WO2016167415A1 - 충진성이 우수한 고무 조성물 - Google Patents

충진성이 우수한 고무 조성물 Download PDF

Info

Publication number
WO2016167415A1
WO2016167415A1 PCT/KR2015/007971 KR2015007971W WO2016167415A1 WO 2016167415 A1 WO2016167415 A1 WO 2016167415A1 KR 2015007971 W KR2015007971 W KR 2015007971W WO 2016167415 A1 WO2016167415 A1 WO 2016167415A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber composition
rubber
ethylene
parts
Prior art date
Application number
PCT/KR2015/007971
Other languages
English (en)
French (fr)
Inventor
이동권
이문석
Original Assignee
주식회사 나라켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150054172A external-priority patent/KR101712356B1/ko
Priority claimed from KR1020150080928A external-priority patent/KR101667564B1/ko
Application filed by 주식회사 나라켐 filed Critical 주식회사 나라켐
Publication of WO2016167415A1 publication Critical patent/WO2016167415A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/064VLDPE

Definitions

  • the present invention is a rubber composition for removing contaminants remaining in a mold in the process of continuously molding the thermosetting resin, and imparting releasability to the mold after removal, in detail, the mobility in the mold of the rubber composition by a combination of specific components It is related with the rubber composition which improves (mobility) and is excellent in filling property.
  • the mold used to form the product by using the thermosetting resin as a raw material is compressed and heated to form a carbonized residue of the contaminants introduced during the work process, which acts as a contaminant during the subsequent work process. Not only does it cause some defects in the molding, but it also causes the quality of the product to deteriorate in the continuous molding process. Therefore, after a certain period of time or after a certain number of molding operations to remove the contaminants remaining in the mold (so-called "cleaning operation”) should be made.
  • U.S. Patent No. 3,476,599 proposes a thermosetting resin composition for mold cleaning, which uses a thermosetting resin as a base and adds an amino alcohol compound having an amino group and a hydroxyl group as a cleaning agent.
  • the amino group of the aminoalcohol-based compound which is a cleaning agent, is decomposed to generate an amine-based gas during curing of the sheet for cleaning, there is a problem of odor and smoke generation.
  • a rubber composition for mold cleaning using an uncrosslinked rubber including butadiene rubber (BR) and ethylene-propylene diene monomer rubber (EPDM) and using an imidazole compound or imidazoline compound as a cleaning agent is proposed.
  • the above problems have been solved to some extent, the odor due to decomposition of the curing agent (mainly organic peroxide) used for the crosslinking of the uncrosslinked rubber occurs badly, and thus the problem is not solved fundamentally. It is limited only to the sol-based or imidazoline-based compounds, and there is a limit in increasing the cleaning power.
  • release operation in addition to the cleaning operation, in order to facilitate the desorption of the thermosetting resin according to the repetitive operation, an operation for imparting mold release property to the mold (so-called “release operation") is essential.
  • the release operation directly affects the quality of the semiconductor device.
  • the release property imparted to the mold surface does not reach a certain level, it is difficult to repair not only the entire product but also many repairs. Since time is required, research has been conducted to maintain this for a long time while giving mold release property.
  • an uncrosslinked rubber including butadiene rubber (BR) and ethylene-propylene diene monomer rubber (EPDM) is used as the substrate, and instead of the cleaning agent, coating components, inorganic fillers,
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • a mold coating method by eluting a coating component (wax and additive) according to rubber curing through a rubber composition for mold coating further comprising a curing agent and the like.
  • FIG. 1 is a schematic diagram showing a release rubber mechanism and non-fill property of a conventional rubber composition
  • FIG. 2 is a photo showing a crosslinked rubber demolded from a mold in the process of FIG. 1.
  • 3 is a schematic diagram showing a process of manufacturing an EMC product through a mold coated through the process of FIG. 1 and a defect of the EMC product due to non-pilliness.
  • the release rubber composition 120 including the uncrosslinked rubber 121 and the coating component 122 is disposed in the mold 110, and then cured at a temperature of about 175 to 180 ° C.
  • the crosslinking reaction is performed and the crosslinked rubber 130 is removed, the mold 110 is coated with the coating component 122.
  • the method is a problem of product defects and contamination in the mold due to deterioration of the deformability that the rubber produced through the composition in the mold 110 does not easily fall out, and parts 110a that are indented in the mold during the release agent coating operation.
  • the rubber composition has a problem such as a decrease in mold releasability due to a non-fill phenomenon that is not sufficiently filled.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the rubber composition according to the present invention consists of a combination of specific components, and when such a rubber composition is used in a molding die, the cleaning power or deforming property of the cleaning rubber and the release rubber produced by the rubber composition. And it was confirmed that the filling property is excellent, the present invention has been completed.
  • Rubber composition according to the present invention for achieving this object, as a rubber composition for improving the releasability of the molding die,
  • Uncrosslinked rubber containing 60 to 100 parts by weight of butadiene rubber (BR), 0 to 40 parts by weight of ethylene-propylene diene monomer rubber (EPDM) and 5 to 40 parts by weight of a polymer additive having a melting temperature (T m ) of 100 ° C. or less;
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • T m melting temperature
  • the rubber composition according to the present invention is 60 to 100 parts by weight of butadiene rubber (BR), 0 to 40 parts by weight of ethylene-propylene diene monomer rubber (EPDM) and a polymer additive 5 to 40 having a melting temperature (T m ) of 100 ° C or less. Uncrosslinked rubber including parts by weight; And
  • the melting temperature refers to a peak point obtained through DSC (Differential Scanning Calorimeter) analysis, and the uncrosslinked rubber is crosslinked in the mold by the action of a curing agent when subjected to heat and pressure to clean the inside of the mold with a cleaning agent, or After the coating with wax and additives.
  • DSC Different Scanning Calorimeter
  • the rubber composition according to the present invention further includes polymer additives that satisfy specific conditions in butadiene rubber and ethylene-propylene diene monomer rubber, which are conventionally used as base materials for uncrosslinked rubber, thereby improving the mobility of the rubber composition, thereby making it easier to It is possible to improve the filling properties of the rubber, and thus it is possible to completely coat the inside of the mold with wax and additives to increase the deforming of the rubber produced through the composition. Furthermore, the deforming of the rubber is improved, so that the residue of the cleaning rubber remaining in the mold after the cleaning operation can be minimized. Furthermore, it is possible to improve the speed at which the cleaning agent flows out of the crosslinked rubber, and thus to completely clean the inside of the mold with the cleaning agent, thereby increasing the cleaning power of the mold.
  • the uncrosslinked rubber in the rubber composition may not contain ethylene-propylene diene monomer rubber as defined above, or may be included in an amount of 40 parts by weight or less, and in detail, in an amount of 5 to 30 parts by weight. May be included.
  • the polymer additive may be included in 5 to 40 parts by weight, specifically, 10 to 30 parts by weight.
  • the uncrosslinked rubber contains more than 40 parts by weight of the polymer additive, the crosslinking degree of the release rubber or the cleaning rubber produced by the rubber composition is lowered, so that the cleaning agent does not effectively act on the contaminants in the mold. There is a problem in that the releasability is lowered because the cleaning power is reduced or the amount of the wax and the additive coating decreases.
  • the uncrosslinked rubber contains less than 5 parts by weight of the polymer additive, the present invention provides a desired level of filling and deforming properties. There is a problem that is difficult to represent.
  • the polymer additive may have a melting temperature thereof in the range of 40 ° C to 100 ° C, and specifically 40 ° C to 90 ° C.
  • the polymer melting temperature exceeds 100 °C, the production temperature is high, the scorch (pre-crosslinking) occurs during the production of uncrosslinked rubber products, product defects occur, while the melting temperature of the polymer additive is 40 If it is less than °C, the surface of the product is sticky (sticky), the problem of the product sticking to the surface of the equipment during the production process, the product is not only difficult to produce, but also the hardness of the product is lowered, the filling performance is worsened .
  • the polymer additive may be a polyolefin-based elastomer or a copolymer composed of a monomer for polyolefin and an acrylic acid monomer and an ionomer thereof, or a copolymer composed of a monomer for polyolefin and an acrylate monomer.
  • a polyolefin-based elastomer or a copolymer composed of a monomer for polyolefin and an acrylic acid monomer and an ionomer thereof, or a copolymer composed of a monomer for polyolefin and an acrylate monomer.
  • the polyolefin elastomer is not particularly limited as long as it satisfies the conditions of the above-described polymer additives, for example, ultra low density polyethylene (VLDPE); Polybutene; Poly-4-methyl-1-pentene (TPX); Copolymers of propylene, butene, hexene and / or octene with ethylene; And it may be at least one selected from the group consisting of olefin-based thermoplastic elastomer.
  • VLDPE ultra low density polyethylene
  • TPX Poly-4-methyl-1-pentene
  • Copolymers of propylene, butene, hexene and / or octene with ethylene and it may be at least one selected from the group consisting of olefin-based thermoplastic elastomer.
  • the copolymer composed of the monomer for polyolefin and the acrylic acid monomer and the copolymer thereof for the ionomer or polyolefin monomer and the acrylate monomer thereof are not particularly limited as long as the melting temperature (T m ) described above satisfies the condition of 100 ° C. or less.
  • EAA Ethylene-acrylic acid copolymer
  • EAA ethylene-methacrylic acid copolymer
  • EMA ethylene-methacrylic acid copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EVA ethylene-alkylacrylic It may be at least one selected from the group consisting of a rate-acrylic acid copolymer, an ethylene-alkyl methacrylate-methacrylic acid copolymer, an ethylene-butyl acrylate copolymer (EBA), and an ethylene-vinylacetate copolymer (EVA).
  • the copolymer may have a composition including 60 to 96 wt% of the monomer for polyolefin and 4 to 40 wt% of the acrylic acid or acrylate or vinyl acetate monomer based on 100 wt% of the copolymer.
  • the polyolefin elastomer as the polymer additive may be an ethylene-propylene copolymer or an ethylene-butylene copolymer obtained by the reaction of an ethylene monomer and a propylene monomer or a butylene monomer.
  • the ethylene-propylene copolymer or ethylene-butylene copolymer satisfies the conditions of the polymer additive described above.
  • the waxes and additives for imparting releasability to the mold are not particularly limited as long as they have such a function, and for example, polyethylene and slip agents having a weight average molecular weight of 200 to 3000.
  • the anti blocking agent may be in a mixed form.
  • the slip agent for improving the deformability of the rubber is not particularly limited, for example, erucamide, oleamide, stearamide, behenamide , Ethylene bis stearamide (Ethylene-bis-stearamide), ethylene bis oleamide (Ethylene-bis-oleamide), may be stearyl erucamide (Stearyl erucamide).
  • the content of such waxes and additives, as described above, may be 5 to 60 parts by weight based on 100 parts by weight of the uncrosslinked rubber, less than 5 parts by weight outside the above range, it is difficult to give sufficient mold release property to the mold, If it is more than 60 parts by weight, there is a problem that excess wax is left as a stain on the surface of the mold acts as another contamination source, it is not preferable.
  • the cleaning agent which substantially removes contaminants from the mold, is not particularly limited so long as it has such a function, for example, methylene chloride, diethylene glycol monobutylether ), Acetoaldehyde, ethyl digylcol, ethanoic acid, formic acid, ammonium dodecylbenzene sulfonate, 1-methoxy-2 Propanol (1-methoxy-2-propanol), methyl alcohol, dodecylbenzene sulfonic acid, acetone, 2- (2-butoxyethoxy) ethanol diethylene glycol mono Butyl ether (2- (2-butoxyethoxy) ethanol diethylene glycol monobutylether (BDG), ethanol amine (MEA), 2-aminoethanol (MEA), 2-diethylaminoethanol (2-diethylamino ethanol : DEAE), 2-meth 2-methoxylethanol (EM), 2-ethoxylethanol, 2-propoxyethanol, dimethyl
  • the inventors of the present invention were able to confirm that a better cleaning effect is obtained when a mixture consisting of a combination of different cleaning compounds is used as the cleaning agent than when using one kind of cleaning compound as the cleaning agent.
  • a mixture of two or more of different kinds of cleaning compounds is used as the cleaning agent.
  • the mutual ratio of the mixed cleaning compounds is 1:99 to 99: 1 by weight, in detail may be in the range of 5:95 to 95: 5.
  • the content of the cleaner is 0.5 to 60 parts by weight, and less than 0.5 parts by weight makes it difficult to obtain sufficient cleaning power.
  • the amount of the cleaner is greater than 60 parts by weight, the excess cleaner is stained on the surface of the mold as another contaminant. Since there is a problem in working, it is not preferable.
  • the inventors of the present application confirmed that the cleaning power is further improved when the cleaning agent is further included in addition to the cleaning agent.
  • the rubber composition may further comprise a cleaning aid, and in particular, the cleaning aid may be a nonionic surfactant.
  • the nonionic surfactant may be an alkylamine ethoxylate compound having a molecular formula of C 23 H 38 N 2 O 8 .
  • Alkylamine ethoxylate compounds having a molecular formula of C 23 H 38 N 2 O 8 have a reversible surfactant, and in amine solution, these amine ethoxylates act as surfactants, but in acidic solutions they There is a characteristic of losing its surfactant activity. It is known that these properties can be used to facilitate the separation of emulsified oils from aqueous materials so that the compounds can be used primarily for industrial washing or metal cleaning.
  • the nonionic surfactant may be an alkylphenol ethoxylate-based compound of Formula 1 below, specifically, R may be an octylphenol ethoxylate-based compound having 8 carbon atoms, x May be an integer from 3 to 10.
  • R is alkyl having 4 to 10 carbon atoms and x is an integer of 1 to 55.
  • the alkylphenol ethoxylate-based compound of Formula 1 may be used in a wide range of temperatures as a material having wettability, detergency, and emulsification of oil for aqueous, and can be used in all forms of liquid, paste, powder, etc. There are properties that can be used in the compound. Accordingly, the compounds can be used for a variety of industrial cleanings, from soft household detergents to heavy-duty industrial products, and in particular, are known to have excellent effects on the cleaning of hard surfaces and metals.
  • the nonionic surfactant may be an alcohol alkoxylate compound having a molecular formula of C 12 H 30 O 2 , and specifically, may be a material of Formula 2 below.
  • the alcohol alkoxylate compound having a molecular formula of C 12 H 30 O 2 is a water-soluble nonionic surfactant having excellent performance and processability, and has excellent wettability, washability, and fast dissolution rate. Due to these properties, the compounds are known to be used in a variety of industries, from detergents and degreasing agents to hard surfaces and metals, as well as from household detergents to industrial laundry detergents.
  • the rubber composition according to the present invention including the cleaning aid has an advantage that, even if the amount of the cleaning agent is reduced compared to the conventional rubber composition, it may have better or similar cleaning power.
  • the amount of the cleaning aid is 0.1 to 7 parts by weight, and in detail, 0.5 to 3 parts by weight. Less than 0.1 part by weight makes it difficult to obtain the improved cleaning power, while more than 7 parts by weight may act as another contaminant, while the cleaning power is no longer improved, which is undesirable.
  • At least one of such detergents and cleaning aids may be included in the applied or impregnated state, or in the applied and impregnated state, to inorganic fillers and adsorbents, which will be described in more detail later, which are mainly present in a liquid state. This is because the cleaning agent or cleaning aid is difficult to be uniformly kneaded with the uncrosslinked rubber.
  • the inventors of the present application confirmed that the cleaning power is further improved when the cleaning agent and the cleaning aid further include an expansion agent which is an alcohol-based substance such as water and / or methanol or ethanol.
  • the cleaning operation is generally performed by placing a mold cleaning unit made of the rubber composition on a mold and applying a temperature of 150 to 200 ° C. and a pressure of 15 kgf / cm 2 to 100 kgf / cm 2 for 2 to 10 minutes. It is carried out by curing the unit into a shape in a mold.
