WO2016167591A1 - 음극 활물질 및 이의 제조방법 - Google Patents

음극 활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2016167591A1
WO2016167591A1 PCT/KR2016/003926 KR2016003926W WO2016167591A1 WO 2016167591 A1 WO2016167591 A1 WO 2016167591A1 KR 2016003926 W KR2016003926 W KR 2016003926W WO 2016167591 A1 WO2016167591 A1 WO 2016167591A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
artificial graphite
electrode active
oxygen
Prior art date
Application number
PCT/KR2016/003926
Other languages
English (en)
French (fr)
Inventor
김현욱
김은경
신선영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160045345A external-priority patent/KR101913902B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/558,631 priority Critical patent/US11152621B2/en
Publication of WO2016167591A1 publication Critical patent/WO2016167591A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material and a method of manufacturing the same.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries exhibit high energy density and operating potential, and have a cycle life.
  • Many studies have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
  • a typical lithium secondary battery uses graphite as a negative electrode active material, and charging and discharging are performed while repeating a process in which lithium ions of a positive electrode are inserted into and detached from a negative electrode.
  • the theoretical capacity of the battery is different depending on the type of the electrode active material, but as the cycle progresses, the charge and discharge capacity is generally lowered.
  • This phenomenon is most likely due to the separation between the electrode active material or between the electrode active material and the current collector due to the volume change of the electrode generated as the charge and discharge of the battery progresses, the active material does not perform its function.
  • the negative electrode for a nonaqueous secondary battery comprising graphite, carbon black, and an aqueous binder
  • the carbon black includes particles having an aspect ratio of 1.0 or more and 5.0 or less and a maximum diameter of 0.05 ⁇ m or more and 10 ⁇ m or less.
  • a negative electrode for a nonaqueous secondary battery characterized in that the electrode density of the negative electrode is 1.50 g / cm 3 to 1.80 g / cm 3, wherein graphite is disclosed that artificial graphite can be preferably used.
  • the first technical problem to be solved of the present invention is to provide a negative electrode active material that can improve the dispersibility in the aqueous system by modifying the surface of the artificial graphite to hydrophilic.
  • the second technical problem to be solved of the present invention is to provide a method for producing the negative electrode active material.
  • the third technical problem to be solved of the present invention is to provide a secondary battery negative electrode including the negative electrode active material.
  • a third technical problem to be solved by the present invention is to provide a secondary battery including the negative electrode, a battery module and a battery pack including the same.
  • An anode active material comprising artificial graphite surface-modified with a nitrogen atom
  • the nitrogen atom provides a negative electrode active material containing 5% by weight to 10% by weight based on the total weight of all the atoms present in the outermost portion of the negative electrode active material including artificial graphite.
  • step 1 Connecting the oxygen-containing functional group to the artificial graphite through a mild oxidation process (step 1); And
  • a negative electrode active material of the present invention comprising the step (step 2) of reducing the artificial graphite connected to the oxygen-containing functional group of the step 1 in a nitrogen atmosphere (step 2).
  • an embodiment of the present invention provides a secondary battery negative electrode on which a negative electrode active material slurry including the negative electrode active material is coated on a negative electrode current collector.
  • an embodiment of the present invention provides a secondary battery including the negative electrode, the positive electrode and the nonaqueous electrolyte, and a battery module and a battery pack including the same.
  • anode active material made of artificial graphite surface-modified with a specific amount of nitrogen element
  • the dispersibility in the aqueous system is improved, the affinity with the binder is high, the adhesive strength is increased, and the battery capacity is high.
  • a secondary battery negative electrode and a secondary battery including the same may implement the maintenance effect.
  • the negative electrode active material according to the present invention is connected to the surface of the artificial graphite by the oxygen-containing functional group only 10 to 20% by weight through a manufacturing method using a mild oxidation process, while exhibiting hydrophilicity, while maintaining the original crystallinity of the electrical conductor Therefore, it can exhibit excellent battery efficiency.
  • Example 1 is a photograph of an artificial graphite doped with nitrogen element prepared in step 2 of Example 1 under a scanning electron microscope (SEM).
  • FIG. 2 is a graph showing the result of measuring binding energy of the artificial graphite doped with nitrogen element prepared in Example 1 according to Experimental Example 4 and the surface-treated artificial graphite of Comparative Example 1.
  • FIG. 2 is a graph showing the result of measuring binding energy of the artificial graphite doped with nitrogen element prepared in Example 1 according to Experimental Example 4 and the surface-treated artificial graphite of Comparative Example 1.
  • Example 3 is an XRD graph measured by an X-ray diffraction analyzer for artificial graphite subjected to the mild oxidation process of Step 1 of Example 1 of the present invention.
  • Example 4 is an XRD graph measured by an X-ray diffraction analyzer for artificial graphite doped with nitrogen element of step 2 of Example 1 of the present invention.
  • FIG. 5 is an XRD graph of untreated surface graphite of Comparative Example 1.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • artificial graphite Since artificial graphite is manufactured through high temperature heat treatment, all oxygen-containing functional groups present on the surface of artificial graphite are removed to have hydrophobic characteristics.
  • hydrophobic artificial graphite has various problems such as viscosity change and change over time in an aqueous system.
  • the present invention is intended to provide a more stable electrode by modifying the surface of the artificial graphite to hydrophilic, to exhibit excellent dispersibility in the aqueous system.
  • An anode active material comprising artificial graphite surface-modified with a nitrogen atom
  • the nitrogen atom provides a negative electrode active material containing 5% by weight to 10% by weight based on the total weight of all atoms present in the outermost part of the negative electrode active material including artificial graphite.
  • flaky artificial graphite having a diameter of 5 to 20 ⁇ m may be used.
  • the artificial graphite may be one or more selected from the group consisting of graphitized mesocarbon microbeads, graphitized mesophase pitch-based carbon fibers and graphitized coke, but the artificial graphite is not limited thereto.
  • the artificial graphite Since the artificial graphite is manufactured through a high temperature heat treatment, all the oxygen-containing functional groups present on the surface of the artificial graphite are removed to have hydrophobic characteristics. Because of this, hydrophobic artificial graphite causes various problems such as viscosity change and change over time in an aqueous system.
  • the present invention in order to solve the problem that the surface of the artificial graphite is hydrophobic, it provides a negative electrode active material by modifying the surface of the artificial graphite with nitrogen.
  • the content of nitrogen may be 5% by weight to 10% by weight relative to the weight of all the atoms present in the outermost portion of the negative electrode active material including the artificial graphite.
  • the degree (%) modified with nitrogen can be quantitatively analyzed through X-ray photoelectron spectroscopy (XPS).
  • the outermost range of the negative electrode active material means a thickness within 100 nm from the surface of the negative electrode active material, that is, the surface of the negative electrode active material located farthest from the center in the core direction.
  • the nitrogen element is modified to less than 5% by weight, the hydrophilicity is insufficient and the aqueous dispersibility is not improved, and the oxygen-containing functional groups are exposed a lot, which may cause electrochemical instability.
  • the side reactivity with the electrolyte may increase, which may cause problems of initial efficiency, capacity reduction, and deterioration of battery life.
  • a method of first modifying nitrogen using the oxygen-containing functional group may be used by lowering an energy barrier by connecting an oxygen-containing functional group to the surface of the artificial graphite.
  • the surface of the artificial graphite is -CH 2 or CH 3
  • one or more of the sites where the hydrogen is separated is replaced with an oxygen-containing functional group can be connected to the oxygen-containing functional group on the surface of the artificial graphite.
  • the surface of the artificial graphite can be finally modified with a nitrogen atom by doping nitrogen to the artificial graphite to which the oxygen-containing functional group is connected to replace the oxygen-containing functional group itself or a part of the oxygen-containing functional group with a nitrogen atom.
  • the oxygen-containing functional group may be used one or more selected from the group consisting of a hydroxyl group, an epoxy group, a carboxyl group and a lactol group, but is not limited thereto.
  • the oxygen-containing functional group may be linked in advance to a level equivalent to that of the modified nitrogen. Specifically, since the content of the modified nitrogen is about 5 to 10% by weight relative to the total weight of all the atoms present in the outermost portion of the negative electrode active material, the oxygen-containing functional group connected to the artificial graphite surface before the nitrogen modification is artificial About 10 to 20% by weight of the covalently bondable sites of the outermost carbon atoms of the graphite may be included in connection. In this case, the degree (substitution rate) of the oxygen-containing functional group connected to the surface of the artificial graphite can be quantitatively measured through an elemental analyzer.
  • the oxygen-containing functional group is connected to less than 10% by weight, there is a problem that artificial graphite cannot show hydrophilicity properly because the amount of nitrogen to be connected in the subsequent process is small, and too much if connected to more than 20% by weight. Since the amount of oxidation occurs, it is difficult to reduce all of them in a subsequent process, and the graphite layer is separated because the (002) surface of the artificial graphite is large, so that the capacity is small or the structure is not rigid, which is insufficient for a battery.
