WO2016182059A1 - 耐火樹脂組成物 - Google Patents

耐火樹脂組成物 Download PDF

Info

Publication number
WO2016182059A1
WO2016182059A1 PCT/JP2016/064281 JP2016064281W WO2016182059A1 WO 2016182059 A1 WO2016182059 A1 WO 2016182059A1 JP 2016064281 W JP2016064281 W JP 2016064281W WO 2016182059 A1 WO2016182059 A1 WO 2016182059A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
weight
refractory
polyphosphate
magnesium
Prior art date
Application number
PCT/JP2016/064281
Other languages
English (en)
French (fr)
Inventor
倫男 島本
秀明 矢野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016538114A priority Critical patent/JP6244029B2/ja
Publication of WO2016182059A1 publication Critical patent/WO2016182059A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/02Homopolymers or copolymers of monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire

Definitions

  • the present invention relates to a refractory resin composition.
  • polyphosphate is very excellent in flame retardancy, but is weak against moisture, and after hydrolysis, a white precipitate is formed on the surface of the thermally expandable sheet (also referred to as bleed out), and the generated precipitate As a result, the appearance of the sheet is impaired, or the polyphosphate is eluted from the blending system, so that the fire resistance is remarkably lowered.
  • An object of the present invention is to provide a refractory resin composition having excellent fire resistance and suppressing generation of precipitates.
  • the present inventors are selected from the group consisting of alkali metals, alkaline earth metals, and magnesium in a resin composition containing a polyphosphate that constitutes a thermally expandable refractory sheet.
  • the inventors have found that by reducing the content of at least one or more, the appearance is not impaired and the fire resistance is remarkably improved, and the present invention has been completed.
  • At least one selected from the group consisting of alkali metals, alkaline earth metals, and magnesium including a matrix component that is a resin, an elastomer, rubber, or a combination thereof, and a polyphosphate.
  • a refractory resin composition having a metal content of 5% by weight or less.
  • a refractory resin composition comprising a matrix component which is a resin, an elastomer, a rubber, or a combination thereof, and a polyphosphate
  • the alkali metal, an alkaline earth metal and magnesium are used.
  • a method for suppressing the generation of precipitates due to hydrolysis of polyphosphate in a refractory resin composition wherein the content of at least one metal selected from the group is 5% by weight or less.
  • the refractory resin composition of the present invention comprises at least one selected from the group consisting of alkali metals, alkaline earth metals, and magnesium, including a matrix component that is a resin, an elastomer, rubber, or a combination thereof, and a polyphosphate.
  • the above metal content is 5% by weight or less.
  • the resin as the matrix component may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resins include polypropylene resins, polyolefin resins such as polyethylene resins, poly (1-) butene resins, polypentene resins, polystyrene resins, acrylonitrile-butadiene-styrene resins, polycarbonate resins, polyphenylene ether resins, (meth) acrylic.
  • examples thereof include a resin, an ethylene vinyl acetate copolymer (EVA) resin, a polyamide resin, a polyamideimide resin, a polybutadiene resin, a polyimide resin, a polyvinyl chloride fat (including a chlorinated vinyl chloride resin), and combinations thereof.
  • EVA ethylene vinyl acetate copolymer
  • polyamide resin a polyamideimide resin
  • polybutadiene resin a polyimide resin
  • polyvinyl chloride fat including a chlorinated vinyl chloride resin
  • thermoplastic resins may be used after being crosslinked or modified as long as the fire resistance performance as a resin composition is not impaired.
  • the crosslinking method of the resin is not particularly limited, and examples thereof include a usual crosslinking method for thermoplastic resins, such as crosslinking using various crosslinking agents and peroxides, and crosslinking by electron beam irradiation.
  • thermosetting resins examples include epoxy resins, phenol resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and the like.
  • an epoxy resin is preferable.
  • the epoxy resin used in the present invention is not particularly limited, but is basically obtained by reacting a monomer having an epoxy group with a curing agent.
  • the monomer having an epoxy group include monomers such as a bifunctional glycidyl ether type, a glycidyl ester type, and a polyfunctional glycidyl ether type.
  • These monomers having an epoxy group may be used alone or in combination of two or more.
  • a polyaddition type or a catalyst type is used as the curing agent.
  • the polyaddition type curing agent include polyamine, acid anhydride, polyphenol, and polymercaptan.
  • the catalyst-type curing agent include tertiary amines, imidazoles, and Lewis acid complexes.
  • the curing method of the epoxy resin is not particularly limited, and can be performed by a known method.
  • elastomers examples include olefin elastomers, styrene elastomers, ester elastomers, amide elastomers, vinyl chloride elastomers, combinations thereof, and the like.
  • Examples of rubber include natural rubber, silicone rubber, styrene / butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile / butadiene rubber, nitrile butadiene rubber, butyl rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, Examples thereof include urethane rubber, silicone rubber, fluororubber, and combinations thereof. Of these, butyl rubber is preferred.
  • Polyphosphate functions as a flame retardant, and examples include ammonium polyphosphate and melamine polyphosphate.
  • ammonium polyphosphate examples include “AP422” and “AP462” manufactured by Clariant, “Sumisafe P” manufactured by Sumitomo Chemical Co., Ltd., and “Terrage C60” manufactured by Chisso.
  • a preferred ammonium polyphosphate is a surface-coated ammonium polyphosphate (also referred to as a coated ammonium polyphosphate).
  • a coated ammonium polyphosphate also referred to as a coated ammonium polyphosphate.
  • melamine-coated ammonium polyphosphate surface-coated with melamine is disclosed in JP-A-9-286875.
  • JP-A-2000-63562 describes a silane-coated ammonium polyphosphate surface-coated with silane.
  • the melamine-coated ammonium polyphosphate is composed of (a) melamine-coated ammonium polyphosphate obtained by adding and / or adhering melamine to the surface of powdered ammonium polyphosphate particles, and (b) melamine molecules present in the coating layer of the melamine-coated ammonium polyphosphate particles. And / or (c) powdered ammonium polyphosphate or the melamine in which the particle surface is crosslinked with an active hydrogen possessed by an amino group therein and a compound having a functional group capable of reacting with the active hydrogen This is a coated ammonium polyphosphate in which the surface of the coated ammonium polyphosphate particles is coated with a thermosetting resin.
  • Examples of commercially available melamine-coated ammonium polyphosphate particles include “AP462” manufactured by Clariant, “FR CROS 484”, “FR CROS 487” manufactured by Budenheim Iberica, and the like.
  • Examples of commercially available silane-coated ammonium polyphosphate particles include “FR CROS 486” manufactured by Budenheim Iberica.
  • the average particle size of the coated ammonium polyphosphate is preferably 15 to 35 ⁇ m.
  • the average particle diameter of the coated ammonium polyphosphate can be measured by laser diffraction particle size distribution measurement.
  • the content of the polyphosphate is not particularly limited, but is preferably 5 to 30% by weight, more preferably 10 to 25% by weight, and more preferably 15 to 23% by weight in the refractory resin composition. Further preferred.
  • the fireproof resin composition of the present invention contains at least one metal selected from the group consisting of alkali metals, alkaline earth metals, and magnesium, and the content of such metals is 5% by weight or less.
  • alkali metal examples include lithium, sodium, potassium, rubidium, and cesium.
  • Alkaline earth metals include calcium, strontium, barium and radium.
  • Alkali metals, alkaline earth metals, and magnesium may be included in any form such as metal salts, metal oxides, metal hydroxides, or metal ions.
  • At least one or more metals selected from the group consisting of alkali metals, alkaline earth metals, and magnesium contained in raw materials and reaction reagents may be mixed unintentionally.
  • alkali metal or alkaline earth metal is mixed during the neutralization treatment of the thermally expandable graphite described later.
  • “alkali metal”, “alkaline earth metal”, and “magnesium” in the refractory resin composition of the present invention include unintentionally mixed alkali metal, alkaline earth metal, and magnesium. Further, it refers to alkali metals, alkaline earth metals, and magnesium contained in the refractory resin composition.
  • the content of at least one metal selected from the group consisting of alkali metals, alkaline earth metals and magnesium in the refractory resin composition (total amount of alkali metals, alkaline earth metals and magnesium) is 5% by weight or less.
  • the fireproof resin composition retains excellent water resistance.
  • the alkali metal concentration is 1% by weight or less, more preferably 0.2% by weight or less (2000 ppm or less).
  • the alkaline earth metal concentration is 2% by weight or less.
  • the magnesium concentration is 2% by weight or less.
  • the content of at least one metal selected from the group consisting of alkali metals, alkaline earth metals and magnesium in the refractory resin composition of the present invention is 0% by weight.
  • the content of at least one or more metals selected from the group consisting of alkali metals, alkaline earth metals and magnesium in the refractory resin composition of the present invention is greater than 0% by weight.
  • the refractory resin composition of the present invention contains at least one metal selected from the group consisting of alkali metals, alkaline earth metals, and magnesium only as an unintentionally mixed impurity.
  • the refractory resin composition of the present invention contains at least one metal selected from the group consisting of alkali metals, alkaline earth metals and magnesium as the metal contained in the constituent components.
  • the refractory resin composition of the present invention contains such a metal (specifically, a calcium salt or the like) as an inorganic filler described later.
  • the fireproof resin composition of the present invention may further contain a plasticizer.
  • the plasticizer is added particularly for adjusting the melt viscosity of the thermoplastic resin.
  • one or more plasticizers exemplified below may be used in combination: Di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), or a higher or mixed alcohol having about 10 to 13 carbon atoms
  • Phthalate plasticizers such as phthalates Aliphatic dibasic acids such as di-2-ethylhexyl adipate, di-n-octyl adipate, di-n-decyl adipate, diisodecyl adipate, di-2-ethylhexyl azelate, dibutyl sebacate, di-2-e
  • the refractory resin composition of the present invention may further contain thermally expandable graphite.
  • the refractory resin composition contains thermally expandable graphite, the refractory resin composition becomes a thermally expandable refractory resin composition that expands by heating.
  • Thermally expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, concentrated nitric acid, perchloric acid, and perchlorate.
