 다른 목적들은 이하의 실시예에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.Other objects of the present invention will be readily understood through the following description of the embodiments.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 일 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는, 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원; 상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 측정표적으로부터 반사되는 측정광으로 분리하는 광분할기; 상기 기준광을 검출하는 기준용 광검출기; 상기 측정광을 검출하는 측정용 광검출기; 상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부; 검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광을 각각 저주파 통과 여과기에 통과시켜 추출된 기준 합성파와 측정 합성파의 위상차를 측정하는 위상 측정부; 상기 반복률, 상기 위상차 및 상기 합성파의 차수를 이용하여 상기 광분할기와 상기 측정표적간의 거리정보를 산출하는 거리 산출부;를 포함하고, 상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정될 수 있다.According to an aspect of the present invention, there is provided a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser, comprising: a free running femtosecond laser light source for emitting laser light; A light splitter configured to split the laser light into reference light and measurement light reflected from a measurement target; A reference photodetector for detecting the reference light; A measurement photodetector for detecting the measurement light; A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order; A phase measuring unit configured to mix the detected reference light and the measured light with a high frequency signal, respectively, and pass the mixed reference light and the mixed measurement light through a low pass filter to measure a phase difference between the extracted reference synthesized wave and the measured synthesized wave; And a distance calculator configured to calculate distance information between the optical splitter and the measurement target using the repetition rate, the phase difference, and the order of the synthesized wave, wherein the high frequency signal is based on the repetition rate and the order of the synthesized wave. Can be determined.
또한, 상기 거리정보는 다음 수학식,In addition, the distance information is the following equation,
Figure PCTKR2016005028-appb-I000008
에 의해 산출될 수 있다.
Figure PCTKR2016005028-appb-I000008
Can be calculated by
여기서,
Figure PCTKR2016005028-appb-I000009
: 상기 거리정보,
here,
Figure PCTKR2016005028-appb-I000009
: The distance information,
Figure PCTKR2016005028-appb-I000010
: 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000011
차 합성파의 파장,
Figure PCTKR2016005028-appb-I000010
: Free-running femtosecond laser
Figure PCTKR2016005028-appb-I000011
Wavelength of difference wave,
Figure PCTKR2016005028-appb-I000012
: 대기 중 빛의 속도,
Figure PCTKR2016005028-appb-I000012
: Speed of light in the atmosphere,
Figure PCTKR2016005028-appb-I000013
: 프리러닝 펨토초 레이저의 반복률,
Figure PCTKR2016005028-appb-I000013
= Repetition rate of a free running femtosecond laser,
Figure PCTKR2016005028-appb-I000014
:
Figure PCTKR2016005028-appb-I000015
에 곱해졌을 때, 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000014
:
Figure PCTKR2016005028-appb-I000015
An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
Figure PCTKR2016005028-appb-I000016
: 선택된
Figure PCTKR2016005028-appb-I000017
차 기준광의 합성파와 선택된
Figure PCTKR2016005028-appb-I000018
차 측정광의 합성파의 위상차이다.
Figure PCTKR2016005028-appb-I000016
: Selected
Figure PCTKR2016005028-appb-I000017
Synthesized Wave of Differential Reference Light and Selected
Figure PCTKR2016005028-appb-I000018
The phase difference of the synthesized wave of the difference measurement light.
또한, 상기 측정표적은 거울일 수 있다.In addition, the measurement target may be a mirror.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 다른 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는, 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원; 상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 측정표적에 입사되는 측정광으로 분리하는 광분할기; 상기 기준광을 검출하는 기준용 광검출기; 상기 측정광을 검출하는 측정용 광검출기; 상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부; 검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광을 각각 저주파 통과 여과기에 통과시켜 추출된 기준 합성파와 측정 합성파의 위상차를 측정하는 위상 측정부; 및 상기 반복률, 상기 위상차 및 상기 합성파의 차수를 이용하여 상기 광분할기와 상기 측정표적간의 거리정보를 산출하는 거리 산출부;를 포함하고, 상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정될 수 있다.According to another preferred embodiment of the present invention for achieving the above object, a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser, Free running femtosecond laser light source for emitting a laser light; A light splitter configured to split the laser light into a reference light and a measurement light incident on a measurement target; A reference photodetector for detecting the reference light; A measurement photodetector for detecting the measurement light; A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order; A phase measuring unit configured to mix the detected reference light and the measured light with a high frequency signal, respectively, and pass the mixed reference light and the mixed measurement light through a low pass filter to measure a phase difference between the extracted reference synthesized wave and the measured synthesized wave; And a distance calculator configured to calculate distance information between the optical splitter and the measurement target using the repetition rate, the phase difference, and the order of the synthesized wave, wherein the high frequency signal is based on the repetition rate and the order of the synthesized wave. Can be determined.
또한, 상기 거리정보는 다음 수학식,In addition, the distance information is the following equation,
Figure PCTKR2016005028-appb-I000019
에 의해 산출될 수 있다.
Figure PCTKR2016005028-appb-I000019
Can be calculated by
여기서,
Figure PCTKR2016005028-appb-I000020
: 상기 거리정보,
here,
Figure PCTKR2016005028-appb-I000020
: The distance information,
Figure PCTKR2016005028-appb-I000021
: 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000022
차 합성파의 파장
Figure PCTKR2016005028-appb-I000021
: Free-running femtosecond laser
Figure PCTKR2016005028-appb-I000022
Wavelength of Synthetic Wave
Figure PCTKR2016005028-appb-I000023
: 대기 중 빛의 속도
Figure PCTKR2016005028-appb-I000023
: Speed of light in the atmosphere
Figure PCTKR2016005028-appb-I000024
: 프리러닝 펨토초 레이저의 반복률,
Figure PCTKR2016005028-appb-I000024
= Repetition rate of a free running femtosecond laser,
Figure PCTKR2016005028-appb-I000025
:
Figure PCTKR2016005028-appb-I000026
에 곱해졌을 때, 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000025
:
Figure PCTKR2016005028-appb-I000026
An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
Figure PCTKR2016005028-appb-I000027
: 선택된
Figure PCTKR2016005028-appb-I000028
차 기준광의 합성파와 선택된
Figure PCTKR2016005028-appb-I000029
차 측정광의 합성파의 위상차이다.
Figure PCTKR2016005028-appb-I000027
: Selected
Figure PCTKR2016005028-appb-I000028
Synthesized Wave of Differential Reference Light and Selected
Figure PCTKR2016005028-appb-I000029
The phase difference of the synthesized wave of the difference measurement light.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 또 다른 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는, 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원; 상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 서로 다른 측정표적들에 입사되는 둘 이상의 측정광들로 분리하는 다채널광분할기; 상기 기준광을 검출하는 기준용 광검출기; 상기 측정광들과 일대일 대응이 되어, 상기 측정광을 각각 검출하는 둘 이상의 측정용 광검출기들로 구성된 다채널 측정용 광검출기; 상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부; 검출된 기준광 및 측정광들을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광들을 저주파 통과 여과기에 통과시켜 추출된 기준 합성파들과 각각의 측정 합성파들의 위상차들을 측정하는 다채널위상 측정부; 상기 반복률, 상기 위상차들 및 상기 합성파의 차수를 이용하여, 상기 광분할기와 각각의 상기 위상차와 관련된 측정광이 입사한 측정표적들간의 각각의 거리정보들을 산출하는 거리 산출부;를 포함하고 상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정될 수 있다.According to another preferred embodiment of the present invention for achieving the above object, a distance measuring apparatus using a real-time synthesized wave crystal based on a free running femtosecond laser, Free running femtosecond laser light source for emitting a laser light; A multi-channel light splitter configured to split the laser light into two or more measurement beams incident to the reference light and to different measurement targets; A reference photodetector for detecting the reference light; A multi-channel photodetector comprising one or more measurement photodetectors each having one-to-one correspondence with the measurement lights and detecting the measurement light; A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order; A multi-channel phase measuring unit for mixing the detected reference light and measurement light with the high frequency signal, respectively, and passing the mixed reference light and the mixed measurement light through a low pass filter to measure phase differences between the extracted reference synthesized waves and the respective measured synthesized waves. ; And a distance calculator configured to calculate respective distance information between the light splitter and the measurement targets to which the measurement light associated with each phase difference is incident using the repetition rate, the phase differences, and the order of the synthesized wave. The high frequency signal may be determined based on the repetition rate and the order of the synthesized wave.
