WO2016186134A1 - 摩擦攪拌接合装置および摩擦攪拌接合方法 - Google Patents

摩擦攪拌接合装置および摩擦攪拌接合方法 Download PDF

Info

Publication number
WO2016186134A1
WO2016186134A1 PCT/JP2016/064748 JP2016064748W WO2016186134A1 WO 2016186134 A1 WO2016186134 A1 WO 2016186134A1 JP 2016064748 W JP2016064748 W JP 2016064748W WO 2016186134 A1 WO2016186134 A1 WO 2016186134A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
probe
filler
corner
Prior art date
Application number
PCT/JP2016/064748
Other languages
English (en)
French (fr)
Inventor
邦崇 真崎
直貴 大岩
齋藤 浩
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to KR1020177030552A priority Critical patent/KR20170129930A/ko
Priority to CN201680028478.2A priority patent/CN107708911B/zh
Priority to EP16796527.6A priority patent/EP3299108A4/en
Priority to JP2017519379A priority patent/JP6372615B2/ja
Publication of WO2016186134A1 publication Critical patent/WO2016186134A1/ja
Priority to US15/815,350 priority patent/US11229972B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/128Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding making use of additional material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present disclosure relates to a friction stir welding apparatus and a friction stir welding method used for friction stir welding between workpieces.
  • Friction stir welding tools used when performing friction stir welding include a type equipped with a rotating shoulder that rotates integrally with the probe, and a non-rotating fixed rotating probe.
  • a type with an expression shoulder is known.
  • a friction stir welding tool including a fixed shoulder, a fixed shoulder including a surface that abuts against both workpiece surfaces at the corner corners in order to friction stir weld the corners (inner corners) of the workpieces to be joined.
  • a fixed shoulder including a surface that abuts against both workpiece surfaces at the corner corners in order to friction stir weld the corners (inner corners) of the workpieces to be joined.
  • the friction stir welding performed while adding filler using a friction stir welding tool equipped with a fixed shoulder is, for example, the length to be joined when the corners of aluminum workpieces are to be joined.
  • defects such as roughness may occur on the surface of the fillet formed when the length is relatively long.
  • An object of the present disclosure is to provide a friction stir welding apparatus and a friction stir welding method that can suppress the occurrence.
  • a friction stir welding apparatus includes a friction stir welding tool including a fixed shoulder on an outer periphery of a proximal end of a probe that can be rotationally driven, and a friction stir welding tool.
  • Filler is supplied to the moving part that moves the welding tool relative to the joint between the workpieces in the direction along the joint, the controller for the moving part, and the stirring area that is stirred by the probe during friction stir welding of the joint.
  • the control device holds the fixed shoulder of the friction stir welding tool with the probe immersed in the joint at a position spaced apart from the surface of the workpiece during the friction stir welding of the joint. It has a function to do.
  • FIG. 1A It is a figure for demonstrating the friction stir welding method, and is a schematic cut
  • FIG. 5B is an enlarged side view of the filler supply unit in the friction stir welding apparatus according to the first embodiment, as viewed in the direction of arrows BB in FIG. 5A.
  • the friction stir welding method of the present disclosure uses a friction stir welding tool 1 of a type including a probe 2 and a fixed shoulder 3 as shown in FIGS. 1A and 1B.
  • the friction stir welding tool 1 causes the probe 2 to be immersed in a joint between the workpieces W1 and W2, for example, the corner c in FIG. A stirring region s of the materials W1 and W2 is formed.
  • the fixed shoulder 3 is disposed with a gap 4 between the surfaces P1 and P2 of the workpieces W1 and W2, and the friction stir welding is performed by moving the probe 2 along the corners c. During this time, the gap 4 is always maintained.
  • the filler 5 is supplied to the stirring region s.
  • the amount of the filler 5 supplied is the same as the unit length shown by the one-dot chain line in FIG. 1B, which is formed at the corner corner c after the friction stir welding, when the friction stir welding proceeds for a certain unit length.
  • the volume of the fillet 6 that is geometrically determined from the cross-sectional shape of the fillet 6 is larger.
  • the materials of the workpieces W1 and W2 and the material of the filler 5 are softened and stirred by the probe 2 in the stirring region s, and the materials of the workpieces W1 and W2 and the material of the filler 5 are mixed.
  • the fillet 6 is formed by the softened material 7 (hereinafter referred to as the raw material softened material 7) in which is mixed.
  • the excess material softened material 7 is caused to flow into the gap 4 while being softened.
  • FIG. 2 is a schematic cut side view showing a first embodiment of the friction stir welding apparatus
  • FIG. 3 is a partially cut schematic front view
  • 4A to 4C are enlarged views of the friction stir welding tool according to this embodiment.
  • FIG. 4A is a front view
  • FIG. 4B is a cut side view
  • FIG. 4C is a rear view.
  • 5A and 5B are enlarged views of the filler supply unit in the present embodiment
  • FIG. 5A is a side view
  • FIG. 5B is a view taken in the direction of arrows BB in FIG. 5A.
  • the friction stir welding apparatus 8 of the present embodiment has a friction stir welding tool 1 having a probe 2 and a fixed shoulder 3 and a rotational drive device 10 for the probe 2 as shown in FIGS.
  • the spindle unit 9 mounted on the first end side, which is the tip side of the friction stir welding tool 1, and the friction stir welding tool 1 together with the spindle unit 9 are moved relative to the corner c between the workpieces W1 and W2.
  • Filler 5 is added to the stirring region s of the materials of the workpieces W1 and W2 at the time of friction stir welding of the shaft type gate-shaped main shaft positioning mechanism (moving unit) 11, the control device 12 of the main shaft positioning mechanism 11, and the corner c.
  • a filler supply unit 13 for supplying.
  • the direction in which the friction stir welding tool 1 is relatively moved with respect to the corner c when the friction stir welding of the corner c is performed (the right direction in FIGS. 1A and 2) is hereinafter referred to as friction stirring. It is called the joining direction.
  • the friction stir welding tool 1 includes a probe 2 that can be driven to rotate, and a fixed shoulder 3 that is disposed on the outer periphery of the proximal end side of the probe 2.
  • the probe 2 is arranged in an angular posture in which the axial direction is parallel to the bisector of the angle c of the corner c between the workpieces W1 and W2.
  • the corner c is a right angle
  • the workpieces W1, W2 are both inclined 45 degrees from the vertical direction. Therefore, the axis of the probe 2 is inclined in the vertical direction by 45 degrees with respect to both the workpieces W1 and W2.
  • the fixed shoulder 3 has two workpiece facing surfaces in which the end portion disposed near the tip of the probe 2 faces the surfaces P1 and P2 of the workpieces W1 and W2 on both sides across the corner portion c. It is the mountain shape (V shape) provided with 14a, 14b. Furthermore, in the part which becomes the top of the chevron formed by the workpiece facing surfaces 14a and 14b, as shown in FIGS. 4A and 4B, the surfaces of the workpieces W1 and W2 are located on the front side of the probe 2 in the direction of friction stir welding. A gap forming notch 15 for forming a gap 16 for inserting the filler 5 is provided between P1 and P2. In FIG.
  • the gap 16 shows an example in which the cross section perpendicular to the direction of friction stir welding is a right-angled isosceles triangle, but if the filler 5 can be inserted, it corresponds to the cross section of the filler 5
  • the shape is not limited to the illustrated shape.
  • a fillet forming cutout portion 17 is provided by cutting out the fillet 6 having a cross-sectional shape in a shape corresponding to a desired cross-sectional shape.
  • the fillet 6 has a right isosceles triangular cross section, and the cutout shape of the fillet forming cutout portion 17 is also a shape corresponding thereto.
  • the notch portion 17 for fillet formation has a shape corresponding to the cross-sectional shape of the fillet 6 having a curved surface. It only has to be.
  • the friction stir welding tool 1 is attached to the front end side of the spindle unit 9 as shown in FIGS. In this state, the fixed shoulder 3 is held in a state in which the main shaft unit 9 is prevented from rotating, and the probe 2 can be rotationally driven by the rotational driving device 10.
  • the spindle positioning mechanism 11 is configured to place the workpieces W ⁇ b> 1 and W ⁇ b> 2 to be joined on the gantry 18 and move them along the extending direction of the corners c.
  • a table 19 is provided.
  • a gate-type frame 20 straddling the X-axis table 19 is installed on the gantry 18, and a Z-axis table 21 for position control of the spindle unit 9 in the vertical direction (Z-axis direction) is attached to the gate-type frame 20. It has been.
  • the Z-axis table 21 includes a Y-axis table 22 that controls the position of the spindle unit 9 in a horizontal direction (hereinafter referred to as the Y-axis direction) perpendicular to the moving direction of the X-axis table 19 (hereinafter referred to as the X-axis direction). It is attached.
  • the spindle unit 9 is attached to the Y-axis table 22 in a state of being disposed above the X-axis table 19.
  • the X-axis table 19 includes a guide rail 23 provided on the gantry 18 so as to extend in the X-axis direction, and a moving table 25 slidably attached to the guide rail 23 via a guide block 24 as a horizontal flat plate shape. And a ball screw mechanism 26 as a linear motion mechanism in the X-axis direction for moving the moving table 25 in the longitudinal direction of the guide rail 23.
  • the ball screw mechanism 26 includes a drive motor 27 such as a servo motor, a speed reducer 28 attached to the output side thereof, a screw shaft 29 connected to the output side of the speed reducer 28, and a nut attached to the screw shaft 29. Member 30.
  • the ball screw mechanism 26 is installed between the moving table 25 on the gantry 18 in a posture in which the screw shaft 29 extends in parallel with the guide rail 23, and the nut member 30 is attached to the moving table 25. 31 is attached.
  • the X-axis table 19 rotates the screw shaft 29 via the speed reducer 28 by the drive motor 27 in the ball screw mechanism 26 and switches the rotation direction thereof, thereby moving the moving table 25 together with the nut member 30. Can be reciprocated in the X-axis direction.
  • the X-axis table 19 moves based on a detection signal of the rotation amount of the drive motor 27 or a position detection signal of the nut member 30 or the moving table 25 by a position detector (not shown) such as a linear gauge or a displacement sensor.
  • a position detector such as a linear gauge or a displacement sensor.
  • a jig 32 for holding the workpiece W1 and the workpiece W2 to be joined over the entire length is provided on the upper side of the moving table 25.
  • the jig 32 includes a V-shaped groove 33 on the upper surface side, and the workpieces W1 and W2 are placed on the two inclined surfaces of the groove 33, and the edge of one work W1. Is placed in a posture in which the end face of the other workpiece W2 is abutted against the other.
