JP2015203149A - Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound - Google Patents

Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound Download PDF

Info

Publication number
JP2015203149A
JP2015203149A JP2014084251A JP2014084251A JP2015203149A JP 2015203149 A JP2015203149 A JP 2015203149A JP 2014084251 A JP2014084251 A JP 2014084251A JP 2014084251 A JP2014084251 A JP 2014084251A JP 2015203149 A JP2015203149 A JP 2015203149A
Authority
JP
Japan
Prior art keywords
hexagonal lattice
copper foil
dimensional hexagonal
lattice compound
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014084251A
Other languages
Japanese (ja)
Inventor
喜寛 千葉
Yoshihiro Chiba
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014084251A priority Critical patent/JP2015203149A/en
Publication of JP2015203149A publication Critical patent/JP2015203149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Carbon And Carbon Compounds (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil for production of a two-dimensional hexagonal lattice compound which enables production of a two-dimensional hexagonal compound, e.g. graphene, at low costs with high quality and a production method of a two-dimensional hexagonal lattice compound using it.SOLUTION: For a rolled copper foil for production of a two-dimensional hexagonal lattice compound, the 111 diffraction intensity (I) determined by X-ray diffraction of the rolled surface after 60-min heating at 1,000°C meets condition 0.9≤(I/I) to the 111 diffraction intensity (I) determined by X-ray diffraction of fine powder copper.

Description

本発明は、グラフェン、窒化ホウ素等の2次元六角形格子化合物を製造するための銅箔及び2次元六角形格子化合物の製造方法に関する。
に関する。
The present invention relates to a copper foil for producing a two-dimensional hexagonal lattice compound such as graphene and boron nitride, and a method for producing a two-dimensional hexagonal lattice compound.
About.

グラファイトは平らに並んだ炭素6員環の層がいくつも積み重なった層状構造をもつが、その単原子層〜数原子層程度のものはグラフェン又はグラフェンシートと呼ばれる。グラフェンシートは独自の電気的、光学的及び機械的特性を有し、特にキャリア移動速度が高速である。そのため、グラフェンシートは、例えば、燃料電池用セパレータ、透明電極、表示素子の導電性薄膜、無水銀蛍光灯、コンポジット材、ドラッグデリバリーシステム(DDS)のキャリアーなど、産業界での幅広い応用が期待されている。   Graphite has a layered structure in which a number of flat carbon 6-membered ring layers are stacked, and those having a single atomic layer to several atomic layers are called graphene or graphene sheets. Graphene sheets have unique electrical, optical and mechanical properties, and in particular have a high carrier moving speed. Therefore, graphene sheets are expected to have a wide range of applications in the industry, such as fuel cell separators, transparent electrodes, conductive thin films for display elements, mercury-free fluorescent lamps, composite materials, and drug delivery system (DDS) carriers. ing.

グラフェンシートを製造する方法として、グラファイトを粘着テープで剥がす方法が知られているが、得られるグラフェンシートの層数が一定でなく、大面積のグラフェンシートが得難く、大量生産にも適さないという問題がある。
そこで、シート状の単結晶グラファイト化金属触媒上に炭素系物質を接触させた後、熱処理することによりグラフェンシートを成長させる技術(化学気相成長(CVD)法)が開発されている(特許文献1)。この単結晶グラファイト化金属触媒としては、Ni、Cu、Wなどの金属基板が記載されている。
同様に,NiやCuの金属箔やSi基板上に形成した銅層上に化学気相成長法でグラフェンを製膜する技術が報告されている.なお,グラフェンの製膜は1000℃程度で行われる(非特許文献1)。
そこで、本願出願人は、銅箔表面にCuめっき層又はCuスパッタ層を形成することで、表面において面方位を均一((111)面の割合を60%以上)にした銅箔を開発した(特許文献2)。
As a method of producing a graphene sheet, a method of peeling graphite with an adhesive tape is known, but the number of layers of the obtained graphene sheet is not constant, it is difficult to obtain a large area graphene sheet, and it is not suitable for mass production There's a problem.
Thus, a technique (chemical vapor deposition (CVD) method) has been developed in which a graphene sheet is grown by bringing a carbon-based material into contact with a sheet-like single crystal graphitized metal catalyst and then performing heat treatment (Patent Literature). 1). As this single crystal graphitized metal catalyst, a metal substrate of Ni, Cu, W or the like is described.
Similarly, a technique for forming graphene by chemical vapor deposition on a copper layer formed on a Ni or Cu metal foil or Si substrate has been reported. The graphene film is formed at about 1000 ° C. (Non-patent Document 1).
Therefore, the applicant of the present application has developed a copper foil in which the surface orientation is uniform on the surface (the ratio of the (111) plane is 60% or more) by forming a Cu plating layer or a Cu sputter layer on the surface of the copper foil ( Patent Document 2).