또한, 상기 거리정보들은 다음 수학식,In addition, the distance information is the following equation,
Figure PCTKR2016005028-appb-I000030
에 의해 산출될 수 있다.
Figure PCTKR2016005028-appb-I000030
Can be calculated by
여기서,
Figure PCTKR2016005028-appb-I000031
: 상기 거리정보,
here,
Figure PCTKR2016005028-appb-I000031
: The distance information,
Figure PCTKR2016005028-appb-I000032
Figure PCTKR2016005028-appb-I000032
Figure PCTKR2016005028-appb-I000033
: 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000034
차 합성파의 파장,
Figure PCTKR2016005028-appb-I000033
: Free-running femtosecond laser
Figure PCTKR2016005028-appb-I000034
Wavelength of difference wave,
Figure PCTKR2016005028-appb-I000035
: 대기 중 빛의 속도,
Figure PCTKR2016005028-appb-I000035
: Speed of light in the atmosphere,
Figure PCTKR2016005028-appb-I000036
: 프리러닝 펨토초 레이저의 반복률,
Figure PCTKR2016005028-appb-I000036
= Repetition rate of a free running femtosecond laser,
Figure PCTKR2016005028-appb-I000037
:
Figure PCTKR2016005028-appb-I000038
에 곱해졌을 때,
Figure PCTKR2016005028-appb-I000039
번째 측정표적의 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000037
:
Figure PCTKR2016005028-appb-I000038
When multiplied by,
Figure PCTKR2016005028-appb-I000039
An integer value that generates the largest value not exceeding the value of the distance information of the first measurement target,
Figure PCTKR2016005028-appb-I000040
:
Figure PCTKR2016005028-appb-I000041
차 합성파로
Figure PCTKR2016005028-appb-I000042
번째 측정표적의 거리를 측정하였을 때, 기준광의 합성파와 측정광의 합성파의 위상차이다.
Figure PCTKR2016005028-appb-I000040
:
Figure PCTKR2016005028-appb-I000041
Car Synthetic Wave
Figure PCTKR2016005028-appb-I000042
It is the phase difference between the synthesized wave of the reference light and the synthesized wave of the measured light when the distance of the second measurement target is measured.
또한, 상기 프리러닝 펨토초 레이저 광원은 1550nm의 중심 파장, 50nm의 대역폭, 100fs의 펄스폭을 가지는 어븀 광섬유 펨토초 레이저일 수 있다.The free-running femtosecond laser light source may be an erbium fiber femtosecond laser having a center wavelength of 1550 nm, a bandwidth of 50 nm, and a pulse width of 100 fs.
또한, 상기 프리러닝 펨토초 레이저 광원은 1030nm의 중심 파장, 50nm의 대역폭, 50fs의 펄스폭을 가지는 이터븀 광섬유 펨토초 레이저일 수 있다.Further, the free running femtosecond laser light source may be an ytterbium fiber femtosecond laser having a center wavelength of 1030 nm, a bandwidth of 50 nm, and a pulse width of 50 fs.
또한, 상기 프리러닝 펨토초 레이저 광원은 800nm의 중심 파장, 100nm의 대역폭, 10fs의 펄스폭을 가지는 티타늄:사파이어 펨토초 레이저일 수 있다.The free running femtosecond laser light source may be a titanium: sapphire femtosecond laser having a center wavelength of 800 nm, a bandwidth of 100 nm, and a pulse width of 10 fs.
이상에서 살펴본 바와 같이 본 발명은 프리러닝하는 펨토초 레이저에서 주파수 모드간의 간섭으로 생성된 합성파의 파장과 위상을 실시간으로 측정함으로써, 구성이 단순하면서도 고분해능으로 거리를 측정할 수 있는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치를 제공할 수 있다.As described above, the present invention measures the wavelength and phase of a synthesized wave generated by interference between frequency modes in a free-running femtosecond laser in real time, so that the configuration is simple and high-resolution femtosecond laser-based distance can be measured. It is possible to provide a distance measuring device using a real-time synthesized wave determination.
또한, 펨토초 레이저 공진기의 길이 조절의 한계를 극복하고, 전자기기나 광학기기에 의한 주기적인 오차를 줄일 수 있다. In addition, it is possible to overcome the limitation of the length control of the femtosecond laser resonator, and to reduce the periodic error caused by the electronic device or the optical device.
뿐만 아니라, 한 대의 레이저만을 가지고 여러 지점의 거리를 동시에 측정 할 수 있는 기능을 손쉽게 제공할 수 있다. In addition, it can easily provide the ability to measure the distance of multiple points simultaneously with only one laser.
도 1은 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치의 블록도이다.1 is a block diagram of a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 거울이 생략된 경우의 블록도이다.FIG. 2 is a block diagram of a case in which a mirror is omitted in a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 광커플러가 추가된 경우의 블록도이다.3 is a block diagram of a case in which an optocoupler is added in a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치를 이용하여 여러 지점에서 거리를 측정하는 경우에 대한 개요도이다.FIG. 4 is a schematic diagram illustrating a case where distances are measured at various points using a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art.
본 출원인은 펨토초레이저의 합성파를 이용하여 거리를 측정할 때, 펨토초레이저를 안정화시키는 장치를 간소화하여 경제성 및 성능을 제고하는 방법을 고민한 결과, 기존의 펨토초레이저 대신 반복률을 안정화 하지 않는 프리러닝 펨토초 레이저를 사용하고, 프리러닝 펨토초 레이저의 주파수를 측정하는 장치를 추가하여 본 발명을 완성하기에 이르렀다.Applicant has contemplated how to improve the economics and performance by simplifying the device to stabilize the femtosecond laser when measuring the distance by using the composite wave of the femtosecond laser, free running without stabilizing the repetition rate instead of the conventional femtosecond laser The present invention has been completed by using a femtosecond laser and adding a device for measuring the frequency of a free running femtosecond laser.
이하에서 첨부된 도면을 참조하여 본 발명의 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치를 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser of the present invention will be described in detail.
도 1은 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치의 블록도이다. 도 1을 참조하면 본 발명의 일 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는 프리러닝 펨토초 레이저 광원(110), 광분할기(120), 기준용 광검출기(130), 측정용 광검출기(150), 측정표적(140), 주파수 측정부(220), 위상 측정부(230), 거리 산출부(300) 및 기준시계(210)를 포함하여 구성될 수 있다.1 is a block diagram of a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. Referring to FIG. 1, a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention may include a free running femtosecond laser light source 110, a light splitter 120, and a reference photodetector 130. ), A measurement photodetector 150, a measurement target 140, a frequency measuring unit 220, a phase measuring unit 230, a distance calculator 300, and a reference clock 210.
프리러닝 펨토초 레이저 광원(110)은 거리측정을 위해서 사용되는 레이저 광원으로, 펨토초 수준의 펄스폭을 가지는 레이저 펄스를 생성하며 펄스가 생성되는 반복률을 제어하지 않은 레이저일 수 있다. 상기 프리러닝 펨토초 레이저 광원(110)은 1550nm의 중심 파장, 60nm의 대역폭, 150fs의 펄스폭을 가지는 광섬유 펨토초 레이저이거나 800nm의 중심 파장, 100nm의 대역폭, 100fs의 펄스폭을 가지는 티타늄:사파이어 펨토초 레이저일 수 있다.The free running femtosecond laser light source 110 is a laser light source used for distance measurement, and may be a laser that generates a laser pulse having a pulse width of femtosecond level and does not control the repetition rate at which the pulse is generated. The free running femtosecond laser light source 110 is an optical fiber femtosecond laser having a center wavelength of 1550 nm, a bandwidth of 60 nm, and a pulse width of 150 fs, or a titanium: sapphire femtosecond laser having a center wavelength of 800 nm, a bandwidth of 100 nm, and a pulse width of 100 fs. Can be.
광분할기(120)는 레이저 광을 공간상으로 분할하는 장치로서 빔스플리터(beam splitter), 회절광학소자(diffraction optics), 빔 확산기(beam diffuser), 빔확장기(beam expander), 광섬유 커플러(fiber coupler) 등을 이용하여 구현될 수 있다. The optical splitter 120 is a device for splitting laser light into space, and includes a beam splitter, diffraction optics, a beam diffuser, a beam expander, and a fiber coupler. ) May be implemented.
