WO2016184358A1 - 基于双飞控***的固定结构式垂直起降飞机及其控制方法 - Google Patents

基于双飞控***的固定结构式垂直起降飞机及其控制方法 Download PDF

Info

Publication number
WO2016184358A1
WO2016184358A1 PCT/CN2016/081978 CN2016081978W WO2016184358A1 WO 2016184358 A1 WO2016184358 A1 WO 2016184358A1 CN 2016081978 W CN2016081978 W CN 2016081978W WO 2016184358 A1 WO2016184358 A1 WO 2016184358A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
aircraft
wing
flight control
fixed
Prior art date
Application number
PCT/CN2016/081978
Other languages
English (en)
French (fr)
Inventor
陈乐春
Original Assignee
江苏数字鹰科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏数字鹰科技发展有限公司 filed Critical 江苏数字鹰科技发展有限公司
Priority to US15/322,123 priority Critical patent/US10279904B2/en
Publication of WO2016184358A1 publication Critical patent/WO2016184358A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C2009/005Ailerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/02Tailplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded

Definitions

  • the present invention relates to the field of aerospace vehicle design, and in particular to a fixed structure vertical takeoff and landing aircraft of a dual flight control system, and a corresponding flight control method.
  • Fixed-wing aircraft have the advantages of high flight efficiency, fast speed, long distance, simple system structure, light weight, low cost and low usage cost.
  • fixed-wing aircraft also have their own inevitable defects, that is, they need to take off and land. Run or use a special launch recovery unit.
  • small fixed-wing UAVs due to the high-rise buildings in the city, the limitations of conventional small-size fixed-wing UAVs that can only take off and land for taxiing are very large.
  • Multi-rotor aircraft have a vertical take-off and landing capability, can take off and land using the open space in the city, and can easily shuttle between buildings, so the adaptability to urban airspace is better.
  • the rotors directly connected to the power system of the multi-rotor aircraft are far less efficient than the wings of the fixed-wing aircraft, so the power consumption is large.
  • the resistance of the forward flight is also much larger than that of the fixed-wing aircraft. Its flight speed, distance and cruising time are not as good as fixed-wing aircraft.
  • technicians in the aerospace industry have been looking for aircraft that combine the performance and advantages of both fixed-wing and multi-rotor aircraft.
  • the currently widely used vertical takeoff and landing + fixed wing solutions are mainly tilting engine type.
  • the scheme combines the lift engine and the cruise engine into one.
  • the engine is switched in the flight state to tilt the engine, so that the thrust direction of the engine rotates around the horizontal axis of the fuselage, and the fuselage is basically maintained in flight.
  • the tilting engine imposes a great limitation on the position of the engine on the aircraft. Not only the position of the wing and the engine must be consistent with the center of gravity of the aircraft.
  • the partial lift engine fails or the instantaneous output is insufficient, the asymmetric lift is likely to cause disaster. Sexual accident.
  • the engine itself is very heavy, and it is easier to tilt the engine. Therefore, the existing solution has the disadvantages of complicated thrust conversion mechanism or power device and large accessory quality, which is disadvantageous to the lightness and miniaturization of the aircraft and the improvement of flight efficiency.
  • the present invention provides a feature that can reduce the complexity of an aircraft, take into account the multi-rotor vertical take-off and landing, and the high-speed cruising of the fixed wing, and can be freely converted between the two flight modes, and has a simple structure.
  • a fixed-structure vertical take-off and landing aircraft based on dual flight control system with flexible control and reliable performance and its control method.
  • a fixed-structure vertical take-off and landing aircraft based on a dual flight control system including an aircraft structure and a flight control system;
  • an aircraft structure which is a conventional structure, a flying wing structure or a V-tail structure, including a fuselage, a fixed wing disposed on the fuselage, and a steering gear system mounted on the fixed wing; the fuselage side or fixed wing a plurality of engines are connected to the end; the engine is an internal combustion engine, an electric motor, a jet engine or a rocket engine;
  • a flight control system installed in an aircraft structure, comprising a multi-rotor flight control system and a fixed-wing flight control system, wherein a plurality of output channels of the multi-rotor flight control system are respectively connected to the respective engines, and the fixed-wing flight control system
  • the output channel includes a plurality of servo control channels and a throttle control channel, wherein the servo control channels are respectively connected to the respective servos, and the throttle control channels are connected to the engines;
  • the multi-rotor flight control system and the fixed wing flight control system Each is connected to a manual control module, a power supply and a GPS module, the fixed-wing flight control system is connected to an airspeed meter; the GPS module is connected to a computer; and the computer and the manual control module are connected and controlled by the switch.
  • the output channels of the rotor flight control system and the fixed-wing flight control system are turned on and off.
  • a further technical solution is: the multi-rotor flight control system and the fixed-wing flight control system are relatively independent, or integrated in the same flight control system.
  • a further technical solution is as follows:
  • the models of the engines are the same, the number is three or more, and the common center of gravity of all the engines in the vertical direction coincides with the center of gravity of the aircraft fuselage and the fixed wing structure.
  • a further technical solution is that: the tail portions of the respective engines are respectively mounted with support rods.
  • the aircraft is a conventional structure, including a fuselage, the middle wing of the fuselage is arranged with an organic wing, the tail of the fuselage is arranged with a horizontal tail and a vertical tail; the rear edge of the wing is mounted with a movable Aileron, a movable elevator is mounted on a rear edge of the horizontal tail, a movable rudder is mounted on a rear edge of the vertical tail; a plurality of engines are connected to the circumference of the fuselage through a plurality of connecting rods, End of the engine The support rods are respectively installed in the parts.
