WO2016179852A1 - 显示屏动态帧频驱动电路及驱动方法 - Google Patents

显示屏动态帧频驱动电路及驱动方法 Download PDF

Info

Publication number
WO2016179852A1
WO2016179852A1 PCT/CN2015/079536 CN2015079536W WO2016179852A1 WO 2016179852 A1 WO2016179852 A1 WO 2016179852A1 CN 2015079536 W CN2015079536 W CN 2015079536W WO 2016179852 A1 WO2016179852 A1 WO 2016179852A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
frame rate
timing control
signal
source driving
Prior art date
Application number
PCT/CN2015/079536
Other languages
English (en)
French (fr)
Inventor
徐向阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/778,614 priority Critical patent/US20170116933A1/en
Publication of WO2016179852A1 publication Critical patent/WO2016179852A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/106Determination of movement vectors or equivalent parameters within the image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/14Use of low voltage differential signaling [LVDS] for display data communication

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display dynamic frame rate driving circuit and a driving method thereof.
  • LCDs liquid crystal displays
  • the display screen in the flat display device has become the main human-computer interaction tool.
  • each pixel in the display is electrically connected to a thin film transistor (TFT), a gate of the thin film transistor is connected to the scan line, and a source is connected to the data signal line.
  • a drain is connected to the pixel electrode.
  • the data signal line is electrically connected to the source driving module, and the source driving module drives the data signal line.
  • the display screen gradually develops toward high resolution, high color gamut and high refresh rate, and the high refresh rate is for smooth display of dynamic pictures.
  • the display frame refresh rate (Frame Freq) has been gradually increased from the most common 60Hz to 120Hz, or even 240Hz.
  • a display with a refresh rate of 60 Hz displays only one frame in 1/60 seconds, while a display with a refresh rate of 120 Hz or 240 Hz displays one frame in 1/120 second or 1/240 seconds.
  • the higher the refresh rate the more frames the screen can display at the same time, and the smoother the image of the moving object is displayed.
  • the high refresh rate display can improve the quality of the dynamic display.
  • the refresh rate of the display screen is usually fixed and unadjustable, and the refresh rate of 60 Hz cannot meet the needs of dynamic display.
  • the high refresh rate can improve the display effect on the moving object image, but for stationary, or The image of the object with low moving speed will cause the logic power consumption of the display to be too high, which is not in line with the concept of low carbon and environmental protection.
  • the object of the present invention is to provide a dynamic frame rate driving circuit for a display screen, which can not only make the dynamic picture display smooth, but also reduce the logic power consumption of the display screen, and realize the low carbon environmental protection green product concept.
  • Another object of the present invention is to provide a dynamic frame rate driving method for a display screen, which can achieve the dual effects of smooth display and low carbon environment.
  • the present invention provides a display dynamic frame rate driving circuit, comprising: an interface module, a power module, a timing control module, a frame rate determining module, a gamma voltage module, and a source driving module;
  • the interface module is electrically connected to the power module and the timing control module respectively;
  • the power module is electrically connected to the interface module, the timing control module, the frame rate determining module, and the gamma voltage module respectively;
  • the timing control module The interface module, the power module, the frame rate determining module, and the source driving module are electrically connected to each other;
  • the frame rate determining module is electrically connected to the power module, the timing control module, and the source driving module respectively;
  • the voltage module is electrically connected to the power module and the source driving module respectively;
  • the source driving module is electrically connected to the frame frequency determining module, the gamma voltage module, and the timing control module respectively;
  • the interface module is configured to respectively transmit the received digital signal and the voltage signal to the timing control module and the power module;
  • the power module is configured to generate a stable voltage required by the timing control module, the frame rate determining module, and the gamma voltage module according to the voltage signal transmitted by the interface module;
  • the timing control module is configured to convert the digital signal transmitted by the interface module into a display data signal that can be recognized by the source driving module and the frame frequency determining module;
  • the frame rate determining module is configured to determine a moving speed of an object in two consecutive frames, and provide a corresponding frame frequency signal to the source driving module according to the moving speed of the object, and control a refreshing frequency of the source driving module;
  • the gamma voltage module is configured to perform gamma correction on a voltage of the power module input source driving module
  • the source driving module is configured to drive the display screen according to the display data signal transmitted by the timing control module and the frame rate signal transmitted by the frame rate determining module.
  • the digital signal transmitted by the interface module to the timing control module is an LVDS signal or an e-DP signal.
  • the timing control module converts the received LVDS signal or e-DP signal into a Mini-LVDS signal.
  • the frame rate determining module determines the moving speed of the object in the picture according to the similarity of the consecutive two frames.