  • the cleaning power may be further improved. This is because the temperature applied to the unit during the cleaning operation is higher than the boiling point of the expansion agent, and thus the expansion agent is evaporated at a temperature higher than the boiling point, thereby remaining in the unit. It is presumed that this is because it promotes the phenomenon of eluting to the surface, that is, the blooming effect. That is, when only the cleaning agent is used, even the cleaning agent which is present inside and does not effectively act on the contaminant may be eluted to the surface to contact the contaminant.
  • the content of the expanding agent may be 1 to 10 parts by weight based on 100 parts by weight of the uncrosslinked rubber. If it is less than 1 part by weight, it is difficult to obtain the above effect. If it is more than 10 parts by weight, the kneading operation is difficult and there is a problem of contaminating the mold surface, which is not preferable.
  • the inventors of the present application further show that when a strong acid such as hydrochloric acid, sulfuric acid, nitric acid, bromic acid, or strong alkali such as sodium hydroxide or potassium hydroxide is used in combination with a cleaning agent and a cleaning aid, a more enhanced cleaning effect is obtained.
  • a strong acid such as hydrochloric acid, sulfuric acid, nitric acid, bromic acid, or strong alkali such as sodium hydroxide or potassium hydroxide
  • cleaning catalysts Strong acids or strong bases (hereinafter, sometimes referred to as "cleaning catalysts") added together with the cleaning agents are assumed to serve as catalysts in the cleaning process. That is, in the rubber composition for mold cleaning containing only the cleaning agent and the cleaning aid component, the contaminants are crosslinked in a state in which the detergent directly dissolves the contaminants or the cleaner penetrates between the mold and the contaminants to weaken the adhesion between them.
  • the cleaning process proceeds in such a way that it is attached to and removed from the rubber.
  • the cleaning catalyst when used together with the cleaning agent and the cleaning aid, the cleaning catalyst enhances the penetration of the cleaning agent and the cleaning aid while promoting the crushing of the contaminants, and consequently, greatly improves the cleaning power.
  • the cleaning catalyst may be included in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of the cleaning agent.
  • a strong acid or a strong base as described above may be selectively used, and KOH may be used in detail.
  • the content of the cleaning agent including the cleaning catalyst may also be 0.5 to 60 parts by weight, as described above.
  • the curing agent may be used as a component that induces such curing, and organic peroxides, phenol resins, and sulfur may be used.
  • organic peroxides may be an organic peroxide, and the type of organic peroxide may be selected according to the mold temperature in consideration of the half-life temperature.
  • Such organic peroxides include, but are not limited to, for example, 2,5-dimethyl-2,5-bis- (t-butylperoxy) (2,5-dimethyl-2,5-bis- ( t-butylperoxy)), dt-butylperoxide, 2,5-dimethyl-2,5-bis- (t-butylperoxy) -hexane (2,5-dimethyl-2,5-bis -(t-butylperoxy) -hexane), t-butyl cumyl peroxide (t-buthylcumylperoxide), bis- (t-butylperoxy-i-propyl) -benzene (bis- (t-buthylperoxy-i-propyl)- benzene), dicumylperoxide, 4,4-di-t-butylperoxy-n-butyl valerate (4,4-di-t-buthylperoxy-n-buthy
  • bis- (t-butylperoxy-i-propyl) benzene and 4,4-di-t-butylperoxy-n-butyl valerate are ethylene-propylene diene monomers (EPDM) and butyl rubber (BR) It is especially preferable for the mixed rubber cleaning composition.
  • the inorganic filler is a component that serves to increase the balance of the composition components with the increase in viscosity more excellent. That is, the viscosity of the composition is lowered by adding wax or detergent to the uncrosslinked rubber. By adding an inorganic filler, the Mooney viscosity can be increased to maintain the balance of various components.
  • examples of such inorganic fillers include silica, talc, alumina, potassium carbonate, calcium carbonate, aluminum hydroxide, titanium oxide, carbon black, and the like.
  • the rubber composition according to the present invention can be used for cleaning operations (work of putting a mold rubber sheet made of the rubber composition according to the invention into a mold and applying heat and pressure) or mold release work (mold release made of the rubber composition according to the present invention).
  • Adsorbents may also be included to adsorb and remove various odor and smoke components resulting from the operation of putting the rubber sheet into the mold and applying heat and pressure.
  • Such adsorbents have a high adsorption capacity and a large specific surface area for the odor and smoke components. Odor and smoke generated during operation are inevitably generated by various factors such as decomposition of the curing agent and decomposition of the cleaning agent, and the adsorbent having a fine pore and a large specific surface area is added to the composition according to the present invention. It can solve the problem caused by this.
  • the adsorbent has a specific surface area of at least 200 m 2 / g or more. Moreover, having many fine pores can exhibit more excellent adsorption force.
  • the adsorbent may include clay (mud), silica gel, activated carbon, zeolite, ion exchange resin, acidic clay, and the like, and in some cases, may be used in the form of a mixture of two or more thereof.
  • the adsorbent used in the present invention may be, in detail, zeolite, silica gel, or acidic clay having a specific surface area of not less than 200 m 2 / g, and more specifically, fine powder silica gel or zeolite. have. Fine powder silica gel can solve the problem of kneading with uncrosslinked rubber by pulverizing the particle size of silica gel from millimeter (mm) to micron ( ⁇ m).
  • Zeolite X type and zeolite Y type have a specific surface area (approximately 500 m2 / g or more) is large, but expensive, it can be mixed with zeolite A type to lower the production cost of the composition of the present invention.
  • activated carbon and ion exchange resin have a very large specific surface area (about 600 m 2 / g or more), the adsorption power is excellent, while each is black and expensive, and therefore it is preferable to use it in combination with other adsorbent components.
  • Such an adsorbent may also serve as an inorganic filler, and the content of the adsorbent and the inorganic filler may be 5 to 110 parts by weight based on 100 parts by weight of the uncrosslinked rubber.
  • the rubber composition according to the present invention may further participate in other compound (s) or mixture (s) within a range that does not impair its physical properties.
  • FIG. 1 is a schematic diagram showing a release rubber mechanism and non-fill properties of a conventional rubber composition
  • FIG. 2 is a photograph showing a crosslinked rubber demolded from a mold in the process of FIG. 1;
  • FIG. 3 is a schematic diagram showing a process of manufacturing an EMC product through a mold coated through the process of FIG. 1 and a defect of the EMC product due to non-pilliness;
  • Figure 4 is a schematic diagram showing a release rubber mechanism of the rubber composition excellent in filling and demolding according to an embodiment of the present invention
  • FIG. 5 is a photograph showing the crosslinked rubber demolded from the mold in the process of FIG.
  • Figure 4 is a schematic diagram showing a release rubber mechanism of the rubber composition excellent in filling and demolding according to an embodiment of the present invention
  • Figure 5 is a photo showing the cross-linked rubber demolded from the mold in the process of Figure 4 Is shown.
  • the release rubber composition 220 including the uncrosslinked rubber 221 and the coating component 222 is disposed in the mold 210, and then cured at a temperature of about 175 to 180 ° C.
  • the crosslinking reaction is performed and the crosslinked rubber 230 is removed, the inside of the mold 210 is coated with the coating component 222.
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n 30 g of butylvalate)
  • an inorganic filler 300 g of silica, 50 g of titanium oxide
  • a wax 80 g of polyethylene, 20 g of a slipping agent
  • Example 2 Except for using ultra low density polyethylene (VLDPE) in Example 1, 200 g of the ionomer of ethylene-methacrylic acid copolymer (EMAA) produced by reacting an ethylene monomer and an acrylic acid monomer in a weight ratio of 9: 1 was used. Was prepared in the same manner as in Example 1. At this time, the ionomer density of the ethylene-methacrylic acid copolymer (EMAA) is 0.95, the melting temperature is 70 °C.
  • VLDPE ultra low density polyethylene
  • EMA ethylene-methacrylic acid copolymer
  • Example 2 Except for using ultra low density polyethylene (VLDPE) in Example 1, except that 200 g of the ethylene-methacrylic acid copolymer (EMA) produced by reacting an ethylene monomer and a methacrylic acid monomer in a weight ratio of 9: 1 was used. Was prepared in the same manner as in Example 1. At this time, the density of the ethylene-methacrylic acid copolymer (EMA) is 0.94, the melting temperature is 72 °C.
  • VLDPE ultra low density polyethylene
  • EMA ethylene-methacrylic acid copolymer
  • Example 2 Except for using ultra low density polyethylene (VLDPE) in Example 1, except that 200g of ethylene-vinylacetate copolymer (EVA) produced by reacting the ethylene monomer and vinyl acetate monomer in a weight ratio of 9: 1 was used. A kneaded product was prepared in the same manner as in Example 1. At this time, the density of the ethylene-vinylacetate copolymer (EVA) is 0.95, the melting temperature is 75 °C.
  • VLDPE ultra low density polyethylene
  • EVA ethylene-vinylacetate copolymer
  • a kneaded product was prepared in the same manner as in Example 1, except that 200 g of the ethylene-butylene copolymer was used in place of the ultra low density polyethylene (VLDPE). In this case, the density of the ethylene-butylene copolymer is 0.88, the melting temperature is 64 °C.
  • VLDPE ultra low density polyethylene
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n 30 g of butylvalate)
  • an inorganic filler 300 g of silica, 50 g of titanium oxide
  • a wax 80 g of polyethylene, 20 g of a slipping agent
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n 30 g of butylvalate)
  • an inorganic filler 300 g of silica, 50 g of titanium oxide
  • a wax 80 g of polyethylene, 20 g of a slipping agent
  • a kneaded product was prepared in the same manner as in Example 1, except that ultra low density polyethylene (VLDPE) was not used in Example 1.
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 1, except that low density polyethylene (LDPE) was used instead of ultra low density polyethylene (VLDPE) in Example 1.
  • LDPE low density polyethylene
  • VLDPE ultra low density polyethylene
  • the density of the low density polyethylene (LDPE) is 0.921
  • the melting temperature is 110 °C.
  • a kneaded product was prepared in the same manner as in Example 1, except that an ethylene-methacrylic acid copolymer having a density of 0.93 and a melting temperature of 110 ° C. was used instead of the ultra low density polyethylene (VLDPE) as the polymer additive in Example 1. .
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 6, except that 400 g of ultra low density polyethylene (VLDPE) was used in Example 6.
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 6, except that 20 g of ultra low density polyethylene (VLDPE) was used in Example 6.
  • VLDPE ultra low density polyethylene
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n -30 g of butylvalate) and an inorganic filler (300 g of silica, 50 g of titanium oxide)
  • a mixed detergent (30 g of monoethanolamine (MEA), 25 g of N-methylpyrrolidone (NMP), dimethyl sulfoxide ( DMSO) 35 g
  • MEA monoethanolamine
  • NMP N-methylpyrrolidone
  • DMSO dimethyl sulfoxide
  • Example 8 Except for using ultra low density polyethylene (VLDPE) in Example 8, 200 g of the ionomer of ethylene-methacrylic acid copolymer (EMAA) produced by reacting an ethylene monomer and an acrylic acid monomer in a weight ratio of 9: 1 was used. Was prepared in the same manner as in Example 8. At this time, the ionomer density of the ethylene-methacrylic acid copolymer (EMAA) is 0.95, the melting temperature is 70 °C.
  • VLDPE ultra low density polyethylene
  • EMA ethylene-methacrylic acid copolymer
  • Example 8 Except for using ultra low density polyethylene (VLDPE) in Example 8, except that 200 g of the ethylene-methacrylic acid copolymer (EMA) produced by reacting the ethylene monomer and methacrylic acid monomer in a weight ratio of 9: 1 was used. Was prepared in the same manner as in Example 8. At this time, the density of the ethylene-methacrylic acid copolymer (EMA) is 0.94, the melting temperature is 72 °C.
  • VLDPE ultra low density polyethylene
  • EMA ethylene-methacrylic acid copolymer
  • Example 8 Except for using ultra low density polyethylene (VLDPE) in Example 8, except that 200g of ethylene-vinylacetate copolymer (EVA) produced by reacting the ethylene monomer and vinyl acetate monomer in a weight ratio of 9: 1 was used. A kneaded product was prepared in the same manner as in Example 8. At this time, the density of the ethylene-vinylacetate copolymer (EVA) is 0.95, the melting temperature is 75 °C.
  • VLDPE ultra low density polyethylene
  • EVA ethylene-vinylacetate copolymer
  • a kneaded product was prepared in the same manner as in Example 8, except that 200 g of the ethylene-butylene copolymer was used in place of the ultra low density polyethylene (VLDPE). In this case, the density of the ethylene-butylene copolymer is 0.88, the melting temperature is 64 °C.
  • VLDPE ultra low density polyethylene
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n -30 g of butylvalate) and an inorganic filler (300 g of silica, 50 g of titanium oxide)
  • a mixed detergent (30 g of monoethanolamine (MEA), 25 g of N-methylpyrrolidone (NMP), dimethyl sulfoxide ( DMSO) 35 g
  • MEA monoethanolamine
  • NMP N-methylpyrrolidone
  • DMSO dimethyl sulfoxide
  • VLDPE ultra low density polyethylene
  • BR butadiene rubber
  • EPDM ethylene-propylene diene monomer rubber
  • VLDPE ultra low density polyethylene
  • a curing agent (4,4-di-t-butylperoxy-n -30 g of butylvalate) and an inorganic filler (300 g of silica, 50 g of titanium oxide)
  • a mixed detergent (30 g of monoethanolamine (MEA), 25 g of N-methylpyrrolidone (NMP), dimethyl sulfoxide ( DMSO) 35 g
  • MEA monoethanolamine
  • NMP N-methylpyrrolidone
  • DMSO dimethyl sulfoxide
  • a kneaded product was prepared in the same manner as in Example 8, except that the auxiliary cleaner (Triton RW 10 g) was applied and impregnated into the inorganic filler in Example 8.
  • the auxiliary cleaner Triton RW 10 g
  • a kneaded product was prepared in the same manner as in Example 15, except that 10 g of Triton XL-80N was used as the auxiliary cleaner in Example 15.
  • a kneaded product was prepared in the same manner as in Example 15, except that 10 g of Triton X-100 was used as the auxiliary cleaner in Example 15.
  • Example 15 In order to confirm the effect of the swelling agent, a kneaded product was prepared in the same manner as in Example 15 by further adding 25 g of water and ethanol to the composition of Example 15 one to one.
  • a kneaded product was prepared in the same manner as in Example 15 by further adding 5 g of KOH as a cleaning catalyst to the composition of Example 18.
  • a kneaded product was prepared in the same manner as in Example 8 except that the ultra low density polyethylene (VLDPE) was not used in Example 8.
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 8 except for using the low density polyethylene (LDPE) instead of the ultra low density polyethylene (VLDPE) in Example 8.
  • LDPE low density polyethylene
  • VLDPE ultra low density polyethylene
  • the density of the low density polyethylene (LDPE) is 0.921
  • the melting temperature is 110 °C.
  • a kneaded product was prepared in the same manner as in Example 8, except that an ethylene-methacrylic acid copolymer having a density of 0.93 and a melting temperature of 110 ° C. was used instead of the ultra low density polyethylene (VLDPE) as the polymer additive in Example 8. .
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 13, except that 400 g of ultra low density polyethylene (VLDPE) was used in Example 13.
  • VLDPE ultra low density polyethylene
  • a kneaded product was prepared in the same manner as in Example 13, except that 20 g of ultra low density polyethylene (VLDPE) was used in Example 13.
  • VLDPE ultra low density polyethylene
  • the kneaded material prepared in Examples 1 to 7, and Comparative Examples 1 to 5 was charged to an experimental mold (MQFP 28 x 28) and cured for 450 seconds at a pressure of 60 kg / cm 2 at 180 ° C., while releasing the mold. was performed 30 times.
  • the kneaded material prepared in Examples 1 to 7, and Comparative Examples 1 to 5 was charged to an experimental mold (MQFP 28 x 28) and cured for 450 seconds at a pressure of 60 kg / cm 2 at 180 ° C., while releasing the mold. was performed 30 times.
  • Example 18 Example 17> Example 16> Example 15> Examples 8 to 14> Comparative Example 6> Comparative Example 10> Comparative Example 9 Smell smoke Example 19> Examples 15 to 17> Examples 8 to 14> Comparative Example 6, Comparative Example 9, and Comparative Example 10 (Example 18 had a lot of smoke, but no smell.)
  • Comparative Example 9 which does not satisfy the content range of the present invention, the cleaning power is insufficient, so that it is difficult to play a role as the cleaning rubber, and in Comparative Example 10, the filling property and the cleaning power are somewhat improved compared to Comparative Example 6. It can be confirmed, but it can be seen that the markedly inferior filling and cleaning power compared to Examples 8 to 14.
  • the rubber composition of the present invention improves the mobility in the mold of the rubber composition by the combination of specific components, and as a result, the filling property is improved, thereby solving the problem of the non-fill phenomenon of the prior art, and the deforming of the release rubber It provides an excellent effect, not only to improve the mold release property, but also to improve the cleaning power by increasing the speed at which the cleaning agent emerges from the crosslinked rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