  • the aircraft is a flying wing structure, including a fuselage, a pair of horizontal wings are arranged on the left and right sides of the fuselage, a pair of vertical wings are arranged on the upper and lower sides of the fuselage, and the wingspan of the horizontal wing is The length is greater than the span length of the vertical wing; the rear edge of the horizontal wing is mounted with a movable elevon with a combination of an elevator and an aileron, and a movable rudder is mounted on a rear edge of the vertical wing.
  • the wing tips of the horizontal wing and the vertical wing are respectively mounted with an engine, and a support rod is respectively installed at a tail portion of each engine.
  • the present invention also provides a control method for a fixed structure vertical take-off and landing aircraft based on a dual flight control system: [0016]
  • the aircraft has a manual flight mode and an automatic flight mode, in the automatic flight mode:
  • the aircraft head In the take-off phase, the aircraft head is facing upwards, in a vertical take-off and landing attitude, the computer controls or manually controls the output channel of the multi-rotor flight control system, and simultaneously closes the output channel of the fixed-wing flight control system.
  • the multi-rotor flight control system controls the operation of each engine, overcomes the gravity by the lift generated by the engine rotation, gradually increases the flight height of the aircraft, and controls the output power of each engine to achieve the adjustment of the flight attitude and the climbing speed during the take-off of the aircraft. Adjustment
  • the computer controls, or manually controls the on/off switch to close the output channel of the multi-rotor flight control system
  • the output channel of the fixed-wing flight control system is controlled by the fixed-wing flight control system to control the steering system installed on the fixed wing, so that the aircraft changes from a vertical take-off attitude to a level flight attitude, and the steering gear system is realized.
  • the leveling attitude the same speed is adjusted by controlling the output power of each engine;
  • the computer controls, or manually controls the output channel of the multi-rotor flight control system, ⁇ Turn off the output channel of the fixed-wing flight control system, and control the engine operation by the multi-rotor flight control system.
  • the output power of each engine By controlling the output power of each engine, the aircraft is changed from the leveling attitude to the vertical take-off and landing attitude, and the lift generated by the engine rotation is overcome. Gravity, gradually reduce the flying height of the aircraft until the aircraft falls safely; during this period, by adjusting the output power of each engine, the adjustment of the flight attitude and the adjustment of the descending speed during the landing of the aircraft are realized.
  • the present invention combines the advantages of a fixed-wing aircraft and a multi-rotor aircraft, and is capable of freely switching between two flight modes, that is, capable of vertical take-off and landing in a multi-rotor manner, and capable of high-speed cruising in a fixed wing manner.
  • the present invention adopts a dual flight control system, and both flight control systems are mature technologies, which is advantageous for reducing a new flight control system that realizes the control of a multi-rotor aircraft by implementing a fixed-wing aircraft. Burst costs and development risks.
  • the dual flight control system is more convenient in control principle, does not require complicated mechanical variable shaft structure, and does not affect the internal load and equipment arrangement.
  • the present invention is applicable not only to drones but also to manned aircraft, and can be widely applied to fields such as civil aviation and military.
  • FIG. 1 is a perspective view of a first embodiment of an aircraft structure of the present invention.
  • FIG. 2 is a front elevational view of the first embodiment of the aircraft structure of the present invention.
  • FIG 3 is a plan view of a first embodiment of an aircraft structure of the present invention.
  • FIG. 4 is a left side view of the first embodiment of the aircraft structure of the present invention.
  • FIG. 5 is a perspective view of a second embodiment of the aircraft structure of the present invention.
  • FIG. 6 is a front view of a second embodiment of the aircraft structure of the present invention.
  • FIG. 7 is a plan view of a second embodiment of the aircraft structure of the present invention.
  • FIG. 8 is a schematic diagram of a flight control system of the present invention.
  • the aircraft structure includes a fuselage 1-1, a pair of wings 2-2 are arranged in the middle of the fuselage 1-1, and a pair of horizontal tails 1 are arranged at the tail of the fuselage 1-1. -3 and a vertical tail 1-4.
  • the trailing edges of the wings 2-2 are respectively provided with movable ailerons 1-5.
  • the movable elevators 1-6 are mounted on the trailing edges of the horizontal tails 1-3, respectively.
  • the trailing edge of the vertical tails 1-4 is fitted with a movable rudder 1-7.
  • the fuselage 1-1 is connected to four identical engines 1-9 through four connecting rods 1-8, the propellers 1-10 are mounted on the engine 1-9, and the engine 1-9 and the propellers 1-10 form a rotor.
  • the tails of the engines 1-9 are fitted with support rods 1-11, and the functions of the support rods 1-11 are to keep the aircraft stable in the floor.
  • FIGS. 5, 6, and 7 show an embodiment of the present invention on a flying wing structure aircraft.
  • the aircraft structure includes a fuselage 2-1, a pair of horizontal wings 2-2 are arranged on the left and right sides of the fuselage 2-1, and a pair of verticals are arranged on the upper and lower sides of the fuselage 2-1. Wings 2-3, and the span length of the horizontal wing 2-2 is greater than the span length of the vertical wing 2-3.
  • the trailing edges of the horizontal wings 2-2 are respectively mounted with movable lifting ailerons 2-4 having the functions of an elevator and an aileron.
  • the trailing edges of the vertical wings 2-3 are respectively mounted with movable rudders 2-5.
