WO2016158898A1 - 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド - Google Patents

遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド Download PDF

Info

Publication number
WO2016158898A1
WO2016158898A1 PCT/JP2016/060011 JP2016060011W WO2016158898A1 WO 2016158898 A1 WO2016158898 A1 WO 2016158898A1 JP 2016060011 W JP2016060011 W JP 2016060011W WO 2016158898 A1 WO2016158898 A1 WO 2016158898A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
fluorescently labeled
labeled oligo
genotype
gene
Prior art date
Application number
PCT/JP2016/060011
Other languages
English (en)
French (fr)
Inventor
正裕 山口
蔵田 信也
則夫 小松
総司 森下
Original Assignee
日鉄住金環境株式会社
学校法人順天堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金環境株式会社, 学校法人順天堂 filed Critical 日鉄住金環境株式会社
Priority to EP16772779.1A priority Critical patent/EP3279338A4/en
Priority to CN201680008756.8A priority patent/CN107406879A/zh
Priority to US15/563,419 priority patent/US20180087096A1/en
Publication of WO2016158898A1 publication Critical patent/WO2016158898A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to an oligonucleotide, a method for specifically amplifying a nucleic acid using the oligonucleotide, a measuring method, and a method for analyzing data obtained by the method.
  • the present invention relates to a specific amplification method that suppresses amplification of a target nucleic acid by performing a nucleic acid amplification reaction while the oligonucleotide is hybridized to the target nucleic acid, and various measurement methods for various nucleic acids using the fluorescently labeled oligo.
  • the present invention relates to various measurement methods for various nucleic acids based on the principle of measuring the amount of decrease in emission of fluorescent dyes before and after hybridization, which occurs when hybridized to a target nucleic acid, and oligonucleotides used therefor.
  • Gene mutation is one of the causes of cancer. Therefore, the importance of gene mutation testing using gene amplification methods such as PCR is recognized as an early detection method for cancer.
  • Genetic mutation testing is important not only for early detection of cancer, but also for decision of treatment policy.
  • An example is the determination of the efficacy of gefitinib (tyrosine kinase inhibitor) for lung cancer patients with EGFR (epidermal growth factor receptor) gene mutation.
  • gefitinib tyrosine kinase inhibitor
  • EGFR epidermal growth factor receptor
  • the genotyping method using the normal gene amplification technique has a problem as a clinical test because the detection sensitivity is low because there are many wild-type genes.
  • JAK2 gene mutation in myeloproliferative tumors has great clinical significance in measuring quantitative changes in its allele frequency, and detecting a mutated gene with a low frequency in the wild-type gene Very important for early morbidity assessment.
  • Miyano et al. Tried to detect the KRAS gene mutation by PCR-clamp method using PNA (Miyano et al., Experimental And And Therapeutic Medicine, 4: 790-794, 2012 .: Non-patent document 2).
  • amplification reaction is performed with one clamp primer, but detection is performed with SYBR Green, so it is impossible to accurately determine whether the signal is derived from the mutant gene, and accuracy is required. It is considered difficult to apply to clinical sites.
  • the present invention provides a nucleic acid-specific amplification method and measurement method using a fluorescently labeled oligo as a method capable of detecting a mutated gene in a gene group containing a lot of wild-type genes with high sensitivity, quickly and easily.
  • the purpose is to do.
  • the present inventors have repeatedly studied a specific method for amplifying a mutant gene and a subsequent method for detecting a mutant gene.
  • a nucleic acid amplification reaction was performed by hybridizing a fluorescently labeled oligo having a wild-type gene sequence to the wild-type gene
  • the mutant-type gene was preferentially amplified.
  • Mutated genes are hybridized, and the amount of change in luminescence of fluorescent dyes before and after hybridization is measured, that is, a single oligonucleotide can be used as a clamp primer and a fluorescently labeled oligo to detect mutant genes with high sensitivity. I discovered that.
  • the present invention has been completed based on such findings.
  • the present invention suppresses the amplification when a nucleic acid amplification reaction is performed after hybridizing the oligonucleotide to a wild type gene in a gene group, Provided is a technique characterized by specifically amplifying a mutant gene.
  • the present invention is an oligonucleotide that changes its luminescence when the oligonucleotide is hybridized to a specifically amplified mutant gene,
  • a method for measuring a nucleic acid characterized in that the oligonucleotide is hybridized to a mutant gene and the amount of change in luminescence of a fluorescent dye before and after hybridization is measured.
  • the fluorescent dye when the fluorescently labeled oligo is hybridized to the target nucleic acid, the fluorescent dye is an oligonucleotide that decreases its luminescence, and the oligonucleotide is any one or more of its bases.
  • the present invention provides a fluorescently labeled oligo characterized by comprising an artificial nucleic acid, and a nucleic acid measurement method using the same.
  • the gist of the present invention is as follows.
  • a method for measuring a nucleic acid for the purpose of specifically detecting a genotype to be examined for a gene or specimen that may have a plurality of gene polymorphisms, labeled with a fluorescent dye An oligonucleotide (hereinafter referred to as a fluorescently labeled oligo) hybridizes to a genotype other than the test target, thereby suppressing gene amplification of the genotype and the same fluorescently labeled oligo as described above to the same gene amplification as above.
  • the target nucleobase forming a base pair with the fluorescently labeled end is counted as 1
  • G is present in at least one base, and is hybridized with the target nucleic acid.
  • a fluorescently labeled oligo whose end is labeled with a fluorescent dye, and when the fluorescently labeled oligo is hybridized to a target nucleic acid, the base pair at the end is G (guanine) and C (cytosine) (1), wherein a base sequence is designed so as to form at least one pair of (1) and a fluorescently labeled oligo having a characteristic that fluorescence intensity decreases by hybridization with a target nucleic acid (1),
  • the method for measuring a nucleic acid according to any one of (2).
  • the number of mismatches when hybridized with a base sequence containing a genotype to be tested is larger than the number of mismatches when hybridized with a base sequence containing a genotype other than the test target
  • (1) to (4) The method for measuring a nucleic acid according to any one of the above.
  • oligonucleotides characterized by raising the dissociation temperature of nucleic acids, artificial nucleic acids 2 ', 4'-BNA coc , 3'-Amino-2', 4'-BNA, 2 ', 4' -BNA NC
  • BNA is an abbreviation for Bridged Nucleic Acid
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • TNA Threose nucleic acid
  • GNA Glycol nucleic acid
  • the gene amplification method is any one of the PCR method, the LAMP method, the NASBA method, the ICAN method, the LCR method, the Rolling Cycle method, the SMAP method, and the PALSAR method (1) to (6) )
  • a fluorescently labeled oligo whose end is labeled with a fluorescent dye, and when the fluorescently labeled oligo is hybridized to a target nucleic acid, a range of 1 to 3 bases counted from the end of the fluorescently labeled oligo
  • the base sequence is designed so that there is at least one base (G) in the base sequence of the target nucleic acid (counting the target nucleic acid base that forms a base pair with the fluorescently labeled terminal portion as 1).
  • G base
  • a fluorescently labeled oligo that can be used in the method for measuring a nucleic acid according to any one of (1) to (8).
  • a fluorescently labeled oligo whose end is labeled with a fluorescent dye, and when the fluorescently labeled oligo is hybridized to a target nucleic acid, the base pair at the end is G (guanine) and C (cytosine)
  • G guanine
  • C cytosine
  • a fluorescently labeled oligo that can be used in the method for measuring a nucleic acid according to any one of (1) to (8), wherein the base sequence is designed so as to form at least one pair of .
  • the present invention it is possible to detect a mutant gene in a gene group including a wild type gene with high sensitivity and high accuracy, and quickly and easily. That is, according to the present invention, it is possible to detect even when the content of mutant genes is about 0.1%, and the measurement time is about 1 hour.
  • the oligonucleotide since only one oligonucleotide is used, it is easy to study appropriate oligonucleotide design and conditions for a wide variety of gene mutations, and is a very versatile technique.
  • this since only one oligonucleotide is used in addition to the primer set, this is a cost-effective method.
  • it is possible to specifically detect only the gene to be examined it is recognized that this is a highly accurate technique that is suitable for clinical application.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2015-70642 which is the basis of the priority of the present application.
  • the conceptual diagram of this invention is shown.
  • the melting curve of the PCR reaction liquid of Example 1 is shown. Melting curves of solutions containing target nucleic acids with mutation rates of 0%, 0.1%, 1%, and 100% are shown as A, B, C, and D, respectively, and melting curves of solutions containing no target nucleic acid are shown as E. 3 shows a negative first derivative curve of the melting curve of FIG.
  • the negative first derivative curve of the melting curve of the PCR reaction liquid of Example 2 is shown.
  • A, B, and C are negative primary differential curves of the melting curves of the samples 1, 2, and 3 containing the target nucleic acids
  • D is a negative primary differential curve of the melting curve of the solution not containing the target nucleic acids.
  • the negative first derivative curve of the melting curve of the PCR reaction solution (using KOD plus) in Example 4 is shown. 0%, 0.1%, 0.5%, 1%, and 10% are mutation rates.
  • the negative first derivative curve of the melting curve of the PCR reaction solution of Example 4 (using TakaraTaEx Taq HS) is shown. 0%, 0.1%, 0.5%, 1%, and 10% are mutation rates.
  • wild type gene refers to a gene that has no mutation in the base sequence and includes genetic information that exhibits a normal function.
  • genetic information includes not only a transcription region encoding information such as rRNA and mRNA, but also a gene expression regulatory region such as a promoter.
  • the “mutant gene” is a gene having a mutation in the base sequence.
