WO2016158286A1 - Base material for carbon nanotube production and method for producing carbon nanotubes - Google Patents

Base material for carbon nanotube production and method for producing carbon nanotubes Download PDF

Info

Publication number
WO2016158286A1
WO2016158286A1 PCT/JP2016/057554 JP2016057554W WO2016158286A1 WO 2016158286 A1 WO2016158286 A1 WO 2016158286A1 JP 2016057554 W JP2016057554 W JP 2016057554W WO 2016158286 A1 WO2016158286 A1 WO 2016158286A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
film layer
crystallized glass
carbon nanotube
glass substrate
Prior art date
Application number
PCT/JP2016/057554
Other languages
French (fr)
Japanese (ja)
Inventor
武史 土谷
佐々木 博
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015217263A external-priority patent/JP2016190780A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2016158286A1 publication Critical patent/WO2016158286A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention relates to a carbon nanotube production base material and a carbon nanotube production method, and more specifically, a carbon nanotube production base material used for production of carbon nanotubes using a chemical vapor deposition method (CVD method), and carbon nanotubes It relates to a manufacturing method.
  • CVD method chemical vapor deposition method
  • carbon nanotubes have attracted attention as an excellent structural material because they have a very stable structure chemically and mechanically and are lightweight. Moreover, the usefulness of carbon nanotubes has also been confirmed in applications such as semiconductors, electronic devices, optical devices, batteries, and the like due to their electrical characteristics.
  • Patent Document 1 discloses a method of manufacturing carbon nanotubes using a thermal CVD method. Specifically, a method of growing a carbon nanotube on a substrate by heating a growth base material on which a catalytic metal is deposited and decomposing a hydrocarbon gas on the substrate is disclosed.
  • Patent Document 1 In order to produce high-quality carbon nanotubes with good orientation using the technique disclosed in Patent Document 1, it is difficult for the substrate to be deformed in a processing temperature range (for example, 600 to 1100 ° C. in Patent Document 1). is important. For this reason, the substrate used in the method is limited to materials that are difficult to be deformed in a high-temperature atmosphere such as quartz, crystalline alumina, and crystalline silicon.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a carbon nanotube production substrate and a carbon nanotube production method capable of producing carbon nanotubes at low cost and high efficiency. To do.
  • the base material for producing carbon nanotubes of the present invention is a base material for producing carbon nanotubes used as a base material for growing carbon nanotubes, and is characterized by comprising a catalytic metal thin film layer on the surface of a crystallized glass base material.
  • the crystallized glass base material contains an alkali metal oxide, and the elution prevention prevents the elution of alkali metal ions between the crystallized glass base material surface and the catalytic metal thin film layer. It is preferable to further comprise a membrane layer.
  • the elution preventing film layer includes at least one material selected from the group of SiO 2 , ZrO 2 , SnO 2 , TiO 2 , TiN, and Al 2 O 3. preferable.
  • the elution preventing film layer contains a crystalline metal oxide.
  • the elution preventing film layer has a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 by mass%.
  • the elution preventing film layer has a thickness of 50 to 800 nm
  • the crystallized glass base material has a plate shape whose main surface has a surface area of 15000 mm 2 or more.
  • the thickness of the crystallized glass substrate is preferably 0.2 to 5.0 mm.
  • the thermal expansion coefficient at 30 to 380 ° C. of the crystallized glass substrate is ⁇ 1 to 12 ⁇ 10 ⁇ 7 / ° C., and 30 to 750 ° C. of the crystallized glass substrate. It is preferable that the thermal expansion coefficient at ⁇ 1 to 15 ⁇ 10 ⁇ 7 / ° C.
  • the crystallized glass base material has a composition of mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2 + ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, V 2 O 5 0 to 1% are preferably contained.
  • the catalytic metal thin film layer preferably contains at least one metal selected from the group consisting of Fe, Co, Ni, Pt, Mo, and Pd.
  • the base material for producing carbon nanotubes of the present invention is a base material for producing carbon nanotubes used as a base material for growing carbon nanotubes, and elution of alkali metal ions on the surface of a crystallized glass base material containing an alkali metal oxide It is characterized in that an elution preventing film layer for preventing the above is provided.
  • the carbon nanotube production method of the present invention comprises a catalyst film forming step of forming a catalyst metal thin film layer on a crystallized glass substrate to obtain a growth substrate, and a growth substrate in a temperature atmosphere exceeding 600 ° C. And a growth step of growing a carbon nanotube by circulating a gas containing a carbon raw material.
  • the crystallized glass substrate includes an alkali metal oxide as a composition, and an elution preventing film forming step of forming an alkali metal oxide elution preventing film layer on the surface of the crystallized glass substrate It is preferable that a catalyst film formation step is performed after the elution film formation step.
  • the carbon nanotubes are reduced. It can be manufactured at low cost and high efficiency.
  • carbon nanotube is also referred to as “CNT”.
  • FIG. 1 is a diagram showing a configuration of a carbon nanotube production substrate 1 (hereinafter also referred to as a CNT production substrate 1) according to an embodiment of the present invention.
  • the substrate 1 for producing CNT includes a crystallized glass substrate 2 and a catalytic metal thin film layer 3.
  • the crystallized glass substrate 2 is, for example, a Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass containing an alkali metal oxide. More specifically, the crystallized glass substrate 2 has a composition of mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2 + ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, V 2 O 5 0 to 1%, and glass substrate containing ⁇ -spodumene solid solution as the main crystal It is.
  • the crystallized glass substrate 2 preferably has a thermal expansion coefficient of ⁇ 1 to 12 ⁇ 10 ⁇ 7 / ° C. at 30 to 380 ° C. and a thermal expansion coefficient of ⁇ 1 to 15 ⁇ 10 ⁇ 7 at 30 to 750 ° C. More preferably, the temperature is / ° C. With such a thermal expansion coefficient, it is difficult to be deformed even in a high-temperature heat treatment during the CNT manufacturing process, so that CNTs with good orientation can be obtained.
  • the shape of the crystallized glass substrate 2 may be arbitrarily determined, for example, a rectangular, circular, or elliptical plate shape is preferable because it can be easily processed and handled.
  • the surface area of the main surface of the crystallized glass substrate 2 is preferably 15000 mm 2 or more, more preferably 80000 to 150,000 mm 2 . With such a surface area, CNTs can be produced more efficiently than conventional substrates.
  • the thickness of the crystallized glass substrate 2 is preferably 0.2 to 5.0 mm. When the thickness of the crystallized glass substrate 2 is smaller than 0.2 mm, the substrate 1 for CNT production becomes easily bent, and thus the handling in the CNT production process is deteriorated or the orientation of the CNT is lowered. There is. Also, if the thickness of the crystallized glass substrate 2 is greater than 5.0 mm, the amount of expansion (or shrinkage) of the substrate 1 for CNT production in the CNT production process increases, so the quality such as the orientation of CNTs. May decrease.
  • the catalytic metal thin film layer 3 is a catalyst layer that reacts with a hydrocarbon gas during the production of CNTs.
  • the catalytic metal thin film layer 3 is preferably a film layer made of one kind selected from the group consisting of Fe, Co, Ni, Pt, Mo, and Pd, or an alloy thereof.
  • the thickness of the catalytic metal thin film layer 3 is preferably about 5 to 80 nm, for example. If the thickness of the catalytic metal thin film layer 3 is smaller than 5 nm, the reaction with the hydrocarbon gas necessary for the growth of CNTs may not occur sufficiently, or the catalytic metal thin film layer 3 may be easily peeled off. If the thickness of the catalytic metal thin film layer 3 is greater than 80 nm, the film formation cost increases.