  • the oxygen-containing functional group may be connected to the surface of the artificial graphite by a mild oxidation process, which has been described in detail in the method for preparing the negative electrode active material.
  • the oxygen-containing functional group may be bonded at about 5 to 15% by weight based on the covalently bonded site of the outermost carbon atom of the artificial graphite in the negative electrode active material after nitrogen modification.
  • An anode active material comprising artificial graphite surface-modified with a nitrogen atom
  • 5 to 10 wt% may provide an oxygen-containing functional group in which a nitrogen atom or a portion is replaced by a nitrogen atom, 5 to 15 wt% of an oxygen-containing functional group, and 80 to 90 wt% of a negative electrode active material to which a hydrogen atom is bonded.
  • the surface of the artificial graphite used as the negative electrode active material has a low energy barrier, which makes it difficult to directly modify nitrogen. Therefore, in order to modify the surface of artificial graphite hydrophilically, a part of the surface of artificial graphite should be replaced with an oxygen-containing functional group to lower the energy barrier, and then nitrogen atoms should be connected using the oxygen-containing functional group.
  • the surface of the artificial graphite is -CH 2 or CH 3
  • one or more of the sites where the hydrogen is separated is replaced with an oxygen-containing functional group can be connected to the oxygen-containing functional group on the surface of the artificial graphite.
  • the oxygen-containing functional group itself or a part of the oxygen-containing functional group can be replaced with a nitrogen atom, and finally the outermost part of the artificial graphite can be modified with a nitrogen atom.
  • the content of the oxygen-containing functional group in which the nitrogen atom or part is replaced by a nitrogen atom may be 5 to 10% by weight relative to the covalently bonded site of the outermost carbon atom of artificial graphite.
  • the oxygen-containing functional group in which part of which is substituted with a nitrogen atom may eventually exhibit hydrophilicity because the nitrogen atom is present at the outermost part of the negative electrode active material.
  • the content of the nitrogen element or the nitrogen-substituted oxygen-containing functional group is less than 5% by weight, the hydrophilicity is insufficient, the aqueous dispersibility is not improved, and the oxygen-containing functional group is exposed a lot, which may cause electrochemical instability.
  • the content of the nitrogen element or nitrogen-substituted oxygen-containing functional group exceeds 10% by weight, side reaction with the electrolyte increases, which may cause problems of initial efficiency, capacity reduction, and deterioration of battery life.
  • the oxygen-containing functional group may also be connected to the equivalent level of 10 to 20% by weight. 25 to 50% by weight of the oxygen-containing functional group itself or a portion of the oxygen-containing functional group of the linked oxygen-containing functional group is replaced with nitrogen, the remaining of the oxygen-containing functional group that is not substituted with nitrogen on the surface of the negative electrode active material
  • the content may be 5 to 15% by weight, relative to the covalently linkable site of the outermost carbon atom of the artificial graphite.
  • the surface of the artificial graphite is present, the hydrogen atoms of the outermost because it is a -CH 2 or CH 3, oxygen-containing functional group and a negative electrode active material nitrogen is connected.
  • the negative electrode active material of the present invention may be 80 to 90% by weight of hydrogen atoms to the covalently bonded sites of the outermost carbon atoms of artificial graphite.
  • the interplanar spacing (d 002 ) of the carbon hexagonal net surface of the negative electrode active material according to the embodiment of the nitrogen-modified the present invention may be 0.3350 to 0.3400 nm. Since the negative electrode active material of the present invention is connected to the oxygen-containing functional group only on a portion of the surface of the artificial graphite, the surface of the artificial graphite is separated due to the connection of the excess oxygen-containing functional groups or the inter-plane distance increases to solve the problem of inferior crystallinity. In addition, the effect of exhibiting hydrophilicity can be realized while maintaining the original crystallinity of artificial graphite.
  • step 1 Connecting the oxygen-containing functional group to the artificial graphite through a mild oxidation process (step 1); And
  • It provides a method for producing a negative electrode active material comprising a; doping the nitrogen by reducing the artificial graphite connected to the oxygen-containing functional group of step 1 in a nitrogen atmosphere (step 2).
  • step 1 is a step of connecting a oxygen-containing functional group to the surface of the artificial graphite by performing a mild oxidation process before performing nitrogen doping to the artificial graphite.
  • the artificial graphite of (step 1) may be used at least one selected from the group consisting of graphitized mesocarbon microbeads, graphitized mesophase pitch-based carbon fiber and graphitized coke, but the artificial graphite is not limited thereto. . Since the surface of the artificial graphite has a low energy barrier and thus it is difficult to directly dope nitrogen, the surface of the artificial graphite may be doped with nitrogen after lowering the energy barrier by connecting an oxygen-containing functional group to the surface of the artificial graphite.
  • the mild oxidation of (step 1) means connecting the oxygen-containing functional group at a substitution rate of 10 to 20% by weight with respect to the covalently bonded site of the outermost carbon atom of artificial graphite. That is, the surface of the artificial graphite is -CH 2 or CH 3 , and the surface of the artificial graphite can be oxidized by connecting an oxygen-containing functional group to one or more of the hydrogen is separated.
  • step 1 If the oxygen-containing functional group of (step 1) is linked to the covalently bonded site of the outermost carbon atom of artificial graphite, artificial graphite is less because the amount of nitrogen connected in the subsequent process is less than 10% by weight. This hydrophilicity cannot be represented properly, and when connected at a substitution rate of more than 20% by weight, too much oxidation occurs, so that it is difficult to reduce all of them in a subsequent process, and the graphite layer becomes larger due to the (002) plane of artificial graphite. Because of the separation, the capacity is small, or the structure is not rigid, there is a problem that is insufficient for the battery.
  • the substitution rate indicating the extent to which the oxygen-containing functional group is connected to the surface of the artificial graphite can be measured quantitatively through an elemental analyzer.
  • the mild oxidation process of (step 1) may be performed by heat treating artificial graphite in an air atmosphere at 500 to 600 ° C. for 1 hour to 1 hour and / or immersing artificial graphite in an acid solution for 4 to 6 hours and then drying it. Can be.
  • the acid solution is a nitric acid solution of 50 to 70 °C concentration of 30 to 50% by weight
  • the drying is preferably carried out in a vacuum of 250 to 300 °C.
  • the oxygen-containing functional group can adjust its content by limited heat treatment time or immersion time of the acid solution. That is, in the method of the present invention, the oxygen-containing functional group content can be controlled within 10 to 20% by weight only after heat treatment or immersion under the above-described time conditions.
  • the heat treatment time or the immersion time in the acid solution is less than the time, the oxygen-containing functional group content is reduced, and thus the nitrogen element content is lowered so that the aqueous dispersibility is not improved, and the time is exceeded. Since the oxygen-containing functional group content is increased, and thus the nitrogen element content is increased, the side reaction with the electrolyte is increased, which may cause problems of initial efficiency, capacity reduction, and deterioration of battery life.
  • the oxygen-containing functional group of (step 1) may be at least one selected from the group consisting of a hydroxyl group, an epoxy group, a carboxyl group, and a lactol group, but the oxygen-containing functional group is not limited thereto.
  • step 2 is a step of doping nitrogen by reducing artificial graphite to which the oxygen-containing functional group of (step 1) is connected in a nitrogen atmosphere.
  • Step 2 is a step of replacing the oxygen-containing functional group itself or a part of the oxygen-containing functional group connected to artificial graphite by (Step 1) with a nitrogen element. Even though only the oxygen-containing functional group is attached to the surface of the artificial graphite, the artificial graphite may exhibit hydrophilicity, but the oxygen-containing functional group alone does not satisfy the electrochemical characteristics required by the secondary battery. Therefore, in order to overcome this, by doping the surface of the artificial graphite with a nitrogen element in which two non-covalent electron pairs exist through (step 2), it is possible to produce artificial graphite having not only excellent electrochemical properties but also a hydrophilic surface.
  • the (step 2) can be carried out in a gas atmosphere in which hydrogen gas is mixed with one gas selected from the group consisting of hydrazine (N 2 H 2 ), ammonia (NH 3 ) and mixtures thereof.
  • step (2) is carried out by reducing the hydrazine or ammonia gas and hydrogen gas in a nitrogen gas atmosphere in which 3: 3 is mixed, whereby the oxygen-containing functional group itself or part of the oxygen-containing functional group connected to the surface of the artificial graphite is nitrogen. It can be replaced by an element.
  • the (step 2) may be performed under a temperature condition of 800 to 1000 °C. Specifically, in the method of the present invention, the temperature is raised to a temperature of 800 to 1000 ° C. over about 5 hours, and then reacted for about 2 hours, followed by lowering the temperature for 12 hours.
  • the amount of nitrogen doping can be controlled by the limited gas composition and the temperature range and the temperature increase time and the reaction time.
  • the temperature range, the temperature and the reaction time are less than the range, there may occur a problem that the unreacted residual oxygen-containing functional group remains when the reaction is performed at a temperature below, for example, 800 ° C. or less than 2 hours. have.