特開2009−143799号公報JP 2009-143799 A 特開2013−107036号公報JP 2013-107036 A

SCIENCE Vol.324 (2009) P1312-1314SCIENCE Vol.324 (2009) P1312-1314

しかしながら、特許文献1のように単結晶の金属基板を製造することは容易でなく極めて高コストであり、又、大面積の基板が得られ難く、ひいては大面積のグラフェンシートが得難いという問題がある。一方,非特許文献1には、Cuを基板として使用することが記載されているが,Cu箔上では短時間にグラフェンが面方向に成長せず,Si基板上に形成したCu層を焼鈍で粗大粒として基板としている。この場合、グラフェンの大きさはSi基板サイズに制約され,製造コストも高い。
ここで、銅がグラフェン成長の触媒として優れている理由は、銅が炭素をほとんど固溶しないためである。そして、銅が触媒として作用し炭化水素ガスの熱分解で生じた炭素原子は銅表面でグラフェンを形成する。さらに、グラフェンで覆われた部分の銅は触媒作用を失うため、その部分でさらに炭化水素ガスが熱分解することがなく、グラフェンが複数層になり難く、グラフェンの単層が得られる。従って、銅の単結晶はこの点でグラフェン製造用基板として優れているが、高価でサイズが限定されるため、大面積のグラフェンを製膜するには適さない。
又、特許文献2記載の技術の場合、Cuめっき層又はCuスパッタ層を形成する工程が必要である点で、生産性向上の余地がある。
一方で、銅箔は大面積化が容易であるが、例えば液晶ディスプレイ等の大面積の透明電極用の大面積のグラフェンを製造する場合には、グラフェンのシート抵抗値の測定も大面積で行う。このため、銅箔上にグラフェンを製膜した後に銅箔をエッチング除去する際、エッチング性が不均一であると、銅箔全体をエッチング除去するためにグラフェンと共に銅箔をエッチング液に長時間浸漬する必要があり、グラフェンのシート抵抗が増大して品質が劣化することがわかった。
すなわち、本発明は、グラフェン、窒化ホウ素等の2次元六角形格子化合物を低コストかつ高品質で生産可能な2次元六角形格子化合物製造用圧延銅箔及びそれを用いた2次元六角形格子化合物の製造方法の提供を目的とする。
However, as in Patent Document 1, it is not easy to manufacture a single crystal metal substrate, which is extremely expensive, and it is difficult to obtain a large-area substrate, and thus it is difficult to obtain a large-area graphene sheet. . On the other hand, Non-Patent Document 1 describes that Cu is used as a substrate, but graphene does not grow in the surface direction in a short time on the Cu foil, and the Cu layer formed on the Si substrate is annealed. The substrate is formed as coarse particles. In this case, the size of graphene is limited by the Si substrate size, and the manufacturing cost is high.
Here, the reason why copper is excellent as a catalyst for graphene growth is that copper hardly dissolves carbon. Then, copper acts as a catalyst, and carbon atoms generated by thermal decomposition of the hydrocarbon gas form graphene on the copper surface. Furthermore, since the copper covered with graphene loses its catalytic action, the hydrocarbon gas is not further thermally decomposed at that portion, and the graphene hardly forms a plurality of layers, so that a single graphene layer can be obtained. Therefore, although a copper single crystal is excellent in this respect as a substrate for producing graphene, it is expensive and limited in size, and thus is not suitable for forming a large area graphene.
Further, in the case of the technique described in Patent Document 2, there is room for improving productivity in that a step of forming a Cu plating layer or a Cu sputter layer is necessary.
On the other hand, the copper foil can be easily increased in area, but when manufacturing large area graphene for a large area transparent electrode such as a liquid crystal display, the sheet resistance of the graphene is also measured in a large area. . For this reason, when the copper foil is etched away after forming the graphene on the copper foil, if the etching property is non-uniform, the copper foil is immersed in the etching solution for a long time together with the graphene to remove the entire copper foil by etching. It has been found that the sheet resistance of graphene increases and the quality deteriorates.
That is, the present invention relates to a rolled copper foil for producing a two-dimensional hexagonal lattice compound that can produce a two-dimensional hexagonal lattice compound such as graphene and boron nitride at low cost and high quality, and a two-dimensional hexagonal lattice compound using the same. It aims at providing the manufacturing method of this.

すなわち、本発明の2次元六角形格子化合物製造用圧延銅箔は、1000℃で60分加熱後、圧延面のX線回折で求めた111回折強度(I)が、微粉末銅のX線回折で求めた111回折強度(I0)に対し、0.9≦(I/I0)である。 That is, the rolled copper foil for producing a two-dimensional hexagonal lattice compound of the present invention has a 111 diffraction intensity (I) obtained by X-ray diffraction of the rolled surface after heating at 1000 ° C. for 60 minutes, and X-ray diffraction of fine powder copper 0.9 ≦ (I / I 0 ) with respect to 111 diffraction intensity (I 0 ) obtained in the above.

1000℃で60分加熱後、JIS H0501の切断法により測定した平均結晶粒径が200μm以下であることが好ましい。
1000℃で60分加熱後、圧延面の結晶粒の全個数Ttに対し、[111]方位を示す結晶粒の個数T1の割合である面積率が20%以上であることが好ましい。
After heating at 1000 ° C. for 60 minutes, the average crystal grain size measured by the cutting method of JIS H0501 is preferably 200 μm or less.
After heating at 1000 ° C. for 60 minutes, the area ratio, which is the ratio of the number T1 of crystal grains showing the [111] orientation, to the total number Tt of crystal grains on the rolled surface is preferably 20% or more.

本発明の2次元六角形格子化合物製造用圧延銅箔は、インゴットを熱間圧延した後、焼鈍と冷間圧延を1回以上繰り返し、さらに再結晶焼鈍した後に最終冷間圧延して製造され、前記最終冷間圧延における加工度ηが1.0≦η≦4.5とされることが好ましい。   The rolled copper foil for producing a two-dimensional hexagonal lattice compound of the present invention is manufactured by subjecting an ingot to hot rolling, then repeating annealing and cold rolling one or more times, and further performing recrystallization annealing, followed by final cold rolling, The degree of work η in the final cold rolling is preferably 1.0 ≦ η ≦ 4.5.

本発明の2次元六角形格子化合物製造用圧延銅箔は、JIS-H3100に規格するタフピッチ銅若しくはJIS-H3100に規格する無酸素銅、又は該タフピッチ銅若しくは無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有することが好ましい。   The rolled copper foil for producing a two-dimensional hexagonal lattice compound of the present invention is made of tough pitch copper standardized to JIS-H3100 or oxygen-free copper standardized to JIS-H3100 It is preferable to contain 0.050% by mass or less of one or more elements selected from the group.

又、本発明の2次元六角形格子化合物の製造方法は、前記2次元六角形格子化合物製造用圧延銅箔を用い、所定の室内に、加熱した前記2次元六角形格子化合物製造用圧延銅箔を配置すると共に、水素ガスと炭素含有ガスを供給し、前記2次元六角形格子化合物製造用圧延銅箔の表面に2次元六角形格子化合物を形成する2次元六角形格子化合物形成工程と、前記2次元六角形格子化合物の表面に転写シートを積層し、前記2次元六角形格子化合物を前記転写シート上に転写しながら、前記2次元六角形格子化合物製造用銅箔をエッチング除去する2次元六角形格子化合物転写工程と、を有する。   Moreover, the manufacturing method of the two-dimensional hexagonal lattice compound of the present invention uses the rolled copper foil for producing the two-dimensional hexagonal lattice compound and heats the rolled copper foil for producing the two-dimensional hexagonal lattice compound in a predetermined chamber. A two-dimensional hexagonal lattice compound forming step of forming a two-dimensional hexagonal lattice compound on the surface of the rolled copper foil for producing the two-dimensional hexagonal lattice compound, supplying hydrogen gas and a carbon-containing gas, and A transfer sheet is laminated on the surface of a two-dimensional hexagonal lattice compound, and the copper foil for manufacturing the two-dimensional hexagonal lattice compound is removed by etching while transferring the two-dimensional hexagonal lattice compound onto the transfer sheet. A square lattice compound transfer step.

本発明によれば、2次元六角形格子化合物を低コストかつ高品質で生産可能とする圧延銅箔が得られる。   According to the present invention, a rolled copper foil that can produce a two-dimensional hexagonal lattice compound at low cost and high quality is obtained.

本発明の実施形態に係るグラフェンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the graphene which concerns on embodiment of this invention. 実施例3のエッチング性評価時の銅箔表面の光学顕微鏡像を示す図である。6 is a diagram showing an optical microscope image of the surface of a copper foil at the time of evaluation of etching property in Example 3. FIG. 比較例2のエッチング性評価時の銅箔表面の光学顕微鏡像を示す図である。It is a figure which shows the optical microscope image of the copper foil surface at the time of the etching property evaluation of the comparative example 2. FIG.

