WO2016157747A1 - 真空断熱筐体 - Google Patents

真空断熱筐体 Download PDF

Info

Publication number
WO2016157747A1
WO2016157747A1 PCT/JP2016/001332 JP2016001332W WO2016157747A1 WO 2016157747 A1 WO2016157747 A1 WO 2016157747A1 JP 2016001332 W JP2016001332 W JP 2016001332W WO 2016157747 A1 WO2016157747 A1 WO 2016157747A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum heat
gas barrier
heat insulating
vacuum
outer box
Prior art date
Application number
PCT/JP2016/001332
Other languages
English (en)
French (fr)
Inventor
智章 北野
秀司 河原崎
平野 俊明
平井 剛樹
西村 晃一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680017559.2A priority Critical patent/CN107429964A/zh
Priority to DE112016001425.2T priority patent/DE112016001425T5/de
Publication of WO2016157747A1 publication Critical patent/WO2016157747A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a vacuum heat insulating housing used for a refrigerator or the like.
  • a vacuum heat insulating body means the structure which improved the heat insulation performance by evacuating the inside of a container.
  • the main problem is how to hermetically seal the flange portion 105 for vacuuming, and the structure in which the gas barrier container 107 and the housing panel 101 are integrated.
  • a specific means of integration that can maintain the degree of vacuum for a long period of time.
  • gas such as air and water vapor
  • the present invention has been made in view of the above-described conventional problems, and provides a vacuum heat insulating housing having a gas barrier structure optimized according to the use environment temperature and use location.
  • a vacuum heat insulating casing that can be used as an interior casing member and an exterior casing member that has a simple configuration, guarantees a degree of vacuum for a long period of time, and also has a heat insulating performance.
  • the vacuum heat insulating housing includes a vacuum heat insulating body in which a core member is enclosed in a hollow resin gas barrier container, and a high temperature of the vacuum heat insulating body.
  • the outer box made of a gas barrier material and the inner box arranged on the low temperature side are arranged on the side, that is, the high temperature side in a refrigerator or the like in which the vacuum heat insulating casing is used.
  • the vacuum insulator has a structure arranged in close contact with the outer box.
  • the vacuum insulator is formed into the shape of the inner wall of the outer box, eliminating the gap between the vacuum insulator and the outer box, and air
  • the heat insulation performance can be improved by eliminating the convection space.
  • casing can be improved by sticking a vacuum heat insulating body and an outer case.
  • FIG. 1 is a perspective view of a refrigerator provided with a vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the refrigerator provided with the vacuum heat insulating casing in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the ambient temperature and gas permeability of the resin material used in the vacuum heat insulating casing in Embodiment 1 of the present invention.
  • FIG. 4 is a partial cross-sectional view of a refrigerator provided with the vacuum heat insulating casing in Embodiment 1 of the present invention.
  • FIG. 5 is a partial cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 6 is a partial cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 7 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 8 is a partial cross-sectional view of the gas barrier container of the vacuum heat insulating housing in the first exemplary embodiment of the present invention.
  • FIG. 9 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 10 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 10 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 11 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing according to Embodiment 1 of the present invention.
  • FIG. 12 is a front perspective view of the ice making chamber lid of the refrigerator provided with the vacuum heat insulating casing according to Embodiment 2 of the present invention.
  • FIG. 13 is a rear perspective view of the ice making chamber lid of the refrigerator provided with the vacuum heat insulating casing according to Embodiment 2 of the present invention.
  • FIG. 14 is a part development view of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in the second embodiment of the present invention.
  • FIG. 12 is a front perspective view of the ice making chamber lid of the refrigerator provided with the vacuum heat insulating casing according to Embodiment 2 of the present invention.
  • FIG. 13 is a rear perspective view of the ice making chamber lid of the refrigerator provided with the vacuum heat insulating casing according to Embodiment 2 of the present invention.
  • FIG. 14
  • FIG. 15 is a cross-sectional view of an ice making lid of a refrigerator provided with a vacuum heat insulating housing in Embodiment 2 of the present invention.
  • FIG. 16 is a component development cross-sectional view of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a process for sealing an ice making lid of a refrigerator provided with a vacuum heat insulating casing in Embodiment 2 of the present invention.
  • FIG. 18 is a cross-sectional view showing a process for sealing an ice making lid of a refrigerator provided with a vacuum heat insulating casing in Embodiment 2 of the present invention.
  • FIG. 16 is a component development cross-sectional view of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a process for sealing an ice making lid of
  • FIG. 19 is a cross-sectional view showing a process for sealing an ice making lid of a refrigerator provided with a vacuum heat insulating casing in Embodiment 2 of the present invention.
  • 20 is a 20-part local cross-sectional view of FIG. 19 showing a sealing example of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in Embodiment 2 of the present invention.
  • FIG. 21 is a 21-part local cross-sectional view of FIG. 19 showing a sealing example of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in the second embodiment of the present invention.
  • FIG. 22 is a 22-part local cross-sectional view of FIG.
  • FIG. 23 is a front perspective view of the vacuum heat insulation casing of the refrigerator main body provided with the vacuum heat insulation casing according to Embodiment 3 of the present invention.
  • FIG. 24 is a cross-sectional view of the vacuum heat insulation casing of the refrigerator main body provided with the vacuum heat insulation casing according to Embodiment 3 of the present invention.
  • 25 is a 25-part local cross-sectional view of FIG. 24 of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing according to Embodiment 3 of the present invention.
  • FIG. 26 is a 26-part local cross-sectional view of FIG.
  • FIG. 24 showing a sealing example of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing in Embodiment 3 of the present invention.
  • FIG. 27 is a 27-part local cross-sectional view of FIG. 24 showing a sealing example of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing in Embodiment 3 of the present invention.
  • FIG. 28 is a 28-part local cross section of FIG. 24 showing a sealing example of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing in the third embodiment of the present invention.
  • FIG. 29 is a cross-sectional view of the vacuum heat insulation casing of the refrigerator main body provided with the vacuum heat insulation casing according to Embodiment 3 of the present invention.
  • FIG. 30 is a front perspective view of an ice making room vegetable compartment partition of a refrigerator provided with a vacuum heat insulating housing in Embodiment 4 of the present invention.
  • FIG. 31 is a cross-sectional view showing a sealing example of the ice making room vegetable compartment partition of the refrigerator provided with the vacuum heat insulating casing in the fourth embodiment of the present invention.
  • FIG. 32 is a cross-sectional view showing another cross-sectional sealing example of the ice making room vegetable compartment partition of the refrigerator provided with the vacuum heat insulating casing in the fourth embodiment of the present invention.
  • FIG. 33 is a front perspective view of a cooling chamber wall vacuum heat insulation casing of a refrigerator provided with a vacuum heat insulation casing according to Embodiment 5 of the present invention.
  • FIG. 34 is a cross-sectional view showing a sealing example of the vegetable room wall vacuum heat insulation casing of the refrigerator provided with the vacuum heat insulation casing according to the fifth embodiment of the present invention.
  • FIG. 35 is a cross-sectional view of a conventional vacuum heat insulating housing.
  • FIG. 1 is a perspective view of a refrigerator provided with a vacuum heat insulation casing 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of the refrigerator provided with a vacuum heat insulation casing 100 according to Embodiment 1 of the present invention
  • 3 is a relationship diagram between the ambient temperature and gas permeability of the resin material used in the vacuum heat insulating casing 100 according to Embodiment 1 of the present invention.
  • 4 is an enlarged cross-sectional view of part 4 of FIG. 2 according to Embodiment 1 of the present invention
  • FIG. 5 is a local cross-sectional view of the gas barrier container of vacuum insulation casing 100 according to Embodiment 1 of the present invention
  • FIG. 1 is a perspective view of a refrigerator provided with a vacuum heat insulation casing 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of the refrigerator provided with a vacuum heat insulation casing 100 according to Embodiment 1 of the present invention
  • FIG. 7 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing 100 according to Embodiment 1 of the present invention
  • FIG. 8 is a local cross sectional view of the gas barrier container of the vacuum heat insulating casing 100 according to Embodiment 1 of the present invention
  • 9 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing 100 according to Embodiment 1 of the present invention.
  • 10 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing 100 according to Embodiment 1 of the present invention
  • FIG. 11 is an enlarged cross-sectional view of the waste material mixed layer of FIG. 10 according to Embodiment 1 of the present invention. is there.
  • the refrigerator 1 includes a refrigerator main body 2, a refrigerator compartment lid 3, an ice making compartment lid 444, a vegetable compartment lid 5, and a freezer compartment lid 6 that form an appearance.
  • the refrigerator main body 2 is formed of a porous structure in an outer box 30 formed of a gas barrier material, a gas barrier adhesive member 31, and a resin-made gas barrier container 33 formed in a hollow shape. It has a vacuum heat insulating body 32 enclosing a core member 39 made of cellular urethane foam and sealed in a vacuum, a foam heat insulating material 43, and an inner box 44.
  • the gas barrier container 33 is formed in the shape of the inner wall of the outer box 30, and the gas barrier container 33 and the outer box 30 are provided in close contact with each other.
  • the gas barrier container 33 shown in FIG. 5 is composed of a single layer of a single layer plate 34.
  • the gas barrier container 33 shown in FIG. 6 is configured by providing high barrier layers 35 on both surfaces of a single-layer plate material 34.
  • a gas barrier container 33 shown in FIG. 7 includes an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38.
  • the gas barrier container 33 shown in FIG. 8 is configured such that a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are provided on both sides.
  • the gas barrier container 33 shown in FIG. 9 includes a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 on the outer box 30 side.
  • the 10 is configured such that a waste material mixed layer 45, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are provided on the outer box 30 side of the refrigerator 1. Further, the waste material mixed layer 45 shown in FIG. 11 is composed of waste materials of the air barrier layer 36, the water barrier layer 37, and the adhesive layer 38.
  • the configuration of the wall of the gas barrier container in various forms has been exemplified, but the configuration is not limited to the above configuration, and an optimal configuration may be selected according to the required gas barrier performance.
  • the gas permeability of the gas barrier resin material tends to improve because the higher the ambient environment is, the worse the fine gaps between the molecules of the material occur, and conversely, the gaps between the molecules decrease on the low temperature side. There is. That is, there is a feature that the gas barrier performance deteriorates as the ambient environment becomes higher.