  • the reaction is carried out at a temperature of more than 1000 °C or more than 2 hours, so that the side reactivity with the electrolyte increases, which leads to a decrease in initial efficiency, capacity reduction, and lifetime characteristics of the battery.
  • the problem may be that the doped portion is damaged.
  • another embodiment of the present invention provides a negative electrode on which a negative electrode active material slurry including the negative electrode active material is coated on a negative electrode current collector.
  • the negative electrode may be prepared by applying a negative electrode active material slurry including the negative electrode active material of the present invention on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Or aluminum, stainless steel, etc. which surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the negative electrode active material slurry may further include a binder as a component to assist in the bonding between the active material and the conductive material and the current collector.
  • the binder is not particularly limited, and for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra
  • One selected from the group consisting of fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluorine rubber, and mixtures thereof can be used.
  • the negative electrode active material slurry may further include a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • graphite Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the negative electrode active material according to the present invention is hydrophilic by doping with nitrogen, it may exhibit higher dispersibility in an aqueous system for preparing an electrode using an aqueous solvent such as water and alcohol.
  • an increase in the affinity between the active material and the aqueous binder improves the adhesive strength of the electrode, thereby providing a secondary battery having excellent electrical conductivity and stable for long-term use.
  • secondary graphite is modified to be hydrophilic by using nitrogen element, it is electrochemically stable, and the secondary battery including the secondary battery is excellent because the capacity of artificial graphite can be maintained by maintaining the interfacial distance of artificial graphite by mild mythification process. Can exhibit characteristics.
  • It provides a secondary battery including the negative electrode, a positive electrode, a separator interposed between the positive electrode and the separator and a nonaqueous electrolyte.
  • the positive electrode may be prepared by applying a positive electrode active material slurry including a positive electrode active material on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode active material is not particularly limited, specifically, a lithium transition metal oxide may be used.
  • the lithium transition metal oxide include Li.Co-based composite oxides such as LiCoO 2 , Li.Ni.Co.Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and Li.sub.2 such as LiNiO 2 .
  • Ni-based composite oxide may be mentioned, such as LiMn 2 O 4 of the Li-Mn composite oxide such, may be mixed alone or a plurality of them.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include stainless steel, aluminum, nickel, titanium, calcined carbon; Or aluminum, stainless steel, etc. which surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the positive electrode active material slurry may further include a binder.
  • the binder is not particularly limited, and for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra
  • One selected from the group consisting of fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluorine rubber, and mixtures thereof can be used.
  • the positive electrode active material slurry may further include the same or different conductive material as used in the negative electrode active material slurry.
  • the nonaqueous electrolyte may be composed of an electrolyte solution and a metal salt, and the nonaqueous organic solvent is used as the electrolyte solution.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate Aprotic organic solvents, such as ethyl propionate,
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl Lithium borate, imide and the like can be used.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery exhibiting stable and excellent battery characteristics, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in are included. It can be used as a power source of any one or more of the electric vehicle, including a plug-in hybrid electric vehicle (PHEV), or a system for power storage.
  • PHEV plug-in hybrid electric vehicle
  • Step 1 The oxygen-containing functional group was attached through a mild oxidation process in which flaky artificial graphite (product name: BTR S360) having a diameter in the range of 5-20 ⁇ m was heat-treated in an air atmosphere at 550 ° C. in a tube furnace.
  • flaky artificial graphite product name: BTR S360
  • Step 2 hydrazine (N 2 H 2 ) of 800 °C the artificial graphite attached to the oxygen-containing functional group Nitrogen element was doped to the surface of the artificial graphite through a process of reducing for 24 hours in a nitrogen gas atmosphere of 3: 7 gas and hydrogen gas mixed.
  • Step 3 The negative electrode active material slurry was prepared by mixing 96 g of the artificial graphite doped with nitrogen element, 1 g of CMC, an aqueous binder, 2 g of SBR, 1 g of acetylene black, a conductive material, and 220 g of water, a solvent.
  • the negative electrode active material slurry was applied to a copper current collector, and then dried and rolled in a vacuum oven at 130 ° C. to prepare a negative electrode.
  • Step 1 A negative electrode active material slurry was prepared by mixing 96 g of general artificial graphite without surface modification, 1 g of CMC as an aqueous binder, 2 g of SBR, 1 g of acetylene black as a conductive material and 220 g of water as a solvent.
  • the negative electrode mixture was coated on a copper current collector, dried in a vacuum oven at 130 ° C., and rolled to prepare a negative electrode.
  • the artificial graphite can be confirmed that the flaky form having a diameter in the range of 5 to 20 ⁇ m, it can be seen that the shape is maintained stable without breaking.
  • artificial graphite can serve as a stable anode active material even after the mild oxidation process and the nitrogen doping process.
  • Oxygen content at the outermost surface of the artificial graphite subjected to the mild oxidation process in step 1 of Example 1 was measured by an elemental analyzer, and the results are shown in Table 1.
  • the oxygen-containing functional group is connected at a substitution rate of 9 to 10% by weight with respect to the outermost surface of the artificial graphite.
  • X-ray photoelectron spectroscopy was used to measure the binding energy of the artificial graphite doped with the nitrogen element of (Step 2) of Example 1 and the surface-modified artificial graphite of Comparative Example 1 The results are shown in FIG.
  • the artificial graphite of Comparative Example 1 exhibits an even distribution of intensity in the energy range of 392 eV to 408 eV, whereas the artificial energy doped with nitrogen element of Example 1 has a binding energy of 396 eV. You can see that the intensity starts increasing and then decreases again at 404 eV.
  • the oxygen-containing functional group is connected to a part of the surface of the artificial graphite through the mild oxidation process, it can be confirmed that some or all of the oxygen-containing functional group is replaced with nitrogen, so that a certain amount of nitrogen is doped to the surface of the artificial graphite.
  • the nitrogen element doping concentration was calculated through the ratio of the peak area of carbon appearing between 280 and 292 eV and the peak area of nitrogen appearing between 396 eV and 404 eV. It was found that about 7.21 atom% of nitrogen was doped on the surface.
  • the interfacial distance of the artificial graphite of Comparative Example 1, which is not surface modified was 0.3372 nm (see FIG. 5), and the artificial oxidation process of performing the mild oxidation process of (Step 1) in Example 1 was performed.
  • the interplanar spacing of graphite was 0.3385 nm (see FIG. 3), and the interplanar spacing of artificial graphite further subjected to nitrogen element doping of (step 2) was 0.3377 nm (see FIG. 4).
  • the interfacial distance of artificial graphite increased by 0.38% compared to before the mild oxidation process, and then decreased by 0.23% after doping nitrogen element.
  • the artificial graphite of FIG. 4 surface-modified according to the method of the present invention has an artificial graphite having an interplanar distance difference of about 0.1% compared to the artificial graphite of Comparative Example 1 of FIG. .
  • the mild oxidation process and nitrogen element doping of the artificial graphite can be performed hydrophilic treatment without significant change in the structure of the artificial graphite.
  • the artificial graphite which is not surface-modified as in Comparative Example 1 is inferior in dispersibility, so that the artificial graphite is not evenly dispersed in the solvent and sinks to the lower liquid, so that the weight of the solid remaining even when the supernatant is evaporated is small.
  • nitrogen-doped artificial graphite has improved hydrophilicity and excellent dispersibility in an aqueous system, it is dispersed evenly in both the supernatant and the supernatant in the solvent, so that a large amount remains even after the supernatant is evaporated. It can be predicted.
  • the adhesion of the negative electrode of Example 1 of the present invention is 30 gf / 15 mm, 2.3 times compared to the negative electrode (13 gf / 15 mm) of Comparative Example 1 using the surface-modified artificial graphite It can be seen that it has excellent adhesion.
  • the secondary battery having excellent adhesive strength and high electrical conductivity and stable for long-term use is provided. It can be predicted that it can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 활물질 및 이의 제조방법에 관한 것으로써, 보다 상세하게는 인조흑연 표면을 질소 원자로 개질한 음극 활물질이고, 상기 음극 활물질의 최외곽에 존재하는 모든 원자에 대하여, 5 내지 10 중량%는 질소 원자인 음극 활물질에 관한 것이다. 본 발명에 따른 음극 활물질은 인조흑연의 표면이 질소로 개질된 것으로서, 수계 시스템에서의 분산성이 향상되고, 이로써 바인더와 음극 활물질 간의 친화성이 높아지므로 전극의 접착강도를 증가시킬 수 있다. 또한, 인조흑연의 표면에서 특정 양만큼만 질소 개질되므로, 전지 용량을 높게 유지하는 효과가 있다. 나아가, 본 발명에 따른 음극 활물질 제조방법은 마일드 산화 공정을 통해 인조흑연에 산소 함유 기능기를 10 내지 20 중량% 정도만 연결함으로써, 인조흑연에 질소가 용이하게 부착되어 친수성을 나타낼 수 있으면서도, 본래의 결정성을 유지하여 전기 전도체가 되므로, 우수한 전지 효율을 나타낼 수 있다.