  • the base material 1 for CNT production may be configured to further include an elution preventing film layer 4 that prevents elution of alkali metal ions between the surface of the crystallized glass base material 2 and the catalytic metal thin film layer 3. With such a configuration, it is possible to prevent alkali metal ions from being eluted from the crystallized glass substrate 2 and inhibiting the growth of CNTs.
  • the elution preventing film layer 4 is preferably a film layer containing at least one material selected from the group of SiO 2 , ZrO 2 , SnO 2 , TiO 2 , TiN, and Al 2 O 3 , for example. More specifically, the elution prevention film layer 4 is particularly preferably a film layer containing, for example, crystalline ZrO 2 . According to such a film layer, it is possible to dramatically improve the elution prevention performance of alkali metal ions. Since ZrO 2 having crystallinity is denser than a film having an amorphous structure having an irregular arrangement, it is presumed that such an effect can be obtained.
  • the elution preventing film layer 4 is a film layer having a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 in terms of mass%.
  • Al 2 O 3 By adding an appropriate amount of Al 2 O 3 to the SiO 2 film layer, the elution prevention performance of alkali metal ions can be drastically improved, and the mechanical durability is higher than that of a film layer composed only of metal components such as Al 2 O 3. And chemical durability can be obtained.
  • the thickness of the elution preventing film layer 4 is preferably 50 to 800 nm, for example, and more preferably 80 to 250 nm.
  • composition and configuration of the elution preventing film layer 4 are merely examples, and any composition and configuration may be adopted as long as permeation of alkali metal ions can be suppressed. Further, when the crystallized glass substrate 2 does not contain an alkali metal oxide or when the elution amount of alkali metal ions from the crystallized glass substrate 2 is small, an elution preventing film layer is formed on the CNT manufacturing substrate 1. 4 may be provided.
  • a sputtering method is suitable as a method for forming the catalytic metal thin film layer 3 and the elution preventing film layer 4.
  • the catalyst metal thin film layer 3 and the elution preventing film layer 4 can be formed in a uniform and thin thickness.
  • the catalyst metal thin film layer 3 is formed into a film.
  • a catalytic metal thin film layer 3 is formed on a crystallized glass substrate 2 as described above to obtain a substrate 1 for producing CNTs.
  • a raw material gas containing a carbon raw material is circulated on the substrate for manufacturing CNTs 1 for a predetermined growth time in a temperature atmosphere exceeding 600 ° C. to grow CNTs on the substrate.
  • the source gas is, for example, a hydrocarbon gas.
  • the growth temperature of the CNT is preferably 750 to 1500 ° C, more preferably 800 to 1200 ° C, still more preferably 850 to 1100 ° C, and 900 to 1000 ° C. When the growth atmosphere temperature of CNT is 600 ° C.
  • the CNT growth time may be arbitrarily set according to the growth atmosphere temperature or the like, and is, for example, 5 to 40 minutes. If it is this time, even if it is a high temperature atmosphere of 800 degreeC or more, the base material 1 for CNT manufacture will hardly deform
  • the carbon nanotube production substrate 1 and the carbon nanotube production method using the same is inexpensive but has high heat resistance and easily has a large area. Since the carbon nanotube production substrate 1 is configured using the crystallized glass substrate 2 that can be formed into a plate shape, carbon nanotubes can be produced at low cost and high efficiency.
  • the shape of the crystallized glass substrate 2 is an example, and may be any shape such as a housing shape, a sheet shape, a pellet shape, or a wire shape.
  • the method for forming the catalytic metal thin film layer 3 and the elution preventing film layer 4 is not limited to the above method, and any film forming method may be used.
  • the catalytic metal thin film layer 3 and the elution preventing film layer 4 may be formed by vapor deposition.
  • Table 1 shows examples (Nos. 1 to 3) and comparative examples (No. 4) of the present invention.
  • a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass substrate is used as the base material of the example, and a B 2 O 3 —SiO 2 -based amorphous glass base material is used as the base material of the comparative example.
  • a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass substrate is used as the base material of the example, and a B 2 O 3 —SiO 2 -based amorphous glass base material is used as the base material of the comparative example.
  • the composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, Na 2 O 0.4%, K 2 O 0.
  • the glass raw material is made to be a glass containing 3%, MgO 0.7%, BaO 1.2%, TiO 2 2%, ZrO 2 2.2%, P 2 O 5 1.4%, SnO 2 0.3%.
  • Preparation and melting were performed, and the obtained molten glass was formed into a plate shape using a roll-out method. Next, the obtained plate glass was heated to precipitate a ⁇ -spodumene solid solution as a main crystal, thereby obtaining a crystallized glass substrate.
  • an amorphous glass substrate When preparing an amorphous glass substrate, it becomes a glass containing SiO 2 81%, B 2 O 3 13%, K 2 O + Na 2 O 4%, Al 2 O 3 2% by mass% as a composition. A glass raw material was prepared and melted, and the resulting molten glass was formed into a plate shape by using a float process to obtain an amorphous glass substrate.
  • No. 1 shown in Table 1 was formed on the main surface of the crystallized glass substrate obtained as described above. 1 and no. Regarding the sample of 2, the elution prevention film layer was formed by forming the film material shown in the same table using the sputtering method. Further, the crystallinity of the obtained elution preventing film layer was measured by using an X-ray analyzer SmartLab manufactured by Rigaku Corporation. Specifically, a peak showing crystallinity was measured with the apparatus, and when the diffraction peak could be observed, the crystallinity was determined, and when the diffraction peak could not be observed, the crystallinity was determined not.
  • Fe was formed as a catalyst metal thin film layer on the surface of each glass substrate using a sputtering method, and each sample shown in Table 1 was obtained.
  • CNTs were produced using each sample obtained as described above as a substrate for producing carbon nanotubes, and the number density of the produced carbon nanotubes was evaluated.
  • the number density is the number per unit area of CNTs grown in a vertical alignment on the substrate surface.
  • the CNT grown by the above production method was excluded, and the substrate surface was observed with an electron micrograph. Since the substrate grown in the vertical orientation is densely grown, the number density increases, which becomes an index for evaluating quality and productivity.
  • Example 1 since a crystalline ZrO 2 film was used as the alkali elution preventing film, a number density of 5 ⁇ 10 9 / cm 2 was obtained. No. In Example 2, since it has a SiO 2 film having an amorphous structure, a number density of 3 ⁇ 10 9 / cm 2 was obtained. Due to the crystallinity, the alkali ion diffusibility is suppressed and the number density is considered to have grown.
  • the base material for carbon nanotube production and the carbon nanotube production method of the present invention are useful as a substrate and method for enabling efficient production of carbon nanotubes used in structural materials, semiconductors, electronic equipment, optical equipment, batteries, etc. is there.
  • Carbon nanotube production substrate (CNT production substrate) 2 Crystallized glass substrate 3 Catalyst metal thin film layer 4 Elution prevention film layer

Abstract

This base material for carbon nanotube production is designed to be used as a base material for growing carbon nanotubes, wherein the base material for carbon nanotube production is characterized in that a catalytic metal thin film layer is provided on the surface of a glass-ceramic base material. In this base material for carbon nanotube production, the glass-ceramic base material preferably contains an alkali metal oxide and is also provided with an elution-preventing film layer for preventing the elution of alkali metal ions between the glass-ceramic base material surface and the catalytic metal thin film layer.