  • the frame rate determining module When the moving speed of the object in the two consecutive frames is fast, the frame rate determining module provides a high frequency frame rate signal to the source driving module; when the moving speed of the object in the two consecutive frames is slow, the frame rate The decision module provides a low frequency frame rate signal to the source drive module.
  • the invention also provides a dynamic frame rate method for a display screen, comprising the following steps:
  • Step 1 providing a display dynamic frame rate driving circuit, comprising: an interface module, a power module, a timing control module, a frame rate determining module, a gamma voltage module, and a source driving module;
  • the interface module is electrically connected to the power module and the timing control module respectively;
  • the power module is electrically connected to the interface module, the timing control module, the frame rate determining module, and the gamma voltage module respectively;
  • the timing control module The interface module, the power module, the frame rate determining module, and the source driving module are electrically connected to each other;
  • the frame rate determining module is electrically connected to the power module, the timing control module, and the source driving module respectively;
  • the voltage module is electrically connected to the power module and the source driving module respectively;
  • the source driving module is electrically connected to the frame frequency determining module, the gamma voltage module, and the timing control module respectively;
  • Step 2 The interface module transmits the received digital signal and the voltage signal to the timing control module and the power module respectively;
  • Step 3 The power module generates a stable voltage required by the timing control module, the frame rate determination module, and the gamma voltage module according to the received voltage signal;
  • the timing control module converts the received digital signal into a display data signal recognizable by the source driving module and the frame frequency determining module, and sends the signal to the source driving module and the frame frequency determining module;
  • Step 4 The frame rate determining module determines the moving speed of the object in the continuous two frames according to the signal transmitted by the timing control module, and provides a corresponding frame frequency signal to the source driving module according to the moving speed of the object to control the source driving module.
  • Step 5 The source driving module performs gray scale voltage calculation and display data signal output according to the display data signal transmitted by the timing control module and the frame frequency signal transmitted by the frame rate determining module, and drives the display screen.
  • the digital signal transmitted by the interface module to the timing control module in the step 2 is an LVDS signal or an e-DP signal.
  • the timing control module in step 3 converts the received LVDS signal or e-DP signal into a Mini-LVDS signal.
  • the frame rate determining module determines the moving speed of the object in the picture according to the similarity of the consecutive two frames.
  • the frame rate determining module when the moving speed of the object in the two consecutive frames is fast, the frame rate determining module provides a high frequency frame rate signal to the source driving module; when the moving speed of the object in the two consecutive frames is slow, The frame rate determination module provides a low frequency frame rate signal to the source driver module.
  • the invention also provides a display dynamic frame frequency driving method, comprising the following steps:
  • Step 1 providing a display dynamic frame rate driving circuit, comprising: an interface module, a power module, a timing control module, a frame rate determining module, a gamma voltage module, and a source driving module;
  • the interface module is electrically connected to the power module and the timing control module respectively;
  • the power module is electrically connected to the interface module, the timing control module, the frame rate determining module, and the gamma voltage module respectively;
  • the timing control module The interface module, the power module, the frame rate determining module, and the source driving module are electrically connected to each other;
  • the frame rate determining module is electrically connected to the power module, the timing control module, and the source driving module respectively;
  • the voltage module is electrically connected to the power module and the source driving module respectively;
  • the source driving module is electrically connected to the frame frequency determining module, the gamma voltage module, and the timing control module respectively;
  • Step 2 The interface module transmits the received digital signal and the voltage signal to the timing control module and the power module respectively;
  • Step 3 The power module generates a stable voltage required by the timing control module, the frame rate determination module, and the gamma voltage module according to the received voltage signal;
  • the timing control module converts the received digital signal into a display data signal recognizable by the source driving module and the frame frequency determining module, and sends the signal to the source driving module and the frame frequency determining module;
  • Step 4 The frame rate determining module determines the moving speed of the object in the continuous two frames according to the signal transmitted by the timing control module, and provides a corresponding frame frequency signal to the source driving module according to the moving speed of the object to control the source driving module.
  • Step 5 The source driving module performs gray scale voltage calculation and display data signal output according to the display data signal transmitted by the timing control module and the frame frequency signal transmitted by the frame rate determining module, and drives the display screen;