  • the heat insulation performance can be optimized and the cost can be reduced by selecting the thickness and material of the gas barrier container 33 that satisfies the optimum gas barrier performance according to the use location of the vacuum heat insulation casing 100 and the temperature zone of the use environment. it can.
  • the ambient temperature of the gas barrier container 33 differs depending on the location where the vacuum insulator 32 is used in the refrigerator 1. For example, if the outside air temperature of the refrigerator 1 is 20 ° C., the refrigerator body 2 has a maximum temperature of about 40 ° C. due to the compressor 8 on the high temperature side where the ambient temperature is high, and the low temperature side where the ambient temperature is low. Then, due to the influence of the evaporator 9, the internal temperature becomes a minimum temperature of about ⁇ 30 ° C.
  • the relationship between the ambient temperature and the gas permeability is a range indicated by E in the relationship diagram between the ambient temperature and the gas permeability shown in FIG. 3, and a material satisfying the E range may be selected.
  • the outside air temperature on the high temperature side is about 20 ° C. and the low temperature side is about 2 ° C. depending on the room temperature of the refrigerating room space 11.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by B in FIG. 3, and a material satisfying the B range may be selected.
  • the outside air temperature on the high temperature side is about 20 ° C. and the temperature on the low temperature side is about ⁇ 18 ° C. depending on the room temperature of the ice making space 12.
  • the relationship between the ambient temperature and the gas permeability is in the range indicated by A in FIG. 3, and a material satisfying the A range may be selected.
  • the outdoor air temperature on the high temperature side is about 20 ° C. and the low temperature side is about 5 ° C. depending on the room temperature of the vegetable compartment space 13.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by B in FIG. 3, and a material satisfying the B range may be selected.
  • the high temperature side outside air temperature is about 20 ° C. and the low temperature side is ⁇ 18 ° C. due to the freezer compartment 14.
  • the relationship between the ambient temperature and the gas permeability is in the range indicated by A in FIG. 3, and a material satisfying the A range may be selected.
  • the ambient temperature on the high temperature side is about 5 ° C. depending on the room temperature of the refrigerator compartment space portion 11, and the low temperature side is about ⁇ 18 ° C. depending on the room temperature of the ice compartment space portion 12.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by C in FIG. 3, and a material satisfying the C range may be selected.
  • the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable compartment space portion 13, and the low temperature side is about ⁇ 18 ° C. due to the ice compartment space portion 12.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by C in FIG. 3, and a material satisfying the C range may be selected.
  • the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable compartment space 13, and the low temperature side is about ⁇ 18 ° C. due to the freezer compartment 14.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by C in FIG. 3, and a material satisfying the C range may be selected.
  • the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable room space 13 and the low temperature side is about ⁇ 20 ° C. due to the heat of the evaporator 9 due to the room temperature of the cooling chamber space 18.
  • the relationship between the ambient temperature and the gas permeability is in a range indicated by D in FIG. 3, and a material satisfying the D range may be selected.
  • the gas permeability can be optimized with an easy configuration in consideration of the ambient temperature of the members constituting the refrigerator 1 according to the use location of the vacuum heat insulating casing 100, and easily insulated. A configuration can be realized.
  • the outer box 30 is formed of a gas barrier member, and the vacuum heat insulating body 32 and the outer box 30 are disposed in close contact with each other. With such a configuration, the gas barrier property of the gas barrier container 33 on the outer box 30 side can be improved.
  • the outer box 30 is arranged on the high temperature side of the vacuum heat insulating body 32, that is, on the high temperature side in a refrigerator or the like in which the vacuum heat insulating casing 100 is used.
  • the gas barrier property of the gas barrier resin deteriorates, but the gas barrier property can be maintained by the outer box 30 made of the gas barrier material. For this reason, the vacuum heat insulation performance can be ensured for a long time without lowering the heat insulation performance.
  • the vacuum heat insulating body 32 is formed into a shape that matches the inner wall shape of the outer box 30, and the vacuum heat insulating body 32 and the outer box are formed.
  • the material of the outer box 30 is formed of, for example, a metal plate having a high gas barrier property such as aluminum, stainless steel, and iron and a glass plate, so that gas permeation can be reduced.
  • the outer box 30 is configured to be in close contact with the gas barrier container 33, it is possible to prevent deterioration of the gas barrier property inside the gas barrier container 33 even when the surrounding environment is at a high temperature, and to prevent a decrease in heat insulation performance. Therefore, the vacuum insulation performance can be guaranteed for a long time.
  • a gas barrier adhesive member 31 may be disposed on the contact surface between the vacuum heat insulator 32 and the outer box 30.
  • the gap between the outer box 30 and the gas barrier container 33 can be eliminated more reliably, and gas can be prevented from entering the gas barrier container.
  • the vacuum heat insulating body 32 is formed in the shape of the inner wall of the outer box 30, and the gap between the vacuum heat insulating body 32 and the outer box 30 can be eliminated. With such a configuration, air convection between the outer box 30 and the gas barrier container 33 can be eliminated, and the heat insulation performance can be improved.
  • the rigidity strength of the vacuum heat insulating body 32 of the refrigerator main body 2 can be improved by the adhesive strength of the gas barrier adhesive member 31.
  • modified polyolefin such as modified polyethylene and modified polypropylene is used.
  • base materials such as gas barrier resins such as ethylene-vinyl alcohol copolymer, metals, glass and ceramics, so sheets, films, tubes and bottles by coextrusion molding A multilayer molded body such as can be made.
  • the vacuum heat insulating body 32 which implement
  • the wall structure of the gas barrier container 33 may be changed from the ambient temperature of the members constituting the refrigerator 1 in order to optimize the gas permeability with an easy configuration.
  • a member used in a low temperature region such as a C range and a D range in the relationship diagram (see FIG. 3) between the ambient temperature of the members constituting the refrigerator 1 and the gas permeability of the resin material is provided in the gas barrier container 33.
  • the gas permeability is also set low.
  • the wall of the gas barrier container 33 can be formed of a single-layer plate material 34 as shown in FIG.
  • a member used only in a high temperature region of 0 ° C. or higher such as the B range in FIG. 3 is used for the gas barrier container 33, as shown in FIG.
  • both the outer surfaces of the plate member 34 are surface-treated with a high barrier layer 35 such as a metal foil.
  • a member used from the low temperature range (less than 0 ° C.) to the high temperature range (0 ° C. or higher) such as the range A in FIG. 3 is used for the gas barrier container 33, as shown in FIG.
  • the structure according to is required.
  • the wall of the gas barrier container 33 has a multilayer structure in which an air barrier layer 36, an adhesive layer 38, a water barrier layer 37, and the like are stacked from the center of the wall of the gas barrier container 33 toward both sides. .
  • the wall of the gas barrier container 33 is the center of the wall of the gas barrier container 33 as shown in FIG.
  • the air barrier layer 36, the adhesive layer 38, the water barrier layer 37, and the like are laminated from the side to the both sides, and the outermost surfaces are laminated with a high barrier layer 35 such as a metal. Can be configured.
  • the gas barrier container 33 is formed of a single layer member, a multilayer member, or a laminated member formed of a different material of the high barrier layer 35 such as a metal foil, so that the shape can be freely changed depending on the appearance shape and the interior shape.
  • the required heat insulation performance can be easily realized.
  • the material of the single-layer plate material 34 shown in FIG. 5 is a gas barrier with an easy material configuration by using a high barrier material such as air and water such as ethylene-vinyl alcohol copolymer, liquid crystal polymer, polyethylene and polypropylene. Gas permeation in the container 33 can be prevented and the degree of vacuum can be maintained. Thereby, the fall of heat insulation performance can also be prevented.
  • a high barrier material such as air and water
  • the high barrier layer 35 shown in FIGS. 6 and 8 is formed by thermally welding an aluminum foil, a stainless steel foil, a metal foil, or the like with little thermal crosslinking to an ultrathin film plate laminated with a resin material such as polypropylene.
  • a method and a method in which the surface of an organic resin layer such as an ethylene-vinyl alcohol copolymer is surface-treated by spraying an inorganic substance in layers are preferable.
  • barrier properties against air and water can be improved. Thereby, gas permeation in the gas barrier container 33 can be prevented with an inexpensive and easy material configuration, the degree of vacuum can be maintained, and a decrease in heat insulation performance can also be prevented.
  • the material of the air barrier layer 36 shown in FIG. 7 is preferably an ethylene-vinyl alcohol copolymer
  • the material of the water barrier layer 37 is preferably polyethylene or polypropylene.
  • the adhesive layer 38 can be formed of modified polyolefin such as modified polyethylene and modified polypropylene. With such a configuration, it is possible to easily realize a gas barrier configuration that can realize optimization of gas permeability in the gas barrier container 33 according to the ambient temperature.
  • the gas barrier container 33 is configured such that the gas barrier property is changed by changing the wall structure of the gas barrier container 33 between the outer box 30 side and the core member 39 side, and the gas barrier property on the outer box 30 side is increased. Also good.
  • the gas barrier container 33 of the refrigerator main body 2 is provided with a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 on the outer box 30 side. It has a structure.
  • the material structure of the gas barrier container 33 is a structure in which the high barrier layer 35 is disposed only on the outer box 30 side where the gas permeability is deteriorated on the high temperature side.
  • the gas barrier container 33 of the refrigerator main body 2 includes a waste material mixed layer 45, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 on the outer box 30 side of the refrigerator 1. It has a structure. As shown in FIG.
  • the waste material mixed layer 45 is formed from the waste material of the air barrier layer 36, the water barrier layer 37, and the adhesive layer 38.
  • the gas barrier property is improved as compared with the single-layer plate material 34, and the waste material mixed layer 45 is arranged only on the outer box 30 side where the gas permeability, which is a high temperature side, deteriorates.
  • the fault of the gas barrier resin with temperature dependency which gas barrier property deteriorates in a high temperature environment can be compensated, and the performance of a vacuum heat insulating body can be maintained.
  • the waste material mixed layer 45 shown in FIG. 11 materials such as ethylene-vinyl alcohol copolymer and polypropylene are used for the waste material mixed layer 45 shown in FIG. 11, and the waste material mixed layer 45 is formed by multilayer mixing of these materials.