  • “Mutation” is a change in the base sequence of DNA or RNA, and includes genetic insertions, deletions, translocations, and the like. However, the gene function may not change as a result.
  • the target includes not only a transcription region but also a gene expression regulatory region such as a promoter.
  • target nucleic acid refers to a nucleic acid having the above-mentioned “wild type gene” and “mutant gene” base sequences, regardless of whether purification is performed or whether the concentration is large or small.
  • the fluorescently labeled oligo that can be used in the present invention, those generally used for measurement and detection of nucleic acids can be conveniently used. However, when the fluorescently labeled oligo is hybridized to the target nucleic acid, the fluorescently labeled oligo labeled with the oligonucleotide is used. A dye that changes its luminescence is preferably used. Specifically, Quenching Probe (Kurata et al., Nucleic Acids Research, Volume 29, Issue 6, e34), Universal quenching probe (Tani et al., Anal.
  • Quenching Probe and Universal Quenching Probe are nucleic acid probes that use the phenomenon that the fluorescent dye is quenched by the guanine base of the target nucleic acid when the fluorescently labeled oligo is hybridized to the target nucleic acid.
  • Molecular beacons are oligonucleotides that are labeled with a fluorescent dye at the 5 'end and a quencher substance at the 3' end, and are closely quenched by adopting a loop structure and hybridize to the target nucleic acid. It is a nucleic acid probe that emits fluorescence when it is used.
  • Simple probe is a nucleic acid probe that utilizes the phenomenon that a labeled fluorescent dye emits light when hybridized to a target nucleic acid.
  • fluorescent dyes generally labeled with Quenching Probe or Universal quenching probe and used for nucleic acid measurement / detection can be conveniently used.
  • fluorescent dye labeled on the oligonucleotide reduces the light emission when hybridized to the target nucleic acid, it is preferably used.
  • fluorescein or derivatives thereof for example, fluorescein isothiocyanate (FITC) or derivatives thereof, such as Alexa 488, Alexa532, cy3, cy5, EDANS (5- (2'-aminoethyl) amino-1 -naphthalene sulfonic acid) ⁇ , rhodamine 6G (R6G) or a derivative thereof (eg, tetramethylrhodamine (TMR), 5- (and 6) -carboxyrhodamine 6G (CR6G), tetramethylrhodamine isothiocyanate (Tetramethylrhodamine isothiocyanate) (TMRITC), x-rhodamine, Texas red, BODIPY FL (trade name: Thermo Fisher Scientific, USA), body pea (BODIPY) FL / C3 (trade name; manufactured by Thermo Fisher Scientific, USA , BODIPY FL / C6 (trade name; manufactured by
  • FITC FITC
  • EDANS 6-joe, TMR, Alexa 488, Alexa 532, BODIPY FL / C3 (trade name; manufactured by Thermo Fisher Scientific, USA), body pea (BODIPY ) FL / C6 (trade name; manufactured by Thermo Fisher Scientific, USA), etc.
  • the base sequence of the target nucleic acid in the base sequence of the target nucleic acid is counted from 1 to Desirably, G (guanine) is present in at least one base within the range of 3 bases (counting the target nucleobase forming a base pair with a fluorescently labeled terminal as 1), more preferably the terminal is G. It is better to design as there is.
  • the base pair at the end of the fluorescently labeled oligo is G (guanine) and C ( The base sequence should be designed so that at least one pair of cytosine) is formed.
  • the genotype in which the fluorescently labeled oligo suppresses amplification in a temperature range where elongation occurs generally, the PCR is extended at around 72 ° C.
  • the target nucleic acid containing a genotype that does not inhibit amplification is not so tightly bound that the amplification is suppressed. If there is a large difference in nucleotide sequence between the wild-type gene and the mutant gene, the fluorescence-labeled oligo and the target nucleic acid containing the genotype that suppresses amplification are dissociated even when using a fluorescence-labeled oligo composed only of naturally-derived DNA.
  • the dissociation temperature of the fluorescently labeled oligo decreases, and in the temperature range where elongation occurs (generally, the PCR is extended at around 72 ° C.) Since it becomes difficult to firmly bind the fluorescently labeled oligo to a target nucleic acid containing a genotype that suppresses amplification, it becomes difficult to preferentially amplify one genotype.
  • BNA is an abbreviation for Bridged Nucleic Acid
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • TNA Threose nucleic acid
  • GNA Glycol nucleic acid
  • the difference in nucleotide sequence between the wild type gene and the mutant gene is very small, and even in a situation where the fluorescently labeled oligo must be shortened, It is possible to easily realize a situation in which the target nucleic acid containing a genotype that suppresses amplification is firmly bound, but not bound to a target nucleic acid that contains a genotype that does not suppress amplification.
  • the place where the artificial nucleic acid is inserted may be a chimera oligo that is a mixture of artificial nucleic acid and natural DNA, or may be composed entirely of artificial nucleic acid.
  • nucleic acid for a base sequence portion different in a gene. From the above, it is important that the bases constituting the fluorescently labeled oligo are optimized by natural nucleic acids and artificial nucleic acids or combinations thereof according to the difference in the base sequence between the wild-type gene and the mutant gene.
  • the type of the nucleic acid is not particularly limited.
  • the “clamp primer” is an oligonucleotide having a higher dissociation temperature for a target nucleic acid containing a genotype that suppresses amplification than a dissociation temperature for a target nucleic acid containing a genotype that does not suppress amplification, The same thing is shown.
  • the number of hydrogen bonds (number of base pairs) between the clamp primer and the target nucleic acid containing the genotype that suppresses amplification is the number of hydrogen bonds (base pairs) between the clamp primer and the genotype that does not suppress amplification. It is characterized by being larger than the number).
  • the length of the clamp primer is preferably 10 to 25 bases, and the Tm value is preferably 70 to 100 ° C.
  • the concentration of the clamp primer in the amplification reaction solution is desirably 10 to 500 nM, more preferably about 20 to 200 nM.
  • the difference between the Tm of the target nucleic acid containing the genotype that does not suppress amplification and the clamp primer: the Tm of the target nucleic acid containing the genotype that suppresses amplification is suitably about 5 to 25 ° C., preferably 10 to 25 ° C. More preferably, it is 10 to 20 ° C.
  • Clamp primer Tm of a target nucleic acid containing a genotype that does not suppress amplification can be set to about 40 to 80 ° C., and 50 to 75 ° C. is appropriate.
  • Clamp primer The Tm of the target nucleic acid containing the genotype that suppresses amplification can be set to about 60 to 90 ° C., and 70 to 85 ° C. is appropriate.
  • the “fluorescence-labeled oligo” is an oligonucleotide that hybridizes to a target nucleic acid, and indicates the same as the clamp primer.
  • the fluorescently labeled oligo has a number of hydrogen bonds (number of base pairs) with a target nucleic acid containing a genotype that suppresses amplification> hydrogen bonds (base pairs) with a target nucleic acid that contains a genotype that does not suppress amplification.
  • the fluorescently labeled oligo is characterized in that the target nucleic acid is detected by measuring the amount of change in light emission of the labeled fluorescent dye before and after hybridization with the target nucleic acid.
  • the fluorescence-labeled oligo is between the dissociation temperature when bound to the target nucleic acid containing a genotype that suppresses amplification with the oligo and the dissociation temperature when bound to the target nucleic acid that includes a genotype that does not suppress amplification. Therefore, by measuring the difference in dissociation temperature, the target nucleic acid containing a genotype that suppresses amplification and a target nucleic acid containing a genotype that does not suppress amplification can be distinguished.
  • a suitable method for measuring the difference in dissociation temperature there can be mentioned melting curve analysis in which the dissociation temperature can be recognized by measuring the fluorescence change of the fluorescently labeled oligo while changing the temperature.
  • the “nucleic acid amplification method” is a method of amplifying a detection region containing a target sequence using an amplification primer, and the format is not particularly limited.
  • the PCR method may be used, and any of the LAMP method, NASBA method, ICAN method, LCR method, Rolling-Cycle method, SMAP method, and PALSAR method may be used.
  • the “amplification primer” is a nucleic acid used for amplifying a detection region by a nucleic acid amplification method.
  • concentration of the primer for amplification an optimal concentration may be examined within the range where amplification occurs, but in general, a concentration of 100 nM to 1.5 ⁇ M is often set.
  • concentration of the amplification primer that hybridizes on the same side as the fluorescently labeled oligo that functions as a clamp primer is preferably higher than the concentration on the opposite side, preferably about 1.5 to 10 times the concentration on the opposite side Often done.
  • the base number of the amplification primer is desirably 10 to 40 bases, and more preferably about 15 to 35 bases.
  • the sequence of the primer for amplification is not particularly limited as long as the detection region containing the target sequence can be amplified by the nucleic acid amplification method.
  • the Tm value is suitably about 45 to 80 ° C, preferably 50 to 70 ° C, More preferred is 55 to 65 ° C.
  • the temperature in the annealing step of the amplification cycle is a temperature at which the amplification primer sufficiently hybridizes, and is set within a range of -20 to + 10 ° C with respect to the nucleic acid sequence that does not suppress amplification and the Tm of the clamp primer. . More preferably, it is set in the range of ⁇ 20 to 0 ° C., more preferably ⁇ 10 to 0 ° C.
  • the annealing temperature of the amplification cycle can be set in the range of 40 to 75 ° C.
  • the gene amplification enzyme to be used there are an enzyme having 5′-3 ′ exonuclease activity and an enzyme not having 5′-3 ′ exonuclease activity. If either of the above enzymes can be used in the present invention, it is possible to select from a wide range of enzymes. Therefore, there is a possibility of improving performance such as sensitivity and accuracy, production cost, etc. The possibility that the product can be reduced is further expanded, and the possibility that the product / service using the present invention can be made more competitive is expanded.