  • the jig 32 is provided with a large number of pressing members 34 arranged in the X-axis direction on the upper end side of each slope, and the workpieces W1 and W2 are pressed and fixed inside the grooves 33 by the pressing members 34. To do. Thereby, the position of the corner
  • the workpieces W1 and W2 are held by the jig 32 when the friction stir welding is performed.
  • the pressing load in the Z-axis direction for immersing the probe 2 of the friction stir welding tool 1 in the corner corner c, and the corner corner c Even when a load in the X-axis direction is applied when moving the probe 2 in the state of being immersed in the longitudinal direction of the corner c, the work W1 and W2 are held with such a holding force that does not shift. .
  • the corners c of the workpieces W1 and W2 are corner joints
  • the corners c serving as joints may be T-shaped joints, lap joints, or cross joints.
  • the jig 32 What is necessary is just to change a shape suitably.
  • the jig 32 is held in a posture in which the surface P1 of the workpiece W1 and the surface P2 of the workpiece W2 sandwiching the corner portion c are inclined at an equal inclination angle from the vertical direction.
  • the jig 32 is inclined so that the surface P1 of the workpiece W1 and the surface P2 of the workpiece W2 are different from each other with respect to the vertical direction. You may hold
  • the Z-axis table 21 is formed as a flat plate along a vertical rail (Z-axis direction) guide rail 35 installed on the portal frame 20 and a vertical plane perpendicular to the X-axis direction.
  • a moving table 37 slidably attached to the guide rail 35 via a guide block 36 and a ball screw mechanism 38 as a Z-axis direction linear movement mechanism for moving the moving table 37 in the longitudinal direction of the guide rail 35 are provided. .
  • the ball screw mechanism 38 includes a drive motor 39 such as a servo motor, a speed reducer 40 attached to the output side thereof, a screw shaft 41 connected to the output side of the speed reducer 40, and a nut attached to the screw shaft 41. Member 42.
  • the ball screw mechanism 38 is installed in a posture in which the screw shaft 41 extends in parallel with the guide rail 35 between the movable table 37 on the surface of the portal frame 20 on the installation side of the Z-axis table 21 and a nut.
  • the member 42 is attached to the moving table 37 via the load cell 44 and the attachment member 43.
  • the Z-axis table 21 is driven together with the nut member 42 by rotating the screw shaft 41 via the speed reducer 40 by the drive motor 39 in the ball screw mechanism 38 and switching the rotation direction thereof. 37 can be reciprocated up and down in the Z-axis direction.
  • the Z-axis table 21 is described later based on a detection signal of the rotation amount of the drive motor 39 or a position detection signal of the nut member 42 and the moving table 37 by a position detector (not shown) such as a linear gauge or a displacement sensor.
  • a position detector such as a linear gauge or a displacement sensor.
  • the Z-axis table 21 can detect a pressing load in a direction toward the corner portion c applied to the friction stir welding tool 1 when performing the friction stir welding based on the detection signal of the load cell 44.
  • the Z-axis table 21 is a gravity compensation mechanism (also referred to as a self-weight compensation mechanism or a weight compensation mechanism) that supports the weight of the movable table 37 and the weight of the movable table 37 that moves up and down together.
  • the gate frame 20 and the moving table 37 may be interposed. According to this configuration, the load cell 44 can directly detect the pressing load applied to the corner portion c applied to the friction stir welding tool 1.
  • the Y-axis table 22 is guided as a flat plate along a Y-axis direction guide rail 45 installed on the moving table 37 of the Z-axis table 21 and a vertical plane perpendicular to the X-axis direction.
  • a moving table 47 slidably attached to the rail 45 via a guide block 46 and a ball screw mechanism 48 as a Y axis direction linear motion mechanism for moving the moving table 47 in the longitudinal direction of the guide rail 45 are provided.
  • the ball screw mechanism 48 includes a drive motor 49 such as a servo motor, a screw shaft 50 connected to the output side thereof, and a nut member 51 attached to the screw shaft 50.
  • a drive motor 49 such as a servo motor
  • a screw shaft 50 connected to the output side thereof
  • a nut member 51 attached to the screw shaft 50.
  • the ball screw mechanism 48 is installed between the moving table 37 and the moving table 47 in such a posture that the screw shaft 50 extends in parallel with the guide rail 45, and the nut member 51 is attached to the moving table 47. It is attached via 52.
  • the spindle unit 9 is attached to the moving table 47.
  • the Y-axis table 22 rotates the screw shaft 50 by the drive motor 49 in the ball screw mechanism 48 and switches the rotation direction thereof, thereby moving the moving table 47 together with the nut member 51 in the Y-axis direction. Can be moved back and forth.
  • the Y-axis table 22 moves based on a detection signal of the rotation amount of the drive motor 49 or a position detection signal of the nut member 51 or the moving table 47 by a position detector (not shown) such as a linear gauge or a displacement sensor.
  • the positions of the spindle unit 9 and the friction stir welding tool 1 held on the table 47 in the Y-axis direction can be controlled.
  • the control device 12 of the spindle positioning mechanism 11 is configured so that the corner c between the workpieces W1 and W2 extends in the friction stir welding tool 1 attached to the spindle unit 9 by controlling the Z-axis table 21 and the Y-axis table 22. A function of controlling the vertical and horizontal positions in a plane perpendicular to the horizontal axis.
  • the control device 12 has a function of controlling the position of the corners c of the workpieces W1 and W2 held on the moving table 25 via the jig 32 by controlling the X-axis table 19 in the X-axis direction.
  • control device 12 controls the rotational drive of the probe 2 through the control of the rotational drive device 10 of the spindle unit 9.
  • the control device 12 When performing the friction stir welding, the control device 12 first controls the corners c of the workpieces W1 and W2 at the first end (one end) in the longitudinal direction under the control of the X-axis table 19, as shown in FIG. It arrange
  • the control device 12 starts to move the moving table 25 of the X-axis table 19 and relatively moves the probe 2 along the corner corner c between the workpieces W1 and W2, so that the corner c Friction stir welding is performed. Thereafter, when the probe 2 reaches the terminal end side of the friction stir welding set on the second end (other end) side (right end side in FIG. 1) in the longitudinal direction of the corner portion c, the control device 12 moves the moving table. After stopping 25, the Z-axis table 21 is controlled and the probe 2 is extracted from the corner c.
  • control device 12 controls the position of the fixed shoulder 3 of the friction stir welding tool 1 as shown in FIG. 1B by controlling the Z-axis table 21 during the friction stir welding as described above. A function of holding the gap 4 between the surfaces P1 and P2 of W1 and W2 is provided.
  • the control device 12 is based on the information on the positions of the surfaces P1, P2 of the workpieces W1, W2 held by the X-axis table 19. What is necessary is just to control the position of the fixed shoulder 3 by making the position which separated the desired clearance gap 4 from the surface P1, P2 into a target position.
  • the control device 12 controls the pressing load of the probe 2 detected by the load cell 44 in a state where the probe 2 is immersed in the corner corner c, so that the control device 12 is interposed between the surfaces P1 and P2 of the workpieces W1 and W2.
  • the fixed shoulder 3 may be held at a position where the desired gap 4 is formed.
  • the lower and upper limits of the size of the gap 4 are such that the softened material 7 softened and stirred by the probe 2 flows into the gap 4 in the softened state, and the workpiece facing surfaces 14a and 14b of the fixed shoulder 3 and the workpieces W1 and W2 Is set to a size range in which the gap 4 can be filled with the surfaces P1 and P2.
  • the material softened material 7 stirred by the probe 2 has fluidity, but it is solid and not liquid. Therefore, when the gap 4 is too small, the resistance when the material softened material flows into the gap 4 becomes large. In this case, the material softened material 7 cannot spread into the gap 4. Therefore, the lower limit of the dimension of the gap 4 depends on the fluidity of the material softened material 7.
  • the size of the gap 4 is preferably set to 0.1 mm or more.
  • the upper limit of the dimension of the gap 4 is determined as follows.
  • the heat (frictional heat) generated by the rotating probe 2 is converted into the entire softened material 7 entering the gap 4. In addition, it must be transmitted under temperature conditions that can maintain the softened state.
  • the amount of heat generated by the probe 2 depends on the construction conditions of the friction stir welding, such as the structure of the probe 2, the number of rotations, the amount of immersion in the corner c, and the relative movement speed with respect to the corner c. Therefore, the amount (volume) of the material softened material 7 that can be softened by the heat generated by the probe 2 during the friction stir welding has an upper limit depending on the properties and heat transfer characteristics of the material. Therefore, the upper limit of the volume of the gap 4 in which the excess material softened material 7 used for forming the fillet 6 can flow in and expand is determined. Therefore, the upper limit value of the size of the gap 4 is determined by dividing the upper limit value of the volume of the gap 4 by the area of the workpiece facing surfaces 14 a and 14 b of the fixed shoulder 3.
  • the softened material softened material 7 entering the gap 4 is in a state of protruding from the surfaces P1 and P2 of the workpieces W1 and W2. For this reason, depending on the types of the workpieces W1 and W2, it may be desired to suppress stress concentration on the protruding portions formed on the surfaces P1 and P2. From this viewpoint, the upper limit value of the dimension of the gap 4 is set. It may be.
  • the supply amount of the filler 5 described above is an amount obtained by adding the volume per unit length in the direction of friction stir welding of the gap 4 to the volume per unit length of the fillet 6 formed at the corner corner c. It is set to be above.
  • the filler supply unit 13 is configured such that the wire-like filler 5 as shown in FIG. 1A is placed between the workpieces W1 and W2 by the gap forming notch 15 of the fixed shoulder 3 shown in FIGS. 4A and 4B.
  • the liquid is supplied to the stirring region s through the formed gap 16.
  • the filler supply unit 13 is provided on the lower end side (front end side) of the spindle unit 9 in an arrangement that is in front of the friction stir welding progressing direction with respect to the attachment location of the friction stir welding tool 1.
  • the bracket 53 is provided.
  • a frame 55 holding a roller 54 that holds the filler 5 from above is disposed below the bracket 53.
  • a plurality of, for example, two guide rods 56 extending in the vertical direction are erected, and the guide rods 56 are inserted into vertical guide holes (not shown) provided in the bracket 53.
  • a retaining member 57 is attached to the upper end side, being inserted from below.
  • a spring 58 as a pressurizing portion is fitted.