  • the air and the material are made of a single layer such as polyethylene and polypropylene.
  • Gas barrier properties such as water are superior. For this reason, depending on the ambient temperature to be used, a desired gas permeability can be achieved by forming the gas barrier container 33 with only the waste material mixed layer 45.
  • the core member 39 is formed of a porous structure, and cellular urethane foam or the like is used. With such a configuration, the internal volume of the vacuum heat insulator can be surely reached a predetermined degree of vacuum in the evacuation step, and the required vacuum heat insulation performance can be realized.
  • FIG. 12 is a front perspective view of the ice making chamber lid 444 of the refrigerator 1 provided with the vacuum heat insulating housing 200 according to the second embodiment of the present invention
  • FIG. 13 is a vacuum heat insulating housing 200 according to the second embodiment of the present invention
  • FIG. 14 is a rear perspective view of the ice making chamber lid 444 of the refrigerator 1 including the above
  • FIG. 14 is an exploded view of components of the ice making chamber lid 444 of the refrigerator 1 including the vacuum heat insulating housing 200 according to Embodiment 2 of the present invention. It is.
  • FIG. 1 is a front perspective view of the ice making chamber lid 444 of the refrigerator 1 provided with the vacuum heat insulating housing 200 according to the second embodiment of the present invention
  • FIG. 13 is a vacuum heat insulating housing 200 according to the second embodiment of the present invention
  • FIG. 14 is a rear perspective view of the ice making chamber lid 444 of the refrigerator 1 including the above
  • FIG. 14 is an exploded view of components of the ice making chamber lid
  • FIG. 15 is a cross-sectional view of the ice making chamber lid 444 of the refrigerator 1 provided with the vacuum heat insulating housing 200 according to the second embodiment of the present invention
  • FIG. 16 is a vacuum heat insulating housing according to the second embodiment of the present invention
  • FIG. 17 to FIG. 19 show a part development sectional view of an ice making chamber lid 444 of the refrigerator 1 equipped with 200
  • FIGS. 17 to 19 show an ice making chamber lid of the refrigerator 1 equipped with the vacuum heat insulating housing 200 according to Embodiment 2 of the present invention. It is sectional drawing which shows the sealing process of 444.
  • FIG. FIG. 20 is a 20-part local cross-sectional view of FIG.
  • FIG. 19 is a partial sectional view of the ice making chamber lid 444 of the refrigerator 1 provided with the vacuum heat insulating casing 200 in FIG. 2, and FIG. 22 includes the vacuum insulating casing 200 according to the second embodiment of the present invention.
  • FIG. 20 is a 23-part local cross-sectional view of the ice making chamber lid 444 of the refrigerator 1 in FIG. 19.
  • the ice making chamber lid 444 of the refrigerator 1 includes an outer box member 4a made of a gas barrier material such as glass and metal material, an adhesive member 4b, and an inner box member 4c made of resin. And a vacuum heat insulator 120, a gasket 121, a frame 122, and a frame set screw 123.
  • the ice making chamber lid 444 of the refrigerator 1 is configured by superposing an outer box member 4a, an adhesive member 4b, a vacuum heat insulator 120, and an inner box member 4c.
  • the vacuum heat insulator 120 is configured by arranging a core member 120b and an adsorbing member 120c inside a gas barrier container 120a.
  • the gas barrier container 120a is formed by processing a gas barrier resin by hollow molding (blow molding), can be formed into a free shape, and is molded into the shape of the inner wall of the outer box member 4a and the inner box member 4c.
  • the core member 120b is formed of a porous structure, and cellular urethane foam or the like is used.
  • the cellular urethane foam may be an open-celled urethane foam or a closed-celled urethane foam. When importance is placed on the efficiency of vacuum drawing, it is better to use an open-celled urethane foam.
  • a core member 120b and an adsorbing member 120c are disposed inside the gas barrier container 120a.
  • the gas barrier container 120a includes a vacuum hole 120d for filling and evacuating urethane, a vacuum hole sealing member 120e for sealing the vacuum hole 120d after evacuation, an air escape hole 120f at the time of urethane filling, and an air escape seal A stop member 120g is disposed.
  • the vacuum hole 120d and the vacuum hole sealing member 120e are disposed on the inner box member side which is the low temperature side. An air inlet for hollow molding is used for the air escape hole 120f.
  • the ice making chamber lid 444 of the refrigerator 1 includes an outer box member 4 a, an adhesive member 4 b, an inner box member 4 c, a vacuum heat insulator 120, a gasket 121, a frame 122, and a frame set screw 123. And are arranged.
  • the drawer door can be configured by fixing the frame 122 to the inner box member 4c with the frame fixing screw 123. Since the frame fixing screw 123 does not penetrate the inner box member 4c, the vacuum heat insulating body 120 is not damaged.
  • the ice making chamber lid 444 of the refrigerator 1 has an outer box member 4a formed of a gas barrier member, and the outer box member 4a and the gas barrier container 120a are formed in close contact with each other. With such a configuration, the gas barrier property of the gas barrier container 120a on the outer box member 4a side can be improved.
  • the outer box member 4a Since the outer box member 4a is disposed on the high temperature side (side where the ambient environment is high) in the ice making chamber lid 444 of the refrigerator 1, the gas barrier property of the gas barrier resin may be deteriorated. However, since the gas barrier property can be maintained by the outer box member 4a made of the gas barrier material, the vacuum heat insulating performance can be ensured for a long time without lowering the heat insulating performance. Further, by using the resin-made gas barrier container 120a that can be formed into a free shape, the vacuum heat insulator 120 can be formed into the inner wall shape of the outer box member 4a. A gap between the outer box member 4a and the air convection space can be eliminated. With such a configuration, the heat insulation performance can be improved. Further, the vacuum heat insulating body 120 and the outer box member 4a are disposed in close contact with each other, whereby the rigidity strength of the vacuum heat insulating casing can be improved.
  • the outer box member 4a is formed of glass and a metal plate having a high gas barrier property such as aluminum, stainless steel and iron. With such a configuration, gas permeation can be prevented. In addition, since the outer box member 4a and the gas barrier container 120a are in close contact with each other, deterioration of the gas barrier property inside the gas barrier container 120a can be prevented even when the surrounding environment is high, and the heat insulation performance is reduced. There is no fear, and vacuum insulation performance can be guaranteed for a long time.
  • the gas barrier adhesive member 4b is disposed on the contact surface between the vacuum heat insulator 120 and the outer box member 4a, so that the gap between the outer box member 4a and the gas barrier container 120a can be more reliably eliminated. It is possible to prevent gas from entering the gas barrier container 120a. Furthermore, since the vacuum heat insulator 120 can be formed in the shape of the inner wall of the outer box member 4a, the gap between the vacuum heat insulator 120 and the outer box member 4a can be eliminated. Thereby, the convection of the air between the vacuum heat insulating body 120 and the outer box member 4a can also be eliminated, and the heat insulation performance can be improved. Further, the rigidity strength of the ice making chamber lid 444 can be improved by the adhesive strength of the gas barrier adhesive member 4b.
  • the vacuum heat insulator 120 may be formed so that the thickness T1 on the outer box member side and the thickness T2 on the inner box member side are the same. Further, as the material on the outer box member side of thickness T1, a material having a higher gas barrier property than the material on the inner box member side of thickness T2 may be used. The gas barrier property can be improved by increasing the gas barrier property on the side of the outer box member 4a having the thickness T1 disposed on the high temperature side in the refrigerator 1, and the gas barrier property is deteriorated in a high temperature environment. The drawbacks of the gas barrier resin material can be compensated and the performance of the vacuum insulator 120 can be maintained.
  • the vacuum heat insulator 120 may be formed such that the thickness T1 on the outer box member 4a side is thicker than the thickness T2 on the inner box member side.
  • the gas barrier property can be improved, and the gas barrier resin material having temperature dependency that degrades the gas barrier property in a high temperature environment.
  • the performance of the vacuum insulator 120 can be maintained.
  • the thickness and material of each member of the vacuum heat insulator 120 may be appropriately determined so as to be optimal in consideration of heat insulation performance and cost.
  • the vacuum heat insulator 120 has the vacuum hole 120d and the vacuum hole sealing member 120e of the sealing port when the gas barrier container 120a is evacuated disposed on the inner box member 4c side disposed on the low temperature side.
  • the gas barrier property of the gas barrier resin in the sealed portion can be improved.
  • the gas barrier property of the sealing port having a structurally poor gas barrier property can be improved, the desired degree of vacuum can be maintained, the heat insulation performance can be prevented from being lowered, and the vacuum heat insulation performance is guaranteed for a long time. Can be.
  • the vacuum heat insulating body 120 is configured by selecting the heat insulating configuration such as the thickness and material of the gas barrier container 120a according to the shape difficulty, the use location, and the use environment, so that the external shape and the interior shape can be selected. It is possible to freely change the shape of the gas barrier container 120a. Thereby, the required heat insulation performance can be easily realized.
  • the core member 120b is formed of a porous structure, and by using a cellular urethane foam or the like, the internal volume of the vacuum heat insulating body 120 can be surely reached a predetermined set vacuum degree in the evacuation process. it can. Thereby, the required vacuum insulation performance can be realized.
  • the material of the core member 120b is mixed with glass wool or the like, thereby improving the void ratio of the internal volume of the vacuum heat insulating body 120 and shortening the time required to reach a predetermined set vacuum degree in the evacuation process. Can do.
  • the air insertion port at the time of hollow molding of the gas barrier container 120a is configured to function as an air escape hole 120f of the air vent at the time of urethane foam filling.
  • adsorption member 120c in the gas barrier container 120a, generated gas such as air and water inside the gas barrier container 120a can be adsorbed to the adsorption member 120c. Thereby, since the set vacuum degree is maintained for a long time, the heat insulation performance in which long-term reliability is guaranteed can be realized.
  • the material of the vacuum hole sealing member 120e and the air escape hole sealing member 120g is an aluminum foil resin laminated film laminated with the same material as the outer layer material of the gas barrier container 120a.
  • the hole 120f is heat-welded and sealed. With such a configuration, the set degree of vacuum in the gas barrier container 120a is maintained, so that it is possible to achieve heat insulation performance that guarantees long-term reliability.
  • the air escape hole sealing member 120g is hermetically sealed including the position of the mold parting line generated during the hollow molding process of the gas barrier container 120a. With such a configuration, the permeation of gas such as air and water into the gas barrier container 120a can be prevented. Further, by arranging the adsorbing member 120c in the gas barrier container 120a, air and water generated from the inside and outside can be adsorbed by gas. With such a configuration, it is possible to maintain a set degree of vacuum and to achieve a heat insulating performance that ensures long-term reliability.
