WO2016147580A1 - プロジェクター - Google Patents

プロジェクター Download PDF

Info

Publication number
WO2016147580A1
WO2016147580A1 PCT/JP2016/001089 JP2016001089W WO2016147580A1 WO 2016147580 A1 WO2016147580 A1 WO 2016147580A1 JP 2016001089 W JP2016001089 W JP 2016001089W WO 2016147580 A1 WO2016147580 A1 WO 2016147580A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
color
incident
separation layer
Prior art date
Application number
PCT/JP2016/001089
Other languages
English (en)
French (fr)
Inventor
洋一 宍戸
成松 修司
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Publication of WO2016147580A1 publication Critical patent/WO2016147580A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • the present invention relates to a projector.
  • a light source a color separation device that separates a plurality of color lights from the light emitted from the light source, a plurality of light modulation devices that respectively modulate the plurality of separated color lights, and a color that combines the plurality of modulated color lights
  • a projector including a combining device and a projection optical device that projects the combined light.
  • a projector projection device in which the color separation device and the color synthesis device are configured by one prism assembly (for example, see Patent Document 1).
  • the projection lens is generally composed of a plurality of lenses, and the reflection type liquid crystal light valve is arranged at the back focus position of the most light-incident side lens among the plurality of lenses.
  • a PBS is disposed in addition to the prism assembly between the projection lens and the reflective liquid crystal light valve. For this reason, the distance (back focus) between the lens closest to the light incident side and the reflective liquid crystal light valve is increased.
  • the dimension in alignment with the central axis of a projection lens will become large, and there exists a problem that a projection lens and by extension a projector will become large.
  • the present invention aims to solve at least a part of the above problems, and an object of the present invention is to provide a projector that can be miniaturized.
  • a projector is provided in accordance with each of a lighting device that emits first polarized light and a plurality of colored lights included in the emitted light emitted by the lighting device, and the plurality of colored lights are provided.
  • a plurality of light modulation devices that respectively modulate the light modulation device, the illumination device, and the plurality of light modulation devices are arranged to separate the plurality of color lights from the emitted light incident inside through an incident / exit surface.
  • a color separation / synthesis device that emits combined light, which is incident on each of the plurality of light modulation devices, and combines the plurality of color lights that are modulated and incident by the plurality of light modulation devices, through the input / output surface;
  • a polarization separation device that is disposed between an illumination device and the color separation / synthesis device, transmits one of the first polarization and the second polarization orthogonal to the first polarization, and reflects the other;
  • a projection optical device that projects the combined light, and the projection optical device includes a plurality of lenses, and at least one of the plurality of lenses includes the illumination device and the color separation / synthesis device. It is arrange
  • An example of the color separation / synthesis device is a dichroic prism.
  • Examples of the polarization separation device include a plate type PBS and a prism type PBS.
  • examples of the projection optical device include a lens that passes through the combined light synthesized by the color separation / synthesis device, in addition to a plurality of lenses constituting the projection optical device.
  • at least one lens among the plurality of lenses constituting the projection optical device in the lens design is disposed between the illumination device and the color separation / synthesis device.
  • the at least one lens becomes the most light incident side lens in the projection optical device, and the light modulation device can be arranged at the back focus position of the at least one lens. For this reason, since the distance between the at least one lens and the light modulation device can be shortened as compared with the configuration described in Patent Document 1, the dimension along the central axis of the projection optical device can be reduced. Therefore, the projector can be reduced in size.
  • the lens disposed between the illumination device and the color separation / synthesis device includes a lens that collimates light incident from the illumination device.
  • the light that has passed through the polarization separation device passes through the lens that collimates the light incident from the illumination device included in the lens disposed between the illumination device and the color separation / synthesis device.
  • the light incident on the color separation / synthesis device can be collimated. Accordingly, it is possible to suppress the spread of the light incident on the incident / exit surface, and the light can be reliably incident on the light modulation device, so that the light utilization efficiency can be increased.
  • the light emitted from the incident / exit surface can be collected and incident on another lens constituting the projection optical apparatus.
  • the illumination device includes a light source device and a polarization conversion element that aligns the emitted light emitted from the light source device with the first polarized light.
  • the first polarized light can be reliably incident on the polarization beam splitting device, so that the light use efficiency can be increased.
  • the color separation / synthesis apparatus is preferably a dichroic prism including a plurality of prisms and a color separation layer.
  • the plurality of color lights incident on the dichroic prism are reliably separated by the plurality of prisms and the color separation layer, and the separated color lights are incident on the light modulation devices corresponding to the respective color lights. be able to. Further, since each color light can be separated and combined by one dichroic prism, the projector can be miniaturized.
  • the three light modulation devices provided in accordance with each of the three color lights included in the emitted light are provided, and the dichroic prism is connected to a corresponding light modulation device among the three light modulation devices.
  • the first prism that has the incident / exit surface, and the second prism that faces the first prism Positioned between the first prism, the second prism, and the third prism that face each other, the first prism that has the incident / exit surface, and the second prism that faces the first prism, Among the three color lights included in the outgoing light incident on the first color light, the first color separation layer that separates the first color light, the second color light, and the third color light, the second prism, and the second color light The second color light is reflected between the second color light and the third color light which are located between the third prisms facing the prism and are incident on the second prism via the first color separation layer.
  • the first A second color separation layer that transmits colored light a gap is provided between the first color separation layer and the second prism, and the first prism and the first color separation layer There is no gap between the second color separation layer and the second color separation layer, and between the second color separation layer and the third prism.
  • the incident angles of the two color lights are different from the incident angles of the second color light and the third color light with respect to the second color separation layer, and the incident angles of the three color lights to the first color separation layer are It is preferable that the incident angle of the second color light and the third color light to the second color separation layer is larger.
  • the light reflected by the first color separation layer is totally reflected by the top entry exit surface of the first prism and guided to the corresponding light modulation device.
  • the light reflected by the second color separation layer is totally reflected inside the second prism at the surface of the second prism where a gap is formed between the first color separation layer and the second color separation layer.
  • the light guided to the corresponding light modulation device and transmitted through the second color separation layer passes through the third prism and is guided to the corresponding light modulation device. For this reason, a gap formed between the first color separation layer and the second prism, which is difficult to control, is necessary.
  • each of the first color separation layer and the second color separation layer is compared with a case where a dichroic prism in which each color separation layer and each prism are combined with no gap is adopted.
  • the incident angle can be reduced. Therefore, the color separation characteristics of each color separation layer can be improved.
  • the three light modulation devices provided in accordance with each of the three color lights included in the emitted light are provided, and the dichroic prism is connected to a corresponding light modulation device among the three light modulation devices.
  • the first prism that has the incident / exit surface, and the second prism that faces the first prism Positioned between the first prism, the second prism, and the third prism that face each other, the first prism that has the incident / exit surface, and the second prism that faces the first prism, Among the three color lights included in the outgoing light incident on the first color light, the first color separation layer that separates the first color light, the second color light, and the third color light, the second prism, and the second color light The second color light is reflected between the second color light and the third color light which are located between the third prisms facing the prism and are incident on the second prism via the first color separation layer.
  • the incident angles of the second color light and the third color light to the second color separation layer are different from each other, and the incident angles of the three color lights to the first color separation layer are the second color separation layer. It is preferable that the incident angle of the second color light and the third color light is smaller than the incident angle.
  • the light reflected by the first color separation layer is totally reflected by the upper writing exit surface of the first prism and guided to the corresponding light modulation device in the same manner as described above. Further, the light reflected by the second color separation layer passes through the second prism and is guided to the corresponding light modulation device, and the light transmitted through the second color separation layer is the same as described above. The light passes through the third prism and is guided to the corresponding light modulation device. In such a dichroic prism, it is not necessary to provide the gap.
  • the polarization separation device transmits the first polarized light and reflects the second polarized light included in the combined light toward a projection optical device.
  • the polarization beam splitting device is configured by a plate-type PBS
  • aberration may occur when modulated light passes through the tilted plate.
  • the second polarized light modulated by the light modulation device reflects the plate of the polarization separation device, so that the first polarization is transmitted through the polarization separation device.
  • the occurrence of the aberration can be suppressed.
  • FIG. 1 is a schematic diagram showing an outline of a projector according to an embodiment of the invention.
  • FIG. 4 is a diagram showing a back focus position of the projection optical apparatus in the projector according to the embodiment.
  • FIG. 1 is a schematic diagram showing an outline of a projector 1 according to the present embodiment.
  • the projector 1 is a display device that modulates a light beam emitted from a light source provided therein to form an image according to image information, and enlarges and projects the image on a projection surface such as a screen.
  • the projector 1 includes an exterior housing 2 that constitutes an exterior.
  • An optical unit 3 is disposed inside the exterior housing 2.
  • a cooling device that cools the components of the projector 1
  • a power supply device that supplies power to the components of the projector 1, and the operation of the projector 1 are controlled.
  • a control device and the like are provided.
  • the optical unit 3 has a function of forming and projecting an image according to image information input from the control device.
  • the optical unit 3 includes an illumination device 31, a relay device 32, a dichroic prism 34, a light modulation device 35 (35R, 35G, 35B), and a projection optical device 36.
  • the illumination device 31 includes a light source device 31 ⁇ / b> A and a uniform illumination device 31 ⁇ / b> B, and emits uniform illumination light having a uniform polarization direction to the relay device 32.
  • the illumination light corresponds to the first polarized light of the present invention.
  • the light source device 31 ⁇ / b> A includes a solid light source device 311, a condensing optical system 312, a rotating fluorescent plate 313, and a motor 314.
  • the solid-state light source device 311 is a laser light source that emits blue laser light (emission intensity peak: about 445 nm) as excitation light.
  • the solid light source device 311 may be composed of one laser light source, or may be composed of many laser light sources.
  • the condensing optical system 312 includes a first lens 3121 and a second lens 3122.
  • the condensing optical system 312 is disposed in the optical path from the solid-state light source device 311 to the rotating fluorescent plate 313, and makes the blue light incident on a phosphor layer 3132 (described later) of the rotating fluorescent plate 313 in a substantially condensed state.
  • the first lens 3121 and the second lens 3122 are convex lenses.