  • the digital signal transmitted by the interface module to the timing control module in the step 2 is an LVDS signal or an e-DP signal;
  • the timing control module in step 3 converts the received LVDS signal or e-DP signal into a Mini-LVDS signal
  • the frame rate determining module in the step 4 determines the moving speed of the object in the picture according to the similarity of the consecutive two frames.
  • the present invention provides a display dynamic frame rate driving circuit provided with a frame rate determining module capable of determining the moving speed of an object in two consecutive frames and according to the moving speed of the object Providing a high-frequency frame rate signal or a low-frequency frame rate signal to the source driving module, so that the refreshing frequency of the source driving module is high when the moving speed of the object is fast in two consecutive frames, and the object is in two consecutive frames When the moving speed is slow, the refresh frequency of the source driving module is low, which can not only make the dynamic picture display smooth, but also reduce the logic power consumption of the display, and realize the green product concept of low carbon and environmental protection.
  • the invention also provides a dynamic frame rate driving method for a display screen, which adds a frame frequency determining step before the source driving module drives the display screen, which can achieve the dual effects of smooth display and low carbon environment.
  • FIG. 1 is a schematic diagram of a display frame dynamic frame frequency driving circuit of the present invention
  • FIG. 2 is a flow chart of a method for driving a dynamic frame rate of a display screen of the present invention.
  • the present invention first provides a dynamic frame rate driving circuit for a display screen, including: an interface module 1, a power module 2, a timing control module 3, a frame rate determining module 4, a gamma voltage module 5, and a source driver. Module 6.
  • each module is: the interface module 1 is electrically connected to the power module 2 and the timing control module 3 respectively; the power module 2 and the interface module 1, the timing control module 2, the frame rate determining module 4, And the gamma voltage module 5 is electrically connected; the timing control module 3 is electrically connected to the interface module 1, the power module 2, the frame rate determining module 4, and the source driving module 6, respectively; the frame rate determining module 4 respectively.
  • the power module 2, the timing control module 3, and the source driver module 6 are electrically connected; the gamma voltage module 5 is electrically connected to the power module 2 and the source driver module 6 respectively; the source driver module 6
  • the frame rate determination module 4, the gamma voltage module 5, and the timing control module 6 are electrically connected to each other.
  • the interface module 1 is configured to transmit the received digital signal and the voltage signal Vdd to the timing control module 3 and the power module 2, respectively.
  • the digital signal transmitted by the interface module 1 to the timing control module 3 is an LVDS signal or an e-DP signal; and the interface module 1 transmits a voltage signal Vdd to the power module 2.
  • the power module 2 is configured to generate a stable voltage required by the timing control module 2, the frame rate determining module 4, and the gamma voltage module 5 according to the voltage signal Vdd transmitted from the interface module 1.
  • the power module 2 includes: a boosting unit, a step-down unit, and a voltage stabilizing unit, and the voltage signal Vdd is processed by the boosting unit, the step-down unit, and the voltage stabilizing unit to generate each module.
  • the required stable voltage is
  • the timing control module 3 is configured to convert the digital signal transmitted by the interface module 1 into the recognized display data signal that the source driving module 6 and the frame rate determining module 4 can recognize. Specifically, the timing control module 3 converts the received LVDS signal or e-DP signal into a Mini-LVDS signal.
  • the frame rate determining module 4 is configured to determine the moving speed of the object in the two consecutive frames, and provide the corresponding frame frequency signal Fram Freq to the source driving module 6 according to the moving speed of the object, and control the refresh frequency of the source driving module 6. Specifically, the frame rate determining module 4 determines the moving speed of the object in the picture according to the similarity of the consecutive two frames. Further, by comparing the Mini-LVDS signals of consecutive two frames transmitted by the timing control module 3, comparing the number of pixels of different brightness in two consecutive frames to determine the similarity of two consecutive frames, and then finding the picture. A moving object and calculating the speed of movement of the moving object.
  • the determining module 4 determines that the moving speed of the object in the two consecutive frames is fast, it provides a high frequency frame rate signal to the source driving module 6, so that the refresh frequency of the source driving module 6 is high, and the dynamic picture display is smooth.
  • the determining module 4 determines that the moving speed of the object in the two consecutive frames is slow, it provides a low frequency frame rate signal to the source driving module 6, so that the refresh frequency of the source driving module 6 is low, thereby lowering the display
  • the logic power consumption realizes the concept of green products with low carbon and environmental protection.
  • the frequency of the high frequency frame rate signal is 120 Hz or 240 Hz
  • the frequency of the low frequency frame rate signal is 60 Hz.
  • the gamma voltage module 5 is configured to perform gamma correction on the voltage of the power module 2 input source driving module 6, and transmit the corrected gamma voltage gamma voltage to the source driving module 6.