以下、本発明の実施形態に係る2次元六角形格子化合物製造用圧延銅箔及び2次元六角形格子化合物の製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。又、本発明の実施形態に係る2次元六角形格子化合物製造用圧延銅箔は、圧延後の銅箔表面にCuめっき層、Cuスパッタ層等の被膜を形成せず、圧延まま(但し、圧延後の熱処理は行ってもよい)の状態のものである。
又、以下の説明では、2次元六角形格子化合物の一例であるグラフェンを対象とするが、本発明が適用される2次元六角形格子化合物はグラフェンに限られず、例えば窒化ホウ素や二硫化モリブデンを挙げることができる。2次元六角形格子化合物とは、原子が六角形格子状の結合した結晶構造が1原子層の厚みで二次元的に広がった構造をいう。
Hereinafter, a rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound according to an embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified. In addition, the rolled copper foil for producing a two-dimensional hexagonal lattice compound according to the embodiment of the present invention does not form a coating such as a Cu plating layer or a Cu sputter layer on the surface of the rolled copper foil, and remains rolled (however, rolled The subsequent heat treatment may be performed).
In the following description, graphene, which is an example of a two-dimensional hexagonal lattice compound, is targeted. However, the two-dimensional hexagonal lattice compound to which the present invention is applied is not limited to graphene, and examples thereof include boron nitride and molybdenum disulfide. Can be mentioned. The two-dimensional hexagonal lattice compound refers to a structure in which a crystal structure in which atoms are combined in a hexagonal lattice form spreads two-dimensionally with a thickness of one atomic layer.

本発明者は、圧延銅箔を基板としてグラフェン等を製造する際、圧延銅箔の圧延面の111回折強度が高いほど、 [111]方位の割合が多くなり、圧延面の各方位の結晶粒のエッチング速度の差が小さく、ひいてはエッチング性が均一となることを見出した。このため、銅箔を短時間でエッチング除去することができ、銅箔と共にエッチング液に浸漬されるグラフェン等のシート抵抗の増大を抑制できる。
つまり、本発明の実施形態に係る2次元六角形格子化合物製造用圧延銅箔は、1000℃で60分加熱後、圧延面のX線回折で求めた111回折強度(I)が、微粉末銅のX線回折で求めた111回折強度(I0)に対し、0.9≦(I/I0)である。(I/I0)<0.9の場合、上述のように銅箔のエッチング性が不均一となり、銅箔を短時間でエッチング除去することが困難になり、銅箔と共にエッチング液に浸漬されるグラフェン等のシート抵抗が増大する。
(I/I0)の上限は特に制限されないが、実用上、2.8程度である。又、1.0≦(I/I0)≦2.7が好ましい。
なお、1000℃で60分加熱後の111回折強度(I)を規定する理由は、銅箔上にグラフェン等を成長させるときの温度条件を模したものであり、加熱雰囲気は大気でよい。又、銅箔の111回折強度(I0)を測定する際は、上記条件で加熱後に常温(25℃)まで放冷した後に測定する。一方、微粉末銅の111回折強度(I0)は、加熱せずに常温(25℃)で測定する。
When producing graphene or the like using a rolled copper foil as a substrate, the present inventor has a higher [111] orientation ratio as the rolling diffraction surface of the rolled copper foil is higher, and the crystal grains in each orientation of the rolled surface increase. It was found that the difference in the etching rate was small, and the etching property was uniform. For this reason, copper foil can be etched away in a short time, and increase in sheet resistance, such as graphene immersed in an etching solution with copper foil, can be controlled.
That is, the rolled copper foil for producing a two-dimensional hexagonal lattice compound according to an embodiment of the present invention has a 111 diffraction intensity (I) obtained by X-ray diffraction of the rolled surface after heating at 1000 ° C. for 60 minutes, and finely powdered copper. 0.9 ≦ (I / I 0 ) with respect to 111 diffraction intensity (I 0 ) determined by X-ray diffraction. When (I / I 0 ) <0.9, the etching property of the copper foil becomes non-uniform as described above, and it becomes difficult to etch and remove the copper foil in a short time, and the copper foil is immersed in an etching solution together with the copper foil. The sheet resistance of graphene and the like increases.
The upper limit of (I / I 0 ) is not particularly limited, but is practically about 2.8. Further, 1.0 ≦ (I / I 0 ) ≦ 2.7 is preferable.
The reason for defining the 111 diffraction intensity (I) after heating for 60 minutes at 1000 ° C. is that imitating the temperature condition when graphene or the like is grown on the copper foil, and the heating atmosphere may be air. Further, when measuring 111 diffraction intensity of the copper foil of (I 0) is measured after cooling after heating under the above conditions to ambient temperature (25 ° C.). On the other hand, the 111 diffraction intensity (I 0 ) of fine powder copper is measured at room temperature (25 ° C.) without heating.

本発明の2次元六角形格子化合物製造用圧延銅箔を1000℃で60分加熱後、JIS−H0501の切断法により測定した平均結晶粒径が200μm以下であることが好ましい。平均結晶粒径が200μm以下であると、銅箔の圧延面に並ぶ結晶の数が多くなり、粗大な結晶が少なくなるのでエッチング性がさらに均一となる。
一方、平均結晶粒径が200μmを超えると、粗大な結晶が介在し、粗大な結晶が選択的にエッチングされたり、この結晶がエッチングされずに残る等によって周囲の結晶とエッチング速度が異なり、エッチング性が不均一となることがある。
It is preferable that the average crystal grain size measured by the cutting method of JIS-H0501 after heating the rolled copper foil for producing the two-dimensional hexagonal lattice compound of the present invention at 1000 ° C. for 60 minutes is 200 μm or less. When the average crystal grain size is 200 μm or less, the number of crystals arranged on the rolled surface of the copper foil is increased, and coarse crystals are reduced, so that the etching property is further uniform.
On the other hand, when the average crystal grain size exceeds 200 μm, coarse crystals are interposed, and the coarse crystals are selectively etched or the etching rate is different from the surrounding crystals due to the etching without being etched. May be non-uniform.

本発明の2次元六角形格子化合物製造用圧延銅箔を1000℃で60分加熱後、圧延面の結晶粒の全個数Ttに対し、[111]方位を示す結晶粒の個数T1の割合である面積率ARが20%以上であることが好ましい。面積率ARが20%以上であると、 [111]方位の割合が多くなり、エッチング性がより均一となる。
面積率ARの測定方法は後述する。
It is the ratio of the number T1 of crystal grains showing the [111] orientation to the total number Tt of crystal grains on the rolled surface after heating the rolled copper foil for producing the two-dimensional hexagonal lattice compound of the present invention at 1000 ° C. for 60 minutes. The area ratio AR is preferably 20% or more. When the area ratio AR is 20% or more, the ratio of the [111] orientation increases, and the etching property becomes more uniform.
A method for measuring the area ratio AR will be described later.