기준용 광검출기(130)는 기준지점에서 레이저 광의 일부를 검출하고, 검출된 신호를 유선 또는 무선통신 기술을 이용하여 위상 측정부(230)로 전송할 수 있다. 여기서 상기 검출된 신호는 전기적인 신호일 수 있다.The reference photodetector 130 may detect a portion of the laser light at the reference point and transmit the detected signal to the phase measurement unit 230 using a wired or wireless communication technology. The detected signal may be an electrical signal.
측정용 광검출기(150)는 측정지점에서 레이저 광의 일부를 검출하고, 검출된 신호를 유선 또는 무선통신 기술을 이용하여 위상 측정부(230)로 전송할 수 있다. 여기서 상기 검출된 신호는 전기적인 신호일 수 있다.The measurement photodetector 150 may detect a portion of the laser light at the measurement point and transmit the detected signal to the phase measurement unit 230 using a wired or wireless communication technology. The detected signal may be an electrical signal.
측정표적(140)은 거리측정을 위한 위치에 놓여지는 물체로서, 바람직하게는 레이저 광을 반사할 수 있는 거울 등이 선택될 수 있다. The measurement target 140 is an object placed at a position for distance measurement, and preferably, a mirror or the like capable of reflecting laser light may be selected.
주파수 측정부(220)는 레이저 광으로부터 프리러닝 펨토초 레이저의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정할 수 있다. 상기 반복률과 상기 합성파의 차수의 곱은 실제로 거리측정을 위해서 사용되는 합성파의 주파수가 되고, 합성파의 주파수에 의해서 합성파의 파장도 계산될 수 있다.The frequency measuring unit 220 may measure the repetition rate of the free running femtosecond laser from the laser light and determine the order of the synthesized wave to be extracted. The product of the repetition rate and the order of the synthesized wave is actually the frequency of the synthesized wave used for distance measurement, and the wavelength of the synthesized wave can also be calculated by the frequency of the synthesized wave.
위상 측정부(230)는 검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 저주파 통과 여과기에 통과시켜 각각 기준 합성파 및 측정 합성파를 추출하고, 상기 기준 합성파와 상기 측정 합성파의 위상차를 측정할 수 있다. 상기 고주파 신호는 상기 반복률과 상기 합성파의 차수의 곱에 근접한 것으로, 바람직하게는 상기 고주파 신호의 주파수와 상기 곱의 차이가 저주파 통과 여과기의 통과 대역의 범위보다 작은 것이 바람직하다. The phase measuring unit 230 mixes the detected reference light and the measured light with high frequency signals, passes through a low pass filter, extracts the reference synthesized wave and the measured synthesized wave, respectively, and calculates a phase difference between the reference synthesized wave and the measured synthesized wave. It can be measured. The high frequency signal is close to the product of the repetition rate and the order of the synthesized wave, and preferably, the difference between the frequency and the product of the high frequency signal is smaller than the range of the pass band of the low pass filter.
거리 산출부(300)는 측정된 상기 반복률, 상기 위상차 및 상기 합성파의 차수를 이용하여 상기 광분할기(120)와 상기 측정표적간의 거리정보를 산출할 수 있다. The distance calculator 300 may calculate distance information between the light splitter 120 and the measurement target by using the measured repetition rate, the phase difference, and the order of the synthesized wave.
기준시계(210)는 주파수 측정부(220)와 위상 측정부(230)에 클럭을 제공하기 위해서 사용되는 원자시계로서, 10MHz의 진동수를 가지며, 거리측정의 정확도 및 장기 안정도를 높이기 위해 사용될 수 있다. 상기 프리러닝 펨토초 레이저 광원(110)의 경우, 공진기를 이용하여 원자시계에 안정화시키지는 않으므로, 기준시계가 구비되지 않더라도 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는 동작할 수 있다.The reference clock 210 is an atomic clock used to provide a clock to the frequency measuring unit 220 and the phase measuring unit 230. The reference clock 210 has a frequency of 10 MHz and may be used to increase the accuracy and long-term stability of the distance measurement. . Since the free running femtosecond laser light source 110 is not stabilized in the atomic clock by using a resonator, even if a reference clock is not provided, distance measurement using a real-time synthesized wave crystal based on a free running femtosecond laser according to an embodiment of the present invention. The device may operate.
상기 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치의 동작은 다음과 같다. The operation of the distance measuring apparatus using the real-time synthesized wave determination based on the free running femtosecond laser according to the embodiment of the present invention is as follows.
먼저 프리러닝 펨토초 레이저 광원(110)에서 레이저 광을 방사하고, 상기 프리러닝 펨토초 레이저 광원(110)으로부터 방사되는 레이저 광은 광분할기(120)에 의해 기준광 및 측정표적으로부터 반사되는 측정광(즉, 측정표적을 향하고 이로부터 반사되는 측정광)으로 분리된다. 다음으로 기준용 광검출기(130)에 기준광이 입사되고, 측정용 광검출기(150)에 측정광이 입사된 후에, 상기 검출기들에서 검출된 신호들은 위상 측정부(230)에 입력될 수 있다.First, the laser light is emitted from the free running femtosecond laser light source 110, and the laser light emitted from the free running femtosecond laser light source 110 is reflected by the light splitter 120 from the reference light and the measurement target (that is, the measurement light). Measurement light which is directed to and reflected from the measurement target). Next, after the reference light is incident on the reference photodetector 130 and the measurement light is incident on the measurement photodetector 150, the signals detected by the detectors may be input to the phase measuring unit 230.
그 다음으로 위상 측정부(230)는 입력된 상기 검출된 신호들로부터 합성된 기준광(즉, 기준 합성파)과 합성된 측정광(즉, 측정 합성파) 간의 위상차를 측정하고, 주파수 측정부(220)는 실시간으로 프리러닝 펨토초 레이저의 반복률을 측정하면서 추출하고자 하는 합성파의 차수
Figure PCTKR2016005028-appb-I000043
을 결정한다. 그 후, 위상 측정부(230)는 상기 위상차를 거리 산출부(300)에 입력하고, 주파수 측정부(220)는 상기 반복률 및 상기 합상파의 차수를 거리 산출부(300)에 입력할 수 있다. 여기서, 합성파의 차수
Figure PCTKR2016005028-appb-I000044
은 최대 측정 거리의 한계와 측정 정밀도를 고려하여 결정될 수 있으며, 측정 정밀도는
Figure PCTKR2016005028-appb-I000045
차 합성파 파장의 길이와 위상 측정부(230)의 분해능에 의해 결정된다. 일반적으로 상용 위상 측정기를 통해 얻을 수 있는 위상 측정 분해능은 0.01°(=1/36000) 수준이다. 이를 고려하여, 펄스 반복률
Figure PCTKR2016005028-appb-I000046
이 100MHz 인 경우, 10μm 수준의 측정 정밀도를 얻기 위해서는 4차 이상의 합성파가 필요하였다.
Next, the phase measuring unit 230 measures the phase difference between the reference light (that is, the reference synthesized wave) and the synthesized measurement light (that is, the measured synthesized wave) synthesized from the detected signals. 220) measures the repetition rate of the free running femtosecond laser in real time
Figure PCTKR2016005028-appb-I000043
Determine. Thereafter, the phase measurer 230 may input the phase difference to the distance calculator 300, and the frequency measurer 220 may input the repetition rate and the order of the summation wave to the distance calculator 300. . Where the order of the synthesized waves
Figure PCTKR2016005028-appb-I000044
Can be determined in consideration of the limit of the maximum measurement distance and the measurement accuracy.
Figure PCTKR2016005028-appb-I000045
It is determined by the length of the difference wavelength of the synthesized wave and the resolution of the phase measurement unit 230. Typically, the phase measurement resolution obtained with a commercial phase meter is around 0.01 ° (= 1/36000). With this in mind, pulse repetition rate
Figure PCTKR2016005028-appb-I000046
In the case of 100 MHz, the fourth-order synthesized wave was required to obtain measurement accuracy of 10 μm.
최종적으로 거리 산출부(300)는 상기 반복률, 상기 위상차 및 상기 합성파의 차수로부터 광분할기(120)와 측정표적간의 거리정보를 산출할 수 있다. Finally, the distance calculator 300 may calculate distance information between the optical splitter 120 and the measurement target from the repetition rate, the phase difference, and the order of the synthesized wave.
이 때, 거리 산출부(300)가 거리정보를 산출함에 있어서 다음과 같은 수학식
Figure PCTKR2016005028-appb-I000047
이 사용될 수 있다.
At this time, the distance calculation unit 300 calculates the distance information as follows:
Figure PCTKR2016005028-appb-I000047
This can be used.