  • the clamp primer is degraded, amplification of non-target nucleic acid is not suppressed, and high-sensitivity detection of target nucleic acid may not be achieved. is there. Therefore, when the applicability of the present invention was confirmed when an enzyme having 5′-3 ′ exonuclease activity was used and when an enzyme having no 5′-3 ′ exonuclease activity was used, It was possible to detect the target nucleic acid with high sensitivity without any problem even with an enzyme (Example 4 described later).
  • the present invention includes technical contents based on the above discovery.
  • the measurement principle of the present invention is as described above, but can be applied to various nucleic acid measurement methods. An example is shown below.
  • a clamping primer that is complementary to the target sequence of the wild-type gene and Quenching® Probe that functions as a fluorescently labeled oligo, an amplification primer, and a DNA containing the target gene group are mixed in a reaction solution for gene amplification.
  • Quenching Probe preferentially hybridizes to the wild type gene, and the amplification primer hybridizes to the wild type / mutant gene with the same efficiency.
  • the primer for amplification is extended by a gene amplification reaction.
  • the extension is suppressed because QuenchingrobeProbe is hybridized, and the detection region containing the target sequence of the mutant gene is preferentially amplified.
  • the Quenching® Probe and amplification primer are hybridized again to their complementary gene sequences.
  • the LAMP method, ICAN method, etc. can be performed at a constant temperature.
  • the number of cycles is preferably about 30 to 55 cycles.
  • Detecting the mutant gene detection region amplified by the gene amplification method described above Detection is performed with a Quenching® Probe labeled 3 ′ or 5 ′ with a fluorescent dye. Although it is a single-base mismatch with a mutant gene, it hybridizes to a mutant gene that has been preferentially amplified.
  • the temperature dependence of the emission intensity of the fluorescent dye is measured. Specifically, the emission intensity of the fluorescent dye is measured at each temperature while changing the temperature of the solution from a low temperature to a high temperature.
  • a plot of the emission intensity of a fluorescent dye versus temperature is called a melting curve.
  • the light emission of the fluorescent dye in the reaction solution containing the Quenching® Probe is suppressed by a quenching phenomenon due to guanine in the target sequence in the vicinity of the fluorescent dye at a low temperature.
  • the Quenching Probe dissociates, the degree of quenching decreases, and the fluorescence intensity increases. Therefore, it is possible to easily detect a mutant gene by performing a melting curve analysis.
  • Example 1 Sensitive detection of JAK2 gene mutation (model system targeting PCR products)
  • a partial PCR product (363 bp) of the human JAK2 gene sequence has a wild type gene: mutant gene ratio of 0: 100, 90:10, 99: 1, 99.5: 0.5, 99.9: A total of 10000 copies / ⁇ l was prepared so as to be 0.1 and 100: 0.
  • Each reaction solution has a template DNA of 1 ⁇ l (10000copies), DNA polymerase KOD plus DNA polymerase (Toyobo Co., Ltd.), 4 types of dNTPs (all 0.2 mM), forward primer (SEQ ID NO: 1, final concentration 1.0) ⁇ M), reverse primer (SEQ ID NO: 2, final concentration 0.2 ⁇ M), magnesium sulfate solution (final concentration 1 mM), predetermined amount of KOD plus polymerase, and Quenching Probe labeled with carboxyrhodamine 6G (CR6G) at the 3 ′ end. SEQ ID NO: 3, final concentration 0.05 ⁇ M).
  • the Quenching Probe functions as a clamp primer and a fluorescently labeled oligo for detecting a target nucleic acid.
  • Each PCR reaction solution was made up to 15 ⁇ l with sterile water.
  • the base preceded by + is composed of 2 ′, 4′-BNA NC , and the rest is composed of DNA.
  • SEQ ID NO: 1 ATCTATAGTCATGCTGAAAGTAGGAGAAA (29 bases)
  • Sequence number 3 + C + AC + A + G + A + C + A + C + AT + A + C + T + C + C (16 bases) -CR6G
  • the reaction solution was subjected to the following PCR reaction using a real-time PCR apparatus (Rotor-Gene (Qiagen)).
  • Heating denaturation process 95 ° C, 300 seconds
  • Thermal denaturation process 95 ° C, 10 seconds
  • Annealing process 60 ° C, 30 seconds
  • Elongation process 68 °C, 20 seconds
  • Temperature rising process 50-99 ° C
  • steps (2) to (4) were repeated 50 cycles.
  • the fluorescence intensity was measured, and the melting curve shown in FIG. 2 was obtained.
  • melting curves of solutions containing target nucleic acids with mutation rates of 0%, 0.1%, 1%, and 100% are indicated by A, B, C, and D, respectively, and melting curves of solutions not containing the target nucleic acid are indicated by E.
  • the negative first derivative curve of these melting curves is shown in FIG.
  • Genomic DNA was extracted from the blood of myeloproliferative tumor patients and used as template DNA for PCR. DNA extraction was performed using QIAamp DNA Mini Kit (Qiagen). All of the reaction solutions were PPD mix (Toyobo Co., Ltd.), forward primer (SEQ ID NO: 1, final concentration 1.2 ⁇ M) dissolved in PPD mix, reverse primer (SEQ ID NO: 4, final concentration 0.2 ⁇ M), and carboxy terminal at the 3 ′ end.
  • Rhodamine 6G (CR6G) -labeled Quenching Probe (SEQ ID NO: 5, final concentration 0.12 ⁇ M) mixed solution 2.4 ⁇ l, KOD mix (Toyobo Co., Ltd.) 3.6 ⁇ l, genomic DNA 30 ng solution and sterile water 6 ⁇ l, total 12 ⁇ l It was prepared so that it might become.
  • the Quenching Probe functions as a clamp primer and a fluorescently labeled oligo for detecting a target nucleic acid, as in [Example 1].
  • the base preceded by + is composed of 2 ′, 4′-BNA NC , and the rest is composed of DNA.
  • Sequence number 4 CACCTAGCTGTGATCCTGAA (20 bases)
  • Sequence number 5 + C + AC + AG + A + C + AC + AT + AC + TC + C (16 bases) -CR6G
  • the reaction solution was subjected to the following PCR reaction using a gene analyzer (GENECUBE, manufactured by Toyobo Co., Ltd.).
  • a gene analyzer GECUBE, manufactured by Toyobo Co., Ltd.
  • Temperature rising process 40-99 ° C
  • steps (2) to (4) were repeated 55 cycles.
  • the fluorescence intensity was measured to obtain a melting curve.
  • the negative first derivative curve of the melting curve is shown in FIG.
  • negative primary differential curves of the melting curves of samples 1, 2 and 3 containing the target nucleic acid are indicated by A, B and C, respectively, and negative primary differential curves of the melting curves of the solutions not containing the target nucleic acid are indicated by D. .
  • the melting curve analysis was performed using the Quenching Probe of the present invention, whereby the complex of QuenchingQuProbe and the normal gene was melted in the negative first derivative curve of the melting curve shown by A in FIG.
  • a peak showing a minimum at the temperature was obtained, while in the negative first derivative curve of the melting curve shown by B, a peak showing a minimum at the melting temperature of both the Quenching Probe and the normal type and mutant type complex was found.
  • the negative first derivative curve of the melting curve indicated by C a peak showing a minimum at the melting temperature of the Quenching Probe and the mutant complex was obtained.
  • the negative first derivative curve of the melting curve indicated by D no peak was detected.
  • Table 1 shows the results of discrimination using this method, the next-generation sequencer, and the mutation rate estimated by semiquantitative analysis.
  • the two samples (A, B) that are considered to have a mutation rate of 0.1% or less the same discrimination results as the next-generation sequencer were obtained. From this, it is considered that the mutation can be detected from the genomic DNA by using the above Quenching Probe if a mutation is observed even at 0.1% of the JAK2 gene.
  • the results of the experiment are shown in Table 2.
  • the ratio of mutant genes that could be detected when using fluorescently labeled oligos was: Quenching Probe composed of 2 ', 4'-BNA NC and natural nucleic acid (DNA)> Quenching Probe composed of LNA and natural nucleic acid> Quenching Probe composed of PNA and natural nucleic acid> Quenching Probe composed of all natural nucleic acid (DNA).
  • Quenching Probe composed of 2 ', 4'-BNA NC and natural nucleic acid (DNA) Quenching Probe composed of LNA and natural nucleic acid> Quenching Probe composed of PNA and natural nucleic acid> Quenching Probe composed of all natural nucleic acid (DNA).
  • the detection limit of the mutated gene differs depending on the artificial nucleic acid species, suggesting that 2 ', 4'-BNA NC has the highest functionality among the artificial nucleic acids examined.
  • a partial PCR product (151 bp) of the human MPL gene sequence has a ratio of wild type gene: mutant gene of 90:10, 99: 1, 99.5: 0.5, 99.9: 0.1, 100: 0 were prepared in total as 10000 copies / ⁇ l.
  • template DNA 1 ⁇ l (10000copies), a predetermined amount of KOD plus DNA polymerase (Toyobo Co., Ltd.) or Takara Ex Taq HS (Takara Bio Co., Ltd.), 4 types of dNTP ( All are 0.2 mM), forward primer (SEQ ID NO: 6, final concentration 1.0 ⁇ M), reverse primer (SEQ ID NO: 7, final concentration 0.1 ⁇ M), magnesium sulfate solution (final concentration 1 mM), and carboxyrhodamine at the 3 ′ end.
  • Contains 6G (CR6G) labeled Quenching Probe SEQ ID NO: 8, final concentration 0.05 ⁇ M).
  • KOD plus DNA polymerase does not have 5'-3 'exonuclease activity, but has 3'-5' exonuclease activity
  • Takara Ex Taq HS has 5'-3 'exonuclease activity.
  • the Quenching Probe functions as a clamp primer and a fluorescently labeled oligo for detecting a target nucleic acid.
  • Each PCR reaction solution was made up to 15 ⁇ l with sterile water.
  • the base preceded by + is composed of 2 ′, 4′-BNA NC , and the rest is composed of DNA.
  • SEQ ID NO: 6 TGACCGCTCTGCATCTAGTGC (21 bases)
  • SEQ ID NO: 7 GGTCACAGAGCGAACCAAGA (20 bases)
  • Sequence number 8 + AC + TGC + CA + CC + TCA + GC + AG + C (17 bases) -CR6G
  • the reaction solution was subjected to the following PCR reaction using a real-time PCR apparatus (Rotor-Gene (Qiagen)).
  • Heating denaturation process 95 ° C, 300 seconds
  • Thermal denaturation process 95 ° C, 10 seconds
  • Annealing process 58 °C, 30 seconds
  • Elongation process 68 °C, 20 seconds
  • Temperature rising process 50-99 ° C
  • steps (2) to (4) were repeated 50 cycles.
  • the fluorescence intensity was measured in the temperature raising step of (5), and the negative first derivative curve of the obtained melting curve is shown in FIGS. 5 and 6 (KOD plus and Takara Ex Taq HS are used respectively).
  • the present invention can be used for detecting gene mutations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