  • a graphite intercalation compound is produced by treatment with a strong oxidant such as permanganate, dichromate, hydrogen peroxide, etc., and is a crystalline compound that maintains a carbon layered structure.
  • the thermally expandable graphite may optionally be neutralized. That is, the thermally expandable graphite obtained by acid treatment as described above is further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
  • the aliphatic lower amine include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
  • the alkali metal compound and alkaline earth metal compound include hydroxides such as potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts.
  • Specific examples of the heat-expandable graphite subjected to the neutralization treatment include “CA-60S” manufactured by Nippon Kasei Co., Ltd. and “GREP-EG” manufactured by Tosoh Corporation.
  • the particle size of the thermally expandable graphite used in the present invention is preferably 20 to 200 mesh.
  • the particle size is larger than 200 mesh, the degree of expansion of graphite is large and a desired fireproof heat insulating layer is obtained.
  • the particle size is smaller than 20 mesh, the dispersibility when kneading with the resin is good.
  • the refractory resin composition of the present invention may further contain an inorganic filler.
  • the inorganic filler increases the heat capacity and suppresses heat transfer, and works as an aggregate to improve the strength of the expanded heat insulating layer.
  • the inorganic filler is not particularly limited, and examples thereof include metal oxides such as alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide, magnesium hydroxide And water-containing inorganic substances such as aluminum hydroxide and hydrotalcite; metal carbonates such as basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, and barium carbonate.
  • inorganic fillers include calcium salts such as calcium sulfate, gypsum fiber, calcium silicate; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite.
  • calcium salts such as calcium sulfate, gypsum fiber, calcium silicate; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the particle size of the inorganic filler is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the addition amount of the inorganic filler is small, the dispersibility largely affects the performance, so that the particle size is preferably small. However, when it is less than 0.5 ⁇ m, secondary aggregation occurs and the dispersibility deteriorates.
  • the addition amount is large, the viscosity of the resin composition increases and moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size. A thing with a large diameter is preferable.
  • the particle size exceeds 100 ⁇ m, the surface properties of the molded body and the mechanical properties of the resin composition are lowered.
  • the inorganic filler is selected from metal oxides, hydrous minerals, metal carbonates, silica, and combinations thereof.
  • the hydrous inorganic substance contains an alkaline earth metal hydroxide.
  • the inorganic filler for example, for aluminum hydroxide, “Hijilite H-31” (manufactured by Showa Denko) having a particle size of 18 ⁇ m, “B325” (manufactured by ALCOA) having a particle size of 25 ⁇ m, Examples include 1.8 ⁇ m “Whiteon SB Red” (manufactured by Bihoku Powdered Industries Co., Ltd.), “BF300” (manufactured by Bihoku Powdered Industries Co., Ltd.) having a particle size of 8 ⁇ m, and the like.
  • the content of the inorganic filler is not particularly limited, but is preferably 30 to 500 parts by weight with respect to 100 parts by weight of the matrix component. When the content is 30 parts by weight or more, sufficient fireproof performance is obtained, and when it is 500 parts by weight or less, the mechanical strength is maintained.
  • the content of the inorganic filler is more preferably 40 to 350 parts by weight.
  • R 1 and R 3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon. Represents an aryloxy group of formula 6-16.
  • red phosphorus commercially available red phosphorus can be used, but from the viewpoint of safety such as moisture resistance and spontaneous ignition during kneading, a material in which the surface of red phosphorus particles is coated with a resin is preferably used.
  • the compound represented by the chemical formula (1) is not particularly limited.
  • methylphosphonic acid dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t- Butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphine Acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • t-butylphosphonic acid is expensive but preferable in terms of high fire
  • phosphate esters such as triphenyl phosphate, tricresyl phosphate (TCP), trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate.
  • TCP tricresyl phosphate
  • the phosphate ester functions as a plasticizer and can improve water resistance and fire resistance.
  • the content of the phosphorus compound is not particularly limited, but is preferably 30 to 300 parts by weight with respect to 100 parts by weight of the matrix component. When the blending amount is 30 parts by weight or more, the effect of improving the strength of the expanded heat insulating layer is sufficient, and when it is 300 parts by weight or less, the mechanical strength is maintained.
  • the content of the phosphorus compound is more preferably 40 to 250 parts by weight.
  • a heat stabilizer a lubricant, a processing aid, a pyrolytic foaming agent, an antioxidant, an antistatic agent, a pigment, and the like are added to the fireproof resin composition of the present invention as long as the physical properties are not impaired. Also good.
  • heat stabilizer examples include lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, dibasic lead stearate; organotin mercapto, organic Organotin heat stabilizers such as tin malate, organotin laurate, dibutyltin malate; metal soap heat stabilizers such as zinc stearate and calcium stearate; these may be used alone or in combination of two or more You may use together.
  • lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, dibasic lead stearate
  • organotin mercapto organic Organotin heat stabilizers such as tin malate, organotin laurate, dibutyltin malate
  • metal soap heat stabilizers such as zinc stearate and calcium ste
  • lubricant examples include waxes such as polyethylene, paraffin, and montanic acid; various ester waxes; organic acids such as stearic acid and ricinoleic acid; organic alcohols such as stearyl alcohol; and amide compounds such as dimethylbisamide. These may be used alone or in combination of two or more.
  • processing aids include chlorinated polyethylene, methyl methacrylate-ethyl acrylate copolymer, and high molecular weight polymethyl methacrylate.
  • pyrolytic foaming agent examples include azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), p, p-oxybisbenzenesulfonylhydrazide (OBSH), azobisisobutyronitrile (AIBN), and the like. Can be mentioned.
  • ADCA azodicarbonamide
  • DPT dinitrosopentamethylenetetramine
  • OBSH p-oxybisbenzenesulfonylhydrazide
  • AIBN azobisisobutyronitrile
  • the refractory resin composition of the present invention can be obtained by subjecting the refractory resin composition of the present invention to melt extrusion with an extruder such as a single screw extruder or a twin screw extruder according to a conventional method.
  • the melting temperature varies depending on the matrix component and is not particularly limited. For example, in the case of a polyvinyl chloride resin, it is 130 to 170 ° C.
  • the fire-resistant resin composition or fire-resistant resin molded article of the present invention is used to impart fire resistance to structures such as windows, shojis, doors (that is, doors), doors, brans, and bams; ships; and structures such as elevators. Can be used. Since the refractory resin composition of the present invention has excellent moldability, it is possible to easily obtain a modified molded body adapted to the complex shape of the structure.
  • FIG. 1 is an example in which a fireproof resin molded body 4 of the present invention is applied to a sash frame of a window 1 as a fitting.
  • the sash frame has two inner frames 2 and one outer frame 3 surrounding the inner frame 2, and the inner frame 2 and the outer frame 3 along each side of the frame main body 2.
  • the fireproof resin molding 3 is attached to the inside of the outer frame 3.
  • fire resistance can be imparted to the window 1 by providing the fireproof resin molded body 3 of the present invention.
  • the present invention is at least selected from the group consisting of alkali metals, alkaline earth metals and magnesium in a refractory resin composition comprising a matrix component which is a resin, an elastomer, rubber, or a combination thereof, and a polyphosphate. Also included is a method for suppressing the generation of precipitates due to hydrolysis of polyphosphate in a refractory resin composition, wherein the content of one or more metals is 5% by weight or less. Each component in the refractory resin composition is as described above for the refractory resin composition.
  • DOP D-2-ethylhexyl phthalate
  • TCP tricresyl phosphate
  • ammonium polyphosphate “AP422” manufactured by Clariant was used.
  • silane-coated ammonium polyphosphate silane-coated APP
  • FR CROS 486 manufactured by Budenheim Iberica was used.
  • calcium carbonate “Whiteon BF-300” manufactured by Bihoku Flour Chemical Co., Ltd. was used.
  • Example 11 Comparative Example 2
  • bisphenol F type epoxy monomer (“E807” manufactured by Yuka Shell Co., Ltd.) amine curing agent (“FL079” manufactured by Yuka Shell Inc.), heat, Expandable graphite (“GREP-EG” manufactured by Tosoh Corporation), ammonium polyphosphate (Sumisafe P, manufactured by Sumitomo Chemical Co., Ltd.), and silica in Example 11
  • GREP-EG Expandable graphite
  • ammonium polyphosphate Sudisafe P, manufactured by Sumitomo Chemical Co., Ltd.
  • silica in Example 11 were further kneaded with a kneading roll to obtain a refractory resin composition.
  • the obtained fire-resistant resin composition was applied to a 0.5 mm-thick zinc iron plate and cured by pressing at 150 ° C. for 15 minutes to obtain a fire-resistant sheet having a predetermined thickness used for fire resistance evaluation and water resistance evaluation.
  • the fireproof sheets of Examples 1 to 15 were excellent in water resistance, and the generation of white precipitates on the fireproof sheet surface was suppressed. 5.
  • the sample after immersion was dried at 50 ° C. for 3 days, and the dissolution rate was calculated from the weight difference before and after immersion.
  • the thickness of the test piece after drying is measured, supplied to an electric furnace, heated at 600 ° C. for 30 minutes, then the thickness of the test piece is measured, and (thickness of the test piece after heating) / (heating The thickness of the previous test piece) was calculated as the expansion ratio.
  • a refractory resin composition having 5% by weight or less.
  • the refractory resin composition according to [1] further containing thermally expandable graphite.
  • the phosphorus compound is at least one selected from the group consisting of triphenyl phosphate, tricresyl phosphate (TCP), trixylenyl phosphate, cresyl diphenyl phosphate, and xylenyl diphenyl phosphate
  • TCP tricresyl phosphate
  • TCP trixylenyl phosphate
  • cresyl diphenyl phosphate cresyl diphenyl phosphate
  • xylenyl diphenyl phosphate xylenyl diphenyl phosphate
  • a fire resistant resin molded article comprising the fire resistant resin composition according to any one of [1] to [15].
  • a joinery comprising the fireproof resin molded product according to [16].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Special Wing (AREA)
  • Building Environments (AREA)
  • Fireproofing Substances (AREA)