  • the wing tips of the horizontal wing 2-2 and the vertical wing 2-3 are respectively equipped with the same type of engine 2-6, the engine 2-6 is equipped with a propeller 2-7, and the engine 2-6 and the propeller 2-7 form a rotor.
  • the tails of the engine 2-6 are mounted with support rods 2-8, and the role of the support rods 2-8 is to keep the aircraft stable at the floor.
  • FIG. 8 is a schematic diagram of a flight control system of the present invention.
  • the flight control system is installed in the above-mentioned aircraft structure, and is a dual flight control system including a multi-rotor flight control system 1 and a fixed-wing flight control system 2.
  • the multi-rotor flight control system 1 and the fixed-wing flight control system 2 can be relatively independent or integrated in the same flight control system.
  • There are a plurality of output channels of the multi-rotor flight control system 1, and the four engines 3 in the first embodiment or the second embodiment are respectively connected and controlled.
  • the output channel of the fixed-wing flight control system 2 includes a servo control channel and a throttle control channel.
  • the throttle control passage is a single passage, and the four engines 3 in the first embodiment or the second embodiment are connected and uniformly controlled.
  • the power source 5 is connected to the multi-rotor flight control system 1 and the fixed-wing flight control system 2 to supply power thereto.
  • the GPS module 6 is connected to the multi-rotor flight control system 1 and the fixed-wing flight control system 2 to provide flight position and altitude data as a basis for control.
  • the airspeed meter 7 is connected to the fixed-wing flight control system 2 to provide air speed data as a basis for control in the leveling attitude.
  • the on/off switch 9 connects and controls the opening and closing of the output channels of the multi-rotor flight control system 1 and the fixed-wing flight control system 2.
  • the manual control module 10 is connected to the on/off switch 9, the multi-rotor flight control system 1 and the fixed wing flight control system 2 to provide control commands.
  • the control commands for the on/off switch 9 are provided by the computer 8 or the manual control module 10.
  • the control of the computer 8 is provided by the GPS module 6.
  • the flight of the aircraft mainly includes three kinds of actions: one, tilting left and right, (manipulating by the ailerons); second, raising and lowering (operating by the elevator); third, deflecting left and right (manipulating by the rudder).
  • the aileron is the main operating rudder surface of the aircraft. Manipulating the rolling moment generated by the differential deflection of the left and right ailerons allows the aircraft to make a roll maneuver with a long wingspan and a short chord.
  • the elevator is a steerable airfoil section in the horizontal wing that acts to pitch the aircraft. When it is necessary to maneuver the aircraft to raise or bow, the elevator in the horizontal wing will act.
  • the elevator and the ailerons are combined into one to become the elevon aileron. If the two elevons are deflected in the same direction, the airplane will rise or fall; if it is deflected in the opposite direction, it will roll to the left and right.
  • the area of the elevon aileron must be designed to be large, as the steering arm used as the elevator for the elevon aileron is smaller than the aircraft of the normal layout.
  • the rudder is used to correct the heading and angle steering of the aircraft, and is mounted on the vertical wing for the movable airfoil portion of the aircraft's heading maneuver. The rudder is mostly used for steering with a small angle.
  • the large-angle steering requires the aileron to deflect the aircraft to generate centrifugal force.
  • the aileron is used to adjust the fuselage to lift down and complete the large-angle steering.
  • the head of the aircraft is facing upwards, the support rod of the tail touches the ground, and the vehicle is in a vertical take-off and landing attitude, and the computer 8 controls the output passage of the air-rotating system 1 of the multi-rotor flight control system, and the fixed wing is closed at the same time.
  • the output channel of the flight control system 2 (Note: The above process can also be controlled by the manual control module 10).
  • the multi-rotor flight control system 1 controls the operation of each engine 3, and the lift generated by the rotation of the propeller by the engine 3 overcomes the gravity. Gradually increase the flight height of the aircraft.
  • the multi-rotor flight control system 1 realizes the adjustment of the flight attitude during the take-off of the aircraft by controlling the output power of each engine 3 to form a lift difference or a torque difference. By controlling the output power of the engine 3, the adjustment of the aircraft climb speed is realized.
  • the computer 8 controls the on/off switch 9 to close the output channel of the multi-rotor flight control system 1 , the output channel of the fixed-wing flight control system 2 (Note: The above process can also be controlled by the manual control module 10).
  • the fixed-wing flight control system 2 controls the steering system 4 including the ailerons, the elevators, and the rudder to adjust the flight attitude to change the aircraft from a vertical take-off attitude to a level flight attitude.
  • the fixed-wing flight control system 2 controls the steering gear system through the data provided by the airspeedometer 7 to achieve the adjustment of the leveling attitude; the output power of each engine 3 is uniformly controlled by the throttle to achieve the flight speed. Adjustment.
  • the computer 8 controls the output channel of the multi-rotor flight control system 1 to be turned on and off.
  • the output channel of the fixed-wing flight control system 2 is turned off (Note: The above process can also be controlled by the manual control module 10).
  • the multi-rotor flight control system 1 controls the operation of each engine 3, and by controlling the output power of each engine 3 to form a lift difference or a torque difference, the aircraft is changed from a leveling attitude to a vertical take-off attitude.
  • the multi-rotor flight control system 1 forms a lift difference or a torque difference by controlling the output power of each engine 3 to ensure the balance of the flight attitude during the landing of the aircraft; by controlling the output power of the engine 3, the adjustment of the descending speed of the aircraft is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