본 발명은 부타디엔 고무, 에틸렌-프로필렌 디엔 모노머 고무와 고무 조성물의 금형 내 이동성(mobility)을 향상시킬 수 있는 특정한 고분자 첨가물을 포함하는 미가교 고무 및 세정제 또는 왁스, 경화제, 무기 충진제를 포함하는 것을 특징으로 하는 고무 조성물에 관한 것이다.

Description

충진성이 우수한 고무 조성물
본 발명은 열경화성 수지를 연속적으로 성형하는 과정에서 금형에 잔존하는 오염물을 제거하고, 제거 후 금형에 이형성을 부여하기 위한 고무 조성물로서, 상세하게는, 특정한 성분들의 조합에 의해 고무 조성물의 금형 내 이동성(mobility)을 향상시켜, 충진성이 우수한 고무 조성물에 관한 것이다.
열경화성 수지를 원료로 하여 이를 압축 및 가열하여 제품을 성형하는데 사용되는 금형은, 작업공정 중에 유입된 오염물과 성형물의 일부가 탄화되어 잔존하게 됨으로써, 이것이 이후 반복적인 작업공정 중 오염물로 작용하여, 제조되는 성형물에 일부 결함을 유발할 뿐만 아니라 계속적인 성형과정에서 제품의 품질을 떨어뜨리는 원인이 된다. 따라서, 일정기간 내지 일정횟수의 성형작업을 행한 후에는 금형에 남아있는 오염물을 제거하는 작업(이른바, "세정작업")이 이루어져야 한다.
이러한 세정 작업을 효율적으로 행할 수 있는 방법으로서 세정성분을 포함하고 있는 시트가 개발되었고, 그러한 시트의 제조에 사용되는 조성물에 대한 많은 연구가 행해져 왔다. 미국특허 제3,476,599호는 열경화성 수지를 기재(base)로 사용하고 여기에 아미노기와 하이드록시기를 가진 아미노알코올계 화합물을 세정제(cleaning agent)로서 첨가한 금형 세정용 열경화성 수지 조성물을 제안하고 있다. 그러나, 세정을 위한 시트의 경화 과정에서 세정제인 아미노알코올계 화합물의 아미노기가 분해되어 아민 계열의 가스를 생성하므로 그로 인한 악취 및 연기 발생의 문제점을 가지고 있다.
이에 기재로서 부타디엔 고무(BR) 및 에틸렌-프로필렌 디엔 모노머 고무(EPDM)를 포함하는 미가교 고무를 사용하고, 세정제로서 이미다졸계 또는 이미다졸린계 화합물을 사용하는 금형 세정용 고무 조성물을 제안하여 앞서의 문제점을 어느 정도 해결하고는 있으나, 미가교 고무의 가교에 사용되는 경화제(주로 유기 과산화물)의 분해로 인한 냄새가 심하게 발생하므로 상기 문제점을 근본적으로 해결하지 못하고 있을 뿐만 아니라, 세정제가 이미다졸계 또는 이미다졸린계 화합물로만 제한되어 세정력을 높이는데 한계가 있다.
한편, 세정 작업과 아울러, 반복 작업에 따른 열경화성 수지의 탈착을 용이하게 하기 위하여 금형에 이형성을 부여하는 작업(이른바, "이형 작업")이 필수적이다.
특히, 반도체 제조를 위한 EMC 성형공정에 있어서, 이형 작업은 반도체 소자의 품질에 직접적인 영향을 미치는 바, 금형 표면에 부여된 이형성이 일정 수준에 이르지 못할 경우, 제품 전체의 불량뿐만 아니라 수리를 위하여 많은 시간이 소요되므로, 금형에 이형성을 부여하면서 장시간 이를 유지하기 위한 연구가 행해져 왔다.
종래에는 금형에 이형성을 부여하기 위하여, 파우더 상태로 분쇄한 천연 카노버 왁스나 디메틸 실리콘 오일을 핵산 등의 용제에 혼합하여 고압의 스프레이 용기에 담아 금형 표면에 직접 분사하는 방법, 에폭시 수지 화합물에 왁스를 다량 배합하고 이를 저압의 이송성형 방식으로 코팅하는 방법 등이 사용되었다.
그러나, 상기 방법들을 사용할 경우, 금형의 내부에 균일하게 도포되지 못하여 이형성이 저하되고, 핵산 용제를 사용함에 따른 환경오염이 발생하거나, 저압의 이송성형 방식에 따른 과다한 비용 발생 등의 문제점이 발생하게 된다.
이를 해결하기 위한 하나의 방안으로, 세정 작업에서와 마찬가지로, 기재로서 부타디엔 고무(BR) 및 에틸렌-프로필렌 디엔 모노머 고무(EPDM)를 포함하는 미가교 고무를 사용하고, 세정제 대신 코팅성분, 무기 충진제, 경화제 등을 더 포함하는 금형 코팅용 고무 조성물을 통해 고무경화에 따른 코팅성분(왁스 및 첨가제)의 용출에 의한 금형 코팅 방법이 제안되어 있다.
구체적으로, 도 1에는 종래 고무 조성물의 이형 고무 메커니즘 및 논-필(non-fill)성을 나타낸 모식도가 도시되어 있고, 도 2에는 도 1의 과정에서 금형으로부터 탈형된 가교 고무를 나타낸 사진이 도시되어 있으며, 도 3에는 도 1의 과정을 통해 코팅된 금형을 통해 EMC 제품을 제조하는 과정 및 논-필성에 기인한 EMC 제품의 불량을 나타낸 모식도가 도시되어 있다.
도 1 내지 도 3을 참조하면, 금형(110) 내에 미가교 고무(121) 및 코팅성분(122)을 포함하는 이형 고무 조성물(120)을 배치한 뒤, 약 175 내지 180℃의 온도에서 경화시켜 가교 반응을 진행시키고, 가교 고무(130)를 제거하면 금형(110) 내부가 코팅성분(122)으로 코팅된다.
그러나, 상기 방법은 금형(110)에서 상기 조성물을 통해 제조된 고무가 쉽게 빠지지 않는 탈형성 저하로 인한 제품 불량 및 금형 내 오염 문제와, 이형제 코팅 작업시 금형 내부에 만입되어 있는 부분(110a)들까지 고무 조성물이 충분히 채워지지 못하는 논-필(non-fill) 현상에 따른 금형의 이형성 저하 등의 문제점을 가지고 있다.
따라서, 금형의 세정 작업 또는 이형제 코팅 작업시 제조비용을 절감하고, 친환경적 작업환경을 제공할 뿐만 아니라, 우수한 세정성 또는 탈형성 및 충진성을 발휘하는 고무 조성물에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
이후 설명하는 바와 같이, 본 발명에 따른 고무 조성물은 특정 성분들의 조합으로 이루어져 있고, 이러한 고무 조성물을 성형용 금형에 사용하는 경우, 상기 고무 조성물에 의해 제조되는 세정 고무 및 이형 고무의 세정력 또는 탈형성 및 충진성이 우수함을 확인하고, 본 발명은 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 고무 조성물은, 성형용 금형의 이형성을 향상시키기 위한 고무 조성물로서,
부타디엔 고무(BR) 60 내지 100 중량부, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 0 내지 40 중량부와 용융온도(Tm)가 100℃ 이하인 고분자 첨가물 5 내지 40 중량부를 포함하고 있는 미가교 고무; 및
상기 미가교 고무 100 중량부를 기준으로, 왁스 5 내지 60 중량부, 경화제 0.5 내지 10 중량부와, 무기 충진제 및 흡착제 5 내지 110 중량부;
를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 고무 조성물은 부타디엔 고무(BR) 60 내지 100 중량부, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 0 내지 40 중량부와 용융온도(Tm)가 100℃ 이하인 고분자 첨가물 5 내지 40 중량부를 포함하고 있는 미가교 고무; 및
상기 미가교 고무 100 중량부를 기준으로, 세정제 5 내지 60 중량부, 경화제 0.5 내지 10 중량부와, 무기 충진제 및 흡착제 5 내지 110 중량부;
를 포함하는 것을 특징으로 한다.
여기서, 용융온도는 DSC(Differential Scanning Calorimeter) 분석을 통해 얻어진 피크 포인트(peak point)를 의미하며, 미가교 고무는 열과 압력을 받았을 때 경화제의 작용에 의해 금형 안에서 가교되어 금형 내를 세정제로 세정하거나, 왁스 및 첨가제로 코팅한 뒤, 제거되는 성분을 의미한다.
본 발명에 따른 고무 조성물은, 종래 미가교 고무의 기재로 사용되는 부타디엔 고무 및 에틸렌-프로필렌 디엔 모노머 고무에 특정한 조건을 만족하는 고분자 첨가물을 추가로 포함함으로써, 고무 조성물의 이동성이 향상되어, 금형 내에서 고무의 충진성을 향상시킬 수 있고, 이에 따라 금형 내를 왁스 및 첨가제로 완전히 코팅하는 것이 가능하여 상기 조성물을 통해 생성된 고무의 탈형성을 높일 수 있다. 나아가, 고무의 탈형성이 향상되어, 세정 작업 후 금형에 잔존하는 세정 고무의 잔여물을 최소화할 수 있다. 더 나아가, 가교된 고무로부터 세정제가 빠져나오는 속도를 향상시키고, 이에 따라 금형 내를 세정제로 완전히 세정하는 것이 가능하여 금형에 대한 세정력을 높일 수 있다.
상기 고무 조성물 중의 미가교 고무에는, 앞서 정의한 바와 같이, 에틸렌-프로필렌 디엔 모노머 고무가 포함되지 않을 수도 있고, 또는 40 중량부 이하의 함량으로 포함될 수 있으며, 상세하게는, 5 내지 30 중량부의 함량으로 포함될 수 있다.
상기 고분자 첨가물은 5 내지 40 중량부, 상세하게는, 10 내지 30 중량부로 포함될 수 있다.
상기 범위를 벗어나, 미가교 고무에 고분자 첨가물이 40 중량부를 초과하여 포함될 경우, 고무 조성물에 의해 제조되는 이형 고무 또는 세정 고무의 가교도가 낮아지는 바, 금형 내의 오염물질에 세정제가 효과적으로 작용하지 못하게 되어 세정력이 저하되거나 왁스 및 첨가제 코팅량이 적어지게 되어 이형성이 저하되는 문제점이 있고, 반면에 미가교 고무에 고분자 첨가물이 5 중량부 미만으로 포함될 경우, 본 발명이 소망하는 수준의 충진성 및 탈형성을 나타내기 어려운 문제점이 있다.
하나의 구체적인 예에서, 상기 고분자 첨가물은 그것의 용융온도가 40℃ 내지 100℃ 범위일 수 있고, 상세하게는 40℃ 내지 90℃ 범위일 수 있다.
상기 범위를 벗어나, 고분자 용융온도가 100℃를 초과할 경우, 생산온도가 높아져, 미가교 고무제품 생산 시 스코치(사전 가교)가 발생하여 제품 불량이 발생되고, 반면에 고분자 첨가물의 용융온도가 40℃ 미만이 될 경우, 제품 표면이 끈적거리게(sticky) 되어 생산 공정 중에 제품이 설비의 표면에 달라 붙는 문제점이 발생하는 바, 제품 생산이 어려울 뿐만 아니라, 제품의 경도가 낮아져 충진성이 나빠지게 된다.
하나의 구체적인 예에서, 상기 고분자 첨가물은, 폴리올레핀계 탄성중합체, 또는 폴리올레핀용 단량체와 아크릴산 단량체로 이루어진 공중합체(copolymer) 및 이의 아이오노머(ionomer) 또는 폴리올레핀용 단량체와 아크릴레이트 단량체로 이루어진 공중합체일 수 있다.
상기 폴리올레핀 탄성중합체는, 앞서 설명한 고분자 첨가물의 조건을 만족하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 초저밀도 폴리에틸렌(VLDPE); 폴리부텐; 폴리-4-메틸-1-펜텐(TPX); 프로필렌, 부텐, 헥센 및/또는 옥텐과 에틸렌의 공중합체; 및 올레핀계 열가소성 탄성체로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 따라서, 용융온도가 100℃를 초과하는, 저밀도 폴리에틸렌(LDPE), 초저밀도 폴리에틸렌(VLDPE) 또는 폴리올레핀용 단량체와 아크릴산 단량체로 이루어진 공중합체 및 이의 아이오노머 또는 폴리올레핀용 단량체와 아크릴레이트 단량체로 이루어진 공중합체의 경우, 본 발명의 고분자 첨가물에 적합하지 않을 수 있다.