여기서,
Figure PCTKR2016005028-appb-I000048
는 기준용 광검출기(130)와 측정용 광검출기(150)의 광경로 차로 결정되는 거리정보이며,
Figure PCTKR2016005028-appb-I000049
는 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000050
차 합성파의 파장,
Figure PCTKR2016005028-appb-I000051
Figure PCTKR2016005028-appb-I000052
에 곱해졌을 때 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000053
은 선택된
Figure PCTKR2016005028-appb-I000054
차 기준광의 합성파와 선택된
Figure PCTKR2016005028-appb-I000055
차 측정광의 합성파의 위상차,
Figure PCTKR2016005028-appb-I000056
는 대기 중 빛의 속도(= 진공 중의 빛의 속도/대기의 굴절률),
Figure PCTKR2016005028-appb-I000057
은 프리러닝 펨토초 레이저의 반복률이다. 여기서, 상기 위상차는 측정광이 기준광보다 광분할기(120)와 측정표적간의 거리를 왕복하여 더 진행하였기 때문에 발생한 것일 수 있다.
here,
Figure PCTKR2016005028-appb-I000048
Is distance information determined by the difference in the optical path between the reference photodetector 130 and the measurement photodetector 150,
Figure PCTKR2016005028-appb-I000049
Is a free running femtosecond laser
Figure PCTKR2016005028-appb-I000050
Wavelength of difference wave,
Figure PCTKR2016005028-appb-I000051
silver
Figure PCTKR2016005028-appb-I000052
An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
Figure PCTKR2016005028-appb-I000053
Is selected
Figure PCTKR2016005028-appb-I000054
Synthesized Wave of Differential Reference Light and Selected
Figure PCTKR2016005028-appb-I000055
Phase difference of the synthesized wave of the difference measurement light,
Figure PCTKR2016005028-appb-I000056
Is the speed of light in the atmosphere (= speed of light in vacuum / refractive index of air),
Figure PCTKR2016005028-appb-I000057
Is the repetition rate of the free running femtosecond laser. Here, the phase difference may be generated because the measurement light travels further by reciprocating the distance between the light splitter 120 and the measurement target than the reference light.
거리 산출부(300)에 제공되지 않은
Figure PCTKR2016005028-appb-I000058
을 결정하는 방법에 대해서 이하에서 자세히 설명하고자 한다.
Not provided to the distance calculator 300
Figure PCTKR2016005028-appb-I000058
How to determine the will be described in detail below.
합성파의 파장보다 긴 거리를 측정하는 경우에는 측정되는 위상이 2π마다 반복되어 나타나기 때문에, 합성파 파장의 정수배에 해당하는 길이를 결정해야 한다. 즉, 측정하고자 하는 거리에 가장 근접하기 위해서는 몇 개의 합성파의 파장이 필요한지를 판단하고, 이를 나타내는 값을
Figure PCTKR2016005028-appb-I000059
으로 결정해야 한다. 상기
Figure PCTKR2016005028-appb-I000060
값의 결정은 레이저의 반복률을 다르게 하여 두 번 측정함으로써 결정할 수 있다.
In the case of measuring a distance longer than the wavelength of the synthesized wave, since the measured phase appears repeatedly every 2π, the length corresponding to the integral multiple of the wavelength of the synthesized wave must be determined. In other words, it is determined how many synthesized wavelengths are needed to be closest to the distance to be measured,
Figure PCTKR2016005028-appb-I000059
You must decide. remind
Figure PCTKR2016005028-appb-I000060
The determination of the value can be determined by measuring twice with different repetition rates of the laser.
Figure PCTKR2016005028-appb-I000061
값을 결정하기 위해서, 초기 합성파의 파장(
Figure PCTKR2016005028-appb-I000062
)을 이용하여 거리
Figure PCTKR2016005028-appb-I000063
을 측정하고, 다음으로 펨토초 레이저의 반복률을 변경하여 파장이 다른 합성파의 파장(
Figure PCTKR2016005028-appb-I000064
)으로 다시 한 번 거리
Figure PCTKR2016005028-appb-I000065
를 측정한 후에,
Figure PCTKR2016005028-appb-I000066
Figure PCTKR2016005028-appb-I000067
을 연립하여 거리
Figure PCTKR2016005028-appb-I000068
Figure PCTKR2016005028-appb-I000069
을 결정할 수 있다.
Figure PCTKR2016005028-appb-I000061
To determine the value, the wavelength of the initial synthesized wave (
Figure PCTKR2016005028-appb-I000062
Using)
Figure PCTKR2016005028-appb-I000063
Next, change the repetition rate of the femtosecond laser and measure the wavelength of the synthesized wave
Figure PCTKR2016005028-appb-I000064
Once again away
Figure PCTKR2016005028-appb-I000065
After measuring
Figure PCTKR2016005028-appb-I000066
and
Figure PCTKR2016005028-appb-I000067
Alliance distance
Figure PCTKR2016005028-appb-I000068
Wow
Figure PCTKR2016005028-appb-I000069
Can be determined.
덧붙이면, 서로 다른 파장의 합성파를 이용하여 두 번 측정을 수행하였을 때, 거리 값이 하나로 결정될 수 있는 최대 측정 거리의 한계는
Figure PCTKR2016005028-appb-I000070
로 나타날 수 있다. 즉, 반복률의 변화량
Figure PCTKR2016005028-appb-I000071
이 100kHz일 때 1.5km, 10kHz일 때 15km, 1kHz일 때 150km 이내에서 유일한 값으로 거리 결정이 가능하다. 거리 측정값을 하나로 결정할 수 있는 최대 측정 거리는 측정 정밀도와 상보적 관계에 있으며, 실제 실험에서는 측정 정밀도가 42μm일 때 1.35km 이내에서 유일한 값으로 거리를 결정하였다. 낮은 차수의 합성파를 사용할 경우 모호성 없이 측정할 수 있는 거리가 길어지며 높은 차수의 합성파를 사용할수록 고분해능으로 거리 측정이 가능하다. 낮은 차수와 높은 차수의 합성파를 동시에 사용하면 보다 긴 거리를 고분해능으로 측정할 수 있다.
In addition, when two measurements are made using synthesized waves of different wavelengths, the limit of the maximum measurement distance at which the distance value can be determined as one is
Figure PCTKR2016005028-appb-I000070
May appear. That is, the amount of change in repetition rate
Figure PCTKR2016005028-appb-I000071
The distance can be determined with a unique value within 1.5 km at 100 kHz, 15 km at 10 kHz, and 150 km at 1 kHz. The maximum measurement distance, which can determine the distance measurement value, is complementary to the measurement accuracy. In the actual experiment, the distance was determined as the only value within 1.35km when the measurement precision was 42μm. When using low-order synthesized waves, the distance can be measured without ambiguity, and the higher-order synthesized waves can be measured with higher resolution. By using both low-order and high-order synthesized waves simultaneously, longer distances can be measured with higher resolution.
Figure PCTKR2016005028-appb-I000072
값의 결정은 초기에 한 번만 결정하면 충분하며, 상기와 같은 두 식을 연립하는 방법뿐만 아니라, 분해능은 낮지만 긴 거리를 측정할 수 있는 다른 보조 측정 수단을 사용하여
Figure PCTKR2016005028-appb-I000073
값을 결정할 수도 있다. 여기서, 보조 측정 수단은 줄자와 같은 종래의 거리 측정 도구일 수도 있다. 상기 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서, 1차 합성파의 파장이 3m(
Figure PCTKR2016005028-appb-I000074
=100MHz)일 때, 최대 1.5m 사용될 수 있는 보조 측정 수단은 1.5m의 오차 이하의 측정값을 생성할 수 있어야 하는데, 일반적으로 사용되는 줄자로 충분할 수 있다.
Figure PCTKR2016005028-appb-I000072
Determination of the value is sufficient only once in the initial stage, and not only by combining the above two equations, but also by using other auxiliary measuring means that can measure long distances with low resolution.
Figure PCTKR2016005028-appb-I000073
You can also determine the value. Here, the auxiliary measuring means may be a conventional distance measuring tool such as a tape measure. In the distance measuring device using the real-time synthesized wave determination based on the free running femtosecond laser according to the embodiment of the present invention, the wavelength of the primary synthesized wave is 3m (
Figure PCTKR2016005028-appb-I000074
= 100 MHz), the auxiliary measuring means that can be used up to 1.5 m should be able to produce measurements of less than 1.5 m error, which may be sufficient as a commonly used tape measure.