一种基于双飞控***的固定结构式垂直起降飞机,包括飞机结构和飞控***。飞机结构包括机身(1-1,2-1)、固定翼、舵机***(4)以及安装在机身(1-1,2-1)周侧或固定翼端部的多台发动机(1-9,2-6);飞控***包括多旋翼飞控***(1)和固定翼飞控***(2),多旋翼飞控***(1)和固定翼飞控***(2)相对独立或整合在同一个飞控***内。通过计算机控制多旋翼飞控***(1)和固定翼飞控***(2)对舵机***(4)、发动机(1-9,2-6)的输出通道的开启和关断实现在两种飞行模式之间自由切换,既能够以多旋翼方式垂直起降,又能够以固定翼方式高速巡航。该飞机结构简单、可靠性强,操控灵活,成本低廉,不仅适用于无人机,而且适用于载人机,并可广泛应用于民航和军事等领域。

Description

说明书
发明名称:基于双飞控***的固定结构式垂直起降飞机及其控制方 法
技术领域
[0001] 本发明涉及航空飞行器设计领域, 具体涉及一种双飞控***的固定结构式垂直 起降飞机, 以及相应的飞行控制方法。
背景技术
[0002] 固定翼飞行器具有飞行效率高、 速度快、 距离远、 ***结构简单、 重量轻、 成 本与使用费低等优点, 但固定翼飞行器也有自身不可避免的缺陷, 即在起飞和 降落吋需要滑跑或者利用特殊的发射回收装置。 特别对于小型固定翼无人机而 言, 由于城市高楼林立, 对仅能进行滑跑起飞及降落的常规小型固定翼无人机 的局限性很大。
[0003] 多旋翼飞行器具有垂直起降能力, 能够使用城市中的空地完成起飞和降落, 且 能轻松在楼宇间穿梭, 因此对城市空域的适应性更好。 但多旋翼飞行器直接和 动力***相连的旋翼的效率远不如固定翼飞机的机翼, 因此功耗大。 又因其前 进速度主要靠旋翼桨盘通过倾斜盘的倾斜产生的分力提供, 同吋前进飞行的阻 力也较固定翼飞机大的多。 其飞行速度, 距离和续航吋间都不如固定翼飞机。 为此, 航空领域的技术人员一直在找寻能兼有固定翼飞机和多旋翼飞机性能、 优点于一身的飞行器。
[0004] 目前普遍应用的垂直起降 +固定翼方案主要为倾转发动机式。 该方案将升力发 动机和巡航发动机合二为一, 通过机械变轴结构, 在飞行状态转换吋倾转发动 机, 使发动机的推力方向绕机身横轴转动, 而机身在飞行中基本保持水平。 但 是, 倾转发动机对发动机在飞机上的位置带来很大的限制, 不光机翼、 发动机 的位置必须和飞机的重心一致, 一旦部分升力发动机故障或瞬吋出力不足, 非 对称升力容易引起灾难性的事故。 再则, 发动机本身十分沉重, 倾转发动机谈 何容易。 因此现有方案具有推力转换机构或动力装置复杂、 附件质量大的缺点 , 不利于飞行器的轻小型化和飞行效率的提高。 技术问题
[0005] 针对上述问题, 本发明提供了一种可以降低飞行器的复杂程度, 兼顾多旋翼垂 直起降与固定翼高速巡航的特点, 而且能在两种飞行模式之间能自由转换, 而 且结构简单、 操控灵活、 性能可靠的基于双飞控***的固定结构式垂直起降飞 机及其控制方法。
问题的解决方案
技术解决方案
[0006] 本发明的技术方案如下:
[0007] 一种基于双飞控***的固定结构式垂直起降飞机, 包括飞机结构和飞控***;
[0008] 飞机结构, 为常规结构、 飞翼结构或 V尾结构, 包括机身、 布置在机身上的固 定翼以及安装在固定翼上的舵机***; 所述机身周侧或固定翼端部连接有多台 发动机; 所述发动机为内燃机、 电动机、 喷气式发动机或火箭式发动机;
[0009] 飞控***, 安装于飞机结构中, 包括多旋翼飞控***和固定翼飞控***, 所述 多旋翼飞控***的多个输出通道分别连接各发动机, 所述固定翼飞控***的输 出通道包括多个舵机控制通道和一个油门控制通道, 所述舵机控制通道分别连 接各舵机, 所述油门控制通道连接各发动机; 所述多旋翼飞控***和固定翼飞 控***均与手动控制模块、 电源和 GPS模块相连接, 所述固定翼飞控***与空速 计相连接; 所述 GPS模块连接计算机; 计算机和手动控制模块通过通断幵关连接 并控制所述多旋翼飞控***和固定翼飞控***的输出通道的幵启和关断。
[0010] 其进一步的技术方案为: 所述多旋翼飞控***和固定翼飞控***相对独立, 或 者整合在同一个飞控***内。
[0011] 其进一步的技术方案为: 所述发动机的型号相同, 数量为三台以上, 且所有发 动机的在垂直方向上的共同重心与飞机机身及固定翼结构的重心重合。
[0012] 其进一步的技术方案为: 所述各台发动机的尾部分别安装有支撑杆。
[0013] 其进一步的技术方案为: 所述飞机为常规结构, 包括机身, 机身中部布置有机 翼, 机身尾部布置有水平尾翼和垂直尾翼; 所述机翼的后缘安装有可动的副翼 , 所述水平尾翼的后缘安装有可动的升降舵, 所述垂直尾翼的后缘安装有可动 的方向舵; 所述机身周侧通过多个连接杆连接有多台发动机, 各台发动机的尾 部分别安装有支撑杆。
[0014] 其进一步的技术方案为: 所述飞机为飞翼结构, 包括机身, 机身左右侧布置有 一对水平翼, 机身上下侧布置有一对垂直翼, 且所述水平翼的翼展长度大于所 述垂直翼的翼展长度; 所述水平翼的后缘安装有由升降舵和副翼组合而成的可 动的升降副翼, 所述垂直翼的后缘安装有可动的方向舵, 所述水平翼、 垂直翼 的翼梢分别安装有由发动机, 各台发动机的尾部分别安装有支撑杆。