Abstract

耐火樹脂組成物は、樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含み、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が5重量%以下である。

Description

耐火樹脂組成物
 本発明は、耐火樹脂組成物に関する。
(関連分野の相互参照)
 本願は、2015年5月14日に出願した特願2015-099389号明細書の優先権の利益を主張するものであり、当該明細書はその全体が参照により本明細書中に援用される。
(技術分野)
 防火サッシおよび防火ドアには熱膨張性耐火シートが用いられているものがあるが、サッシまたはドアが取り付けられる場所によっては、熱膨張性耐火シートが結露や風雨に晒される環境に置かれる場合がある。熱膨張性耐火シートは難燃剤としてポリリン酸塩が配合されている場合があり、そのような例として、特許文献1には、平均粒子径15~35μmである被覆ポリリン酸アンモニウムを用いた、合成樹脂をバインダーとする発泡耐火材が開示されている。
 しかしながら、ポリリン酸塩は難燃性には非常に優れているが、水分に弱く、加水分解後、熱膨張性シートの表面に白色の析出物が生じて(ブリードアウトとも言う)発生した析出物によりシート外観を損なったり、ポリリン酸塩が配合系から溶出したりすることにより、耐火性が著しく低下してしまうという問題があった。
特開平9-286875
 本発明の目的は、耐火性に優れ、かつ析出物の発生が抑制された耐火樹脂組成物を提供することにある。
 本発明者らは、上記の目的を達成すべく、熱膨張性耐火シートを構成する、ポリリン酸塩を含有する樹脂組成物中のアルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の含有量を低減する事により、外観を損なうことがなく、耐火性が顕著に向上することを見出し、本発明を完成するに至った。
 本発明の一態様によれば、樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含み、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が5重量%以下である耐火樹脂組成物が提供される。
 本発明の別の態様によれば、樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含む耐火性樹脂組成物における、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量を5重量%以下にする、耐火樹脂組成物におけるポリリン酸塩の加水分解による析出物の発生の抑制方法が提供される。
 本発明によれば、耐火性に優れ、かつ析出物の発生が抑制された耐火樹脂組成物を提供することが可能となる。
本発明の耐火樹脂組成物からなる耐火樹脂成形体をサッシ枠に設けた耐火窓を示す略正面図である。
 以下、本発明の実施の形態について説明する。
 本発明の耐火樹脂組成物は、樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含み、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が5重量%以下である。
 マトリックス成分としての樹脂は、熱可塑性樹脂であっても熱硬化性樹脂であってもよい。
 熱可塑性樹脂の例としては、ポリプロピレン樹脂、ポリエチレン樹脂等のポリオレフィン樹脂、ポリ(1-)ブテン樹脂、ポリペンテン樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、(メタ)アクリル樹脂、エチレン酢酸ビニル共重合体(EVA)樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリ塩化ビニル脂(塩素化塩化ビニル樹脂を含む)、これらの組み合わせ等が挙げられる。なかでも、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、EVA樹脂が好ましい。
 上記熱可塑性樹脂はいずれも、樹脂組成物としての耐火性能を阻害しない範囲で、架橋、変性して用いてもよい。樹脂の架橋方法についても、特に限定はなく、熱可塑性樹脂の通常の架橋方法、例えば、各種架橋剤、過酸化物を使用する架橋、電子線照射による架橋等が挙げられる。
 熱硬化性樹脂の例としてはエポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド等が挙げられる。なかでも、エポキシ樹脂が好ましい。
 本発明で用いられるエポキシ樹脂は、特に限定されないが、基本的にはエポキシ基をもつモノマーと硬化剤とを反応させることにより得られる。上記エポキシ基をもつモノマーとしては、例えば、2官能のグリシジルエーテル型、グリシジルエステル型、多官能のグリシジルエーテル型等のモノマーが例示される。
 これらのエポキシ基をもつモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。
 上記硬化剤としては、重付加型または触媒型のものが用いられる。重付加型の硬化剤としては、例えば、ポリアミン、酸無水物、ポリフェノール、ポリメルカプタン等が例示される。また、上記触媒型の硬化剤としては、例えば、3級アミン、イミダゾール類、ルイス酸錯体等が例示される。エポキシ樹脂の硬化方法は、特に限定されず、公知の方法によって行うことができる。
 エラストマーの例としてはオレフィン系エラストマー、スチレン系エラストマー、エステル系エラストマー、アミド系エラストマー、塩化ビニル系エラストマー、これらの組み合わせ等が挙げられる。
 ゴムの例の例としては、天然ゴム、シリコーンゴム、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル・ブタジエンゴム、ニトリルブタジエンゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、これらの組み合わせ等が挙げられる。なかでも、ブチルゴムが好ましい。
 ポリリン酸塩は、難燃剤として機能し、ポリリン酸アンモニウム、ポリリン酸メラミン等が挙げられる。ポリリン酸アンモニウムの市販品としては、クラリアント社製「AP422」、「AP462」、住友化学工業社製「スミセーフP」、チッソ社製「テラージュC60」が挙げられる。
 好ましいポリリン酸アンモニウムは、表面被覆されたポリリン酸アンモニウム(被覆ポリリン酸アンモニウムとも称する)であり、被覆ポリリン酸アンモニウムのうち、メラミンで表面被覆されたメラミン被覆ポリリン酸アンモニウムについては特開平9-286875に記載されており、シランで表面被覆されたシラン被覆ポリリン酸アンモニウムについては特開2000-63562に記載されている。メラミン被覆ポリリン酸アンモニウムは、(a)粉末状ポリリン酸アンモニウム粒子表面にメラミンを付加および/または付着したメラミン被覆ポリリン酸アンモニウム、(b)前記メラミン被覆ポリリン酸アンモニウム粒子の被覆層に存在するメラミン分子中のアミノ基が持つ活性水素と、該活性水素と反応しうる官能基を有する化合物とによって該粒子表面が架橋された被覆ポリリン酸アンモニウム、および/または(c)粉末状ポリリン酸アンモニウムまたは前記メラミン被覆ポリリン酸アンモニウム粒子表面を熱硬化性樹脂で被覆した被覆ポリリン酸アンモニウムである。メラミン被覆ポリリン酸アンモニウム粒子の市販品としては、例えば、クラリアント社製「AP462」、Budenheim Iberica社製「FR CROS 484」、「FR CROS 487」等が挙げられる。シラン被覆ポリリン酸アンモニウム粒子の市販品としては、例えば、Budenheim Iberica社製「FR CROS 486」が挙げられる。
 被覆ポリリン酸アンモニウムの平均粒子径は好ましくは15~35μmである。なお、被覆ポリリン酸アンモニウムの平均粒子径はレーザー回折式粒度分布測定にて測定できる。
 ポリリン酸塩の含有量は特に限定されないが、耐火樹脂組成物中、5~30重量%であることが好ましく、10~25重量%であることがより好ましく、15~23重量%であることがさらに好ましい。