상기 폴리올레핀용 단량체와 아크릴산 단량체로 이루어진 공중합체 및 이의 아이오노머 또는 폴리올레핀용 단량체와 아크릴레이트 단량체로 이루어진 공중합체는 앞서 설명한 용융온도(Tm)가 100℃ 이하인 조건을 만족하는 것이라면 특별히 제한되는 것은 아니며, 에틸렌-아크릴산 공중합체(EAA), 에틸렌-메타아크릴산 공중합체(EMAA) 및 이의 아이오노머, 에틸렌-메틸 아크릴레이트 공중합체(EMA), 에틸렌-에틸아크릴레이트 공중합체(EEA), 에틸렌-알킬아크릴레이트-아크릴산 공중합체, 에틸렌-알킬메타아크릴레이트-메타아크릴산 공중합체, 에틸렌-부틸아크릴레이트 공중합체(EBA), 에틸렌-비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 공중합체는, 예를 들어, 공중합체 100 중량%를 기준으로 폴리올레핀용 단량체 60 내지 96 중량% 및 아크릴산 또는 아크릴레이트계 또는 비닐아세테이트계 단량체 4 내지 40 중량%를 포함하는 조성일 수 있다.
하나의 구체적인 예에서, 상기 고분자 첨가물로써 폴리올레핀 탄성중합체는 에틸렌 단량체와 프로필렌 단량체 또는 부틸렌 단량체의 반응으로 얻어지는 에틸렌-프로필렌 공중합체 또는 에틸렌-부틸렌 공중합체일 수 있다. 상기 에틸렌-프로필렌 공중합체 또는 에틸렌-부틸렌 공중합체가 앞서 설명한 고분자 첨가물의 조건을 만족하는 것임은 물론이다.
한편, 실질적으로, 금형에 이형성을 부여하기 위한 상기 왁스 및 첨가제는, 그러한 작용을 하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 200 내지 3000의 중량평균 분자량을 가진 폴리에틸렌 및 슬립제(Slip agent), 안티 블로킹제(Anti blocking agent)가 혼합된 형태일 수 있다. 여기서, 고무의 탈형성을 향상시키기 위한 상기 슬립제는, 특별히 한정되는 것은 아니나, 예를 들어, 에루카아마이드(Erucamide), 올레아마이드(Oleamide), 스테어아마이드(Stearamide), 베헨아마이드(Behenamide), 에틸렌 비스 스테어아마이드(Ethylene-bis-stearamide), 에틸렌 비스 올레아마이드(Ethylene-bis-oleamide), 스테어릴 에루카아마이드(Stearyl erucamide)일 수 있다.
이러한 왁스 및 첨가제의 함량은, 앞서의 설명과 같이, 미가교 고무 100 중량부를 기준으로, 5 내지 60 중량부일 수 있으며, 상기 범위를 벗어나 5 중량부보다 적으면 금형에 충분한 이형성을 부여하기 어려우며, 60 중량부보다 많으면 금형 표면에 잉여의 왁스가 얼룩자국을 남기면서 또 다른 오염원으로 작용하는 문제점이 있으므로, 바람직하지 않다.
한편, 실질적으로, 오염물을 금형으로부터 이탈시키는 역할을 하는 상기 세정제는, 그러한 작용을 하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 메틸렌 클로라이드(methylene chloride), 디에틸렌 글리콜 모노부틸에테르(diethylene glycol monobutylether), 아세토알데히드(acetoaldehyde), 에틸 디글리콜(ethyl digylcol), 에탄오익산(ethanoic acid), 포믹산(formic acid), 암모니움 도데실벤젠 설폰네이트(ammonium dodecylbenzene sulfonate), 1-메톡시-2-프로판올(1-methoxy-2-propanol), 메틸 알콜(methyl alcohol), 도데실벤젠 설폰익산(dodecylbenzene sulfonic acid), 아세톤(aceton), 2-(2-부톡시에톡시)에탄올 디에틸렌 글리콜 모노부틸에테르(2-(2-butoxyethoxy)ethanol diethylene glycol monobutylether: BDG), 에탄올 아민(ethanol amine: MEA), 2-아미노에탄올(2-aminoethanol: MEA), 2-디에틸아미노에탄올(2-diethylamino ethanol: DEAE), 2-메톡시에탄올(2-methoxylethanol: EM), 2-에톡시에탄올(2-ethoxylethanol), 2-프로포시에탄올(2-Propoxyethanol), 디메틸 술폭사이드(Dimethyl Sulfoxide: DMS), 2-(2-아미노에틸아미노)에탄올(2-(2-aminoethylamino)ethanol), N-메틸피놀리디논(N-methyl pyrrolidinone: NMP), 1-페녹시-2-프로판올(1-phenoxy-2-propanol: PGPhE), 메시틸옥사이드(mesityloxide), 및 4-히드로시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone)과, 아민알코올계 화합물들로 이루어진 군에서 선택된 하나 또는 둘 이상의 혼합물일 수 있고, 상세하게는, 메틸렌 클로라이드, 아세톤, 2-메톡시에탄올(EM), 디메틸술폭사이드(DMS), N-메틸피놀리디논(NMP), 1-페녹시-2-프로판올(PGPhE), 메시틸옥사이드, 4-히드로시-4-메틸-2-펜타논으로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.
나아가, 본 발명의 발명자들은 일종(一種)의 세정 화합물을 세정제로서 사용할 때보다 이종(異種)의 세정 화합물들의 조합으로 이루어진 혼합물을 세정제로서 사용할 때 더욱 우수한 세정 효과가 얻어짐을 확인할 수 있었다. 따라서, 더욱 상세하게는 이종의 세정 화합물들의 둘 또는 그 이상의 혼합물을 세정제로서 사용한다.
이때, 혼합 세정 화합물들의 상호 비율은 중량 기준으로 1:99 내지 99:1이며, 상세하게는 5:95 내지 95:5의 범위내일 수 있다.
이러한 세정제의 함량은 앞서의 설명과 같이 0.5 내지 60 중량부이며, 0.5 중량부보다 적으면 충분한 세정력을 얻기 어려우며, 60 중량부보다 많으면 금형 표면에 잉여의 세정제가 얼룩자국을 남기면서 또 다른 오염원으로 작용하는 문제점이 있으므로, 바람직하지 않다.
한편, 본 출원의 발명자들은, 상기 세정제에 더해 세정 보조제를 더 포함하는 경우, 그 세정력이 더욱 향상되는 것을 확인하였다. 따라서, 상기 고무 조성물은 세정 보조제를 더 포함할 수 있으며, 이러한 세정 보조제는 상세하게는, 비이온성 계면 활성제일 수 있다.
하나의 예에서, 상기 비이온성 계면활성제는, C23H38N2O8의 분자식을 갖는 알킬아민 에톡시레이트계 화합물일 수 있다. 상기 C23H38N2O8의 분자식을 갖는 알킬아민 에톡시레이트계 화합물은 가역 계면활성을 가지는 물질로 가성용액에서는 이들의 아민 에톡시레이트가 계면 활성제로서 역할을 수행하나, 산성 용액에서는 그들은 그 계면활성을 잃는 특성이 있다. 이러한 특성은 수성 물질로부터 유화된 오일을 분리시키는 것을 쉽게 하는 역할을 하므로 상기 화합물은 주로 산업용 세탁이나, 금속 세정에 사용될 수 있는 것으로 알려져 있다.
또 하나의 예에서, 상기 비이온성 계면활성제는, 하기 식 1의 알킬페놀 에톡시레이트계 화합물일 수 있고, 상세하게는 하기 R이 탄소수 8개인 옥틸페놀 에톡시레이트계 화합물일 수 있으며, 하기 x는 3 내지 10의 정수일 수 있다.
Figure PCTKR2015007971-appb-I000001
(1)
상기 식에서,
R은 탄소수 4 내지 10개의 알킬이고, x는 1 내지 55의 정수이다.
이러한 상기 식 1의 알킬페놀 에톡시레이트계 화합물은 습윤성과 세정성, 수성에 대한 오일의 유화성을 갖는 물질로서, 넓은 범위의 온도에서 사용될 수 있고, 액상, 페이스트, 파우더 형태 등 모든 형태의 세정 화합물에 사용될 수 있는 특성이 있다. 따라서, 상기 화합물은 부드러운 형태의 가정용 세제에서 중장비 산업 제품에 이르기까지 다양한 산업용 세정에 사용될 수 있고, 특히, 단단한 표면과 금속의 세정에 있어 우수한 효과를 갖는 것으로 알려져 있다.
또 하나의 예에서, 상기 비이온성 계면활성제는, C12H30O2의 분자식을 갖는 알코올 알콕시레이트계 화합물일 수 있고, 상세하게는, 하기 식 2의 물질일 수 있다.
[CH3CH2OCH2(CH2)6CH2OH]*[CH4]*[CH4] (2)
상기 C12H30O2의 분자식을 갖는 알코올 알콕시레이트계 화합물은, 뛰어난 성능 및 공정성을 갖는 수용성의 비이온성 계면활성제로서, 우수한 습윤성과 세정성, 및 빠른 용해속도의 특성을 갖는다. 이러한 특성으로 인해, 상기 화합물은 단단한 표면과 금속의 세정제, 탈지제뿐 아니라, 가정용 세제에서 산업용 세탁제까지 다양한 산업분야에서 사용될 수 있는 것으로 알려져 있다.
이와 같은 상기 세정 보조제는, 세정제와의 어떠한 상호작용을 일으키는지 등의 명확한 메커니즘을 알 수는 없으나, 상기 세정제와 함께 사용됨으로써, 이후 기재한 실험예에서 볼 수 있듯이, 이들의 첨가량에 비해 세정력이 현저하게 향상됨을 알 수 있다. 따라서, 상기 세정 보조제를 포함하는 본 발명에 따른 고무 조성물은, 종래 고무 조성물에 비해 세정제의 사용량을 줄이더라도, 더 우수하거나, 비슷한 세정력을 가질 수 있는 장점을 가진다.
이러한 상기 세정 보조제의 함량은 0.1 내지 7 중량부이며, 상세하게는, 0.5 내지 3 중량부일 수 있다. 0.1 중량부보다 적으면 상기 향상된 세정력을 얻기 어려우며, 7 중량부보다 많으면 오히려 다른 오염원으로 작용할 수 있는 한편, 세정력이 더 이상 향상되지 않으므로 바람직하지 않다.
이러한 상기 세정제 및 세정 보조제 중 적어도 하나는 이후에 더욱 상세히 설명할 무기 충진제 및 흡착제에 도포된 상태, 또는 함침된 상태, 또는 도포 및 함침된 상태로 포함될 수 있는데, 이는, 주로 액상의 상태로 존재하는 세정제 또는 세정 보조제가 미가교 고무에 균일하게 혼련되기 어렵기 때문이다.
나아가, 본 출원의 발명자들은, 상기 세정제, 및 세정 보조제에 더해 물 및/또는 메탄올, 에탄올 등의 알코올계 물질인 팽창제를 더 포함하는 경우, 그 세정력이 더욱 향상되는 것을 확인하였다.
세정 작업은 일반적으로, 상기 고무 조성물로 제조된 금형 세정용 단위체를 금형 상에 위치시키고, 150 내지 200℃의 온도와 15 kgf/cm2 내지 100 kgf/cm2의 압력을 2 내지 10 분 동안 가하여 상기 단위체를 금형 내의 형상으로 경화시킴으로써 수행된다. 이때, 상기 팽창제를 세정제와 함께 첨가하는 경우, 세정력을 더욱 향상시킬 수 있는데, 이는 세정 작업시 단위체에 가하는 온도가 상기 팽창제의 끓는점보다 높으므로 끓는점 이상의 온도에서 팽창제가 기화되면서 단위체 내부에 존재하던 세정제를 표면으로 용출시키는 현상, 즉 블루밍(blooming) 효과를 촉진시키기 때문인 것으로 추측된다. 즉, 상기 세정제만을 사용하는 경우에는 내부에 존재하여 오염물질에 효과적으로 작용하지 못하던 세정제까지 표면으로 용출되어 오염물질에 접촉할 수 있기 때문이다.
이와 같은 팽창제가 본 발명에 따른 고무 조성물에 더 포함되는 경우, 팽창제의 함량은 미가교 고무 100 중량부를 기준으로 1 내지 10 중량부일 수 있다. 1 중량부보다 적으면 상기 효과를 얻기 어려우며, 10 중량부보다 많으면 혼련작업이 어렵고, 금형 표면을 오염시키는 문제점이 있으므로, 바람직하지 않다.
더 나아가, 본 출원의 발명자들은, 세정제 및 세정 보조제와 함께, 염산, 황산, 질산, 브롬산 등의 강산이나 수산화나트륨, 수산화칼륨 등의 강알칼리를 병용 사용하는 경우, 더욱 강화된 세정 효과가 얻어짐을 확인하였다. 세정제와 함께 첨가된 강산 또는 강염기(이하에서는, 때때로, "세정 촉매"로 칭하기도 함)는 세정 과정에서 촉매로서의 역할을 하는 것으로 추측된다. 즉, 세정제 및 세정 보조제 성분만을 포함하는 금형 세정용 고무 조성물에서는, 세정제가 오염물질을 직접 용해시키거나 또는 세정제가 금형과 오염물질 사이로 침투하여 이들 상호간의 부착력을 약화시킨 상태에서 오염물질이 가교된 고무에 부착되어 제거되는 방식으로 세정 과정이 진행된다. 반면에, 세정 촉매를 세정제 및 세정 보조제와 함께 사용되면, 상기 세정 촉매가 오염물질의 분쇄를 촉진시키면서 세정제 및 세정 보조제의 침투력을 강화시키므로, 결과적으로 세정력을 크게 향상시킨다.