  • the filler supply unit 13 is configured to place the probe 2 in a state in which the filler 5 is arranged in advance along the corner corner c located in front of the friction stir welding progressing direction with respect to the friction stir welding tool 1.
  • the roller 54 contacts the filler 5 from above.
  • the spring 58 contracts between the frame 55 of the roller 54 and the bracket 53, and the contracted spring 58 The restoring force of the roller 54 can press the roller 54 against the filler 5 from above.
  • the pressurizing unit is exemplified by the spring 58, but any other type of pressurizing unit such as a gas spring or a fluid pressure cylinder may be used as long as it can apply a pressing force in the direction toward the filler 5 to the roller 54.
  • a pressure unit may be employed, and a pressurizing unit that actively generates a pressing force such as an actuator may be employed.
  • the filler 5 is fixed to the corner portion c.
  • the filler 5 is between the gap forming notch 15 of the fixed shoulder 3 and the surfaces P1 and P2 of the workpieces W1 and W2. Are introduced into the agitation region s.
  • the filler supply unit 13 applies a pressure of at least 1 MPa or more to the tip side of the filler 5 supplied to the stirring region s in a direction perpendicular to the supply direction.
  • the filler 5 is supplied to the stirring region s relatively with the progress of the friction stir welding of the corner c by the friction stir welding tool 1 in a state where the filler 5 is pressed against the corner c. Therefore, in this embodiment, the frictional force (maximum frictional force) generated between the filler 5 and the surfaces P1 and P2 of the workpieces W1 and W2 on both sides of the corner corner c is applied to the surfaces P1 and P2 that become the friction surfaces. It is the product of the pressure, the area of the surfaces P1 and P2 and the friction coefficient, and at the same time, the product of the pressure applied to the tip of the filler 5 and the cross-sectional area of the filler 5.
  • the filler 5 is filled by the roller 54 in consideration of the friction coefficient between the filler 5 and the surfaces P1 and P2 so that a pressure of at least 1 MPa or more is applied to the front end side of the filler 5 in a direction perpendicular to the supply direction of the filler 5.
  • the pressure applied when pressurizing is set.
  • the upper limit of the pressure applied to the front end side of the filler 5 supplied to the stirring region s is determined by the buckling strength from the position pressed by the roller 54 of the filler 5 to the front end.
  • the filler 5 is fixed to the corner portion c.
  • the cross-sectional area of the filler 5 is the cross-sectional area of the fillet 6 formed at the corner corner c in a cross section perpendicular to the friction stir welding progress direction of the gap 4. It is set to be equal to or larger than the area obtained by adding the cross-sectional areas.
  • the friction stir welding apparatus 8 of this embodiment after the probe 2 of the friction stir welding tool 1 is immersed in the corner c between the workpieces W1 and W2, the probe 2 is moved along the corner c. Accordingly, the corners c of the workpieces W1 and W2 are friction stir welded.
  • the fixed shoulder 3 of the friction stir welding tool 1 is not in contact with the surfaces P1 and P2 of the workpieces W1 and W2. Further, since the material softened material 7 exists in the gap 4 between the workpiece facing surfaces 14a, 14b of the fixed shoulder 3 and the surfaces P1, P2 of the workpieces W1, W2, the material softening of the fixed shoulder 3 is performed. It is suppressed that the solidified thing 7 adheres and accumulates. Even if the softened material 7 solidified adheres to the fixed shoulder 3, the adhered material is prevented from rubbing the surface of the fillet 6.
  • the friction stir welding apparatus of the present embodiment while adding the filler 5 to the corner c, which is a joint between the workpieces W1 and W2, using the friction stir welding tool 1 provided with the fixed shoulder 3.
  • friction stir welding it is possible to suppress the occurrence of defects on the surface of the fillet 6 formed at the corner corner c.
  • FIG. 6 shows a second embodiment of the friction stir welding apparatus
  • FIGS. 6A and 6B are schematic views showing other examples of the filler supply unit.
  • the filler supply unit 13a shown in FIG. 6A is configured by connecting a drive motor 59 as a rotation drive unit to the roller 54 in the same configuration as the filler supply unit 13 of the first embodiment.
  • a power transmission mechanism for transmitting a rotational driving force such as a gear or a chain and a sprocket is provided between the drive motor 59 and the roller 54.
  • the rotational drive direction of the roller 54 by the drive motor 59 is the clockwise direction in FIG. 6A, and the roller 54 is sent in a direction in which the filler 5 on which the roller 54 is pressed from above is directed toward the friction stir welding tool 1. As described above, a driving force is applied to the filler 5.
  • the filler 5 can be actively supplied to the stirring region s by driving the roller 54 to rotate.
  • the filler supply unit 13b shown in FIG. 6B includes a delivery unit 60 for the filler 5 on the front side in the direction of friction stir welding with respect to the roller 54 in the same configuration as the filler supply unit 13 of the first embodiment.
  • the delivery unit 60 includes, for example, a pair of delivery rollers 61 arranged so as to sandwich the filler 5 and a rotation drive unit (not shown) that rotationally drives the delivery rollers 61 in directions facing each other.
  • the feeding direction of the filler by the feeding roller 61 is leftward in FIG. 6B, and the feeding roller 61 gives a driving force to the filler 5 so that the filler 5 is fed in the direction toward the friction stir welding tool 1.
  • the filler 5 delivered from the delivery unit 60 can be actively supplied to the stirring region s while being guided by the roller 54.
  • the filler supply sections 13a and 13b apply a pressure of at least 1 MPa to the tip side of the filler 5 supplied to the stirring region s in a direction perpendicular to the supply direction. .
  • the cross-sectional area of the cross section perpendicular to the direction of friction stir welding of the gap 4 is added to the cross-sectional area of the fillet 6 formed at the corner c. It is possible to use the filler 5 having a smaller cross-sectional area than the measured value. Therefore, when the supply amount of the filler 5 of the first embodiment is a predetermined amount, the supply amount of the filler 5 in the second embodiment can be equal to or more than the predetermined amount.
  • FIG. 7A shows a photograph of a joint portion by conventional friction stir welding
  • FIG. 7B shows a photograph of a joint portion by friction stir welding in the present disclosure. From FIG. 7A, it can be seen that the gap 4 is not formed between the workpiece W1 and the workpiece W2 or that a plurality of defects are generated in the joint portion by the friction stir welding due to insufficient supply of the filler 5.
  • FIG. 7B in the joint portion by friction stir welding in the present disclosure, a gap 4 is formed between the workpiece W1 and the workpiece W2, and a defect is formed because the supply amount of the filler 5 is sufficient. You can see that it is not.
  • the filler 5 is shown as having a round cross section, but a filler having a square cross section or any other cross section may be used. Moreover, although the filler 5 was demonstrated as a wire-shaped thing, a rod shape may be sufficient.
  • the filler supply part 13 fixes the filler 5 to the corner
  • the phenomenon in which the filler 5 is pushed back in the direction of friction stir welding by the softened material 7 present in the stirring region s formed around the probe 2 or the probe 2 may occur.
  • the friction stir welding progress direction of the gap 4 is added to the cross-sectional area of the fillet 6 formed at the corner corner c so that the supply amount of the filler 5 becomes the above-described predetermined amount. What is necessary is just to use the filler 5 of the cross-sectional area exceeding the area which added the cross-sectional area in a cross section perpendicular
  • the workpieces W1 and W2 to be joined by friction stir welding are shown as being arranged with the end face of the workpiece W2 in contact with the edge of the workpiece W1, but the workpiece W1 and the workpiece A gap may be formed between W2.
  • the jigs 32 may hold the workpieces W1 and W2 in a state where they are arranged with a gap therebetween, and the friction stir welding may be performed in this state.
  • the filler supply amount may be determined by an amount that allows for the amount to enter the gap.
  • the friction stir welding apparatus and the friction stir welding method of the present disclosure have been described with respect to an example in which the workpieces W1 and W2 are subjected to friction stir welding in a state where the corners c are arranged in an upwardly opened posture
  • the workpiece W1 is described.
  • W2 may be in any direction.
  • the direction in which the corner c between the workpieces W1 and W2 extends is the X axis
  • the direction of the three-dimensional orthogonal coordinate system in which the Y axis and the Z axis are set in a plane perpendicular to the X axis is the workpiece W1, W2. It may be arranged according to the posture.
  • the friction stir welding apparatus and the friction stir welding method of the present disclosure include a first work and a second work disposed in contact with the end edge at an angle posture intersecting the surface P1 of the first work,
  • the corners c formed on both sides of the second workpiece may be applied when the friction stir welding is performed by two friction stir welding tools respectively disposed on both sides of the second workpiece.
  • the friction stir welding apparatus and the friction stir welding method of the present disclosure may be applied to, for example, friction stir welding of a joint portion in which end portions of flat workpieces are butted together.
  • the friction stir welding tool a friction stir welding tool including a fixed shoulder having a flat workpiece facing surface is used.
  • the supply amount of the filler 5 is a gap required for filling the gap formed at the abutting portion between the workpieces with respect to the surface of each workpiece. What is necessary is just to set more than the quantity which added the volume required in order to fill the clearance gap 4 when arrange
  • a portal frame 20 that supports the spindle unit 9 is used as a moving part for moving the friction stir welding tool 1 together with the spindle unit 9 in the direction along the corners with respect to the corners c of the workpieces W1 and W2.
  • the spindle positioning mechanism 11 of the type that moves and moves the workpieces W1, W2 is illustrated.
  • any type of moving unit other than that illustrated may be employed, such as fixing the workpieces W1 and W2 and making the gate-type frame 20 straddling the workpieces movable.
  • the friction stir welding apparatus and the friction stir welding method of the present disclosure when the friction stir welding is performed while adding the filler between the workpieces using the friction stir welding tool including the fixed shoulder, It can suppress that a defect arises on the surface of the fillet formed along.
  • Friction stir welding tool 2 Probe 3 Fixed shoulder 4 Gap 5 Filler 6 Fillet 11 Spindle positioning mechanism (moving part) 12 Control Device 13 Filler Supply Unit 15 Gaps Formation Notch 16 Gaps 17 Fillet Formation Notch (Notch) W1, W2 Work P1, P2 surface c Corner corner (joint) s Stirring area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