 本発明の耐火樹脂組成物は、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属を含有し、かかる金属の含有量が5重量%以下である。
 アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、およびセシウムが挙げられる。アルカリ土類金属としては、カルシウム、ストロンチウム、バリウムおよびラジウムが挙げられる。アルカリ金属、アルカリ土類金属、およびマグネシウムは金属塩、金属酸化物、金属水酸化物、または金属イオンなどの任意の形で含有されてもよい。
 本発明の耐火樹脂組成物を製造するときには、原料や反応試薬に含まれるアルカリ金属、アルカリ土類金属、およびマグネシウムからなる群から選択される少なくとも一種以上の金属が意図せず混入する場合がある。例えば、後述する熱膨張性黒鉛の中和処理時にはアルカリ金属またはアルカリ土類金属が混入する。特に定義がされていない場合、本発明の耐火樹脂組成物中の「アルカリ金属」「アルカリ土類金属」および「マグネシウム」は、意図せず混入したアルカリ金属、アルカリ土類金属、およびマグネシウムも含めた、耐火樹脂組成物中に含有されるアルカリ金属、アルカリ土類金属、およびマグネシウムを指す。
 耐火樹脂組成物中のアルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量(アルカリ金属、アルカリ土類金属、およびマグネシウムの合計量)が5重量%以下であると、耐火樹脂組成物が優れた耐水性を保持する。好ましくは、アルカリ金属濃度は1重量%以下、より好ましくは0.2重量%以下(2000ppm以下)である。好ましくは、アルカリ土類金属の濃度は2重量%以下である。好ましくは、マグネシウムの濃度は2重量%以下である。
 一つの実施形態では、本発明の耐火樹脂組成物中のアルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量は、0重量%である。
 別の実施形態では、本発明の耐火樹脂組成物中のアルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量は、0重量%よりも大きい。
 一つの実施形態では、本発明の耐火樹脂組成物は、意図せず混入した不純物としてのみ、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属を含有する。
 別の実施形態では、本発明の耐火樹脂組成物は、構成成分に含まれる金属として、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属を含有する。例えば、本発明の耐火樹脂組成物は後述の無機充填剤として、かかる金属(具体的にはカルシウム塩等)を含有する。
 本発明の耐火樹脂組成物は、可塑剤をさらに含有してもよい。可塑剤は、特に熱可塑性樹脂の溶融粘度を調整するために添加される。可塑剤としては、下記に例示する1種または2種以上の可塑剤を組み合わせて使用し得る:
 ジ-2-エチルヘキシルフタレート(DOP)、ジ-n-オクチルフタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、ジウンデシルフタレート(DUP)、または炭素原子数10~13程度の高級アルコールまたは混合アルコールのフタル酸エステル等のフタル酸エステル系可塑剤;
 ジ-2-エチルヘキシルアジペート、ジ-n-オクチルアジペート、ジ-n-デシルアジペート、ジイソデシルアジペート、ジ-2-エチルヘキシルアゼレート、ジブチルセバケート、ジ-2-エチルヘキシルセバケート等の脂肪族二塩基酸エステル系可塑剤;
 トリ-2-エチルヘキシルトリメリテート(TOTM)、トリ-n-オクチルトリメリテート、トリデシルトリメリテート、トリイソデシルトリメリテート、ジ-n-オクチル-n-デシルトリメリレート等のトリメリット酸エステル系可塑剤;
 アジピン酸ジ-2-エチルヘキシル(DOA)およびアジピン酸ジイソデシル(DIDA)等のアジピン酸エステル系可塑剤;
 セバシン酸ジブチル(DBS)およびセバシン酸ジ-2-エチルヘキシル(DOS)等のセバシン酸エステル系可塑剤;
 トリブチルホスフェート、トリオクチルホスフェート、オクチルジフェニルホスフェート、トリブトキシエチルホスフェート、トリクロロエチルホスフェート、トリス(2-クロロプロピル)ホスフェート、トリス(2,3-ジクロロプロピル)ホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、トリス(ブロモクロロプロピル)ホスフェート、ビス(2,3-ジブロモプロピル)-2,3-ジクロロプロピルホスフェート、ビス(クロロプロピル)モノオクチルホスフェート等のリン酸エステル系可塑剤;
 2,3,3',4'-ビフェニルテトラカルボン酸テトラヘプチルエステル等のビフェニルテトラカルボン酸テトラアルキルエステル系可塑剤;
 ポリエステル系高分子可塑剤;
 エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ化綿実油、液状エポキシ樹脂等のエポキシ系可塑剤;
 塩素化パラフィン;および
 五塩化ステアリン酸アルキルエステル等の塩素化脂肪酸エステル等。
耐火樹脂組成物中の可塑剤の含有量は特に限定されないが、上記熱可塑性樹脂100重量部に対して、25~100重量部の範囲内であることが好ましい。
 本発明の耐火樹脂組成物は、熱膨張性黒鉛をさらに含有してもよい。耐火樹脂組成物が熱膨張性黒鉛を含有する場合、耐火樹脂組成物は、加熱により膨張する熱膨張性耐火樹脂組成物となる。
 熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を濃硫酸、硝酸、セレン酸等の無機酸と濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたもので、炭素の層状構造を維持したままの結晶化合物である。
 熱膨張性黒鉛は任意選択で中和処理されてもよい。つまり、上記のように酸処理して得られた熱膨張性黒鉛を、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和する。上記脂肪族低級アミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。上記アルカリ金属化合物およびアルカリ土類金属化合物としては、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。中和処理した熱膨張性黒鉛の具体例としては、例えば、日本化成社製「CA-60S」、東ソー社製「GREP-EG」等が挙げられる。
 本発明で用いられる熱膨張性黒鉛の粒度は、20~200メッシュのものが好ましい。粒度が200メッシュより大きいと、黒鉛の膨張度が大きく、望む耐火断熱層が得られ、粒度が20メッシュより小さいと、樹脂と混練する際の、分散性が良好である。
 熱膨張性黒鉛の含有量は特に限定されないが、マトリックス成分100重量部に対して10~500重量部であることが好ましく、マトリックス成分100重量部に対して50~300重量部であることがより好ましい。含有量が10重量部以上であると、体積膨張率が大きく樹脂サッシを構成する合成樹脂製部材が焼失した部分を十分埋めきることができ防火性能が発揮され、500重量部以下であると機械的強度が維持される。
 本発明の耐火樹脂組成物は、無機充填剤をさらに含有してもよい。
 無機充填剤は、膨張断熱層が形成される際、熱容量を増大させ伝熱を抑制するとともに、骨材的に働いて膨張断熱層の強度を向上させる。無機充填剤としては特に限定されず、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩等が挙げられる。
 また、無機充填剤としては、これらの他に、硫酸カルシウム、石膏繊維、ケイ酸カルシウム等のカルシウム塩;シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」(商品名)、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が挙げられる。これらの無機充填剤は単独で用いても、2種以上を併用してもよい。