Description

음극 활물질 및 이의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2015년 4월 15일자 한국 특허 출원 제10-2015-0053330호 및 2016년 4월 14일자 한국 특허 출원 제10-2016-0045345호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 활물질 및 이의 제조방법에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
또한, 환경 문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
종래 전형적인 리튬 이차전지는 음극 활물질로 흑연을 사용하며, 양극의 리튬 이온이 음극으로 삽입되고 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 전극 활물질의 종류에 따라 전지의 이론 용량은 차이가 있으나, 대체로 사이클이 진행됨에 따라 충전 및 방전 용량이 저하되는 문제점이 발생하게 된다.
이러한 현상은 전지의 충전 및 방전이 진행됨에 따라 발생하는 전극의 부피변화에 의해 전극 활물질간 또는 전극 활물질과 집전체 사이가 분리되어 상기 활물질이 그 기능을 다하지 못하게 되는 것에 가장 큰 원인이 있다.
한편, 수계 바인더 및 음극 활물질과 관련된 종래기술로써, 비수 2차 전지용 음극, 비수 2차 전지, 비수 2차 전지용 음극의 제조방법 및 비수 2차 전지를 사용한 전자기기들이 제안되고 있다. 구체적으로, 흑연과, 카본블랙과, 수계 바인더를 포함하는 비수 2차 전지용 음극에 있어서, 상기 카본블랙이, 종횡비가 1.0 이상 5.0 이하이고, 또한 최대 지름이 0.05 ㎛ 이상 10 ㎛ 이하인 입자를 포함하고, 음극의 전극밀도가, 1.50 g/㎤ 내지 1.80 g/㎤인 것을 특징으로 하는 비수 2차 전지용 음극을 제공하며, 이때, 흑연은 인조흑연을 바람직하게 사용할 수 있다고 개시하고 있다.
그러나 상기 방법에 의하면, 고온의 열처리에 의해 제조되어 소수성의 특성을 지닌 인조흑연을 사용하고 있기 때문에, 수계 시스템에서의 분산성이 떨어지므로 활물질과 전극과의 접착력이 좋지 못한 문제점이 있다.
따라서, 전극의 제조 시 전극 활물질간 또는 전극 활물질과 집전체 사이의 분리를 방지하여 전극의 구조적 안정성 및 이로 인한 전지의 성능 향상을 도모할 수 있는 전극 재료의 개발이 요구된다.
선행기술문헌
대한민국 등록특허 제10-1006121호
본 발명의 해결하고자 하는 제1 기술적 과제는 인조흑연의 표면을 친수성으로 개질하여 수계 시스템에서의 분산성을 개선할 수 있는 음극 활물질을 제공하는 것이다.
본 발명의 해결하고자 하는 제2 기술적 과제는, 상기 음극 활물질의 제조방법을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는, 상기 음극 활물질을 포함하는 이차전지용 음극을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는, 상기 음극을 포함하는 이차전지와, 이를 포함하는 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에서는
질소 원자로 표면 개질된 인조흑연을 포함하는 음극 활물질로서,
상기 질소 원자는 인조흑연을 포함하는 음극 활물질의 최외곽에 존재하는 모든 원자의 전체 중량을 기준으로 5 중량% 내지 10 중량%로 포함되는 음극활물질을 제공한다.
또한, 본 발명의 일 실시예에서는
인조흑연에 마일드 산화(mild oxidation) 공정을 통해 산소 함유 기능기를 연결하는 단계(단계 1); 및
상기 단계 1의 산소 함유 기능기가 연결된 인조흑연을 질소 분위기에서 환원하여 질소를 도핑하는 단계(단계 2);를 포함하는 본 발명의 음극 활물질의 제조방법을 제공한다.
또한, 본 발명의 일 실시예에서는 음극 집전체 상에 상기 음극 활물질을 포함하는 음극 활물질 슬러리가 코팅되어 있는 이차전지용 음극을 제공한다.
또한, 본 발명의 일 실시예에서는 상기 음극과, 양극 및 비수 전해액을 포함하는 이차전지와, 이를 포함하는 전지모듈 및 전지팩을 제공한다.
본 발명에 따르면 특정 량의 질소 원소로 표면 개질된 인조흑연으로 이루어진 음극 활물질을 포함함으로써, 수계 시스템에서의 분산성이 향상되고, 바인더와의 친화성이 높아 접착강도가 증가되며, 전지 용량을 높게 유지하는 효과를 구현할 수 있는 이차전지용 음극과 이를 포함하는 이차전지를 제조할 수 있다.
나아가, 본 발명에 따른 음극 활물질은 마일드 산화 공정을 이용한 제조 방법을 통해 인조흑연 표면에 산소 함유 기능기를 10 내지 20 중량% 정도만 연결함으로써, 친수성을 나타낼 수 있으면서도, 본래의 결정성을 유지하여 전기 전도체가 되므로, 우수한 전지 효율을 나타낼 수 있다.
도 1은 실시예 1의 단계 2에서 제조된 질소 원소가 도핑된 인조흑연을 SEM(주사 전자 현미경)으로 관찰한 사진이다.
도 2는 본 발명이 실험예 4에 따른 실시예 1에서 제조된 질소 원소가 도핑된 인조흑연과 비교예 1의 표면 처리되지 않은 인조흑연의 결합 에너지를 측정한 결과 그래프이다.
도 3은 본 발명의 실시예 1의 단계 1의 마일드 산화 공정을 수행한 인조흑연에 대하여 X-선 회절 분석기로 측정한 XRD 그래프이다.
도 4는 본 발명의 실시예 1의 단계 2의 질소 원소가 도핑된 인조흑연에 대하여 X-선 회절 분석기로 측정한 XRD 그래프이다.
도 5는 비교예 1의 표면 처리되지 않은 인조흑연의 XRD 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
인조흑연은 고온의 열처리를 통해 제조되기 때문에, 인조흑연의 표면에 존재하는 산소 함유 기능기가 모두 제거되어 소수성의 특성을 지니고 있다. 그러나 소수성인 인조흑연은 수계 시스템 내에서 점도 변화 및 경시 변화 등과 같은 다양한 문제점이 존재하였다.
이에, 본 발명에서는 인조흑연의 표면을 친수성으로 개질하여, 수계 시스템 내에서 우수한 분산성을 나타내도록 하여 보다 안정한 전극을 제공하고자 한다.
먼저, 본 발명의 일 실시예에 따르면,
질소 원자로 표면 개질된 인조흑연을 포함하는 음극 활물질로서,
상기 질소 원자는 인조흑연을 포함하는 음극 활물질의 최외곽에 존재하는 모든 원자의 전체 중량을 기준으로 5 중량% 내지 10 중량%로 포함되는 음극 활물질을 제공한다.
본 발명에 따른 음극 활물질은 직경 5 내지 20 ㎛ 범위의 인편상의 인조흑연을 사용할 수 있다. 상기 인조흑연은 흑연화 메조카본 마이크로비즈, 흑연화 메조페이스피치계 탄소섬유 및 흑연화 코크스로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 상기 인조흑연이 이에 제한되는 것은 아니다.
상기 인조흑연은 고온의 열처리를 통해 제조되기 때문에, 인조흑연의 표면에 존재하는 산소 함유 기능기가 모두 제거되어 소수성의 특성을 지니고 있다. 이로 인하여, 소수성의 인조흑연은 수계 시스템 내에서 점도 변화 및 경시 변화 등과 같은 다양한 문제점을 야기한다.
본 발명에서는 인조흑연의 표면이 소수성인 문제점을 해결하기 위해, 인조흑연의 표면을 질소로 개질한 음극활물질을 제공한다.
이때, 질소의 함량은 상기 인조흑연을 포함하는 음극 활물질의 최외곽에 존재하는 모든 원자의 중량에 대하여, 5 중량% 내지 10 중량%일 수 있다. 이때, 상기 질소로 개질된 정도(%)는 X선 광전자 분광법(XPS)을 통하여 정량적으로 분석할 수 있다. 또한, 상기 음극활물질의 최외곽의 범위는, 음극활물질의 표면, 즉 중심으로부터 가장 먼 곳에 위치하는 음극활물질 표면으로부터 코어 방향으로 100nm 이내의 두께 범위를 의미한다.
만약, 질소 원소가 5 중량% 미만으로 개질된 경우에는 친수성이 부족하고 수계 분산성이 향상되지 않으며, 산소 함유 기능기가 많이 노출되어 전기화학적으로 불안정한 문제점이 발생할 수 있고, 10 중량% 초과로 도핑된 경우에는 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성 저하의 문제점이 발생할 수 있다.
한편, 인조흑연의 표면은 에너지 배리어가 낮기 때문에 질소로 직접적으로 개질하기 어렵다. 이에, 본 발명에서는 인조흑연 표면을 질소로 일부 개질하기 위해서는 먼저 산소 함유 기능기를 인조흑연의 표면에 연결하여 에너지 배리어를 낮춘 다음, 상기 산소 함유 기능기를 이용하여 질소를 개질하는 방법이 사용될 수 있다.