  • FIG. 23 is a front perspective view of the vacuum heat insulation casing of the refrigerator main body 2 including the vacuum heat insulation casing 300 according to the third embodiment of the present invention
  • FIG. 24 shows the vacuum heat insulation casing according to the third embodiment of the present invention
  • 25 is a cross-sectional view of the vacuum heat insulating housing of the refrigerator main body provided
  • FIG. 25 is a 25-part local cross sectional view of FIG. 24 of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing in Embodiment 3 of the present invention.
  • It is. 26 is a 26-part local cross-sectional view of FIG.
  • FIG. 24 is a 27-part local cross-sectional view of the vacuum heat insulation housing of the refrigerator main body provided with the vacuum heat insulation housing
  • FIG. 28 is a vacuum heat insulation of the refrigerator main body provided with the vacuum heat insulation housing according to Embodiment 3 of the present invention
  • FIG. 25 is a 28-part local cross-sectional view of the housing of FIG. 24.
  • FIG. 29 is a cross-sectional view of a vacuum heat insulating casing of a refrigerator body provided with another type of vacuum insulating casing according to Embodiment 3 of the present invention.
  • the vacuum insulator 32 of the refrigerator body 2 is provided with a vacuum hole 40 for evacuation on the inner box side, and the opening is covered with a vacuum hole sealing member 41. Are sealed.
  • an air escape hole 42 is provided at the opening end of the vacuum heat insulating body 32 farthest from the vacuum hole 40, and the air escape hole 42 is an air escape hole sealing member. 47 is covered and sealed.
  • the foamed urethane foam is filled from the vacuum hole 40, and the air in the gas barrier container 33 is discharged from the air escape hole 42 so as to be replaced with the foamed urethane foam, and the vacuum hole 40 and the air escape hole 42 are discharged. Is sealed.
  • the vacuum hole 40 is securely welded and sealed by the vacuum hole sealing member 41, and the air escape hole 42 is reliably sealed by the heat heating means by the air escape hole sealing member 47. Thereby, gas permeation, such as air and water, can be prevented. Further, the vacuum hole 40 and the vacuum hole sealing member 41 at the sealing port when the gas barrier container 33 is evacuated are disposed on the inner box side disposed on the low temperature side, so that the gas barrier property is poor due to the structure. The gas barrier property of the gas barrier resin in the sealing port can be improved. Further, since the adsorbing member 46 is disposed inside the gas barrier container 33, air, water, and the like generated from the inside and outside of the core member 39 are adsorbed by the gas. Thereby, it can set and can maintain a vacuum degree, there is no possibility that heat insulation performance may fall, and vacuum heat insulation performance can be guaranteed for a long term.
  • a part of the vacuum heat insulating body 32 is heat-welded during hollow molding to form a joint portion, and a through hole 48 is formed by drilling.
  • the through hole 48 is used as a through hole for discharging water generated in the evaporator 9 disposed inside the refrigerator 1 to the evaporating dish 10 disposed outside the refrigerator 1. be able to.
  • the part that particularly requires heat insulation performance is By increasing the thickness of the corresponding part of the gas barrier container, the heat insulation performance can be partially improved.
  • the vacuum heat insulating body 32 is obtained by configuring the heat insulating constitution conditions such as the thickness and material of the gas barrier container depending on the difficulty in forming the shape of the vacuum heat insulating body 32, the use location, and the use environment. Heat insulation performance can be easily realized.
  • FIG. 30 is a front perspective view of an ice making room vegetable compartment partition of a refrigerator provided with a vacuum heat insulating casing 400 according to Embodiment 4 of the present invention
  • FIG. 31 is an ice making room vegetable compartment partition according to Embodiment 4 of the present invention.
  • Sectional drawing which shows the example of sealing of a body
  • FIG. 32 are sectional drawings which show the sealing example of another cross section of the ice-making room vegetable compartment partition in Embodiment 4 of this invention.
  • the vacuum heat insulating casing 400 of the present embodiment will be described by omitting portions that overlap with those of the first embodiment.
  • the ice making room side which is the low temperature side of the ice making room vegetable compartment partition 16 is a resin decorative member corresponding to the inner box, and the vegetable room side which is the high temperature side corresponds to the outer box.
  • a high gas barrier aluminum foil resin laminate film or a gas barrier resin decorative member to which a heater for preventing condensation is fixed is disposed in close contact with the deep member 16b.
  • the ice making room vegetable compartment partition 16 of the refrigerator main body 2 is constituted by a vacuum heat insulator. As shown in FIGS. 30 to 32, the ice making room vegetable compartment partition 16 includes a gas barrier container 16a, a core member 16b, and an adsorption member. It has the member 16c, the duct relief part 16d which has a duct in an up-down direction, the vacuum hole 16e, the vacuum hole sealing member 16f, the air escape hole 16g, and the air escape hole sealing member 16h.
  • the vacuum hole 16e is welded and sealed to the vacuum hole sealing member 16f and the air escape hole 16g is welded and sealed by the air escape hole sealing member 16h.
  • the permeability of gas such as air and water can be prevented.
  • the vacuum hole 16e and the vacuum hole sealing member 16f of the sealing port when the gas barrier container 16a is evacuated are disposed on the inner box side on the ice making chamber side which is the low temperature side. With such a configuration, it is possible to improve the gas barrier property of the gas barrier resin of the sealing port having poor gas barrier property.
  • the adsorbing member 16c is disposed inside the gas barrier container 16a, gas such as air and water generated from the inside and outside of the core member 16b can be adsorbed. Thereby, the set vacuum degree is maintained, there is no fear that the heat insulation performance is lowered, and the vacuum heat insulation performance can be ensured for a long time.
  • FIG. 33 is a front perspective view of a cooling chamber wall body of a refrigerator provided with a vacuum heat insulating casing 500 according to the fifth embodiment of the present invention
  • FIG. 34 shows a cooling chamber wall body according to the fifth embodiment of the present invention. It is sectional drawing which shows the sealing example.
  • the vacuum heat insulating casing 500 of the fifth embodiment will be described by omitting the same parts as those of the first embodiment.
  • the cooling chamber side disposed on the low temperature side of the cooling chamber wall 19 has a resin decorative member corresponding to the inner box, and the vegetable chamber side disposed on the high temperature side has an outer box.
  • a high gas barrier aluminum foil resin laminate film or a gas barrier resin air passage member to which a corresponding dew condensation prevention heater is fixed is disposed in close contact with the core member 19b.
  • the cooling chamber wall 19 of the refrigerator main body 2 is made of a vacuum heat insulator. As shown in FIGS. 33 and 34, the cooling chamber wall 19 includes a gas barrier container 19a, a core member 19b, an adsorption member 19c, and a vacuum hole. 19d, a vacuum hole sealing member 19e, an air escape hole 19g, and an air escape hole sealing member 19h.
  • the vacuum hole 19d is welded and sealed reliably by the heat heating means by the vacuum hole sealing member 19e and the air escape hole 19g by the air escape hole sealing member 19h. Thereby, gas permeability, such as air and water, can be prevented. Further, the vacuum hole 19d and the vacuum hole sealing member 19e of the sealing port when the gas barrier container 19a is evacuated are disposed on the cooling chamber side disposed on the low temperature side, thereby sealing with poor gas barrier properties. The gas barrier property of the gas barrier resin in the mouth can be improved. Further, since the adsorbing member 19c is disposed inside the gas barrier container 19a, air and water generated from the inside and outside of the core member 19b can be adsorbed to the gas, and the set vacuum degree can be maintained. Thereby, there is no possibility that heat insulation performance will fall, and vacuum heat insulation performance can be guaranteed for a long time.
  • the vacuum heat insulating casing includes a vacuum heat insulating body in which a core member is enclosed in a hollow gas-made resin barrier container and is vacuum-sealed, and a vacuum heat insulating body. It has an outer box made of a gas barrier material and an inner box arranged on the low temperature side, which are arranged on the high temperature side, that is, the high temperature side in a refrigerator or the like in which the vacuum heat insulating casing is used.
  • the vacuum heat insulator has a structure disposed in close contact with the outer box.
  • the vacuum insulator is formed into the shape of the inner wall of the outer box, eliminating the gap between the vacuum insulator and the outer box, and air
  • the heat insulation performance can be improved by eliminating the convection space.
  • casing can be improved by sticking a vacuum heat insulating body and an outer case.
  • a gas barrier adhesive member may be selectively used on the contact surface between the vacuum heat insulating body and the outer box.
  • the vacuum heat insulator in the shape of the inner wall of the outer box, the gap space between the vacuum heat insulator and the outer box can be eliminated. For this reason, air convection between the vacuum heat insulating body and the outer box is eliminated, heat insulating performance can be improved, and the rigidity strength of the vacuum heat insulating body can be improved by the adhesive strength of the gas barrier adhesive member. it can.
  • the vacuum heat insulating body may be configured of a material having a gas barrier property higher on the outer box side than on the inner box side.
  • the thickness of the outer side of the vacuum heat insulating body may be selectively thicker than the thickness of the inner side.
  • the sealing port at the time of evacuation of the gas barrier container is selectively disposed on the inner box side disposed on the low temperature side.
  • the vacuum heat insulating casing selectively has a heat insulating configuration such as the thickness and material of the gas barrier container depending on the degree of difficulty in forming the shape of the vacuum heat insulating body, the use location, and the use environment. May be selected and configured. With such a configuration, the required heat insulating performance of the vacuum heat insulating casing can be easily realized.
  • the gas barrier container may be selectively formed of a single layer member, a multilayer member, or a laminated member formed of different materials.
  • the gas barrier container of the vacuum heat insulating casing can be formed by freely changing the shape depending on the appearance shape and the interior shape, so that the required heat insulating performance can be easily realized.
  • the core member may be selectively formed of a porous structure and cellular urethane foam may be used.
  • the vacuum heat insulating housing may be configured such that the air insertion port at the time of hollow molding of the gas barrier container also functions as an air vent at the time of urethane foam filling. Good. With such a configuration, there is no need to newly provide an air vent, the number of gas entry points into the gas barrier container can be reduced, and the internal volume of the vacuum insulator is reliably set to a predetermined filling amount in the urethane foaming process. Can be reached. Thereby, the required heat insulation performance can be realized.
  • the present invention can provide a vacuum heat insulating casing that has a simple configuration and guarantees a degree of vacuum for a long period of time and a heat insulating performance. Therefore, it can be widely used for a heat insulating structure such as a refrigerator, an automobile, a heat pump water heater, an electric water heater, a rice cooker, a bathtub, an outer wall of a house, and a roof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