摩擦攪拌接合装置は、プローブ(2)の基端側外周に固定式ショルダ(3)を備えた摩擦攪拌接合ツール(1)と、摩擦攪拌接合ツール(1)をワーク(W1,W2)間の角隅部(c)に対して相対移動させる主軸位置決め機構と、その制御装置と、摩擦攪拌接合時にプローブ(2)によってワーク(W1,W2)の素材が攪拌される攪拌領域(s)にフィラーを供給するフィラー供給部とを備える。プローブ(2)を角隅部(c)に没入させて摩擦攪拌接合を行うときには、制御装置により、固定式ショルダ(3)をワーク(W1,W2)の面に対し隙間(4)を隔てた位置に保持させる。

Description

摩擦攪拌接合装置および摩擦攪拌接合方法
 本開示は、ワーク同士の摩擦攪拌接合に用いる摩擦攪拌接合装置および摩擦攪拌接合方法に関する。
 本願は、2015年5月18日に、日本に出願された特願2015-101210号に基づき優先権を主張し、その内容をここに援用する。
 摩擦攪拌接合を実施する場合に使用される摩擦攪拌接合ツール(摩擦攪拌接合用工具)としては、プローブと一体に回転する回転式ショルダを備えた形式のものと、回転するプローブと非回転の固定式ショルダとを備えた形式のものが知られている。
 固定式ショルダを備える摩擦攪拌接合ツールとしては、接合すべきワーク同士の角隅部(内隅部)を摩擦攪拌接合するために、角隅部の両ワーク表面に当接する面を備える固定式ショルダを有することが知られている(たとえば、特許文献1参照)。
 又、固定式ショルダを備えた摩擦攪拌接合ツールによる角隅部の摩擦攪拌接合を行う際に、フィラーを加えて、接合後の角隅部にフィレット(肉盛り部)を形成させるようにしたAdStirと云われる手法も、提案されている(たとえば、非特許文献1参照)。
日本国特開平11-320128号公報
福田哲夫,角張隆男、「TWIの最新FSWプロセス開発状況とパテント情報」、溶接技術、産報出版株式会社、2011年6月、59巻、6号、p.57-60
 ところが、固定式ショルダを備えた摩擦攪拌接合ツールを用いてフィラーを加えながら行う摩擦攪拌接合は、たとえば、アルミ製のワーク同士の角隅部を接合対象とする場合、接合させる長さがメートルオーダーのように比較的長い場合は、形成されるフィレットの表面に荒れ等の欠陥が生じる場合があることが近年明らかになってきた。
 本発明者等が研究した結果、このような欠陥は、摩擦攪拌接合時に、プローブにより軟化および攪拌されたワークの素材およびフィラーの素材が、固定式ショルダに付着することがあり、この付着物が、フィレットの表面を擦ることによって生じると推定された。
 そこで、本開示は、固定式ショルダを備えた摩擦攪拌接合ツールを用いて、フィラーを加えながらワーク同士の接合部を摩擦攪拌接合する際に、接合部に沿って形成させるフィレットの表面に欠陥が生じることを抑制できる摩擦攪拌接合装置および摩擦攪拌接合方法を提供することを目的とする。
 上記課題を解決するために、本開示に係る第1の態様である摩擦攪拌接合装置は、回転駆動可能なプローブの基端側の外周に固定式ショルダを備えた摩擦攪拌接合ツールと、摩擦攪拌接合ツールをワーク間の接合部に対して、接合部に沿う方向に相対移動させる移動部と、移動部の制御装置と、接合部の摩擦攪拌接合時にプローブによって攪拌される攪拌領域にフィラーを供給するフィラー供給部とを備え、制御装置は、接合部の摩擦攪拌接合時に、プローブを接合部に没入させた摩擦攪拌接合ツールの固定式ショルダを、ワークの面に対し隙間を隔てた位置に保持する機能を備える。
 本開示の摩擦攪拌接合装置および摩擦攪拌接合方法によれば、固定式ショルダを備えた摩擦攪拌接合ツールを用いて、フィラーを加えながらワーク同士の接合部を摩擦攪拌接合する際に、接合部に沿って形成させるフィレットの表面に欠陥が生じることを抑制できる。
摩擦攪拌接合方法を説明するための図で、摩擦攪拌接合による接合個所の概略切断側面図である。 摩擦攪拌接合方法を説明するための図で、図1AのA-A方向矢視図である。 摩擦攪拌接合装置の第1実施形態を示す概略切断側面図である。 第1実施形態の摩擦攪拌接合装置の一部切断概略正面図である。 第1実施形態の摩擦攪拌接合装置で用いる摩擦攪拌接合ツールの正面拡大図である。 第1実施形態の摩擦攪拌接合装置で用いる摩擦攪拌接合ツールの側面拡大図である。 第1実施形態の摩擦攪拌接合装置で用いる摩擦攪拌接合ツールの背面拡大図である。 第1実施形態の摩擦攪拌接合装置におけるフィラー供給部拡大側面図である。 第1実施形態の摩擦攪拌接合装置におけるフィラー供給部の拡大側面図である図5AのB-B方向矢視図である。 摩擦攪拌接合装置の第2実施形態の、フィラー供給部の他の例を示す概要図である。 摩擦攪拌接合装置の第2実施形態の、フィラー供給部のさらに他の例を示す概要図である。 従来の摩擦攪拌接合による接合部を示す写真である。 本開示における摩擦攪拌接合による接合部を示す写真である。
 本開示の摩擦攪拌接合装置および摩擦攪拌接合方法について、図面を参照して説明する。
[摩擦攪拌接合方法]
 先ず、本開示の摩擦攪拌接合方法について、図1A、図1Bを参照して概説する。
 本開示の摩擦攪拌接合方法は、図1A、図1Bに示すように、プローブ2と固定式ショルダ3を備えた形式の摩擦攪拌接合ツール1を用いる。摩擦攪拌接合を行うときには、摩擦攪拌接合ツール1は、プローブ2を回転駆動状態でワークW1,W2間の接合部、たとえば、図1では角隅部cに没入させて、プローブ2の周りにワークW1,W2の素材の攪拌領域sを形成する。このとき、固定式ショルダ3は、各ワークW1,W2の面P1,P2との間に隙間4を隔てて配置され、プローブ2を角隅部cに沿って移動させて摩擦攪拌接合が施工されている間、この隙間4は常に保持される。
 更に、摩擦攪拌接合の施工中は、攪拌領域sにフィラー5が供給される。このフィラー5の供給量は、摩擦攪拌接合が或る単位長さ進行するときに、摩擦攪拌接合後に角隅部cに形成される、図1Bに一点鎖線で示された、同じ単位長さ当たりの、フィレット(肉盛り)6の断面形状から幾何学的に求められるフィレット6の体積より大きい。
 このフィラー5の供給により、摩擦攪拌接合の施工中は、攪拌領域sにおいてプローブ2によりワークW1,W2の素材およびフィラー5の素材が軟化および攪拌され、ワークW1,W2の素材およびフィラー5の素材が混合された軟化物7(以下、素材軟化物7という)により、フィレット6が形成される。同時に、余剰分の素材軟化物7を、軟化した状態のまま隙間4に流入させる。これにより、摩擦攪拌接合時には、ワークW1,W2に対して相対移動する固定式ショルダ3と、ワークW1,W2の固定式ショルダ3と対向する面P1,P2との間に、素材軟化物7の層が形成される。
[第1実施形態]
 図2は摩擦攪拌接合装置の第1実施形態を示す概略切断側面図、図3は一部切断概略正面図である。図4A~図4Cは、本実施形態における摩擦攪拌接合ツールを拡大した図であり、図4Aは正面図、図4Bは切断側面図、図4Cは背面図である。図5Aおよび図5Bは、本実施形態におけるフィラー供給部の拡大図であり、図5Aは側面図、図5Bは図5AのB-B方向矢視図である。
 なお、図1A、図1Bと同じものには同一符号を付して、その説明を省略する。
 本実施形態の摩擦攪拌接合装置8は、図2、図3に示すように、プローブ2及び固定式ショルダ3を備えた摩擦攪拌接合ツール1と、プローブ2の回転駆動装置10を有して、摩擦攪拌接合ツール1の先端側となる第1端側に装着された主軸ユニット9と、主軸ユニット9と共に摩擦攪拌接合ツール1をワークW1,W2間の角隅部cに対して相対移動させる3軸型の門型の主軸位置決め機構(移動部)11と、この主軸位置決め機構11の制御装置12と、角隅部cの摩擦攪拌接合時にワークW1,W2の素材の攪拌領域sにフィラー5を供給するフィラー供給部13と、を備える。
 なお、角隅部cの摩擦攪拌接合を行う際に、角隅部cに対して摩擦攪拌接合ツール1を相対的に進行させる方向(図1A、図2では右方向)は、以下、摩擦攪拌接合進行方向という。
 摩擦攪拌接合ツール1は、図4A~図4Cに示すように、回転駆動可能なプローブ2と、プローブ2の基端側の外周に配置された固定式ショルダ3とを備える。
 プローブ2は、軸心方向がワークW1,W2間の角隅部cの角度の二等分線に平行となる角度姿勢に配置されている。本実施形態では、角隅部cは直角であり、ワークW1,W2は、共に鉛直方向から45度ずつ傾斜させてある。そのため、プローブ2の軸心は、ワークW1,W2の双方に対して45度傾斜させて、鉛直方向に配置される。
 固定式ショルダ3は、プローブ2の先端寄りに配置される端部が、角隅部cを挟んだ両側の各ワークW1,W2の面P1,P2に対向して配置される2つのワーク対向面14a,14bを備えた山形(V字形状)とされている。更に、ワーク対向面14a,14bにより形成される山形の頂部となる部分には、図4A、図4Bに示すように、プローブ2よりも摩擦攪拌接合進行方向の前側に、ワークW1,W2の面P1,P2との間にフィラー5を挿入するための空隙16を形成する空隙形成用切欠部15が設けられている。なお、図4Aでは、空隙16は、摩擦攪拌接合進行方向の垂直な断面が直角二等辺三角形状である例を示しているが、フィラー5を挿入可能であれば、フィラー5の断面に応じた形状等、図示した形状に限られない。
 一方、図4B、図4Cに示すように、固定式ショルダ3の山形の頂部となる部分において、プローブ2よりも摩擦攪拌接合進行方向の後側には、接合後の角隅部cに所望の断面形状のフィレット6が形成されるように、所望の断面形状に応じた形状で切り欠いたフィレット形成用切欠部17が設けられている。本実施形態では、フィレット6が、直角二等辺三角形の断面とされているため、フィレット形成用切欠部17の切欠き形状もそれに応じた形状とされている。したがって、たとえば、接合後の角隅部cにR(曲面)を有する形状のフィレット6を形成する場合は、フィレット形成用切欠部17は曲面を有するフィレット6の断面形状に応じた形状を有していればよい。
 摩擦攪拌接合ツール1は、図2、図3に示すように、主軸ユニット9の先端側に取り付けられる。この状態で、固定式ショルダ3は主軸ユニット9に回転が阻止された状態で保持され、プローブ2は、回転駆動装置10により回転駆動可能となる。
 主軸位置決め機構11は、図2及び図3に示すように、架台18上に、接合対象となるワークW1,W2を載置して角隅部cの延びる方向に沿って移動させるためのX軸テーブル19を備えている。
 更に、架台18上には、X軸テーブル19を跨ぐ門型フレーム20が設置され、門型フレーム20に、主軸ユニット9の鉛直方向(Z軸方向)の位置制御用のZ軸テーブル21が取り付けられている。Z軸テーブル21には、主軸ユニット9について、X軸テーブル19の移動方向(以下、X軸方向という)に直角な水平方向(以下、Y軸方向という)の位置制御を行うY軸テーブル22が取り付けられている。Y軸テーブル22には、主軸ユニット9が、X軸テーブル19の上方に配置された状態で取り付けられている。
 X軸テーブル19は、X軸方向に延びるように架台18上に設けられたガイドレール23と、水平な平板状としてガイドレール23にガイドブロック24を介してスライド自在に取り付けられた移動テーブル25と、移動テーブル25をガイドレール23の長手方向に移動させるX軸方向の直動機構としてのボールねじ機構26とを備える。
 ボールねじ機構26は、サーボモータ等の駆動モータ27と、その出力側に取り付けられた減速機28と、減速機28の出力側に連結されたねじ軸29と、ねじ軸29に取り付けられたナット部材30とを備える。
 更に、ボールねじ機構26は、架台18上における移動テーブル25との間に、ねじ軸29がガイドレール23と平行に延びる姿勢で設置されており、ナット部材30が、移動テーブル25に、取付部材31を介して取り付けられている。