즉, 인조흑연의 표면은 -CH2 또는 CH3로 되어 있는데, 이 중 1개 이상의 수소가 떨어져 나간 자리가 산소 함유 기능기로 치환됨으로써 인조흑연 표면에 산소 함유 기능기가 연결될 수 있다. 이어서, 산소 함유 기능기가 연결된 인조흑연에 질소를 도핑하여 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부를 질소 원자로 치환함으로써 최종적으로 인조흑연의 표면이 질소 원자로 개질될 수 있다.
상기 산소 함유 기능기는 하이드록시기, 에폭시기, 카르복실기 및 락톨기로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 산소 함유 기능기는 개질된 질소의 함량과 동등한 수준의 함량으로 미리 연결될 수 있다. 구체적으로, 개질된 질소의 함량이 구체적으로 음극 활물질의 최외곽에 존재하는 모든 원자의 전체 중량에 대하여 약 5 내지 10 중량% 정도이기 때문에, 질소 개질되기 전 인조흑연 표면에 연결된 산소 함유 기능기는 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 약 10 내지 20 중량%가 연결되어 포함될 수 있다. 이때, 상기 산소 함유 기능기가 인조흑연의 표면에 연결된 정도(치환율)는 원소 분석기(elemental analyzer)를 통해서 정량적으로 측정할 수 있다.
만약, 상기 산소 함유 기능기가 10 중량% 미만으로 연결된 경우에는 후속 공정에서 연결되는 질소의 양이 적기 때문에 인조흑연이 친수성을 제대로 나타낼 수 없다는 문제점이 있고, 20 중량%를 초과하여 연결된 경우에는 너무 많은 양의 산화가 일어나므로 후속 공정에서 모두 환원되기가 어렵고, 인조흑연의 (002)면이 커져 흑연 층이 분리되므로 용량이 작아지거나, 구조가 단단하지 못하여 배터리용으로는 부족한 문제점이 있다.
상기 산소 함유 기능기는 마일드 산화 공정에 의해 인조흑연 표면에 연결될 수 있으며, 이 공정은 하기 음극 활물질의 제조방법에서 상세히 설명하였다.
한편, 상기 산소 함유 기능기는 질소 개질 후에는 음극 활물질 내 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여 약 5 내지 15 중량%로 결합될 수 있다.
이는, 최초에 연결된 10 내지 20 중량%의 산소 함유 기능기 중에서 25 내지 50 중량%의 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부가 질소 원자로 치환되고, 나머지 질소 원자로 치환되지 못한 산소 함유 기능기의 함량을 의미하는 것이다.
보다 구체적으로, 본 발명의 일 실시예에서는
질소 원자로 표면 개질된 인조흑연을 포함하는 음극 활물질로서,
상기 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트 전체 중량을 기준으로,
5 내지 10 중량%는 질소 원자 또는 일부가 질소 원자로 치환된 산소 함유 기능기, 5 내지 15 중량%는 산소 함유 기능기, 및 80 내지 90 중량%는 수소 원자가 결합된 음극 활물질을 제공할 수 있다.
전술한 바와 같이, 본 발명에서는 음극 활물질로 사용되는 인조흑연의 표면은 에너지 배리어가 낮아 직접적으로 질소로 개질하는 것이 어렵다. 따라서, 인조흑연의 표면을 친수성으로 개질하기 위해서는, 인조흑연의 표면 일부를 산소 함유 기능기로 치환하여 에너지 배리어를 낮춘 후, 그 산소 함유 기능기를 이용하여 질소 원자를 연결해야 한다.
구체적으로, 인조흑연의 표면은 -CH2 또는 CH3로 되어 있는데, 이 중 1개 이상의 수소가 떨어져 나간 자리가 산소 함유 기능기로 치환됨으로써 인조흑연의 표면에 산소 함유 기능기가 연결될 수 있다. 산소 함유 기능기가 연결된 인조흑연에 질소를 도핑함으로써 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부가 질소 원자로 치환되고, 최종적으로 인조흑연의 최외곽이 질소 원자로 개질될 수 있다.
이때, 상기 질소 원자 또는 일부가 질소 원자로 치환된 산소 함유 기능기의 함량은 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 5 내지 10 중량%일 수 있다. 상기 일부가 질소 원자로 치환된 산소 함유 기능기는 결국 질소 원자가 음극 활물질의 최외곽에 존재하므로, 친수성을 나타낼 수 있게 한다.
만약, 질소 원소 또는 질소 치환된 산소 함유 기능기의 함량이 5 중량% 미만인 경우에는 친수성이 부족하고 수계 분산성이 향상되지 않으며, 산소 함유 기능기가 많이 노출되어 전기화학적으로 불안정한 문제점이 발생할 수 있다. 반면에, 질소 원소 또는 질소 치환된 산소 함유 기능기의 함량이 10 중량%를 초과하는 경우에는 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성 저하의 문제점이 발생할 수 있다.
또한, 상기 개질된 질소의 함량이 구체적으로 음극 활물질의 최외곽에 존재하는 모든 원자에 대하여 5 내지 10 중량% 정도이기 때문에, 산소 함유 기능기 또한 이와 동등한 수준인 10 내지 20 중량%로 연결될 수 있으며, 상기 연결된 산소 함유 기능기 중 25 내지 50 중량%의 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부가 질소로 치환되면서, 질소로 치환되지 못하여 음극 활물질의 표면에 존재하는 나머지 산소 함유 기능기의 함량은 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 5 내지 15 중량%일 수 있다.
만약, 5 중량% 미만의 산소 함유 기능기가 음극 활물질의 표면에 존재하는 경우에는, 과량의 질소 원자가 음극 활물질의 표면에 존재하기 때문에 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성 저하의 문제점이 발생할 수 있고, 15 중량% 초과의 산소 함유 기능기가 음극 활물질의 표면에 존재하는 경우에는, 질소 원자가 적게 표면에 도핑된 경우이므로 음극 활물질이 친수성을 나타내지 못하는 문제점이 있고, 과량의 산소 함유 기능기 연결로 인해 인조흑연의 면이 분리되거나 면간거리가 증가하여 결정성이 떨어지는 문제점이 발생할 수 있다.
한편, 상기한 바와 같이, 인조흑연의 표면은 -CH2 또는 CH3로 되어 있기 때문에, 산소 함유 기능기 및 질소가 연결되지 않은 음극 활물질의 최외곽에는 수소 원자가 존재한다. 따라서, 본 발명의 음극 활물질은, 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 80 내지 90 중량%는 수소 원자가 결합된 것일 수 있다.
만약, 80 중량% 미만의 수소 원자가 결합되는 경우, 과량의 산소 함유 기능기나 질소 원자가 음극 활물질의 표면에 존재하기 때문에 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성이 저하되거나 활물질의 전기적 특성이 떨어지는 문제점이 발생할 수 있고, 90 중량% 초과의 수소 원자가 결합되는 경우, 질소 원자가 표면에 적게 도핑된 경우이므로 음극 활물질이 친수성을 나타내지 못하는 문제점이 발생할 수 있다.
또한, 상기 질소 개질된 본 발명의 일 실시예에 따른 음극 활물질의 탄소 육각망면의 면간거리(d002)는 0.3350 내지 0.3400 nm일 수 있다. 본 발명의 음극활물질은 인조흑연의 표면 일부분에만 산소 함유 기능기가 연결되어 있으므로, 과량의 산소 함유 기능기 연결로 인해 인조흑연의 면이 분리되거나 면간거리가 증가하여 결정성이 떨어지는 문제점을 해결할 수 있고, 인조흑연 본래의 결정성을 유지하면서도 친수성을 나타내는 효과를 구현할 수 있다.
종래 강한 산화 공정에 의해 면이 분리된 인조흑연이나, 또는 결정성이 떨어진 그라파이트 옥사이드(graphite oxide)는 전기적 부도체 성질을 가진다. 하지만, 본 발명과 같은 마일드 산화 공정을 실시하는 경우 전기 전도체로 물성이 변형될 수 있다.
만약, 마일드 산화 공정을 거치지 않은 전기적 부도체 성질을 가지는 인조흑연이나 또는 그라파이트 옥사이드를 포함하는 음극 활물질을 이용한 전지의 경우, 산화/환원 반응을 일으키기 위해서는 전자의 이동만큼 리튬 이온의 이동이 일어나는데 전기적 저항이 크고, 따라서 반응의 속도가 느려진다. 따라서, 원활한 전지의 구동을 위해서는 과량의 도전재 등을 첨가해야 하기 때문에, 전지의 에너지 밀도가 감소하고, 초기효율 및 접착 강도 또한 감소되는 문제점이 있다.
또한, 본 발명의 일 실시예에서는
인조흑연에 마일드 산화(mild oxidation) 공정을 통해 산소 함유 기능기를 연결하는 단계(단계 1); 및
상기 단계 1의 산소 함유 기능기가 연결된 인조흑연을 질소 분위기에서 환원하여 질소를 도핑하는 단계(단계 2);를 포함하는 음극 활물질의 제조방법을 제공한다.