이러한 상기 세정 촉매는 세정제 100 중량부를 기준으로 0.5 내지 20 중량부의 함량으로 포함될 수 있다. 이러한 세정 촉매로는 앞서 설명한 바와 같은 강산 또는 강염기가 선택적으로 사용될 수 있으며, 상세하게는 KOH가 사용될 수 있다.
세정촉매가 포함된 세정제의 함량 역시, 앞서의 설명과 같이 0.5 내지 60 중량부일 수 있다.
상기 경화제는, 미가교 고무가 열과 압력에 의해 가교반응이 일어나면서 경화될 때, 그러한 경화를 유도하는 역할을 하는 성분으로서, 유기 과산화물과 페놀 레진, 황 등이 사용될 수 있다. 상세하게는 유기 과산화물일 수 있고, 유기 과산화물의 종류는 반감기 온도를 고려해서 금형 온도에 따라 선택할 수 있다. 그러한 유기 과산화물은, 다음의 것으로 한정되는 것은 아니지만, 예를 들어, 2,5-디메틸-2,5-비스-(t-부틸퍼록시)(2,5-dimethyl-2,5-bis-(t-butylperoxy)), d-t-부틸퍼록사이드(d-t-butylperoxide), 2,5-디메틸-2,5-비스-(t-부틸퍼록시)-헥산(2,5-dimethyl-2,5-bis-(t-butylperoxy)-hexane), t-부틸큐밀퍼록사이드(t-buthylcumylperoxide), 비스-(t-부틸퍼록시-i-프로필)-벤젠(bis-(t-buthylperoxy-i-propyl)-benzene), 디큐밀퍼록사이드(dicumylperoxide), 4,4-디-t-부틸퍼록시-n-부틸발레레이트(4,4-di-t-buthylperoxy-n-buthylvalerate), t-부틸퍼록시벤조에이트(t-buthylperoxybenzoate),1,1-디-t-부틸퍼록시-3,3,5-트리메틸시클로헥산(1,1-di-t-buthylperoxy-3,3,5-trimethylcyclohexane), 디벤조일퍼록사이드(di-benzoylperoxide), 비스-(2,4-디클로로벤조일)-퍼록사이드(bis- (2,4-dichlorobenzoyl)-peroxide) 등이 사용될 수 있다. 이 중, 비스-(t-부틸퍼록시-i-프로필)벤젠과 4,4-디-t-부틸퍼록시-n-부틸발레레이트는 에틸렌-프로필렌 디엔 모노머(EPDM)와부틸고무(BR)의 혼합 고무 세정 조성물에 특히 바람직하다.
이러한 경화제의 함량은, 앞서의 설명과 같이, 미가교 고무 100 중량부를 기준으로, 0.5 내지 10 중량부이며, 0.5 중량부보다 적으면 경화 개시 또는 경화속도의 촉진을 이룰 수 없고, 10 중량부보다 많으면 과도한 가교가 발생하여 인열강도(tear strength)가 크게 떨어지는 등 기계적 물성이 전반적으로 저하되는 문제점이 있으므로, 바람직하지 않다.
상기 무기 충진제는 더욱 우수한 점성도 증가에 따른 조성물 성분들의 균형 유지를 증가시키는 역할을 하는 성분이다. 즉, 미가교 고무에 왁스나 세정제를 첨가함으로써 조성물의 점성도(viscosity)가 낮아지는데, 무기 충진제를 첨가하여, 무니 점성도(Mooney viscosity)를 증가시켜, 여러 성분들의 균형을 유지시킬 수 있다. 이러한 무기 충진제의 예로는, 실리카, 탈크, 알루미나, 탄산칼륨, 탄산칼슘, 수산화 알루미늄, 산화티탄, 카본블랙 등을 들 수 있다.
경우에 따라서는, 본 발명에 따른 고무 조성물은 세정 작업(본 발명에 따른 고무 조성물로 만들어진 금형 고무 시트를 금형에 넣고 열과 압력을 가하는 작업)이나 이형 작업(본 발명에 따른 고무 조성물로 만들어진 금형 이형 고무 시트를 금형에 넣고 열과 압력을 가하는 작업)에서 발생하는 각종 냄새 성분과 연기 성분들을 흡착하여 제거하기 위해 흡착제를 또한 포함할 수 있다.
이러한 흡착제는, 상기 냄새 및 연기 성분들에 대해 높은 흡착력과 큰 비표면적을 가진다. 작업시 발생하는 냄새와 연기는, 예를 들어, 경화제의 분해, 및 세정제의 분해 등 다양한 요인들에 의해 불가피하게 발생하게 되는데, 본 발명에 따른 조성물에는 미세한 세공과 큰 비표면적을 가진 흡착제가 첨가되어 있으므로 이로 인한 문제점을 해결할 수 있다. 흡착제는 상세하게는 적어도 200 ㎡/g 이상의 비표면적을 가진다. 또한, 미세한 세공을 많이 가지고 있는 것이 더욱 우수한 흡착력을 발휘할 수 있다.
상기 흡착제의 예로는 클레이(진흙), 실리카겔, 활성탄, 제올라이트, 이온교환수지, 산성백토 등을 들 수 있으며, 경우에 따라서는 이들의 둘 또는 그 이상의 혼합물의 형태로 사용될 수 있다. 이중 본 발명에 사용되는 상기 흡착제는, 상세하게는, 유색이 아니면서 200 ㎡/g 이상의 비표면적을 가지고 있는 제올라이트, 실리카겔, 또는 산성백토일 수 있고, 더욱 상세하게는, 미분말 실리카겔 또는 제올라이트일 수 있다. 미분말 실리카겔은 실리카겔의 입자크기를 미리미터(㎜) 단위에서 마이크론미터(㎛) 단위로 분쇄시켜 미가교 고무와의 혼련문제를 해결할 수 있고, 제올라이트 X type과 제올라이트 Y type은 비표면적(대략 500 ㎡/g 이상)이 크지만 고가이므로 제올라이트 A type과 혼합 사용하여 본 발명 조성물의 제조비용을 낮출 수도 있다. 한편, 활성탄과 이온교환수지는 매우 큰 비표면적(대략 600 ㎡/g 이상)을 가지고 있으므로 흡착력이 우수한 반면에 각각 검은 색상과 고가이므로, 다른 흡착제 성분들과 병용하여 사용하는 것이 바람직하다.
이러한 흡착제는 무기 충진제의 역할도 동시에 수행하게 되고, 흡착제 및 무기 충진제의 함량은 미가교 고무 100 중량부를 기준으로 5 내지 110 중량부일 수 있다.
이 밖에도 본 발명에 따른 고무 조성물에는 그것의 물성을 손상시키지 않는 범위 내에서 기타의 화합물(들) 또는 혼합물(들)을 추가로 참가할 수도 있다.
도 1은 종래 고무 조성물의 이형 고무 메커니즘 및 논-필(non-fill)성을 나타낸 모식도이다;
도 2는 도 1의 과정에서 금형으로부터 탈형된 가교 고무를 나타낸 사진이다;
도 3는 도 1의 과정을 통해 코팅된 금형을 통해 EMC 제품을 제조하는 과정 및 논-필성에 기인한 EMC 제품의 불량을 나타낸 모식도이다;
도 4는 본 발명의 하나의 실시예에 따른 충진성과 탈형성이 우수한 고무 조성물의 이형 고무 메커니즘을 나타낸 모식도이다;
도 5는 도 4의 과정에서 금형으로부터 탈형된 가교고무를 나타낸 사진이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 4에는 본 발명의 하나의 실시예에 따른 충진성과 탈형성이 우수한 고무 조성물의 이형 고무 메커니즘을 나타낸 모식도가 도시되어 있고, 도 5에는 도 4의 과정에서 금형으로부터 탈형된 가교고무를 나타낸 사진이 도시되어 있다.
도 4 내지 도 5를 참조하면, 금형(210) 내에 미가교 고무(221) 및 코팅성분(222)을 포함하는 이형 고무 조성물(220)을 배치한 뒤, 약 175 내지 180℃의 온도에서 경화시켜 가교 반응을 진행시키고, 가교 고무(230)를 제거하면 금형(210) 내부가 코팅성분(222)으로 코팅된다.
이때, 종래의 고무 조성물과 달리, 금형 내부에 만입되어 있는 부분(210a)들까지도 고무 조성물이 충분히 채워지는 바, 논-필 현상이 일어나지 않고, 탈형성이 우수하여 도 5에 도시된 바와 같이 깔끔한 형태의 가교 고무가 금형으로부터 탈형된다.
이하 실시예를 참조하여 본 발명의 구체적인 내용을 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 200 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 왁스(폴리에틸렌 80 g, 슬립제 20g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.87이고, 용융온도는 60℃이다.
<실시예 2>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 아크릴산 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-메타아크릴산 공중합체(EMAA)의 아이오노머 200 g을 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌- 메타아크릴산 공중합체(EMAA)의 아이오노머 밀도는 0.95이고, 용융온도는 70℃이다.
<실시예 3>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 메타크릴산 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-메타크릴산 공중합체(EMA) 200 g을 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-메타크릴산 공중합체(EMA)의 밀도는 0.94이고, 용융온도는 72℃이다.
<실시예 4>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 비닐아세테이트 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-비닐아세테이트 공중합체(EVA) 200 g을 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-비닐아세테이트 공중합체(EVA)의 밀도는 0.95이고, 용융온도는 75℃이다.
<실시예 5>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌-부틸렌 공중합체 200 g을 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-부틸렌 공중합체의 밀도는 0.88이고, 용융온도는 64℃이다.
<실시예 6>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 300 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 왁스(폴리에틸렌 80 g, 슬립제 20g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.87이고, 용융온도는 59℃이다.
<실시예 7>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 100 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 왁스(폴리에틸렌 80 g, 슬립제 20g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.885이고, 용융온도는 80℃이다.
<비교예 1>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다.
<비교예 2>
상기 실시예 1에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 저밀도 폴리에틸렌(LDPE)를 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다. 이때, 상기 저밀도 폴리에틸렌(LDPE)의 밀도는 0.921이고, 용융온도는 110℃이다.
<비교예 3>
상기 실시예 1에서 고분자 첨가물로써 초저밀도 폴리에틸렌(VLDPE) 대신하여 밀도는 0.93이고, 용융온도는 110℃인 에틸렌-메타아크릴산 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 혼련물을 제조하였다.
<비교예 4>
상기 실시예 6에서 초저밀도 폴리에틸렌(VLDPE) 400 g을 사용한 것을 제외하고는 실시예 6과 동일하게 혼련물을 제조하였다.