  • the source driving module 6 is configured to perform gray scale voltage calculation and display data signal Data output according to the display data signal transmitted by the timing control module 3 and the frame rate signal transmitted by the frame rate determining module 4, and drive the display screen.
  • the present invention further provides a display dynamic frame rate driving method, including the following steps:
  • Step 1 providing a display dynamic frame rate driving circuit, comprising: interface module 1, power module 2, timing control module 3, frame rate determination module 4, gamma voltage module 5, and source driver module 6;
  • the interface module 1 is electrically connected to the power module 2 and the timing control module 3 respectively; the power module 2 is respectively connected to the interface module 1, the timing control module 2, the frame rate determining module 4, and the gamma voltage module 5
  • the timing control module 3 is electrically connected to the interface module 1, the power module 2, the frame rate determining module 4, and the source driving module 6, respectively; the frame rate determining module 4 and the power module 2, and the timing control respectively
  • the module 3 and the source driving module 6 are electrically connected;
  • the gamma voltage module 5 is electrically connected to the power module 2 and the source driving module 6 respectively; the source driving module 6 and the frame rate determining module 4 are respectively
  • the gamma voltage module 5 and the timing control module 6 are electrically connected.
  • Step 2 The interface module 1 transmits the received digital signal and the voltage signal Vdd to the timing control module 3 and the power module 2, respectively.
  • the digital signal transmitted by the interface module 1 to the timing control module 3 is an LVDS signal or an e-DP signal.
  • Step 3 The power module 2 generates a stable voltage required by the timing control module 2, the frame rate determining module 4, and the gamma voltage module 5 according to the received voltage signal Vdd;
  • the timing control module 3 converts the received digital signal into a display data signal recognizable by the source driving module 6 and transmits the signal to the source driving module 6 and the frame rate determining module 4.
  • the power module 2 includes: a boosting unit, a step-down unit, and a voltage stabilizing unit, and the voltage signal Vdd is processed by the boosting unit, the step-down unit, and the voltage stabilizing unit to generate each module.
  • the required stable voltage The timing control module 3 converts the received LVDS signal or e-DP signal into a Mini-LVDS signal.
  • Step 4 The frame rate determining module 4 determines the moving speed of the object in the continuous two frames according to the signal transmitted by the timing control module 3, and provides the corresponding frame frequency signal Fram Freq to the source driving module 6 according to the moving speed of the object.
  • the refresh frequency of the source drive module 6 is controlled.
  • the frame rate determining module 4 determines the moving speed of the object in the picture according to the similarity of the consecutive two frames. Further, by comparing the Mini-LVDS signals of consecutive two frames transmitted by the timing control module 3, comparing the number of pixels of different brightness in two consecutive frames to determine the similarity of two consecutive frames, and then finding the picture. A moving object and calculating the speed of movement of the moving object.
  • the determining module 4 determines that the moving speed of the object in the two consecutive frames is fast, it provides a high frequency frame rate signal to the source driving module 6, so that the refresh frequency of the source driving module 6 is high, and the dynamic picture display is smooth.
  • the determining module 4 determines that the moving speed of the object in the two consecutive frames is slow, it provides a low frequency frame rate signal to the source driving module 6, so that the refresh frequency of the source driving module 6 is low, thereby lowering the display
  • the logic power consumption realizes the concept of green products with low carbon and environmental protection.
  • the frequency of the high frequency frame rate signal is 120 Hz or 240 Hz, and the frequency of the low frequency frame rate signal is 60 Hz.
  • Step 5 The source driving module 6 performs gray scale voltage calculation and display data signal Data output according to the display data signal transmitted from the timing control module 3 and the frame rate signal transmitted by the frame rate determining module 4, and drives the display screen.
  • the display dynamic frame rate driving circuit of the present invention is provided with a frame rate determining module capable of determining the moving speed of an object in two consecutive frames and driving to the source according to the moving speed of the object.
  • the module provides a high frequency frame rate signal or a low frequency frame rate signal, so that when the moving speed of the object is fast in two consecutive frames, the refresh frequency of the source driving module is high, and When the moving speed of the object in two consecutive frames is slow, the refresh frequency of the source driving module is low, so that the dynamic picture display can be smoothed, the logic power consumption of the display screen can be reduced, and the green product concept of low carbon environment can be realized.
  • the dynamic frame rate driving method of the display screen of the invention adds a frame frequency determining step before the source driving module drives the display screen, which can achieve the dual effects of smooth display and low carbon environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示屏动态帧频驱动电路及驱动方法,该显示屏动态帧频驱动电路包括:接口模块(1)、电源模块(2)、时序控制模块(3)、帧频判定模块(4)、伽马电压模块(5)、及源极驱动模块(6)。帧频判定模块(4)能够判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块(6)提供高频率帧频信号或低频率帧频信号,使得在连续两帧画面中物体的运动速度快时,源极驱动模块(6)的刷新频率高,而在连续两帧画面中物体的运动速度慢时,源极驱动模块(6)的刷新频率低,从而既能够使动态画面显示流畅,又能够降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。