이하, 본 발명에 따른 음극 활물질의 제조방법을 각 단계별로 상세히 설명한다.
본 발명에 따른 음극 활물질의 제조방법에 있어서, (단계 1)은 인조흑연에 질소 도핑을 수행하기 전에 먼저 마일드 산화(mild oxidation) 공정을 실시하여 인조흑연 표면에 산소 함유 기능기를 연결하는 단계이다.
상기 (단계 1)의 인조흑연은 흑연화 메조카본 마이크로비즈, 흑연화 메조페이스피치계 탄소섬유 및 흑연화 코크스로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 상기 인조흑연이 이에 제한되는 것은 아니다. 상기 인조흑연의 표면은 에너지 배리어가 낮아 직접적으로 질소를 도핑하기 어렵기 때문에, 먼저 인조흑연의 표면에 산소 함유 기능기를 연결하여 에너지 배리어를 낮춘 후, 질소를 도핑할 수 있다.
이때, 상기 (단계 1)의 마일드 산화란, 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 10 내지 20 중량%의 치환율로 산소 함유 기능기를 연결하는 것을 의미한다. 즉, 인조흑연의 표면은 -CH2 또는 CH3로 되어있고, 이 중 1개 이상의 수소가 떨어져 나간 자리에 산소 함유 기능기가 연결됨으로써 인조흑연의 표면이 산화될 수 있다.
만약, 상기 (단계 1)의 산소 함유 기능기가 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 10 중량% 미만의 치환율로 연결된 경우에는 후속 공정에서 연결되는 질소의 양이 적기 때문에 인조흑연이 친수성을 제대로 나타낼 수 없는 문제점이 있고, 20 중량% 초과의 치환율로 연결된 경우에는 너무 많은 양의 산화가 일어나므로 후속 공정에서 모두 환원되기가 어렵고, 인조흑연의 (002)면이 커져 흑연 층이 분리되므로 용량이 작아지거나, 구조가 단단하지 못하여 배터리용으로는 부족한 문제점이 있다.
이때, 상기 산소 함유 기능기가 인조흑연의 표면에 연결된 정도를 나타내는 치환율은 원소 분석기(elemental analyzer)를 통해서 정량적으로 측정할 수 있다.
상기 (단계 1)의 마일드 산화 공정은 인조흑연을 500 내지 600℃의 공기 분위기에서 1시간 내지 1시간 반 동안 열처리하거나, 인조흑연을 산 용액에 4 내지 6 시간 동안 침지한 후, 건조하여 실시할 수 있다.
이때, 상기 산 용액은 30 내지 50 중량% 농도의 50 내지 70℃의 질산 용액이고, 상기 건조는 250 내지 300℃의 진공 상태에서 수행되는 것이 바람직하다.
상기 산소 함유 기능기는 제한된 열처리 시간 또는 산 용액의 침지 시간에 의하여 그 함량을 조절할 수 있다. 즉, 본 발명의 방법에서는 상기와 같은 시간 조건하에서 열처리 또는 침지하여야만 산소 함유 기능기를 함량을 10 내지 20 중량% 내로 조절할 수 있다.
만약, 상기 열처리 시간 또는 산 용액에 침지 시간이 상기 시간 미만으로 실시하는 경우, 산소 함유 기능기 함량이 작아지고, 이에 따라 질소 원소 함량이 낮아져 수계 분산성이 향상되지 않고, 상기 시간을 초과하는 경우 산소 함유 기능기 함량이 증가하고, 따라서 질소 원소 함량이 증가하기 때문에 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성 저하의 문제점이 발생할 수 있다.
상기 (단계 1)의 산소 함유 기능기는 하이드록시기, 에폭시기, 카르복실기 및 락톨기로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 상기 산소 함유 기능기가 이에 제한되는 것은 아니다.
또한, 본 발명에 따른 음극 활물질의 제조방법에 있어서, (단계 2)는 상기 (단계 1)의 산소 함유 기능기가 연결된 인조흑연을 질소 분위기에서 환원하여 질소를 도핑하는 단계이다.
상기 (단계 2)는 (단계 1)에 의해 인조흑연에 연결된 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부를 질소 원소로 치환하는 단계이다. 인조흑연의 표면에 산소 함유 기능기만 부착되어 있다 하더라도 인조흑연이 친수성을 나타낼 수는 있지만, 산소 함유 기능기 만으로는 이차전지에서 요구하는 전기화학적 특성을 만족하지 못하다. 따라서, 이를 극복하기 위해, (단계 2)를 통해 비공유 전자쌍 2개가 존재하는 질소 원소로 인조흑연의 표면을 도핑함으로써, 전기화학적 특성이 우수할 뿐만 아니라 친수성 표면을 갖는 인조흑연을 제조할 수 있다.
상기 (단계 2)는 히드라진(N2H2), 암모니아(NH3) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종의 가스와 수소 가스를 혼합한 가스 분위기하에서 실시할 수 있다. 구체적으로, 상기 (단계 2)는 히드라진 또는 암모니아 가스와 수소 가스를 3:7로 혼합한 질소 가스 분위기하에서 환원시킴으로써, 인조흑연의 표면에 연결된 산소 함유 기능기 자체 또는 산소 함유 기능기의 일부를 질소 원소로 치환할 수 있다.
이때, 상기 (단계 2)는 800 내지 1000℃의 온도 조건하에서 수행될 수 있다. 구체적으로, 본 발명의 방법에서는 약 5시간에 걸쳐 800 내지 1000℃의 온도까지 승온한 다음, 약 2시간 동안 반응시키고, 이어서 12시간 동안 온도를 낮추는 조건으로 실시된다.
상기 질소 도핑 양은 제한된 가스 조성과 상기 온도 범위 및 상기 승온 시간 및 반응 시간에 의하여 그 함량을 조절할 수 있다.
만약, 상기 온도 범위와 상기 승온 및 반응 시간이 상기 범위 미만인 경우 이, 예컨대 800℃ 미만의 온도에서 또는 2시간 미만으로 반응이 수행되는 경우에는 미반응된 잔여 산소 함유 기능기가 잔류하는 문제점이 발생할 수 있다. 또한, 1000℃ 초과의 온도에서 또는 2시간을 초과하여 반응이 수행되는 경우에는 질소 반응 량이 증가하기 때문에 전해액과의 부반응성이 증가하여 전지의 초기효율과 용량저하 및 수명특성 저하의 되고, 더불어 질소 도핑된 부분이 손상되는 문제점이 발생할 수 있다.
또한, 본 발명의 다른 일 실시예에서는 음극 집전체 상에 상기 음극 활물질을 포함하는 음극 활물질 슬러리가 도포되어 있는 음극을 제공한다.
구체적으로, 상기 음극은 본 발명의 음극 활물질을 포함하는 음극 활물질 슬러리를 음극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 또는 카본, 니켈, 티탄, 또는 은 등으로 표면 처리한 알루미늄이나 스테인리스 스틸 등이 사용될 수 있다.
상기 음극 활물질 슬러리는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로 바인더를 추가로 포함할 수 있다. 상기 바인더는 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, SBR(styrene-butadiene rubber), 불소 고무, 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.
경우에 따라서, 상기 음극 활물질 슬러리는 도전재를 추가로 포함할 수 있다. 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 써멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 본 발명에 따른 음극 활물질은 질소 원소가 도핑되어 친수성을 띠므로, 물, 알코올 등의 수계 용매를 사용하여 전극을 제조하는 수계 시스템에서 더욱 높은 분산성을 나타낼 수 있다. 또한, 활물질과 수계 바인더와의 친화성 증가로 전극의 접착강도가 향상되어 전기전도도가 우수하고 장기간의 사용에도 안정한 이차전지를 제공할 수 있다. 나아가, 인조흑연을 질소 원소를 사용하여 친수성으로 개질하기 때문에 전기화학적으로 안정하며, 마일드 신화 공정으로 인조흑연의 면간거리를 유지하여 인조흑연의 용량을 유지할 수 있기 때문에 이를 포함하는 이차전지는 우수한 전지 특성을 나타낼 수 있다.
또한, 본 발명의 다른 일 실시예에서는
상기 음극과, 양극, 상기 양극과 분리막 사이에 개재된 분리막 및 비수 전해액을 포함하는 이차전지를 제공한다.
상기 양극은 양극 활물질을 포함하는 양극 활물질 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다
상기 양극 활물질은 특별히 한정되지 않지만, 구체적으로 리튬 전이금속 산화물을 사용할 수 있다. 상기 리튬 전이금속 산화물로는, 예를 들면, LiCoO2 등의 LiㆍCo계 복합 산화물, LiNixCoyMnzO2 등의 LiㆍNiㆍCoㆍMn계 복합 산화물, LiNiO2 등의 LiㆍNi계 복합 산화물, LiMn2O4 등의 LiㆍMn계 복합 산화물 등을 들 수 있고, 이들을 단독 또는 복수 개 혼합하여 사용할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 또는 카본, 니켈, 티탄, 또는 은 등으로 표면 처리한 알루미늄이나 스테인리스 스틸 등이 사용될 수 있다.