 これにより、X軸テーブル19は、ボールねじ機構26において、駆動モータ27によって減速機28を介しねじ軸29を回転駆動させ、またその回転方向を切り替えることにより、ナット部材30と一緒に移動テーブル25を、X軸方向に往復移動させることができる。この際、X軸テーブル19は、駆動モータ27の回転量の検出信号、もしくは、リニアゲージや変位センサ等の図示しない位置検出部によるナット部材30や移動テーブル25の位置検出信号を基に、移動テーブル25の上側に載置して保持されるワークW1,W2の位置や移動速度を制御することができる。
 移動テーブル25の上側には、接合すべきワークW1とワークW2を、全長に亘り保持するための治具32が設けられている。治具32は、たとえば、図4Aに示すように、上面側にV字状の溝33を備えて、この溝33の2つの斜面に、各ワークW1,W2を、一方のワークW1の端縁に他方のワークW2の端面を突き当てた姿勢で載置する。
 更に、治具32は、各斜面の上端側に、X軸方向に配列された多数の押さえ部材34を備えており、この押さえ部材34により各ワークW1,W2を溝33の内側に押し付けて固定する。これにより、ワークW1,W2同士の間の角隅部cの位置は、治具32によってX軸方向の全長に亘って保持される。
 治具32によるワークW1,W2の保持は、摩擦攪拌接合の際に、摩擦攪拌接合ツール1のプローブ2を角隅部cに没入させるためのZ軸方向の押圧荷重、及び、角隅部cに没入させた状態のプローブ2を角隅部cの長手方向に沿って移動させるときのX軸方向の荷重が作用しても、ワークW1,W2にずれが生じないような保持力で行われる。
 なお、図4Aでは、ワークW1とワークW2の角隅部cが角継手の場合を例示したが、接合部となる角隅部cは、T字継手、重ね継手や十字継手であってもよい。これらの場合は、角隅部cを挟んでワークW1とワークW2の面P1,P2が共に傾斜面となるように配置されるときのワークW1とワークW2の姿勢に応じて、治具32の形状を適宜変更すればよい。
 又、治具32は、角隅部cを挟んだワークW1の面P1とワークW2の面P2が、共に鉛直方向から等しい傾斜角度で傾斜した姿勢で保持されることが好ましい。しかし、ワークW1とワークW2により角隅部cを形成するときの継手の形状や配置によっては、治具32は、ワークW1の面P1とワークW2の面P2が鉛直方向に対して互いに異なる傾斜角度となる状態で保持されてもよい。
 Z軸テーブル21は、図2、図3に示すように、門型フレーム20に設置された鉛直方向(Z軸方向)のガイドレール35と、X軸方向に垂直な鉛直面に沿う平板状としてガイドレール35にガイドブロック36を介してスライド自在に取り付けられた移動テーブル37と、移動テーブル37をガイドレール35の長手方向に移動させるZ軸方向の直動機構としてのボールねじ機構38とを備える。
 ボールねじ機構38は、サーボモータ等の駆動モータ39と、その出力側に取り付けられた減速機40と、減速機40の出力側に連結されたねじ軸41と、ねじ軸41に取り付けられたナット部材42とを備える。
 更に、ボールねじ機構38は、門型フレーム20のZ軸テーブル21の設置側の面における移動テーブル37との間に、ねじ軸41がガイドレール35と平行に延びる姿勢で設置されており、ナット部材42が、移動テーブル37に、ロードセル44と取付部材43を介して取り付けられている。
 これにより、Z軸テーブル21は、ボールねじ機構38において、駆動モータ39によって減速機40を介してねじ軸41を回転駆動させ、またその回転方向を切り替えることにより、ナット部材42と一緒に移動テーブル37を、Z軸方向である上下方向に往復移動させることができる。この際、Z軸テーブル21は、駆動モータ39の回転量の検出信号、もしくは、リニアゲージや変位センサ等の図示しない位置検出部によるナット部材42や移動テーブル37の位置検出信号を基に、後述するように移動テーブル37にY軸テーブル22を介して保持される主軸ユニット9及び摩擦攪拌接合ツール1の上下方向の位置を制御することができる。
 更に、Z軸テーブル21は、ロードセル44の検出信号を基に、摩擦攪拌接合の実施時に摩擦攪拌接合ツール1に付与される角隅部cに向く方向の押圧荷重を検出できる。
 又、図示しないが、Z軸テーブル21は、移動テーブル37の自重、及び、移動テーブル37と一緒に上下に移動するものの重量を支持する重力補償機構(自重補償機構、重量補償機構とも称する)を、門型フレーム20と移動テーブル37との間に介装してもよい。この構成によれば、ロードセル44により、摩擦攪拌接合ツール1に付与される角隅部cに対する押圧荷重を直接的に検出することが可能になる。
 Y軸テーブル22は、図2、図3に示すように、Z軸テーブル21の移動テーブル37に設置したY軸方向のガイドレール45と、X軸方向に垂直な鉛直面に沿う平板状としてガイドレール45にガイドブロック46を介してスライド自在に取り付けられた移動テーブル47と、移動テーブル47をガイドレール45の長手方向に移動させるY軸方向の直動機構としてのボールねじ機構48とを備える。
 ボールねじ機構48は、サーボモータ等の駆動モータ49と、その出力側に連結されたねじ軸50と、ねじ軸50に取り付けられたナット部材51とを備える。
 更に、ボールねじ機構48は、移動テーブル37と移動テーブル47との間に、ねじ軸50がガイドレール45と平行に延びる姿勢で設置されており、ナット部材51が、移動テーブル47に、取付部材52を介して取り付けられている。移動テーブル47には、主軸ユニット9が取り付けられている。
 これにより、Y軸テーブル22は、ボールねじ機構48において、駆動モータ49によってねじ軸50を回転駆動させ、またその回転方向を切り替えることにより、ナット部材51と一緒に移動テーブル47を、Y軸方向に往復移動させることができる。この際、Y軸テーブル22は、駆動モータ49の回転量の検出信号、もしくは、リニアゲージや変位センサ等の図示しない位置検出部によるナット部材51や移動テーブル47の位置検出信号を基に、移動テーブル47に保持された主軸ユニット9及び摩擦攪拌接合ツール1のY軸方向の位置を制御することができる。
 主軸位置決め機構11の制御装置12は、Z軸テーブル21とY軸テーブル22の制御により、主軸ユニット9に取り付けられた摩擦攪拌接合ツール1について、ワークW1,W2間の角隅部cが延びる方向に垂直な面内で上下方向及び水平方向の位置を制御する機能を備える。
 制御装置12は、X軸テーブル19の制御により、移動テーブル25上に治具32を介して保持されたワークW1,W2の角隅部cのX軸方向の位置を制御する機能を備える。
 又、制御装置12は、主軸ユニット9の回転駆動装置10の制御を介して、プローブ2の回転駆動を制御する。
 摩擦攪拌接合を行うときには、制御装置12は、先ず、図2に示すように、X軸テーブル19の制御により、ワークW1,W2の角隅部cを、その長手方向の第1端(一端)側(図1では左端側)に設定されている摩擦攪拌接合の始端側が主軸ユニット9の下方に位置するように配置する。次に、上記の状態で、制御装置12は、回転駆動装置10によるプローブの回転駆動を開始し、Y軸テーブル22とZ軸テーブル21の制御によって、プローブ2を角隅部cに没入させる。次いで、制御装置12は、X軸テーブル19の移動テーブル25の移動を開始して、ワークW1,W2間の角隅部cに沿ってプローブ2を相対的に移動させて、角隅部cの摩擦攪拌接合を実施する。その後、プローブ2が角隅部cの長手方向の第2端(他端)側(図1では右端側)に設定されている摩擦攪拌接合の終端側に達すると、制御装置12は、移動テーブル25を停止させた後、Z軸テーブル21を制御し、プローブ2を角隅部cより抜き出す。
 更に、制御装置12は、上記のように摩擦攪拌接合を実施する間、Z軸テーブル21の制御によって、摩擦攪拌接合ツール1の固定式ショルダ3の位置を、図1Bに示したように、ワークW1,W2の面P1,P2との間に隙間4を隔てた位置に保持する機能を備える。
 この隙間4を形成した位置に固定式ショルダ3を保持するために、たとえば、制御装置12が、X軸テーブル19に保持されたワークW1,W2の面P1,P2の位置の情報を基に、面P1,P2から所望の隙間4を隔てた位置を目標位置として、固定式ショルダ3の位置を制御すればよい。
 又、プローブ2を角隅部cに没入させるときには、Z軸テーブル21によってプローブ2に付与される押圧荷重の大小に応じて、プローブ2の没入量が増減する。又、角隅部cにプローブ2が没入した状態では、プローブ2と固定式ショルダ3との既知の位置関係を基に、固定式ショルダ3のワーク対向面14a,14bとワークW1,W2の面との距離が分かる。したがって、制御装置12は、角隅部cにプローブ2を没入させた状態でロードセル44によって検出されるプローブ2の押圧荷重を制御することで、ワークW1,W2の面P1,P2との間に所望の隙間4を形成した位置に固定式ショルダ3を保持してもよい。
 隙間4の寸法の下限及び上限は、プローブ2によって軟化および攪拌された素材軟化物7が、軟化状態のまま隙間4に流入し、固定式ショルダ3のワーク対向面14a,14bとワークW1,W2の面P1,P2との間で隙間4を埋めることが可能な寸法の範囲に設定される。
 すなわち、プローブ2により攪拌された素材軟化物7は流動性を有するが、あくまで固体であり、液体ではない。したがって、隙間4が小さすぎる場合は、素材軟化物が隙間4に流入するときの抵抗が大となり、この場合は、素材軟化物7は隙間4に広がることはできない。そのために、隙間4の寸法の下限は、素材軟化物7の流動性の大小に依存する。ワークW1,W2とフィラー5の素材がアルミニウム(アルミニウム合金)である場合は、隙間4の寸法は0.1mm以上に設定されることが好ましい。
 一方、隙間4の寸法の上限は、以下のようにして定まる。
 隙間4に入った素材軟化物7が流動性を有したまま隙間4全体に広がるためには、回転するプローブ2によって発生された熱(摩擦熱)が、隙間4に入った素材軟化物7全体に、軟化状態を維持できる温度条件で伝わる必要がある。
 プローブ2が発生させる熱の量は、プローブ2の構造や回転数や角隅部cへの没入量、角隅部cに対する相対移動速度などの摩擦攪拌接合の施工条件に依存する。そのため、摩擦攪拌接合の施工時には、プローブ2で発生させる熱によって軟化させることが可能な素材軟化物7の量(体積)は、その素材の性質や伝熱特性などに応じて上限がある。したがって、フィレット6の形成に用いられる素材軟化物7の余剰分の素材軟化物7が流入および広がることが可能な隙間4の容積の上限も定まる。よって、その隙間4の容積の上限値を、固定式ショルダ3のワーク対向面14a,14bの面積で割ることにより、隙間4の寸法の上限値が定まる。
 又、摩擦攪拌接合後には、隙間4に入った素材軟化物7の固化したものが、ワークW1,W2の面P1,P2から突出した状態になる。そのため、ワークW1,W2の種類によっては、この面P1,P2に形成される突出部分に対する応力集中の抑制が望まれる場合があり、この観点から、隙間4の寸法の上限値が設定されるようにしてもよい。
 このようにして隙間4の寸法が定まると、隙間4の摩擦攪拌接合進行方向に関する単位長さ当たりの容積が決まる。したがって、前述したフィラー5の供給量は、角隅部cに形成されるフィレット6の単位長さ当たりの体積に、隙間4の摩擦攪拌接合進行方向に関する単位長さ当たりの容積分を足した量以上になるように設定される。
 フィラー供給部13は、たとえば、図1Aに示したようなワイヤ状のフィラー5を、図4A、図4Bに示した固定式ショルダ3の空隙形成用切欠部15によりワークW1,W2との間に形成された空隙16を通して、攪拌領域sに供給するものである。