[0015] 本发明还提供了一种基于双飞控***的固定结构式垂直起降飞机的控制方法: [0016] 飞机具有手动飞行模式和自动飞行模式, 在自动飞行模式下:
[0017] 起飞阶段, 飞机头部朝上, 处于垂直起降姿态, 计算机控制或手动控制通断幵 关幵启多旋翼飞控***的输出通道, 同吋关闭固定翼飞控***的输出通道, 由 多旋翼飞控***控制各发动机工作, 通过发动机旋转产生的升力克服重力, 逐 步提高飞机的飞行高度, 并通过控制各发动机的输出功率, 实现对飞机起飞过 程中飞行姿态的调整和爬升速度的调节;
[0018] 空中飞行阶段, 当安装在飞机中的 GPS模块探测到飞机到达指定安全飞行高度 或到达指定行程点吋计算机控制、 或手动控制通断幵关关闭多旋翼飞控***的 输出通道, 同吋幵启固定翼飞控***的输出通道, 由固定翼飞控***控制安装 在固定翼上的舵机***工作, 使飞机从垂直起降姿态变为平飞姿态, 并通过控 制舵机***实现对平飞姿态的调整, 同吋通过控制各发动机的输出功率实现对 飞行速度的调节;
[0019] 降落阶段, 当安装在飞机中的 GPS模块探测到飞机到达指定安全飞行高度或到 达指定行程点吋计算机控制、 或手动控制通断幵关幵启多旋翼飞控***的输出 通道, 同吋关闭固定翼飞控***的输出通道, 由多旋翼飞控***控制各发动机 工作, 通过控制各发动机的输出功率, 使飞机从平飞姿态变为垂直起降姿态, 通过发动机旋转产生的升力克服重力, 逐步降低飞机的飞行高度, 直至飞机安 全降落; 在此期间, 通过控制各发动机的输出功率, 实现对飞机降落过程中飞 行姿态的调整和下降速度的调节。
发明的有益效果
有益效果 [0020] 本发明的有益技术效果是:
[0021] 本发明兼有固定翼飞机和多旋翼飞机的优点, 能够在两种飞行模式之间自由切 换, 即能够以多旋翼方式垂直起降, 又能够以固定翼方式高速巡航。 没有特殊 的机械变轴结构, 结构简单、 可靠性强, 操控灵活, 成本低廉。
[0022] 本发明采用双飞控***, 两种飞控***都是成熟技术, 相比于在重新幵发一套 实现固定翼飞机又实现多旋翼飞机的控制的新的飞控***, 有利于降低幵发成 本和研制风险。 双飞控***控制原理上更加方便, 不需要复杂的机械变轴结构 , 也不会影响机内载荷和设备的布置。
[0023] 本发明不仅适用于无人机, 而且适用于载人机, 并可广泛应用于民航和军事等 领域。
对附图的简要说明
附图说明
[0024] 图 1是本发明飞机结构实施例一的立体图。
[0025] 图 2是本发明飞机结构实施例一的主视图。
[0026] 图 3是本发明飞机结构实施例一的俯视图。
[0027] 图 4是本发明飞机结构实施例一的左视图。
[0028] 图 5是本发明飞机结构实施例二的立体图。
[0029] 图 6是本发明飞机结构实施例二的主视图。
[0030] 图 7是本发明飞机结构实施例二的俯视图。
[0031] 图 8是本发明飞控***的原理图。
[0032] 附图标记说明: 1-1.机身; 1-2.机翼; 1-3.水平尾翼; 1-4.垂直尾翼; 1-5.副翼;
1- 6.升降舵; 1-7.方向舵; 1-8.连接杆; 1-9.发动机; 1-10.螺旋桨; 1-11.支撑杆;
2- 1.机身; 2-2.水平翼; 2-3.垂直翼; 2-4.升降副翼; 2-5.方向舵; 2-6.发动机; 2-7 .螺旋桨; 2-8.支撑杆; 1.多旋翼飞控***; 2.固定翼飞控***; 3.发动机; 4.舵机 ***; 5.电源; 6.GPS模块; 7.空速计; 8.计算机; 9.通断幵关; 10.手动控制模块
本发明的实施方式 [0033] [0008]下面结合附图对本发明的具体实施方式做进一步说明。
[0034] 【实施例一】
[0035] 图 1、 图 2、 图 3、 图 4所示的是本发明在常规结构飞机上的实施例。 如图 1至图 4 所示, 该实施例中, 飞机结构包括机身 1-1, 机身 1-1中部布置有一对机翼 2-2, 机身 1-1尾部布置有一对水平尾翼 1-3和一个垂直尾翼 1-4。 机翼 2-2的后缘分别安 装有可动的副翼 1-5。 水平尾翼 1-3的后缘分别安装有可动的升降舵 1-6。 垂直尾 翼 1-4的后缘安装有可动的方向舵 1-7。 机身 1-1上通过 4根连接杆 1-8分别连接 4台 型号相同的发动机 1-9, 发动机 1-9上安装有螺旋桨 1-10, 发动机 1-9和螺旋桨 1-10 组成旋翼, 发动机 1-9的尾部安装有支撑杆 1-11, 支撑杆 1-11的作用是在座地吋 保持飞机平稳。
[0036] 【实施例二】
[0037] 图 5、 图 6、 图 7所示的是本发明在飞翼结构飞机上的实施例。 如图 5至图 7所示 , 该实施例中, 飞机结构包括机身 2-1, 机身 2-1左右侧布置有一对水平翼 2-2, 机身 2-1上下侧布置有一对垂直翼 2-3, 并且水平翼 2-2的翼展长度大于垂直翼 2-3 的翼展长度。 水平翼 2-2的后缘分别安装有兼有升降舵和副翼功能的可动的升降 副翼 2-4。 垂直翼 2-3的后缘分别安装有可动的方向舵 2-5。 水平翼 2-2、 垂直翼 2-3 的翼梢均分别安装有型号相同的发动机 2-6, 发动机 2-6上安装有螺旋桨 2-7, 发 动机 2-6和螺旋桨 2-7组成旋翼, 发动机 2-6的尾部安装有支撑杆 2-8, 支撑杆 2-8的 作用是在座地吋保持飞机平稳。