  • a phosphor layer 3132 that converts the wavelength of incident light is formed on a disc 3131 that can be rotated by a motor 314 along the circumferential direction of the disc 3131.
  • the rotating fluorescent plate 313 emits red light and green light toward the side opposite to the side on which blue light is incident.
  • the disc 3131 is made of a material that transmits blue light.
  • quartz glass, crystal, sapphire, optical glass, and transparent resin can be used as the material of the disk 3131.
  • Blue light emitted from the solid state light source device 311 enters the phosphor layer 3132 from the disk 3131 side.
  • a dichroic film 3133 that transmits blue light and reflects red light and green light is provided between the phosphor layer 3132 and the disk 3131.
  • the phosphor layer 3132 is excited by blue light having a wavelength of about 445 nm.
  • the phosphor layer 3132 converts part of the blue light from the solid-state light source device 311 into light including red light and green light, and passes the remaining part of the blue light without conversion.
  • the phosphor layer 3132 is, for example, a layer containing (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce that is a YAG phosphor.
  • a light source device 31 ⁇ / b> A some of the blue light emitted from the solid-state light source device 311 passes through the phosphor layer 3132, and other light is red and green light by the phosphor layer 3132. Is converted into a wavelength.
  • the phosphor layer 3132 scatters the wavelength-converted red light and green light, but the dichroic film 3133 prevents the light from proceeding to the solid light source device 311 side.
  • These red light and green light are incident on the uniform illumination device 31B together with the blue light.
  • the red light, green light, and blue light correspond to the first color light, the second color light, and the third color light of the present invention, respectively.
  • the uniform illumination device 31B equalizes the intensity distribution (illuminance distribution) in a plane orthogonal to the central axis of the light incident from the light source device 31A, and includes a collimating lens 315, a first lens array 316, and a second lens. An array 317, a polarization conversion element 318, and a superimposing lens 319 are included.
  • the collimating lens 315 is formed of a convex lens, and makes the light from the light source device 31A substantially parallel.
  • the first lens array 316 includes a plurality of first small lenses 3161 that divide the light from the collimating lens 315 into a plurality of partial light beams.
  • the plurality of first small lenses 3161 are arranged in a matrix in a plane orthogonal to the illumination optical axis Ax (designed optical axis and the central axis of light emitted from the light source device 31A).
  • the second lens array 317 includes a plurality of second small lenses 3171 corresponding to the plurality of first small lenses 3161.
  • the second lens array 317 together with the superimposing lens 319, forms an image of each first small lens 3161 of the first lens array 316 in the vicinity of the image forming area of each of the light modulation devices 35R, 35G, and 35B.
  • the plurality of second small lenses 3171 are arranged in a matrix in a plane orthogonal to the illumination optical axis Ax.
  • the polarization conversion element 318 has a function of aligning the polarization directions of the partial light beams divided by the first lens array 316. Specifically, the polarization conversion element 318 transmits one of the linearly polarized components included in the light from the rotating fluorescent plate 313 as it is and reflects the other linearly polarized component in a direction perpendicular to the illumination optical axis Ax. A polarization separation layer that reflects the other linearly polarized light component reflected by the polarization separation layer in a direction parallel to the illumination optical axis Ax, and another linearly polarized light component reflected by the reflective layer. And a phase difference plate for converting into components. In the present embodiment, the polarization conversion element 318 is configured to emit p-polarized light, but may be configured to emit s-polarized light.
  • the relay device 32 has a function of guiding the emitted light emitted from the illumination device 31 to the dichroic prism 34.
  • the relay device 32 includes a total reflection mirror 321 and a polarization separation device 322.
  • the total reflection mirror 321 reflects the light incident from the illumination device 31 toward the polarization separation device 322.
  • the polarization separation device 322 is a so-called plate-type polarization beam splitter (PBS), which allows one of p-polarized light and s-polarized light to pass therethrough and reflects the other polarized light.
  • PBS plate-type polarization beam splitter
  • the polarization separation device 322 transmits p-polarized light (first polarized light) and reflects s-polarized light (second polarized light).
  • the light incident through the total reflection mirror 321 and the convex lens 366 that is, the light aligned with the p-polarized light by the polarization conversion element 318 passes through the polarization separation device 322 and is emitted to the dichroic prism 34.
  • the modulated light which is modulated by the light modulation device 35 described later and is incident through the dichroic prism 34 described later is reflected by the polarization separation device 322 and the lens 365 of the projection optical device 36 described later (see FIG. 2). ).
  • a convex lens 366 is disposed between the polarization beam splitter 322 and the dichroic prism 34.
  • the convex lens 366 is one of the lenses of the projection optical device 36, and has a function of making the light incident from the polarization separation device 322 substantially parallel and incident on the dichroic prism 34.
  • the dichroic prism 34 separates the three color lights (red light, green light, and blue light) included in the light emitted from the illumination device 31 that is incident via the relay device 32 and the convex lens 366, and the light modulation devices 35R and 35G. , 35B.
  • the dichroic prism 34 has a function of synthesizing each color light incident after being modulated by the light modulation devices 35R, 35G, and 35B and emitting the synthesized light (synthesized light).
  • the dichroic prism 34 corresponds to the color separation / synthesis device of the present invention.
  • the dichroic prism 34 is a so-called gapless prism, and includes a first prism 341, a second prism 342, a third prism 343, and a first color separation layer 344 positioned between the first prism 341 and the second prism 342. And a second color separation layer 345 positioned between the second prism 342 and the third prism 343, and the prisms 341 to 343 are combined.
  • the dichroic prism 34 is provided between the first color separation layer 344 and the second prism 342, between the first prism 341 and the first color separation layer 344, and between the second prism 342 and the second color separation layer 345. , And the second color separation layer 345 and the third prism 343 are formed so as not to have any gaps.
  • the dichroic prism 34 has an incident angle of three color lights (red light, blue light, and green light) to the first color separation layer 344 and an incidence angle of green light and blue light to the second color separation layer 345.
  • the incident angles of the three color lights to the first color separation layer 344 are different from each other, and are configured to be larger than the incident angles of the green light and the blue light to the second color separation layer 345.
  • the first prism 341 is formed in a triangular prism shape, and is disposed at a position closest to the convex lens 366 among the prisms 341 to 343, that is, a position facing the convex lens 366.
  • the first prism 341 has an incident / exit surface 3411 on which light collimated by the convex lens 366 is incident and the combined light is emitted. Further, the first prism 341 is joined to the second prism 342.
  • the first color separation layer 344 reflects red light and transmits green light and blue light. Is arranged.
  • the red light reflected by the first color separation layer 344 is incident on the incident / exit surface 3411 at an angle equal to or greater than the critical angle, and is emitted from the exit surface 3412 of the first prism 341 toward the light modulation device 35R. Further, the blue light and green light transmitted through the first color separation layer 344 are incident on the second prism 342.
  • the second prism 342 is formed in a quadrangular prism shape with a substantially trapezoidal cross section, and is joined to the first prism 341 and the third prism 343. Between the second prism 342 and the third prism 343, the second color separation layer 345 that reflects blue light and transmits green light is disposed.
  • the second color separation layer 345 and the first color separation layer 344 are inclined at different angles with respect to the central axis (illumination optical axis Ax) of light incident on the incident / exit surface 3411 via the convex lens 366. ing. Of the blue light and green light incident on the second prism 342 via the first color separation layer 344, the blue light is reflected by the second color separation layer 345 and travels through the second prism 342.
  • the light is emitted from the emission surface 3421 of the second prism 342 toward the light modulation device 35B.
  • the green light incident on the second color separation layer 345 passes through the second color separation layer 345 and enters the third prism 343.
  • the third prism 343 is formed in a quadrangular prism shape with a substantially trapezoidal cross section, and is joined to the second prism 342 as described above.
  • the green light incident on the third prism 343 via the second color separation layer 345 is emitted from the emission surface 3431 which is located in the traveling direction of the green light and is substantially parallel to the incident / exit surface 3411.
  • the light is emitted toward the modulation device 35G.
  • the color lights modulated by the light modulation devices 35R, 35G, and 35B are combined by tracing back the incident paths of the color lights to the light modulation devices 35R, 35G, and 35B.
  • the combined light is emitted toward the convex lens 366.
  • the light modulation device 35 (light modulation devices for red, green, and blue color lights are respectively referred to as 35R, 35G, and 35B) modulates incident red, green, and blue color lights, respectively, into image information. A corresponding color image is formed.
  • These light modulation devices 35 (35R, 35G, 35B) are reflection type light modulation devices having a function of modulating incident light, and more specifically, have a function of modulating in the process of reflecting the light.
  • these light modulation devices 35 (35R, 35G, and 35B) are configured by reflective liquid crystal panels, and emit red, blue, and green color light incident from the exit surfaces 3412, 3421, and 3431, respectively. Modulate.
  • Such light modulation devices 35R, 35G, and 35B are disposed at the back focus positions of the projection optical device 36, respectively.
  • FIG. 2 is a diagram illustrating the configuration of the projection optical device 36 and the back focus position BF1 of the convex lens 366 constituting a part of the projection optical device 36.
  • the back focus position BF1 the back focus position of green light (position of the light modulation device 35G) is shown, and the polarization separation device 322 is omitted, and the illumination light is shown. It is described that each component is located on a straight line along the axis Ax.
  • the projection optical device 36 has a function of projecting the combined light, which is image light reflected and incident by the polarization separation device 322, onto a projection surface (not shown). As shown in FIG.
  • the projection optical device 36 includes a plurality of lenses 361, 362, 363, 364, and 365 accommodated in a lens barrel 360 (see FIG. 1), and the convex lens 366.
  • the actual projection optical apparatus is not limited to six lenses, and may have more lenses.
  • the light modulation devices 35R, 35G, and 35B are disposed at the back focus positions of the projection optical device 36, respectively. More specifically, each of the light modulation devices 35R, 35G, and 35B is disposed at the back focus position BF1 of the lens that is located closest to the light incident side among the plurality of lenses that form the projection optical device 36. Therefore, in this embodiment, the projection optical device 36 has a convex lens 366 positioned between the polarization separation device 322 and the dichroic prism 34 in addition to the lenses 361 to 365 in the lens barrel 360 in terms of lens design. Because of the configuration, each light modulation device 35 is arranged at the back focus position BF1 of the convex lens 366.
  • FIG. 3 is a diagram showing a projection optical apparatus 36A as a comparative example of the projection optical apparatus 36 and a back focus position BF2 of the projection optical apparatus 36A.
  • a projection optical apparatus 36A as a comparative example of the projection optical apparatus 36 will be described.
  • the projection optical device 36A has a lens barrel 360 and lenses 361 to 365 and 366A, as in the case of the projection optical device 36. However, all of these lenses 361 to 365 and 366A are in the lens barrel 360.
  • the storage is arranged. Among these, the lens 366A has the same function as the convex lens 366.
  • the convex lens is designed for the projection optical device 36A in terms of lens design. Not included.
  • the case where such a projection optical device 36A is employed is compared with the case where the projection optical device 36 according to the present embodiment is employed.
  • the distance L12 (the distance L12 from the most convex lens 366 on the light incident side to the back focus position BF1 of the projection optical device 36 (lens 366)) that is the back focus of the projection optical device 36 shown in FIG. 2 is the projection optical shown in FIG.