<비교예 5>
상기 실시예 6에서 초저밀도 폴리에틸렌(VLDPE) 20 g을 사용한 것을 제외하고는 실시예 6과 동일하게 혼련물을 제조하였다.
<실시예 8>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 200 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 혼합 세정제(모노에탄올아민(MEA) 30 g, N-메틸피롤리돈(NMP) 25 g, 디메틸 술폭사이드(DMSO) 35 g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.87이고, 용융온도는 60℃이다.
<실시예 9>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 아크릴산 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-메타아크릴산 공중합체(EMAA)의 아이오노머 200 g을 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌- 메타아크릴산 공중합체(EMAA)의 아이오노머 밀도는 0.95이고, 용융온도는 70℃이다.
<실시예 10>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 메타크릴산 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-메타크릴산 공중합체(EMA) 200 g을 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-메타크릴산 공중합체(EMA)의 밀도는 0.94이고, 용융온도는 72℃이다.
<실시예 11>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌 단량체와 비닐아세테이트 단량체를 9 : 1의 중량비로 반응하여 생성한 에틸렌-비닐아세테이트 공중합체(EVA) 200 g을 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-비닐아세테이트 공중합체(EVA)의 밀도는 0.95이고, 용융온도는 75℃이다.
<실시예 12>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 에틸렌-부틸렌 공중합체 200 g을 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다. 이때, 상기 에틸렌-부틸렌 공중합체의 밀도는 0.88이고, 용융온도는 64℃이다.
<실시예 13>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 300 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 혼합 세정제(모노에탄올아민(MEA) 30 g, N-메틸피롤리돈(NMP) 25 g, 디메틸 술폭사이드(DMSO) 35 g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.87이고, 용융온도는 59℃이다.
<실시예 14>
부타디엔 고무(BR) 700 g에, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 300 g, 초저밀도 폴리에틸렌(VLDPE) 100 g을 혼합하여 첨가하고, 경화제(4,4-디-t-부틸퍼록시-n-부틸발레이트 30 g)와 무기 충진제(실리카 300 g, 산화티타늄 50 g), 및 혼합 세정제(모노에탄올아민(MEA) 30 g, N-메틸피롤리돈(NMP) 25 g, 디메틸 술폭사이드(DMSO) 35 g)를 니이더(Kneader)와 롤 밀(Roll mill)에서 혼련하였다. 이때, 상기 초저밀도 폴리에틸렌(VLDPE)의 밀도는 0.885이고, 용융온도는 80℃이다.
<실시예 15>
상기 실시예 8에서 보조 세정제(Triton RW 10 g)를 무기 충진제에 도포 및 함침시켜 투입한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다.
<실시예 16>
상기 실시예 15에서 보조 세정제로서, Triton XL-80N 10 g을 사용한 것을 제외하고는 실시예 15와 동일하게 혼련물을 제조하였다.
<실시예 17>
상기 실시예 15에서 보조 세정제로서, Triton X-100 10 g을 사용한 것을 제외하고는 실시예 15와 동일하게 혼련물을 제조하였다.
<실시예 18>
팽창제의 효과를 확인하기 위하여, 실시예 15의 조성에 물과 에탄올을 1대 1로 혼합하여 25 g을 더 첨가하여 실시예 15와 동일하게 혼련물을 제조하였다.
<실시예 19>
세정촉매의 효과를 확인하기 위하여, 실시예 18의 조성에 세정촉매로서 KOH 5 g을 더 첨가하여 실시예 15와 동일하게 혼련물을 제조하였다.
<비교예 6>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 사용하지 않은 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다.
<비교예 7>
상기 실시예 8에서 초저밀도 폴리에틸렌(VLDPE)을 대신하여, 저밀도 폴리에틸렌(LDPE)를 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다. 이때, 상기 저밀도 폴리에틸렌(LDPE)의 밀도는 0.921이고, 용융온도는 110℃이다.
<비교예 8>
상기 실시예 8에서 고분자 첨가물로써 초저밀도 폴리에틸렌(VLDPE) 대신하여 밀도는 0.93이고, 용융온도는 110℃인 에틸렌-메타아크릴산 공중합체를 사용한 것을 제외하고는 실시예 8과 동일하게 혼련물을 제조하였다.
<비교예 9>
상기 실시예 13에서 초저밀도 폴리에틸렌(VLDPE) 400 g을 사용한 것을 제외하고는 실시예 13과 동일하게 혼련물을 제조하였다.
<비교예 10>
상기 실시예 13에서 초저밀도 폴리에틸렌(VLDPE) 20 g을 사용한 것을 제외하고는 실시예 13과 동일하게 혼련물을 제조하였다.
<실험예 1>
상기 실시예 1 내지 7, 및 비교예 1 내지 5에서 제조된 혼련물을 실험용 금형(MQFP 28 x 28)에 장입하고 180℃에서 60 kg/cm2 압력으로 450 초간 경화시키면서, 금형에 대한 이형작업을 30회 수행하였다.
이러한 이형 작업시 논-필 현상이 일어난 횟수를 측정하고, 그 결과를 하기 표 1에 개시하였다.
비고 횟수 비고 횟수
실시예 1 0 실시예 7 2
실시예 2 2 비교예 1 12
실시예 3 0 비교예 2 제품 생성 불가-스코치 발생
실시예 4 1 비교예 3 제품 생성 불가-스코치 발생
실시예 5 2 비교예 4 이형성 부족으로 인한 제품의 몰드내 접착력 상승. 제품 제거시 찢어짐
실시예 6 1 비교예 5 10
<실험예 2>
상기 실시예 1 내지 7, 및 비교예 1 내지 5에서 제조된 혼련물을 실험용 금형(MQFP 28 x 28)에 장입하고 180℃에서 60 kg/cm2 압력으로 450 초간 경화시키면서, 금형에 대한 이형작업을 30회 수행하였다.
이러한 이형 작업시 탈형이 되지 않는 횟수를 측정하고, 그 결과를 하기 표 2에 개시하였다.
비고 횟수 비고 횟수
실시예 1 0 실시예 7 2
실시예 2 0 비교예 1 11
실시예 3 0 비교예 2 제품 생성 불가-스코치 발생
실시예 4 0 비교예 3 제품 생성 불가-스코치 발생
실시예 5 0 비교예 4 이형성 부족으로 인한 제품의 몰드내 접착력 상승. 제품 제거시 찢어짐
실시예 6 0 비교예 5 10
상기 표 1, 2를 참조하면, 비교예 2 및 3을 사용한 경우의 실험결과를 통해, 용융온도가 100℃ 초과인 첨가물을 사용할 경우, 이형 고무의 생성이 불가능함을 확인할 수 있다.
또한, 실시예 1 내지 7의 경우, 고분자 첨가물을 사용하지 않은 비교예 1에 비해, 충진성 및 탈형성이 현저히 향상됨을 볼 수 있다.
나아가, 본 발명의 함량 범위를 만족하지 못하는 비교예 4의 경우, 이형성이 부족하여, 제품의 생성이 어렵고, 비교예 5의 경우, 비교예 1에 비해서는 충진성 및 탈형성이 어느정도 향상됨을 확인할 수 있으나, 실시예 1 내지 7에 비해 현저히 떨어지는 충진성 및 탈형성을 나타냄을 확인할 수 있다.
<실험예 3>
상기 실시예 8 내지 14, 및 비교예 6 내지 10에서 제조된 혼련물을 에폭시 몰딩 컴파운드(EMC)로 오염된 실험용 금형(MQFP 28 x 28)에 장입하고 180℃에서 60 kg/cm2 압력으로 450 초간 경화시키면서, 금형에 대한 세정 작업을 수행하였다.
이러한 세정 작업시 논-필 현상이 일어난 횟수를 측정하고, 그 결과를 하기 표 3에 개시하였다.
비고 횟수 비고 횟수
실시예 8 0 실시예 7 14
실시예 9 2 비교예 6 12
실시예 10 0 비교예 7 제품 생성 불가-스코치 발생
실시예 11 1 비교예 8 제품 생성 불가-스코치 발생
실시예 12 2 비교예 9 4
실시예 13 1 비교예 10 10
<실험예 4>
상기 실시예 8 내지 19, 및 비교예 6 내지 10에서 제조된 혼련물을 에폭시 몰딩 컴파운드(EMC)로 오염된 실험용 금형(MQFP 28 x 28)에 장입하고 180℃에서 60 kg/cm2 압력으로 450 초간 경화시키면서, 금형에 대한 세정 작업을 수행하였다. 이러한 작업은 금형에 대한 오염물이 완전히 제거될 때까지 반복하였다.
이러한 세정 작업시 자극적인 냄새와 연무의 발생 정도를 확인하고, 금형의 오염물에 대한 세정력을 확인하여 그 결과를 하기 표 4에 개시하였다. 하기 결과는 같은 방법을 5번 수행하여 평균 낸 것이다.
세정력 실시예19≥실시예18>실시예17≥실시예16≥실시예15>실시예8∼실시예14>비교예6>비교예10>비교예9
냄새 연기 실시예19≥실시예15∼실시예17>실시예8∼실시예14>비교예6,비교예9,비교예10 (실시예18은 연기발생은 많았으나, 냄새는 없음.)
상기 표 3을 참조하면, 비교예 7 및 8을 사용한 경우의 실험결과를 통해, 용융온도가 100℃ 초과인 첨가물을 사용할 경우, 세정 고무의 생성이 불가능함을 확인할 수 있다.
또한, 실시예 8 내지 14의 경우, 고분자 첨가물을 사용하지 않은 비교예 6에 비해, 충진성 및 세정력이 현저히 향상됨을 볼 수 있다.
나아가, 본 발명의 함량 범위를 만족하지 못하는 비교예 9의 경우, 세정력이 부족하여, 세정 고무로서의 역할을 수행하기 어렵고, 비교예 10의 경우, 비교예 6에 비해서는 충진성 및 세정력이 어느정도 향상됨을 확인할 수 있으나, 실시예 8 내지 14에 비해 현저히 떨어지는 충진성 및 세정력을 나타냄을 확인할 수 있다.
더욱이, 실시예 15 내지 19와 같이 세정 보조제를 사용하는 경우, 세정 작업시 발생하는 냄새 및 연무의 발생이 없고, 팽창제 또는 세정 촉매가 포함되지 않은 실시예 15 보다는, 이들을 포함하는 실시예 18 및 19에 따른 고무 조성물을 사용한 경우의 세정력이 더욱 우수함을 알 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로, 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
본 발명의 고무 조성물은 특정한 성분들의 조합에 의해 고무 조성물의 금형 내 이동성을 향상시킴으로써, 결과적으로, 충진성이 향상되어 종래 기술이 가지는 논-필 현상의 문제점을 해결하고, 이형 고무의 탈형성이 우수한 효과를 제공하는 바, 금형의 이형성을 향상시킬 뿐만 아니라, 가교된 고무로부터 세정제가 빠져나오는 속도를 향상시킴으로써 세정력을 더욱 향상시키는 효과를 발휘한다.