도 2는 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 거울이 생략된 경우의 블록도이다. 도 1과 도 2를 비교하면 측정표적에 위치했던 거울이 생략되고 측정용 광검출기(150)로 대체된 것을 알 수 있다. 도 2에 나타난 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 거울이 생략된 경우의 동작은 다음과 같다. FIG. 2 is a block diagram of a case in which a mirror is omitted in a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. Comparing FIG. 1 and FIG. 2, it can be seen that the mirror positioned at the measurement target is omitted and replaced by the photodetector 150 for measurement. In the distance measuring apparatus using the free-running femtosecond laser-based real-time synthesized wave crystal according to the embodiment of the present invention shown in FIG.
먼저 프리러닝 펨토초 레이저 광원(110)에서 레이저 광을 방사하고, 상기 프리러닝 펨토초 레이저 광원(110)으로부터 방사되는 레이저 광은 광분할기(120)에 의해 기준용 광검출기(130)에 입사되는 기준광 및 측정용 광검출기(150)에 입사되는 측정광으로 분리된다. 기준용 광검출기(130)에 기준광이 입사되고, 측정용 광검출기(150)에 측정광이 입사된 후, 상기 광검출기들에 의해 검출된 신호들은 위상 측정부(230)에 입력된다.First, the laser light is emitted from the free running femtosecond laser light source 110, and the laser light emitted from the free running femtosecond laser light source 110 is incident to the reference photodetector 130 by the light splitter 120. It is separated into the measurement light incident on the measuring photodetector 150. After the reference light is incident on the reference photodetector 130 and the measurement light is incident on the measurement photodetector 150, signals detected by the photodetectors are input to the phase measuring unit 230.
그 다음으로 위상 측정부(230)는 검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광을 각각 저주파 통과 여과기에 통과시켜 기준 합성파 및 측정 합성파를 추출한다. 그리고 위상 측정부(230)는 합성된 기준광(즉, 기준 합성파)과 합성된 측정광(즉, 측정 합성파)의 위상차를 측정하고, 주파수 측정부(220)는 실시간으로 프리러닝 펨토초 레이저의 반복률을 측정하면서 추출하고자 하는 합성파의 차수를 결정한다. 그 후, 위상 측정부(230)는 상기 위상차를 거리 산출부(300)에 입력하고, 주파수 측정부(220)는 상기 반복률 및 상기 합상파의 차수를 거리 산출부(300)에 입력한다. 최종적으로 거리 산출부(300)는 상기 반복률, 상기 위상차 및 상기 합성파의 차수로부터 광분할기(120)와 측정표적간의 거리정보를 산출할 수 있다. Next, the phase measuring unit 230 mixes the detected reference light and the measurement light with the high frequency signal, respectively, and passes the mixed reference light and the mixed measurement light through the low pass filter to extract the reference synthesized wave and the measured synthesized wave, respectively. . The phase measurer 230 measures a phase difference between the synthesized reference light (ie, the reference synthesized wave) and the synthesized measurement light (ie, the measured synthesized wave), and the frequency measurer 220 measures the free running femtosecond laser in real time. While measuring the repetition rate, determine the order of the synthesized wave to be extracted. Thereafter, the phase measurer 230 inputs the phase difference to the distance calculator 300, and the frequency measurer 220 inputs the repetition rate and the order of the summation wave to the distance calculator 300. Finally, the distance calculator 300 may calculate distance information between the optical splitter 120 and the measurement target from the repetition rate, the phase difference, and the order of the synthesized wave.
이 때, 거리 산출부(300)가 거리정보를 산출함에 있어서 다음과 같은 수학식
Figure PCTKR2016005028-appb-I000075
이 사용될 수 있다.
At this time, the distance calculation unit 300 calculates the distance information as follows:
Figure PCTKR2016005028-appb-I000075
This can be used.
여기서,
Figure PCTKR2016005028-appb-I000076
는 기준용 광검출기(130)와 측정용 광검출기(150)의 광경로 차로 결정되는 거리정보이며,
Figure PCTKR2016005028-appb-I000077
는 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000078
차 합성파의 파장,
Figure PCTKR2016005028-appb-I000079
Figure PCTKR2016005028-appb-I000080
에 곱해졌을 때 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000081
은 선택된
Figure PCTKR2016005028-appb-I000082
차 기준광의 합성파와 선택된
Figure PCTKR2016005028-appb-I000083
차 측정광의 합성파의 위상차,
Figure PCTKR2016005028-appb-I000084
는 대기 중 빛의 속도(= 진공 중의 빛의 속도/대기의 굴절률),
Figure PCTKR2016005028-appb-I000085
은 프리러닝 펨토초 레이저의 반복률이다. 도 2에 나타난 거울이 생략된 실시예와 도 1에 나타난 실시예를 비교할 때, 거리정보를 산출하는 수학식에서 차이가 있는데, 그 이유는 도 2에 나타난 거울이 생략된 실시예에서는 기준광보다 측정광이 더 진행한 거리가 광분할기(120)와 측정표적 사이를 왕복한 것이 아니고, 단순히 1회 진행한 것이기 때문이다.
here,
Figure PCTKR2016005028-appb-I000076
Is distance information determined by the difference in the optical path between the reference photodetector 130 and the measurement photodetector 150,
Figure PCTKR2016005028-appb-I000077
Is a free running femtosecond laser
Figure PCTKR2016005028-appb-I000078
Wavelength of difference wave,
Figure PCTKR2016005028-appb-I000079
silver
Figure PCTKR2016005028-appb-I000080
An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
Figure PCTKR2016005028-appb-I000081
Is selected
Figure PCTKR2016005028-appb-I000082
Synthesized Wave of Differential Reference Light and Selected
Figure PCTKR2016005028-appb-I000083
Phase difference of the synthesized wave of the difference measurement light,
Figure PCTKR2016005028-appb-I000084
Is the speed of light in the atmosphere (= speed of light in vacuum / refractive index of air),
Figure PCTKR2016005028-appb-I000085
Is the repetition rate of the free running femtosecond laser. When comparing the embodiment in which the mirror shown in FIG. 2 is omitted with the embodiment shown in FIG. 1, there is a difference in the equation for calculating distance information, in the embodiment in which the mirror shown in FIG. This further advanced distance does not reciprocate between the optical splitter 120 and the measurement target, but is simply performed once.
거리정보를 산출함에 있어서 사용되는 수학식이
Figure PCTKR2016005028-appb-I000086
인 점 외에는, 도 2가 나타내는 실시예에서 합성파의 차수 및
Figure PCTKR2016005028-appb-I000087
의 결정, 그리고 거리측정 장치의 전체적인 동작은 앞서 도 1을 참조하여 설명한 것에 대응되므로 자세한 설명은 생략한다.
Equation used in calculating distance information
Figure PCTKR2016005028-appb-I000086
Except that, in the embodiment shown in FIG.
Figure PCTKR2016005028-appb-I000087
The determination and the overall operation of the distance measuring apparatus corresponds to that described above with reference to FIG.
도 3은 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 광커플러(160)가 추가된 경우의 블록도이다. 도 1과 도 3을 비교하면 프리러닝 펨토초 레이저 광원(110)과 상기 광분할기(120) 사이에 광커플러(160)가 배치된 것을 알 수 있다. 3 is a block diagram when an optical coupler 160 is added to a distance measuring apparatus using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. Comparing FIG. 1 and FIG. 3, it can be seen that the optocoupler 160 is disposed between the free running femtosecond laser light source 110 and the light splitter 120.
상기 광커플러(160)의 배치는 기준광과 측정광이 서로 섞이지 않도록 하여 기준광과 측정광이 섞여 발생하는 오차를 방지하기 위한 것이다. 도 3에 따른 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치에서 광커플러(160)가 추가된 경우에, 거리정보를 산출함에 있어서 사용되는 수학식, 합성파의 차수 및
Figure PCTKR2016005028-appb-I000088
의 결정, 그리고 거리측정 장치의 전체적인 동작은 앞서 도 1을 참조하여 설명한 실시예와 동일하므로 자세한 설명은 생략한다.
The arrangement of the optical coupler 160 is to prevent an error caused by mixing the reference light and the measurement light by preventing the reference light and the measurement light from mixing with each other. In the case where the optical coupler 160 is added in the distance measuring device using the free-running femtosecond laser-based real-time synthesized wave determination according to the embodiment of FIG. 3, the equations used in calculating distance information and synthesis Order of the wave and
Figure PCTKR2016005028-appb-I000088
Determination and the overall operation of the distance measuring device is the same as the embodiment described above with reference to Figure 1, so a detailed description thereof will be omitted.