  • the distance is shorter than the distance L22 (the distance L22 from the most incident lens 366A to the back focus position BF2 of the projection optical device 36A (lens 366A)) which is the back focus of the device 36A. Therefore, the distance L11 from the lens 361 located closest to the light exit side in the projection optical device 36 shown in FIG.
  • the projection optical device 36 can be configured as a projection optical device that has a shorter back focus and a smaller dimension in the direction along the central axis than the projection optical device 36A as a comparative example.
  • Table 1 shows an example of a lens constituting the projection optical device 36
  • Table 2 shows an example of a lens constituting a projection optical device 36A as a comparative example.
  • the lens with the number “4” has a radius of 49.5237, a surface separation of 39.763257, and an effective radius of 10.1706619.
  • the lens with surface number “4” has a radius of 102.77722, a surface interval of 76.890274, and an effective radius of 15.868343. Yes.
  • the surface interval of each lens can be made smaller (substantially halved) than the surface interval of each lens constituting the projection optical device 36A. Therefore, as described above, the projection optical device 36 can be configured as a projection optical device having a small size in the direction along the central axis.
  • the lens having the surface number “1” has a radius of 121.69073, a surface interval of 1.734356, and an effective radius of 11.968877.
  • the lens with the surface number “1” has a radius of 258.222177, a surface interval of 1.734469, and an effective radius of 16.566122. Yes.
  • the radius of each lens can be made smaller (approximately half) than the radius of each lens constituting the projection optical device 36A. Therefore, the projection optical device 36 can be configured as a projection optical device that is reduced in size in the radial direction of each lens.
  • the projector 1 of this embodiment has the following effects.
  • a convex lens 366 that is at least one of a plurality of lenses 361 to 366 constituting the projection optical device 36 is disposed between the polarization separation device 322 and the dichroic prism 34. According to this, the convex lens 366 becomes the most light incident side lens in the projection optical device 36, and the light modulation device 35 (35R, 35G, 35B) can be arranged at the back focus position of the convex lens 366.
  • the distance between the convex lens 366 and the light modulation device 35 (35R, 35G, 35B) can be shortened as compared with the configuration described in Patent Document 1, the dimension along the central axis of the projection optical device 36 can be reduced. . Therefore, the projector 1 can be reduced in size.
  • the convex lens 366 disposed between the illumination device 31 and the dichroic prism 34 Since the convex lens 366 disposed between the illumination device 31 and the dichroic prism 34 is disposed, the light that has passed through the polarization separation device 322 passes through the convex lens 366 and is incident on the dichroic prism 34. Can be parallelized. Accordingly, it is possible to suppress the spread of the light incident on the incident / exit surface 3411, and the light can be reliably incident on the light modulation device 35 (35R, 35G, 35B), so that the light utilization efficiency can be increased. . Further, the light emitted from the incident / exit surface 3411 can be collected and incident on other lenses 361 to 365 constituting the projection optical device 36. Furthermore, since the light modulation device 35 (35R, 35G, 35B) is constituted by a liquid crystal panel, the contrast can be improved by making each color light incident on the dichroic prism 34 in parallel.
  • the light emitted from the light source device 31A of the illumination device 31 can be converted into p-polarized light by the polarization conversion element 318, and the p-polarized light (first polarization) can be reliably incident on the polarization separation device 322. Use efficiency can be increased.
  • the plurality of color lights (red light, green light, and blue light) incident on the dichroic prism 34 are reliably transmitted by the plurality of prisms (first to third prisms 341 to 343) and the first and second color separation layers 344 and 345.
  • the separated color lights can be incident on the light modulation devices 35 (35R, 35G, 35B) corresponding to the respective color lights. Further, since each color light can be separated and combined by one dichroic prism 34, the projector 1 can be miniaturized.
  • the dichroic prism 34 is configured by a so-called gapless prism, and the red light R reflected by the first color separation layer 344 is totally reflected by the incident / exit surface 3411 of the first prism 341, and the corresponding light modulation device. Guided to 35R. Further, the blue light B reflected by the second color separation layer 345 passes through the second prism 342, is guided to the corresponding light modulation device 35B, and is transmitted through the second color separation layer 345. G passes through the third prism 343 and is guided to the corresponding light modulation device 35G.
  • the dichroic prism 34 does not require a gap that is required when it is configured by a so-called Philips prism.
  • the polarization beam splitter 322 is a plate-type PBS, aberration may occur when modulated light (second polarized light) passes through the tilted plate.
  • the polarization separation device 322 is made p-polarization ( The occurrence of the aberration can be suppressed compared to the case where the first polarized light) is transmitted.
  • the dichroic prism 34 is constituted by a so-called gapless prism.
  • the present invention is not limited to this.
  • the dichroic prism 34 may be configured by a Philips prism.
  • FIG. 4 is a schematic diagram showing a dichroic prism 37 composed of a Philips prism.
  • the dichroic prism 37 composed of the Philips prism is similar to the dichroic prism 34 composed of the gapless prism, as shown in FIG. 4, and the first color 371, the second prism 372, the third prism 373, and the first color.
  • a separation layer 374 and a second color separation layer 375, and the prisms 371 to 373 are combined.
  • the first prism 371 is formed in a substantially triangular prism shape, and is disposed at a position closest to the polarization separation device 322 among the first to third prisms 371 to 373.
  • the first prism 371 has an incident / exit surface 3711 orthogonal to the illumination optical axis Ax, and light that has passed through the polarization separation device 322 enters the first prism 371 through the incident / exit surface 3711.
  • a first color separation layer 374 is disposed between the first prism 371 and the second prism 372 joined to the first prism 371 so as to be inclined with respect to the illumination optical axis Ax. Yes. Specifically, the first color separation layer 374 is formed on the surface of the first prism 371 opposite to the incident / exit surface 3711.
  • the first color separation layer 374 reflects light of a predetermined threshold value or more and transmits light of other wavelengths. For example, when the first color separation layer 374 is configured to reflect the blue light B and transmit the green light G and the red light R out of the incident light, the first color separation layer 374 reflects the first light.
  • the blue light B is incident on the incident / exit surface 3711 from the inside of the first prism 371 at an angle greater than the critical angle. Then, the blue light B is incident from the emission surface 3712 of the first prism 371 to the blue light light modulation device 35B (not shown) facing the emission surface 3712.
  • the green light G and the red light R incident on the first color separation layer 374 pass through the first color separation layer 374 and are further formed between the first prism 371 and the second prism 372. It passes through the gap GP and enters the second prism 372.
  • the second prism 372 is formed in a substantially triangular prism shape, and is disposed between the first prism 371 and a gap GP of about several ⁇ m.
  • a second color separation layer 375 is disposed between the second prism 372 and the third prism 373 so as to be inclined to the opposite side of the first color separation layer 374 with respect to the illumination optical axis Ax. ing. Similar to the second color separation layer 345, the second color separation layer 375 has a threshold value different from or different from that of the first color separation layer 374 out of light incident from the first prism 371 through the gap GP. Reflects light and transmits light of other wavelengths.
  • the second color separation layer 375 when the second color separation layer 375 is configured to reflect the red light R and transmit the green light G out of the incident green light G and red light R, the second color separation layer 375.
  • the red light R reflected by the light enters the end surface 3721 facing the first prism 371 from the inside of the second prism 372 at an angle greater than the critical angle.
  • the red light R enters the light modulation device 35R (not shown) for red light that faces the emission surface 3722 from the emission surface 3722 of the second prism 372.
  • the green light G that has passed through the second color separation layer 375 enters the third prism 373 that is joined to the second prism 372 without any gap.
  • the third prism 373 is formed in a quadrangular prism shape with a substantially trapezoidal cross section.
  • the third prism 373 has an exit surface 3731 parallel to the incident / exit surface 3711, that is, an exit surface 3731 orthogonal to the illumination optical axis Ax, on the side opposite to the surface on which light is incident from the second prism 372. .
  • the green light G incident on the third prism 373 enters the light modulator 35G (not shown) for green light facing the emission surface 3731 from the emission surface 3731.
  • the color lights B, G, R modulated by the light modulation devices 35B, 35G, 35R follow the incident paths of the color lights B, G, R to the light modulation devices 35B, 35G, 35R in reverse. And is emitted from the incident / exit surface 3711 toward the polarization separation device 322 as synthesized light.
  • the first color separation layer 374 and the second color separation layer 375 intersect the illumination optical axis Ax at different angles, respectively, and light of each color separation layer 374, 375 is transmitted.
  • the incident angles are also different.
  • the first color separation layer 374 is inclined so that the incident angle of light incident along the illumination optical axis Ax is ⁇ 28 °
  • the second color separation layer 375 It is inclined so that the incident angle of light incident along the optical axis Ax is + 11 °.
  • the first color separation layer 374 and the second color separation layer are formed as in the case where the dichroic prism 34 composed of a gapless prism is employed.
  • 375 has different color separation characteristics for each type of incident linearly polarized light.
  • the incident angle of light to each of the color separation layers 374 and 375 and the illumination device 31 (specifically, a light source device) used in the projector.
  • the same effect as the projector 1 can be obtained. .
  • the dichroic prism 37 constituted by the Philips prism, it is necessary to dispose the gap GP of about several ⁇ m, but the light reflected by the second color separation layer 375 is reflected by the second prism 372. Since the inner surface is reflected by the surface facing one prism 371 and guided to the corresponding light modulation device 35, the incident angle of the light incident on the color separation layer is determined in the dichroic prism 34 formed by the gapless prism. The incident angle to the large second color separation layer 345 can be reduced. Therefore, the dichroic prism 37 has better color separation characteristics than the dichroic prism 34. On the other hand, the dichroic prism 34 does not require adjustment of the gap GP required by the dichroic prism 37 as described above.
  • the dichroic prism 34 is constituted by a so-called gapless prism.
  • the present invention is not limited to this.
  • the dichroic prism 34 may be configured by a cross dichroic prism.
  • the lens located closest to the light incident side of the projection optical device 36 is configured by the convex lens 366.
  • the present invention is not limited to this.
  • a concave lens may be used. Even in this case, since the distance L12 can be reduced, the distance L11 (dimension) in the direction along the central axis of the light emitted from the light source device of the projection optical device 36 can be reduced.
  • the reflection type light modulation device 35 (35R, 35G, 35B) is used as the light modulation device, and the light separated by the dichroic prism 34 is modulated and reflected.
  • the present invention is not limited to this.
  • a transmission type light modulation device may be used instead of the light modulation device 35 (35R, 35G, 35B).
  • a configuration that transmits the transmissive light modulator and emits the modulated light again to the dichroic prism 34 may be provided in the vicinity of the transmissive light modulator.
  • the solid-state light source device 311 of the illumination device 31 is configured by a laser light source that emits blue light.
  • the present invention is not limited to this.
  • it is good also as replacing with the solid light source device 311 of the illuminating device 31, and providing a light source lamp and a reflector.
  • the light emitted from the light source lamp and the reflector includes red, green, and blue, the rotating fluorescent plate 313 and the motor 314 need not be provided.
  • the optical unit 3 was comprised by the substantially L shape, this invention is not limited to this.
  • the projector 1 includes the three light modulation devices 35 (35R, 35G, and 35B), but the present invention is not limited to this. That is, the present invention can also be applied to a projector using two or less or four or more light modulation devices.
  • the light modulation device can modulate an incident light beam and form an image according to image information
  • a device using a micromirror for example, a device using a DMD (Digital Micromirror Device) or the like can be used.
  • a light modulation device may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