野生型遺伝子を多く含む遺伝子群中における変異遺伝子を高感度に、かつ迅速・簡便に検出することができる手法を提供する。 遺伝子多型が複数存在する可能性のある遺伝子あるいは検体を対象として、検査対象とする遺伝子型を特異的に検出することを目的とした核酸の測定方法において、蛍光色素で標識されたオリゴが、検査対象以外の遺伝子型にハイブリダイズすることで、当該遺伝子型の遺伝子増幅を抑制するとともに、上記と同一の蛍光標識オリゴを、上記と同一の遺伝子増幅工程において増幅された検査対象の遺伝子型に由来する増幅産物にハイブリダイズさせ、ハイブリダイゼーション前後での蛍光色素の蛍光強度変化から、検査対象の遺伝子型を特異的に検出することを特徴とする核酸の測定方法。前記方法に使用可能な蛍光標識オリゴヌクレオチドも提供される。

Description

遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド
 本発明は、オリゴヌクレオチド、それを用いる核酸の特異的増幅方法、測定方法及びその方法によって得られるデータを解析する方法に関する。詳しくはオリゴヌクレオチドを標的核酸にハイブリダイゼーションさせたまま核酸増幅反応を行うことで、標的核酸の増幅を抑制する特異的増幅方法、蛍光標識オリゴを用いる各種核酸の各種測定方法に関し、蛍光標識オリゴを標的核酸にハイブリダイゼーションさせたときに生ずる、ハイブリダイゼーション前後における蛍光色素の発光の減少量を測定するという原理に基づく各種核酸の各種測定方法、それに用いるオリゴヌクレオチドに関する。
 遺伝子上の突然変異が、癌の原因の1つとなっている。その為、癌の早期発見法として、PCR法などの遺伝子増幅方法を応用した遺伝子変異検査の重要性が認識されている。
 遺伝子変異検査は、癌の早期発見だけでなく、治療方針の決定にも重要である。例として、EGFR(上皮成長因子受容体)遺伝子変異を有する肺がん患者に対する、ゲフィニチブ(チロシンキナーゼ阻害剤)の奏効性判定がある。EGFR遺伝子変異のうち、エクソン19の欠失変異及びエクソン21コドン858のロイシン→アルギニン変異が見られた症例に対し、奏効率が高いということが知られている。
 しかしながら、検体に含まれる細胞は通常、正常細胞がそのほとんどであり、変異遺伝子が含まれる細胞はわずかである。したがって、通常の遺伝子増幅手法を用いた遺伝子型判別法では、野生型遺伝子が多いため検出感度が低く、臨床検査としては問題があった。
 また、骨髄増殖性腫瘍におけるJAK2遺伝子変異(JAK2V617F)は、そのアレル頻度の量的変化を測定することに臨床的意義が大きく、野生型遺伝子中のわずかな頻度の変異遺伝子を検出することは、初期の罹患判定に非常に重要である。
 上記の例に示したように、野生型遺伝子を多く含む遺伝子群中において変異型遺伝子を高感度に検出することは、臨床的に非常に重要であり、それを可能にする手法の開発が望まれている。
 Nagaiらは、PNA-LNA PCR clampという手法により、EGFR遺伝子に生じる11種類の変異について高感度検出を試みた結果、アレル頻度が0.1%の変異を検出することが可能であった(Nagai et. al., Cancer Research, 65:7276-7282, 2005.:非特許文献1)。しかしながら、この手法においては変異検出用と増幅確認用の2本の蛍光標識オリゴ、およびクランププライマーの3種類のオリゴヌクレオチドを用いる必要があり、他の遺伝子変異へ応用するには設計が煩雑であると考えられる。また、当該既存方法では、多くのオリゴヌクレオチドを利用する必要性があることは、低コスト化が求められる臨床検査において、解決すべき課題であると認識される。
 Miyanoらは、PNAを用いたPCR clamp法によるKRAS遺伝子変異の検出を試みた(Miyano et. al., Experimental And Therapeutic Medicine, 4:790-794, 2012.:非特許文献2)。この方法ではクランププライマー1本で増幅反応を行っているが、検出はSYBR Greenで行っているため、シグナルが変異型遺伝子に由来するかは正確に判別が不可能であり、正確性の求められる臨床の現場へは適用が難しいと考えられる。
Nagai et. al., Cancer Research, 65:7276-7282, 2005. Miyano et. al., Experimental And Therapeutic Medicine, 4:790-794, 2012.
 本発明は、野生型遺伝子を多く含む遺伝子群中における変異遺伝子を高感度に、かつ迅速・簡便に検出することができる手法として、蛍光標識オリゴを用いる核酸の特異的増幅法および測定法を提供することを目的とする。
 本発明者らは、前記の課題を解決するにあたり、変異型遺伝子の特異的増幅法およびそれに続く変異型遺伝子の検出方法について検討を重ねた。その結果、図1の概念図に示した通り、野生型遺伝子の配列を有する、蛍光標識オリゴを野生型遺伝子にハイブリダイゼーションさせて核酸増幅反応を行い、変異型遺伝子を優先的に増幅させた後、変異型遺伝子にハイブリダイゼーションさせ、ハイブリダイゼーション前後の蛍光色素の発光の変化量を測定する、即ち1本のオリゴヌクレオチドでクランププライマーと蛍光標識オリゴを兼ねて高感度に変異遺伝子を検出可能であることを発見した。本発明はかかる発見に基づいて完成されたものである。
 即ち、本発明は、特定遺伝子配列の特異的増幅法において、上記オリゴヌクレオチドを遺伝子群中の野生型遺伝子にハイブリダイゼーションさせた後に、核酸増幅反応を行った際、その増幅を抑制することによって、変異型遺伝子を特異的に増幅することを特徴とする手法を提供する。
 また、本発明は、蛍光標識オリゴを用いる核酸測定法において、上記オリゴヌクレオチドが特異的に増幅された変異型遺伝子にハイブリダイゼーションしたときに、蛍光色素が、その発光を変化させるオリゴヌクレオチドであり、上記オリゴヌクレオチドを変異型遺伝子にハイブリダイゼーションさせ、ハイブリダイゼーション前後の蛍光色素の発光の変化量を測定することを特徴とする核酸の測定法を提供する。
 さらに、本発明は、蛍光標識オリゴが標的核酸にハイブリダイゼーションした際に、上記蛍光色素が、その発光を減少させるオリゴヌクレオチドであり、かつ、当該オリゴヌクレオチドは、その塩基のうちいずれか1つ以上が人工核酸で構成されていることを特徴とする蛍光標識オリゴ、またそれを用いた核酸測定方法を提供する。
 本発明の要旨は、以下の通りである。
(1)遺伝子多型が複数存在する可能性のある遺伝子あるいは検体を対象として、検査対象とする遺伝子型を特異的に検出することを目的とした核酸の測定方法において、蛍光色素で標識されたオリゴヌクレオチド(以下、蛍光標識オリゴ)が、検査対象以外の遺伝子型にハイブリダイズすることで、当該遺伝子型の遺伝子増幅を抑制するとともに、上記と同一の蛍光標識オリゴを、上記と同一の遺伝子増幅工程において増幅された検査対象の遺伝子型に由来する増幅産物にハイブリダイズさせ、ハイブリダイゼーション前後での蛍光色素の蛍光強度変化から、検査対象の遺伝子型を特異的に検出することを特徴とする核酸の測定方法。
(2)蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、標的核酸の塩基配列において、当該蛍光標識オリゴの末端部から数えて1~3塩基の範囲内に(蛍光標識された末端部と塩基対を形成する標的核酸塩基を1とカウント)、G(グアニン)が少なくとも1塩基以上存在し、標的核酸とのハイブリダイゼーションにより、蛍光強度が減少する特性を有する蛍光標識オリゴを使用することを特徴とする(1)に記載の核酸の測定方法。
(3)蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該末端部分における塩基対がG(グアニン)とC(シトシン)のペアーを少なくも一対以上形成するように塩基配列が設計されており、標的核酸とのハイブリダイゼーションにより、蛍光強度が減少する特性を有する蛍光標識オリゴを使用することを特徴とする(1)、(2)の何れかに記載の核酸の測定方法。
(4)検査対象とする遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数が、検査対象以外の遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数よりも多い塩基配列を有する蛍光標識オリゴを使用することを特徴とする(1)~(3)の何れか一つに記載の核酸の測定方法。
(5)オリゴヌクレオチドの一部または全部が、核酸の解離温度を上昇させることを特徴とする人工核酸で構成されている蛍光標識オリゴを使用することを特徴とする(1)~(4)の何れか一つに記載の核酸の測定方法。
(6)核酸の解離温度を上昇させることを特徴とするオリゴヌクレオチドとして、人工核酸である2’,4’-BNAcoc、3’-Amino-2’,4’-BNA、2’,4’-BNANC(BNAは全てBridged Nucleic Acidの略称)、PNA(Peptide Nucleic Acid)、LNA(Locked Nucleic Acid)、TNA(Threose nucleic acid)、GNA(Glycol nucleic acid)のうち少なくとも1種を使用した蛍光標識オリゴを使用することを特徴とする(5)に記載の核酸の測定方法。
(7)遺伝子増幅法が、PCR法、LAMP法、NASBA法、ICAN法、LCR法、Rolling Cycle法、SMAP法、PALSAR法のいずれか1つであることを特徴とする(1)~(6)の何れか一つに記載の核酸の測定方法。
(8)遺伝子増幅が、5’→3’エキソヌクレアーゼ活性を有するポリメラーゼで行われる、(1)~(7)に記載の核酸の測定方法。
(9)蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該蛍光標識オリゴの末端部から数えて1~3塩基の範囲内における標的核酸の塩基配列に(蛍光標識された末端部と塩基対を形成する標的核酸塩基を1とカウント)、G(グアニン)が少なくとも1塩基以上存在するように塩基配列が設計されていることを特徴とする(1)~(8)の何れか一つに記載の核酸の測定方法に使用可能な蛍光標識オリゴ。
(10)蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該末端部分における塩基対がG(グアニン)とC(シトシン)のペアーを少なくも一対以上形成するように塩基配列が設計されていることを特徴とする(1)~(8)の何れか一つに記載された核酸の測定方法に使用可能な蛍光標識オリゴ。