상기 양극 활물질 슬러리는 바인더를 추가로 포함할 수 있다. 상기 바인더는 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, SBR(styrene-butadiene rubber), 불소 고무, 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.
경우에 따라서, 상기 양극 활물질 슬러리는 음극 활물질 슬러리에 사용되는 것과 동일하거나, 상이한 도전재를 추가로 포함할 수도 있다.
본 발명의 이차전지에 있어서, 상기 비수 전해액은 전해액과 금속염으로 이루어질 수 있으며, 상기 전해액으로는 비수계 유기용매 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다. 상기 전지 모듈 및 전지팩은 안정하면서도 우수한 전지특성을 나타내는 상기 이차전지를 포함하므로, 파워 툴(Power Tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차, 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1. 질소 도핑된 인조흑연을 포함하는 음극의 제조
단계 1: 5 내지 20 ㎛ 범위의 직경을 갖는 인편상의 인조흑연(제품명: BTR사 S360 )을 튜브 로 내에서 550℃의 공기 분위기로 열처리하는 마일드 산화 공정을 통해 산소 함유 기능기를 부착하였다.
단계 2: 상기 산소 함유 기능기가 부착된 인조흑연을 800℃의 히드라진(N2H2) 가스와 수소 가스를 3:7로 혼합한 질소 가스 분위기하에서 24 시간 동안 환원하는 공정을 통해 인조흑연의 표면에 질소 원소를 도핑하였다.
단계 3: 상기 질소 원소가 도핑된 인조흑연 96 g, 수계 바인더인 CMC 1 g, SBR 2 g, 도전재인 아세틸렌블랙 1 g, 용매인 물 220 g과 혼합하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 구리 집전체에 도포한 후, 130℃의 진공오븐에서 건조하고 압연하여 음극을 제조하였다.
비교예 1. 인조흑연
단계 1: 표면 개질하지 않은 일반적인 인조흑연 96 g, 수계 바인더인 CMC 1 g, SBR 2 g, 도전재인 아세틸렌블랙 1 g, 용매인 물 220 g과 혼합하여 음극 활물질 슬러리를 제조하였다. 상기 음극합제를 구리 집전체에 도포한 후, 130℃의 진공오븐에서 건조하고 압연하여 음극을 제조하였다.
실험예
실험예 1.
상기 실시예 1의 (단계 2)에서 제조된 질소 원소가 도핑된 인조흑연을 SEM(주사 전자 현미경)으로 관찰한 후, 그 결과를 도 1에 도시하였다.
도 1에 나타낸 바와 같이, 인조흑연은 5 내지 20 ㎛ 범위의 직경을 갖는 인편상의 형태임을 확인할 수 있고, 형태가 부서짐 없이 안정하게 유지됨을 알 수 있다.
이를 통해, 인조흑연이 마일드 산화 공정 및 질소 도핑 공정 수행 후에도 안정한 음극 활물질로 역할을 수행할 수 있음을 알 수 있다.
실험예 2.
상기 실시예 1의 단계 1에서 마일드 산화 공정을 수행한 인조흑연의 최외곽 표면에서 산소 함량을 원소 분석기(Elemental analyzer)를 통해 측정하고 그 결과를 표 1에 나타내었다.
산소 함량
실시예 1의 (단계 1)의 마일드 산화 공정을 수행한 인조흑연 9 ~10 중량%
상기 표 1을 살펴보면, 인조흑연의 최외곽 표면에 대하여 9 내지 10 중량%의 치환율로 산소 함유 기능기가 연결된 것을 알 수 있다.
실험예 3.
엑스레이 광전자 분광기 (XPS, X-ray Photoelectron Spectroscopy)를 이용하여 상기 실시예 1의 (단계 2)의 질소 원소가 도핑된 인조흑연과, 비교예 1의 표면 개질하지 않은 인조흑연의 결합에너지를 측정하고, 그 결과를 도 2에 나타내었다.
도 2를 살펴보면, 상기 비교예 1의 인조흑연의 경우 392 eV 내지 408 eV 에너지 범위에서 전체적으로 고른 세기 분포를 나타내는 반면, 실시예 1의 질소 원소가 도핑된 인조흑연의 경우에는 396 eV에서 결합 에너지의 세기가 증가하기 시작하여 404 eV에서 다시 줄어드는 것을 확인할 수 있다.
이를 통해, 마일드 산화 공정을 통해 인조흑연 표면의 일부에 산소 함유 기능기가 연결되었으며, 그러한 산소 함유 기능기의 일부 또는 전부가 질소로 치환됨으로써 질소가 인조흑연의 표면에 일정량 도핑되었음을 확인할 수 있다.
또한, 상기 도 2의 결합에너지 그래프로부터, 280 내지 292 eV 사이에서 나타나는 탄소의 피크 면적과, 396 eV 내지 404 eV에서 나타나는 질소의 피크 면적의 비율을 통하여 질소 원소 도핑 농도를 산출한 결과, 인조흑연 표면에는 약 7.21 atom%의 질소 원소가 도핑된 것을 알 수 있었다.
실험예 4.
상기 비교예 1의 표면 개질되지 않은 인조흑연, 실시예 1의 단계 1의 마일드 산화 공정을 수행한 인조흑연, 단계 2의 질소 원소가 도핑된 인조흑연의 면간거리(d002)를 X-선 회절 분석기를 이용하여 측정한 후, 그 결과를 도 3 내지 5와 하기 표 2에 도시하였다.
면간거리(d002)
비교예 1(표면 개질되지 않은 인조흑연) 0.3372 nm
실시예 1의 단계 1(마일드 산화 공정을 수행한 인조흑연) 0.3385 nm
실시예 1의 단계 2(질소 원소 도핑을 수행한 인조흑연) 0.3377 nm
도 3 내지 5 및 표 2에 나타낸 바와 같이, 표면 개질되지 않은 비교예 1의 인조흑연의 면간거리는 0.3372 nm (도 5 참조), 실시예 1에서 (단계 1)의 마일드 산화 공정을 수행한 인조흑연의 면간거리는 0.3385 nm (도 3 참조), (단계 2)의 질소 원소 도핑이 더욱 수행된 인조흑연의 면간거리는 0.3377 nm로 나타났다 (도 4 참조).
즉, 마일드 산화 공정 수행 후, 인조흑연의 면간거리는 약 마일드 산화 공정 전과 비교하여 0.38 % 증가하였다가, 질소 원소를 도핑한 다음 다시 0.23 % 감소한 것을 알 수 있다. 이와 같이, 본 발명의 방법에 따라 표면 개질된 도 4의 인조흑연은 표면 개질되지 않은 도 5의 비교예 1의 인조흑연에 비해 약 0.1 %의 면간거리 차이를 갖는 인조흑연이 제조됨을 알 수 있다.
따라서, 인조흑연에 마일드 산화 공정 및 질소 원소 도핑을 통해 인조흑연의 구조에 큰 변화 없이 친수성 처리를 할 수 있음을 알 수 있다.
실험예 5.
상기 실시예 1 및 비교예 1에서 제조된 인조흑연의 분산성을 알아보기 위해, 상기 실시예 1의 단계 3에서 제조된 음극 활물질 슬러리 및 상기 비교예 1에서 제조된 음극 활물질 슬러리를 7 일간 상온에서 보관한 후, 상등액을 추출하고 용매를 증발시킨 후 남은 무게를 측정하고, 그 결과를 표 3에 도시하였다.
고체 질량(g)
실시예 1 1.3
비교예 1 0.6
상기 표 3에 도시한 바와 같이, 실시예 1의 질소 원소를 도핑한 인조흑연을 포함하는 음극 활물질 슬러리의 경우 약 1.3g이 고체가 남은 반면, 비교예 1의 표면 개질되지 않은 인조흑연이 포함된 음극 활물질 슬러리의 경우 약 0.6g의 고체가 남았다. 즉, 실시예 1의 음극 활물질 슬러리가 비교예 1의 음극 활물질 슬러리에 비해 고체 함량이 2 배 가량 많은 것을 알 수 있다.
이를 통해, 비교예 1과 같이 표면 개질되지 않은 인조흑연은 분산성이 떨어지기 때문에, 인조흑연이 용매 내에 고루 분산되지 못하고 하등액으로 가라앉아 있어, 상등액을 증발시켜도 남아 있는 고체의 무게가 적은 반면, 실시예 1과 같이 질소가 도핑된 인조흑연은 친수성이 향상되어 수계 시스템에서의 분산성이 뛰어나기 때문에, 용매 내의 상등액 및 하등액 모두에 고루 분산되므로 상등액을 증발시킨 후에도 많은 양이 남아있다는 것을 예측할 수 있다.
실험예 6.
상기 실시예 1 및 비교예 1에서 제조된 음극의 접착강도를 측정하였다. 이때, 접착력 측정은 180 o 벗김 테스트(peel test)로 진행하였다. 그 결과를 하기 표 4에 나타내었다.