 小型化できるプロジェクターを提供すること。 本発明のプロジェクター1は、第1の偏光を出射する照明装置と、出射光に含まれる複数の色光のそれぞれを変調する複数の光変調装置と、照明装置と複数の光変調装置との間に配置され、入出射面を介して内部に入射される出射光から複数の色光を分離してそれぞれ複数の光変調装置に入射させ、複数の光変調装置により変調されて入射される複数の色光を合成した合成光を入出射面を介して出射する色分離合成装置と、照明装置と色分離合成装置との間に配置され、第1の偏光と前記第1の偏光に直交する第2の偏光との一方を透過し、他方を反射する偏光分離装置と、偏光分離装置から出射された合成光を投射する投射光学装置と、を備え、投射光学装置は、複数のレンズを有し、複数のレンズのうち少なくとも1つのレンズは、照明装置と色分離合成装置との間に配置される。

Description

プロジェクター
 本発明は、プロジェクターに関する。
 従来、光源と、光源から出射された光から複数の色光を分離する色分離装置と、分離された複数の色光をそれぞれ変調する複数の光変調装置と、変調された複数の色光を合成する色合成装置と、合成された光を投射する投射光学装置と、を備えたプロジェクターが知られている。このようなプロジェクターとして、上記色分離装置及び色合成装置を1つのプリズム・アセンブリーにより構成したプロジェクター(投射装置)が知られている(例えば、特許文献1参照)。
 この特許文献1に記載のプロジェクターでは、光源から出射された光は、組み合わせレンズを通過し、コールドミラーにより赤外線が除去され、組み合わせレンズを通過してPBS(Polarization Beam Splitter)に入射される。このPBSの内面の被膜は、p偏光を通過させ、s偏光を反射させるため、p偏光の反射光がプリズム・アセンブリーに入射される。そして、プリズム・アセンブリーにより3色に分離された光がそれぞれ光変調装置としての3つの反射型液晶ライトバルブに入射される。これら反射型液晶ライトバルブにより変調された光は、再度プリズム・アセンブリーに入射されて合成され、PBSを介して投射レンズにより投射される。
特表2003-522966号公報
 ところで、投射レンズは、一般的に複数のレンズにより構成され、当該複数のレンズのうち最も光入射側のレンズのバックフォーカス位置に、上記反射型液晶ライトバルブが配置される。
 これに対し、特許文献1に記載の投射装置では、投射レンズと反射型液晶ライトバルブとの間に、上記プリズム・アセンブリーの他、PBSが配置されている。このため、上記最も光入射側のレンズと反射型液晶ライトバルブとの間の距離(バックフォーカス)が長くなる。このように、当該距離が長くなると、投射レンズの中心軸に沿う寸法が大きくなり、投射レンズ、ひいては、プロジェクターが大きくなるという問題がある。
 本発明は、上記課題の少なくとも一部を解決することを目的としたものであり、小型化できるプロジェクターを提供することを目的の1つとする。
 本発明の一態様に係るプロジェクターは、第1の偏光を出射する照明装置と、前記照明装置により出射された前記出射光に含まれる複数の色光のそれぞれに応じて設けられ、前記複数の色光をそれぞれ変調する複数の光変調装置と、前記照明装置と前記複数の光変調装置との間に配置され、入出射面を介して内部に入射される前記出射光から前記複数の色光を分離してそれぞれ前記複数の光変調装置に入射させ、前記複数の光変調装置により変調されて入射される前記複数の色光を合成した合成光を前記入出射面を介して出射する色分離合成装置と、前記照明装置と前記色分離合成装置との間に配置され、前記第1の偏光と前記第1の偏光に直交する第2の偏光との一方を透過し、他方を反射する偏光分離装置と、前記偏光分離装置から出射された前記合成光を投射する投射光学装置と、を備え、前記投射光学装置は、複数のレンズを有し、前記複数のレンズのうち少なくとも1つのレンズは、前記照明装置と前記色分離合成装置との間に配置されることを特徴とする。
 なお、上記色分離合成装置としては、ダイクロイックプリズムを例示できる。
 また、偏光分離装置としては、プレート型PBSや、プリズム型PBSを例示できる。
 更に、投射光学装置としては、投射光学装置を構成する複数のレンズの他、上記色分離合成装置により合成された合成光を通過するレンズを例示できる。
 上記一態様によれば、レンズ設計において投射光学装置を構成する複数のレンズのうち少なくとも1つのレンズが、照明装置と色分離合成装置との間に配置されている。これによれば、当該少なくとも1つのレンズが、投射光学装置において最も光入射側のレンズとなり、当該少なくとも1つのレンズのバックフォーカス位置に光変調装置を配置できる。このため、当該少なくとも1つのレンズと光変調装置との距離を、上記特許文献1に記載の構成に比べて短縮できるので、投射光学装置の中心軸に沿う寸法を小さくできる。従って、プロジェクターを小型化できる。
 上記一態様では、前記照明装置と前記色分離合成装置との間に配置されるレンズは、前記照明装置から入射される光を平行化するレンズを含むことが好ましい。
 上記一態様によれば、偏光分離装置を通過した光が、上記照明装置と色分離合成装置との間に配置されるレンズに含まれる照明装置から入射される光を平行化するレンズを通過することにより、色分離合成装置に入射される光を平行化できる。従って、入出射面に入射される光が広がることを抑制でき、光変調装置に光を確実に入射させることができるので、光の利用効率を高めることができる。また、当該入出射面から出射された光を集光して投射光学装置を構成する他のレンズに入射させることができる。
 上記一態様では、前記照明装置は、光源装置と、前記光源装置から出射された出射光を第1の偏光に揃える偏光変換素子と、を備えることが好ましい。
 上記一態様によれば、第1の偏光を確実に偏光分離装置に入射させることができるので、光の利用効率を高めることができる。
 上記一態様では、前記色分離合成装置は、複数のプリズムと色分離層とを備えたダイクロイックプリズムであることが好ましい。
 上記一態様によれば、当該ダイクロイックプリズムに入射された複数の色光を複数のプリズム及び色分離層により確実に分離させ、当該分離された色光を当該色光のそれぞれに対応する光変調装置に入射させることができる。また、1つのダイクロイックプリズムにより、各色光の分離及び合成ができるので、プロジェクターを小型化できる。
 上記一態様では、前記出射光に含まれる3つの色光のそれぞれに応じて設けられる前記光変調装置を3つ備え、前記ダイクロイックプリズムは、前記3つの光変調装置のうち、対応する光変調装置にそれぞれ対向する第1プリズム、第2プリズム及び第3プリズムと、前記入出射面を有する第1プリズム、及び、前記第1プリズムに対向する前記第2プリズムの間に位置し、前記第1プリズム内に入射された前記出射光に含まれる前記3つの色光のうち、第1色光と、第2色光及び第3色光とを分離する第1色分離層と、前記第2プリズム、及び、前記第2プリズムに対向する第3プリズムの間に位置し、前記第1色分離層を介して前記第2プリズム内に入射された前記第2色光及び前記第3色光のうち、前記第2色光を反射させ、前記第3色光を透過させる第2色分離層と、を有し、前記第1色分離層と前記第2プリズムとの間には、隙間が設けられ、前記第1プリズムと前記第1色分離層との間、前記第2プリズムと前記第2色分離層との間、及び、前記第2色分離層と前記第3プリズムとの間には、それぞれ隙間がなく、前記第1色分離層に対する前記3つの色光の入射角と、前記第2色分離層に対する前記第2色光及び前記第3色光の入射角とは、それぞれ異なり、かつ、前記第1色分離層への前記3つの色光の入射角は、前記第2色分離層への前記第2色光及び前記第3色光の入射角よりも大きいことが好ましい。
 このようなダイクロイックプリズムでは、第1色分離層にて反射された光は、第1プリズムの上記入出射面にて全反射されて、対応する光変調装置に導かれる。また、第2色分離層にて反射された光は、第1色分離層との間に隙間が形成される第2プリズムの面にて、当該第2プリズムの内側にて全反射されて、対応する光変調装置に導かれ、当該第2色分離層を透過した光は、第3プリズムを透過して、対応する光変調装置に導かれる。このため、制御することが難しい第1色分離層と第2プリズムとの間に形成される隙間が必要となる。
 しかしながら、このようなダイクロイックプリズムが採用される場合には、各色分離層及び各プリズムが隙間なく組み合わされたダイクロイックプリズムが採用される場合に比べ、第1色分離層及び第2色分離層の各入射角を小さくすることができる。従って、各色分離層の色分離特性を向上させることができる。
 上記一態様では、前記出射光に含まれる3つの色光のそれぞれに応じて設けられる前記光変調装置を3つ備え、前記ダイクロイックプリズムは、前記3つの光変調装置のうち、対応する光変調装置にそれぞれ対向する第1プリズム、第2プリズム及び第3プリズムと、前記入出射面を有する第1プリズム、及び、前記第1プリズムに対向する前記第2プリズムの間に位置し、前記第1プリズム内に入射された前記出射光に含まれる前記3つの色光のうち、第1色光と、第2色光及び第3色光とを分離する第1色分離層と、前記第2プリズム、及び、前記第2プリズムに対向する第3プリズムの間に位置し、前記第1色分離層を介して前記第2プリズム内に入射された前記第2色光及び前記第3色光のうち、前記第2色光を反射させ、前記第3色光を透過させる第2色分離層と、を有し、前記第1色分離層と前記第2プリズムとの間、前記第1プリズムと前記第1色分離層との間、前記第2プリズムと前記第2色分離層との間、及び、前記第2色分離層と前記第3プリズムとの間には、それぞれ隙間がなく、前記第1色分離層に対する前記3つの色光の入射角と、前記第2色分離層に対する前記第2色光及び前記第3色光の入射角とは、それぞれ異なり、かつ、前記第1色分離層への前記3つの色光の入射角度は、前記第2色分離層への前記第2色光及び前記第3色光の入射角よりも小さいことが好ましい。
 このようなダイクロイックプリズムでは、第1色分離層にて反射された光は、上記と同様に、第1プリズムの上記入出射面にて全反射されて、対応する光変調装置に導かれる。また、第2色分離層にて反射された光は、第2プリズム内を通過して、対応する光変調装置に導かれ、当該第2色分離層を透過した光は、上記と同様に、第3プリズムを透過して、対応する光変調装置に導かれる。このようなダイクロイックプリズムでは、上記隙間を設ける必要がない。