 そのために、図2に示すように、フィラー供給部13は、主軸ユニット9の下端側(先端側)に、摩擦攪拌接合ツール1の取り付け個所よりも摩擦攪拌接合進行方向の前方となる配置で設けられたブラケット53を備えている。
 ブラケット53の下側には、図5A、図5Bに示すように、フィラー5を上方から押さえるローラ54を保持したフレーム55が配置されている。フレーム55の上側には、上下方向に延びる複数本、たとえば、2本のガイドロッド56が立設され、このガイドロッド56が、ブラケット53に設けられた上下方向のガイド孔(図示せず)に下方から挿通されて、上端側に抜け止め部材57が取り付けられている。フレーム55の上面とブラケット53の下面との間のガイドロッド56の外周には、加圧部としてのスプリング58が嵌められている。
 フィラー供給部13は、摩擦攪拌接合時に、摩擦攪拌接合ツール1よりも摩擦攪拌接合進行方向の前側に位置する角隅部cに沿ってフィラー5が予め配置されている状態で、プローブ2を角隅部cに近接させるように主軸ユニット9を下降させると、ローラ54がフィラー5に上方から接触する。この状態から、プローブ2が角隅部cに没入する位置まで主軸ユニット9を更に下方移動させると、ローラ54のフレーム55と、ブラケット53との間でスプリング58が収縮し、この収縮したスプリング58の復元力により、ローラ54をフィラー5に対し上方から押し付けて加圧することができる。
 なお、加圧部は、スプリング58を例示したが、ローラ54に、フィラー5に向く方向の押し付ける力を付与できるものであればよく、ガススプリングや流体圧シリンダ等、他の任意の形式の加圧部を採用してもよく、更に、アクチュエータのような能動的に加圧力を発生する加圧部を採用してもよい。
 これにより、フィラー5は角隅部cに固定される。この状態で、摩擦攪拌接合ツール1による角隅部cの摩擦攪拌接合が進行すると、フィラー5は、固定式ショルダ3の空隙形成用切欠部15とワークW1,W2の面P1,P2との間に形成された空隙16に導かれて、攪拌領域sに導入されるようになる。
 更に、フィラー供給部13は、攪拌領域sに対して供給されるフィラー5の先端側に、供給方向とは垂直方向に少なくとも1MPa以上の圧力をかける。
 本実施形態では、フィラー5は角隅部cに押さえつけられた状態で、摩擦攪拌接合ツール1による角隅部cの摩擦攪拌接合の進行に伴って、相対的に攪拌領域sに供給される。したがって、本実施形態では、フィラー5と角隅部cの両側のワークW1,W2の面P1,P2との間に生じる摩擦力(最大摩擦力)は、摩擦面となる面P1およびP2にかかる圧力、面P1およびP2の面積および摩擦係数の積であると同時に、フィラー5の先端側にかかる圧力とフィラー5の断面積との積である。よって、フィラー5の先端側に、フィラー5の供給方向とは垂直方向に少なくとも1MPa以上の圧力がかかるように、フィラー5と面P1,P2との摩擦係数を考慮して、ローラ54によりフィラー5を加圧するときの加圧力が設定される。なお、攪拌領域sに対して供給されるフィラー5の先端側にかける圧力の上限は、フィラー5のローラ54によって押さえられた位置から先端までの座屈強度によって定まる。
 本実施形態では、フィラー5は角隅部cに固定されている。このため、前述したフィラー5の供給量を得るために、フィラー5の断面積は、角隅部cに形成するフィレット6の断面積に、隙間4の摩擦攪拌接合進行方向に垂直な断面での断面積を足した面積以上となるように設定される。
 以上より、本実施形態の摩擦攪拌接合装置8によれば、ワークW1,W2間の角隅部cに摩擦攪拌接合ツール1のプローブ2を没入させた後、プローブ2を角隅部cに沿わせて移動させることで、ワークW1,W2の角隅部cが摩擦攪拌接合される。
 この際、摩擦攪拌接合ツール1の固定式ショルダ3は、ワークW1,W2の面P1,P2に対して非接触とされる。更に、固定式ショルダ3のワーク対向面14a,14bと、ワークW1,W2の面P1,P2との間の隙間4に、素材軟化物7が存在しているため、固定式ショルダ3に素材軟化物7の固化したものが付着して蓄積することは抑制される。又、たとえ固定式ショルダ3に、素材軟化物7の固化したものが付着したとしても、その付着物がフィレット6の表面を擦ることは防止される。
 したがって、本実施形態の摩擦攪拌接合装置によれば、ワークW1,W2同士の接合部である角隅部cを、固定式ショルダ3を備えた摩擦攪拌接合ツール1を用いてフィラー5を加えながら摩擦攪拌接合する際に、角隅部cに形成させるフィレット6の表面に欠陥が生じることを抑制することができる。
[第2実施形態]
 図6は、摩擦攪拌接合装置の第2実施形態を示すもので、図6A、図6Bはいずれもフィラー供給部の他の例を示す概要図である。
 なお、図6A、図6Bにおいて、第1実施形態に示したものと同一のものには同一符号を付して、その説明を省略する。
 図6Aに示すフィラー供給部13aは、第1実施形態のフィラー供給部13と同様の構成において、ローラ54に、回転駆動部としての駆動モータ59を接続したものである。なお、図6Aでは簡略化して示されているが実際には、駆動モータ59とローラ54との間には、ギアや、チェーンとスプロケット等の回転駆動力を伝達する動力伝達機構を備える。
 駆動モータ59によるローラ54の回転駆動方向は、図6Aにおける時計回りの方向であり、ローラ54は、ローラ54が上方から押し付けられているフィラー5が、摩擦攪拌接合ツール1へ向く方向へ送られるように、フィラー5に駆動力を付与する。
 このフィラー供給部13aによれば、ローラ54を回転駆動することによって、フィラー5を能動的に攪拌領域sへ供給することができる。
 図6Bに示すフィラー供給部13bは、第1実施形態のフィラー供給部13と同様の構成において、ローラ54よりも摩擦攪拌接合進行方向の前側に、フィラー5の送出部60を備える。
 送出部60は、たとえば、フィラー5を挟む配置とされた一対の送り出しローラ61と、各送り出しローラ61を互いに対向する方向に回転駆動する図示しない回転駆動部とを備える。送り出しローラ61によるフィラーの送り出し方向は、図6Bにおける左向きであり、フィラー5が、摩擦攪拌接合ツール1へ向く方向へ送られるように、送り出しローラ61は、フィラー5に駆動力を付与する。
 このフィラー供給部13bによれば、送出部60より送り出されるフィラー5を、ローラ54によってガイドしながら能動的に攪拌領域sへ供給することができる。
 なお、図6A、図6Bのいずれの場合においても、フィラー供給部13a,13bは、攪拌領域sに供給されるフィラー5の先端側に、供給方向とは垂直方向に少なくとも1MPa以上の圧力をかける。
 したがって、図6A、図6Bのフィラー供給部13a,13bによれば、角隅部cに形成するフィレット6の断面積に、隙間4の摩擦攪拌接合進行方向に垂直な断面での断面積を足した値よりも断面積が小さいフィラー5を使用することが可能になる。したがって、第1実施形態のフィラー5の供給量を所定量とする場合に、第2実施形態におけるフィラー5の供給量は、上記所定量と同等又はそれ以上とすることが可能である。
 図7Aに従来の摩擦攪拌接合による接合部の写真を、図7Bに本開示における摩擦攪拌接合による接合部の写真を示す。図7Aから、ワークW1とワークW2との間に隙間4が形成されていないこと又はフィラー5の供給不足により、摩擦攪拌接合による接合部に複数の欠陥が発生していることがわかる。一方、図7Bから、本開示における摩擦攪拌接合による接合部は、ワークW1とワークW2との間に隙間4が形成され、又フィラー5の供給量が十分であったことにより、欠陥が形成されていないことがわかる。
 なお、フィラー5は、断面形状が丸いものとして示したが、角断面やその他任意の断面形状のフィラーを使用してもよい。又、フィラー5は、ワイヤ状のものとして説明したが、棒状であってもよい。
 又、本開示は、上記各実施形態にのみ限定されない。第1実施形態では、フィラー供給部13が、フィラー5を角隅部cに固定し、このフィラー5が、摩擦攪拌接合ツール1の進行に伴って相対的に攪拌領域sに供給されるものとして示したが、フィラー5が、プローブ2やプローブ2の周囲に形成されている攪拌領域sに存在している素材軟化物7により、摩擦攪拌接合進行方向に押し戻される現象が生じてもよい。この場合は、フィラー5が押し戻されても、フィラー5の供給量が前述した所定量となるように、角隅部cに形成されるフィレット6の断面積に、隙間4の摩擦攪拌接合進行方向に垂直な断面での断面積を足した面積を超える断面積のフィラー5を使用するようにすればよい。
 第1実施形態では、摩擦攪拌接合の接合対象となるワークW1,W2が、ワークW1の端縁に、ワークW2の端面が接した状態で配置されているものとして示したが、ワークW1とワークW2との間に隙間が形成されていてもよい。この場合は、治具32に、ワークW1,W2を、隙間を開けて配置した状態で保持させ、この状態で摩擦攪拌接合を実施するようにすればよい。又、この場合は、素材軟化物7がワークW1,W2間の隙間に入るため、この隙間に入る量を見込んだ量で、フィラーの供給量を定めればよい。
 本開示の摩擦攪拌接合装置および摩擦攪拌接合方法は、ワークW1,W2が、角隅部cが上方に開いた姿勢で配置された状態で摩擦攪拌接合する場合の例について説明したが、ワークW1,W2間の角隅部cがいかなる向きであってもよい。この場合は、ワークW1,W2間の角隅部cが延びる方向をX軸とし、それに垂直な面内にY軸とZ軸が設定された3次元直交座標系の向きを、ワークW1,W2の姿勢に合わせて配置するようにすればよい。
 又、本開示の摩擦攪拌接合装置および摩擦攪拌接合方法は、第1のワークと、第1のワークの面P1に対して交わる角度姿勢で端縁と接して配置される第2のワークにより、第2のワークを挟んだ両側に形成される角隅部cを、第2のワークの両側にそれぞれ配置される2つの摩擦攪拌接合ツールによって摩擦攪拌接合する場合に適用してもよい。
 更に、本開示の摩擦攪拌接合装置および摩擦攪拌接合方法は、たとえば、平板状のワークの端部同士を突き合わせた接合部の摩擦攪拌接合に適用してもよい。この場合は、摩擦攪拌接合ツールとして、フラットなワーク対向面を有する固定式ショルダを備えた摩擦攪拌接合ツールを使用する。この摩擦攪拌接合では、フィレット6が存在しないため、フィラー5の供給量は、各ワーク同士の突き合わせ部位に形成されている空隙の充填に必要とされる体積に、各ワークの表面に対して隙間を隔てて固定式ショルダを配置するときの隙間4を埋めるために必要とされる体積を足した量以上として設定すればよい。
 ワークW1,W2の角隅部cに対し、角隅部に沿う方向に主軸ユニット9と共に摩擦攪拌接合ツール1を相対移動させるための移動部としては、主軸ユニット9を支持する門型フレーム20を固定し、ワークW1,W2を移動させる形式の主軸位置決め機構11を例示した。しかしながら、たとえば、ワークW1,W2を固定し、その上方を跨ぐ門型フレーム20を移動式とするなど、図示した以外の任意の形式の移動部を採用してもよい。
 その他本開示の要旨を逸脱しない範囲内で種々の変更を加えてもよい。
 本開示の摩擦攪拌接合装置および摩擦攪拌接合方法によれば、固定式ショルダを備えた摩擦攪拌接合ツールを用いて、ワーク同士の接合部をフィラーを加えながら摩擦攪拌接合する際に、接合部に沿って形成させるフィレットの表面に欠陥が生じることを抑制できる。
 1 摩擦攪拌接合ツール
 2 プローブ
 3 固定式ショルダ
 4 隙間
 5 フィラー
 6 フィレット
 11 主軸位置決め機構(移動部)
 12 制御装置
 13 フィラー供給部
 15 空隙形成用切欠部
 16 空隙
 17 フィレット形成用切欠部(切欠部)
 W1,W2 ワーク
 P1,P2 面
 c 角隅部(接合部)
 s 攪拌領域