 本発明によれば、野生型遺伝子を含む遺伝子群中の変異型遺伝子を高感度・高精度、また迅速・簡便に検出することができる。即ち、本発明によれば変異遺伝子の含有率が0.1%程度でも検出することが可能であり、測定時間は1時間程度で済む。また、用いるオリゴヌクレオチドは1本のみであるため、多種多様に渡る遺伝子変異に対して、適切なオリゴヌクレオチド設計・条件検討が容易であり、汎用性が非常に高い手法である。また、プライマーセット以外に使用するオリゴヌクレオチドの数が1本のみであるため、低コスト化な方法である。更に、検査対象遺伝子のみを特異的に検出することが可能であるため、臨床現場への適用に合致した正確性の高い手法であると認識される。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2015‐70642の明細書および/または図面に記載される内容を包含する。
本発明の概念図を示す。 実施例1のPCR反応液の融解曲線を示す。変異率0%、0.1%、1%、100%の標的核酸を含む溶液の融解曲線をそれぞれA,B,C,D、標的核酸を含まない溶液の融解曲線をEで示す。 図2の融解曲線の負の一次微分曲線を示す。 実施例2のPCR反応液の融解曲線の負の一次微分曲線を示す。sample1, 2, 3の標的核酸を含む溶液の融解曲線の負の一次微分曲線をそれぞれA、B、C、標的核酸を含まない溶液の融解曲線の負の一次微分曲線をDで示す。 実施例4のPCR反応液(KOD plus使用)の融解曲線の負の一次微分曲線を示す。0%、0.1%、0.5%、1%、10%は、変異率である。 実施例4のPCR反応液(Takara Ex Taq HS使用)の融解曲線の負の一次微分曲線を示す。0%、0.1%、0.5%、1%、10%は、変異率である。
 次に、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。本発明において、DNA、RNA、cDNA、mRNA、rRNA、NTPs、dNTPs、蛍光標識オリゴ、ハイブリダイズ、ハイブリダイゼーション、インターカレーター、プライマー、アニーリング、伸長反応、熱変性反応、核酸融解曲線、PCR、RT-PCR、PNAを用いたPCR法、核酸検出用(遺伝子検出用)デバイス、SNP(スニップ:一塩基置換多型)、等の用語は、現在、分子生物学、遺伝子工学等で一般的に使用されている語と同じ意味である。
 本発明において「野生型遺伝子」とは、塩基配列に変異が無く、正常な機能を発揮する遺伝情報が含まれる遺伝子のことである。ここでの遺伝情報とは、rRNA、mRNA等の情報をコードする転写領域だけでなく、プロモーター等の遺伝子発現調節領域も含む。
 本発明において「変異型遺伝子」とは、塩基配列に変異をもつ遺伝子である。「変異」とはDNAやRNAの塩基配列上の変化であり、遺伝学上における挿入、欠失、転座なども含まれる。ただしそれによる遺伝子機能の変化は生じていなくてもよい。また対象は転写領域だけでなく、プロモーター等の遺伝子発現調節領域も含まれる。
 本発明において「標的核酸」とは、上記した「野生型遺伝子」および「変異型遺伝子」の塩基配列を持つ核酸のことであり、精製の有無、濃度の大小は問わない。
 本発明において使用可能な蛍光標識オリゴは、一般的に核酸の測定・検出に用いられるものが便利に使用できるが、蛍光標識オリゴが標的核酸にハイブリダイゼーションしたときに、オリゴヌクレオチドに標識した当該蛍光色素が、その発光を変化させるものが好適に用いられる。具体的には、Quenching Probe(Kurata et al., Nucleic Acids Research, Volume 29, Issue 6, e34)、Universal quenching probe(Tani et al.,Anal. Chem., 2009, 81 (14), pp 5678-5685)、Molecular beacons(Tyagi et al., Nature Biotechnology 14, 303 - 308 (1996))、SimpleProbe (Lyon et al., J Mol Diagn. 2009 Mar;11(2):93-101)などを挙げることができる。
 Quenching Probe及びUniversal Quenching Probeとは、蛍光標識オリゴが標的核酸にハイブリダイズした際に、標的核酸のグアニン塩基により蛍光色素が消光する現象を利用した核酸プローブである。Molecular beaconsとは、5’末端を蛍光色素、3’末端をクエンチャー物質で標識しており、ループ構造をとることによりそれらが近接して消光しているオリゴヌクレオチドであり、標的核酸にハイブリダイズした際に蛍光を発する核酸プローブである。Simple probeとは、標的核酸にハイブリダイズした際に、標識された蛍光色素が発光する現象を利用した核酸プローブである。
 本発明においてQuenching ProbeやUniversal quenching probeを使用する場合、蛍光色素は、一般にQuenching ProbeやUniversal quenching probeに標識して、核酸の測定・検出に用いられるものが便利に使用できる。具体的には、標的核酸にハイブリダイゼーションしたときに、オリゴヌクレオチドに標識した当該蛍光色素が、その発光を減少させるものが好適に用いられる。例えば、フルオレセイン(fluorescein)又はその誘導体類{例えば、フルオレセインイソチオシアネート(fluorescein isothiocyanate)(FITC)若しくはその誘導体等、Alexa 488、Alexa532、cy3、cy5、EDANS(5-(2'-aminoethyl)amino-1-naphthalene sulfonic acid)}、ローダミン(rhodamine)6G(R6G)又はその誘導体(例えば、テトラメチルローダミン(teramethylrhodamine)(TMR)、5-(and 6)-カルボキシローダミン 6G(CR6G)、テトラメチルローダミンイソチオシアネート(tetramethylrhodamine isothiocyanate)(TMRITC)、x-ローダミン(x-rhodamine)、テキサスレッド(Texas red)、ボディピー(BODIPY)FL(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)FL/C3(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)FL/C6(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)5-FAM(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)TMR(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、又はその誘導体(例えば、ボディピー(BODIPY)TR(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)R6G(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)564(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY)581(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)等を挙げることができる。これらの中でも、FITC、EDANS、6-joe、TMR、Alexa 488、Alexa 532、ボディピー(BODIPY) FL/C3(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY) FL/C6(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)等を好適なものとして、また、FITC、TMR、6-joe、ボディピー(BODIPY) FL/C3(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製、米国)、ボディピー(BODIPY) FL/C6(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製)、パシフィックブルー(商標名;サーモフィッシャーサイエンティフィック(Thermo Fisher Scientific)社製)、アトー(ATTO)465(商標名;アトーテック(ATTO-TEC)社製)、アトー(ATTO)655(商標名;アトーテック(ATTO-TEC)社製)をより好適なものとして挙げることができる。
 本発明においてQuenching ProbeやUniversal quenching probeを使用する場合、オリゴヌクレオチドに標識した蛍光色素の発光を効率的に変化させるため、標的核酸の塩基配列において、当該蛍光標識オリゴの末端部から数えて1~3塩基の範囲内に(蛍光標識された末端部と塩基対を形成する標的核酸塩基を1とカウント)、G(グアニン)が少なくとも1塩基以上存在することが望ましく、より好ましくは末端がGであるように設計するほうがよい。また、蛍光色素にて当該末端部が標識された蛍光標識オリゴにおいて、当該蛍光標識オリゴが標的核酸にハイブリダイズしたとき、当該蛍光標識オリゴの当該末端部分における塩基対がG(グアニン)とC(シトシン)のペアーを少なくも一対以上形成するように塩基配列が設計されるとよい。