Description

显示屏动态帧频驱动电路及驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示屏动态帧频驱动电路及驱动方法。
背景技术
目前,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。平面显示装置中的显示屏已经成为了主要的人机交互工具。
以液晶显示器的显示屏为例,显示屏内的每个像素电性连接一个薄膜晶体管(TFT),薄膜晶体管的栅极(Gate)连接至扫描线,源极(Source)连接至数据信号线,漏极(Drain)则连接至像素电极。其中,数据信号线电性连接至源极驱动模块,由源极驱动模块来对数据信号线进行驱动。
随着显示技术的发展,为了满足人们的使用需求,显示屏逐渐朝着高分辨率,高色域和高刷新速率的方向发展,其中高刷新频率是为了更流畅的显示动态画面。目前,显示屏的刷新频率(Frame Freq)已经由最常见的60Hz,逐渐提高到120Hz、甚至240Hz。刷新频率为60Hz的显示屏,在1/60秒内只显示一帧画面,而刷新频率为120Hz、或240Hz的显示屏则在1/120秒、或1/240秒内显示一帧画面,可见刷新频率越高,显示屏同一时间内能显示的画面帧数越多,显示运动物体的影像时会更流畅,即高刷新频率的显示屏可以提高动态显示的质量。
然而,现有技术中显示屏的刷新频率通常为固定不可调的,60HZ的刷新频率无法满足动态显示的需要,高刷新频率虽然能够提高对运动中物体影像的显示效果,但对于静止的、或运动速度较低的物体影像,反而会造成显示屏的逻辑功耗过高,不符合低碳环保的理念。
发明内容
本发明的目的在于提供一种显示屏动态帧频驱动电路,既能够使动态画面显示流畅,又能够降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。
本发明的目的还在于提供一种显示屏动态帧频驱动方法,能够达到显示画面流畅与低碳环保的双重效果。
为实现上述目的,本发明提供一种显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
所述接口模块用于将接收到的数字信号及电压信号分别传递给时序控制模块及电源模块;
所述电源模块用于根据接口模块传递来的电压信号产生时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
所述时序控制模块用于将接口模块传递来的数字信号转换为源极驱动模块及帧频判定模块能够识别的显示数据信号;
所述帧频判定模块用于判定连续两帧画面中物体的运动速度,根据物体的运动速度向源极驱动模块提供相应的帧频信号,控制源极驱动模块的刷新频率;
所述伽马电压模块用于对电源模块输入源极驱动模块的电压进行伽马校正;
所述源极驱动模块,用于依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号驱动显示屏。
所述接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号。
所述时序控制模块将接收到的LVDS信号或e-DP信号转换为Mini-LVDS信号。
所述帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
所述连续两帧画面中物体的运动速度快时,所述帧频判定模块向源极驱动模块提供高频率帧频信号;所述连续两帧画面中物体的移动速度慢时,所述帧频判定模块向源极驱动模块提供低频率帧频信号。
本发明还提供一种显示屏动态帧频方法,包括如下步骤:
步骤1、提供一显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
步骤2、所述接口模块将接收到的数字信号与电压信号分别传递给时序控制模块及电源模块;
步骤3、所述电源模块根据接收到的电压信号生成时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
所述时序控制模块将接收到的数字信号转换成源极驱动模块及帧频判定模块能够识别的显示数据信号,并发送给源极驱动模块及帧频判定模块;
步骤4、帧频判定模块依据时序控制模块传递来的信号判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供相应的帧频信号,以控制源极驱动模块的刷新频率;
步骤5、所述源极驱动模块依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号进行灰阶电压计算与显示数据信号输出,驱动显示屏。
所述步骤2中接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号。
所述步骤3中时序控制模块将接收到的LVDS信号或e-DP信号转换成Mini-LVDS信号。
所述步骤4中帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
所述步骤4中,当连续两帧画面中物体的运动速度快时,所述帧频判定模块向源极驱动模块提供高频率帧频信号;当连续两帧画面中物体的运动速度慢时,所述帧频判定模块向源极驱动模块提供低频率帧频信号。
本发明还提供一种显示屏动态帧频驱动方法,包括如下步骤:
步骤1、提供一显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
步骤2、所述接口模块将接收到的数字信号与电压信号分别传递给时序控制模块及电源模块;
步骤3、所述电源模块根据接收到的电压信号生成时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
所述时序控制模块将接收到的数字信号转换成源极驱动模块及帧频判定模块能够识别的显示数据信号,并发送给源极驱动模块及帧频判定模块;
步骤4、帧频判定模块依据时序控制模块传递来的信号判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供相应的帧频信号,以控制源极驱动模块的刷新频率;
步骤5、所述源极驱动模块依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号进行灰阶电压计算与显示数据信号输出,驱动显示屏;
其中,所述步骤2中接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号;
其中,所述步骤3中时序控制模块将接收到的LVDS信号或e-DP信号转换成Mini-LVDS信号;
其中,所述步骤4中帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
本发明的有益效果:本发明提供的一种显示屏动态帧频驱动电路,设置有帧频判定模块,该帧频判定模块能够判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供高频率帧频信号或低频率帧频信号,使得在连续两帧画面中物体的运动速度快时,源极驱动模块的刷新频率高,而在连续两帧画面中物体的运动速度慢时,源极驱动模块的刷新频率低,从而既能够使动态画面显示流畅,又能够降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。本发明还提供一种显示屏动态帧频驱动方法,在源极驱动模块驱动显示屏之前加入一帧频判定步骤,能够达到显示画面流畅与低碳环保的双重效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的显示屏动态帧频驱动电路的示意图;