Claims (17)

  1. 성형용 금형의 이형성을 향상시키기 위한 고무 조성물로서,
    부타디엔 고무(BR) 60 내지 100 중량부, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 0 내지 40 중량부와 용융온도(Tm)가 100℃ 이하인 고분자 첨가물 5 내지 40 중량부를 포함하고 있는 미가교 고무; 및
    상기 미가교 고무 100 중량부를 기준으로, 왁스 5 내지 60 중량부, 경화제 0.5 내지 10 중량부와, 무기 충진제 및 흡착제 5 내지 110 중량부;
    를 포함하는 것을 특징으로 하는 고무 조성물.
  2. 부타디엔 고무(BR) 60 내지 100 중량부, 에틸렌-프로필렌 디엔 모노머 고무(EPDM) 0 내지 40 중량부와 용융온도(Tm)가 100℃ 이하인 고분자 첨가물 5 내지 40 중량부를 포함하고 있는 미가교 고무; 및
    상기 미가교 고무 100 중량부를 기준으로, 세정제 5 내지 60 중량부, 경화제 0.5 내지 10 중량부와, 무기 충진제 및 흡착제 5 내지 110 중량부;
    를 포함하는 것을 특징으로 하는 고무 조성물.
  3. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 미가교 고무에는 고분자 첨가물이 10 내지 30 중량부로 포함되어 있는 것을 특징으로 하는 고무 조성물.
  4. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 고분자 첨가물은 용융온도가 90℃ 이하인 것을 특징으로 하는 고무 조성물.
  5. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 고분자 첨가물은, 폴리올레핀계 탄성중합체, 또는 폴리올레핀용 단량체와 아크릴산 단량체로 이루어진 공중합체(copolymer) 및 이의 아이오노머(ionomer) 또는 폴리올레핀용 단량체와 아크릴레이트 단량체로 이루어진 공중합체(copolymer)인 것을 특징으로 하는 고무 조성물.
  6. 제 5 항에 있어서, 상기 폴리올레핀계 탄성중합체는, 초저밀도 폴리에틸렌(VLDPE); 폴리부텐; 폴리-4-메틸-1-펜텐(TPX); 프로필렌, 부텐, 헥센 및/또는 옥텐과 에틸렌의 공중합체; 및 올레핀계 열가소성 탄성체로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 고무 조성물.
  7. 제 5 항에 있어서, 상기 공중합체는 에틸렌-아크릴산 공중합체(EAA), 에틸렌-메타아크릴산 공중합체(EMAA), 에틸렌-메타아크릴산 공중합체의 아이오노머(ionomer), 에틸렌-메타크릴산 공중합체(EMA), 에틸렌-에틸아크릴레이트 공중합체(EEA), 에틸렌-알킬아크릴레이트-아크릴산 공중합체, 에틸렌-알킬메타아크릴레이트-메타아크릴산 공중합체, 에틸렌-부틸아크릴레이트 공중합체(EBA), 에틸렌-비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 고무 조성물.
  8. 제 5 항에 있어서, 상기 공중합체는, 공중합체 100 중량%를 기준으로 폴리올레핀용 단량체 60 내지 96 중량% 및 아크릴산 또는 아크릴레이트계 또는 비닐아세테이트계 단량체 4 내지 40 중량%의 반응으로 얻어진 것을 특징으로 하는 고무 조성물.
  9. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 고분자 첨가물은 에틸렌-프로필렌 공중합체 또는 에틸렌-부틸렌 공중합체인 것을 특징으로 하는 고무 조성물.
  10. 제 1 항에 있어서, 상기 왁스는 200 내지 3000의 중량평균 분자량을 가진 폴리에틸렌 및 슬립제가 혼합된 형태인 것을 특징으로 하는 고무 조성물.
  11. 제 2 항에 있어서, 상기 세정제는 이종의 세정 화합물들의 혼합물인 것을 특징으로 하는 고무 조성물.
  12. 제 2 항에 있어서, 상기 고무 조성물은 세정 보조제를 더 포함하는 것을 특징으로 하는 고무 조성물.
  13. 제 2 항에 있어서, 상기 고무 조성물은 팽창제를 더 포함하는 것을 특징으로 하는 고무 조성물.
  14. 제 2 항에 있어서, 상기 고무 조성물은 강산 또는 강알칼리의 세정 촉매를 더 포함하는 것을 특징으로 하는 고무 조성물.
  15. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 경화제는 유기 과산화물인 것을 특징으로 하는 고무 조성물.
  16. 제 1 항 또는 제 2 항 중 어느 한 항에 있어서, 상기 무기 충진제는 실리카, 탈크, 알루미나, 탄산칼륨, 탄산칼슘, 수산화 알루미늄, 산화티탄, 카본블랙로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 고무 조성물.
  17. 제 1 항 또는 제 2 항 중 어느 한 항에 따른 고무 조성물로 제조되는 것을 특징으로 하는 금형 이형 고무 시트.
PCT/KR2015/007971 2015-04-17 2015-07-30 충진성이 우수한 고무 조성물 WO2016167415A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150054172A KR101712356B1 (ko) 2015-04-17 2015-04-17 충진성 및 탈형성이 우수한 이형 고무 조성물
KR10-2015-0054172 2015-04-17
KR1020150080928A KR101667564B1 (ko) 2015-06-09 2015-06-09 충진성 및 세정력이 우수한 세정 고무 조성물
KR10-2015-0080928 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016167415A1 true WO2016167415A1 (ko) 2016-10-20