 上記一態様では、前記偏光分離装置は、前記第1の偏光を透過させ、前記合成光に含まれる前記第2の偏光を投射光学装置に向けて反射させることが好ましい。
 ここで、偏光分離装置がプレート型PBSで構成されている場合、変調された光が傾斜した当該プレートを透過すると収差が発生する場合がある。これに対し、上記一態様によれば、光変調装置により変調された第2の偏光が、当該偏光分離装置のプレートを反射するので、当該偏光分離装置を第1の偏光が透過する場合に比べて、上記収差の発生を抑制できる。
本発明の一実施形態に係るプロジェクターの概略を示す概略図。 上記実施形態に係るプロジェクターにおける投射光学装置のバックフォーカス位置を示す図。 上記実施形態に係る投射光学装置の比較例としての投射光学装置及び当該投射光学装置のバックフォーカス位置を示す図。 上記実施形態におけるダイクロイックプリズムの変形を示す模式図。
 以下、本発明の一実施形態について、図面に基づいて説明する。
 [プロジェクターの概略構成]
 図1は、本実施形態に係るプロジェクター1の概略を示す概略図である。
 プロジェクター1は、内部に設けられた光源から出射された光束を変調して画像情報に応じた画像を形成し、当該画像をスクリーン等の被投射面上に拡大投射する表示装置である。このプロジェクター1は、図1に示すように、外装を構成する外装筐体2を備える。
 外装筐体2の内部には、光学ユニット3が配置されている。この他、外装筐体2内には、図示を省略するが、プロジェクター1の構成部品を冷却する冷却装置、プロジェクター1の構成部材に電力を供給する電源装置、及び、プロジェクター1の動作を制御する制御装置等を備える。
 [光学ユニットの構成]
 光学ユニット3は、上記制御装置から入力される画像情報に応じた画像を形成及び投射する機能を有する。この光学ユニット3は、照明装置31、リレー装置32、ダイクロイックプリズム34、光変調装置35(35R,35G,35B)及び投射光学装置36を備える。
 [照明装置の構成]
 照明装置31は、光源装置31A及び均一照明装置31Bを備え、リレー装置32に、偏光方向が揃えられた均一な照明光を出射する。なお、当該照明光は、本発明の第1の偏光に相当する。
 光源装置31Aは、固体光源装置311、集光光学系312、回転蛍光板313及びモーター314を有する。
 固体光源装置311は、励起光として、青色のレーザー光(発光強度のピーク:約445nm)を出射するレーザー光源である。なお、固体光源装置311は、1つのレーザー光源からなるものであってもよいし、多数のレーザー光源からなるものであってもよい。また、発光強度のピークが445nm以外の波長(例えば、460nm)の青色光を出射する光源装置を用いることもできる。
 集光光学系312は、第1レンズ3121及び第2レンズ3122を備える。集光光学系312は、固体光源装置311から回転蛍光板313までの光路中に配置され、青色光を略集光した状態で当該回転蛍光板313の蛍光体層3132(後述)に入射させる。この第1レンズ3121及び第2レンズ3122は、凸レンズである。
 回転蛍光板313は、モーター314により回転可能な円板3131上に、入射される光の波長を変換する蛍光体層3132が円板3131の周方向に沿って形成されたものである。この回転蛍光板313は、青色光が入射される側とは反対側に向けて赤色光及び緑色光を出射する。
 円板3131は、青色光を透過する材料からなる。円板3131の材料としては、例えば、石英ガラス、水晶、サファイア、光学ガラス及び透明樹脂等を採用できる。
 固体光源装置311から出射された青色光は、円板3131側から蛍光体層3132に入射される。この蛍光体層3132と円板3131との間には、青色光を透過し赤色光及び緑色光を反射させるダイクロイック膜3133が設けられている。
 蛍光体層3132は、波長が約445nmの青色光によって励起される。この蛍光体層3132は、固体光源装置311からの青色光の一部を赤色光及び緑色光を含む光に変換し、かつ、青色光の残りの一部を変換せずに通過させる。この蛍光体層3132は、例えば、YAG系蛍光体である(Y,Gd)3(Al,Ga)512:Ceを含有する層である。
 このような光源装置31Aでは、固体光源装置311から出射された青色光のうち、一部の光が、蛍光体層3132を通過し、他の光が、蛍光体層3132によって赤色光及び緑色光に波長変換される。なお、蛍光体層3132にて、波長変換された赤色光及び緑色光は散乱されるが、ダイクロイック膜3133によって、固体光源装置311側に進行することが抑制される。これら赤色光及び緑色光は、青色光とともに、均一照明装置31Bに入射される。なお、これら赤色光、緑色光及び青色光は、それぞれ、本発明の第1色光、第2色光及び第3色光に相当する。
 均一照明装置31Bは、光源装置31Aから入射される光の中心軸に直交する面内の強度分布(照度分布)を均一化するものであり、コリメートレンズ315、第1レンズアレイ316、第2レンズアレイ317、偏光変換素子318及び重畳レンズ319を有する。
 コリメートレンズ315は、凸レンズからなり、光源装置31Aからの光を略平行化する。
 第1レンズアレイ316は、コリメートレンズ315からの光を複数の部分光束に分割する複数の第1小レンズ3161を有する。複数の第1小レンズ3161は、照明光軸Ax(設計上の光軸であり、光源装置31Aから出射された光の中心軸)と直交する面内にマトリクス状に配列されている。
 第2レンズアレイ317は、上記複数の第1小レンズ3161に対応する複数の第2小レンズ3171を有する。この第2レンズアレイ317は、重畳レンズ319とともに、第1レンズアレイ316の各第1小レンズ3161の像を各光変調装置35R,35G,35Bの画像形成領域の近傍に結像させる。複数の第2小レンズ3171は照明光軸Axに直交する面内にマトリクス状に配列されている。
 偏光変換素子318は、第1レンズアレイ316により分割された各部分光束の偏光方向を揃える機能を有する。
 具体的に、偏光変換素子318は、回転蛍光板313からの光に含まれる偏光成分のうち一方の直線偏光成分をそのまま透過させるとともに、他方の直線偏光成分を照明光軸Axに垂直な方向に反射させる偏光分離層と、偏光分離層で反射された他方の直線偏光成分を照明光軸Axに平行な方向に反射させる反射層と、反射層で反射された他方の直線偏光成分を一方の直線偏光成分に変換する位相差板とを有する。なお、本実施形態では、偏光変換素子318は、p偏光を出射する構成とされているが、s偏光を出射する構成としてもよい。
 [リレー装置の構成]
 リレー装置32は、照明装置31から出射された出射光をダイクロイックプリズム34に導く機能を有する。このリレー装置32は、全反射ミラー321と偏光分離装置322とを備える。
 全反射ミラー321は、照明装置31から入射される光を、偏光分離装置322に向けて反射させる。
 偏光分離装置322は、いわゆるプレート型の偏光ビームスプリッター(PBS: Polarization Beam Splitter)であり、p偏光及びs偏光のうち、一方の偏光光を通過させ、他方の偏光光を反射させる。
 本実施形態では、偏光分離装置322は、p偏光(第1の偏光)を透過し、s偏光(第2の偏光)を反射させる。このため、全反射ミラー321及び凸レンズ366を介して入射される光、すなわち、偏光変換素子318によってp偏光に揃えられた光は、偏光分離装置322を通過して、ダイクロイックプリズム34に出射される。一方、後述する光変調装置35によって変調されて、後述するダイクロイックプリズム34を介して入射される変調光は、偏光分離装置322によって反射されて、後述する投射光学装置36のレンズ365(図2参照)に入射される。
 ここで、偏光分離装置322とダイクロイックプリズム34との間には、凸レンズ366が配置されている。この凸レンズ366は、詳しくは後述するが、投射光学装置36が有するレンズの1つである他、偏光分離装置322から入射される光を略平行化して、ダイクロイックプリズム34に入射させる機能を有する。
 [ダイクロイックプリズムの構成]
 ダイクロイックプリズム34は、リレー装置32及び凸レンズ366を介して入射される照明装置31の出射光に含まれる3つの色光(赤色光、緑色光及び青色光)を分離して、光変調装置35R,35G,35Bのそれぞれに入射させる機能を有する。また、このダイクロイックプリズム34は、上記光変調装置35R,35G,35Bにより変調されて入射される各色光を合成し、当該合成した光(合成光)を出射する機能を有する。また、ダイクロイックプリズム34は、本発明の色分離合成装置に相当する。
 ダイクロイックプリズム34は、いわゆるギャップレスプリズムであり、第1プリズム341と、第2プリズム342と、第3プリズム343と、第1プリズム341及び第2プリズム342の間に位置する第1色分離層344と、第2プリズム342及び第3プリズム343の間に位置する第2色分離層345と、を有し、これら各プリズム341~343が組み合わされた構成を有する。
 このダイクロイックプリズム34は、第1色分離層344と第2プリズム342との間、第1プリズム341と第1色分離層344との間、第2プリズム342と第2色分離層345との間、及び、第2色分離層345と第3プリズム343との間には、それぞれ隙間ないように形成されている。また、ダイクロイックプリズム34は、第1色分離層344に対する3つの色光(赤色光、青色光及び緑色光)の入射角と、第2色分離層345に対する緑色光及び青色光の入射角とは、それぞれ異なり、かつ、第1色分離層344への3つの色光の入射角は、第2色分離層345への緑色光及び青色光の入射角よりも大きくなるように構成されている。
 第1プリズム341は、三角柱状に形成されており、各プリズム341~343のうち、最も凸レンズ366に近い位置、すなわち、当該凸レンズ366に対向する位置に配置される。この第1プリズム341は、凸レンズ366により平行化された光が入射され、かつ、上記合成光が出射される入出射面3411を有する。また、第1プリズム341は、第2プリズム342と接合されている。そして、これら第1プリズム341及び第2プリズム342の間に、入出射面3411を介して入射された光のうち、赤色光を反射させ、緑色光及び青色光を透過させる第1色分離層344が配置されている。