Description

カーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法Substrate for producing carbon nanotube and method for producing carbon nanotube
 本発明は、カーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法に関し、より具体的には、化学蒸着法(CVD法)を用いたカーボンナノチューブの製造に用いられるカーボンナノチューブ製造用基材、およびカーボンナノチューブ製造方法に関する。 The present invention relates to a carbon nanotube production base material and a carbon nanotube production method, and more specifically, a carbon nanotube production base material used for production of carbon nanotubes using a chemical vapor deposition method (CVD method), and carbon nanotubes It relates to a manufacturing method.
 従来、カーボンナノチューブは、化学的、力学的に非常に安定な構造を有し、且つ軽量であることから優れた構造材料として注目されている。また、カーボンナノチューブは、その電気的特性から、半導体や、電子機器、光学機器、電池等の用途においてもその有用性が確認されている。 Conventionally, carbon nanotubes have attracted attention as an excellent structural material because they have a very stable structure chemically and mechanically and are lightweight. Moreover, the usefulness of carbon nanotubes has also been confirmed in applications such as semiconductors, electronic devices, optical devices, batteries, and the like due to their electrical characteristics.
 このようなカーボンナノチューブを大量に製造(成長)する方法としては、化学蒸着法(CVD法)が知られている。例えば、特許文献1には、熱CVD法を用いてカーボンナノチューブを製造する方法が開示されている。具体的には、触媒金属を蒸着した成長用基材を加熱し、炭化水素ガスを基板上で分解させることによって、該基板上にカーボンナノチューブを成長させるという方法が開示されている。 A chemical vapor deposition method (CVD method) is known as a method for producing (growing) a large amount of such carbon nanotubes. For example, Patent Document 1 discloses a method of manufacturing carbon nanotubes using a thermal CVD method. Specifically, a method of growing a carbon nanotube on a substrate by heating a growth base material on which a catalytic metal is deposited and decomposing a hydrocarbon gas on the substrate is disclosed.
特開2003-171108号公報JP 2003-171108 A
 特許文献1に開示される手法を用いて、配向性の良い高品質なカーボンナノチューブを製造するためには、処理温度域(例えば、特許文献1では600~1100℃)において基板が変形し難いことが重要である。そのため、当該手法に用いられる基板は、石英、結晶性アルミナ、結晶シリコン等の高温雰囲気下において変形し難い材料に限られていた。 In order to produce high-quality carbon nanotubes with good orientation using the technique disclosed in Patent Document 1, it is difficult for the substrate to be deformed in a processing temperature range (for example, 600 to 1100 ° C. in Patent Document 1). is important. For this reason, the substrate used in the method is limited to materials that are difficult to be deformed in a high-temperature atmosphere such as quartz, crystalline alumina, and crystalline silicon.
 しかしながら、これらの基板材料は高価な上に、現在の技術では大面積化することが困難である。したがって、従来の技術では、カーボンナノチューブの生産性を向上することが困難であった。 However, these substrate materials are expensive and it is difficult to increase the area with the current technology. Therefore, it has been difficult to improve the productivity of carbon nanotubes with conventional techniques.
 本発明は、このような事情を考慮してなされたものであり、低コスト且つ高い効率でカーボンナノチューブを製造可能とする、カーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a carbon nanotube production substrate and a carbon nanotube production method capable of producing carbon nanotubes at low cost and high efficiency. To do.
 本発明のカーボンナノチューブ製造用基材は、カーボンナノチューブの成長用基材として用いられるカーボンナノチューブ製造用基材であって、結晶化ガラス基材の表面に触媒金属薄膜層を備えて成ることを特徴とする。 The base material for producing carbon nanotubes of the present invention is a base material for producing carbon nanotubes used as a base material for growing carbon nanotubes, and is characterized by comprising a catalytic metal thin film layer on the surface of a crystallized glass base material. And
 本発明のカーボンナノチューブ製造用基材では、結晶化ガラス基材は、アルカリ金属酸化物を含み、結晶化ガラス基材表面と触媒金属薄膜層との間にアルカリ金属イオンの溶出を防止する溶出防止膜層をさらに備えることが好ましい。 In the base material for producing carbon nanotubes of the present invention, the crystallized glass base material contains an alkali metal oxide, and the elution prevention prevents the elution of alkali metal ions between the crystallized glass base material surface and the catalytic metal thin film layer. It is preferable to further comprise a membrane layer.
 本発明のカーボンナノチューブ製造用基材では、溶出防止膜層が、SiO、ZrO、SnO、TiO、TiN、Alの群から選択される少なくとも1種の材料を含むことが好ましい。 In the base material for producing carbon nanotubes of the present invention, the elution preventing film layer includes at least one material selected from the group of SiO 2 , ZrO 2 , SnO 2 , TiO 2 , TiN, and Al 2 O 3. preferable.
 本発明のカーボンナノチューブ製造用基材では、溶出防止膜層が、結晶性金属酸化物を含むことが好ましい。 In the carbon nanotube production substrate of the present invention, it is preferable that the elution preventing film layer contains a crystalline metal oxide.
 本発明のカーボンナノチューブ製造用基材では、溶出防止膜層が、質量%でSiOを60~96%、Alを4~40%含有する組成を有することが好ましい。 In the carbon nanotube production substrate of the present invention, it is preferable that the elution preventing film layer has a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 by mass%.
 本発明のカーボンナノチューブ製造用基材では、溶出防止膜層の厚さが、50~800nmであり、結晶化ガラス基材は、主面の表面積が、15000mm以上である板状を成し、結晶化ガラス基材の厚さが、0.2~5.0mmであることが好ましい。 In the carbon nanotube production base material of the present invention, the elution preventing film layer has a thickness of 50 to 800 nm, and the crystallized glass base material has a plate shape whose main surface has a surface area of 15000 mm 2 or more. The thickness of the crystallized glass substrate is preferably 0.2 to 5.0 mm.
 本発明のカーボンナノチューブ製造用基材では、結晶化ガラス基材の30~380℃における熱膨張係数が-1~12×10-7/℃であり、且つ結晶化ガラス基材の30~750℃における熱膨張係数が-1~15×10-7/℃であることが好ましい。 In the carbon nanotube production substrate of the present invention, the thermal expansion coefficient at 30 to 380 ° C. of the crystallized glass substrate is −1 to 12 × 10 −7 / ° C., and 30 to 750 ° C. of the crystallized glass substrate. It is preferable that the thermal expansion coefficient at −1 to 15 × 10 −7 / ° C.
 本発明のカーボンナノチューブ製造用基材では、結晶化ガラス基材が、組成として質量%で、SiO  55~75%、Al  20.5~27%、LiO  2%以上、TiO  1.5~3%、TiO+ZrO  3.8~5%、SnO  0.1~0.5%、V 0~1%を含有することが好ましい。 In the base material for producing carbon nanotubes of the present invention, the crystallized glass base material has a composition of mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2 + ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, V 2 O 5 0 to 1% are preferably contained.
 本発明のカーボンナノチューブ製造用基材では、触媒金属薄膜層が、Fe、Co、Ni、Pt、Mo、Pdの群から選択される少なくとも1種の金属を含むことが好ましい。 In the base material for producing carbon nanotubes of the present invention, the catalytic metal thin film layer preferably contains at least one metal selected from the group consisting of Fe, Co, Ni, Pt, Mo, and Pd.