도 4는 본 발명의 실시예에 따른 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치를 이용하여 여러 지점에서 거리를 측정하는 경우에 대한 개요도이다. 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치는, 종래의 기술과 달리 측정거리에 따라 펨토초 레이저를 안정화할 필요가 없으므로, 한 대의 레이저만을 가지고 여러 지점의 거리를 동시에 측정 할 수 있는 기능을 제공할 수 있다.FIG. 4 is a schematic diagram illustrating a case where distances are measured at various points using a distance measuring device using real-time synthesized wave determination based on free running femtosecond laser according to an embodiment of the present invention. The distance measuring device using real-time synthesized wave determination based on free-running femtosecond laser does not need to stabilize the femtosecond laser according to the measurement distance, unlike the conventional technology, so that only one laser can measure the distance of several points at the same time. Can provide functionality.
다만, 측정표적의 수만큼 측정용 광검출기와 위상 측정수단이 필요하여, 다채널 광분할기(121), 다채널 측정용 광검출기(151), 다채널 위상 측정부(231) 및 다채널 거리 산출부(301)가 사용될 수 있다. However, since the number of measuring targets requires a measuring photodetector and a phase measuring means, the multichannel optical splitter 121, the multichannel measuring photodetector 151, the multichannel phase measuring unit 231, and the multichannel distance are calculated. Unit 301 may be used.
도 4에 나타낸 거리측정 장치의 동작원리는 도 2에 나타낸 거리측정 장치의 동작원리와 동일하므로, 여기서는 도 2에 나타낸 거리측정 장치에 대한 상기 설명을 복수의 측정표적에 대한 것으로 확장하는 것으로 충분할 수 있다. 즉, 다채널 광분할기(121)와
Figure PCTKR2016005028-appb-I000089
번째 측정표적의 거리정보(
Figure PCTKR2016005028-appb-I000090
), 다채널 위상 측정부(231)에서
Figure PCTKR2016005028-appb-I000091
번째 측정표적의 거리와 관련된 기준광의 합성파와 측정광의 합성파의 위상차(
Figure PCTKR2016005028-appb-I000092
) 등의 예와 같이,
Figure PCTKR2016005028-appb-I000093
번째 측정표적에 관련된 변수임을 나타내기 위한 아래첨자가 추가될 수 있다.
Since the operation principle of the distance measuring device shown in FIG. 4 is the same as that of the distance measuring device shown in FIG. 2, it may be sufficient to extend the above description of the distance measuring device shown in FIG. 2 to a plurality of measurement targets. have. That is, the multi-channel splitter 121 and
Figure PCTKR2016005028-appb-I000089
Distance information of the first measurement target (
Figure PCTKR2016005028-appb-I000090
), In the multi-channel phase measurement unit 231
Figure PCTKR2016005028-appb-I000091
The phase difference between the synthesized wave of the reference light and the synthesized wave of the measured light
Figure PCTKR2016005028-appb-I000092
), Such as
Figure PCTKR2016005028-appb-I000093
Subscripts may be added to indicate that the variable is related to the first measurement target.
거리정보를 산출함에 있어서 다음과 같은 수학식
Figure PCTKR2016005028-appb-I000094
가 사용될 수 있다.
In calculating the distance information,
Figure PCTKR2016005028-appb-I000094
Can be used.
여기서,
Figure PCTKR2016005028-appb-I000095
는 기준용 광검출기(130)와
Figure PCTKR2016005028-appb-I000096
번째 측정표적에 위치된 측정용 광검출기(150)의 광경로 차이로 결정되는
Figure PCTKR2016005028-appb-I000097
번째 측정표적의 거리정보이며,
Figure PCTKR2016005028-appb-I000098
는 프리러닝 펨토초 레이저의
Figure PCTKR2016005028-appb-I000099
차 합성파의 파장,
Figure PCTKR2016005028-appb-I000100
Figure PCTKR2016005028-appb-I000101
에 곱해졌을 때
Figure PCTKR2016005028-appb-I000102
번째 측정표적의 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
Figure PCTKR2016005028-appb-I000103
Figure PCTKR2016005028-appb-I000104
차 합성파로
Figure PCTKR2016005028-appb-I000105
번째 측정표적의 거리를 측정하였을 때 기준광의 합성파와 측정광의 합성파의 위상차,
Figure PCTKR2016005028-appb-I000106
는 대기 중 빛의 속도(= 진공 중의 빛의 속도/대기의 굴절률),
Figure PCTKR2016005028-appb-I000107
은 프리러닝 펨토초 레이저의 반복률이다.
here,
Figure PCTKR2016005028-appb-I000095
The reference photodetector 130 and
Figure PCTKR2016005028-appb-I000096
Determined by the optical path difference of the photodetector 150 for measurement positioned at the second measurement target
Figure PCTKR2016005028-appb-I000097
Distance information of the first measurement target,
Figure PCTKR2016005028-appb-I000098
Is a free running femtosecond laser
Figure PCTKR2016005028-appb-I000099
Wavelength of difference wave,
Figure PCTKR2016005028-appb-I000100
Is
Figure PCTKR2016005028-appb-I000101
When multiplied by
Figure PCTKR2016005028-appb-I000102
An integer value that generates the largest value not exceeding the value of the distance information of the first measurement target,
Figure PCTKR2016005028-appb-I000103
Is
Figure PCTKR2016005028-appb-I000104
Car Synthetic Wave
Figure PCTKR2016005028-appb-I000105
The phase difference between the synthesized wave of the reference light and the synthesized wave of the measured light when the distance of the first measurement target is measured,
Figure PCTKR2016005028-appb-I000106
Is the speed of light in the atmosphere (= speed of light in vacuum / refractive index of air),
Figure PCTKR2016005028-appb-I000107
Is the repetition rate of the free running femtosecond laser.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made.

Claims (10)

  1. 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원;A free running femtosecond laser light source for emitting laser light;
    상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 측정표적으로부터 반사되는 측정광으로 분리하는 광분할기;A light splitter configured to split the laser light into reference light and measurement light reflected from a measurement target;
    상기 기준광을 검출하는 기준용 광검출기; A reference photodetector for detecting the reference light;
    상기 측정광을 검출하는 측정용 광검출기;A measurement photodetector for detecting the measurement light;
    상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부;A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order;
    검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광을 각각 저주파 통과 여과기에 통과시켜 추출된 기준 합성파와 측정 합성파의 위상차를 측정하는 위상 측정부; 및A phase measuring unit configured to mix the detected reference light and the measured light with a high frequency signal, respectively, and pass the mixed reference light and the mixed measurement light through a low pass filter to measure a phase difference between the extracted reference synthesized wave and the measured synthesized wave; And
    상기 반복률, 상기 위상차 및 상기 합성파의 차수를 이용하여 상기 광분할기와 상기 측정표적 간의 거리정보를 산출하는 거리 산출부;를 포함하고,And a distance calculator configured to calculate distance information between the light splitter and the measurement target using the repetition rate, the phase difference, and the order of the synthesized wave.
    상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.And the high frequency signal is determined based on the repetition rate and the order of the synthesized wave.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 거리정보는 수학식
    Figure PCTKR2016005028-appb-I000108
    에 의해 산출되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.
    The distance information is expressed by equation
    Figure PCTKR2016005028-appb-I000108
    Distance measuring device using a free-running femtosecond laser-based real-time synthesized wave determination, characterized in that calculated by.
    여기서,
    Figure PCTKR2016005028-appb-I000109
    : 상기 거리정보,
    here,
    Figure PCTKR2016005028-appb-I000109
    : The distance information,
    Figure PCTKR2016005028-appb-I000110
    : 프리러닝 펨토초 레이저의
    Figure PCTKR2016005028-appb-I000111
    차 합성파의 파장,
    Figure PCTKR2016005028-appb-I000110
    : Free-running femtosecond laser
    Figure PCTKR2016005028-appb-I000111
    Wavelength of difference wave,
    Figure PCTKR2016005028-appb-I000112
    : 대기 중 빛의 속도,
    Figure PCTKR2016005028-appb-I000112
    : Speed of light in the atmosphere,
    Figure PCTKR2016005028-appb-I000113
    : 프리러닝 펨토초 레이저의 반복률,
    Figure PCTKR2016005028-appb-I000113
    = Repetition rate of a free running femtosecond laser,
    Figure PCTKR2016005028-appb-I000114
    :
    Figure PCTKR2016005028-appb-I000115
    에 곱해졌을 때, 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
    Figure PCTKR2016005028-appb-I000114
    :
    Figure PCTKR2016005028-appb-I000115
    An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
    Figure PCTKR2016005028-appb-I000116
    : 선택된
    Figure PCTKR2016005028-appb-I000117
    차 기준광의 합성파와 선택된
    Figure PCTKR2016005028-appb-I000118
    차 측정광의 합성파의 위상차임.