Claims (10)

  1.  回転駆動可能なプローブの基端側の外周に固定式ショルダを備えた摩擦攪拌接合ツールと、
     前記摩擦攪拌接合ツールをワーク間の接合部に対して、該接合部に沿う方向に相対移動させる移動部と、
     前記移動部の制御装置と、
     前記接合部の摩擦攪拌接合時に前記プローブによって攪拌される攪拌領域にフィラーを供給するフィラー供給部とを備え、
     前記制御装置は、前記接合部の摩擦攪拌接合時に、前記プローブを前記接合部に没入させた前記摩擦攪拌接合ツールの前記固定式ショルダを、前記ワークの面に対し隙間を隔てた位置に保持する機能を備える摩擦攪拌接合装置。
  2.  前記フィラー供給部は、前記摩擦攪拌接合ツールに対して摩擦攪拌接合進行方向の前側に配置されている請求項1記載の摩擦攪拌接合装置。
  3.  前記フィラー供給部は、前記攪拌領域に供給される前記フィラーの先端側に、供給方向とは垂直方向に少なくとも1MPa以上の圧力をかける請求項2記載の摩擦攪拌接合装置。
  4.  前記ワーク間の接合部が、角隅部であり、
     前記フィラー供給装置は、前記フィラーを、前記角隅部に形成されるフィレットの単位長さ当たりの体積に、前記隙間の摩擦攪拌接合進行方向に関する単位長さ当たりの容積分を足した量以上の供給量で供給する請求項1記載の摩擦攪拌接合装置。
  5.  前記ワーク間の接合部が、角隅部であり、
     前記フィラー供給装置は、前記フィラーを、前記角隅部に形成されるフィレットの単位長さ当たりの体積に、前記隙間の摩擦攪拌接合進行方向に関する単位長さ当たりの容積分を足した量以上の供給量で供給する請求項2記載の摩擦攪拌接合装置。
  6.  前記ワーク間の接合部が、角隅部であり、
     前記フィラー供給装置は、前記フィラーを、前記角隅部に形成されるフィレットの単位長さ当たりの体積に、前記隙間の摩擦攪拌接合進行方向に関する単位長さ当たりの容積分を足した量以上の供給量で供給する請求項3記載の摩擦攪拌接合装置。
  7.  前記摩擦攪拌接合ツールの固定式ショルダは、
     前記プローブの先端寄りに配置される端部が、前記角隅部を挟んだ両ワークの面に対向して配置される2つのワーク対向面を備えた山形とされ、
     該山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の前側には、前記ワークの面との間に空隙を形成する空隙形成用切欠部を備え、
     前記山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の後側には、前記フィレットの断面形状に応じた切欠部を備える請求項4記載の摩擦攪拌接合装置。
  8.  前記摩擦攪拌接合ツールの固定式ショルダは、
     前記プローブの先端寄りに配置される端部が、前記角隅部を挟んだ両ワークの面に対向して配置される2つのワーク対向面を備えた山形とされ、
     該山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の前側には、前記ワークの面との間に空隙を形成する空隙形成用切欠部を備え、
     前記山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の後側には、前記フィレットの断面形状に応じた切欠部を備える請求項5記載の摩擦攪拌接合装置。
  9.  前記摩擦攪拌接合ツールの固定式ショルダは、
     前記プローブの先端寄りに配置される端部が、前記角隅部を挟んだ両ワークの面に対向して配置される2つのワーク対向面を備えた山形とされ、
     該山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の前側には、前記ワークの面との間に空隙を形成する空隙形成用切欠部を備え、
     前記山形の頂部におけるプローブよりも摩擦攪拌接合進行方向の後側には、前記フィレットの断面形状に応じた切欠部を備える請求項6記載の摩擦攪拌接合装置。
  10.  回転駆動可能なプローブの基端側に固定式ショルダを備えた摩擦攪拌接合ツールを、ワーク間の接合部に配置して該接合部の摩擦攪拌接合を行うときに、
     前記プローブを前記接合部に没入させた前記摩擦攪拌接合ツールの前記固定式ショルダを、前記ワークの面に対し隙間を隔てた位置に保持し、
     前記プローブによって前記ワークの素材が攪拌される攪拌領域にフィラーを供給して、
     前記攪拌領域で軟化および攪拌されるワークの素材とフィラーの素材の軟化物が、前記隙間に流入する摩擦攪拌接合方法。
PCT/JP2016/064748 2015-05-18 2016-05-18 摩擦攪拌接合装置および摩擦攪拌接合方法 WO2016186134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177030552A KR20170129930A (ko) 2015-05-18 2016-05-18 마찰 교반 접합 장치 및 마찰 교반 접합 방법
CN201680028478.2A CN107708911B (zh) 2015-05-18 2016-05-18 摩擦搅拌接合装置以及摩擦搅拌接合方法
EP16796527.6A EP3299108A4 (en) 2015-05-18 2016-05-18 FRICTION-MIXING WELDING DEVICE AND FRICTION-MIXING WELDING METHOD
JP2017519379A JP6372615B2 (ja) 2015-05-18 2016-05-18 摩擦攪拌接合装置および摩擦攪拌接合方法
US15/815,350 US11229972B2 (en) 2015-05-18 2017-11-16 Friction stir welding device and friction stir welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-101210 2015-05-18
JP2015101210 2015-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/815,350 Continuation US11229972B2 (en) 2015-05-18 2017-11-16 Friction stir welding device and friction stir welding method