 本発明のカーボンナノチューブ製造用基材は、カーボンナノチューブの成長用基材として用いられるカーボンナノチューブ製造用基材であって、アルカリ金属酸化物を含む結晶化ガラス基材の表面にアルカリ金属イオンの溶出を防止する溶出防止膜層を設けて成ることを特徴とする。 The base material for producing carbon nanotubes of the present invention is a base material for producing carbon nanotubes used as a base material for growing carbon nanotubes, and elution of alkali metal ions on the surface of a crystallized glass base material containing an alkali metal oxide It is characterized in that an elution preventing film layer for preventing the above is provided.
 本発明のカーボンナノチューブの製造方法は、結晶化ガラス基材に触媒金属薄膜層を形成して成長用基材を得る触媒膜形成ステップと、600℃超の温度雰囲気下で成長用基材上に炭素原料を含むガスを流通させてカーボンナノチューブを成長させる成長ステップとを備えることを特徴とする。 The carbon nanotube production method of the present invention comprises a catalyst film forming step of forming a catalyst metal thin film layer on a crystallized glass substrate to obtain a growth substrate, and a growth substrate in a temperature atmosphere exceeding 600 ° C. And a growth step of growing a carbon nanotube by circulating a gas containing a carbon raw material.
 本発明のカーボンナノチューブの製造方法では、結晶化ガラス基材は、組成としてアルカリ金属酸化物を含み、結晶化ガラス基材表面にアルカリ金属酸化物の溶出防止膜層を形成する溶出防止膜形成ステップをさらに含み、溶出膜形成ステップの後に触媒膜形成ステップを行うことが好ましい。 In the carbon nanotube production method of the present invention, the crystallized glass substrate includes an alkali metal oxide as a composition, and an elution preventing film forming step of forming an alkali metal oxide elution preventing film layer on the surface of the crystallized glass substrate It is preferable that a catalyst film formation step is performed after the elution film formation step.
 本発明では、触媒金属膜層を形成する基材として安価でありながら高い耐熱性を有し、且つ容易に大面積の板状に成形可能な結晶化ガラス基材を用いるため、カーボンナノチューブを低コスト且つ高い効率で製造できる。 In the present invention, since a crystallized glass substrate that is inexpensive but has high heat resistance and can be easily formed into a large-area plate is used as the substrate for forming the catalytic metal film layer, the carbon nanotubes are reduced. It can be manufactured at low cost and high efficiency.
本発明のカーボンナノチューブ製造用基材の構成を示す図である。It is a figure which shows the structure of the base material for carbon nanotube manufacture of this invention.
 以下、本発明の実施形態のカーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法について説明する。なお、以下では“カーボンナノチューブ”を“CNT”とも称する。 Hereinafter, the base for carbon nanotube production and the carbon nanotube production method of the embodiment of the present invention will be described. Hereinafter, “carbon nanotube” is also referred to as “CNT”.
 図1は、本発明の実施形態に係るカーボンナノチューブ製造用基材1(以下、CNT製造用基材1とも称する)の構成を示す図である。図1に示す通り、CNT製造用基材1は、結晶化ガラス基材2と、触媒金属薄膜層3とを備える。 FIG. 1 is a diagram showing a configuration of a carbon nanotube production substrate 1 (hereinafter also referred to as a CNT production substrate 1) according to an embodiment of the present invention. As shown in FIG. 1, the substrate 1 for producing CNT includes a crystallized glass substrate 2 and a catalytic metal thin film layer 3.
 結晶化ガラス基材2は、例えば、アルカリ金属酸化物を含むLiO-Al-SiO系の結晶化ガラスである。より詳細には、結晶化ガラス基材2は、組成として質量%で、SiO  55~75%、Al  20.5~27%、LiO  2%以上、TiO  1.5~3%、TiO+ZrO  3.8~5%、SnO  0.1~0.5%、V 0~1%を含有し、主結晶としてβ-スポジュメン固溶体を含有するガラス基材である。このような組成であれば、比較的低コストで大面積のCNT製造用基材1を構成可能であり、尚且つ、CNTの製造過程の高温の熱処理においても変形し難い。したがって、配向性の良いCNTを低コストで効率よく製造可能である。なお、結晶化ガラス基材2を着色させたい場合にはVを0.005%以上含有させることが好ましい。 The crystallized glass substrate 2 is, for example, a Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass containing an alkali metal oxide. More specifically, the crystallized glass substrate 2 has a composition of mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2 + ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, V 2 O 5 0 to 1%, and glass substrate containing β-spodumene solid solution as the main crystal It is. With such a composition, it is possible to construct a large-area CNT-producing base material 1 at a relatively low cost, and it is difficult to be deformed even during high-temperature heat treatment in the CNT production process. Therefore, it is possible to efficiently produce CNTs with good orientation at low cost. In addition, when it is desired to color the crystallized glass substrate 2, it is preferable to contain 0.002% or more of V 2 O 5 .
 結晶化ガラス基材2は、30~380℃における熱膨張係数が-1~12×10-7/℃であることが好ましく、30~750℃における熱膨張係数が-1~15×10-7/℃であることがさらに好ましい。このような熱膨張係数であれば、CNTの製造過程の高温の熱処理においても変形し難いため、配向性の良いCNTを得られる。 The crystallized glass substrate 2 preferably has a thermal expansion coefficient of −1 to 12 × 10 −7 / ° C. at 30 to 380 ° C. and a thermal expansion coefficient of −1 to 15 × 10 −7 at 30 to 750 ° C. More preferably, the temperature is / ° C. With such a thermal expansion coefficient, it is difficult to be deformed even in a high-temperature heat treatment during the CNT manufacturing process, so that CNTs with good orientation can be obtained.
 結晶化ガラス基材2の形状は任意に定めて良いが、例えば矩形、円形、楕円形の板状であれば加工や取り回しが容易であり好ましい。また、結晶化ガラス基材2の主面の表面積は、15000mm以上であることが好ましく、80000~150000mmであることがさらに好ましい。このような表面積であれば従来の基板に比べてCNTを効率良く生産可能である。また、結晶化ガラス基材2の厚さは、0.2~5.0mmであることが好ましい。結晶化ガラス基材2の厚さが0.2mmより小さいと、CNT製造用基材1が撓み易くなるため、CNTの製造工程で取り回しが悪くなったり、CNTの配向性が低下したりする場合がある。また、結晶化ガラス基材2の厚さが5.0mmより大きいと、CNTの生産過程におけるCNT製造用基材1の膨張量(或いは収縮量)が大きくなるため、CNTの配向性等の品質が低下する場合がある。 Although the shape of the crystallized glass substrate 2 may be arbitrarily determined, for example, a rectangular, circular, or elliptical plate shape is preferable because it can be easily processed and handled. Further, the surface area of the main surface of the crystallized glass substrate 2 is preferably 15000 mm 2 or more, more preferably 80000 to 150,000 mm 2 . With such a surface area, CNTs can be produced more efficiently than conventional substrates. The thickness of the crystallized glass substrate 2 is preferably 0.2 to 5.0 mm. When the thickness of the crystallized glass substrate 2 is smaller than 0.2 mm, the substrate 1 for CNT production becomes easily bent, and thus the handling in the CNT production process is deteriorated or the orientation of the CNT is lowered. There is. Also, if the thickness of the crystallized glass substrate 2 is greater than 5.0 mm, the amount of expansion (or shrinkage) of the substrate 1 for CNT production in the CNT production process increases, so the quality such as the orientation of CNTs. May decrease.