なお、1000℃で60分加熱後の平均結晶粒径及び面積率ARは、1000℃で60分の加熱を行っていない試料に対して初めて加熱するという意味であり、1000℃で60分加熱後に111回折強度(I)を測定した試料にさらに1000℃で60分加熱するという意味ではない。   The average grain size and area ratio AR after heating at 1000 ° C. for 60 minutes means that the sample not heated at 1000 ° C. for 60 minutes is heated for the first time, and after heating at 1000 ° C. for 60 minutes. It does not mean that the sample whose 111 diffraction intensity (I) is measured is further heated at 1000 ° C. for 60 minutes.

なお、本発明の2次元六角形格子化合物製造用圧延銅箔において、板厚は特に制限されないが、一般的には5〜150μmである。さらに、ハンドリング性を確保しつつ、後述するエッチング除去を容易に行うため、板厚を12〜50μmとすると好ましい。板厚が12μm未満であると、破断し易くなってハンドリング性に劣り、厚みが50μmを超えるとエッチング除去がし難くなる場合がある。   In the rolled copper foil for producing a two-dimensional hexagonal lattice compound of the present invention, the plate thickness is not particularly limited, but is generally 5 to 150 μm. Furthermore, it is preferable to set the plate thickness to 12 to 50 μm in order to easily perform etching removal described later while ensuring handling properties. When the plate thickness is less than 12 μm, it is easy to break and the handling property is poor, and when the thickness exceeds 50 μm, it may be difficult to remove by etching.

<銅箔の組成>
本発明の2次元六角形格子化合物製造用圧延銅箔の組成としては、JIS-H3100に規格するタフピッチ銅(TPC)、又はJIS−H3100に規格する無酸素銅(OFC)を好適に用いることができる。
又、これらタフピッチ銅又は無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有する組成を用いることもできる。上記元素を含有すると、銅箔の強度が向上し適度な伸びを有すると共に、結晶粒径を大きくすることができる。上記元素の含有割合が0.050質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化すると共に結晶粒径の成長が抑制される場合がある。より好ましくは上記元素の含有割合が0.040質量%以下である。
なお、上記元素の含有割合の下限は特に制限されないが、例えば0.005質量%を下限とすることができる。上記元素の含有割合が0.005質量%未満であると、含有割合が小さいためその含有割合を制御することが困難になる場合がある。
<Composition of copper foil>
As the composition of the rolled copper foil for producing the two-dimensional hexagonal lattice compound of the present invention, tough pitch copper (TPC) standardized to JIS-H3100 or oxygen-free copper (OFC) standardized to JIS-H3100 is preferably used. it can.
Moreover, the composition which contains 0.050 mass% or less of 1 or more types of elements chosen from the group of Sn and Ag with respect to these tough pitch copper or oxygen-free copper can also be used. When the above elements are contained, the strength of the copper foil is improved, the film has an appropriate elongation, and the crystal grain size can be increased. If the content of the element exceeds 0.050% by mass, the strength is further improved, but the elongation is lowered and the workability is deteriorated and the growth of the crystal grain size may be suppressed. More preferably, the content of the element is 0.040% by mass or less.
In addition, the lower limit of the content ratio of the element is not particularly limited, but 0.005% by mass can be set as the lower limit, for example. When the content ratio of the element is less than 0.005% by mass, it may be difficult to control the content ratio because the content ratio is small.

銅箔のCu純度が99.95〜99.995質量%であることが好ましい。銅箔の純度が99.95質量%未満であると、上記したように、銅箔表面に酸化物や硫化物が介在し易くなって銅箔表面の凹凸が大きくなる場合がある。一方、銅箔中のCu純度を高くすると製造コストが高くなると共に、強度が低下して箔の製造が難しくなり、大面積化が困難になる。このようなことから、銅箔中のCuの純度が99.995質量%以下であることが好ましい。   It is preferable that Cu purity of copper foil is 99.95-99.995 mass%. If the purity of the copper foil is less than 99.95% by mass, as described above, oxides and sulfides are likely to intervene on the surface of the copper foil, and the unevenness on the surface of the copper foil may increase. On the other hand, when the purity of Cu in the copper foil is increased, the manufacturing cost is increased, and the strength is reduced, making it difficult to manufacture the foil, and increasing the area is difficult. For this reason, the purity of Cu in the copper foil is preferably 99.995% by mass or less.

本発明の2次元六角形格子化合物製造用圧延銅箔は、エッチング性に優れ、例えば、過硫酸Na(15wt%)+硫酸(2wt%)のエッチング水溶液、又は硫酸(17 wt %)+過酸化水素(2 wt %)のエッチング水溶液に浸漬した場合のエッチング゛時間が50分以下である。
ここで、エッチング゛時間とは、圧延銅箔が完全に溶解して溶け残りとなる残渣が見られないことをいう。
The rolled copper foil for producing a two-dimensional hexagonal lattice compound of the present invention is excellent in etching property, for example, an aqueous solution of sodium persulfate (15 wt%) + sulfuric acid (2 wt%) or sulfuric acid (17 wt%) + peroxidation. The etching time when immersed in an aqueous solution of hydrogen (2 wt%) is 50 minutes or less.
Here, the etching time means that the residue in which the rolled copper foil is completely dissolved and remains undissolved is not seen.

<2次元六角形格子化合物製造用圧延銅箔の製造>
本発明の実施形態に係る2次元六角形格子化合物製造用圧延銅箔は、例えば以下のようにして製造することができる。まず、所定の組成の銅インゴットを製造し、熱間圧延を行った後、焼鈍と冷間圧延を1回以上繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで圧下率を80〜99.9%(好ましくは85〜99.9%、更に好ましくは90〜99.9%)として最終冷間圧延して銅箔が得られる。
<Manufacture of rolled copper foil for manufacturing a two-dimensional hexagonal lattice compound>
The rolled copper foil for producing a two-dimensional hexagonal lattice compound according to an embodiment of the present invention can be produced, for example, as follows. First, after manufacturing a copper ingot of a predetermined composition and performing hot rolling, annealing and cold rolling are repeated one or more times to obtain a rolled sheet. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness of 80 to 99.9% (preferably 85 to 99.9%, more preferably 90 to 99.9%). Copper foil is obtained.