 本発明において、一方の遺伝子型のみの増幅抑制をするには、伸長が発生する温度域(PCRにおいては一般的には72℃付近で伸長させる)において、蛍光標識オリゴが、増幅抑制する遺伝子型を含む標的核酸とは強固に結合しているが、増幅抑制しない遺伝子型を含む標的核酸とは、その増幅を抑制するほどは強固に結合していない状況を担保する必要性がある。野生型遺伝子と変異型遺伝子で塩基配列の差異が大きい場合は、天然由来のDNAのみで構成された蛍光標識オリゴを用いても、蛍光標識オリゴと増幅抑制する遺伝子型を含む標的核酸との解離温度を伸長が発生する温度以上とし、かつ蛍光標識オリゴと増幅抑制する遺伝子型を含む標的核酸との解離温度と、蛍光標識オリゴと増幅抑制しない遺伝子型を含む標的核酸との解離温度との差を十分に確保することが可能であり、上記した状況(伸長する温度域において、蛍光標識オリゴが、増幅抑制する遺伝子型を含む標的核酸とはしっかりと結合しているが、増幅抑制しない遺伝子型を含む標的核酸とは結合していない状況)を担保することが可能であるが、野生型遺伝子と変異型遺伝子で塩基配列の差異が非常に少ない場合(例えば1塩基のみが変異している場合)、伸長する温度域において、上記と同様の状況を作るのは困難である。この場合、蛍光標識オリゴの長さを短くすることで、蛍光標識オリゴと野生型遺伝子との結合温度と、蛍光標識オリゴと変異型遺伝子との結合温度との差を十分に確保することが可能であるが、蛍光標識オリゴの長さが短くしたことにより、蛍光標識オリゴの解離温度が低下し、伸長が発生する温度域(PCRにおいては一般的には72℃付近で伸長させる)において、当該蛍光標識オリゴを、増幅抑制する遺伝子型を含む標的核酸と強固に結合させることが困難となることから、一方の遺伝子型を優先的に増幅させることが困難となる。このような場合は、蛍光標識オリゴを構成する塩基として、解離温度を上昇させる特徴のある2’,4’-BNAcoc、3’-Amino-2’,4’-BNA、2’,4’-BNANC(BNAは全てBridged Nucleic Acidの略称)、PNA(Peptide Nucleic Acid)、LNA(Locked Nucleic Acid)、TNA(Threose nucleic acid)、GNA(Glycol nucleic acid)等の人工核酸を好適に利用することが可能である。本人工核酸を用いることで、野生型遺伝子と変異型遺伝子で塩基配列の差異が非常に少なく、蛍光標識オリゴを短くせざるを得ない状況においても、伸長する温度域において、蛍光標識オリゴが、増幅抑制する遺伝子型を含む標的核酸とはしっかりと結合しているが、増幅抑制しない遺伝子型を含む標的核酸とは結合していない状況を容易に実現することが可能となる。人工核酸を挿入する箇所については、人工核酸と天然DNAの混合体であるキメラオリゴであっても良いし、全て人工核酸で構成されていてもよく、特には制限されないが、野生型遺伝子と変異型遺伝子で異なる塩基配列部分について人工核酸を挿入することが望ましい実施の形態として挙げることができる。
 以上より、蛍光標識オリゴを構成する塩基は、野生型遺伝子と変異型遺伝子との塩基配列の違いに応じて天然核酸および人工核酸またはその組合せ等により最適化することが肝要であり、本発明において、その核酸の種類は、特に制限はされない。
 本発明において「クランププライマー」とは、増幅抑制しない遺伝子型を含む標的核酸との解離温度よりも、増幅抑制する遺伝子型を含む標的核酸に対する解離温度のほうが高いオリゴヌクレオチドであり、蛍光標識オリゴと同一のものを示す。本実施形態においては、当該クランププライマーと増幅抑制する遺伝子型を含む標的核酸との水素結合(塩基対の数)の数は、当該クランププライマーと増幅抑制しない遺伝子型との水素結合(塩基対の数)の数よりも多いことを特徴とする。クランププライマーの長さは、10~25塩基であり、Tm値が70~100℃であることが望ましい。増幅反応溶液におけるクランププライマーの濃度は、10~500nMであることが望ましく、より好ましくは20~200nM程度である。クランププライマー:増幅抑制しない遺伝子型を含む標的核酸のTmとクランププライマー:増幅抑制する遺伝子型を含む標的核酸のTmの差は、5℃~25℃程度が適当であり、好ましくは10~25℃、より好ましくは10~20℃である。クランププライマー:増幅抑制しない遺伝子型を含む標的核酸のTmは、40~80℃程度に設定可能であり、50~75℃が適当である。クランププライマー:増幅抑制する遺伝子型を含む標的核酸のTmは、60~90℃程度に設定可能であり、70~85℃が適当である。
 本発明において「蛍光標識オリゴ」とは、標的核酸にハイブリダイゼーションするオリゴヌクレオチドであり、クランププライマーと同一のものを示す。本実施形態においては、当該蛍光標識オリゴは、増幅抑制する遺伝子型を含む標的核酸との水素結合(塩基対の数)の数>増幅抑制しない遺伝子型を含む標的核酸との水素結合(塩基対の数)の数となるよう設計された配列を有する。すなわち、検査対象とする遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数が、検査対象以外の遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数よりも多い塩基配列を有する蛍光標識オリゴを使用する。また、当該蛍光標識オリゴは、標的核酸とのハイブリダイゼーション前後において、標識された蛍光色素の発光の変化量を測定し、標的核酸の検出を行うことを特徴とする。更に、蛍光標識オリゴは、当該オリゴと増幅抑制する遺伝子型を含む標的核酸と結合した際の解離温度と、当該オリゴと増幅抑制しない遺伝子型を含む標的核酸と結合した際の解離温度との間に差があり、当該解離温度の差を測定することで、増幅抑制する遺伝子型を含む標的核酸と増幅抑制しない遺伝子型を含む標的核酸とを区別できる機能を有する。解離温度の差を測定するための好適な方法としては、温度変化させながら蛍光標識オリゴの蛍光変化を測定することで解離温度を認識することができる融解曲線解析を挙げることができる。
 本発明において「核酸増幅法」とは、増幅用プライマーを用いて標的配列を含む検出領域を増幅する方法であり、その形式は特に問わない。例えば、PCR法でもよいし、LAMP法、NASBA法、ICAN法、LCR法、Rolling Cycle法、SMAP法、PALSAR法のいずれであってもよい。
 前記の「増幅用プライマー」とは、核酸増幅法で検出領域を増幅するために用いられる核酸である。増幅用プライマーの濃度は、増幅が発生する範囲で最適な濃度を検討すればよいが、一般的には100nM~1.5μMの濃度が設定されるケースが多い。また、クランププライマーして機能する蛍光標識オリゴと同じ側にハイブリダイゼーションする増幅用プライマーの濃度は、反対側の濃度より高いほうが望ましく、好適には反対側の濃度よりも1.5~10倍程度に設定される場合が多い。
 増幅用プライマーの塩基数は、10~40塩基が望ましく、より好ましくは15~35塩基程度である。増幅用プライマーの配列は、標的配列を含む検出領域を核酸増幅法にて増幅可能であれば特に問わないが、Tm値は、45~80℃くらいが適当であり、50~70℃が好ましく、55~65℃がより好ましい。
 増幅サイクルのアニーリングステップにおける温度については、増幅用プライマーが十分にハイブリダイズする温度であり、かつ増幅を抑制しない核酸配列とクランププライマーのTmに対し、-20~+10℃の範囲で設定される。より好ましくは-20~0℃、さらに好ましくは-10~0℃の範囲で設定されることが望ましい。増幅サイクルのアニーリング温度は、40~75℃の範囲で設定可能である。
 使用する遺伝子増幅用酵素については、5’-3’エキソヌクレアーゼ活性を持つ酵素と5’-3’エキソヌクレアーゼ活性を持たない酵素が存在する。本発明が、上記酵素のうち、どちらの酵素も利用することができれば、幅広い酵素の中から選択することが可能となるため、感度、精度等の性能面の向上できる可能性や、製造コスト等の低下できる可能性がより広がり、本発明を利用した製品・サービスをより競争力のある製品にできる可能性が広がる。
 一方、本発明において、5’-3’エキソヌクレアーゼ活性をもつ酵素を使用した場合、クランププライマーが分解され、非標的核酸の増幅が抑制されず、標的核酸の高感度検出が達成されない可能性がある。
 そこで、5’-3’エキソヌクレアーゼ活性を持つ酵素を使用した場合と、5’-3’エキソヌクレアーゼ活性を持たない酵素を使用した場合とで、本発明の適用性を確認したところ、どちらの酵素でも問題なく標的核酸を高感度検出が可能であった(後述の実施例4)。本発明は、上記の発見に基づく技術内容についても包含する。
 本発明の測定原理は前記のごとくであるが、各種の核酸測定法に適用できる。以下にその例を示す。
 野生型遺伝子の標的配列に相補的であるクランププライマーおよび蛍光標識オリゴとして機能するQuenching Probeと、増幅用プライマーと、標的遺伝子群を含むDNAとを、遺伝子増幅用の反応溶液に混合させる。これにより、Quenching Probeは野生型遺伝子に優先的にハイブリダイゼーションし、増幅用プライマーは野生型・変異型遺伝子に同じ効率でハイブリダイゼーションする。
 続いて、遺伝子増幅反応により増幅用プライマーの伸長を行う。野生型遺伝子の検出領域は、Quenching Probeがハイブリダイゼーションしているため伸長が抑制され、変異型遺伝子の標的配列が含まれる検出領域が優先的に増幅される。
 伸長反応終了後、Quenching Probe、増幅用プライマーを、それぞれに相補的な遺伝子配列に再びハイブリダイゼーションさせる。PCR反応の場合は95℃前後で熱変性を行う必要があるが、LAMP法、ICAN法などは一定温度で反応を行うことが可能である。遺伝子増幅反応のサイクルを繰り返すことで、変異型遺伝子の検出領域を選択的に増幅させることが可能である。サイクル数は30~55サイクル程度が望ましい。
 上記の遺伝子増幅法によって増幅された、変異遺伝子の検出領域の検出を行う。検出は、蛍光色素で3’あるいは5’末端を標識されたQuenching Probeによって行う。変異型遺伝子とは1塩基ミスマッチではあるが、増幅が優先的に行われた変異型遺伝子にハイブリダイゼーションする。次いで、蛍光色素の発光強度の温度依存性を測定する。具体的には、溶液の温度を低温から高温に変化させながら、各温度について蛍光色素の発光強度を測定する。
 蛍光色素の発光強度を温度に対してプロットしたものを融解曲線と呼ぶ。融解曲線を温度で微分することで、極値を示す温度としてQuenching Probeと変異型遺伝子、及びQuenching Probeと正常型遺伝子のTm値を求めることが可能である。このような融解曲線解析は、当業者に周知の市販のプログラムを用いて容易に行うことができる。
 上記Quenching Probeを含む反応溶液中の蛍光色素の発光は、低温では蛍光色素の近傍にある標的配列中のグアニンによる消光現象により抑制される。温度をQuenching Probeと変異型遺伝子のTm付近まで上げると、Quenching Probeが解離し、消光の程度が弱まり蛍光強度は増加する。従って、融解曲線解析を行うことで、変異型遺伝子を容易に検出することが可能である。
 また、標的核酸の塩基配列において、Quenching Probeに標識されている蛍光物質に対して消光作用をするグアニン塩基を持つヌクレオチドが変異している場合、いずれの温度においても蛍光の低下が生じないため、融解曲線解析において変異を特定することができる。
 次に実施例を挙げて本発明をさらに具体的に説明するが、これらの実施例は本発明の単なる例示であって、本発明の限定を意図するものではない。
[実施例1] JAK2遺伝子変異の高感度検出(PCR産物を標的としたモデル系)