 触媒金属薄膜層3は、CNTの製造時において炭化水素ガスと反応する触媒層である。触媒金属薄膜層3は、Fe、Co、Ni、Pt、Mo、Pdの群から選択される1種から、或いはこれらの合金から成る膜層であることが好ましい。触媒金属薄膜層3の厚みは、例えば、5~80nm程度が好ましい。触媒金属薄膜層3の厚みが5nmより小さいと、CNTの成長に必要な炭化水素ガスとの反応が十分に起こり難くなったり、触媒金属薄膜層3が剥離し易くなる場合がある。触媒金属薄膜層3の厚みが80nmより大きいと、成膜コストが高くなる。 The catalytic metal thin film layer 3 is a catalyst layer that reacts with a hydrocarbon gas during the production of CNTs. The catalytic metal thin film layer 3 is preferably a film layer made of one kind selected from the group consisting of Fe, Co, Ni, Pt, Mo, and Pd, or an alloy thereof. The thickness of the catalytic metal thin film layer 3 is preferably about 5 to 80 nm, for example. If the thickness of the catalytic metal thin film layer 3 is smaller than 5 nm, the reaction with the hydrocarbon gas necessary for the growth of CNTs may not occur sufficiently, or the catalytic metal thin film layer 3 may be easily peeled off. If the thickness of the catalytic metal thin film layer 3 is greater than 80 nm, the film formation cost increases.
 CNT製造用基材1は、結晶化ガラス基材2表面と触媒金属薄膜層3との間にアルカリ金属イオンの溶出を防止する溶出防止膜層4をさらに備える構成としても良い。このような構成とすれば、結晶化ガラス基材2からアルカリ金属イオンが溶出してCNTの成長が阻害されることを防止できる。 The base material 1 for CNT production may be configured to further include an elution preventing film layer 4 that prevents elution of alkali metal ions between the surface of the crystallized glass base material 2 and the catalytic metal thin film layer 3. With such a configuration, it is possible to prevent alkali metal ions from being eluted from the crystallized glass substrate 2 and inhibiting the growth of CNTs.
 溶出防止膜層4は、例えば、SiO、ZrO、SnO、TiO、TiN、Alの群から選択される少なくとも1種の材料を含む膜層であることが好ましい。より詳細には、溶出防止膜層4は、例えば、結晶性を持つZrOを有する膜層であることが特に好ましい。このような膜層によれば、アルカリ金属イオンの溶出防止性能を飛躍的に向上できる。結晶性を持つZrOは、不規則な配列を持つアモルファス構造を持つ膜と比較して緻密であるため、このような効果が得られるものと推察される。 The elution preventing film layer 4 is preferably a film layer containing at least one material selected from the group of SiO 2 , ZrO 2 , SnO 2 , TiO 2 , TiN, and Al 2 O 3 , for example. More specifically, the elution prevention film layer 4 is particularly preferably a film layer containing, for example, crystalline ZrO 2 . According to such a film layer, it is possible to dramatically improve the elution prevention performance of alkali metal ions. Since ZrO 2 having crystallinity is denser than a film having an amorphous structure having an irregular arrangement, it is presumed that such an effect can be obtained.
 溶出防止膜層4の他の例としては、組成として質量%でSiOを60~96%、Alを4~40%含有する組成を有する膜層が挙げられる。SiO膜層にAlを適量添加することによってアルカリ金属イオンの溶出防止性能を飛躍的に向上できるとともに、Al等の金属成分のみから成る膜層に比べて高い機械的耐久性および化学的耐久性を得ることができる。 Another example of the elution preventing film layer 4 is a film layer having a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 in terms of mass%. By adding an appropriate amount of Al 2 O 3 to the SiO 2 film layer, the elution prevention performance of alkali metal ions can be drastically improved, and the mechanical durability is higher than that of a film layer composed only of metal components such as Al 2 O 3. And chemical durability can be obtained.
 なお、溶出防止膜層4の厚さは、例えば50~800nmであることが好ましく、より好ましくは80~250nmである。 The thickness of the elution preventing film layer 4 is preferably 50 to 800 nm, for example, and more preferably 80 to 250 nm.
 なお、上記溶出防止膜層4の組成や構成は一例であり、アルカリ金属イオンの透過を抑制可能であれば任意の組成および構成を採用して良い。また、結晶化ガラス基材2がアルカリ金属酸化物を含有しない場合や、結晶化ガラス基材2からのアルカリ金属イオンの溶出量が少ない場合には、CNT製造用基材1に溶出防止膜層4を設けない構成として良い。 The composition and configuration of the elution preventing film layer 4 are merely examples, and any composition and configuration may be adopted as long as permeation of alkali metal ions can be suppressed. Further, when the crystallized glass substrate 2 does not contain an alkali metal oxide or when the elution amount of alkali metal ions from the crystallized glass substrate 2 is small, an elution preventing film layer is formed on the CNT manufacturing substrate 1. 4 may be provided.
 触媒金属薄膜層3や溶出防止膜層4を成膜する方法としては、スパッタ法が好適である。スパッタ法を用いることにより均質且つ薄厚で触媒金属薄膜層3や溶出防止膜層4を成膜できる。なお、CNT製造用基材1に溶出防止膜層4を設ける場合には、結晶化ガラス基材2に溶出防止膜層4を成膜した後に触媒金属薄膜層3を成膜する。 As a method for forming the catalytic metal thin film layer 3 and the elution preventing film layer 4, a sputtering method is suitable. By using the sputtering method, the catalyst metal thin film layer 3 and the elution preventing film layer 4 can be formed in a uniform and thin thickness. In addition, when providing the elution prevention film layer 4 in the base material 1 for CNT manufacture, after forming the elution prevention film layer 4 in the crystallized glass base material 2, the catalyst metal thin film layer 3 is formed into a film.
 以下、上述したCNT製造用基材1を用いてCNTを製造する方法について説明する。 Hereinafter, a method for producing CNTs using the above-described substrate 1 for producing CNTs will be described.
 先ず、上述のようにして結晶化ガラス基材2に触媒金属薄膜層3を形成してCNT製造用基材1を得る。次いで、600℃超の温度雰囲気下でCNT製造用基材1上に炭素原料を含む原料ガスを所定の成長時間流通させてCNTを該基板上に成長させる。原料ガスは、例えば炭化水素ガス等である。CNTの成長雰囲気温度は、好ましくは750~1500℃、より好ましくは800~1200℃、さらに好ましくは850~1100℃、900~1000℃である。CNTの成長雰囲気温度が600℃以下であると、原料ガスの分解効率が低下し、CNTの成長速度が低下し易くなる。成長雰囲気温度が高すぎるとCNT製造用基材1が変形し易くなり、CNTの品位が低下し易くなる。CNTの成長時間は成長雰囲気温度等に応じて任意に設定して良いが、例えば、5~40分である。この程度の時間であれば、800℃以上の高温雰囲気下であってもCNT製造用基材1が変形し難く、CNTの品位低下を抑制できる。 First, a catalytic metal thin film layer 3 is formed on a crystallized glass substrate 2 as described above to obtain a substrate 1 for producing CNTs. Next, a raw material gas containing a carbon raw material is circulated on the substrate for manufacturing CNTs 1 for a predetermined growth time in a temperature atmosphere exceeding 600 ° C. to grow CNTs on the substrate. The source gas is, for example, a hydrocarbon gas. The growth temperature of the CNT is preferably 750 to 1500 ° C, more preferably 800 to 1200 ° C, still more preferably 850 to 1100 ° C, and 900 to 1000 ° C. When the growth atmosphere temperature of CNT is 600 ° C. or less, the decomposition efficiency of the raw material gas is lowered, and the growth rate of CNT is easily lowered. If the growth atmosphere temperature is too high, the substrate 1 for CNT production is likely to be deformed, and the quality of the CNT is likely to be lowered. The CNT growth time may be arbitrarily set according to the growth atmosphere temperature or the like, and is, for example, 5 to 40 minutes. If it is this time, even if it is a high temperature atmosphere of 800 degreeC or more, the base material 1 for CNT manufacture will hardly deform | transform, and it can suppress the quality deterioration of CNT.