 真空断熱筐体は、中空形成された樹脂製のガスバリア容器に芯部材が内包されて真空密閉された真空断熱体(32)と、高温側に配置されるガスバリア材料からなる外箱(30)と、低温側に配置される内箱(44)とを有する。真空断熱体(32)および外箱(30)は密着して配設されている。

Description

真空断熱筐体
 本発明は、冷蔵庫などに用いられる真空断熱筐体に関する。
 近年、地球環境問題である温暖化の対策として省エネルギー化を推進する動きが活発し、断熱技術の性能進化が期待されている。従来、この種の断熱技術としては、図35に示されるように、真空断熱体103のガスバリア容器107と筐体パネル101とが一体化された構造により、断熱性能を向上させる技術が提案されている(例えば、特許文献1参照)。なお、真空断熱体とは、容器内を真空にすることで断熱性能を向上させた構造体のことをいう。
 しかしながら、特許文献1の真空断熱体103においては、真空引き用のフランジ部105を如何に密閉封止するかを主な課題としており、ガスバリア容器107と筐体パネル101とが一体化された構造が開示されているに止まり、真空度を長期間保つことのできる具体的な一体化の手段については明示されていない。また、ガスバリア容器107と筐体パネル101との間に微小な空間が存在した場合には、ガスバリア容器107内へ空気および水蒸気などのガスが進入することを完全に防止することが困難であり、長期間真空度を保つことにより断熱性能を維持することが困難であるという課題がある。
特開平7-195385号公報
 本発明は、上記のような従来の課題に鑑みてなされたものであり、使用環境温度および使用箇所によって、ガスバリア構造が最適化された真空断熱筐体を提供する。また、容易な構成で長期間真空度が保証され、断熱性能も保証され、内装筐体部材および外観筐体部材として使用可能な真空断熱筐体を提供する。
 具体的には、本発明の実施の形態の一例による真空断熱筐体は、中空形成された樹脂製のガスバリア容器に芯部材が内包されて真空密閉された真空断熱体と、真空断熱体の高温側、すなわち、真空断熱筐体が使用される冷蔵庫等における高温側に配置される、ガスバリア材料からなる外箱と、低温側に配置される内箱とを有する。真空断熱体は、外箱と密着して配置された構造を有する。
 このような構成により、真空断熱体と外箱との間に空間が存在しないため、外箱のガスバリア性により、真空断熱体の内部に空気および水蒸気などのガス物質が透過し浸入することがない。また、このような構成により、外箱側のガスバリア容器のガスバリア性を向上させることができ、高温でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補えることができる。これにより、真空度が長期間保たれることができ、断熱性能の長期信頼性および品質の向上を実現できる。
 また、自由に形状を形成することができる樹脂製のガスバリア容器が用いられることにより、真空断熱体が外箱の内壁の形状に成形され、真空断熱体と外箱間との隙間を無くし、空気の対流空間を無くすことにより、断熱性能を向上させることができる。また、真空断熱体と外箱とを密着させることにより、真空断熱筐体の剛性強度を向上させることができる。
図1は、本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の斜視図である。 図2は、本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の断面図である。 図3は、本発明の実施の形態1における真空断熱筐体に用いた樹脂材料の周囲温度とガス透過度の関係図である。 図4は、本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の局部断面図である。 図5は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図6は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図7は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図8は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図9は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図10は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図11は、本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図である。 図12は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の正面斜視図である。 図13は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の後面斜視図である。 図14は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開図である。 図15は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の断面図である。 図16は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開断面図である。 図17は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図である。 図18は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図である。 図19は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図である。 図20は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19の20部局部断面図である。 図21は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19の21部局部断面図である。 図22は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19の22部局部断面図である。 図23は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の正面斜視図である。 図24は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図である。 図25は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24の25部局部断面図である。 図26は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24の26部局部断面図である。 図27は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24の27部局部断面図である。 図28は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24の28部局部断面である。 図29は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図である。 図30は、本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の正面斜視図である。 図31は、本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の封止例を示す断面図である。 図32は、本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の別断面の封止例を示す断面図である。 図33は、本発明の実施の形態5における真空断熱筐体を備えた冷蔵庫の冷却室壁真空断熱筐体の正面斜視図である。 図34は、本発明の実施の形態5における真空断熱筐体を備えた冷蔵庫の野菜室壁真空断熱筐体の封止例を示す断面図である。 図35は、従来の真空断熱筐体の断面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における真空断熱筐体100を備えた冷蔵庫の斜視図、図2は、本発明の実施の形態1における真空断熱筐体100を備えた冷蔵庫の断面図、および、図3は、本発明の実施の形態1における真空断熱筐体100に用いた樹脂材料の周囲温度とガス透過度の関係図である。図4は、本発明の実施の形態1における図2の4部拡大断面図、図5は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図、および、図6は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図である。図7は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図、図8は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図、および、図9は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図である。図10は、本発明の実施の形態1における真空断熱筐体100のガスバリア容器の局部断面図、および、図11は、本発明の実施の形態1における図10の廃材混合層の拡大断面図である。
 図1において、冷蔵庫1は、外観を形成する冷蔵庫本体2と、冷蔵室蓋体3と、製氷室蓋体444と、野菜室蓋体5と、冷凍室蓋体6とを有する。図2および図4において、冷蔵庫本体2は、ガスバリア材料で形成された外箱30と、ガスバリア性の接着部材31と、中空形成された樹脂製のガスバリア容器33に多孔性構造体で形成された気泡ウレタンフォームからなる芯部材39が内包されて真空密閉された真空断熱体32と、発泡断熱材43と、内箱44とを有する。ガスバリア容器33は、外箱30の内壁の形状に成形され、ガスバリア容器33と外箱30とが、密着して設けられている。
 次に、ガスバリア容器33の壁の構成について、様々な例を挙げて説明する。
 図5に示すガスバリア容器33は、単層板材34の単層で構成されている。図6に示すガスバリア容器33は、単層板材34の両面に高バリア層35が設けられて構成されている。図7に示すガスバリア容器33は、空気バリア層36と、水バリア層37と、接着層38とにより構成されている。図8に示すガスバリア容器33は、両面に、高バリア層35と、空気バリア層36と、水バリア層37と、接着層38とが設けられて構成されている。図9に示すガスバリア容器33は、外箱30側に、高バリア層35と、空気バリア層36と、水バリア層37と、接着層38とが設けられて構成されている。図10に示すガスバリア容器33は、冷蔵庫1の外箱30側に、廃材混合層45と、空気バリア層36と、水バリア層37と、接着層38とが設けられて構成されている。また、図11に示す廃材混合層45は、空気バリア層36、水バリア層37および接着層38の廃材により構成されている。
 以上、様々な形態のガスバリア容器の壁の構成を例示したが、上記の構成に限られず、要求されるガスバリア性能に応じて最適な構成を選択すれば良い。
 次に、図3を用いてガスバリア容器33の材料であるガスバリア樹脂の使用環境温度とガス透過度との関係を説明する。
 ガスバリア樹脂材料のガス透過度は、周囲環境が高温側になるほど、材料の分子間に微細な隙間を生じ悪化し、低温度側では逆に、分子間の隙間が減少するため、良化する傾向がある。つまり、周囲環境が高温になるほどガスバリア性能が劣化する特徴がある。
 したがって、真空断熱筐体100の使用箇所および使用環境の温度帯によって、最適なガスバリア性能を満たすガスバリア容器33の厚みおよび材質を選択することにより、断熱性能の最適化および低コスト化を図ることができる。
 具体的には、冷蔵庫1において真空断熱体32が使用されている箇所により、ガスバリア容器33の周囲温度が異なる。例えば、冷蔵庫1の外気温度を20℃とすると、冷蔵庫本体2は、周囲温度が高温となる高温側では、圧縮器8の影響で約40℃と最高温度となり、周囲温度が低温となる低温側では、蒸発器9の影響で内部温度約-30℃と最低温度となる。この場合は、周囲温度とガス透過度との関係は、図3に示す周囲温度とガス透過度との関係図におけるEで示される範囲となり、E範囲を満たす材料を選択すればよい。
 同様に、冷蔵室蓋体3では、冷蔵室空間部11の室温により、高温側の外気温度が約20℃で、低温側が約2℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてBで示される範囲となり、B範囲を満たす材料を選択すればよい。
 製氷室蓋体444では、製氷室空間部12の室温により、高温側の外気温度が約20℃で、低温側が約-18℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてAで示される範囲となり、A範囲を満たす材料を選択すればよい。
 野菜室蓋体5では、野菜室空間部13の室温により高温側の外気温度が約20℃で、低温側が約5℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてBで示される範囲となり、B範囲を満たす材料を選択すればよい。
 冷凍室蓋体6では、冷凍室空間部14により高温側の外気温度が約20℃となり、低温側が-18℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてAで示される範囲となり、A範囲を満たす材料を選択すればよい。
 冷蔵室製氷室間仕切体15では、冷蔵室空間部11の室温により、高温側の周囲温度が約5℃で、製氷室空間部12の室温により、低温側が約-18℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてCで示される範囲となり、C範囲を満たす材料を選択すればよい。
 また、製氷室野菜室間仕切体16では、野菜室空間部13により高温側の周囲温度が約5℃で、製氷室空間部12により低温側が約-18℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてCで示される範囲となり、C範囲を満たす材料を選択すればよい。
 野菜室冷凍室間仕切体17では、野菜室空間部13により高温側の周囲温度が約5℃で、冷凍室空間部14により低温側が約-18℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてCで示される範囲となり、C範囲を満たす材料を選択すればよい。
 冷却室壁体19では、野菜室空間部13により高温側の周囲温度が約5℃で、蒸発器9による熱の影響で冷却室空間部18の室温により、低温側が約-20℃となる。この場合は、周囲温度とガス透過度との関係は、図3においてDで示される範囲となり、D範囲を満たす材料を選択すればよい。
 以上例示したように、真空断熱筐体100の使用箇所に応じて、冷蔵庫1を構成している部材の周囲温度などを考慮し、容易な構成でガス透過度の最適化が図れ、容易に断熱構成を実現することができる。
 次に、上記のように構成された本実施の形態の真空断熱筐体100について、以下その動作および作用を説明する。
 真空断熱筐体100は、外箱30がガスバリア部材で形成され、真空断熱体32と外箱30とは、互いに密着して配設されている。このような構成により、外箱30側のガスバリア容器33のガスバリア性を向上させることができる。