图2为本发明的显示屏动态帧频驱动方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种显示屏动态帧频驱动电路,包括:接口模块1、电源模块2、时序控制模块3、帧频判定模块4、伽马电压模块5、及源极驱动模块6。
各个模块的连接关系为:所述接口模块1分别与所述电源模块2及时序控制模块3电性连接;所述电源模块2分别与接口模块1、时序控制模块2、帧频判定模块4、及伽马电压模块5电性连接;所述时序控制模块3分别与接口模块1、电源模块2、帧频判定模块4、及源极驱动模块6电性连接;所述帧频判定模块4分别与电源模块2、时序控制模块3、及源极驱动模块6电性连接;所述伽马电压模块5分别与电源模块2、及源极驱动模块6电性连接;所述源极驱动模块6分别与帧频判定模块4、伽马电压模块5、及时序控制模块6电性连接。
所述接口模块1用于将接收到的数字信号及电压信号Vdd分别传递给时序控制模块3及电源模块2。具体地,所述接口模块1用于向时序控制模块3传递的数字信号为LVDS信号或e-DP信号;所述接口模块1向电源模块2传递的是电压信号Vdd。
所述电源模块2用于根据接口模块1传递来的电压信号Vdd产生时序控制模块2、帧频判定模块4、及伽马电压模块5分别所需要的稳定电压。具体地,所述电源模块2中包括:升压单元、降压单元、及稳压单元,通过所述升压单元、降压单元、及稳压单元对电压信号Vdd进行处理以生成各个模块所需要的稳定电压。
所述时序控制模块3用于将接口模块1传递来的数字信号转换为源极驱动模块6及帧频判定模块4能够的识别的显示数据信号。具体地,所述时序控制模块3将接收到的LVDS信号或e-DP信号转换为Mini-LVDS信号。
帧频判定模块4用于判定连续两帧画面中物体的运动速度,根据物体的运动速度向源极驱动模块6提供相应的帧频信号Fram Freq,控制源极驱动模块6的刷新频率。具体地,所述帧频判定模块4依据连续两帧画面的相似度来判定画面中物体的运动速度。进一步地,通过比较时序控制模块3传递来的连续两帧画面的Mini-LVDS信号来比对连续两帧画面中亮度不同像素的个数来判定连续两帧画面的相似度,进而找出画面中运动的物体,并计算该运动的物体的运动速度。当所述判定模块4判定出连续两帧画面中物体的运动速度快时,其向源极驱动模块6提供高频率帧频信号,使得源极驱动模块6的刷新频率高,保证动态画面显示流畅;当所述判定模块4判定出连续两帧画面中物体的运动速度慢时,其向源极驱动模块6提供低频率帧频信号,使得源极驱动模块6的刷新频率低,从而降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。优选的,所述高频率帧频信号的频率为120Hz或240Hz,低频率帧频信号的频率为60Hz。
所述伽马电压模块5用于对电源模块2输入源极驱动模块6的电压进行伽马校正,将校正后的伽马电压Gamma voltage传递给源极驱动模块6。
所述源极驱动模块6用于依据时序控制模块3传递来的显示数据信号及帧频判定模块4传递来的帧频信号进行灰阶电压计算与显示数据信号Data输出,驱动显示屏。
请参阅图2,结合图1,本发明还提供一种显示屏动态帧频驱动方法,包括如下步骤:
步骤1、提供一显示屏动态帧频驱动电路,包括:接口模块1、电源模块2、时序控制模块3、帧频判定模块4、伽马电压模块5、及源极驱动模块6;
所述接口模块1分别与所述电源模块2及时序控制模块3电性连接;所述电源模块2分别与接口模块1、时序控制模块2、帧频判定模块4、及伽马电压模块5电性连接;所述时序控制模块3分别与接口模块1、电源模块2、帧频判定模块4、及源极驱动模块6电性连接;所述帧频判定模块4分别与电源模块2、时序控制模块3、及源极驱动模块6电性连接;所述伽马电压模块5分别与电源模块2、及源极驱动模块6电性连接;所述源极驱动模块6分别与帧频判定模块4、伽马电压模块5、及时序控制模块6电性连接。
步骤2、所述接口模块1将接收到的数字信号与电压信号Vdd分别传递给时序控制模块3及电源模块2。
具体地,在该步骤2中,所述接口模块1向时序控制模块3传递的数字信号为LVDS信号或e-DP信号。
步骤3、所述电源模块2根据接收到的电压信号Vdd生成时序控制模块2、帧频判定模块4、及伽马电压模块5分别所需要的稳定电压;
所述时序控制模块3将接收到的数字信号转换成源极驱动模块6能够识别的显示数据信号,并发送给源极驱动模块6及帧频判定模块4。
具体地,所述电源模块2中包括:升压单元、降压单元、及稳压单元,通过所述升压单元、降压单元、及稳压单元对电压信号Vdd进行处理以生成各个模块所需要的稳定电压。所述时序控制模块3将接收到的LVDS信号或e-DP信号转换为Mini-LVDS信号。
步骤4、帧频判定模块4依据时序控制模块3传递来的信号判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块6提供相应的帧频信号Fram Freq,以控制源极驱动模块6的刷新频率。
具体地,所述帧频判定模块4依据连续两帧画面的相似度来判定画面中物体的运动速度。进一步地,通过比较时序控制模块3传递来的连续两帧画面的Mini-LVDS信号来比对连续两帧画面中亮度不同像素的个数来判定连续两帧画面的相似度,进而找出画面中运动的物体,并计算该运动的物体的运动速度。当所述判定模块4判定出连续两帧画面中物体的运动速度快时,其向源极驱动模块6提供高频率帧频信号,使得源极驱动模块6的刷新频率高,保证动态画面显示流畅;当所述判定模块4判定出连续两帧画面中物体的运动速度慢时,其向源极驱动模块6提供低频率帧频信号,使得源极驱动模块6的刷新频率低,从而降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。
优选的,所述高频率帧频信号的频率为120Hz或240Hz,低频率帧频信号的频率为60Hz。
步骤5、所述源极驱动模块6依据时序控制模块3传递来的显示数据信号及帧频判定模块4传递来的帧频信号进行灰阶电压计算与显示数据信号Data输出,驱动显示屏。
综上所述,本发明的显示屏动态帧频驱动电路,设置有帧频判定模块,该帧频判定模块能够判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供高频率帧频信号或低频率帧频信号,使得在连续两帧画面中物体的运动速度快时,源极驱动模块的刷新频率高,而在 连续两帧画面中物体的运动速度慢时,源极驱动模块的刷新频率低,从而既能够使动态画面显示流畅,又能够降低显示屏的逻辑功耗,实现低碳环保的绿色产品理念。本发明的显示屏动态帧频驱动方法,在源极驱动模块驱动显示屏之前加入一帧频判定步骤,能够达到显示画面流畅与低碳环保的双重效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (15)