 PCR反応の鋳型として、ヒトJAK2遺伝子配列の一部のPCR産物(363bp)が、野生型遺伝子:変異型遺伝子の比率が、0:100、90:10、99:1、99.5:0.5、99.9:0.1、100:0となるよう、トータル10000 copies/μlとして調製した。各反応溶液はいずれも、鋳型DNA 1μl(10000copies)、DNAポリメラーゼとしてKOD plus DNA polymerase(東洋紡(株)社)、4種のdNTP(いずれも0.2 mM)、フォワードプライマー(配列番号1、最終濃度1.0μM)、リバースプライマー(配列番号2、最終濃度0.2 μM)、硫酸化マグネシウム溶液(最終濃度1 mM)、所定量のKOD plus polymerase、及び3’ 末端をカルボキシローダミン6G(CR6G)標識したQuenching Probe(配列番号3、最終濃度0.05 μM)を含む。なお、当該Quenching Probeは、クランププライマーおよび標的核酸検出用の蛍光標識オリゴとして機能する。各PCR反応溶液は、滅菌水で15μlにメスアップして調製した。
 下記配列において、前に+がある塩基は2’,4’-BNANC, それ以外はDNAで構成されている。
配列番号1: ATCTATAGTCATGCTGAAAGTAGGAGAAA(29塩基)
配列番号2: CTGAATAGTCCTACAGTGTTTTCAGTTTCA(30塩基)
配列番号3: +C+AC+A+G+A+C+A+C+AT+A+C+T+C+C(16塩基)-CR6G
 上記反応溶液をリアルタイムPCR装置(Rotor-Gene(Qiagen社))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:60℃、30秒間
(4)伸長工程:68℃、20秒間
(5)昇温工程:50~99℃
 (1)の熱変性工程の後、工程(2)~(4)を50サイクル繰り返した。(5)の昇温工程において蛍光強度を測定し、図2に示す融解曲線を得た。図中、変異率0%、0.1%、1%、100%の標的核酸を含む溶液の融解曲線をそれぞれA,B,C,D、標的核酸を含まない溶液の融解曲線をEで示す。また、これらの融解曲線の負の一次微分曲線を図3に示す。
 実験の結果、本発明のQuenching Probeを用いて融解曲線分析を行うことにより、図3のB,C,Dで示される融解曲線の負の一次微分曲線において、上記Quenching Probeと標的核酸との複合体の融解温度にて極小を示すピークが得られた一方、A,Eで示される融解曲線の負の一次微分曲線においてはピークが検出されなかった。
 このことより、上記Quenching Probeを用いることで、JAK2遺伝子群において変異が0.1%でも含まれていれば、それを明確に検出できることが明らかとなった。
[実施例2] JAK2遺伝子変異の高感度検出(実サンプル)
  PCRの鋳型DNAとして、骨髄増殖性腫瘍患者の血液からゲノムDNAを抽出して用いた。なお、DNA抽出はQIAamp DNA Mini Kit(Qiagen社)を用いて行った。各反応溶液はいずれも、PPD mix(東洋紡社)、PPD mixに溶解したフォワードプライマー(配列番号1、最終濃度1.2μM)、リバースプライマー(配列番号4、最終濃度0.2μM)及び3’ 末端をカルボキシローダミン6G(CR6G)標識したQuenching Probe(配列番号5、最終濃度0.12μM)の混合溶液を2.4μl、KOD mix(東洋紡社)を3.6μl、ゲノムDNA30ngを含む溶液および滅菌水を6μl、計12μlとなるよう調製した。なお、当該Quenching Probeは、[実施例1]と同様、クランププライマーおよび標的核酸検出用の蛍光標識オリゴとして機能する。
 下記配列において、前に+がある塩基は2’,4’-BNANC, それ以外はDNAで構成されている。
配列番号4:CACCTAGCTGTGATCCTGAA(20塩基)
配列番号5:+C+AC+AG+A+C+AC+AT+AC+TC+C(16塩基)-CR6G
 上記反応溶液を遺伝子解析装置(GENECUBE, 東洋紡社製)を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、30秒間
(2)熱変性工程:95℃、2秒間
(3)アニーリング工程:60℃、3秒間
(4)伸長工程:68℃、5秒間
(5)昇温工程:40~99℃
 (1)の熱反応工程の後、工程(2)~(4)を55サイクル繰り返した。(5)の昇温工程において蛍光強度を測定し、融解曲線を得た。融解曲線の負の一次微分曲線を図4に示す。図中、sample1, 2, 3の標的核酸を含む溶液の融解曲線の負の一次微分曲線をそれぞれA、B、C、標的核酸を含まない溶液の融解曲線の負の一次微分曲線をDで示す。
 実験の結果、本発明のQuenching Probeを用いて融解曲線分析を行うことにより、図4のAで示される融解曲線の負の一次微分曲線において、上記Quenching Probeと正常型遺伝子との複合体の融解温度にて極小を示すピークが得られた一方、Bで示される融解曲線の負の一次微分曲線においては、Quenching Probeと正常型、変異型両方の複合体の融解温度にて極小を示すピークが得られCで示される融解曲線の負の一次微分曲線においては、Quenching Probeと変異型の複合体の融解温度にて極小を示すピークが得られた。またDで示される融解曲線の負の一次微分曲線においては、ピークが検出されなかった。
 本手法、次世代シーケンサーでの判別結果、および半定量的解析で見積もられた変異率を表1に示す。変異率が0.1%以下と考えられる2つのサンプル(A, B)において、次世代シーケンサーと同じ判別結果が得られた。このことより、上記Quenching Probeを用いることで、JAK2遺伝子の0.1%でも変異が見られれば、ゲノムDNA中から変異を検出可能であると考えられる。
Figure JPOXMLDOC01-appb-T000001
[実施例3] 異なる人工核酸を用いた検討(実サンプル)
  異なる人工核酸を用いた場合の本法の有効性を確認する目的で、2’,4’-BNANC、PNA、LNA、天然DNAにて構成されたQuenching Probeを用いて実験を行った。具体的には、本実施例で用意したQuenching Probeは、[実施例1]の配列番号3における+で示した塩基を、2’,4’-BNANC、PNA、LNA、天然DNAとして、合計4本合成した。Quenching Probeを同一とした。なお、当該Quenching Probeは、[実施例1]、[実施例2]と同様、クランププライマーおよび標的核酸検出用の蛍光標識オリゴとして機能する。
 実験の結果を表-2に示す。
 蛍光標識オリゴを用いた場合に検出可能であった変異遺伝子割合は、2’,4’-BNANCと天然核酸(DNA)で構成されたQuenching Probe>LNAと天然核酸で構成されたQuenching Probe>PNAと天然核酸で構成されたQuenching Probe>全て天然核酸(DNA)で構成されたQuenching Probeの順で低かった。このことから、本実施例の標的核酸のように配列の違いが僅かである場合(具体的には1塩基変異の場合)は、人工核酸の使用が好ましいことが示唆された。また、変異遺伝子の検出限界は、人工核酸種によっても異なり、検討した人工核酸において2’,4’-BNANCが最も機能性が高いことが示唆された。
Figure JPOXMLDOC01-appb-T000002
[実施例4]ポリメラーゼの種類による感度の検討
 PCR反応の鋳型として、ヒトMPL遺伝子配列の一部のPCR産物(151bp)が、野生型遺伝子:変異型遺伝子の比率が、90:10、99:1、99.5:0.5、99.9:0.1、100:0となるよう、トータル10000 copies/μlとして調製した。各反応溶液はいずれも、鋳型DNA 1μl(10000copies)、DNAポリメラーゼとして所定量のKOD plus DNA polymerase(東洋紡(株)社)またはTakara Ex Taq HS(タカラバイオ(株)社)、4種のdNTP(いずれも0.2 mM)、フォワードプライマー(配列番号6、最終濃度1.0μM)、リバースプライマー(配列番号7、最終濃度0.1 μM)、硫酸化マグネシウム溶液(最終濃度1 mM)、及び3’ 末端をカルボキシローダミン6G(CR6G)標識したQuenching Probe(配列番号8、最終濃度0.05 μM)を含む。ここで、KOD plus DNA polymeraseは5’-3’エキソヌクレアーゼ活性を持たず、3’-5’エキソヌクレアーゼ活性を有する酵素、またTakara Ex Taq HSは、5’-3’エキソヌクレアーゼ活性を有し、3’-5’エキソヌクレアーゼ活性を持たない酵素の一例である。なお、当該Quenching Probeは、クランププライマーおよび標的核酸検出用の蛍光標識オリゴとして機能する。各PCR反応溶液は、滅菌水で15μlにメスアップして調製した。
 下記配列において、前に+がある塩基は2’,4’-BNANC, それ以外はDNAで構成されている。
配列番号6: TGACCGCTCTGCATCTAGTGC(21塩基)
配列番号7: GGTCACAGAGCGAACCAAGA(20塩基)
配列番号8: +AC+TGC+CA+CC+TCA+GC+AG+C (17塩基)-CR6G
 上記反応溶液をリアルタイムPCR装置(Rotor-Gene(Qiagen社))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:58℃、30秒間
(4)伸長工程:68℃、20秒間
(5)昇温工程:50~99℃
 (1)の熱変性工程の後、工程(2)~(4)を50サイクル繰り返した。(5)の昇温工程において蛍光強度を測定し、得られた融解曲線の負の一次微分曲線を図5,6(それぞれ KOD plus, Takara Ex Taq HS使用)に示す。
 実験の結果、いずれのDNAポリメラーゼを使用した場合においても、変異率0.1%のサンプルから変異型を検出することが可能であり、感度に大きな差は見られなかった。このことから、本発明にはDNAポリメラーゼの種類、特に5’-3’エキソヌクレアーゼ活性、3’-5’エキソヌクレアーゼ活性の有無によらず、使用することが可能であることが示された。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、遺伝子変異の検出に利用できる。
<配列番号1>
配列番号1は、実施例1で用いたフォワードプライマーの塩基配列を示す。
<配列番号2>
配列番号2は、実施例1で用いたリバースプライマーの塩基配列を示す。
<配列番号3>
配列番号3は、実施例1で用いたQuenching Probeの塩基配列を示す。
<配列番号4>
配列番号4は、実施例2で用いたリバースプライマーの塩基配列を示す。
<配列番号5>
配列番号5は、実施例2で用いたQuenching Probeの塩基配列を示す。
<配列番号6>
配列番号6は、実施例4で用いたフォワードプライマーの塩基配列を示す。
<配列番号7>
配列番号7は、実施例4で用いたリバースプライマーの塩基配列を示す。
<配列番号8>
配列番号8は、実施例4で用いたQuenching Probeの塩基配列を示す。