 無機充填剤の粒径としては、0.5~100μmが好ましく、より好ましくは1~50μmである。無機充填剤は、添加量が少ないときは、分散性が性能を大きく左右するため、粒径の小さいものが好ましいが、0.5μm未満になると二次凝集が起こり、分散性が悪くなる。添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることで樹脂組成物の粘度を低下させることができる点から、粒径の大きいものが好ましい。粒径が100μmを超えると、成形体の表面性、樹脂組成物の力学的物性が低下する。
 一つの実施形態では、無機充填剤は金属酸化物、含水無機物、金属炭酸塩、シリカ、およびこれらの組み合わせから選択される。含水無機物は、アルカリ土類金属水酸化物を含む。
 無機充填剤としては、例えば、水酸化アルミニウムでは、粒径18μmの「ハイジライトH-31」(昭和電工社製)、粒径25μmの「B325」(ALCOA社製)、炭酸カルシウムでは、粒径1.8μmの「ホワイトンSB赤」(備北粉化工業社製)、粒径8μmの「BF300」(備北粉化工業社製)等が挙げられる。
 無機充填剤の含有量は特に限定されないが、マトリックス成分100重量部に対して30~500重量部であることが好ましい。含有量が30重量部以上であると、十分な防火性能が得られ、500重量部以下であると機械的強度が維持される。無機充填剤の含有量は、より好ましくは40~350重量部である。
 本発明の耐火樹脂組成物は、膨張断熱層の強度を増加させ防火性能を向上させるために、前記の各成分に加えて、さらにリン化合物を添加してもよい。リン化合物としては、特に限定されず、例えば、赤リン;トリフェニルホスフェート、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;下記化学式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 化学式(1)中、R1およびR3は、水素、炭素数1~16の直鎖状あるいは分岐状のアルキル基、または、炭素数6~16のアリール基を表す。R2は、水酸基、炭素数1~16の直鎖状あるいは分岐状のアルキル基、炭素数1~16の直鎖状あるいは分岐状のアルコキシル基、炭素数6~16のアリール基、または、炭素数6~16のアリールオキシ基を表す。
 赤リンとしては、市販の赤リンを用いることができるが、耐湿性、混練時に自然発火しない等の安全性の点から、赤リン粒子の表面を樹脂でコーティングしたもの等が好適に用いられる。
 化学式(1)で表される化合物としては特に限定されず、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。中でも、t-ブチルホスホン酸は、高価ではあるが、高い耐火性の点において好ましい。前記のリン化合物は、単独で用いても、2種以上を併用してもよい。
 リン化合物を含有する場合、トリフェニルホスフェート、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステルを用いることが好ましい。リン酸エステルは可塑剤として機能するとともに、耐水性および耐火性を向上することができる。
 リン化合物の含有量は特に限定されないが、マトリックス成分100重量部に対して30~300重量部であることが好ましい。配合量が30重量部以上であると、膨張断熱層の強度を向上させる効果が十分であり、300重量部以下であると、機械的強度が維持される。リン化合物の含有量は、より好ましくは40~250重量部である。
 また、本発明の耐火樹脂組成物には、その物性を損なわない範囲で、熱安定剤、滑剤、加工助剤、熱分解型発泡剤、酸化防止剤、帯電防止剤、顔料等が添加されてもよい。
 熱安定剤としては、例えば、三塩基性硫酸鉛、三塩基性亜硫酸鉛、二塩基性亜リン酸鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛等の鉛熱安定剤;有機錫メルカプト、有機錫マレート、有機錫ラウレート、ジブチル錫マレート等の有機錫熱安定剤;ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石鹸熱安定剤等が挙げられ、これらは単独で用いられもよいし、二種以上が併用されてもよい。
 滑剤としては、例えば、ポリエチレン、パラフィン、モンタン酸等のワックス類;各種エステルワックス類;ステアリン酸、リシノール酸等の有機酸類;ステアリルアルコール等の有機アルコール類;ジメチルビスアミド等のアミド化合物等が挙げられ、これらは単独で用いられもよいし、二種以上が併用されてもよい。
 加工助剤としては、例えば、塩素化ポリエチレン、メチルメタクリレート-エチルアクリレート共重合体、高分子量のポリメチルメタクリレート等が挙げられる。
 熱分解型発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、p,p-オキシビスベンゼンスルホニルヒドラジド(OBSH)、アゾビスイソブチロニトリル(AIBN)等が挙げられる。
 本発明の耐火樹脂組成物は、常法に従って、一軸押出機、二軸押出機等の押出機で溶融押出することにより耐火樹脂成形体を得ることができる。溶融温度は、マトリックス成分によって異なり、特に限定されないが、例えばポリ塩化ビニル樹脂の場合130~170℃である。
 本発明の耐火樹脂組成物または耐火樹脂成形体は、窓、障子、扉(すなわちドア)、戸、ふすま、および欄間等の建具;船舶;並びにエレベータ等の構造体に耐火性を付与するために使用され得る。本発明の耐火樹脂組成物は成形性が優れているので、構造体の複雑な形状に適合させた異型成形体を容易に得ることができる。図1は、建具としての窓1のサッシ枠に本発明の耐火樹脂成形体4を付与した例である。この例では、サッシ枠は2つの内枠2と、内枠2を包囲する1つの外枠3とを有し、内枠2および外枠3の枠本体の各辺に沿って、内枠2および外枠3の内部に耐火樹脂成形体3が取り付けられている。このようにして、本発明の耐火樹脂成形体3を設けることにより、窓1に耐火性を付与することができる。
 本発明は、樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含む耐火性樹脂組成物における、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量を5重量%以下にする、耐火樹脂組成物におけるポリリン酸塩の加水分解による析出物の発生の抑制方法も包含する。耐火樹脂組成物中の各成分については耐火樹脂組成物について上述した通りである。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
1.耐火シートの作成
[実施例1]
 表1に示した配合量で、合成樹脂としてポリ塩化ビニル100重量部、可塑剤としてジイソデシルフタレート(DIDP)80重量部、難燃剤としてメラミン被覆ポリリン酸アンモニウム(メラミン被覆APP、Budenheim Iberica社製「FR CROS 484」(平均粒径18μm))45重量部、中和処理された熱膨張性黒鉛(東ソー社製「GREP-EG」)、および無機充填剤としてシリカ(白石カルシウム社製「シベライトM-6000」)45重量部をニーダーにて混合した後、その混合物をカレンダーロールにてシート化に成型し、1.5mmの耐火樹脂成形体としての耐火シートを得た。なお、表1中の各成分は明記がない限り重量部で示している。
[実施例2~10、12~15、比較例1]
 実施例2~10、12~15および比較例1についても、表1に示した配合量で成分を混合および押出成形し、耐火シートを得た。ブチルゴムは日本ブチル株式会社製Butyl065、ポリエチレンは日本ポリエチレン製のノバテックTMLD(ZE41K)、EVAは三井デュポンポリケミカル製、EV260、水素添加スチレン系熱可塑性エラストマーは株式会社クラレ社製、セプトンを使用した。
 ジ-2-エチルヘキシルフタレート(DOP)としては、ジェイプラス社製「DOP」を使用した。トリクレジルホスフェート(TCP)としては、新日本理化社製「サンソサイザーTCP」を使用した。