 この第1色分離層344にて反射された赤色光は、入出射面3411に臨界角以上の角度で入射され、第1プリズム341の出射面3412から光変調装置35Rに向けて出射される。
 また、第1色分離層344を透過した青色光及び緑色光は、第2プリズム342に入射される。
 第2プリズム342は、断面が略台形の四角柱状に形成されており、上記第1プリズム341と第3プリズム343とに接合されている。これら第2プリズム342と第3プリズム343との間には、青色光を反射させ、緑色光を透過させる上記第2色分離層345が配置されている。この第2色分離層345と第1色分離層344とは、入出射面3411に凸レンズ366を介して入射される光の中心軸(照明光軸Ax)に対して、それぞれ異なる角度で傾斜している。
 そして、上記第1色分離層344を介して第2プリズム342に入射された青色光及び緑色光のうち、青色光は、第2色分離層345にて反射され、第2プリズム342内を進行して、当該第2プリズム342の出射面3421から光変調装置35Bに向けて出射される。
 一方、第2色分離層345に入射された緑色光は、当該第2色分離層345を透過して、第3プリズム343に入射される。
 第3プリズム343は、上記第2プリズム342と同様に断面が略台形の四角柱状に形成されており、上記のように、第2プリズム342と接合されている。この第3プリズム343に、上記第2色分離層345を介して入射された緑色光は、当該緑色光の進行方向に位置し、かつ、上記入出射面3411と略平行な出射面3431から光変調装置35Gに向けて出射される。
 そして、光変調装置35R,35G,35Bにて変調された各色光は、当該各光変調装置35R,35G,35Bへの各色光の入射経路を逆に辿って合成され、上記入出射面3411から合成光として凸レンズ366に向けて出射される。
 [光変調装置の構成]
 光変調装置35(赤、緑及び青の各色光用の光変調装置を、それぞれ35R,35G,35Bとする)は、それぞれ入射される赤、緑及び青の色光を変調して、画像情報に応じた色画像を形成するものである。これら光変調装置35(35R,35G,35B)は、入射される光を変調する機能を有する反射型光変調装置であり、詳しくは、当該光を反射させる過程で変調する機能を有する。本実施形態では、これら光変調装置35(35R,35G,35B)は、反射型液晶パネルにより構成されており、それぞれ、出射面3412,3421,3431から入射される赤、青及び緑の色光を変調する。
 このような光変調装置35R,35G,35Bは、投射光学装置36のバックフォーカス位置にそれぞれ配置される。
 [投射光学装置の構成]
 図2は、投射光学装置36の構成及び投射光学装置36の一部を構成する凸レンズ366のバックフォーカス位置BF1を示す図である。なお、図2では、バックフォーカス位置BF1の説明が容易になるように、緑色光のバックフォーカス位置(光変調装置35Gの配置位置)を示した他、偏光分離装置322を省略して、照明光軸Axに沿う直線上に各構成が位置するものとして記載している。
 投射光学装置36は、偏光分離装置322により反射されて入射される画像光である上記合成光を被投射面(図示省略)に投射する機能を有する。この投射光学装置36は、図2に示すように、鏡筒360(図1参照)内にそれぞれ収納配置される複数のレンズ361,362,363,364,365と、上記凸レンズ366と、を有する。なお、実際の投射光学装置は、6つのレンズに限らず、より多くのレンズを有する場合もある。
 ここで、上記投射光学装置36のバックフォーカス位置について説明する。
 上述したように、光変調装置35R,35G,35Bは、投射光学装置36のバックフォーカス位置にそれぞれ配置される。詳述すると、各光変調装置35R,35G,35Bは、投射光学装置36を構成する複数のレンズのうち最も光入射側に位置するレンズのバックフォーカス位置BF1に配置される。
 このため、本実施形態では、投射光学装置36は、レンズ設計上、上記鏡筒360内のレンズ361~365に加えて、偏光分離装置322とダイクロイックプリズム34との間に位置する凸レンズ366を有する構成とされていることから、各光変調装置35は、凸レンズ366のバックフォーカス位置BF1に配置される。
 図3は、投射光学装置36の比較例としての投射光学装置36A及び当該投射光学装置36Aのバックフォーカス位置BF2を示す図である。
 ここで、投射光学装置36の比較例としての投射光学装置36Aについて説明する。
 投射光学装置36Aは、図3に示すように、投射光学装置36と同様に、鏡筒360及びレンズ361~365,366Aを有するが、これらレンズ361~365,366Aの全てが鏡筒360内に収納配置されている。これらのうち、レンズ366Aは、上記凸レンズ366と同様の機能を有する。このような投射光学装置36Aが採用される場合には、偏光分離装置322とダイクロイックプリズム34との間に凸レンズが配置される場合であっても、当該凸レンズは、レンズ設計上、投射光学装置36Aに含まれない。
 このような投射光学装置36Aが採用される場合と、本実施形態に係る投射光学装置36が採用される場合とを比較する。
 図2に示す投射光学装置36のバックフォーカスである距離L12(最も光入射側の凸レンズ366から投射光学装置36(レンズ366)のバックフォーカス位置BF1までの距離L12)は、図3に示す投射光学装置36Aのバックフォーカスである距離L22(最も光入射側のレンズ366Aから投射光学装置36A(レンズ366A)のバックフォーカス位置BF2までの距離L22)より短縮される。
 このため、図2に示す投射光学装置36において最も光出射側に位置するレンズ361から凸レンズ366までの距離L11は、図3に示す投射光学装置36Aにおいて最も光出射側に位置するレンズ361と最も光入射側に位置するレンズ366Aまでの距離L21より短い。すなわち、投射光学装置36は、比較例としての投射光学装置36Aよりバックフォーカスが短く、中心軸に沿う方向の寸法が小さな投射光学装置として構成できる。
 具体的に、表1に投射光学装置36を構成するレンズの一例を示し、表2に比較例としての投射光学装置36Aを構成するレンズの一例を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 例えば、レンズ設計において最も光入射側に位置するレンズ(凸レンズ366)が、偏光分離装置322とダイクロイックプリズム34との間に配置される投射光学装置36の構成では、表1に示すように、面番号「4」のレンズは、半径が49.5237、面間隔が39.763257、有効半径が10.170619である。これに対し、投射光学装置36Aの構成では、表2に示すように、面番号「4」のレンズは、半径が102.77722、面間隔が76.890274、有効半径が15.868343となっている。このように、投射光学装置36では、各レンズの面間隔を、投射光学装置36Aを構成する各レンズの面間隔より小さく(略半分に)できる。従って、上記のように、投射光学装置36を、中心軸に沿う方向の寸法が小さい投射光学装置として構成できる。
 また、例えば、投射光学装置36の構成では、表1に示すように、面番号「1」のレンズは、半径が121.69073、面間隔が1.734356、有効半径が11.968877である。これに対し、投射光学装置36Aの構成では、表2に示すように、面番号「1」のレンズは、半径が258.22177、面間隔が1.734469、有効半径が16.566122となっている。このように、投射光学装置36では、各レンズの半径を、投射光学装置36Aを構成する各レンズの半径より小さく(略半分に)できる。従って、投射光学装置36を、各レンズの径方向の寸法においても小型化された投射光学装置として構成できる。
 [実施形態の効果]
 本実施形態のプロジェクター1は、以下の効果を奏する。
 レンズ設計において投射光学装置36を構成する複数のレンズ361~366のうち少なくとも1つのレンズである凸レンズ366が、偏光分離装置322とダイクロイックプリズム34との間に配置されている。これによれば、凸レンズ366が、投射光学装置36において最も光入射側のレンズとなり、当該凸レンズ366のバックフォーカス位置に光変調装置35(35R,35G,35B)を配置できる。このため、凸レンズ366と光変調装置35(35R,35G,35B)との距離を、上記特許文献1に記載の構成に比べて短縮できるので、投射光学装置36の中心軸に沿う寸法を小さくできる。従って、プロジェクター1を小型化できる。
 照明装置31とダイクロイックプリズム34との間に配置される凸レンズ366が配置されているので、偏光分離装置322を通過した光が、当該凸レンズ366を通過することにより、ダイクロイックプリズム34に入射される光を平行化できる。従って、入出射面3411に入射される光が広がることを抑制でき、光変調装置35(35R,35G,35B)に光を確実に入射させることができるので、光の利用効率を高めることができる。また、当該入出射面3411から出射された光を集光して投射光学装置36を構成する他のレンズ361~365に入射させることができる。更に、光変調装置35(35R,35G,35B)が液晶パネルにより構成されているので、ダイクロイックプリズム34に各色光を平行化して入射させることによりコントラストを向上させることができる。
 照明装置31の光源装置31Aから出射された光を偏光変換素子318によりp偏光に変換させ、当該p偏光(第1の偏光)を確実に偏光分離装置322に入射させることができるので、光の利用効率を高めることができる。
 ダイクロイックプリズム34に入射された複数の色光(赤色光、緑色光及び青色光)を複数のプリズム(第1~第3プリズム341~343)及び第1及び第2色分離層344,345により確実に分離させ、当該分離された色光を当該色光のそれぞれに対応する光変調装置35(35R,35G,35B)に入射させることができる。また、1つのダイクロイックプリズム34により、各色光の分離及び合成ができるので、プロジェクター1を小型化できる。