[0038] 注: 上述两个实施例附图中所示出的发动机的类型、 数量和安装位置仅为参考 , 并非对本发明的限定。
[0039] 图 8是本发明的飞控***示意图。 如图 8所示, 飞控***安装在上述飞机结构中 , 是包括多旋翼飞控*** 1和固定翼飞控*** 2的双飞控***。 多旋翼飞控*** 1 和固定翼飞控*** 2可以是相对独立的, 也可以整合在同一个飞控***内。 其中 , 多旋翼飞控*** 1的输出通道有多个, 分别连接并控制实施例一或实施例二中 的 4台发动机 3。 固定翼飞控*** 2的输出通道则包括舵机控制通道和油门控制通 道。 舵机控制通道有多个, 分别连接并控制包括常规结构、 飞翼结构、 V尾结构 在内的各种飞机结构的副翼、 升降舵、 升降副翼、 方向舵等组成的舵机*** 4。 油门控制通道为单一通道, 连接并统一控制实施例一或实施例二中的 4台发动机 3。 电源 5与多旋翼飞控*** 1和固定翼飞控*** 2相连, 为其供电。 GPS模块 6与 多旋翼飞控*** 1和固定翼飞控*** 2相连, 提供飞行位置与高度数据, 作为控 制依据。 空速计 7与固定翼飞控*** 2相连, 提供空气速度数据, 作为平飞姿态 下的控制依据。 通断幵关 9连接并控制多旋翼飞控*** 1和固定翼飞控*** 2的输 出通道的幵启和关断。 手动控制模块 10连接通断幵关 9、 多旋翼飞控*** 1和固 定翼飞控*** 2, 提供控制指令。 通断幵关 9的控制指令由计算机 8或者手动控制 模块 10提供。 计算机 8的控制依据由 GPS模块 6提供。
[0040] 本发明对上述双飞控***飞机的飞行控制方法如下:
[0041] 飞机在空中飞行主要包括三种动作: 一, 左右倾斜, (由副翼操纵); 二, 上下升 降 (由升降舵操纵); 三, 左右偏转 (由方向舵操纵)。 副翼为飞机的主操作舵面, 操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动, 翼展长而翼 弦短。 升降舵是水平翼中可操纵的翼面部分, 其作用是对飞机进行俯仰操纵。 当需要操纵飞机抬头或低头吋, 水平翼中的升降舵就会发生作用。 在飞翼布局 的飞行器中, 将升降舵和副翼合二为一, 成为升降副翼。 若两片升降副翼同向 偏转, 飞机就会上升或下降; 若反向偏转, 就会向左右滚转。 升降副翼的面积 必须设计得比较大, 因为作为升降舵使用吋升降副翼的操纵力臂比正常布局的 飞机要小。 方向舵是用来修正飞机航向和角度转向, 安装在垂直翼上为实现飞 机航向操纵的可活动的翼面部分。 方向舵多数用于角度较小的转向, 大角度转 向需要借助副翼使飞机倾斜偏转产生离心力, 同吋使用副翼调节机身上抬下俯 上完成大角度转向。
[0042] 在本发明飞机的整个飞行过程中, 多旋翼飞控*** 1和固定翼飞控*** 2这两个 飞控***始终是工作的, 切换的是这两个飞控***与被控制对象之间输出通道 的畅通关系。
[0043] 起飞阶段, 飞机头部朝上, 尾部的支撑杆触地, 处于垂直起降姿态, 计算机 8 控制通断幵关 9幵启多旋翼飞控*** 1的输出通道, 同吋关闭固定翼飞控*** 2的 输出通道 (注: 上述过程也可由手动控制模块 10控制) 。 此吋, 由多旋翼飞控 *** 1控制各发动机 3工作, 通过发动机 3带动螺旋桨旋转产生的升力克服重力, 逐步提高飞机的飞行高度。 在此阶段, 多旋翼飞控*** 1通过控制各发动机 3输 出功率形成升力差或扭矩差, 实现飞机起飞过程中飞行姿态的调整; 通过控制 发动机 3输出功率的大小, 实现飞机爬升速度的调节。
[0044] 空中飞行阶段, 当 GPS模块 6探测到飞机到达指定的安全的平飞高度或到达指 定的平飞行程点吋, 计算机 8控制通断幵关 9关闭多旋翼飞控*** 1的输出通道, 同吋幵启固定翼飞控*** 2的输出通道 (注: 上述过程也可由手动控制模块 10控 制) 。 此吋, 固定翼飞控*** 2控制包括副翼、 升降舵、 方向舵在内的舵机*** 4共同作用, 调整飞行姿态, 使飞机从垂直起降姿态变为平飞姿态。 在空中飞行 阶段, 固定翼飞控*** 2通过空速计 7提供的数据控制舵机***, 实现对平飞姿 态的调整; 通过油门统一控制各发动机 3的输出功率的大小, 实现对飞行速度的 调节。
[0045] 降落阶段, 当 GPS模块 10探测到飞机到达指定的安全的下降高度或到达指定行 的下降行程点吋, 计算机 8控制通断幵关 9幵启多旋翼飞控*** 1的输出通道, 同 吋关闭固定翼飞控*** 2的输出通道 (注: 上述过程也可由手动控制模块 10控制 ) 。 此吋, 由多旋翼飞控*** 1控制各发动机 3工作, 通过控制各发动机 3输出功 率形成升力差或扭矩差, 使飞机从平飞姿态变为垂直起降姿态。 接着, 通过发 动机 3带动螺旋桨旋转产生的升力克服重力, 逐步降低飞机的飞行高度, 直至飞 机安全降落。 在此阶段, 多旋翼飞控*** 1通过控制各发动机 3输出功率形成升 力差或扭矩差, 保证飞机降落过程中飞行姿态的平衡; 通过控制发动机 3输出功 率的大小, 实现飞机下降速度的调节。
[0046] 以上所述的仅是本发明的优选实施方式, 本发明不限于以上实施例。 可以理解 , 本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的 其他改进和变化, 均应认为包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 包括 飞机结构和飞控***;