ここで、最終冷間圧延における加工度ηを1.0≦η≦4.5とすると、0.9≦(I/I0)である圧延銅箔を安定して製造することができる。一般的に、純銅を強加工後に再結晶させると001方位が発達する傾向にあるため、加工度ηを4.5以下とすることで、001方位の発達が抑制され、111方位に配向すると考えられる。従って、加工度が4.5を超えると、0.9>(I/I0)となる。
一方、加工度ηが1.0未満であると、加工度が小さくなり過ぎ、再結晶の駆動力となる歪が不足するため、未再結晶粒が生じ、111方位に十分に配向せず、0.9>(I/I0)となる。
なお、加工度ηは、η=ln(A0/A1)で表され、A0は最終冷間圧延前(つまり、再結晶焼鈍後)の断面積、A1は最終冷間圧延後の断面積である。
Here, when the workability η in the final cold rolling is 1.0 ≦ η ≦ 4.5, a rolled copper foil satisfying 0.9 ≦ (I / I 0 ) can be stably manufactured. In general, when pure copper is recrystallized after strong processing, the 001 orientation tends to develop, so by setting the processing degree η to 4.5 or less, the development of the 001 orientation is suppressed, and the orientation is considered to be oriented in the 111 orientation. It is done. Therefore, when the degree of processing exceeds 4.5, 0.9> (I / I 0 ).
On the other hand, if the degree of work η is less than 1.0, the degree of work becomes too small, and the strain that becomes the driving force for recrystallization is insufficient, resulting in non-recrystallized grains, not sufficiently oriented in the 111 orientation, 0.9> (I / I 0 ).
The working degree η is represented by η = ln (A0 / A1), A0 is a cross-sectional area before final cold rolling (that is, after recrystallization annealing), and A1 is a cross-sectional area after final cold rolling. .

<2次元六角形格子化合物の製造方法>
次に、図1を参照し、本発明の実施形態に係るグラフェンの製造方法について説明する。
まず、室(真空チャンバ等)100内に、上記した本発明のグラフェン製造用銅箔10を配置し、グラフェン製造用銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを水素ガスと共に供給する(図1(a))。炭素含有ガスGが原料ガスであり、水素ガスは炭素含有ガスGを分解させるために必要となる。炭素含有ガスGとしては、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、アルコール等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、グラフェン製造用銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスをグラフェン製造用銅箔10に接触させてもよい。そして、グラフェン製造用銅箔10の表面に分解ガス(炭素ガス)が接触し、グラフェン製造用銅箔10の表面にグラフェン20を形成する(図1(b))。
なお、グラフェンの代わりに窒化ホウ素を製造する場合、原料ガスとしては、例えばボラジン(B336)を用いる。窒化ホウ素の場合も原料ガスを水素ガスと共に供給する必要がある。
又、二硫化モリブデンを製造する場合、原料ガスとしては、例えば(NH4)2MoS2を用いる。二硫化モリブデンの場合は原料ガスを水素ガス及び窒素ガスと共に供給する必要がある。
<Method for producing two-dimensional hexagonal lattice compound>
Next, with reference to FIG. 1, a method for producing graphene according to an embodiment of the present invention will be described.
First, the graphene producing copper foil 10 of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the graphene producing copper foil 10 is heated by the heater 104, and the inside of the chamber 100 is decompressed or evacuated. . Then, the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1A). The carbon-containing gas G is a raw material gas, and the hydrogen gas is required to decompose the carbon-containing gas G. Examples of the carbon-containing gas G include, but are not limited to, carbon dioxide, carbon monoxide, methane, ethane, propane, ethylene, acetylene, alcohol, and the like. Good. Further, the heating temperature of the graphene-producing copper foil 10 may be equal to or higher than the decomposition temperature of the carbon-containing gas G, for example, 1000 ° C. or higher. Further, the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100, and the decomposition gas may be brought into contact with the copper foil 10 for producing graphene. And decomposition gas (carbon gas) contacts the surface of the copper foil 10 for graphene manufacture, and the graphene 20 is formed on the surface of the copper foil 10 for graphene manufacture (FIG.1 (b)).
In the case of producing a boron nitride instead of graphene, as the raw material gas is, eg, borazine (B 3 N 3 H 6) . In the case of boron nitride, it is necessary to supply the source gas together with hydrogen gas.
When producing molybdenum disulfide, for example, (NH 4 ) 2 MoS 2 is used as the source gas. In the case of molybdenum disulfide, it is necessary to supply the raw material gas together with hydrogen gas and nitrogen gas.

そして、グラフェン製造用銅箔10を常温に冷却し、グラフェン20の表面に転写シート30を積層し、グラフェン20を転写シート30上に転写する。次に、この積層体をシンクロール120を介してエッチング槽110に連続的に浸漬し、グラフェン製造用銅箔10をエッチング除去する(図1(c))。このようにして、所定の転写シート30上に積層されたグラフェン20を製造することができる。
さらに、グラフェン製造用銅箔10が除去された積層体を引き上げ、グラフェン20の表面に基板40を積層し、グラフェン20を基板40上に転写しながら、転写シート30を剥がすと、基板40上に積層されたグラフェン20を製造することができる。
And the copper foil 10 for graphene manufacture is cooled to normal temperature, the transfer sheet 30 is laminated | stacked on the surface of the graphene 20, and the graphene 20 is transcribe | transferred on the transfer sheet 30. FIG. Next, this laminated body is continuously immersed in the etching tank 110 through the sink roll 120, and the copper foil 10 for graphene production is removed by etching (FIG. 1C). Thus, the graphene 20 laminated on the predetermined transfer sheet 30 can be manufactured.
Furthermore, when the laminated body from which the copper foil 10 for producing graphene is removed is pulled up, the substrate 40 is laminated on the surface of the graphene 20, and the transfer sheet 30 is peeled off while transferring the graphene 20 onto the substrate 40, The stacked graphene 20 can be manufactured.

転写シート30としては、各種樹脂シート(ポリエチレン、ポリウレタン等のポリマーシート)を用いることができる。グラフェン製造用銅箔10をエッチング除去するエッチング液としては、例えば硫酸溶液、過硫酸ナトリウム溶液、過酸化水素、及び過硫酸ナトリウム溶液又は過酸化水素に硫酸を加えた溶液を用いることができる。又、基板40としては、例えばSi、 SiC、Ni又はNi合金を用いることができる。   As the transfer sheet 30, various resin sheets (polymer sheets such as polyethylene and polyurethane) can be used. As an etching solution for etching and removing the copper foil 10 for producing graphene, for example, a sulfuric acid solution, a sodium persulfate solution, hydrogen peroxide, a sodium persulfate solution, or a solution obtained by adding sulfuric acid to hydrogen peroxide can be used. As the substrate 40, for example, Si, SiC, Ni, or Ni alloy can be used.

<試料の作製>
表1に示す組成の銅インゴットを製造し、800〜900℃で熱間圧延を行った後、300〜800℃の連続焼鈍ラインで焼鈍と冷間圧延を1回繰り返して1〜4mm厚の圧延板を得た。この圧延板を500〜900℃の連続焼鈍ラインで焼鈍して再結晶させた後、表1の厚みになるまで、表1の加工度で最終冷間圧延し、各実施例及び比較例の銅箔を得た。
得られた銅箔について、以下の評価を行った。
<Preparation of sample>
After producing a copper ingot having the composition shown in Table 1 and performing hot rolling at 800 to 900 ° C., rolling and cold rolling at a continuous annealing line of 300 to 800 ° C. are repeated once to obtain a thickness of 1 to 4 mm. I got a plate. This rolled sheet was annealed in a continuous annealing line at 500 to 900 ° C. and recrystallized, and then finally cold-rolled at the working degree shown in Table 1 until the thickness shown in Table 1 was obtained. A foil was obtained.
The following evaluation was performed about the obtained copper foil.