 ダイクロイックプリズム34は、いわゆるギャップレスプリズムにより構成され、第1色分離層344にて反射された赤色光Rは、第1プリズム341の入射/出射面3411にて全反射されて、対応する光変調装置35Rに導かれる。また、第2色分離層345にて反射された青色光Bは、第2プリズム342内を通過して、対応する光変調装置35Bに導かれ、当該第2色分離層345を透過した緑色光Gは、第3プリズム343を透過して、対応する光変調装置35Gに導かれる。このようなダイクロイックプリズム34では、第1プリズム341と第1色分離層344との間、第1色分離層344と第2プリズム342との間、第2プリズム342と第2色分離層345との間、及び、第2色分離層と第3プリズム343との間に、隙間がない。このため、ダイクロイックプリズム34では、いわゆるフィリップスプリズムにより構成される場合に必要とされる隙間を必要としない。
 偏光分離装置322はプレート型のPBSであるため、変調された光(第2の偏光)が傾斜した当該プレートを透過すると収差が発生する場合がある。これに対し、本実施形態によれば、光変調装置35により変調されたs偏光(第2の偏光)が、当該偏光分離装置322のプレートを反射するので、当該偏光分離装置322をp偏光(第1の偏光)が透過する場合に比べて、上記収差の発生を抑制できる。
 [実施形態の変形]
 本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 上記実施形態では、ダイクロイックプリズム34は、いわゆるギャップレスプリズムにより構成されるとした。しかしながら、本発明は、これに限らない。例えば、ダイクロイックプリズム34は、フィリップスプリズムにより構成されてもよい。
 図4は、フィリップスプリズムにより構成されるダイクロイックプリズム37を示す模式図である。
 フィリップスプリズムにより構成されるダイクロイックプリズム37は、ギャップレスプリズムにより構成されたダイクロイックプリズム34と同様に、図4に示すように、第1プリズム371、第2プリズム372及び第3プリズム373と、第1色分離層374及び第2色分離層375と、を有し、これらプリズム371~373が組み合わされた構成を有する。
 第1プリズム371は、上記第1プリズム341と同様に、略三角柱状に形成され、第1~第3プリズム371~373のうち最も偏光分離装置322に近い位置に配置される。この第1プリズム371は、照明光軸Axに直交する入出射面3711を有し、当該入出射面3711を介して、偏光分離装置322を通過した光が第1プリズム371内に入射される。
 このような第1プリズム371と、当該第1プリズム371に接合される第2プリズム372との間には、第1色分離層374が、照明光軸Axに対して傾斜するように配置されている。具体的に、第1色分離層374は、第1プリズム371において入出射面3711とは反対側の面に形成されている。
 この第1色分離層374は、上記第1色分離層344と同様に、所定閾値以上又は以下の光を反射させ、その他の波長の光を透過させる。
 例えば、第1色分離層374が、入射される光のうち、青色光Bを反射させ、緑色光G及び赤色光Rを透過させる構成である場合には、当該第1色分離層374によって反射された青色光Bは、第1プリズム371の内側から上記入出射面3711に臨界角以上の角度にて入射される。そして、当該青色光Bは、第1プリズム371の出射面3712から、当該出射面3712に対向する青色光用の光変調装置35B(図示省略)に入射される。
 一方、第1色分離層374に入射された緑色光G及び赤色光Rは、当該第1色分離層374を通過し、更に、第1プリズム371と第2プリズム372との間に形成された隙間GPを通過して、当該第2プリズム372に入射される。
 第2プリズム372は、略三角柱状に形成されており、第1プリズム371との間に数μm程度の隙間GPを介して配置されている。この第2プリズム372と、第3プリズム373との間には、第2色分離層375が、照明光軸Axに対して上記第1色分離層374とは反対側に傾斜するように配置されている。
 この第2色分離層375は、第2色分離層345と同様に、隙間GPを介して第1プリズム371から入射される光のうち、第1色分離層374とは異なる閾値以上又は以下の光を反射させ、その他の波長の光を透過させる。
 例えば、第2色分離層375が、入射される緑色光G及び赤色光Rのうち、赤色光Rを反射させ、緑色光Gを透過させる構成である場合には、当該第2色分離層375によって反射された赤色光Rは、第2プリズム372の内側から第1プリズム371に対向する端面3721に臨界角以上の角度で入射される。そして、当該赤色光Rは、第2プリズム372の出射面3722から、当該出射面3722に対向する赤色光用の光変調装置35R(図示省略)に入射される。
 一方、第2色分離層375を透過した緑色光Gは、第2プリズム372と隙間なく接合される第3プリズム373に入射される。
 第3プリズム373は、断面が略台形の四角柱状に形成されている。この第3プリズム373は、第2プリズム372から光が入射される面とは反対側に、上記入出射面3711と平行な出射面3731、すなわち、照明光軸Axに直交する出射面3731を有する。そして、第3プリズム373に入射された緑色光Gは、出射面3731から、当該出射面3731に対向する緑色光用の光変調装置35G(図示省略)に入射される。
 そして、光変調装置35B,35G,35Rにて変調された各色光B,G,Rは、当該各光変調装置35B,35G,35Rへの各色光B,G,Rの入射経路を逆に辿って合成され、上記入出射面3711から合成光として偏光分離装置322に向けて出射される。
 このようなダイクロイックプリズム37においても、第1色分離層374及び第2色分離層375は、それぞれ異なる角度で照明光軸Axに対して交差しており、各色分離層374、375への光の入射角もそれぞれ異なる。
 例えば、第1色分離層374は、照明光軸Axに沿って入射される光の入射角が-28°となるように傾斜しているのに対し、第2色分離層375は、当該照明光軸Axに沿って入射される光の入射角が+11°となるように傾斜している。
 このため、フィリップスプリズムにより構成されたダイクロイックプリズム37が採用される場合でも、上記ギャップレスプリズムにより構成されたダイクロイックプリズム34が採用される場合と同様に、第1色分離層374及び第2色分離層375は、入射される直線偏光の種別毎に色分離特性がそれぞれ異なる。
 このようなダイクロイックプリズム37が、上記ダイクロイックプリズム34に代えてプロジェクターに採用される場合でも、各色分離層374,375への光の入射角と、当該プロジェクターに用いられる照明装置31(詳しくは光源装置31A)による出射光の波長分布とに基づいて、第1色分離層374及び第2色分離層375にて分離される色光を設定することにより、上記プロジェクター1と同様の効果を奏することができる。
 なお、フィリップスプリズムにより構成されたダイクロイックプリズム37では、上記数μm程度の隙間GPを隔てて配置する必要があるが、第2色分離層375にて反射された光を、第2プリズム372において第1プリズム371と対向する面にて内面反射させて、対応する光変調装置35に導く構成であるため、上記ギャップレスプリズムにより構成されたダイクロイックプリズム34において、色分離層に入射する光の入射角の大きい第2色分離層345への入射角を小さくすることができる。このため、ダイクロイックプリズム37は、ダイクロイックプリズム34に比べて、色分離特性が良い。
 一方、ダイクロイックプリズム34では、上記のように、ダイクロイックプリズム37にて必要とされる隙間GPの調整が不要である。
 また、上記実施形態では、ダイクロイックプリズム34は、いわゆるギャップレスプリズムにより構成されるとした。しかしながら、本発明は、これに限らない。例えば、ダイクロイックプリズム34は、クロスダイクロイックプリズムにより構成されてもよい。
 上記実施形態では、投射光学装置36の最も光入射側に位置するレンズを凸レンズ366により構成することとした。しかしながら、本発明は、これに限らない。例えば、凹レンズ等であってもよい。この場合であっても、上記距離L12を小さくできるので、投射光学装置36の光源装置から出射される光の中心軸に沿う方向の距離L11(寸法)を小さくできる。
 上記実施形態では、光変調装置として反射型の光変調装置35(35R,35G,35B)を用い、ダイクロイックプリズム34により分離された光をそれぞれ変調し、反射する構成とした。しかしながら、本発明は、これに限らない。例えば、光変調装置35(35R,35G,35B)に代えて、透過型の光変調装置を用いてもよい。この場合、透過型の光変調装置を透過し、変調した光を再度ダイクロイックプリズム34に出射する構成を当該透過型の光変調装置近傍に設ければよい。
 上記実施形態では、照明装置31の固体光源装置311は、青色光を出射するレーザー光源により構成されることとした。しかしながら、本発明は、これに限らない。例えば、照明装置31の固体光源装置311に代えて、光源ランプ及びリフレクターを設けることとしてもよい。この場合、光源ランプ及びリフレクターから出射された光は、赤色、緑色及び青色を含むので、回転蛍光板313及びモーター314を設けなくてもよい。
 上記実施形態では、光学ユニット3は略L字状に構成されていたが、本発明はこれに限らない。例えば、略U字状に構成された光学ユニットを採用してもよい。
 上記実施形態では、プロジェクター1は、3つの光変調装置35(35R,35G,35B)を備えるとしたが、本発明はこれに限らない。すなわち、2つ以下、あるいは、4つ以上の光変調装置を用いたプロジェクターにも、本発明を適用可能である。
 また、入射光束を変調して画像情報に応じた画像を形成可能な光変調装置であれば、マイクロミラーを用いたデバイス、例えば、DMD(Digital Micromirror Device)等を利用したものなど、液晶以外の光変調装置を用いてもよい。
 1…プロジェクター、31A…光源装置、311…固体光源装置、318…偏光変換素子、322…偏光分離装置、366…凸レンズ(平行化レンズ)、34,37…ダイクロイックプリズム(色分離合成装置)、341,371…第1プリズム、342,372…第2プリズム、343,373…第3プリズム、344,374…第1色分離層、345,375…第2色分離層、3411,3711…入出射面、35,35R,35G,35B…光変調装置、36,36A…投射光学装置、361,362,363,364,365,366A…レンズ、Ax…照明光軸、BF1…バックフォーカス位置、BF2…バックフォーカス位置。