Family

ID=57125929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007971 WO2016167415A1 (ko) 2015-04-17 2015-07-30 충진성이 우수한 고무 조성물

Country Status (4)

Country Link
JP (1) JP6628222B2 (ko)
CN (1) CN106046447B (ko)
TW (1) TWI664065B (ko)
WO (1) WO2016167415A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153071B1 (ko) * 1995-12-28 1998-12-01 유현식 내열성과 내후성이 우수한 열가소성 수지조성물
US20030175449A1 (en) * 2001-08-22 2003-09-18 Gerald Edson Waterproof, durable products made from recycled rubber products
JP2007530746A (ja) * 2004-03-29 2007-11-01 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ 細分化された形にある加硫ゴムを含む熱可塑性エラストマー材料
KR20100033540A (ko) * 2007-07-17 2010-03-30 다우 글로벌 테크놀로지스 인크. 높은 escr을 나타내고 모노비닐리덴 방향족 중합체 및 에틸렌/알파―올레핀 공중합체를 포함하는 조성물
KR20100138878A (ko) * 2008-03-31 2010-12-31 닛뽕 카바이도 고교 가부시키가이샤 금형 이형 회복용 고무계 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633101B2 (ja) * 1991-04-12 1997-07-23 日東電工株式会社 金型再生用組成物
EP0757077A1 (en) * 1995-08-01 1997-02-05 Advanced Elastomer Systems, L.P. Very soft thermoplastic elastomer compositions
JP3764239B2 (ja) * 1996-12-10 2006-04-05 日東電工株式会社 半導体装置成形用金型洗浄剤組成物およびそれを用いた金型クリーニング方法
CN100473686C (zh) * 2004-07-28 2009-04-01 纳拉化学株式会社 模具洗净及脱模用橡胶组合物
JP6116789B2 (ja) * 2009-07-17 2017-04-19 日立化成株式会社 半導体装置成形用金型洗浄シートおよびそれを用いた半導体装置成形用金型のクリーニング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153071B1 (ko) * 1995-12-28 1998-12-01 유현식 내열성과 내후성이 우수한 열가소성 수지조성물
US20030175449A1 (en) * 2001-08-22 2003-09-18 Gerald Edson Waterproof, durable products made from recycled rubber products
JP2007530746A (ja) * 2004-03-29 2007-11-01 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ 細分化された形にある加硫ゴムを含む熱可塑性エラストマー材料
KR20100033540A (ko) * 2007-07-17 2010-03-30 다우 글로벌 테크놀로지스 인크. 높은 escr을 나타내고 모노비닐리덴 방향족 중합체 및 에틸렌/알파―올레핀 공중합체를 포함하는 조성물
KR20100138878A (ko) * 2008-03-31 2010-12-31 닛뽕 카바이도 고교 가부시키가이샤 금형 이형 회복용 고무계 조성물

Also Published As

Publication number Publication date
CN106046447A (zh) 2016-10-26
CN106046447B (zh) 2020-05-19
JP2016204624A (ja) 2016-12-08
TW201637808A (zh) 2016-11-01
TWI664065B (zh) 2019-07-01
JP6628222B2 (ja) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2016190722A1 (ko) 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
US5256734A (en) Polypropylene resin composition and method for manufacturing coated molded article of the resin composition
WO2013100409A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2019151812A1 (ko) 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2011008051A2 (ko) 구리 또는 구리합금용 레지스트 제거용 조성물
WO2017026803A1 (ko) Lcd 제조용 포토레지스트 박리액 조성물
CN112898687A (zh) 一种半导体封装模具用清模材料及其制备方法
WO2016167415A1 (ko) 충진성이 우수한 고무 조성물
WO2024128530A1 (ko) 기압을 이용한 고분자 분리막의 제조 방법
WO2017078332A1 (ko) 3차원 조형물의 형성 방법
WO2011014027A2 (ko) 세정액 조성물 및 이를 이용한 패널의 세정방법
WO2019147103A1 (ko) 전력이 공급중인 전기 및 전자통신장비에 화재발생의 위험 없이 사용 가능한 세정제 조성물 및 이를 이용한 세정 장치
WO2017018690A1 (ko) 몰드 클리닝 컴파운드 및 반도체 패키징 금형의 클리닝 방법
WO2020153707A1 (ko) 전지 포장재
WO2018182307A1 (ko) 실리콘 질화막 식각 조성물
WO2013133570A1 (ko) 세정제가 그라프팅된 무기 필러를 포함하는 emc 몰드 세정용 조성물
KR20150116051A (ko) 세정력이 향상된 친환경 고기능성 금형 세정용 고무 조성물
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2015056954A1 (ko) 마그네슘합금의 내식성 표면처리 방법 및 이에 의해 표면처리된 마그네슘합금소재
WO2021066267A1 (ko) 점접착제용 수지 조성물 및 이의 제조방법
WO2022050506A1 (ko) 누액방지 고성능 흡습제 조성물 및 그 제조방법
WO2024117808A1 (ko) 수성 잉크
WO2022065842A1 (ko) 포토레지스트 제거용 스트리퍼 조성물 및 이를 이용한 포토레지스트의 박리방법
JPH10120965A (ja) シリコンウエハー保護膜用樹脂組成物
WO2021091308A1 (ko) 방열 시트, 이의 제조방법 및 이를 포함하는 전자기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889295

Country of ref document: EP

Kind code of ref document: A1