 外箱30は、真空断熱体32の高温側、すなわち、真空断熱筐体100が使用される冷蔵庫等における高温側に配置される。ガスバリア容器33の周囲環境が高温であると、ガスバリア樹脂のガスバリア性が劣化するが、ガスバリア材料からなる外箱30によりガスバリア性を維持することができる。このため、断熱性能が低下することなく真空断熱性能が長期保証されることができる。さらに、自由に形状が形成されることができる樹脂製のガスバリア容器33が用いられることにより、真空断熱体32が外箱30の内壁形状と合致する形状に成形され、真空断熱体32と外箱30間との隙間を無くし、空気の対流空間を無くすことができる。これにより、断熱性能を向上させることができる。また、真空断熱体32と外箱30とを密着させることにより、真空断熱筐体100の剛性強度を向上させることができる。
 また、外箱30の材質は、例えばアルミ、ステンレスおよび鉄などのガスバリア性の高い金属板並びにガラス板で形成されることで、ガス透過を削減することができる。また、外箱30は、ガスバリア容器33と密着して構成されているため、周囲環境が高温下でも、ガスバリア容器33の内部のガスバリア性の劣化を防止することができ、断熱性能の低下を防止できるため、真空断熱性能が長期保証されることができる。
 また、真空断熱体32と外箱30との密着面に、ガスバリア性の接着部材31が配置されていてもよい。このような構成により、外箱30とガスバリア容器33との間の隙間をより確実に無くすことができ、ガスバリア容器内へのガスの進入を防止できる。さらに、真空断熱体32が外箱30内壁の形状に成形され、真空断熱体32と外箱30間との隙間を無くすことができる。このような構成により、外箱30とガスバリア容器33との間の空気の対流も無くすことができ、断熱性能を向上させることができる。また、ガスバリア性の接着部材31の接着強度により、冷蔵庫本体2の真空断熱体32の剛性強度も向上させることができる。
 また、接着部材31には、例えば変性ポリエチレンおよび変性ポリプロピレン等の変性ポリオレフィンなどが用いられる。これらの材料は、エチレン-ビニルアルコール共重合体などのガスバリア性樹脂、金属、ガラスおよびセラミックスなどの基材に強力に接着する特長を持っているため、共押出成形によるシート、フィルム、チューブおよびボトルなどの多層成形体を作ることができる。これにより、求められる断熱性能を実現する真空断熱体32が、安易に形成されることができる。
 また、冷蔵庫1を構成している部材の周囲温度から、容易な構成でガス透過度の最適化を図るために、ガスバリア容器33の壁構造を変化させても良い。
 例えば、ガスバリア容器33に、冷蔵庫1を構成している部材の周囲温度と樹脂材料のガス透過度との関係図(図3参照)におけるC範囲およびD範囲などの低温域で使用される部材が用いられる場合は、ガス透過度も低く設定される。このため、ガスバリア容器33の壁は、図5に示すような単層板材34などで構成されることができる。ガスバリア容器33に、図3におけるB範囲などの0℃以上の高温域のみで使用される部材が用いられる場合は、図6に示すように、高温側のガスバリア性のみ向上させるために、単層板材34の外側両面が金属箔などの高バリア層35によって表面処理されて構成されていることが望ましい。ガスバリア容器33に、図3におけるA範囲など低温域(0℃未満)から高温域(0℃以上)まで使用される部材が用いられる場合は、図7に示すように、ガスバリア性の透過ガス物質に応じた構成が必要となる。この場合は、ガスバリア容器33の壁は、ガスバリア容器33の壁の中心より両側の面に向かって、空気バリア層36、接着層38および水バリア層37などが積層された多層構造で構成される。ガスバリア容器33に、図3におけるE範囲などの高温域のさらに高い領域で使用される部材が用いられる場合は、図8に示すように、ガスバリア容器33の壁は、ガスバリア容器33の壁の中心から両側の面に向かって、空気バリア層36、接着層38および水バリア層37などが積層され、さらに、最外両表面には、金属などの高バリア層35などが積層された、多層で構成されることができる。
 このように、ガスバリア容器33は、単層部材、多層部材または金属箔など高バリア層35の異材質で形成された積層部材で形成されたことにより、外観形状および内装形状によって自由に形状を変えられることができ、求められる断熱性能を容易に実現することができる。
 また、図5に示す単層板材34の材質は、エチレン-ビニルアルコール共重合体、液晶ポリマー、ポリエチレンおよびポリプロピレンなどの空気および水などの高バリア材質とすることにより、安易な材料構成で、ガスバリア容器33内のガス透過を防止でき、真空度を保つことができる。これにより、断熱性能の低下も防止することができる。
 また、図6および図8の高バリア層35の材質は、熱架橋の少ないアルミ箔、ステンレス箔および金属箔などと、ポリプロピレンなどの樹脂材でラミネートされた極薄フィルム板などとを熱溶着する方法、および、エチレン-ビニルアルコール共重合体などの有機樹脂層の表面が、無機物質が層状に噴霧されることにより表面処理されたものなどが好ましい。このような材質が用いられることにより、空気および水などに対するバリア性を向上させることができる。これにより、安価かつ容易な材料構成で、ガスバリア容器33内のガス透過を防止でき、真空度を保つことができ、断熱性能の低下も防止できる。
 また、図7に示す空気バリア層36の材質は、エチレン-ビニルアルコール共重合体などが好ましく、水バリア層37の材質は、ポリエチレンおよびポリプロピレンなどが好ましい。接着層38は、変性ポリエチレンおよび変性ポリプロピレン等の変性ポリオレフィンなどで形成されることができる。このような構成により、使用周囲温度によって、ガスバリア容器33内のガス透過度の最適化を実現できるガスバリア構成を容易に実現することができる。
 また、ガスバリア容器33は、ガスバリア容器33の壁構造を外箱30側と芯部材39側とで変化させてガスバリア性を変化させ、外箱30側のガスバリア性が高くなるように構成されていてもよい。
 例えば、冷蔵庫本体2のガスバリア容器33は、図9に示すように、外箱30側に高バリア層35と、空気バリア層36と、水バリア層37と、接着層38とが配設された構造を有する。また、ガスバリア容器33の材料構成は、高温側であるガス透過度の悪化する外箱30側のみ高バリア層35が配設された構成となっている。冷蔵庫本体2のガスバリア容器33は、図10に示すように、冷蔵庫1の外箱30側に廃材混合層45と、空気バリア層36と、水バリア層37と、接着層38とが配置された構造を有している。廃材混合層45は、図11に示すように、空気バリア層36と、水バリア層37と、接着層38の廃材とから形成されている。このような構成により、単層板材34よりもガスバリア性が向上し、高温側であるガス透過度の悪化する外箱30側のみ廃材混合層45が配置される構成となる。これにより、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補うことができ、真空断熱体の性能を維持できる。また、断熱性能が低下する恐れがなくなり、真空断熱性能が長期保証されることができる。
 また、図11に示す廃材混合層45には、エチレン-ビニルアルコール共重合体およびポリプロピレンなどの材質が用いられ、廃材混合層45は、これらの材質の多層混合で形成されている。このような構成により、冷蔵庫1の庫外側から庫内側へ熱の流れが迷路のようになり、熱伝達が悪くなるので、ポリエチレンおよびポリプロピレンなどの単層で構成している材質よりも、空気および水などのガスバリア性が優位になる。このため、使用する周囲温度によっては、廃材混合層45のみでガスバリア容器33が形成されることにより、所望のガス透過度を実現することができる。
 また、芯部材39は、多孔性構造体で形成され、気泡ウレタンフォームなどが用いられている。このような構成により、真空断熱体の内容積を真空引き工程にて確実に所定の真空度に到達させることができ、求められる真空断熱性能を実現することができる。
 (実施の形態2)
 図12は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の正面斜視図、図13は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の後面斜視図、および、図14は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の部品展開図である。また、図15は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の断面図、図16は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の部品展開断面図、および、図17~図19は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の封止工程を示す断面図である。また、図20は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の図19の20部局部断面図、図21は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の図19の21部局部断面図、および、図22は、本発明の実施の形態2における真空断熱筐体200を備えた冷蔵庫1の製氷室蓋体444の図19の23部局部断面図である。
 図12~図14において、冷蔵庫1の製氷室蓋体444は、ガラスおよび金属材料等のガスバリア材料からなり外観を形成する外箱部材4aと、接着部材4bと、樹脂製の内箱部材4cと、真空断熱体120と、ガスケット121と、フレーム122と、フレーム止めネジ123とを有する。
 図15および図16において、冷蔵庫1の製氷室蓋体444は、外箱部材4a、接着部材4b、真空断熱体120および内箱部材4cが重ねられて配置されて構成されている。真空断熱体120は、ガスバリア容器120aの内部に芯部材120bと吸着部材120cとが配置されて構成されている。ガスバリア容器120aは、中空成形(ブロー成形)によりガスバリア樹脂が加工されたものであり、自由な形状に形成されることができ、外箱部材4aおよび内箱部材4cの内壁の形状に成形される。芯部材120bは、多孔性構造体で形成され、気泡ウレタンフォームなどが用いられている。気泡ウレタンフォームは、連続気泡ウレタンフォームでも独立気泡ウレタンフォームでもよく、真空引きの効率を重視する場合は、連続気泡ウレタンフォームなどを使用する方がよい。
 図17~図22において、冷蔵庫1の製氷室蓋体444の真空断熱体120は、ガスバリア容器120aの内部に芯部材120bと吸着部材120cとが配置されている。ガスバリア容器120aには、ウレタン充填用兼真空引き用の真空穴120d、真空引き後に真空穴120dを封止する真空穴封止部材120e、ウレタン充填時の空気逃穴120f、および、空気逃穴封止部材120gとが配置されている。真空穴120dおよび真空穴封止部材120eは、低温側となる内箱部材側に配置されている。なお、空気逃穴120fには、中空成形時の空気注入口が利用される。
 以上のように構成された本実施の形態の真空断熱筐体200について、以下その動作および作用を説明する。
 冷蔵庫1の製氷室蓋体444には、外観を形成する外箱部材4aと、接着部材4bと、内箱部材4cと、真空断熱体120と、ガスケット121と、フレーム122と、フレーム止めネジ123とが配置されている。このような構成により、内箱部材4cにフレーム122がフレーム止めネジ123で固定されることで、引き出し扉が構成されることができる。フレーム止めネジ123は、内箱部材4cを貫通することないため、真空断熱体120を破損することはない。
 冷蔵庫1の製氷室蓋体444は、外箱部材4aがガスバリア部材で形成され、外箱部材4aとガスバリア容器120aとが密着して形成されている。このような構成により、外箱部材4a側のガスバリア容器120aのガスバリア性を向上させることができる。
 外箱部材4aは、冷蔵庫1の製氷室蓋体444における高温側(周囲環境が高温である側)に配置されるため、ガスバリア樹脂のガスバリア性が劣化するおそれがある。しかしながら、ガスバリア材料からなる外箱部材4aにより、ガスバリア性を維持することができるので、断熱性能が低下することなく真空断熱性能が長期保証されることができる。さらに、自由な形状に形成されることができる樹脂製のガスバリア容器120aが用いられることにより、真空断熱体120が外箱部材4aの内壁形状に成形されることができるため、真空断熱体120と外箱部材4aとの間の隙間を無くし、空気の対流空間を無くすことができる。このような構成により、断熱性能を向上させることができる。また、真空断熱体120と外箱部材4aとが密着して配設されることにより、真空断熱筐体の剛性強度を向上させることができる。
 また、外箱部材4aは、ガラス、および、アルミ、ステンレス並びに鉄などのガスバリア性の高い金属板で形成される。このような構成により、ガス透過を防ぐことができる。また、外箱部材4aとガスバリア容器120aとが密着した構成となっているため、周囲環境が高温下でも、ガスバリア容器120aの内部のガスバリア性の劣化を防止することができ、断熱性能が低下するおそれが無くなり、真空断熱性能が長期保証されることができる。
 また、真空断熱体120と外箱部材4aとの密着面にガスバリア性の接着部材4bが配置されていることにより、外箱部材4aとガスバリア容器120aとの間の隙間をより確実に無くすことができ、ガスバリア容器120a内へのガスの進入を防止できる。さらに、真空断熱体120が外箱部材4a内壁の形状に成形されることができるため、真空断熱体120と外箱部材4aとの間の隙間を無くすことができる。これにより、真空断熱体120と外箱部材4aとの間の空気の対流も無くすことができ、断熱性能を向上させることができる。また、ガスバリア性の接着部材4bの接着強度により、製氷室蓋体444の剛性強度も向上させることができる。
 また、図16において、真空断熱体120は、外箱部材側の厚みT1と内箱部材側の厚みT2とが同じになるように形成されていてもよい。また、厚みT1の外箱部材側の材質には、厚みT2の内箱部材側の材質よりガスバリア性の高い材質が用いられてもよい。冷蔵庫1における高温側に配設される厚みT1の外箱部材4a側のガスバリア性を高くすることで、ガスバリア性を向上させることができ、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体120の性能を維持できる。
 また、図16において、真空断熱体120は、外箱部材4a側の厚みT1が内箱部材側の厚みT2より厚く形成されていてもよい。冷蔵庫1の高温側に配設される外箱部材4a側の厚みT1を厚くすることにより、ガスバリア性を向上させることができ、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体120の性能を維持できる。なお、真空断熱体120の各部材の厚みおよび材質は、断熱性能およびコストを考慮して最適になるように適宜決めればよい。
 また、真空断熱体120は、ガスバリア容器120aの真空引き時の封止口の真空穴120dおよび真空穴封止部材120eが、低温側に配置される内箱部材4c側に配設されていることにより、封止部分のガスバリア樹脂のガスバリア性を向上させることができる。これにより、構造的にガスバリア性が悪い封止口のガスバリア性を向上させることができ、所望の真空度を維持することができ、断熱性能が低下するおそれがなくなり、真空断熱性能が長期保証されることができる。
 また、真空断熱体120は、形状の難易度、および、使用箇所並びに使用環境によって、ガスバリア容器120aの厚みおよび材質などの断熱構成を選択して構成することにより、外観形状および内装形状に応じて自由にガスバリア容器120aの形状を変えて形成されることができる。これにより、求められる断熱性能を安易に実現することができる。
 また、芯部材120bは、多孔性構造体で形成され、気泡ウレタンフォームなどが用いられることにより、真空断熱体120の内容積を真空引き工程にて確実に所定の設定真空度に到達させることができる。これにより、求められる真空断熱性能を実現することができる。
 また、芯部材120bの材質は、グラスウールなどと混合させることにより、真空断熱体120の内容積の空隙率を向上させ、真空引き工程にて、所定の設定真空度に到達する時間を短縮することができる。