(I/I0
得られた銅箔をアルゴン雰囲気中で1000℃で60分加熱後、圧延面のX線回折で求めた111回折強度((111)面強度の積分値)(I)を求めた。この値をあらかじめ25℃で測定しておいた微粉末銅(325mesh,水素気流中で300℃で1時間加熱してから使用)の111回折強度(I0)で割り、(I/I0)値を計算した。
(I / I 0 )
The obtained copper foil was heated at 1000 ° C. for 60 minutes in an argon atmosphere, and 111 diffraction intensity (integral value of (111) plane intensity) (I) obtained by X-ray diffraction of the rolled surface was obtained. This value is divided by 111 diffraction intensity (I 0 ) of finely powdered copper (325 mesh, heated for 1 hour at 300 ° C. in a hydrogen stream) measured in advance at 25 ° C. (I / I 0 ) The value was calculated.

(平均結晶粒径)
得られた銅箔をアルゴン雰囲気中で1000℃で60分加熱後、圧延平行断面(圧延方向に平行な面で切断した断面)につき、EBSD(後方散乱電子線回析装置、日本電子株式会社JXA8500F、加速電圧20kV、電流2e-8A、測定範囲1000μm×1000μm、ステップ幅5μm)に付属のSEM装置を用いてSEM像を取得し、このSEM像においてJIS−H0501の切断法に準じて測定した。
(Average crystal grain size)
The obtained copper foil was heated at 1000 ° C. for 60 minutes in an argon atmosphere, and then EBSD (back scattered electron diffraction apparatus, JEOL Ltd., JXA8500F) for a rolled parallel section (a section cut along a plane parallel to the rolling direction). SEM images were obtained using an SEM apparatus attached to an acceleration voltage of 20 kV, a current of 2e-8A, a measurement range of 1000 μm × 1000 μm, and a step width of 5 μm, and the SEM images were measured according to the cutting method of JIS-H0501.

(面積率AR)
得られた銅箔をアルゴン雰囲気中で1000℃で60分加熱後、さらに試料表面を電解研磨した後、EBSD(後方散乱電子線回析装置、日本電子株式会社JXA8500F、加速電圧20kV、電流2e-8A、測定範囲1000μm×1000μm、ステップ幅5μm)を用い、観察した。
試料表面1mm四方につき、上記EBSD装置に付属のSEM装置を用いてSEM像を取得し、このSEM像に含まれる結晶粒の全個数Ttを、JIS−H0501の求積法における結晶粒数の測定に準じて計測した。次に、EBSD(後方散乱電子線回析装置)により、SEM像と同じ視野について、この試料表面(1mm四方)の結晶粒のうち、[111]方位を示す結晶粒の個数T1をカウントし、AR=(T1/Tt)×100により求める。T1は、EBSDに付属のソフトウェアにより画像上で自動的にカウントすることができる。
(Area ratio AR)
The obtained copper foil was heated at 1000 ° C. for 60 minutes in an argon atmosphere, and the surface of the sample was further electropolished, and then EBSD (backscattered electron diffraction device, JEOL Ltd. JXA8500F, acceleration voltage 20 kV, current 2e− 8A, measurement range 1000 μm × 1000 μm, step width 5 μm).
An SEM image is obtained per 1 mm square of the sample surface using the SEM apparatus attached to the EBSD apparatus, and the total number Tt of crystal grains contained in the SEM image is measured by the JIS-H0501 quadrature method. It measured according to. Next, for the same field of view as the SEM image, the number T1 of crystal grains indicating the [111] orientation among the crystal grains on the sample surface (1 mm square) is counted by EBSD (backscatter electron diffraction). AR = (T1 / Tt) × 100. T1 can be automatically counted on the image by software attached to the EBSD.

(エッチング性)
得られた銅箔を大気中で1000℃で60分加熱後、6×8cmに切断してPETフィルム(厚み50μm)に貼り付けた。この試料を、液温40℃のエッチング水溶液(硫酸(17wt%)+過酸化水素(2wt%))中に浸漬し、銅箔が完全に溶解するまでの時間をエッチング゛時間として測定し、以下の基準でエッチング性を評価した。エッチング性がAA又はBBであれば、エッチング性が良好で、均一にエッチングされるとみなすことができる。
エッチング性AA:エッチング゛時間が45分以下
エッチング性BB:エッチング゛時間が45分を超え、50分以下
エッチング性CC:エッチング゛時間が50分を超え、60分以下
エッチング性DD:エッチング゛時間が60分を超えた
(Etching property)
The obtained copper foil was heated in air at 1000 ° C. for 60 minutes, then cut to 6 × 8 cm and attached to a PET film (thickness 50 μm). This sample was immersed in an etching aqueous solution (sulfuric acid (17 wt%) + hydrogen peroxide (2 wt%)) at a liquid temperature of 40 ° C, and the time until the copper foil was completely dissolved was measured as the etching time. The etching property was evaluated based on the following criteria. If the etching property is AA or BB, it can be considered that the etching property is good and the etching is uniformly performed.
Etching property AA: Etching time 45 minutes or less Etching property BB: Etching time exceeds 45 minutes and 50 minutes or less Etching property CC: Etching time exceeds 50 minutes and 60 minutes or less Etching property DD: Etching time Exceeded 60 minutes

<グラフェンの製造>
各実施例及び比較例のグラフェン製造用銅箔(縦横100X100mm)を真空チャンバーに設置し、1000℃に加熱した。真空(圧力:0.2Torr)下でこの真空チャンバーに水素ガスとメタンガスを供給し(供給ガス流量:10〜100cc/min)、銅箔を1000℃まで60分で昇温した後、1時間保持し、銅箔表面にグラフェンを成長させた。
グラフェンが表面に成長した銅箔のグラフェン側にPETフィルムを張り合わせ、銅箔を酸でエッチング除去した後、四探針法でグラフェンのシート抵抗を測定した。なお、エッチングの反応時間は、上記したエッチング性の評価結果に基づいて銅箔が完全に溶解するまでの時間を定めた。例えば、エッチング性AAの試料はエッチング゛時間を45分とし、エッチング性BBの試料はエッチング゛時間を50分とした。又、エッチング性DDの試料はエッチング゛時間を、60分を超えて銅箔が完全に溶解するまでの時間とした。
グラフェンのシート抵抗が400Ω/sq以下であれば、実用上問題はない。
<Manufacture of graphene>
The copper foil for producing graphene of each example and comparative example (vertical and horizontal 100 × 100 mm) was placed in a vacuum chamber and heated to 1000 ° C. Hydrogen gas and methane gas are supplied to this vacuum chamber under vacuum (pressure: 0.2 Torr) (supply gas flow rate: 10 to 100 cc / min), and the copper foil is heated to 1000 ° C. in 60 minutes and then held for 1 hour. Then, graphene was grown on the copper foil surface.
After sticking a PET film on the graphene side of the copper foil with graphene grown on the surface and etching away the copper foil with acid, the sheet resistance of the graphene was measured by a four-probe method. In addition, the reaction time of etching determined time until copper foil melt | dissolves completely based on the above-mentioned evaluation result of etching property. For example, the etching time is 45 minutes for the etching AA sample, and the etching time is 50 minutes for the etching BB sample. In addition, the etching time for the sample of etching DD was set to the time required for the copper foil to completely dissolve after exceeding 60 minutes.
If the sheet resistance of graphene is 400 Ω / sq or less, there is no practical problem.