접착력(gf/15 mm)
실시예 1 30
비교예 1 13
상기 표 4에 나타낸 바와 같이, 본 발명의 실시예 1의 음극의 접착력은 30 gf/15 mm 로, 표면 개질하지 않은 인조흑연을 사용한 비교예 1의 음극 (13 gf/15 mm )에 비해 2.3 배 우수한 접착력을 가지는 것을 알 수 있다.
이를 통해, 본 발명의 질소가 도핑된 인조흑연을 포함하는 음극 활물질의 분산성이 우수하기 때문에, 이를 포함하는 전극의 접착강도가 우수하고 나아가, 전기전도도가 높고 장기간의 사용에도 안정한 이차전지를 제공할 수 있음을 예측할 알 수 있다.

Claims (23)

  1. 질소 원자로 표면 개질된 인조흑연을 포함하는 음극 활물질로서,
    상기 질소 원자는 인조흑연을 포함하는 음극 활물질의 최외곽에 존재하는 모든 원자의 전체 중량을 기준으로 5 중량% 내지 10 중량%로 포함되는 것인 음극 활물질.
  2. 청구항 1에 있어서,
    상기 인조흑연은 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 5 중량% 내지 15 중량%가 산소 함유 기능기가 결합된 것인 음극 활물질.
  3. 청구항 2에 있어서,
    상기 산소 함유 기능기는 하이드록시기, 에폭시기, 카르복실기 및 락톨기로 이루어진 군으로부터 선택된 1종 이상인 것인 음극 활물질의 제조방법.
  4. 청구항 1에 있어서,
    상기 음극 활물질의 탄소 육각망면의 면간거리(d002)는 0.3350 nm 내지 0.3400 nm인 것인 음극 활물질.
  5. 질소 원자로 표면 개질된 인조흑연을 포함하는 음극 활물질로서,
    상기 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트 전체 중량을 기준으로,
    5 중량% 내지 10 중량%의 질소 원자 또는 일부가 질소 원자로 치환된 산소 함유 기능기,
    5 중량% 내지 15 중량%의 산소 함유 기능기, 및
    80 중량% 내지 90 중량%의 수소 원자가 결합된 음극 활물질.
  6. 인조흑연에 마일드 산화(mild oxidation) 공정을 통해 산소 함유 기능기를 연결하는 단계(단계 1); 및
    상기 단계 1의 산소 함유 기능기가 연결된 인조흑연을 질소 분위기에서 환원하여 질소를 도핑하는 단계(단계 2);를 포함하는 청구항 1의 음극 활물질의 제조방법.
  7. 청구항 6에 있어서,
    상기 단계 1에서 인조흑연은 흑연화 메조카본 마이크로비즈, 흑연화 메조페이스피치계 탄소섬유 및 흑연화 코크스로 이루어진 군에서 선택된 1종 이상인 것인 음극 활물질의 제조방법.
  8. 청구항 6에 있어서,
    상기 단계 1의 마일드 산화 공정은 500℃ 내지 600℃의 공기 분위기에서 열처리함으로써 수행되는 것인 음극 활물질의 제조방법.
  9. 청구항 8에 있어서,
    상기 마일드 산화 공정은 1시간 내지 1시간 반 동안 수행되는 것인 음극 활물질의 제조방법.
  10. 청구항 6에 있어서,
    상기 단계 1의 마일드 산화 공정은 인조흑연을 산 용액에 4 내지 6 시간 동안 침지한 후, 건조함으로써 수행되는 것인 음극 활물질의 제조방법.
  11. 청구항 10에 있어서,
    상기 산 용액은 30 중량% 내지 50 중량% 농도의 50℃ 내지 70℃의 질산 용액을 이용하는 것인 음극 활물질의 제조방법.
  12. 청구항 10에 있어서,
    상기 건조는 250℃ 내지 300℃의 진공 상태에서 수행되는 것인 음극 활물질의 제조방법.
  13. 청구항 6에 있어서,
    상기 단계 1의 산소 함유 기능기는 하이드록시기, 에폭시기, 카르복실기 및 락톨기로 이루어진 군으로부터 선택된 1종 이상인 것인 음극 활물질의 제조방법.
  14. 청구항 6에 있어서,
    상기 단계 1의 산소 함유 기능기는 상기 인조흑연의 최외곽 탄소 원자의 공유결합 가능한 사이트에 대하여, 10 내지 20 중량%의 치환율로 결합하는 것인 음극 활물질의 제조방법.
  15. 청구항 6에 있어서,
    상기 단계 2의 질소 도핑은 히드라진(N2H2), 암모니아(NH3) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종의 가스와 수소 가스를 혼합한 질소 가스 분위기하에서 수행되는 것인 음극 활물질의 제조방법.
  16. 청구항 15에 있어서,
    상기 단계 2의 질소 도핑은 히드라진 또는 암모니아 가스와 수소 가스를 3:7로 혼합한 질소 가스 분위기 하에서 수행되는 것인 음극 활물질의 제조방법.
  17. 청구항 15에 있어서,
    상기 단계 2의 질소 도핑은 800℃ 내지 1000℃의 온도에서 수행되는 것인 음극 활물질의 제조방법.
  18. 음극 집전체 상에 청구항 1의 음극 활물질을 포함하는 음극 활물질 슬러리가 코팅되어 있는 이차전지용 음극.
  19. 청구항 18에 있어서,
    상기 음극 활물질 슬러리는 바인더를 추가로 포함하는 것인 이차전지용 음극.
  20. 청구항 19에 있어서,
    상기 바인더는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, SBR(styrene-butadiene rubber), 및 불소 고무로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 혼합물인 것인 이차전지용 음극.
  21. 음극, 양극, 상기 음극과 양극 사이에 개질된 분리막, 및 비수 전해액으로 포함하며, 상기 음극은 청구항 18의 이차전지용 음극을 포함하는 이차전지.
  22. 청구항 21의 이차전지를 단위 셀로 포함하는 전지모듈.
  23. 청구항 22의 전지모듈을 포함하며, 중대형 디바이스의 전원으로 사용되는 전지팩.
PCT/KR2016/003926 2015-04-15 2016-04-15 음극 활물질 및 이의 제조방법 WO2016167591A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/558,631 US11152621B2 (en) 2015-04-15 2016-04-15 Negative electrode active material and method of preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0053330 2015-04-15
KR20150053330 2015-04-15
KR10-2016-0045345 2016-04-14
KR1020160045345A KR101913902B1 (ko) 2015-04-15 2016-04-14 음극 활물질 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2016167591A1 true WO2016167591A1 (ko) 2016-10-20

Family

ID=57126719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003926 WO2016167591A1 (ko) 2015-04-15 2016-04-15 음극 활물질 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2016167591A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108249923A (zh) * 2017-12-22 2018-07-06 中国平煤神马集团开封炭素有限公司 一种石墨电极接头糊料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034975A (zh) * 2010-11-15 2011-04-27 中国科学院青岛生物能源与过程研究所 用作锂离子电池负极材料的氮掺杂石墨碳及制法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034975A (zh) * 2010-11-15 2011-04-27 中国科学院青岛生物能源与过程研究所 用作锂离子电池负极材料的氮掺杂石墨碳及制法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, T. ET AL.: "Porous Nitrogen-doped Carbon Microspheres as Anode Materials for Lithium Ion Batteries", DALTON TRANSACTIONS, vol. 43, no. 40, 2014, pages 14931 - 14935, XP055322121 *
LONG, D. ET AL.: "Preparation of Nitrogen-doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Grapheme Oxide", LANGMUIR, vol. 26, no. 20, 2010, pages 16096 - 16102, XP055187760 *
WU, Y. P. ET AL.: "Anode Materials for Lithium Ion Batteries Obtained by Mild and Uniformly Controlled Oxidation of Natural Graphite", JOURNAL OF SOLID STATE ELECTROCHEMISTRY, vol. 8, no. 1, 2003, pages 73 - 78, XP055322116 *
ZHENG, F. ET AL.: "High Lithium Anodic Performance of Highly Nitrogen-doped Porous Carbon Prepared from a Metal-organic Framework", NATURE COMMUNICATIONS, vol. 5, 2014, pages 1 - 10, XP055322120 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108249923A (zh) * 2017-12-22 2018-07-06 中国平煤神马集团开封炭素有限公司 一种石墨电极接头糊料及其制备方法

Similar Documents

Publication Publication Date Title
WO2017099456A1 (ko) 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2017164702A1 (ko) 음극 및 이의 제조방법
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2020262890A1 (ko) 음극 및 이를 포함하는 이차전지
WO2016072649A1 (ko) 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지
WO2021145633A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019168352A1 (ko) 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
WO2019156462A1 (ko) 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019066129A2 (ko) 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지
WO2019147093A1 (ko) 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020231150A1 (ko) 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2022060205A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2016167591A1 (ko) 음극 활물질 및 이의 제조방법
WO2016175539A1 (ko) 음극 활물질 및 이를 포함하는 음극
WO2020060084A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15558631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780314

Country of ref document: EP

Kind code of ref document: A1