    Figure PCTKR2016005028-appb-I000116
    : Selected
    Figure PCTKR2016005028-appb-I000117
    Synthesized Wave of Differential Reference Light and Selected
    Figure PCTKR2016005028-appb-I000118
    Phase difference of the synthesized wave of the difference measurement light.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 측정표적은 거울인 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.The measurement target is a distance measuring apparatus using a real-time synthesized wave determination based on a free running femtosecond laser, characterized in that the mirror.
  4. 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원;A free running femtosecond laser light source for emitting laser light;
    상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 측정표적에 입사되는 측정광으로 분리하는 광분할기;A light splitter configured to split the laser light into a reference light and a measurement light incident on a measurement target;
    상기 기준광을 검출하는 기준용 광검출기; A reference photodetector for detecting the reference light;
    상기 측정광을 검출하는 측정용 광검출기;A measurement photodetector for detecting the measurement light;
    상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부;A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order;
    검출된 기준광 및 측정광을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광을 각각 저주파 통과 여과기에 통과시켜 추출된 기준 합성파와 측정 합성파의 위상차를 측정하는 위상 측정부; 및A phase measuring unit configured to mix the detected reference light and the measured light with a high frequency signal, respectively, and pass the mixed reference light and the mixed measurement light through a low pass filter to measure a phase difference between the extracted reference synthesized wave and the measured synthesized wave; And
    상기 반복률, 상기 위상차 및 상기 합성파의 차수를 이용하여 상기 광분할기와 상기 측정표적 간의 거리정보를 산출하는 거리 산출부;를 포함하고,And a distance calculator configured to calculate distance information between the light splitter and the measurement target using the repetition rate, the phase difference, and the order of the synthesized wave.
    상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.And the high frequency signal is determined based on the repetition rate and the order of the synthesized wave.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 거리정보는 수학식
    Figure PCTKR2016005028-appb-I000119
    에 의해 산출되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.
    The distance information is expressed by equation
    Figure PCTKR2016005028-appb-I000119
    Distance measuring device using a free-running femtosecond laser-based real-time synthesized wave determination, characterized in that calculated by.
    여기서,here,
    Figure PCTKR2016005028-appb-I000120
    : 상기 거리정보,
    Figure PCTKR2016005028-appb-I000120
    : The distance information,
    Figure PCTKR2016005028-appb-I000121
    : 프리러닝 펨토초 레이저의
    Figure PCTKR2016005028-appb-I000122
    차 합성파의 파장
    Figure PCTKR2016005028-appb-I000121
    : Free-running femtosecond laser
    Figure PCTKR2016005028-appb-I000122
    Wavelength of Synthetic Wave
    Figure PCTKR2016005028-appb-I000123
    : 대기 중 빛의 속도
    Figure PCTKR2016005028-appb-I000123
    : Speed of light in the atmosphere
    Figure PCTKR2016005028-appb-I000124
    : 프리러닝 펨토초 레이저의 반복률,
    Figure PCTKR2016005028-appb-I000124
    = Repetition rate of a free running femtosecond laser,
    Figure PCTKR2016005028-appb-I000125
    :
    Figure PCTKR2016005028-appb-I000126
    에 곱해졌을 때, 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
    Figure PCTKR2016005028-appb-I000125
    :
    Figure PCTKR2016005028-appb-I000126
    An integer value that, when multiplied by, produces the largest value that does not exceed the distance information,
    Figure PCTKR2016005028-appb-I000127
    : 선택된
    Figure PCTKR2016005028-appb-I000128
    차 기준광의 합성파와 선택된
    Figure PCTKR2016005028-appb-I000129
    차 측정광의 합성파의 위상차임.
    Figure PCTKR2016005028-appb-I000127
    : Selected
    Figure PCTKR2016005028-appb-I000128
    Synthesized Wave of Differential Reference Light and Selected
    Figure PCTKR2016005028-appb-I000129
    Phase difference of the synthesized wave of the difference measurement light.
  6. 레이저 광을 방사하는 프리러닝 펨토초 레이저 광원;A free running femtosecond laser light source for emitting laser light;
    상기 레이저 광이 입사되며, 상기 레이저 광을 기준광과 서로 다른 측정표적들에 입사되는 둘 이상의 측정광들로 분리하는 다채널광분할기;A multi-channel light splitter configured to split the laser light into two or more measurement beams incident to the reference light and to different measurement targets;
    상기 기준광을 검출하는 기준용 광검출기;A reference photodetector for detecting the reference light;
    상기 측정광들과 일대일 대응이 되어, 상기 측정광을 각각 검출하는 둘 이상의 측정용 광검출기들로 구성된 다채널 측정용 광검출기;A multi-channel photodetector comprising one or more measurement photodetectors each having one-to-one correspondence with the measurement lights and detecting the measurement light;
    상기 레이저 광의 반복률을 측정하고, 추출하고자 하는 합성파의 차수를 결정하여, 상기 반복률과 상기 차수를 출력하는 주파수 측정부;A frequency measuring unit measuring the repetition rate of the laser light, determining a degree of the synthesized wave to be extracted, and outputting the repetition rate and the order;
    검출된 기준광 및 측정광들을 고주파 신호와 각각 혼합하고, 혼합된 기준광 및 혼합된 측정광들을 저주파 통과 여과기에 통과시켜 추출된 기준 합성파들과 각각의 측정 합성파들의 위상차들을 측정하는 다채널위상 측정부; 및A multi-channel phase measuring unit for mixing the detected reference light and measurement light with the high frequency signal, respectively, and passing the mixed reference light and the mixed measurement light through a low pass filter to measure phase differences between the extracted reference synthesized waves and the respective measured synthesized waves. ; And
    상기 반복률, 상기 위상차들 및 상기 합성파의 차수를 이용하여, 상기 광분할기와 각각의 상기 위상차와 관련된 측정광이 입사한 상기 측정표적들 간의 각각의 거리정보들을 산출하는 거리 산출부;를 포함하고, And a distance calculator configured to calculate respective distance information between the light splitter and the measurement targets to which the measurement light associated with each phase difference is incident using the repetition rate, the phase differences, and the order of the synthesized wave. ,
    상기 고주파 신호는 상기 반복률과 상기 합성파의 차수에 근거하여 결정되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.And the high frequency signal is determined based on the repetition rate and the order of the synthesized wave.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 거리정보들은 수학식 에 의해 산출되는 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.The distance information is equation Distance measuring device using a free-running femtosecond laser-based real-time synthesized wave determination, characterized in that calculated by.
    여기서,here,
    Figure PCTKR2016005028-appb-I000131
    : 상기 거리정보,
    Figure PCTKR2016005028-appb-I000131
    : The distance information,
    Figure PCTKR2016005028-appb-I000132
    Figure PCTKR2016005028-appb-I000132
    Figure PCTKR2016005028-appb-I000133
    : 프리러닝 펨토초 레이저의
    Figure PCTKR2016005028-appb-I000134
    차 합성파의 파장,
    Figure PCTKR2016005028-appb-I000133
    : Free-running femtosecond laser
    Figure PCTKR2016005028-appb-I000134
    Wavelength of difference wave,
    Figure PCTKR2016005028-appb-I000135
    : 대기 중 빛의 속도,
    Figure PCTKR2016005028-appb-I000135
    : Speed of light in the atmosphere,
    Figure PCTKR2016005028-appb-I000136
    : 프리러닝 펨토초 레이저의 반복률,
    Figure PCTKR2016005028-appb-I000136
    = Repetition rate of a free running femtosecond laser,
    Figure PCTKR2016005028-appb-I000137
    :
    Figure PCTKR2016005028-appb-I000138
    에 곱해졌을 때,
    Figure PCTKR2016005028-appb-I000139
    번째 측정표적의 거리정보의 값을 넘지 않는 가장 큰 값을 생성하는 정수값,
    Figure PCTKR2016005028-appb-I000137
    :
    Figure PCTKR2016005028-appb-I000138
    When multiplied by,
    Figure PCTKR2016005028-appb-I000139
    An integer value that generates the largest value not exceeding the value of the distance information of the first measurement target,
    Figure PCTKR2016005028-appb-I000140
    :
    Figure PCTKR2016005028-appb-I000141
    차 합성파로
    Figure PCTKR2016005028-appb-I000142
    번째 측정표적의 거리를 측정하였을 때, 기준광의 합성파와 측정광의 합성파의 위상차임.