Claims (7)

  1.  第1の偏光を出射する照明装置と、
     前記照明装置により出射された前記出射光に含まれる複数の色光のそれぞれに応じて設けられ、前記複数の色光をそれぞれ変調する複数の光変調装置と、
     前記照明装置と前記複数の光変調装置との間に配置され、入出射面を介して内部に入射される前記出射光から前記複数の色光を分離してそれぞれ前記複数の光変調装置に入射させ、前記複数の光変調装置により変調されて入射される前記複数の色光を合成した合成光を前記入出射面を介して出射する色分離合成装置と、
     前記照明装置と前記色分離合成装置との間に配置され、前記第1の偏光と前記第1の偏光に直交する第2の偏光との一方を透過し、他方を反射する偏光分離装置と、
     前記偏光分離装置から出射された前記合成光を投射する投射光学装置と、を備え、
     前記投射光学装置は、複数のレンズを有し、
     前記複数のレンズのうち少なくとも1つのレンズは、前記照明装置と前記色分離合成装置との間に配置されることを特徴とするプロジェクター。
  2.  請求項1に記載のプロジェクターにおいて、
     前記照明装置と前記色分離合成装置との間に配置されるレンズは、前記照明装置から入射される光を平行化するレンズを含むことを特徴とするプロジェクター。
  3.  請求項1又は請求項2に記載のプロジェクターにおいて、
     前記照明装置は、
     光源装置と、
     前記光源装置から出射された出射光を第1の偏光に揃える偏光変換素子と、を備えることを特徴とするプロジェクター。
  4.  請求項1から請求項3のいずれか一項に記載のプロジェクターにおいて、
     前記色分離合成装置は、
     複数のプリズムと色分離層とを備えたダイクロイックプリズムであることを特徴とするプロジェクター。
  5.  請求項4に記載のプロジェクターにおいて、
     前記出射光に含まれる3つの色光のそれぞれに応じて設けられる前記光変調装置を3つ備え、
     前記ダイクロイックプリズムは、
     前記3つの光変調装置のうち、対応する光変調装置にそれぞれ対向する第1プリズム、第2プリズム及び第3プリズムと、
     前記入出射面を有する第1プリズム、及び、前記第1プリズムに対向する前記第2プリズムの間に位置し、前記第1プリズム内に入射された前記出射光に含まれる前記3つの色光のうち、第1色光と、第2色光及び第3色光とを分離する第1色分離層と、
     前記第2プリズム、及び、前記第2プリズムに対向する第3プリズムの間に位置し、前記第1色分離層を介して前記第2プリズム内に入射された前記第2色光及び前記第3色光のうち、前記第2色光を反射させ、前記第3色光を透過させる第2色分離層と、を有し、
     前記第1色分離層と前記第2プリズムとの間には、隙間が設けられ、
     前記第1プリズムと前記第1色分離層との間、前記第2プリズムと前記第2色分離層との間、及び、前記第2色分離層と前記第3プリズムとの間には、それぞれ隙間がなく、
     前記第1色分離層に対する前記3つの色光の入射角と、前記第2色分離層に対する前記第2色光及び前記第3色光の入射角とは、それぞれ異なり、かつ、前記第1色分離層への前記3つの色光の入射角は、前記第2色分離層への前記第2色光及び前記第3色光の入射角よりも大きいことを特徴するプロジェクター。
  6.  請求項4に記載のプロジェクターにおいて、
     前記出射光に含まれる3つの色光のそれぞれに応じて設けられる前記光変調装置を3つ備え、
     前記ダイクロイックプリズムは、
     前記3つの光変調装置のうち、対応する光変調装置にそれぞれ対向する第1プリズム、第2プリズム及び第3プリズムと、
     前記入出射面を有する第1プリズム、及び、前記第1プリズムに対向する前記第2プリズムの間に位置し、前記第1プリズム内に入射された前記出射光に含まれる前記3つの色光のうち、第1色光と、第2色光及び第3色光とを分離する第1色分離層と、
     前記第2プリズム、及び、前記第2プリズムに対向する第3プリズムの間に位置し、前記第1色分離層を介して前記第2プリズム内に入射された前記第2色光及び前記第3色光のうち、前記第2色光を反射させ、前記第3色光を透過させる第2色分離層と、を有し、
     前記第1色分離層と前記第2プリズムとの間、前記第1プリズムと前記第1色分離層との間、前記第2プリズムと前記第2色分離層との間、及び、前記第2色分離層と前記第3プリズムとの間には、それぞれ隙間がなく、
     前記第1色分離層に対する前記3つの色光の入射角と、前記第2色分離層に対する前記第2色光及び前記第3色光の入射角とは、それぞれ異なり、かつ、前記第1色分離層への前記3つの色光の入射角度は、前記第2色分離層への前記第2色光及び前記第3色光の入射角よりも小さいことを特徴するプロジェクター。
  7.  請求項1から請求項6のいずれか一項に記載のプロジェクターにおいて、
     前記偏光分離装置は、前記第1の偏光を透過させ、前記合成光に含まれる前記第2の偏光を投射光学装置に向けて反射させることを特徴とするプロジェクター。
PCT/JP2016/001089 2015-03-13 2016-03-01 プロジェクター WO2016147580A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015050508A JP2016170302A (ja) 2015-03-13 2015-03-13 プロジェクター
JP2015-050508 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147580A1 true WO2016147580A1 (ja) 2016-09-22

Family

ID=56920182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001089 WO2016147580A1 (ja) 2015-03-13 2016-03-01 プロジェクター

Country Status (2)

Country Link
JP (1) JP2016170302A (ja)
WO (1) WO2016147580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034166A1 (ja) * 2022-08-10 2024-02-15 アルプスアルパイン株式会社 光学装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140575B2 (ja) * 2018-07-12 2022-09-21 キヤノン株式会社 色分離合成系およびこれを備える画像投射装置
WO2022227091A1 (zh) * 2021-04-30 2022-11-03 深圳华大智造科技股份有限公司 视场拼接***及方法、生物样品识别裝置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326315A (ja) * 1991-04-26 1992-11-16 Canon Inc 投射光学系及びそれを有する光学機器
JPH10319344A (ja) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd 投写型表示装置
JP2003202629A (ja) * 2001-11-05 2003-07-18 Sharp Corp プロジェクション光学装置
WO2007015389A1 (ja) * 2005-08-04 2007-02-08 Matsushita Electric Industrial Co., Ltd. 照明装置及びそれを用いた投写型表示装置
JP2012155004A (ja) * 2011-01-24 2012-08-16 Seiko Epson Corp 照明装置およびプロジェクター
JP2013511066A (ja) * 2009-11-11 2013-03-28 イーストマン コダック カンパニー 位相補償型薄膜ビームコンバイナ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326315A (ja) * 1991-04-26 1992-11-16 Canon Inc 投射光学系及びそれを有する光学機器
JPH10319344A (ja) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd 投写型表示装置
JP2003202629A (ja) * 2001-11-05 2003-07-18 Sharp Corp プロジェクション光学装置
WO2007015389A1 (ja) * 2005-08-04 2007-02-08 Matsushita Electric Industrial Co., Ltd. 照明装置及びそれを用いた投写型表示装置
JP2013511066A (ja) * 2009-11-11 2013-03-28 イーストマン コダック カンパニー 位相補償型薄膜ビームコンバイナ
JP2012155004A (ja) * 2011-01-24 2012-08-16 Seiko Epson Corp 照明装置およびプロジェクター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034166A1 (ja) * 2022-08-10 2024-02-15 アルプスアルパイン株式会社 光学装置

Also Published As

Publication number Publication date
JP2016170302A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
US10904498B2 (en) Light source apparatus, projector, and light source module
US9407886B2 (en) Illumination optical system and projector including fluorophore
US8955985B2 (en) Lighting device and projection-type display device using same
JP7131120B2 (ja) 照明装置及びプロジェクター
JP4514440B2 (ja) 投写型映像表示装置
US10101647B2 (en) Illuminator and projector
US10599025B2 (en) Light source device and projector
JP7070620B2 (ja) 光源装置およびプロジェクター
JP2017083636A (ja) 照明装置及びプロジェクター
JP2020024318A (ja) 光源装置およびプロジェクター
WO2016147580A1 (ja) プロジェクター
JP2017015966A (ja) 光源装置およびプロジェクター
JP7008177B2 (ja) 投写型映像表示装置
US11156825B2 (en) Projector
JP2017146552A (ja) 照明装置及びプロジェクター
JP2007322584A (ja) 照明装置及びそれを用いた投写型映像表示装置
JP7330787B2 (ja) 光源装置およびこれを備える画像投射装置
JP7188161B2 (ja) プロジェクター
US9860497B2 (en) Illumination device and projector
JP7131177B2 (ja) 光源装置およびプロジェクター
WO2016147578A1 (ja) プロジェクター
JP6701681B2 (ja) 照明装置及びプロジェクター
JP7428070B2 (ja) 光源光学系、光源装置及び画像投射装置
JP7342624B2 (ja) 光源装置、画像投射装置及び光源光学系
JP2021067872A (ja) 照明装置及び投写型映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764413

Country of ref document: EP

Kind code of ref document: A1