  1. 一种显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
    所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
    所述接口模块用于将接收到的数字信号及电压信号分别传递给时序控制模块及电源模块;
    所述电源模块用于根据接口模块传递来的电压信号产生时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
    所述时序控制模块用于将接口模块传递来的数字信号转换为源极驱动模块及帧频判定模块能够识别的显示数据信号;
    所述帧频判定模块用于判定连续两帧画面中物体的运动速度,根据物体的运动速度向源极驱动模块提供相应的帧频信号,控制源极驱动模块的刷新频率;
    所述伽马电压模块用于对电源模块输入源极驱动模块的电压进行伽马校正;
    所述源极驱动模块用于依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号驱动显示屏。
  2. 如权利要求1所述的显示屏动态帧频驱动电路,其中,所述接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号。
  3. 如权利要求2所述的显示屏动态帧频驱动电路,其中,所述时序控制模块将接收到的LVDS信号或e-DP信号转换为Mini-LVDS信号。
  4. 如权利要求1所述的显示屏动态帧频驱动电路,其中,所述帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
  5. 如权利要求4所述的显示屏动态帧频驱动电路,其中,通过比较所述时序控制模块传递来的连续两帧画面中的亮度不同像素的个数,来判定连续两帧画面的相似度。
  6. 如权利要求1所述的显示屏动态帧频驱动电路,其中,所述连续两帧画面中物体的运动速度快时,所述帧频判定模块向源极驱动模块提供高频率帧频信号;所述连续两帧画面中物体的运动速度慢时,所述帧频判定模块向源极驱动模块提供低频率帧频信号。
  7. 如权利要求6所述的显示屏动态帧频驱动电路,所述高频率帧频信号的刷新频率为120Hz或240Hz,所述低频率帧频信号的刷新频率为60Hz。
  8. 一种显示屏动态帧频驱动方法,包括如下步骤:
    步骤1、提供一显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
    所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
    步骤2、所述接口模块将接收到的数字信号与电压信号分别传递给时序控制模块及电源模块;
    步骤3、所述电源模块根据接收到的电压信号生成时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
    所述时序控制模块将接收到的数字信号转换成源极驱动模块及帧频判定模块能够识别的显示数据信号,并发送给源极驱动模块及帧频判定模块;
    步骤4、帧频判定模块依据时序控制模块传递来的信号判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供相应的帧频信号,以控制源极驱动模块的刷新频率;
    步骤5、所述源极驱动模块依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号进行灰阶电压计算与显示数据信号输出,驱动显示屏。
  9. 如权利要求8所述的显示屏动态帧频驱动方法,其中,所述步骤2中接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号。
  10. 如权利要求9所述的显示屏动态帧频驱动方法,其中,所述步骤3中时序控制模块将接收到的LVDS信号或e-DP信号转换成Mini-LVDS信号。
  11. 如权利要求8所述的显示屏动态帧频驱动方法,其中,所述步骤4 中帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
  12. 如权利要求11所述的显示屏动态帧频驱动方法,其中,通过比较所述时序控制模块传递来的连续两帧画面中的亮度不同像素的个数,来判定连续两帧画面的相似度。
  13. 如权利要求8所述的显示屏动态帧频驱动方法,其中,所述步骤4中,当连续两帧画面中物体的运动速度快时,所述帧频判定模块向源极驱动模块提供高频率帧频信号;当连续两帧画面中物体的运动速度慢时,所述帧频判定模块向源极驱动模块提供低频率帧频信号。
  14. 一种显示屏动态帧频驱动方法,包括如下步骤:
    步骤1、提供一显示屏动态帧频驱动电路,包括:接口模块、电源模块、时序控制模块、帧频判定模块、伽马电压模块、及源极驱动模块;
    所述接口模块分别与所述电源模块及时序控制模块电性连接;所述电源模块分别与接口模块、时序控制模块、帧频判定模块、及伽马电压模块电性连接;所述时序控制模块分别与接口模块、电源模块、帧频判定模块、及源极驱动模块电性连接;所述帧频判定模块分别与电源模块、时序控制模块、及源极驱动模块电性连接;所述伽马电压模块分别与电源模块、及源极驱动模块电性连接;所述源极驱动模块分别与帧频判定模块、伽马电压模块、及时序控制模块电性连接;
    步骤2、所述接口模块将接收到的数字信号与电压信号分别传递给时序控制模块及电源模块;
    步骤3、所述电源模块根据接收到的电压信号生成时序控制模块、帧频判定模块、及伽马电压模块分别所需要的稳定电压;
    所述时序控制模块将接收到的数字信号转换成源极驱动模块及帧频判定模块能够识别的显示数据信号,并发送给源极驱动模块及帧频判定模块;
    步骤4、帧频判定模块依据时序控制模块传递来的信号判定连续两帧画面中物体的运动速度,并根据物体的运动速度向源极驱动模块提供相应的帧频信号,以控制源极驱动模块的刷新频率;
    步骤5、所述源极驱动模块依据时序控制模块传递来的显示数据信号及帧频判定模块传递来的帧频信号进行灰阶电压计算与显示数据信号输出,驱动显示屏;
    其中,所述步骤2中接口模块向时序控制模块传递的数字信号为LVDS信号或e-DP信号;
    其中,所述步骤3中时序控制模块将接收到的LVDS信号或e-DP信号 转换成Mini-LVDS信号;
    其中,所述步骤4中帧频判定模块依据连续两帧画面的相似度来判定画面中物体的运动速度。
  15. 如权利要求14所述的显示屏动态帧频驱动方法,其中,所述步骤4中,当连续两帧画面中物体的运动速度快时,所述帧频判定模块向源极驱动模块提供高频率帧频信号;当连续两帧画面中物体的运动速度慢时,所述帧频判定模块向源极驱动模块提供低频率帧频信号。
PCT/CN2015/079536 2015-05-11 2015-05-22 显示屏动态帧频驱动电路及驱动方法 WO2016179852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/778,614 US20170116933A1 (en) 2015-05-11 2015-05-22 Driving Circuit and Method for Dynamically Switching Frame Rates of Display Panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510238095.5 2015-05-11
CN201510238095.5A CN104835464B (zh) 2015-05-11 2015-05-11 显示屏动态帧频驱动电路及驱动方法