 以上に説明した本発明の実施形態に係るカーボンナノチューブ製造用基材1、およびこれを用いたカーボンナノチューブの製造方法によれば、安価でありながら高い耐熱性を有し、且つ容易に大面積の板状に成形可能な結晶化ガラス基材2を用いてカーボンナノチューブ製造用基材1が構成されるため、低コスト且つ高い効率でカーボンナノチューブを製造可能である。 According to the carbon nanotube production substrate 1 and the carbon nanotube production method using the same according to the embodiment of the present invention described above, it is inexpensive but has high heat resistance and easily has a large area. Since the carbon nanotube production substrate 1 is configured using the crystallized glass substrate 2 that can be formed into a plate shape, carbon nanotubes can be produced at low cost and high efficiency.
 なお、上記結晶化ガラス基材2の形状は一例であり、例えば、筐状、シート状、ペレット状、ワイヤー状等任意の形状であっても良い。 The shape of the crystallized glass substrate 2 is an example, and may be any shape such as a housing shape, a sheet shape, a pellet shape, or a wire shape.
 また、触媒金属薄膜層3や溶出防止膜層4を成膜する方法としては、上記手法に限らず任意の成膜方法を用いて良い。例えば、蒸着法を用いて触媒金属薄膜層3や溶出防止膜層4を成膜しても良い。 Further, the method for forming the catalytic metal thin film layer 3 and the elution preventing film layer 4 is not limited to the above method, and any film forming method may be used. For example, the catalytic metal thin film layer 3 and the elution preventing film layer 4 may be formed by vapor deposition.
 以下、実施例に基づいて、本発明を詳細に説明する。表1は、本発明の実施例(No.1~3)および比較例(No.4)を示している。 Hereinafter, the present invention will be described in detail based on examples. Table 1 shows examples (Nos. 1 to 3) and comparative examples (No. 4) of the present invention.
 先ず、実施例の基材としてLiO-Al-SiO系の結晶化ガラス基材、および比較例の基材としてB-SiO系の非晶質ガラス基材を準備した。 First, a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass substrate is used as the base material of the example, and a B 2 O 3 —SiO 2 -based amorphous glass base material is used as the base material of the comparative example. Got ready.
 結晶化ガラス基材を準備する際は、組成として質量%でSiO65.6%、Al 22.2%、LiO3.7%、NaO0.4%、KO0.3%、MgO0.7%、BaO1.2%、TiO2%、ZrO2.2%、P 1.4%、SnO 0.3%を含有するガラスとなるようガラス原料を調合および溶融し、得られた溶融ガラスをロールアウト法を用いて板状に成形した。次いで、得られた板状ガラスを加熱し、主結晶としてβ-スポジュメン固溶体を析出させることにより結晶化ガラス基材を得た。 When preparing a crystallized glass substrate, the composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, Na 2 O 0.4%, K 2 O 0. The glass raw material is made to be a glass containing 3%, MgO 0.7%, BaO 1.2%, TiO 2 2%, ZrO 2 2.2%, P 2 O 5 1.4%, SnO 2 0.3%. Preparation and melting were performed, and the obtained molten glass was formed into a plate shape using a roll-out method. Next, the obtained plate glass was heated to precipitate a β-spodumene solid solution as a main crystal, thereby obtaining a crystallized glass substrate.
 非晶質ガラス基材を準備する際は、組成として質量%で、SiO  81%、B  13%、KO+NaO  4%、Al  2%を含有するガラスとなるようガラス原料を調合および溶融し、得られた溶融ガラスをフロート法を用いて板状に成形することにより非晶質ガラス基材を得た。 When preparing an amorphous glass substrate, it becomes a glass containing SiO 2 81%, B 2 O 3 13%, K 2 O + Na 2 O 4%, Al 2 O 3 2% by mass% as a composition. A glass raw material was prepared and melted, and the resulting molten glass was formed into a plate shape by using a float process to obtain an amorphous glass substrate.
 上記のようにして得られた結晶化ガラス基材の主表面に、表1に示したNo.1およびNo.2の試料については同表に示す膜材料をスパッタリング法を用いて成膜することにより、溶出防止膜層を形成した。また、得られた溶出防止膜層の結晶性をリガク社製のX線解析装置SmartLabを用いて測定した。詳細には、当該装置で結晶性を示すピークを測定し、回折ピークを観測できた場合は結晶性ありとし、回折ピークが観測できない場合は結晶性無しとした。 No. 1 shown in Table 1 was formed on the main surface of the crystallized glass substrate obtained as described above. 1 and no. Regarding the sample of 2, the elution prevention film layer was formed by forming the film material shown in the same table using the sputtering method. Further, the crystallinity of the obtained elution preventing film layer was measured by using an X-ray analyzer SmartLab manufactured by Rigaku Corporation. Specifically, a peak showing crystallinity was measured with the apparatus, and when the diffraction peak could be observed, the crystallinity was determined, and when the diffraction peak could not be observed, the crystallinity was determined not.
 次いで、触媒金属薄膜層としてFeをスパッタリング法を用いて各ガラス基材の表面に成膜して表1の各試料を得た。 Next, Fe was formed as a catalyst metal thin film layer on the surface of each glass substrate using a sputtering method, and each sample shown in Table 1 was obtained.
 上記のようにして得られた各試料をカーボンナノチューブ製造用基材として用いてCNTを製造し、生成されたカーボンナノチューブの数密度を評価した。 CNTs were produced using each sample obtained as described above as a substrate for producing carbon nanotubes, and the number density of the produced carbon nanotubes was evaluated.
 数密度とは、基板表面に垂直配向に成長したCNTの単位面積当たりの本数である。上記製造方法で成長したCNTを排除し、基板表面を電子顕微鏡写真で観察した。垂直配向に成長している基板は、緻密に成長しているため、数密度が増え、品質や生産性を評価する指標となる。 The number density is the number per unit area of CNTs grown in a vertical alignment on the substrate surface. The CNT grown by the above production method was excluded, and the substrate surface was observed with an electron micrograph. Since the substrate grown in the vertical orientation is densely grown, the number density increases, which becomes an index for evaluating quality and productivity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 No.1の実施例においては、アルカリ溶出防止膜として結晶性のあるZrO膜を有するため5×10/cmの数密度を得られた。また、No.2の実施例では、アモルファス構造を持つSiO膜を有するため3×10/cmの数密度を得られた。結晶性があることで、アルカリイオン拡散性が抑止され、数密度が成長したと考えられる。 No. In Example 1, since a crystalline ZrO 2 film was used as the alkali elution preventing film, a number density of 5 × 10 9 / cm 2 was obtained. No. In Example 2, since it has a SiO 2 film having an amorphous structure, a number density of 3 × 10 9 / cm 2 was obtained. Due to the crystallinity, the alkali ion diffusibility is suppressed and the number density is considered to have grown.
 一方で、比較例においては、CNT成長工程で基板が変形損傷したためCNTが成長せず、数密度が測定できなかった。 On the other hand, in the comparative example, since the substrate was deformed and damaged in the CNT growth step, CNT did not grow and the number density could not be measured.
 本発明のカーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法は、構造材料、半導体、電子機器、光学機器、電池等に用いられるカーボンナノチューブを効率良く製造可能とするための基板および方法等として有用である。 The base material for carbon nanotube production and the carbon nanotube production method of the present invention are useful as a substrate and method for enabling efficient production of carbon nanotubes used in structural materials, semiconductors, electronic equipment, optical equipment, batteries, etc. is there.
1 カーボンナノチューブ製造用基材(CNT製造用基材)
2 結晶化ガラス基材
3 触媒金属薄膜層
4 溶出防止膜層
 