飞机结构, 为常规结构、 飞翼结构或 V尾结构, 包括机身、 布置在机 身上的固定翼以及安装在固定翼上的舵机***; 所述机身周侧或固定 翼端部连接有多台发动机; 所述发动机为内燃机、 电动机、 喷气式发 动机或火箭式发动机;
飞控***, 安装于飞机结构中, 包括多旋翼飞控***和固定翼飞控系 统, 所述多旋翼飞控***的多个输出通道分别连接各发动机, 所述固 定翼飞控***的输出通道包括多个舵机控制通道和一个油门控制通道 , 所述舵机控制通道分别连接各舵机, 所述油门控制通道连接各发动 机; 所述多旋翼飞控***和固定翼飞控***均与手动控制模块、 电源 和 GPS模块相连接, 所述固定翼飞控***与空速计相连接; 所述 GPS 模块连接计算机; 计算机和手动控制模块通过通断幵关连接并控制所 述多旋翼飞控***和固定翼飞控***的输出通道的幵启和关断。
[权利要求 2] 根据权利要求 1所述的基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 所述多旋翼飞控***和固定翼飞控***相对独立, 或者 整合在同一个飞控***内。
[权利要求 3] 根据权利要求 1所述的基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 所述发动机的型号相同, 数量为三台以上, 且所有发动 机的在垂直方向上的共同重心与飞机机身及固定翼结构的重心重合。
[权利要求 4] 根据权利要求 1所述的基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 所述各台发动机的尾部分别安装有支撑杆。
[权利要求 5] 根据权利要求 1所述的基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 所述飞机为常规结构, 包括机身, 机身中部布置有机翼 , 机身尾部布置有水平尾翼和垂直尾翼; 所述机翼的后缘安装有可动 的副翼, 所述水平尾翼的后缘安装有可动的升降舵, 所述垂直尾翼的 后缘安装有可动的方向舵; 所述机身周侧通过多个连接杆连接有多台 发动机, 各台发动机的尾部分别安装有支撑杆。
[权利要求 6] 根据权利要求 1所述的基于双飞控***的固定结构式垂直起降飞机, 其特征在于: 所述飞机为飞翼结构, 包括机身, 机身左右侧布置有一 对水平翼, 机身上下侧布置有一对垂直翼, 且所述水平翼的翼展长度 大于所述垂直翼的翼展长度; 所述水平翼的后缘安装有由升降舵和副 翼组合而成的可动的升降副翼, 所述垂直翼的后缘安装有可动的方向 舵, 所述水平翼、 垂直翼的翼梢分别安装有由发动机, 各台发动机的 尾部分别安装有支撑杆。
[权利要求 7] —种如权利要求 1~6任一项所述的基于双飞控***的固定结构式垂直 起降飞机的控制方法, 其特征在于:
起飞阶段, 飞机头部朝上, 处于垂直起降姿态, 计算机控制或手动控 制通断幵关幵启多旋翼飞控***的输出通道, 同吋关闭固定翼飞控系 统的输出通道, 由多旋翼飞控***控制各发动机工作, 通过发动机旋 转产生的升力克服重力, 逐步提高飞机的飞行高度, 并通过控制各发 动机的输出功率, 实现对飞机起飞过程中飞行姿态的调整和爬升速度 的调节;
空中飞行阶段, 当安装在飞机中的 GPS模块探测到飞机到达指定安全 飞行高度或到达指定行程点吋计算机控制、 或手动控制通断幵关关闭 多旋翼飞控***的输出通道, 同吋幵启固定翼飞控***的输出通道, 由固定翼飞控***控制安装在固定翼上的舵机***工作, 使飞机从垂 直起降姿态变为平飞姿态, 并通过控制舵机***实现对平飞姿态的调 整, 同吋通过控制各发动机的输出功率实现对飞行速度的调节; 降落阶段, 当安装在飞机中的 GPS模块探测到飞机到达指定安全飞行 高度或到达指定行程点吋计算机控制、 或手动控制通断幵关幵启多旋 翼飞控***的输出通道, 同吋关闭固定翼飞控***的输出通道, 由多 旋翼飞控***控制各发动机工作, 通过控制各发动机的输出功率, 使 飞机从平飞姿态变为垂直起降姿态, 通过发动机旋转产生的升力克服 重力, 逐步降低飞机的飞行高度, 直至飞机安全降落; 在此期间, 通 过控制各发动机的输出功率, 实现对飞机降落过程中飞行姿态的调整 和下降速度的调节。
PCT/CN2016/081978 2015-05-19 2016-05-13 基于双飞控***的固定结构式垂直起降飞机及其控制方法 WO2016184358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,123 US10279904B2 (en) 2015-05-19 2016-05-13 Fixed structure type vertical take-off and landing aircraft based on dual flying control systems and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510257836.4 2015-05-19
CN201510257836.4A CN104816824B (zh) 2015-05-19 2015-05-19 基于双飞控***的固定结构式垂直起降飞机及其控制方法