 また、ガスバリア容器120aの中空成形加工時の空気挿入口は、ウレタン発泡充填時の空気抜き口の空気逃穴120fとしても機能するよう構成されている。このような構成により、真空断熱体120の内容積をウレタン発泡工程にて確実に設定された充填量に到達させることができる。これにより、求められる真空断熱性能を実現することができる。
 また、ガスバリア容器120a内に吸着部材120cが内設されることにより、ガスバリア容器120aの内部の空気および水などの発生ガスを吸着部材120cに吸着させることができる。これにより、設定された真空度は長期に保たれるため、長期信頼性が保証された断熱性能を実現することができる。
 また、真空穴封止部材120eおよび空気逃穴封止部材120gの材質には、ガスバリア容器120aの外層材料と同材質がラミネートされたアルミ箔樹脂ラミネートフィルムが用いられ、真空穴120dと、空気逃穴120fとが加熱溶着されて密閉されている。このような構成により、ガスバリア容器120a内の設定された真空度が保たれるので、長期信頼性を保証した断熱性能を実現することができる。
 また、空気逃穴封止部材120gは、ガスバリア容器120aの中空成形加工時に発生する金型パーティングラインの位置も含まれて密閉されている。このような構成により、ガスバリア容器120a内への空気および水などのガス透過を防止することができる。また、ガスバリア容器120a内に吸着部材120cが配置されることで、内外部から発生した空気および水などをガス吸着することができる。このような構成により、設定された真空度を保つことができ、長期信頼性が保証された断熱性能を実現することができる。
 (実施の形態3)
 図23は、本発明の実施の形態3における真空断熱筐体300を備えた冷蔵庫本体2の真空断熱筐体の正面斜視図、図24は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図、および、図25は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24の25部局部断面図である。また、図26は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24の26部局部断面図、図27は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24の27部局部断面図、および、図28は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24の28部局部断面図である。図29は、本発明の実施の形態3における別形態の真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図である。
 以下、本実施の形態の真空断熱筐体300について、実施の形態1と説明が重複する部分は省略して説明する。
 図23、図24および図28に示すように、冷蔵庫本体2の真空断熱体32は、内箱側に真空引き用の真空穴40が設けられ、真空穴封止部材41で開口部が覆われて封止されている。図24、図26および図27に示すように、真空穴40から最も離間した真空断熱体32の開口部先端に、空気逃穴42が設けられ、空気逃穴42は、空気逃穴封止部材47で覆われ封止されている。なお、製造工程上は、真空穴40から気泡ウレタンフォームが充填され、ガスバリア容器33内の空気は、気泡ウレタンフォームと入れ替えられるように空気逃穴42から排出され、真空穴40および空気逃穴42が封止される。
 以上のように構成された真空断熱筐体300について、以下その動作および作用を説明する。
 真空穴40は、真空穴封止部材41により、空気逃穴42は、空気逃穴封止部材47により、確実に熱加熱手段により、溶着封止される。これにより、空気および水などのガス透過を防止することができる。また、ガスバリア容器33の真空引き時の封止口の真空穴40および真空穴封止部材41は、低温側に配設される内箱側に配置されることにより、構造上、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上できる。また、ガスバリア容器33内部に吸着部材46が配置されていることにより、芯部材39の内外部から発生した空気および水などがガス吸着される。これにより、設定され真空度を保つことができ、断熱性能が低下する恐れがなく、真空断熱性能が長期保証されることができる。
 また、図25に示すように、真空断熱体32の一部が、中空成形時に熱溶着し合わせ目部が形成され、穴加工されることによって貫通穴48が形成される。このような構成により、貫通穴48は、冷蔵庫1の内部に配置された蒸発器9で発生した水を、冷蔵庫1の外部に配置された蒸発皿10へ排出するための貫通穴として使用されることができる。
 また、図29に示すように、ガスバリア容器33の、冷蔵庫本体2の冷凍室空間部14(図2参照)に該当するF部の厚みを厚くすることにより、特に断熱性能が要求される部分はガスバリア容器の該当部分を厚くすることにより、部分的に断熱性能を向上させることができる。
 つまり、真空断熱体32は、真空断熱体32の形状の形成難易度、および、使用箇所並びに使用環境によって、ガスバリア容器の厚みおよび材質などの断熱構成条件が選択されて構成されることにより、求められる断熱性能を安易に実現することができる。
 (実施の形態4)
 図30は、本発明の実施の形態4における真空断熱筐体400を備えた冷蔵庫の製氷室野菜室間仕切体の正面斜視図、図31は、本発明の実施の形態4における製氷室野菜室間仕切体の封止例を示す断面図、および、図32は、本発明の実施の形態4における製氷室野菜室間仕切体の別断面の封止例を示す断面図である。
 以下、本実施の形態の真空断熱筐体400について、実施の形態1と説明が重複する部分は省略して説明する。なお、図示はしないが、製氷室野菜室間仕切体16の低温側である製氷室側は、内箱に該当する樹脂製の化粧部材が、高温側である野菜室側は、外箱に該当する結露防止用のヒータが固定される高ガスバリア性のアルミ箔樹脂ラミネートフィルム或いはガスバリア性樹脂の化粧部材が、深部材16bに密着して配設されている。
 冷蔵庫本体2の製氷室野菜室間仕切体16は、真空断熱体で構成され、図30~図32に示すように、製氷室野菜室間仕切体16は、ガスバリア容器16aと、芯部材16bと、吸着部材16cと、上下方向にダクトを有するダクト逃部16dと、真空穴16eと、真空穴封止部材16fと、空気逃穴16gと、空気逃穴封止部材16hとを有する。
 以上のように構成された真空断熱筐体400について、以下その動作および作用を説明する。
 真空穴16eは、真空穴封止部材16fに、空気逃穴16gは空気逃穴封止部材16hにより、熱加熱手段によって溶着封止される。このような構成により、空気および水などのガス透過度を防止することができる。また、ガスバリア容器16aの真空引き時の封止口の真空穴16eおよび真空穴封止部材16fは、低温側である製氷室側の内箱側に配設されている。このような構成により、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上させることができる。また、ガスバリア容器16a内部に吸着部材16cが配置されているため、芯部材16bの内外部から発生した空気および水などのガスを吸着させることができる。これにより、設定真空度は保たれ、断熱性能が低下する恐れがなく、真空断熱性能が長期保証されることができる。
 (実施の形態5)
 図33は、本発明の実施の形態5における真空断熱筐体500を備えた冷蔵庫の冷却室壁体の正面斜視図、および、図34は、本発明の実施の形態5における冷却室壁体の封止例を示す断面図である。
 以下、本実施の形態5の真空断熱筐体500について、実施の形態1と説明が重複する部分は省略して説明する。なお、図示はしないが、冷却室壁体19の低温側に配置される冷却室側は、内箱に該当する樹脂製の化粧部材が、高温側に配置される野菜室側は、外箱に該当する結露防止用のヒータが固定される高ガスバリア性のアルミ箔樹脂ラミネートフィルム或いはガスバリア性樹脂の風路部材が、芯部材19bと密着して配設されている。
 冷蔵庫本体2の冷却室壁体19は、真空断熱体からなり、図33および図34に示すように、冷却室壁体19は、ガスバリア容器19aと、芯部材19bと吸着部材19cと、真空穴19dと、真空穴封止部材19eと、空気逃穴19gと、空気逃穴封止部材19hとを有する。
 真空穴19dは真空穴封止部材19eにより、また、空気逃穴19gは空気逃穴封止部材19hにより、確実に熱加熱手段により、溶着封止される。これにより、空気および水などのガス透過度を防止することができる。また、ガスバリア容器19aの真空引き時の封止口の真空穴19dおよび真空穴封止部材19eは、低温側に配置される冷却室側に配設されていることにより、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上させることができる。また、ガスバリア容器19a内部に吸着部材19cが配置されているので、芯部材19bの内外部から発生した空気および水などをガス吸着させることができ、設定された真空度を保つことができる。これにより、断熱性能が低下する恐れがなく、真空断熱性能が長期保証されることができる。
 以上述べたように、本発明の実施の形態の一例による真空断熱筐体は、中空形成された樹脂製のガスバリア容器に芯部材が内包されて真空密閉された真空断熱体と、真空断熱体の高温側、すなわち、真空断熱筐体が使用される冷蔵庫等における高温側に配置される、ガスバリア材料からなる外箱と、低温側に配置される内箱とを有する。真空断熱体は、外箱と密着して配設された構造を有する。
 このような構成により、真空断熱体と外箱との間に空間が存在しないため、外箱のガスバリア性により、真空断熱体の内部に空気および水蒸気などのガス物質が透過し浸入することがない。また、このような構成により、外箱側のガスバリア容器のガスバリア性を向上させることができ、高温でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補えることができる。これにより、真空度が長期間保たれることができ、断熱性能の長期信頼性および品質の向上を実現できる。
 また、自由に形状を形成することができる樹脂製のガスバリア容器が用いられることにより、真空断熱体が外箱の内壁の形状に成形され、真空断熱体と外箱間との隙間を無くし、空気の対流空間を無くすことにより、断熱性能を向上させることができる。また、真空断熱体と外箱とを密着させることにより、真空断熱筐体の剛性強度を向上させることができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、真空断熱体と前記外箱との密着面にガスバリア性の接着部材が用いられていてもよい。このような構成により、外箱とガスバリア容器との間の隙間を無くすことができ、ガスバリア容器内へのガスの進入を防止できる。
 また、真空断熱体が外箱内壁の形状に成形されることにより、真空断熱体と外箱との間の隙間空間を無くすことができる。このため、真空断熱体と外箱との間の空気の対流も無くなり、断熱性能を向上させることができるとともに、ガスバリア性の接着部材の接着強度により、真空断熱体の剛性強度も向上させることができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、真空断熱体が、外箱側の材質が内箱側の材質よりガスバリア性の高い材質で構成されていてもよい。このような構成により、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補うことができ、真空断熱体の性能を維持することができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、真空断熱体の外箱側の厚みが内箱側の厚みより厚く形成されていてもよい。このような構成により、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体の断熱性能を維持できる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、ガスバリア容器の真空引き時の封止口が、低温側に配置される内箱側に配設されている。このような構成により、ガスバリア性が悪い封止口のガスバリア性を向上させることができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、真空断熱体の形状の形成難易度、および、使用箇所並びに使用環境によって、ガスバリア容器の厚みおよび材質などの断熱構成が選択されて構成されていてもよい。このような構成により、求められる真空断熱筐体の断熱性能を容易に実現することができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、ガスバリア容器が、単層部材、多層部材または異材質で形成された積層部材で形成されていてもよい。このような構成により、真空断熱筐体のガスバリア容器は、外観形状および内装形状により自由に形状を変えて形成されることができるため、求められる断熱性能を容易に実現することができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、芯部材が、多孔性構造体で形成され、気泡ウレタンフォームが用いられていてもよい。このような構成により、真空断熱体の内容積を、真空引き工程にて確実に所定の設定真空度に到達させることができるため、求められる断熱性能を実現することができる。
 また、本発明の実施の形態の一例による真空断熱筐体は、選択的に、ガスバリア容器の中空成形時の空気挿入口が、ウレタン発泡充填時の空気抜き口としても機能するよう構成されていてもよい。このような構成により、空気抜き口が新たに設けられる必要がなく、ガスバリア容器内へのガス進入の箇所を少なくでき、真空断熱体の内容積を、ウレタン発泡工程にて確実に所定の充填量に到達させることができる。これにより、求められる断熱性能を実現することができる。
 以上述べたように、本発明は、容易な構成で長期間真空度が保証され、断熱性能が保証される真空断熱筐体を提供できる。よって、冷蔵庫、自動車、ヒートポンプ式給湯機、電気式湯沸かし器、炊飯器、浴槽、住宅の外壁および屋根などの断熱構造体等に広く利用されることができる。
 1  冷蔵庫
 2  冷蔵庫本体
 3  冷蔵室蓋体
 444  製氷室蓋体
 4a  外箱部材
 4b  接着部材
 4c  内箱部材
 5  野菜室蓋体
 6  冷凍室蓋体
 7  ダクト
 8  圧縮器
 9  蒸発器
 10  蒸発皿
 11  冷蔵室空間部
 12  製氷室空間部
 13  野菜室空間部
 14  冷凍室空間部
 15  冷蔵室製氷室間仕切体
 16  製氷室野菜室間仕切体
 16a  ガスバリア容器
 16b  芯部材
 16c  吸着部材
 16d  ダクト逃部
 16e  真空穴
 16f  真空穴封止部材
 16g  空気逃穴
 16h  空気逃穴封止部材
 17  野菜室冷凍室間仕切体
 18  冷却室空間部
 19  冷却室壁体
 19a  ガスバリア容器
 19b  芯部材
 19c  吸着部材
 19d  真空穴
 19e  真空穴封止部材
 19g  空気逃穴
 19h  空気逃穴封止部材
 120  真空断熱体
 120a  ガスバリア容器
 120b  芯部材
 120c  吸着部材
 120d  真空穴
 120e  真空穴封止部材
 120f  空気逃穴
 120g  空気逃穴封止部材
 30  外箱
 31  接着部材
 32  真空断熱体
 33  ガスバリア容器
 34  単層板材
 35  高バリア層
 36  空気バリア層
 37  水バリア層
 38  接着層
 39  芯部材
 40  真空穴
 41  真空穴封止部材
 42  空気逃穴
 43  発泡断熱材
 44  内箱
 46  吸着部材
 47  空気逃穴封止部材