 
 
1 Carbon nanotube production substrate (CNT production substrate)
2 Crystallized glass substrate 3 Catalyst metal thin film layer 4 Elution prevention film layer

Claims (12)

  1.  カーボンナノチューブの成長用基材として用いられるカーボンナノチューブ製造用基材であって、
     結晶化ガラス基材の表面に触媒金属薄膜層を備えて成るカーボンナノチューブ製造用基材。
    A carbon nanotube production base material used as a carbon nanotube growth base material,
    A substrate for producing carbon nanotubes, comprising a catalytic metal thin film layer on the surface of a crystallized glass substrate.
  2.  前記結晶化ガラス基材は、アルカリ金属酸化物を含み、
     前記結晶化ガラス基材表面と前記触媒金属薄膜層との間にアルカリ金属イオンの溶出を防止する溶出防止膜層をさらに備える、請求項1に記載のカーボンナノチューブ製造用基材。
    The crystallized glass substrate includes an alkali metal oxide,
    The base material for carbon nanotube manufacture of Claim 1 further equipped with the elution prevention film layer which prevents elution of an alkali metal ion between the said crystallized glass base material surface and the said catalyst metal thin film layer.
  3.  前記溶出防止膜層が、SiO、ZrO、SnO、TiO、TiN、Alの群から選択される少なくとも1種の材料を含むことを特徴とする、請求項2に記載のカーボンナノチューブ製造用基材。 The anti-elution film layer includes at least one material selected from the group consisting of SiO 2 , ZrO 2 , SnO 2 , TiO 2 , TiN, and Al 2 O 3 . Base material for carbon nanotube production.
  4.  前記溶出防止膜層が、結晶性金属化合物を含むことを特徴とする、請求項2または3に記載のカーボンナノチューブ製造用基材。 4. The carbon nanotube production substrate according to claim 2, wherein the elution preventing film layer contains a crystalline metal compound.
  5.  前記溶出防止膜層が、質量%でSiOを60~96%、Alを4~40%含有する組成を有することを特徴とする、請求項2~4の何れか1項に記載のカーボンナノチューブ製造用基材。 The elution preventing film layer has a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 by mass%, according to any one of claims 2 to 4. Base material for carbon nanotube production.
  6.  前記溶出防止膜層の厚さが、50~800nmであり、
     前記結晶化ガラス基材は、主面の表面積が、15000mm以上である板状を成し、
     前記結晶化ガラス基材の厚さが、0.2~5.0mmであることを特徴とする、請求項2~5の何れか1項に記載のカーボンナノチューブ製造用基材。
    The elution preventing film layer has a thickness of 50 to 800 nm;
    The crystallized glass substrate has a plate shape with a main surface having a surface area of 15000 mm 2 or more,
    6. The substrate for producing carbon nanotubes according to claim 2, wherein the thickness of the crystallized glass substrate is 0.2 to 5.0 mm.
  7.  前記結晶化ガラス基材の30~380℃における熱膨張係数が-1~12×10-7/℃であり、且つ
     前記結晶化ガラス基材の30~750℃における熱膨張係数が-1~15×10-7/℃であることを特徴とする、請求項1~6の何れか1項に記載のカーボンナノチューブ製造用基材。
    The crystallized glass substrate has a thermal expansion coefficient at 30 to 380 ° C. of −1 to 12 × 10 −7 / ° C., and the crystallized glass substrate has a thermal expansion coefficient at 30 to 750 ° C. of −1 to 15 The substrate for producing carbon nanotubes according to any one of claims 1 to 6, characterized in that it is × 10 -7 / ° C.
  8.  前記結晶化ガラス基材が、組成として質量%で、SiO  55~75%、Al  20.5~27%、LiO  2%以上、TiO  1.5~3%、TiO+ZrO  3.8~5%、SnO  0.1~0.5%、V 0~1%を含有することを特徴とする、請求項1~7の何れか1項に記載のカーボンナノチューブ製造用基材。 The crystallized glass substrate has a composition of mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2. 8. ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, V 2 O 5 0 to 1%, according to any one of claims 1 to 7, Base material for carbon nanotube production.
  9.  前記触媒金属薄膜層が、Fe、Co、Ni、Pt、Mo、Pdの群から選択される少なくとも1種の金属を含むことを特徴とする、請求項1~8の何れか1項に記載のカーボンナノチューブ製造用基材。 The catalyst metal thin film layer includes at least one metal selected from the group consisting of Fe, Co, Ni, Pt, Mo, and Pd, according to any one of claims 1 to 8. Base material for carbon nanotube production.
  10.  カーボンナノチューブの成長用基材として用いられるカーボンナノチューブ製造用基材であって、
     アルカリ金属酸化物を含む結晶化ガラス基材の表面にアルカリ金属イオンの溶出を防止する溶出防止膜層を設けて成るカーボンナノチューブ製造用基材。
    A carbon nanotube production base material used as a carbon nanotube growth base material,
    A substrate for producing carbon nanotubes, comprising an elution preventing film layer for preventing elution of alkali metal ions on the surface of a crystallized glass substrate containing an alkali metal oxide.
  11.  結晶化ガラス基材に触媒金属薄膜層を形成して成長用基材を得る触媒膜形成ステップと、
     600℃超の温度雰囲気下で前記成長用基材上に炭素原料を含むガスを流通させてカーボンナノチューブを成長させる成長ステップとを備えることを特徴とする、カーボンナノチューブの製造方法。
    Forming a catalyst metal thin film layer on a crystallized glass substrate to obtain a growth substrate;
    A growth step of growing a carbon nanotube by circulating a gas containing a carbon raw material on the growth base material in a temperature atmosphere exceeding 600 ° C.
  12.  前記結晶化ガラス基材は、組成としてアルカリ金属酸化物を含み、
     前記結晶化ガラス基材表面に前記アルカリ金属酸化物の溶出防止膜層を形成する溶出防止膜形成ステップをさらに含み、
     前記溶出膜形成ステップの後に前記触媒膜形成ステップを行うことを特徴とする、請求項11に記載のカーボンナノチューブの製造方法。
    The crystallized glass substrate contains an alkali metal oxide as a composition,
    An elution preventing film forming step of forming an alkali metal oxide elution preventing film layer on the crystallized glass substrate surface,
    The method for producing carbon nanotubes according to claim 11, wherein the catalyst film forming step is performed after the eluting film forming step.
PCT/JP2016/057554 2015-03-30 2016-03-10 Base material for carbon nanotube production and method for producing carbon nanotubes WO2016158286A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-068166 2015-03-30
JP2015068166 2015-03-30
JP2015-217263 2015-11-05
JP2015217263A JP2016190780A (en) 2015-03-30 2015-11-05 Base material for carbon nanotube production and method for producing carbon nanotubes