    Figure PCTKR2016005028-appb-I000140
    :
    Figure PCTKR2016005028-appb-I000141
    Car Synthetic Wave
    Figure PCTKR2016005028-appb-I000142
    The phase difference between the synthesized wave of the reference light and the synthesized wave of the measured light when the distance of the first measurement target is measured.
  8. 제 1 항, 제 4항 및 제6항 중 어느 한 항에 있어서,The method according to any one of claims 1, 4 and 6,
    상기 프리러닝 펨토초 레이저 광원은, 1550nm의 중심 파장, 50nm의 대역폭, 100fs의 펄스폭을 가지는 어븀 광섬유 펨토초 레이저인 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.The free-running femtosecond laser light source is a distance measuring device using real-time synthesized wave crystals based on a free running femtosecond laser, characterized in that the Erbium fiber femtosecond laser having a center wavelength of 1550nm, a bandwidth of 50nm, a pulse width of 100fs.
  9. 제 1 항, 제 4항 및 제6항 중 어느 한 항에 있어서,The method according to any one of claims 1, 4 and 6,
    상기 프리러닝 펨토초 레이저 광원은, 1030nm의 중심 파장, 50nm의 대역폭, 50fs의 펄스폭을 가지는 이터븀 광섬유 펨토초 레이저인 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.The free-running femtosecond laser light source is a ytterbium fiber femtosecond laser having a center wavelength of 1030 nm, a bandwidth of 50 nm, and a pulse width of 50 fs.
  10. 제 1 항, 제 4항 및 제6항 중 어느 한 항에 있어서,The method according to any one of claims 1, 4 and 6,
    상기 프리러닝 펨토초 레이저 광원은, 800nm의 중심 파장, 100nm의 대역폭, 10fs의 펄스폭을 가지는 티타늄:사파이어 펨토초 레이저인 것을 특징으로 하는 프리러닝 펨토초 레이저 기반의 실시간 합성파 결정을 이용한 거리측정 장치.The free-running femtosecond laser light source is a titanium: sapphire femtosecond laser having a center wavelength of 800 nm, a bandwidth of 100 nm, and a pulse width of 10 fs.
PCT/KR2016/005028 2015-05-15 2016-05-12 Distance measurement device using free running femtosecond laser-based real-time determination of synthetic wave WO2016186377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0067761 2015-05-15
KR1020150067761A KR101684269B1 (en) 2015-05-15 2015-05-15 Distance measuring apparatus using real time determination of synthetic wavelength based on free running femtosecond laser

Publications (1)

Publication Number Publication Date
WO2016186377A1 true WO2016186377A1 (en) 2016-11-24

Family

ID=57320632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005028 WO2016186377A1 (en) 2015-05-15 2016-05-12 Distance measurement device using free running femtosecond laser-based real-time determination of synthetic wave

Country Status (2)

Country Link
KR (1) KR101684269B1 (en)
WO (1) WO2016186377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343031A (en) * 2018-09-14 2019-02-15 上海无线电设备研究所 A kind of round trip flight second light comb frequency stabilization system for space absolute distance measurement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975407B1 (en) * 2017-05-22 2019-05-07 한국기계연구원 Distant Measurement System and Method of Distant Measurement Using the Same
KR102084915B1 (en) * 2020-01-17 2020-03-05 국방과학연구소 Appratus for optical signal divide processing and target tracking system comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951618B1 (en) * 2008-02-19 2010-04-09 한국과학기술원 Absolute distance measurement method and system using optical frequency generator
JP2010203877A (en) * 2009-03-03 2010-09-16 Topcon Corp Distance measuring device
KR101109001B1 (en) * 2010-10-11 2012-01-31 한국과학기술원 High resolution time-of-flight distance measurement based on a femtosecond laser
KR20120109470A (en) * 2009-11-30 2012-10-08 하마마츠 포토닉스 가부시키가이샤 Range sensor and range image sensor
KR101448831B1 (en) * 2013-04-16 2014-10-16 국방과학연구소 Distance measuring apparatus using phase-locked synthetic wavelength interferometer based on femtosecond laser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841052B1 (en) * 2006-10-11 2008-06-24 한국표준과학연구원 Sweep optical frequency synthesizer using femtosecond laser optical injection locking and optical frequency synthesizing method using the synthesizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951618B1 (en) * 2008-02-19 2010-04-09 한국과학기술원 Absolute distance measurement method and system using optical frequency generator
JP2010203877A (en) * 2009-03-03 2010-09-16 Topcon Corp Distance measuring device
KR20120109470A (en) * 2009-11-30 2012-10-08 하마마츠 포토닉스 가부시키가이샤 Range sensor and range image sensor
KR101109001B1 (en) * 2010-10-11 2012-01-31 한국과학기술원 High resolution time-of-flight distance measurement based on a femtosecond laser
KR101448831B1 (en) * 2013-04-16 2014-10-16 국방과학연구소 Distance measuring apparatus using phase-locked synthetic wavelength interferometer based on femtosecond laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343031A (en) * 2018-09-14 2019-02-15 上海无线电设备研究所 A kind of round trip flight second light comb frequency stabilization system for space absolute distance measurement
CN109343031B (en) * 2018-09-14 2021-04-02 上海无线电设备研究所 Double-flying-second optical comb frequency stabilizing system for measuring space absolute distance

Also Published As

Publication number Publication date
KR20160134154A (en) 2016-11-23
KR101684269B1 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
WO2016186377A1 (en) Distance measurement device using free running femtosecond laser-based real-time determination of synthetic wave
CN107764189B (en) A kind of femtosecond laser Models of Absolute Distance Measurement Based device and method of a wide range of repetition modulation
CN107728134B (en) Frequency modulation continuous wave laser ranging device of integrated reference light path stabilizing system
CN105589074A (en) Multi-wavelength interference real-time absolute distance measurement device on the basis of femtosecond optical comb synchronization frequency locking
CN109839644A (en) Real-time Models of Absolute Distance Measurement Based method and system based on single-chamber round trip flight second light comb cross-correlation analysis
CN103278150B (en) A kind of light of detection angle speed carries microwave gyroscope method
CN104950311A (en) OEO (optoelectronic oscillator) based wide-range and high-precision absolute distance measurement system with self-calibration function
CN110865382A (en) Absolute distance measuring device and method of dynamic optical frequency comb
JP2013178169A (en) Optical heterodyne distance meter
US9273948B2 (en) Optical fiber sensor
KR102152990B1 (en) Multi-channel optical phase detector, multi-channel sensing system and multi-laser synchronization system
CN109541621B (en) Vibration compensation method of frequency scanning interference absolute ranging system
CN110375779B (en) Device and method for improving OFDR frequency domain sampling rate
Sivanathan et al. Development of a hardware for frequency scanning interferometry for long range measurement
JP2012132711A (en) Interpulse phase shift measurement device, offset frequency controller, interpulse phase shift measurement method, and offset frequency control method
WO2022114806A1 (en) Optical interference-type lidar system actively selecting optical path according to length of reference end and thereby adjusting central measurement range
CN115514422A (en) Free space time frequency transmission and comparison system
JPH0354292B2 (en)
CN102322964B (en) Optical phase lock tracking method based on four-channel laser frequency demodulation phase demodulation technology and apparatus realizing method
CN111060896A (en) Large-range and high-precision absolute distance measuring instrument based on OEO (optical output interface) quick switching
RU2623840C1 (en) Method of forming internal time scale of devices comparing and synchronizing time scale and fiber-optic reflectometers and device for its implementation
CN104166131A (en) Double-longitudinal mode laser ranging device and method based on traceable synchronous measuring tapes
Lu et al. A Short Range Two-way Frequency Transfer Experiment in Free Space
CN114696899B (en) Distance measurement method based on multi-frequency heterodyne principle and light-loaded microwave interference
Stroud et al. Passive timing stabilization over a 33-km single mode fiber link using temporal imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796704

Country of ref document: EP

Kind code of ref document: A1