得られた結果を表1に示す。なお、表中のTPCは、JIS-H3100に規格するタフピッチ銅を表し、OFCはJIS-H3100に規格する無酸素銅を表す。従って、「OFC+Ag100ppm」は、JIS-H3100に規格する無酸素銅にAgを100wtppm添加したことを表す。   The obtained results are shown in Table 1. In the table, TPC represents tough pitch copper standardized to JIS-H3100, and OFC represents oxygen-free copper standardized to JIS-H3100. Therefore, “OFC + Ag100 ppm” represents that 100 wtppm of Ag is added to oxygen-free copper specified in JIS-H3100.

表1から明らかなように、0.9≦(I/I0)である各実施例の場合、エッチング性に優れ、グラフェンのシート抵抗が400Ω/sq以下となった。 As is apparent from Table 1, in each example where 0.9 ≦ (I / I 0 ), the etching property was excellent, and the sheet resistance of graphene was 400Ω / sq or less.

一方、最終冷間圧延における加工度ηが4.5を超えた比較例1〜9の場合、(I/I0)が0.9未満となってエッチング性が劣り、又、銅箔を完全に溶解させるためのエッチング時間が長くなってグラフェンのシート抵抗が400Ω/sqを超え、グラフェンの品質が劣った。
最終冷間圧延における加工度ηが1.0未満である比較例8の場合においても、(I/I0)が0.9未満となってエッチング性が劣り、又、銅箔を完全に溶解させるためのエッチング時間が長くなってグラフェンのシート抵抗が400Ω/sqを超え、グラフェンの品質が劣った。
On the other hand, in the case of Comparative Examples 1 to 9 in which the workability η in the final cold rolling exceeds 4.5, (I / I 0 ) is less than 0.9, the etching property is inferior, and the copper foil is completely The etching time required for dissolution in the graphene increased, and the sheet resistance of graphene exceeded 400 Ω / sq, resulting in poor graphene quality.
Even in the case of Comparative Example 8 in which the workability η in the final cold rolling is less than 1.0, (I / I 0 ) is less than 0.9, the etching property is inferior, and the copper foil is completely dissolved. As a result, the sheet resistance of the graphene exceeded 400 Ω / sq, and the quality of the graphene was inferior.

なお、図2は、実施例3のエッチング性評価時の銅箔表面の外観を示す。銅箔表面が均一にエッチングされていることがわかる。
一方、図3は、比較例2のエッチング性評価時の銅箔表面の外観を示す。比較例2の場合、エッチングを開始してから60分経過しても、粗大粒が溶け残ったことがわかる。
In addition, FIG. 2 shows the external appearance of the copper foil surface at the time of the etching property evaluation of Example 3. It can be seen that the copper foil surface is uniformly etched.
On the other hand, FIG. 3 shows the appearance of the copper foil surface at the time of the evaluation of the etching property of Comparative Example 2. In the case of Comparative Example 2, it can be seen that the coarse particles remained undissolved even after 60 minutes had passed since the etching was started.

10 グラフェン製造用銅箔(2次元六角形格子化合物製造用圧延銅箔)
20 グラフェン(2次元六角形格子化合物)
30 転写シート
10 Copper foil for graphene production (Rolled copper foil for 2D hexagonal lattice compound production)
20 Graphene (two-dimensional hexagonal lattice compound)
30 Transfer sheet

<2次元六角形格子化合物の製造方法>
次に、図1を参照し、本発明の実施形態に係るグラフェンの製造方法について説明する。
まず、室(真空チャンバ等)100内に、上記した本発明のグラフェン製造用銅箔10を配置し、グラフェン製造用銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを水素ガスと共に供給する(図1(a))。炭素含有ガスGが原料ガスであり、水素ガスは炭素含有ガスGを分解させるために必要となる。炭素含有ガスGとしては、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、アルコール等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、グラフェン製造用銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスをグラフェン製造用銅箔10に接触させてもよい。そして、グラフェン製造用銅箔10の表面に分解ガス(炭素ガス)が接触し、グラフェン製造用銅箔10の表面にグラフェン20を形成する(図1(b))。
なお、グラフェンの代わりに窒化ホウ素を製造する場合、原料ガスとしては、例えばボラジン(B336)を用いる。窒化ホウ素の場合も原料ガスを水素ガスと共に供給する必要がある。
又、二硫化モリブデンを製造する場合、原料ガスとしては、例えば(NH4 2 MoS 4 を用いる。二硫化モリブデンの場合は原料ガスを水素ガス及び窒素ガスと共に供給する必要がある。


<Method for producing two-dimensional hexagonal lattice compound>
Next, with reference to FIG. 1, a method for producing graphene according to an embodiment of the present invention will be described.
First, the graphene producing copper foil 10 of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the graphene producing copper foil 10 is heated by the heater 104, and the inside of the chamber 100 is decompressed or evacuated. . Then, the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1A). The carbon-containing gas G is a raw material gas, and the hydrogen gas is required to decompose the carbon-containing gas G. Examples of the carbon-containing gas G include, but are not limited to, carbon dioxide, carbon monoxide, methane, ethane, propane, ethylene, acetylene, alcohol, and the like. Good. Further, the heating temperature of the graphene-producing copper foil 10 may be equal to or higher than the decomposition temperature of the carbon-containing gas G, for example, 1000 ° C. or higher. Further, the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100, and the decomposition gas may be brought into contact with the copper foil 10 for producing graphene. And decomposition gas (carbon gas) contacts the surface of the copper foil 10 for graphene manufacture, and the graphene 20 is formed on the surface of the copper foil 10 for graphene manufacture (FIG.1 (b)).
In the case of producing a boron nitride instead of graphene, as the raw material gas is, eg, borazine (B 3 N 3 H 6) . In the case of boron nitride, it is necessary to supply the source gas together with hydrogen gas.
When producing molybdenum disulfide, for example, (NH 4 ) 2 MoS 4 is used as the source gas. In the case of molybdenum disulfide, it is necessary to supply the raw material gas together with hydrogen gas and nitrogen gas.