Publications (1)

Publication Number Publication Date
WO2016158286A1 true WO2016158286A1 (en) 2016-10-06

Family

ID=57005649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057554 WO2016158286A1 (en) 2015-03-30 2016-03-10 Base material for carbon nanotube production and method for producing carbon nanotubes

Country Status (1)

Country Link
WO (1) WO2016158286A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542136A (en) * 1999-04-16 2002-12-10 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Multi-walled carbon nanotube film
JP2003510462A (en) * 1999-09-29 2003-03-18 エレクトロファク,ファブリカツィオーン エレクトロテクニシャー スペツィアラルティクテル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of forming nanotube layer on substrate
JP2005272284A (en) * 2004-03-26 2005-10-06 Univ Nagoya Method for making carbon nanotube and substrate for making carbon nanotube
JP2010192245A (en) * 2009-02-18 2010-09-02 Nec Corp Method of manufacturing emitter, emitter, method of manufacturing field emission light emitting element, field emission light emitting element, and lighting device
JP2012176856A (en) * 2011-02-25 2012-09-13 Tokyo Electron Ltd Carbon nanotube forming method, pre-treatment method therefor, electron emitter, and lighting apparatus
JP2013540683A (en) * 2010-09-14 2013-11-07 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Glass substrate having grown carbon nanotube and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542136A (en) * 1999-04-16 2002-12-10 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Multi-walled carbon nanotube film
JP2003510462A (en) * 1999-09-29 2003-03-18 エレクトロファク,ファブリカツィオーン エレクトロテクニシャー スペツィアラルティクテル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of forming nanotube layer on substrate
JP2005272284A (en) * 2004-03-26 2005-10-06 Univ Nagoya Method for making carbon nanotube and substrate for making carbon nanotube
JP2010192245A (en) * 2009-02-18 2010-09-02 Nec Corp Method of manufacturing emitter, emitter, method of manufacturing field emission light emitting element, field emission light emitting element, and lighting device
JP2013540683A (en) * 2010-09-14 2013-11-07 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Glass substrate having grown carbon nanotube and method for producing the same
JP2012176856A (en) * 2011-02-25 2012-09-13 Tokyo Electron Ltd Carbon nanotube forming method, pre-treatment method therefor, electron emitter, and lighting apparatus

Similar Documents

Publication Publication Date Title
KR101626181B1 (en) Method for the controlled growth of a graphene film
JP6078024B2 (en) Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
CN110273176B (en) Method for preparing large-area copper Cu (111) single crystal
CN106868469B (en) A method of non-metal catalyst prepares graphene in silicon substrate
WO2007046181A1 (en) Semiconductor thin film and process for producing the same
JP2018035010A (en) Production method of multi-layer graphene and multi-layer graphene laminate
CN108666358B (en) Preparation method of transition metal chalcogenide and boron nitride or graphene heterojunction
JP5641402B2 (en) Oxide film and method for producing the same, and method for producing target and oxide sintered body
KR101312104B1 (en) Fabrication method of graphene-controlled nano-graphite
WO2016158286A1 (en) Base material for carbon nanotube production and method for producing carbon nanotubes
JP2016190780A (en) Base material for carbon nanotube production and method for producing carbon nanotubes
CN111139526A (en) Method for obtaining single crystal boron nitride film by ion beam sputtering deposition
JP2012028052A (en) Ultraviolet region transmission type transparent conductive film and method of manufacturing the same
JP6477315B2 (en) Phosphorene film forming method and semiconductor device manufacturing method
Kim et al. Improvement in electrical properties of sol–gel-derived In-doped ZnO thin film by electron beam treatment
KR101484770B1 (en) Method for preparing graphene using cover and method for fabricating electronic device comprising the same
JP2017128458A (en) Oxynitride fine particle, photocatalyst for water decomposition, photocatalyst electrode for generating hydrogen and oxygen, photocatalyst module for generating hydrogen and oxygen and manufacturing method of oxynitride fine particle
KR101758640B1 (en) Fabrication method of aligned carbon fiber arrays employing metal base
KR20210097854A (en) Method for preparing covellite thin film by radio frequency magnetron sputtering method and thin film solar cell using thereof
CN107419220B (en) Method for forming amorphous carbon/M metal layer on substrate
JP5049474B2 (en) Method for producing graphite nanofiber
CN111809149B (en) Preparation method of 3C-SiC film
JP2015203149A (en) Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound
KR102349695B1 (en) Method of manufacturing vertically aligned carbon nanotubes
JP2014009150A (en) Method for producing zinc oxide sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772170

Country of ref document: EP

Kind code of ref document: A1