Publications (1)

Publication Number Publication Date
WO2016184358A1 true WO2016184358A1 (zh) 2016-11-24

Family

ID=53727356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081978 WO2016184358A1 (zh) 2015-05-19 2016-05-13 基于双飞控***的固定结构式垂直起降飞机及其控制方法

Country Status (3)

Country Link
US (1) US10279904B2 (zh)
CN (1) CN104816824B (zh)
WO (1) WO2016184358A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498042A (zh) * 2019-08-29 2019-11-26 西南石油大学 固定翼航测无人机
CN112678167A (zh) * 2020-12-28 2021-04-20 中国航空工业集团公司沈阳飞机设计研究所 一种尾坐飞机垂直起降控制方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816824B (zh) 2015-05-19 2016-11-02 江苏数字鹰科技发展有限公司 基于双飞控***的固定结构式垂直起降飞机及其控制方法
CN108628335B (zh) * 2016-03-02 2021-07-02 成都飞机工业(集团)有限责任公司 一种飞翼无人机的航向控制方法
DE102016218769A1 (de) * 2016-09-28 2018-03-29 Airbus Defence and Space GmbH Starrflügelflugzeug und verfahren zum betreiben eines starrflügelflugzeugs
US10752351B2 (en) * 2016-11-17 2020-08-25 Detroit Aircraft Corporation Tilt-rotor unmanned air vehicle
CN106807095A (zh) * 2017-03-23 2017-06-09 高桂霞 一种小云飞行模式信号切换装置
CN107097949A (zh) * 2017-04-25 2017-08-29 河南三和航空工业有限公司 一种垂直起降固定翼无人机
CN107688335B (zh) * 2017-07-28 2019-07-12 北京宇航***工程研究所 一种巡航模式与发射模式可切换的测发控***
CN108190012B (zh) * 2018-01-26 2021-02-26 深圳一电航空技术有限公司 飞行器及其控制方法
CN108958271B (zh) * 2018-06-12 2020-12-15 北京航空航天大学 一种复合翼无人机进近过程的协调控制方法
CN108803643B (zh) * 2018-06-19 2021-08-20 成都纵横自动化技术股份有限公司 飞行控制方法、装置、飞行控制器及复合翼飞行器
CN109407686A (zh) * 2018-11-23 2019-03-01 东莞市光点电子科技有限公司 一种飞控在降落阶段保护无人机的方法
US11827348B2 (en) 2019-03-21 2023-11-28 Gurkan ACIKEL VTOL tilting fuselage winged frame multirotor aircraft
CN110271663A (zh) * 2019-04-30 2019-09-24 重庆大学 两侧分离式四旋翼与飞翼布局复合型无人机及其控制方法
CN110989641B (zh) * 2019-11-05 2023-04-28 西安羚控电子科技有限公司 一种舰载垂直起降侦察较射无人机起降控制方法
CN112319790B (zh) * 2020-11-05 2024-01-23 国网福建省电力有限公司电力科学研究院 融合多旋翼与固定翼的长航时飞行器的气动布局结构及其控制方法
US20220306294A1 (en) * 2021-03-25 2022-09-29 Textron Systems Corporation Flight control arrangement using separate fixed-wing and vtol control modules
US20220350348A1 (en) * 2021-04-29 2022-11-03 General Electric Company Aircraft with a multi-fan propulsion system for controlling flight orientation transitions
CN113342052A (zh) * 2021-06-27 2021-09-03 广西翼界科技有限公司 一种超视距作业无人机故障应急降落方法
CN113682467B (zh) * 2021-09-01 2023-05-23 中国航空工业集团公司西安飞行自动控制研究所 一种尾座式垂直起降飞机人工应急辅助起降操纵控制方法
CN114200952B (zh) * 2021-10-20 2024-03-22 西安羚控电子科技有限公司 一种固定翼无人机的下降飞行试验***及方法
CN116160810B (zh) * 2022-10-25 2024-02-13 南京航空航天大学 可全域投放的海空两栖跨介质飞行器及其飞行控制方法
CN115709623B (zh) * 2022-11-30 2023-10-17 南京航空航天大学 太阳能动力的水陆两栖迁徙探潜无人机及工作方法
CN116986026B (zh) * 2023-09-26 2023-12-19 中国飞机强度研究所 一种石油勘测用一体化无人机***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404305A (en) * 1993-11-17 1995-04-04 United Technologies Corporation Control of pilot control station authority for a dual piloted flight control system
US5797105A (en) * 1994-08-23 1998-08-18 National Aerospace Laboratory Of Science & Technology Air active control aircraft using three dimensional true airspeed detection system
US7159817B2 (en) * 2005-01-13 2007-01-09 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
CN202728575U (zh) * 2011-10-17 2013-02-13 田瑜 固定翼与电动多旋翼组成的复合飞行器
CN103043212A (zh) * 2011-10-17 2013-04-17 田瑜 固定翼与电动多旋翼组成的复合飞行器
CN104816824A (zh) * 2015-05-19 2015-08-05 江苏数字鹰科技发展有限公司 基于双飞控***的固定结构式垂直起降飞机及其控制方法
CN204701764U (zh) * 2015-05-19 2015-10-14 江苏数字鹰科技发展有限公司 基于双飞控***的固定结构式垂直起降飞机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050178879A1 (en) * 2004-01-15 2005-08-18 Youbin Mao VTOL tailsitter flying wing
CN101515178B (zh) * 2009-04-08 2010-07-21 南京航空航天大学 基于can总线的主从负担式余度无人飞机自动驾驶仪
CN105283384B (zh) * 2013-05-03 2018-03-27 威罗门飞行公司 垂直起落(vtol)飞行器
US9567075B2 (en) * 2014-02-10 2017-02-14 Northrop Grumman Systems Corporation Tilt wing aerial vehicle
WO2016130721A2 (en) * 2015-02-11 2016-08-18 Aerovironment, Inc. Survey migration system for vertical take-off and landing (vtol) unmanned aerial vehicles (uavs)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404305A (en) * 1993-11-17 1995-04-04 United Technologies Corporation Control of pilot control station authority for a dual piloted flight control system
US5797105A (en) * 1994-08-23 1998-08-18 National Aerospace Laboratory Of Science & Technology Air active control aircraft using three dimensional true airspeed detection system
US7159817B2 (en) * 2005-01-13 2007-01-09 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
CN202728575U (zh) * 2011-10-17 2013-02-13 田瑜 固定翼与电动多旋翼组成的复合飞行器
CN103043212A (zh) * 2011-10-17 2013-04-17 田瑜 固定翼与电动多旋翼组成的复合飞行器
CN104816824A (zh) * 2015-05-19 2015-08-05 江苏数字鹰科技发展有限公司 基于双飞控***的固定结构式垂直起降飞机及其控制方法
CN204701764U (zh) * 2015-05-19 2015-10-14 江苏数字鹰科技发展有限公司 基于双飞控***的固定结构式垂直起降飞机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498042A (zh) * 2019-08-29 2019-11-26 西南石油大学 固定翼航测无人机
CN112678167A (zh) * 2020-12-28 2021-04-20 中国航空工业集团公司沈阳飞机设计研究所 一种尾坐飞机垂直起降控制方法
CN112678167B (zh) * 2020-12-28 2024-01-02 中国航空工业集团公司沈阳飞机设计研究所 一种尾坐飞机垂直起降控制方法

Also Published As

Publication number Publication date
US10279904B2 (en) 2019-05-07
CN104816824A (zh) 2015-08-05
CN104816824B (zh) 2016-11-02
US20170158325A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
WO2016184358A1 (zh) 基于双飞控***的固定结构式垂直起降飞机及其控制方法
CN106828915B (zh) 一种倾转螺旋桨可垂直起降的高速飞行器的控制方法
WO2022068022A1 (zh) 一种尾座式垂直起降无人机及其控制方法
WO2013056493A1 (zh) 固定翼与电动多旋翼组成的复合飞行器
CN107089328B (zh) 一种混合动力尾坐式垂直起降长航时无人机的控制方法
WO2013056492A1 (zh) 固定翼与电动多桨组成的具有直升机功能的复合飞行器
CN108639332B (zh) 复合三旋翼无人机多模态飞行控制方法
CN107416200B (zh) 一种电动复合翼飞行器
CN202481309U (zh) 一种矢量动力垂直起降飞机及其矢量动力***
WO2021023187A1 (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
CN103241376A (zh) 一种矢量动力垂直起降飞机及其矢量动力***
CN105083550A (zh) 垂直起降固定翼飞行器
WO2023000571A1 (zh) 飞行汽车
CN203332392U (zh) 可倾转定翼无人机
CN111516869A (zh) 一种倾转旋翼-机翼垂直起降飞行器的布局与控制方法
KR101828924B1 (ko) 내연 엔진과 전기 모터를 구비한 항공기
CN103318410A (zh) 一种无舵面垂直起降微型飞行器
CN108128448A (zh) 双尾撑式共轴倾转旋翼无人机及其控制方法
CN112937849A (zh) 一种倾转式和固定式螺旋桨组合布局的垂直起降飞行器
CN105818980A (zh) 新型高升力垂直起降飞行器
CN105346715A (zh) 一种垂直起降无人机
CN112896499A (zh) 一种倾转涵道与固定螺旋桨组合布局的垂直起降飞行器
CN103754360A (zh) 一种类飞碟式旋翼机
CN108045569A (zh) 一种半环翼飞行器
CN106043687A (zh) 双发后推式鸭式旋翼/固定翼复合式垂直起降飞行器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15322123

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795845

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16795845

Country of ref document: EP

Kind code of ref document: A1