Claims (6)

1000℃で60分加熱後、圧延面のX線回折で求めた111回折強度(I)が、微粉末銅のX線回折で求めた111回折強度(I0)に対し、0.9≦(I/I0)である2次元六角形格子化合物製造用圧延銅箔。 After heating at 1000 ° C. for 60 minutes, the 111 diffraction intensity (I) determined by X-ray diffraction of the rolled surface is 0.9 ≦ (I 0 ) with respect to the 111 diffraction intensity (I 0 ) determined by X-ray diffraction of fine powder copper. I / I 0 ), a rolled copper foil for producing a two-dimensional hexagonal lattice compound. 1000℃で60分加熱後、JIS H0501の切断法により測定した平均結晶粒径が200μm以下である請求項1に記載の2次元六角形格子化合物製造用圧延銅箔。   2. The rolled copper foil for producing a two-dimensional hexagonal lattice compound according to claim 1, wherein after heating at 1000 ° C. for 60 minutes, the average crystal grain size measured by a cutting method of JIS H0501 is 200 μm or less. 1000℃で60分加熱後、圧延面の結晶粒の全個数Ttに対し、[111]方位を示す結晶粒の個数T1の割合である面積率が20%以上である請求項1又は2記載の2次元六角形格子化合物製造用圧延銅箔。   The area ratio, which is a ratio of the number T1 of crystal grains exhibiting the [111] orientation, is 20% or more with respect to the total number Tt of crystal grains on the rolled surface after heating at 1000 ° C for 60 minutes. Rolled copper foil for producing a two-dimensional hexagonal lattice compound. インゴットを熱間圧延した後、焼鈍と冷間圧延を1回以上繰り返し、さらに再結晶焼鈍した後に最終冷間圧延して製造され、
前記最終冷間圧延における加工度ηが1.0≦η≦4.5とされる請求項1〜3のいずれかに記載の2次元六角形格子化合物製造用圧延銅箔。
After hot rolling the ingot, annealing and cold rolling are repeated one or more times, and after further recrystallization annealing, it is manufactured by final cold rolling,
The rolled copper foil for producing a two-dimensional hexagonal lattice compound according to any one of claims 1 to 3, wherein a workability η in the final cold rolling is 1.0 ≦ η ≦ 4.5.
JIS-H3100に規格するタフピッチ銅若しくはJIS-H3100に規格する無酸素銅、又は該タフピッチ銅若しくは無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有する請求項1〜4のいずれかに記載の2次元六角形格子化合物製造用圧延銅箔。   0.055 mass% or less of one or more elements selected from the group of Sn and Ag with respect to tough pitch copper standardized to JIS-H3100, oxygen-free copper standardized to JIS-H3100, or the tough pitch copper or oxygen-free copper The rolled copper foil for two-dimensional hexagonal lattice compound manufacture in any one of Claims 1-4. 請求項1〜5のいずれかに記載の2次元六角形格子化合物製造用圧延銅箔を用いた2次元六角形格子化合物の製造方法であって、
所定の室内に、加熱した前記2次元六角形格子化合物製造用圧延銅箔を配置すると共に水素ガスと炭素含有ガスを供給し、前記2次元六角形格子化合物製造用圧延銅箔の表面に2次元六角形格子化合物を形成する2次元六角形格子化合物形成工程と、
前記2次元六角形格子化合物の表面に転写シートを積層し、前記2次元六角形格子化合物を前記転写シート上に転写しながら、前記2次元六角形格子化合物製造用圧延銅箔をエッチング除去する2次元六角形格子化合物転写工程と、を有する2次元六角形格子化合物の製造方法。
A method for producing a two-dimensional hexagonal lattice compound using the rolled copper foil for producing a two-dimensional hexagonal lattice compound according to any one of claims 1 to 5,
The heated rolled copper foil for producing the two-dimensional hexagonal lattice compound is placed in a predetermined chamber and hydrogen gas and a carbon-containing gas are supplied, and the two-dimensional surface is formed on the rolled copper foil for producing the two-dimensional hexagonal lattice compound. A two-dimensional hexagonal lattice compound forming step for forming a hexagonal lattice compound;
A transfer sheet is laminated on the surface of the two-dimensional hexagonal lattice compound, and the rolled copper foil for producing the two-dimensional hexagonal lattice compound is etched away while transferring the two-dimensional hexagonal lattice compound onto the transfer sheet. A method for producing a two-dimensional hexagonal lattice compound.
JP2014084251A 2014-04-16 2014-04-16 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound Pending JP2015203149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084251A JP2015203149A (en) 2014-04-16 2014-04-16 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084251A JP2015203149A (en) 2014-04-16 2014-04-16 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound

Publications (1)

Publication Number Publication Date
JP2015203149A true JP2015203149A (en) 2015-11-16

Family

ID=54596788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084251A Pending JP2015203149A (en) 2014-04-16 2014-04-16 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound

Country Status (1)

Country Link
JP (1) JP2015203149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003339A (en) * 2014-06-13 2016-01-12 Jx日鉱日石金属株式会社 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound
CN114672878A (en) * 2022-04-06 2022-06-28 松山湖材料实验室 Method for purifying copper foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003339A (en) * 2014-06-13 2016-01-12 Jx日鉱日石金属株式会社 Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound
CN114672878A (en) * 2022-04-06 2022-06-28 松山湖材料实验室 Method for purifying copper foil

Similar Documents

Publication Publication Date Title
JP6078024B2 (en) Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
JP5721609B2 (en) Copper foil for producing graphene and method for producing graphene
JP5822669B2 (en) Copper foil for producing graphene and method for producing graphene using the same
EP2716601B1 (en) Copper foil for manufacturing graphene and graphene manufacturing method
US20150136737A1 (en) Methods of growing uniform, large-scale, multilayer graphene film
JP2013010680A (en) Copper foil producing graphene and method for producing graphene
JP5758205B2 (en) Copper foil for producing graphene and method for producing graphene using the same
WO2014027528A1 (en) Rolled copper foil for graphene production and graphene production method
JP5909082B2 (en) Copper foil for producing graphene and method for producing graphene
Tian et al. Synthesis of AAB‐stacked single‐crystal graphene/hBN/graphene trilayer van der Waals heterostructures by in situ CVD
JP5865211B2 (en) Copper foil for producing graphene and method for producing graphene using the same
JP2012251209A (en) Copper foil for producing graphene, and method for producing graphene
JP2015203149A (en) Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound
JP2014227594A (en) Copper foil for manufacturing graphene and method for manufacturing graphene
JP2014036986A (en) Graphene manufacturing rolled copper foil, and graphene manufacturing method
JP5918010B2 (en) Copper foil for producing graphene, method for producing copper foil for producing graphene, and method for producing graphene
WO2014128833A1 (en) Copper foil for graphene production, and graphene production method
JP5918075B2 (en) Rolled copper foil for producing graphene and method for producing graphene
JP2015067461A (en) Copper foil for graphene sheet manufacturing substrate
TWI521101B (en) Production method of copper foil and graphene for graphene production
TWI499693B (en) Production method of copper foil and graphene for graphene production