 ポリリン酸アンモニウム(APP)はクラリアント社製「AP422」を使用した。シラン被覆ポリリン酸アンモニウム(シラン被覆APP)はBudenheim Iberica社製「FR CROS 486」を使用した。炭酸カルシウムは備北粉化社製「ホワイトンBF-300」を使用した。
[実施例11、比較例2]
 実施例11及び比較例2については、表1に示した配合量で、ビスフェノールF型エポキシモノマー(油化シェル社製「E807」)アミン系硬化剤(油化シェル社製「FL079」)、熱膨張性黒鉛(東ソー社製「GREP-EG」)、ポリリン酸アンモニウム(スミセーフP、住友化学社製)、及び実施例11ではさらにシリカを混練ロールで混練して、耐火性樹脂組成物を得た。得られた耐火性樹脂組成物を、0.5mm厚の亜鉛鉄板に塗布し、150℃で15分間プレスして硬化させ、耐火性評価及び耐水性評価に用いる所定厚みの耐火シートを得た。
 なお、実施例1~15,比較例2では熱膨張性黒鉛をニーダーにて混合する前に純水にて10回洗浄し、比較例1は洗浄せずに用いた。
2.耐火シート中の金属含有量の測定
 耐火シート中のアルカリ金属濃度、アルカリ土類金属濃度及びマグネシウム濃度はサンプルをマイクロウェーブによる加熱式密閉酸分解を行ない、イオン化した後、ICP発光分析にて定量を行った。
 なお、表1中、マグネシウム濃度の欄における「-」は検出限界値以下であることを示す。
3.耐火シートの耐水性評価-外観評価
 実施例1~15および比較例1~2の耐火シートに水滴をスポイトにて2ml落とし、終夜(24時間)放置し、水滴を乾燥させ、翌日、シートの表面を観察し、耐水性を目視で評価した。Sは非常に良好(水滴を落とした部分の表面に白色物が見えない)、Aを良好(水滴を落とした部分の表面に一部白色物はあるが概ねなし)、Bを不良(水滴を落とした部分の表面に白色析出物発生)とした。
4.耐火シートの耐水性評価-水浸漬試験
 実施例及び比較例の耐火シートを10cm角に切り出し、300gの水道水に浸漬し、23℃で1週間浸漬した。1週間後の水道水の濁りの有無を確認し、濁りが無い場合をA、濁りが有る場合をBとした。
 実施例1~15の耐火シートは耐水性に優れており、耐火シート表面における白色の析出物の発生が抑制された。
5.耐火性評価
(膨張倍率)
 上記4.の水浸漬試験における浸漬後のサンプルを50℃で3日間乾燥の後、浸漬前後の重量差より、溶出率を算出した。さらに、乾燥後の試験片の厚みを測定し、電気炉に供給し、600℃で30分間加熱した後、試験片の厚さを測定し、(加熱後の試験片の厚さ)/(加熱前の試験片の厚さ)を膨張倍率として算出した。
(残渣硬さ)
 膨張倍率を測定した加熱後の試験片を圧縮試験機(カトーテック社製、「フィンガーフイリングテスター」)に供給し、0.25cm2の圧子で0.1cm/秒の速度で圧縮し、破断点応力を測定した。
(形状保持性)
 膨張倍率を測定した加熱後の試験片を90°に傾け、試験片が崩れず、形状保持ができたものをA、崩れてしまったものをBと評価した。
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態の構成、方法、工程、形状、材料および数値などは、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本発明は以下の構成を採用することもできる。
[1]樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含み、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が5重量%以下である耐火樹脂組成物。
[2]熱膨張性黒鉛をさらに含有する[1]に記載の耐火樹脂組成物。
[3]ポリリン酸塩が表面被覆されている[1]または[2]に記載の耐火樹脂組成物。
[4]マトリックス成分がポリ塩化ビニル樹脂を含有する[1]~[3]のいずれかに記載の耐火樹脂組成物。
[5]マトリックス成分が熱硬化性樹脂を含有する[1]~[3]のいずれかに記載の耐火樹脂組成物。
[6]リン化合物をさらに含有する[1]~[5]のいずれかに記載の耐火樹脂組成物。
[7]リン化合物がトリフェニルホスフェート、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート、クレジルジフェニルホスフェート、及びキシレニルジフェニルホスフェートから成る群から選択される少なくとも一つである[6]に記載の耐火樹脂組成物。
[8]ポリリン酸塩の含有量が5~30重量%である[1]~[3]のいずれかに記載の耐火樹脂組成物。
[9]アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が0重量%である[1]~[8]のいずれかに記載の耐火樹脂組成物。
[10]アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が0重量%よりも大きい[1]~[8]のいずれかに記載の耐火樹脂組成物。
[11]アルカリ金属濃度は1重量%以下である[1]~[8],[10]のいずれかに記載の耐火樹脂組成物。
[12]アルカリ土類金属の濃度は2重量%以下である[1]~[8],[10],[11]のいずれかに記載の耐火樹脂組成物。
[13]マトリックス成分100重量部に対して10~500重量部の熱膨張性黒鉛を含む[2]~[12]のいずれかに記載の耐火樹脂組成物。
[14]マトリックス成分100重量部に対して25~100重量部の可塑剤を含む[1]~[13]のいずれかに記載の耐火樹脂組成物。
[15]マトリックス成分100重量部に対して30~500重量部の無機充填剤を含む[1]~[14]のいずれかに記載の耐火樹脂組成物。
[16][1]~[15]のいずれか一項に記載の耐火樹脂組成物よりなる耐火樹脂成形体。
[17][16]に記載の耐火樹脂成形体を備えた建具。
[18]樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含む耐火性樹脂組成物における、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量を5重量%以下にする、耐火樹脂組成物におけるポリリン酸塩の加水分解による析出物の発生の抑制方法。
[19]熱膨張性黒鉛をさらに含有する[18]に記載の方法。
[20]ポリリン酸塩が表面被覆されている[18]または[19]に記載の方法。
[21]マトリックス成分がポリ塩化ビニル樹脂を含有する[18]~[20]のいずれかに記載の方法。
[22]マトリックス成分が熱硬化性樹脂を含有する[18]~[20]のいずれかに記載の方法。
[23]リン化合物をさらに含有する[18]~[22]のいずれかに記載の方法。
[24]リン化合物がトリフェニルホスフェート、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート、クレジルジフェニルホスフェート、及びキシレニルジフェニルホスフェートから成る群から選択される少なくとも一つである[23]に記載の方法。
[25]ポリリン酸塩の含有量が5~30重量%である[18]~[20]のいずれかに記載の方法。
[26]アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が0重量%である[18]~[25]のいずれかに記載の方法。
[27]アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が0重量%よりも大きい[18]~[25]のいずれかに記載の方法。
[28]アルカリ金属濃度は1重量%以下である[18]~[25],[27]のいずれかに記載の方法。
[29]アルカリ土類金属の濃度は2重量%以下である[18]~[25],[27],[28]のいずれかに記載の方法。
[30]マトリックス成分100重量部に対して10~500重量部の熱膨張性黒鉛を含む[19]~[29]のいずれかに記載の方法。
[31]マトリックス成分100重量部に対して25~100重量部の可塑剤を含む[18]~[30]のいずれかに記載の方法。
[32]マトリックス成分100重量部に対して30~500重量部の無機充填剤を含む[18]~[31]のいずれかに記載の方法。