Publications (1)

Publication Number Publication Date
WO2016186134A1 true WO2016186134A1 (ja) 2016-11-24

Family

ID=57319904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064748 WO2016186134A1 (ja) 2015-05-18 2016-05-18 摩擦攪拌接合装置および摩擦攪拌接合方法

Country Status (6)

Country Link
US (1) US11229972B2 (ja)
EP (1) EP3299108A4 (ja)
JP (1) JP6372615B2 (ja)
KR (1) KR20170129930A (ja)
CN (1) CN107708911B (ja)
WO (1) WO2016186134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208844A1 (ja) * 2019-04-12 2020-10-15 日本軽金属株式会社 接合方法
US11241756B2 (en) * 2017-07-25 2022-02-08 Nippon Light Metal Company, Ltd. Joining method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128177A (ja) * 2015-01-09 2016-07-14 株式会社Ihi 摩擦撹拌接合装置
CN107848064A (zh) * 2015-07-23 2018-03-27 日本轻金属株式会社 接合方法及散热器的制造方法
JP6796042B2 (ja) * 2017-09-08 2020-12-02 川崎重工業株式会社 複動式摩擦攪拌点接合用保持治具および保持治具セット、並びに、複動式摩擦攪拌点接合装置および複動式摩擦攪拌点接合方法
CN109202271A (zh) * 2018-03-08 2019-01-15 中国航空制造技术研究院 一种静轴肩填丝搅拌摩擦焊装置及角焊缝增材制造方法
WO2020032141A1 (ja) * 2018-08-08 2020-02-13 川崎重工業株式会社 摩擦攪拌接合装置及びその運転方法
CN108971741A (zh) * 2018-08-29 2018-12-11 哈尔滨工业大学(威海) 一种t形接头角焊缝静止轴肩搅拌焊方法
JP7122271B2 (ja) * 2019-02-22 2022-08-19 川崎重工業株式会社 摩擦攪拌接合装置および摩擦攪拌接合方法
CN113508001A (zh) * 2019-04-12 2021-10-15 日本轻金属株式会社 接合方法
KR102631734B1 (ko) * 2019-05-17 2024-02-01 니폰게이긴조쿠가부시키가이샤 중공 용기의 제조 방법
DE102019006413A1 (de) * 2019-09-11 2021-03-11 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zur Erhöhung der Schnelligkeit und der Erhöhung der Standfestigkeit des Schweißpins beim Rührreibschweißen.
KR102452012B1 (ko) * 2022-02-17 2022-10-07 주식회사 티오에이치 가스켓 융착장치 및 융착방법
CN116275463B (zh) * 2023-05-25 2023-08-11 合肥工业大学 一种适用于角接接头的轴肩角度可调型搅拌摩擦焊搅拌头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266745A1 (en) * 2008-03-03 2010-12-29 Fundacion Fatronik Tool for the friction stir welding of two metal items with an angled joint having a pin and a wedge-shaped shoulder
WO2011043127A1 (ja) * 2009-10-09 2011-04-14 日本軽金属株式会社 内隅接合用回転ツール及びこれを用いた内隅接合方法
WO2015064012A1 (ja) * 2013-11-01 2015-05-07 川崎重工業株式会社 摩擦攪拌接合装置及び金属製構造体の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240579B2 (ja) 1998-05-22 2009-03-18 日本軽金属株式会社 内すみ摩擦攪拌接合用プローブおよびこれを用いた内すみ摩擦攪拌接合方法
JP3761786B2 (ja) * 2001-01-17 2006-03-29 株式会社日立製作所 摩擦攪拌接合方法および装置
JP3795824B2 (ja) * 2002-04-16 2006-07-12 株式会社日立製作所 摩擦攪拌接合方法
JP2004298955A (ja) * 2003-04-01 2004-10-28 Hitachi Ltd 摩擦攪拌接合方法
TWI335251B (en) * 2004-03-25 2011-01-01 Univ Nihon Method ana apparatus of joining metallic plates by frictional pressure welding
CN1733411A (zh) * 2004-08-03 2006-02-15 株式会社日立制作所 摩擦搅拌焊接方法
US7455212B2 (en) * 2005-11-29 2008-11-25 General Electric Company Deposition friction stir welding process and assembly
JP5149607B2 (ja) * 2007-12-13 2013-02-20 株式会社日立製作所 摩擦攪拌装置及び摩擦攪拌プロセス
JP2011206786A (ja) 2010-03-29 2011-10-20 Toshiba Corp 摩擦攪拌接合ツール、隅肉接合ツール、摩擦攪拌接合方法、及び隅肉接合方法
EP3098015B1 (en) * 2011-08-19 2018-12-12 Nippon Light Metal Company Ltd. Friction stir welding method
JP5915144B2 (ja) * 2011-12-15 2016-05-11 株式会社Ihi 摩擦撹拌接合ツール及び摩擦撹拌接合方法
JP5987396B2 (ja) * 2012-03-27 2016-09-07 株式会社Ihi 摩擦撹拌接合装置
US8556156B1 (en) * 2012-08-30 2013-10-15 Apple Inc. Dynamic adjustment of friction stir welding process parameters based on weld temperature
CN102922125B (zh) * 2012-10-26 2015-08-19 江苏科技大学 填充式搅拌摩擦焊焊接t型接头内侧角焊缝的方法及装置
JP6084887B2 (ja) * 2013-04-16 2017-02-22 川崎重工業株式会社 摩擦撹拌接合装置および摩擦撹拌接合方法
JP6052232B2 (ja) * 2014-01-27 2016-12-27 日本軽金属株式会社 接合方法
JP2015089550A (ja) * 2013-11-05 2015-05-11 武蔵精密工業株式会社 異材接合方法
CN105358285B (zh) * 2014-01-28 2021-09-03 日本轻金属株式会社 摩擦搅拌接合方法
DE102014001050A1 (de) * 2014-01-28 2015-07-30 Grenzebach Maschinenbau Gmbh Verfahren und Vorrichtung zum Rührreibschweißen bei Materialien unterschiedlicher Dicke und bei Kehlnähten
CN107848064A (zh) * 2015-07-23 2018-03-27 日本轻金属株式会社 接合方法及散热器的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266745A1 (en) * 2008-03-03 2010-12-29 Fundacion Fatronik Tool for the friction stir welding of two metal items with an angled joint having a pin and a wedge-shaped shoulder
WO2011043127A1 (ja) * 2009-10-09 2011-04-14 日本軽金属株式会社 内隅接合用回転ツール及びこれを用いた内隅接合方法
WO2015064012A1 (ja) * 2013-11-01 2015-05-07 川崎重工業株式会社 摩擦攪拌接合装置及び金属製構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299108A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241756B2 (en) * 2017-07-25 2022-02-08 Nippon Light Metal Company, Ltd. Joining method
WO2020208844A1 (ja) * 2019-04-12 2020-10-15 日本軽金属株式会社 接合方法
JP2020171953A (ja) * 2019-04-12 2020-10-22 日本軽金属株式会社 接合方法
JP7140036B2 (ja) 2019-04-12 2022-09-21 日本軽金属株式会社 接合方法
US11806802B2 (en) 2019-04-12 2023-11-07 Nippon Light Metal Company, Ltd. Joining method

Also Published As

Publication number Publication date
JPWO2016186134A1 (ja) 2018-01-18
KR20170129930A (ko) 2017-11-27
JP6372615B2 (ja) 2018-08-15
US20180071861A1 (en) 2018-03-15
CN107708911A (zh) 2018-02-16
EP3299108A1 (en) 2018-03-28
EP3299108A4 (en) 2019-01-23
CN107708911B (zh) 2020-01-24
US11229972B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP6372615B2 (ja) 摩擦攪拌接合装置および摩擦攪拌接合方法
JP5849678B2 (ja) 摩擦撹拌接合装置
JP5987397B2 (ja) 摩擦撹拌接合装置
JP5519166B2 (ja) 摩擦撹拌接合方法
JP2013202630A (ja) 摩擦撹拌接合装置
KR101344343B1 (ko) 대형관 타입의 파이프 자동 용접 시스템
JP5631162B2 (ja) 摩擦攪拌接合方法
KR20040034324A (ko) 마찰교반접합장치 및 접합방법
JP2007203326A (ja) 摩擦攪拌接合装置
WO2012029175A1 (ja) 突合せ部に隙間のある金属板の両面摩擦攪拌接合方法
WO2016111351A1 (ja) 摩擦撹拌接合装置
Grätzel et al. Scaling effects during friction stir welding of aluminum alloys with reduced tool aspect ratios
JP2002301579A (ja) 摩擦溶接法及びその装置
JP2002239756A (ja) 摩擦撹拌接合方法とその装置
KR101276334B1 (ko) 하이브리드 마찰교반에 의한 알루미늄 합금과 티타늄 합금의 접합방법
CN104959726A (zh) 一种消除前进侧Hook缺陷的搅拌摩擦搭接焊方法
JP4543204B2 (ja) 摩擦攪拌接合方法
KR101451279B1 (ko) 수직형 마찰교반접합 장치
WO2016147999A1 (ja) 摩擦撹拌接合装置
JP2013202628A (ja) 摩擦撹拌接合装置
KR101276332B1 (ko) 하이브리드 마찰교반에 의한 마그네슘 합금과 구조용강의 접합방법
De Backer et al. Friction stir welding with robot for light weight vehicle design
KR20180068340A (ko) 마찰 교반 용접툴의 위치 보정 장치 및 보정 방법과 마찰 교반 용접기
JP2004017128A (ja) 摩擦撹拌接合装置および加工装置
JP6540794B2 (ja) 摩擦撹拌接合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030552

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016796527

Country of ref document: EP