Publications (1)

Publication Number Publication Date
WO2016179852A1 true WO2016179852A1 (zh) 2016-11-17

Family

ID=53813308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079536 WO2016179852A1 (zh) 2015-05-11 2015-05-22 显示屏动态帧频驱动电路及驱动方法

Country Status (3)

Country Link
US (1) US20170116933A1 (zh)
CN (1) CN104835464B (zh)
WO (1) WO2016179852A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304048B (zh) * 2015-11-18 2018-03-30 深圳市华星光电技术有限公司 液晶显示装置的动态驱动方法
US10192529B2 (en) * 2016-02-03 2019-01-29 Mediatek, Inc. Electronic apparatus, frames per second decision method, and non-transitory computer readable storage medium thereof
US11244478B2 (en) * 2016-03-03 2022-02-08 Sony Corporation Medical image processing device, system, method, and program
US10133403B2 (en) * 2016-06-29 2018-11-20 Apple Inc. System and method for variable frame duration control in an electronic display
JP7320352B2 (ja) * 2016-12-28 2023-08-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元モデル送信方法、三次元モデル受信方法、三次元モデル送信装置及び三次元モデル受信装置
CN107038988B (zh) 2017-06-19 2019-11-05 京东方科技集团股份有限公司 控制电路、显示屏、显示屏的驱动方法及显示装置
CN108683868A (zh) * 2018-06-11 2018-10-19 惠州高盛达科技有限公司 应用于T-con板上驱动电路及T-con板
CN109147706A (zh) * 2018-09-30 2019-01-04 惠科股份有限公司 驱动电路及方法、显示面板及显示装置
KR20200101570A (ko) * 2019-02-19 2020-08-28 삼성디스플레이 주식회사 소스 드라이버 및 이를 포함하는 표시 장치
EP4179522A1 (en) 2020-08-28 2023-05-17 Google LLC Adjusting peak signal in transitional frame
CN114023238B (zh) * 2021-11-16 2023-05-05 Tcl华星光电技术有限公司 显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259146A (ja) * 1999-03-09 2000-09-22 Hitachi Ltd 画像表示装置
CN101518066A (zh) * 2006-09-20 2009-08-26 夏普株式会社 图像显示装置及方法、图像处理装置及方法
CN101536507A (zh) * 2006-10-04 2009-09-16 夏普株式会社 图像显示装置及方法、图像处理装置及方法
CN101573972A (zh) * 2006-12-22 2009-11-04 夏普株式会社 图像显示装置及方法、图像处理装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622715B2 (en) * 2005-04-11 2009-11-24 Fluke Corporation Method and apparatus for capturing and analyzing thermo-graphic images of a moving object
US20080055318A1 (en) * 2006-08-31 2008-03-06 Glen David I J Dynamic frame rate adjustment
KR20080064280A (ko) * 2007-01-04 2008-07-09 삼성전자주식회사 액정 표시 장치 및 이의 구동 방법
BRPI0817990B1 (pt) * 2007-09-24 2019-04-16 Laser Technology, Inc. Sistema unitário e método para integrar imagem e dados de determinação de velocidade.
JP5293124B2 (ja) * 2008-12-01 2013-09-18 株式会社日立製作所 映像処理装置及び映像処理方法
CN101996590A (zh) * 2009-08-21 2011-03-30 北京京东方光电科技有限公司 液晶显示器驱动电路及驱动方法
CN102074207B (zh) * 2009-11-20 2013-02-06 群康科技(深圳)有限公司 液晶显示器
US20120147020A1 (en) * 2010-12-13 2012-06-14 Ati Technologies Ulc Method and apparatus for providing indication of a static frame
US9406145B2 (en) * 2014-01-31 2016-08-02 Applied Concepts, Inc. Mobile radar and visual tracking coordinate transformation
US9438868B2 (en) * 2014-02-13 2016-09-06 Semiconductor Components Industries, Llc Adaptive image sensor systems and methods
KR20150101779A (ko) * 2014-02-27 2015-09-04 엘지디스플레이 주식회사 영상 표시장치와 그의 모션 블러 완화방법
CN104159079B (zh) * 2014-08-13 2018-01-30 上海航天电子通讯设备研究所 一种图像实时解码显示方法
CN104269155A (zh) * 2014-09-24 2015-01-07 广东欧珀移动通信有限公司 一种调整屏幕刷新频率的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259146A (ja) * 1999-03-09 2000-09-22 Hitachi Ltd 画像表示装置
CN101518066A (zh) * 2006-09-20 2009-08-26 夏普株式会社 图像显示装置及方法、图像处理装置及方法
CN101536507A (zh) * 2006-10-04 2009-09-16 夏普株式会社 图像显示装置及方法、图像处理装置及方法
CN101573972A (zh) * 2006-12-22 2009-11-04 夏普株式会社 图像显示装置及方法、图像处理装置及方法

Also Published As

Publication number Publication date
US20170116933A1 (en) 2017-04-27
CN104835464A (zh) 2015-08-12
CN104835464B (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2016179852A1 (zh) 显示屏动态帧频驱动电路及驱动方法
US10319318B2 (en) Image display device and driving method thereof
KR102538875B1 (ko) 표시 장치
US9953613B2 (en) High speed display interface
US20060267972A1 (en) Power saving method for thin film transistor liquid crystal display
US10546548B2 (en) Self-refresh display driving device, driving method and display device
TWI251445B (en) Method of compensating image signals and display device employing the same
CN106328090B (zh) 液晶显示器的驱动方法及驱动***
KR102325816B1 (ko) 저속 구동이 가능한 표시장치와 그 구동방법
KR102219520B1 (ko) 표시 장치 및 이의 구동 방법
WO2017012301A1 (zh) 显示驱动装置和显示驱动方法以及显示装置
TW201729175A (zh) 用於顯示裝置的驅動方法及相關的驅動裝置
WO2021238361A1 (zh) 显示设备以及显示控制方法
KR20200080428A (ko) 표시 장치 및 이의 구동 방법
US20180144699A1 (en) Driving Method of Display Panel and Display Device Comprising Such Display Panel
US9478191B2 (en) Display device and method of driving the same
US9412321B2 (en) Display device to apply compensation data and driving method thereof
WO2021203516A1 (zh) 一种时序控制信号控制方法及驱动电路
WO2019051926A1 (zh) 显示装置及其驱动方法
WO2019134612A1 (zh) 液晶显示装置及其驱动方法
WO2017201830A1 (zh) 液晶显示面板的驱动装置
TWI761064B (zh) 應用於顯示面板的控制電路及控制方法
KR102135923B1 (ko) 입력 비디오 정보를 이용한 충전 시간 제어 장치 및 제어 방법
WO2020047910A1 (zh) 液晶显示装置及其驱动方法
WO2019051927A1 (zh) 显示装置及其驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14778614

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891555

Country of ref document: EP

Kind code of ref document: A1