Claims (10)

  1.  樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、
     ポリリン酸塩とを含み、
     アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量が5重量%以下である耐火樹脂組成物。
  2.  熱膨張性黒鉛をさらに含有する請求項1に記載の耐火樹脂組成物。
  3.  前記ポリリン酸塩が表面被覆されている請求項1または2に記載の耐火樹脂組成物。
  4.  マトリックス成分がポリ塩化ビニル樹脂を含有する請求項1~3のいずれかに記載の耐火樹脂組成物。
  5.  マトリックス成分が熱硬化性樹脂を含有する請求項1~3のいずれかに記載の耐火樹脂組成物。
  6.  リン化合物をさらに含有する請求項1~5のいずれかに記載の耐火樹脂組成物。
  7.  ポリリン酸塩の含有量が5~30重量%である請求項1~3のいずれかに記載の耐火樹脂組成物。
  8.  請求項1~7のいずれか一項に記載の耐火樹脂組成物よりなる耐火樹脂成形体。
  9.  請求項8に記載の耐火樹脂成形体を備えた建具。
  10.  樹脂、エラストマー、ゴム、またはこれらの組み合わせであるマトリックス成分と、ポリリン酸塩とを含む耐火性樹脂組成物における、アルカリ金属、アルカリ土類金属およびマグネシウムからなる群から選択される少なくとも一種以上の金属の含有量を5重量%以下にする、
    耐火樹脂組成物におけるポリリン酸塩の加水分解による析出物の発生の抑制方法。
PCT/JP2016/064281 2015-05-14 2016-05-13 耐火樹脂組成物 WO2016182059A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016538114A JP6244029B2 (ja) 2015-05-14 2016-05-13 耐火樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099389 2015-05-14
JP2015-099389 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016182059A1 true WO2016182059A1 (ja) 2016-11-17

Family

ID=57249599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064281 WO2016182059A1 (ja) 2015-05-14 2016-05-13 耐火樹脂組成物

Country Status (2)

Country Link
JP (3) JP6244029B2 (ja)
WO (1) WO2016182059A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228658B1 (ja) * 2016-12-28 2017-11-08 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP2018109137A (ja) * 2017-07-06 2018-07-12 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
WO2018139494A1 (ja) * 2017-01-25 2018-08-02 積水化学工業株式会社 熱膨張性耐火シート
WO2018198706A1 (ja) * 2017-04-24 2018-11-01 パナソニックIpマネジメント株式会社 熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法
JP2019127509A (ja) * 2018-01-23 2019-08-01 古河電気工業株式会社 耐火性樹脂成形体
KR20190093120A (ko) * 2016-12-19 2019-08-08 세키스이가가쿠 고교가부시키가이샤 내화 수지 조성물 및 내화 수지 성형체
EP3424999A4 (en) * 2016-02-29 2019-11-06 Sekisui Chemical Co., Ltd. FIRE-RESISTANT ELASTOMER COMPOSITION AND MOLDING PRODUCTS THEREOF
JP2020041044A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 耐火樹脂組成物及び成形体
JPWO2019163839A1 (ja) * 2018-02-20 2020-04-09 積水化学工業株式会社 耐火積層体及びバッテリー
WO2021020140A1 (ja) * 2019-07-26 2021-02-04 株式会社Adeka 難燃剤組成物、それを用いた難燃性樹脂組成物、成形品、および成形品を製造する製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094409A (ja) * 2017-11-21 2019-06-20 積水化学工業株式会社 耐火樹脂組成物及び成型体
JP7065682B2 (ja) * 2018-04-26 2022-05-12 積水化学工業株式会社 耐火材及びその製造方法、建具
JP7264453B2 (ja) * 2019-04-18 2023-04-25 イイダ産業株式会社 樹脂系耐火性組成物
JP7335407B1 (ja) 2022-09-06 2023-08-29 デンカ株式会社 水膨張性耐火組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770428A (ja) * 1993-09-01 1995-03-14 Natl House Ind Co Ltd 発泡型防火性成形品および発泡型防火組成物
JPH09302237A (ja) * 1996-05-16 1997-11-25 Chisso Corp 難燃性熱可塑性重合体組成物
JPH09302243A (ja) * 1996-05-10 1997-11-25 Chisso Corp 難燃性熱硬化性樹脂組成物及びその難燃性成形品
JPH09309990A (ja) * 1996-05-22 1997-12-02 Chisso Corp 塩化ビニル系樹脂組成物
JPH1095887A (ja) * 1995-12-22 1998-04-14 Sekisui Chem Co Ltd ポリ塩化ビニル系樹脂組成物
JPH10195251A (ja) * 1997-01-16 1998-07-28 Sekisui Chem Co Ltd 耐火性ゴム組成物
JP2002129022A (ja) * 2000-10-23 2002-05-09 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2012007109A (ja) * 2010-06-25 2012-01-12 Kiyoshi Adachi 耐火用粉体及びそれを含有する発泡型防火組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302202A (ja) * 1995-03-03 1996-11-19 Tosoh Corp 難燃性ポリマー組成物
JPH09227747A (ja) * 1995-12-22 1997-09-02 Sekisui Chem Co Ltd 塩素化ポリ塩化ビニル系樹脂組成物
JP3299899B2 (ja) * 1995-12-22 2002-07-08 積水化学工業株式会社 耐火性樹脂組成物
JP2001180305A (ja) * 1999-12-27 2001-07-03 Sekisui Chem Co Ltd 燃料タンク
JP4768938B2 (ja) * 2001-08-28 2011-09-07 積水化学工業株式会社 エポキシ樹脂発泡体
WO2009007370A1 (de) * 2007-07-10 2009-01-15 Basf Se Flammgeschütztes, elastisches blockcopolymerisat
WO2012132475A1 (ja) * 2011-03-31 2012-10-04 積水化学工業株式会社 高耐火性ゴム組成物シート
JP6581080B2 (ja) * 2013-10-23 2019-09-25 スリーエム イノベイティブ プロパティズ カンパニー テクスチャー化フィルムを製造するためのシステム及び方法
JP2016186072A (ja) * 2015-03-24 2016-10-27 ユニチカ株式会社 帯電防止性ポリエステルフィルムおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770428A (ja) * 1993-09-01 1995-03-14 Natl House Ind Co Ltd 発泡型防火性成形品および発泡型防火組成物
JPH1095887A (ja) * 1995-12-22 1998-04-14 Sekisui Chem Co Ltd ポリ塩化ビニル系樹脂組成物
JPH09302243A (ja) * 1996-05-10 1997-11-25 Chisso Corp 難燃性熱硬化性樹脂組成物及びその難燃性成形品
JPH09302237A (ja) * 1996-05-16 1997-11-25 Chisso Corp 難燃性熱可塑性重合体組成物
JPH09309990A (ja) * 1996-05-22 1997-12-02 Chisso Corp 塩化ビニル系樹脂組成物
JPH10195251A (ja) * 1997-01-16 1998-07-28 Sekisui Chem Co Ltd 耐火性ゴム組成物
JP2002129022A (ja) * 2000-10-23 2002-05-09 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2012007109A (ja) * 2010-06-25 2012-01-12 Kiyoshi Adachi 耐火用粉体及びそれを含有する発泡型防火組成物

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424999A4 (en) * 2016-02-29 2019-11-06 Sekisui Chemical Co., Ltd. FIRE-RESISTANT ELASTOMER COMPOSITION AND MOLDING PRODUCTS THEREOF
KR20190093120A (ko) * 2016-12-19 2019-08-08 세키스이가가쿠 고교가부시키가이샤 내화 수지 조성물 및 내화 수지 성형체
KR102245331B1 (ko) * 2016-12-19 2021-04-28 세키스이가가쿠 고교가부시키가이샤 내화 수지 조성물 및 내화 수지 성형체
JP2018109091A (ja) * 2016-12-28 2018-07-12 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP6228658B1 (ja) * 2016-12-28 2017-11-08 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP2019019666A (ja) * 2017-01-25 2019-02-07 積水化学工業株式会社 熱膨張性耐火シート
WO2018139494A1 (ja) * 2017-01-25 2018-08-02 積水化学工業株式会社 熱膨張性耐火シート
JPWO2018139494A1 (ja) * 2017-01-25 2019-02-07 積水化学工業株式会社 熱膨張性耐火シート
JP2019023294A (ja) * 2017-01-25 2019-02-14 積水化学工業株式会社 熱膨張性耐火シート
KR102445991B1 (ko) 2017-01-25 2022-09-21 세키스이가가쿠 고교가부시키가이샤 열팽창성 내화 시트
JP2022063322A (ja) * 2017-01-25 2022-04-21 積水化学工業株式会社 熱膨張性耐火シート
KR20190105206A (ko) * 2017-01-25 2019-09-16 세키스이가가쿠 고교가부시키가이샤 열팽창성 내화 시트
JP2021080466A (ja) * 2017-01-25 2021-05-27 積水化学工業株式会社 熱膨張性耐火シート
JP7157187B2 (ja) 2017-01-25 2022-10-19 積水化学工業株式会社 熱膨張性耐火シート
JP2019019665A (ja) * 2017-01-25 2019-02-07 積水化学工業株式会社 熱膨張性耐火シート
JP7367093B2 (ja) 2017-01-25 2023-10-23 積水化学工業株式会社 熱膨張性耐火シート
JPWO2018198706A1 (ja) * 2017-04-24 2019-11-07 パナソニックIpマネジメント株式会社 熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法
WO2018198706A1 (ja) * 2017-04-24 2018-11-01 パナソニックIpマネジメント株式会社 熱膨張性耐火シート用樹脂組成物、これを用いた熱膨張性耐火シート及びその製造方法
JP2018109137A (ja) * 2017-07-06 2018-07-12 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP6999102B2 (ja) 2017-07-06 2022-01-18 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料
JP2022028679A (ja) * 2017-07-06 2022-02-16 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料、熱膨張性シート及び窓枠又はドア枠
JP2019127509A (ja) * 2018-01-23 2019-08-01 古河電気工業株式会社 耐火性樹脂成形体
JPWO2019163839A1 (ja) * 2018-02-20 2020-04-09 積水化学工業株式会社 耐火積層体及びバッテリー
JP2020041044A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 耐火樹脂組成物及び成形体
CN114008121B (zh) * 2019-07-26 2022-06-10 株式会社艾迪科 阻燃剂组合物、使用该阻燃剂组合物的阻燃性树脂组合物、成型品及制造成型品的制造方法
CN114008121A (zh) * 2019-07-26 2022-02-01 株式会社艾迪科 阻燃剂组合物、使用该阻燃剂组合物的阻燃性树脂组合物、成型品及制造成型品的制造方法
JP6845383B1 (ja) * 2019-07-26 2021-03-17 株式会社Adeka 難燃剤組成物、それを用いた難燃性樹脂組成物、成形品、および成形品を製造する製造方法
US11485911B2 (en) 2019-07-26 2022-11-01 Adeka Corporation Flame retardant composition, flame-retardant resin composition using same, molded article, and method for producing molded article
TWI784296B (zh) * 2019-07-26 2022-11-21 日商Adeka股份有限公司 阻燃劑組成物、使用此組成物之阻燃性樹脂組成物、成形品、以及製造成形品之製造方法
EP3957702A4 (en) * 2019-07-26 2022-12-07 Adeka Corporation FIRE RETARDANT COMPOSITION, FIRE RETARDANT RESIN COMPOSITION USING THE SAME, MOLDED ARTICLE AND METHOD FOR PRODUCING A MOLDED ARTICLE
WO2021020140A1 (ja) * 2019-07-26 2021-02-04 株式会社Adeka 難燃剤組成物、それを用いた難燃性樹脂組成物、成形品、および成形品を製造する製造方法

Also Published As

Publication number Publication date
JP2017061684A (ja) 2017-03-30
JPWO2016182059A1 (ja) 2017-05-25
JP6244029B2 (ja) 2017-12-06
JP6243985B2 (ja) 2017-12-06
JP2018053253A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6243985B2 (ja) 耐火樹脂組成物
JP6386600B2 (ja) 耐火性樹脂組成物
JP6200572B2 (ja) 耐火性樹脂組成物
JP6163247B1 (ja) 耐火性樹脂組成物
EP3556812A1 (en) Fire-resistant resin composition and fire-resistant resin molded body
JP2019218569A (ja) 耐火性樹脂組成物
JP6159463B1 (ja) 耐火性樹脂組成物
JP2021102769A (ja) 耐火樹脂組成物
KR20190105206A (ko) 열팽창성 내화 시트
JP2023115102A (ja) 耐火性樹脂組成物
JP7316333B2 (ja) 耐火性樹脂組成物
JP6145198B2 (ja) 耐火樹脂成形体およびそれを備えた建具
JP2020097244A (ja) 耐火樹脂成形体およびそれを備えた建具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016538114

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792783

Country of ref document: EP

Kind code of ref document: A1