Claims (9)

  1. 中空形成された樹脂製のガスバリア容器に芯部材が内包されて真空密閉された真空断熱体と、前記真空断熱体の高温側に配置されるガスバリア材料からなる外箱と、前記真空断熱体の低温側に配置される内箱とを備え、前記真空断熱体は、前記外箱と密着させて配設された真空断熱筐体。
  2. 前記真空断熱体と前記外箱との密着面にガスバリア性の接着部材が配置された請求項1に記載の真空断熱筐体。
  3. 前記真空断熱体は、前記外箱側の材質が前記内箱側の材質よりガスバリア性の高い材質で構成された請求項1または請求項2に記載の真空断熱筐体。
  4. 前記真空断熱体は、前記外箱側の厚みが前記内箱側の厚みより厚く形成された請求項1~3のいずれか1項に記載の真空断熱筐体。
  5. 前記ガスバリア容器の真空引き時の封止口は、低温側に配置される前記内箱側に配置された請求項1~4のいずれか1項に記載の真空断熱筐体。
  6. 前記真空断熱体は、前記真空断熱体の形状の形成難易度、および、使用箇所並びに使用環境によって、前記ガスバリア容器の厚みおよび材質などの断熱構成条件が選択されて構成された請求項1~5のいずれか1項に記載の真空断熱筐体。
  7. 前記ガスバリア容器は、単層部材、多層部材または異材質で形成された積層部材で形成された請求項1~6のいずれか1項に記載の真空断熱筐体。
  8. 前記芯部材は、多孔性構造体で形成され、気泡ウレタンフォームが用いられた請求項1~7のいずれか1項に記載の真空断熱筐体。
  9. 前記ガスバリア容器の中空成形時の空気挿入口は、ウレタン発泡充填時の空気抜き口としても機能するよう構成されている請求項8に記載の真空断熱筐体。
PCT/JP2016/001332 2015-03-27 2016-03-10 真空断熱筐体 WO2016157747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680017559.2A CN107429964A (zh) 2015-03-27 2016-03-10 真空隔热壳体
DE112016001425.2T DE112016001425T5 (de) 2015-03-27 2016-03-10 Vakuumisolationsgehäuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065880 2015-03-27
JP2015065880A JP2016186316A (ja) 2015-03-27 2015-03-27 真空断熱筐体

Publications (1)

Publication Number Publication Date
WO2016157747A1 true WO2016157747A1 (ja) 2016-10-06

Family

ID=57006901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001332 WO2016157747A1 (ja) 2015-03-27 2016-03-10 真空断熱筐体

Country Status (4)

Country Link
JP (1) JP2016186316A (ja)
CN (1) CN107429964A (ja)
DE (1) DE112016001425T5 (ja)
WO (1) WO2016157747A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074178A1 (ja) * 2016-10-20 2018-04-26 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器並びに断熱壁
WO2019013134A1 (ja) * 2017-07-10 2019-01-17 パナソニックIpマネジメント株式会社 真空断熱筐体及び冷蔵庫
WO2020179233A1 (ja) * 2019-03-06 2020-09-10 東芝ライフスタイル株式会社 冷蔵庫

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182040B2 (ja) * 2017-03-30 2022-12-02 パナソニックIpマネジメント株式会社 真空断熱筐体および冷蔵庫
JP6920633B2 (ja) * 2017-07-10 2021-08-18 パナソニックIpマネジメント株式会社 真空断熱筐体及び冷蔵庫

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120896U (ja) * 1983-02-04 1984-08-15 株式会社日立製作所 真空断熱材配設構造
JPH04309779A (ja) * 1991-04-09 1992-11-02 Sharp Corp 真空断熱材の製造方法
JPH05256563A (ja) * 1992-03-11 1993-10-05 Matsushita Refrig Co Ltd 断熱箱体
JPH06194030A (ja) * 1992-12-25 1994-07-15 Matsushita Refrig Co Ltd 断熱箱体
JPH06297466A (ja) * 1993-04-12 1994-10-25 Mitsui Eng & Shipbuild Co Ltd 表面コーティング層付砂型の製造方法
JPH08271137A (ja) * 1995-03-31 1996-10-18 Toshiba Corp 真空断熱材と、断熱箱体及びその製造方法
JP2004028349A (ja) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd 冷蔵庫
JP2005106094A (ja) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc 真空断熱材及びその製造方法並びに真空断熱材を用いた機器
JP2013139981A (ja) * 2011-12-06 2013-07-18 Toshiba Corp 冷蔵庫

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159377A (ja) * 1994-12-02 1996-06-21 Matsushita Refrig Co Ltd 真空断熱体
IT236949Y1 (it) * 1995-06-08 2000-08-31 Devi Spa Vano contenitore perfezionato in particolare per frigoriferi esimili elettrodomestici
CN2330951Y (zh) * 1998-06-03 1999-07-28 长岭(集团)股份有限公司 电冰箱的箱体或门体
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3833971B2 (ja) * 2002-06-20 2006-10-18 松下冷機株式会社 断熱箱体の製造方法および冷蔵庫

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120896U (ja) * 1983-02-04 1984-08-15 株式会社日立製作所 真空断熱材配設構造
JPH04309779A (ja) * 1991-04-09 1992-11-02 Sharp Corp 真空断熱材の製造方法
JPH05256563A (ja) * 1992-03-11 1993-10-05 Matsushita Refrig Co Ltd 断熱箱体
JPH06194030A (ja) * 1992-12-25 1994-07-15 Matsushita Refrig Co Ltd 断熱箱体
JPH06297466A (ja) * 1993-04-12 1994-10-25 Mitsui Eng & Shipbuild Co Ltd 表面コーティング層付砂型の製造方法
JPH08271137A (ja) * 1995-03-31 1996-10-18 Toshiba Corp 真空断熱材と、断熱箱体及びその製造方法
JP2004028349A (ja) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd 冷蔵庫
JP2005106094A (ja) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc 真空断熱材及びその製造方法並びに真空断熱材を用いた機器
JP2013139981A (ja) * 2011-12-06 2013-07-18 Toshiba Corp 冷蔵庫

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074178A1 (ja) * 2016-10-20 2018-04-26 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器並びに断熱壁
CN109863343A (zh) * 2016-10-20 2019-06-07 松下知识产权经营株式会社 真空隔热体和使用其的隔热容器以及隔热壁
JPWO2018074178A1 (ja) * 2016-10-20 2019-08-22 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器並びに断熱壁
JP7012224B2 (ja) 2016-10-20 2022-01-28 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器並びに断熱壁
JP2022033980A (ja) * 2016-10-20 2022-03-02 パナソニックIpマネジメント株式会社 冷蔵庫扉及び冷蔵庫
JP7285416B2 (ja) 2016-10-20 2023-06-02 パナソニックIpマネジメント株式会社 冷蔵庫扉及び冷蔵庫
WO2019013134A1 (ja) * 2017-07-10 2019-01-17 パナソニックIpマネジメント株式会社 真空断熱筐体及び冷蔵庫
WO2020179233A1 (ja) * 2019-03-06 2020-09-10 東芝ライフスタイル株式会社 冷蔵庫
JP2020143834A (ja) * 2019-03-06 2020-09-10 東芝ライフスタイル株式会社 冷蔵庫
JP7244303B2 (ja) 2019-03-06 2023-03-22 東芝ライフスタイル株式会社 冷蔵庫

Also Published As

Publication number Publication date
JP2016186316A (ja) 2016-10-27
DE112016001425T5 (de) 2017-12-21
CN107429964A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016157747A1 (ja) 真空断熱筐体
RU2664823C1 (ru) Вакуумный сосуд
US8881398B2 (en) Method and apparatus for insulating a refrigeration appliance
RU2443951C2 (ru) Холодильный аппарат
EP0691518B1 (en) Cold-hot storage box
US8778477B2 (en) Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
JP5903567B2 (ja) 冷蔵庫
US20120285971A1 (en) Integrated vacuum insulation panel
JPH11287549A (ja) 冷蔵庫及びフリ―ザ―キャビネット
JPH11159693A (ja) 真空断熱パネル及びその製造方法並びにそれを用いた断熱箱体
JP2011122739A (ja) 冷蔵庫
RU2673164C1 (ru) Тело вакуумной изоляции
EP2789952B1 (en) Refrigerator
EP2789948B1 (en) Refrigerator
RU2699708C2 (ru) Способ изготовления холодильного и/или морозильного аппарата
JP6653743B2 (ja) 真空容器
JPH11159950A (ja) 冷蔵庫の断熱箱体
CN105627036A (zh) 真空隔热板以及使用了真空隔热板的冰箱
JP6622406B2 (ja) 断熱箱体及びフリーザ
JP2000266459A (ja) 断熱箱体
US20100275640A1 (en) Refrigerator
JP2019023536A (ja) 冷蔵庫
JP6970933B2 (ja) 真空断熱筐体
JP7474918B2 (ja) 冷蔵庫
JP2020020431A (ja) 真空断熱体及びそれを用いた断熱容器、断熱壁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016001425

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771641

Country of ref document: EP

Kind code of ref document: A1