Claims (10)

  1. 遺伝子多型が複数存在する可能性のある遺伝子あるいは検体を対象として、検査対象とする遺伝子型を特異的に検出することを目的とした核酸の測定方法において、蛍光色素で標識されたオリゴヌクレオチド(以下、蛍光標識オリゴ)が、検査対象以外の遺伝子型にハイブリダイズすることで、当該遺伝子型の遺伝子増幅を抑制するとともに、上記と同一の蛍光標識オリゴを、上記と同一の遺伝子増幅工程において増幅された検査対象の遺伝子型に由来する増幅産物にハイブリダイズさせ、ハイブリダイゼーション前後での蛍光色素の蛍光強度変化から、検査対象の遺伝子型を特異的に検出することを特徴とする核酸の測定方法。
  2. 蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、標的核酸の塩基配列において、当該蛍光標識オリゴの末端部から数えて1~3塩基の範囲内に(蛍光標識された末端部と塩基対を形成する標的核酸塩基を1とカウント)、G(グアニン)が少なくとも1塩基以上存在し、標的核酸とのハイブリダイゼーションにより、蛍光強度が減少する特性を有する蛍光標識オリゴを使用することを特徴とする請求項1に記載の核酸の測定方法。
  3. 蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該末端部分における塩基対がG(グアニン)とC(シトシン)のペアーを少なくも一対以上形成するように塩基配列が設計されており、標的核酸とのハイブリダイゼーションにより、蛍光強度が減少する特性を有する蛍光標識オリゴを使用することを特徴とする請求項1、2の何れかの一項に記載の核酸の測定方法。
  4. 検査対象とする遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数が、検査対象以外の遺伝子型を含む塩基配列とハイブリダイズした際のミスマッチの数よりも多い塩基配列を有する蛍光標識オリゴを使用することを特徴とする請求項1~3の何れかの一項に記載の核酸の測定方法。
  5. オリゴヌクレオチドの一部または全部が、核酸の解離温度を上昇させることを特徴とする人工核酸で構成されている蛍光標識オリゴを使用することを特徴とする請求項1~4項の何れか一項に記載の核酸の測定方法。
  6. 核酸の解離温度を上昇させることを特徴とするオリゴヌクレオチドとして、人工核酸である2’,4’-BNAcoc、3’-Amino-2’,4’-BNA、2’,4’-BNANC(BNAは全てBridged Nucleic Acidの略称)、PNA(Peptide Nucleic Acid)、LNA(Locked Nucleic Acid)、TNA(Threose nucleic acid)、GNA(Glycol nucleic acid)のうち少なくとも1種を使用した蛍光標識オリゴを使用することを特徴とする請求項5項に記載の核酸の測定方法。
  7. 遺伝子増幅法が、PCR法、LAMP法、NASBA法、ICAN法、LCR法、Rolling Cycle法、SMAP法、PALSAR法のいずれか1つであることを特徴とする請求項1~6の何れか一項に記載の核酸の測定方法。
  8. 遺伝子増幅が、5’→3’エキソヌクレアーゼ活性を有するポリメラーゼで行われる、請求項1~7に記載の核酸の測定方法。
  9. 蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該蛍光標識オリゴの末端部から数えて1~3塩基の範囲内における標的核酸の塩基配列に(蛍光標識された末端部と塩基対を形成する標的核酸塩基を1とカウント)、G(グアニン)が少なくとも1塩基以上存在するように塩基配列が設計されていることを特徴とする請求項1~8項の何れか一項に記載の核酸の測定方法に使用可能な蛍光標識オリゴ。
  10. 蛍光色素にて当該末端部が標識された蛍光標識オリゴであり、当該蛍光標識オリゴが、標的核酸にハイブリダイズしたとき、当該末端部分における塩基対がG(グアニン)とC(シトシン)のペアーを少なくも一対以上形成するように塩基配列が設計されていることを特徴とする請求項1~8項の何れか一項に記載された核酸の測定方法に使用可能な蛍光標識オリゴ。
PCT/JP2016/060011 2015-03-31 2016-03-29 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド WO2016158898A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16772779.1A EP3279338A4 (en) 2015-03-31 2016-03-29 Gene mutation detection method and fluorescence-labeled oligonucleotide used in same
CN201680008756.8A CN107406879A (zh) 2015-03-31 2016-03-29 基因变异的检测方法及在其中使用的荧光标记寡核苷酸
US15/563,419 US20180087096A1 (en) 2015-03-31 2016-03-29 Gene mutation detection method and fluorescence-labeled oligonucleotide used in same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070642 2015-03-31
JP2015070642A JP5813263B1 (ja) 2015-03-31 2015-03-31 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド

Publications (1)

Publication Number Publication Date
WO2016158898A1 true WO2016158898A1 (ja) 2016-10-06

Family

ID=54595854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060011 WO2016158898A1 (ja) 2015-03-31 2016-03-29 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド

Country Status (5)

Country Link
US (1) US20180087096A1 (ja)
EP (1) EP3279338A4 (ja)
JP (1) JP5813263B1 (ja)
CN (1) CN107406879A (ja)
WO (1) WO2016158898A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813263B1 (ja) * 2015-03-31 2015-11-17 日鉄住金環境株式会社 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド
JP2023184021A (ja) * 2022-06-17 2023-12-28 株式会社日立製作所 遺伝子分析方法、遺伝子分析装置、及び遺伝子分析用キット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535480A (ja) * 2007-08-08 2010-11-25 エフ.ホフマン−ラ ロシュ アーゲー オリゴヌクレオチド、及び5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼを使用する、増幅の抑制
JP2014501533A (ja) * 2011-01-06 2014-01-23 エピスタム リミテッド 突然変異解析
JP2014528721A (ja) * 2011-09-30 2014-10-30 エピスタム リミテッド Jak2の突然変異解析
JP5813263B1 (ja) * 2015-03-31 2015-11-17 日鉄住金環境株式会社 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019000B4 (de) * 2000-04-17 2004-11-18 Siemens Ag Verfahren zum Erfassen von Nutzungsgebühren
CA2417986C (en) * 2000-08-11 2013-11-26 University Of Utah Research Foundation Single-labeled oligonucleotide probes
US7803543B2 (en) * 2007-01-19 2010-09-28 Chang Gung University Methods and kits for the detection of nucleotide mutations using peptide nucleic acid as both PCR clamp and sensor probe
US8206929B2 (en) * 2009-01-07 2012-06-26 Roche Molecular Systems, Inc. Nucleic acid amplification with allele-specific suppression of sequence variants
US9528157B2 (en) * 2011-01-14 2016-12-27 Genefirst Limited Methods, compositions, and kits for determing the presence/absence of a variant nucleic acid sequence
WO2014051076A1 (ja) * 2012-09-28 2014-04-03 株式会社Bna Bnaクランプ法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535480A (ja) * 2007-08-08 2010-11-25 エフ.ホフマン−ラ ロシュ アーゲー オリゴヌクレオチド、及び5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼを使用する、増幅の抑制
JP2014501533A (ja) * 2011-01-06 2014-01-23 エピスタム リミテッド 突然変異解析
JP2014528721A (ja) * 2011-09-30 2014-10-30 エピスタム リミテッド Jak2の突然変異解析
JP5813263B1 (ja) * 2015-03-31 2015-11-17 日鉄住金環境株式会社 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NODA N. ET AL.: "Estimation of single-nucleotide polymorphism allele frequency by alternately binding probe competitive polymerase chain reaction.", ANAL CHIM ACTA., vol. 608, no. 2, 2008, pages 211 - 216, XP022428147 *
See also references of EP3279338A4 *
SHIN'YA KURATA: "Principle and application of Universal Quenching Probe system", BIO CLINICA, vol. 26, no. 4, 2011, pages 334 - 338, XP009506419 *

Also Published As

Publication number Publication date
CN107406879A (zh) 2017-11-28
US20180087096A1 (en) 2018-03-29
JP5813263B1 (ja) 2015-11-17
EP3279338A1 (en) 2018-02-07
JP2016189704A (ja) 2016-11-10
EP3279338A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5531367B2 (ja) 標的配列の濃縮
WO2010001969A1 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
US20130078631A1 (en) Probe, and polymorphism detection method using the same
JP2012040029A (ja) 変異の検出方法およびそれに用いるキット
JP2013090622A (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用キット
JP5917144B2 (ja) 疾患関連遺伝子の多型検出用プローブおよびその用途
JP2018528780A (ja) 短いホモポリマー反復の改良された検出
JP5593582B2 (ja) 核酸の迅速な検出方法
JPWO2009011297A1 (ja) Jak2遺伝子の変異検出用プローブおよびその用途
JP2013048619A (ja) メチシリン耐性黄色ブドウ球菌を検出するためのプライマーおよびプローブ、ならびに、それらを用いたメチシリン耐性黄色ブドウ球菌の検出方法
WO2016158898A1 (ja) 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド
CN110295218B (zh) 量化靶基因的突变型等位基因负担的方法
WO2016093333A1 (ja) 塩基変異の検出方法及びキット並びに核酸サンプルのpcr増幅を抑制する方法
JP6153758B2 (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用キット
JP5831093B2 (ja) C型慢性肝炎に対する治療効果を予測するためのプローブ
WO2011077990A1 (ja) c-kit遺伝子の多型検出用プローブおよびその用途
JP6205216B2 (ja) 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット
US9121051B2 (en) Method of determining the abundance of a target nucleotide sequence of a gene of interest
JP5930825B2 (ja) Egfrエクソン19多型検出試験用試薬キット及びその用途
JP2018088883A (ja) 上皮成長因子受容体遺伝子変異の検出方法
JP2013017395A (ja) 骨髄増殖性疾患に関する遺伝子変異を検出するためのプローブおよび該プローブを用いた遺伝子変異の検出方法
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
JP5570657B2 (ja) 遺伝子存在量の測定方法
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途
JP2013074824A (ja) Mdr1遺伝子の多型を検出するためのプローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016772779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP