WO2016145810A1 - Oled基板及制备方法、oled面板及显示装置 - Google Patents

Oled基板及制备方法、oled面板及显示装置 Download PDF

Info

Publication number
WO2016145810A1
WO2016145810A1 PCT/CN2015/089920 CN2015089920W WO2016145810A1 WO 2016145810 A1 WO2016145810 A1 WO 2016145810A1 CN 2015089920 W CN2015089920 W CN 2015089920W WO 2016145810 A1 WO2016145810 A1 WO 2016145810A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oled
substrate
insulating layer
gate
Prior art date
Application number
PCT/CN2015/089920
Other languages
English (en)
French (fr)
Inventor
敖宁
白妮妮
张朝波
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/507,044 priority Critical patent/US10033010B2/en
Publication of WO2016145810A1 publication Critical patent/WO2016145810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED substrate and a method for fabricating the same, an OLED panel, and an OLED display device.
  • the degree of sealing of the package of the OLED device directly affects the lifetime of the OLED device, and therefore, it is an important indicator for evaluating the quality of the OLED device.
  • FIG. 1 is a schematic view showing a partial structure of an OLED panel in the prior art.
  • the OLED panel is formed by the OLED substrate 1 and the package substrate 2 to the case.
  • the OLED substrate 1 includes a substrate 10 and a light emitting structure (including an anode layer, a cathode layer, an organic functional layer, and the like) prepared on the substrate 10.
  • An interlayer insulating layer (ILD) 12 is further provided in an edge region of the OLED substrate 1, and the interlayer insulating layer 12 is located at the outermost side of the OLED substrate 1.
  • the package substrate 2 includes a glass layer 20 and a glass paste 21 prepared in an edge region of the glass layer 20.
  • the glass paste 21 is brought into contact with the interlayer insulating layer 12, and the glass paste 21 is melted by laser irradiation, thereby bonding the OLED substrate 1 and the package substrate 2 together.
  • the lateral strength between the glass paste 21 and the interlayer insulating layer 12 is small, making it difficult for the above OLED panel to withstand a large lateral tensile force (ie, a force parallel to the substrate 10 and the glass layer 20).
  • a large lateral tensile force ie, a force parallel to the substrate 10 and the glass layer 20.
  • the lateral tensile force is large, relative movement between the OLED substrate 1 and the package substrate 2 in the OLED panel may occur, thereby causing poor sealing effect of the OLED panel and affecting the life of the OLED panel.
  • embodiments of the present invention provide an OLED substrate and a manufacturing method thereof, an OLED panel, and an OLED display device, which can improve the lateral tensile force of the OLED panel and make the structural stability of the OLED panel more stable. High, with Good sealing effect, which in turn makes the OLED panel have a long service life.
  • An embodiment of the present invention provides an OLED substrate in which an interlayer insulating layer is disposed in an edge region of the OLED substrate, and at least one recess is disposed on a surface of the interlayer insulating layer.
  • the interlayer insulating layer may include at least one layer of insulating material.
  • the depth of the recess may be no more than 20% of the thickness of the interlayer insulating layer.
  • the number of the recesses may be plural, and the edges of the adjacent recesses may be in contact with each other.
  • the number of the recesses may be plural, and the plurality of recesses are evenly distributed on the surface of the interlayer insulating layer.
  • the interlayer insulating layer is disposed in the same layer as the insulating layer above the gate layer in the display region of the OLED substrate.
  • the edge region of the OLED substrate further includes at least one of an active layer, a gate insulating layer, and a gate layer formed under the interlayer insulating layer.
  • the active layer, the gate insulating layer, and/or the gate layer in the edge region of the OLED substrate are respectively disposed in the same manner as the active layer, the gate insulating layer, and/or the gate layer in the thin film transistor circuit of the OLED substrate Floor.
  • Another embodiment of the present invention provides a method of fabricating an OLED substrate, comprising: providing a substrate; forming at least one layer of insulating material on an edge region of the substrate; and surface of the at least one layer of insulating material A recess is formed thereon to form an interlayer insulating layer.
  • the at least one layer of insulating material may be formed while forming an insulating layer over the gate layer in the display region of the OLED substrate before the recess is formed.
  • the recess may be formed by a photolithography process.
  • an interlayer insulating layer having a recess on the surface may be formed using a half exposure process.
  • the depth of the recess may be no more than 20% of the total thickness of the at least one layer of insulating material.
  • the method may further include forming at least one of an active layer, a gate insulating layer, and a gate layer on an edge region of the substrate.
  • Active layer, gate insulation in a thin film transistor circuit forming the OLED substrate The active layer, the gate insulating layer, and/or the gate layer may be formed on an edge region of the substrate while the layer and/or the gate layer are simultaneously.
  • Yet another embodiment of the present invention provides an OLED panel including the above OLED substrate.
  • the OLED panel may further include a package substrate in which a glass paste is formed in an edge region of the package substrate, and a recessed surface of the interlayer insulating layer is bonded to the glass paste.
  • Yet another embodiment of the present invention provides an OLED display device including the above OLED panel.
  • a recess is provided on the surface of the interlayer insulating layer, and when the OLED substrate and the package substrate are packaged, the glass paste of the package substrate passes.
  • the recess is inlaid into the interlayer insulating layer, so that the glass paste and the interlayer insulating layer are bonded to each other, so that the lateral tensile strength between the interlayer insulating layer and the glass paste can be increased, that is, the OLED substrate and the package substrate are enlarged.
  • the transverse tensile force can improve the structural stability of the OLED panel, ensure the sealing effect of the OLED panel, and improve the service life of the OLED panel.
  • FIG. 1 is a schematic view showing a partial structure of an OLED panel in the prior art
  • FIG. 2 is a schematic view showing a partial structure of an OLED substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a partial structure of an OLED substrate and a package substrate after a pair of boxes according to an embodiment of the present invention
  • FIG. 4 is a flow chart of preparing an interlayer insulating layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing an edge structure of an OLED substrate after completion of preparation of an insulating material layer according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing an edge structure of an OLED substrate after coating a photoresist on an insulating material layer according to an embodiment of the present invention
  • FIG. 7 is a schematic view showing an edge structure of an OLED substrate after exposure and development according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an edge structure of an OLED substrate after etching according to an embodiment of the present invention.
  • FIG. 9 is a schematic view of a mask used in fabricating a structure of an interlayer insulating layer according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a partial structure of an OLED panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a partial structure of an OLED substrate 1 according to an embodiment of the present invention.
  • the OLED substrate 1 includes a substrate 10 and an interlayer insulating layer 12 disposed in an edge region of the OLED substrate 1, and at least one recess is provided on a surface of the interlayer insulating layer 12.
  • FIG. 3 is a schematic diagram showing a partial structure of the OLED substrate 1 and the package substrate 2 after the cassette is attached to the package according to an embodiment of the present invention.
  • the package substrate 2 includes a glass layer 20 and a glass paste 21 disposed in an edge region of the package substrate 2.
  • a recess is provided on the surface of the interlayer insulating layer 12.
  • the glass paste 21 of the package substrate 2 may be embedded through the recess.
  • the interlayer insulating layer 12 is such that the glass paste 21 and the interlayer insulating layer 12 are bonded to each other, which can increase the lateral tensile strength between the interlayer insulating layer 12 and the glass paste 21, that is, increase the OLED substrate 1 and
  • the lateral tensile force between the package substrates 2 can improve the stability of the OLED panel, ensure the sealing effect of the OLED panel, and improve the service life of the OLED panel.
  • the interlayer insulating layer 12 includes at least one layer of insulating material.
  • the interlayer insulating layer 12 includes two insulating material layers 120, 121, the insulating material of the insulating material layer 120 is SiO x , and the insulating material of the insulating material layer 121 is SiN x .
  • the depth of the recess is not more than 20% of the thickness of the interlayer insulating layer 12.
  • Such an arrangement can make the recess have a certain depth, thereby ensuring the transverse tensile strength between the interlayer insulating layer 12 and the glass paste 21, while ensuring that the interlayer insulating layer 12 has sufficient position at a position corresponding to the recess. Thickness, thus playing a good insulation.
  • the number of the recesses may be plural.
  • the edges of the adjacent depressions can be arranged to be in contact with each other, that is, the plurality of depressions are formed in a "zigzag shape", so that the lateral direction between the interlayer insulation layer 12 and the glass paste 21 can be maximized.
  • Tensile strength improves the stability of OLED panels.
  • the plurality of recesses may be uniformly distributed on the surface of the interlayer insulating layer 12, so that the interlayer insulating layer 12 and the glass paste 21 may be disposed.
  • the area is evenly subjected to friction.
  • the interlayer insulating layer 12 is disposed in the same layer as the insulating layer above the gate layer in the display region, and the edge region of the OLED substrate 1 further includes an active layer 13 and a gate insulating layer 14 formed under the interlayer insulating layer 12 and At least one of the gate layers 15.
  • disposed in the same layer means “formed in the same patterning process", that is, formed using the same mask in the patterning process.
  • a thin film transistor circuit is formed in the display region of the OLED substrate 1, that is, a structure such as an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, and an S/D layer is sequentially formed.
  • the gate layer is simultaneously formed, that is, when the active layer, the gate insulating layer, and/or the gate layer in the circuit of the OLED substrate 1 is formed, the active layer 13 and the gate insulating layer 14 remain in the edge region of the OLED substrate 1.
  • the interlayer insulating layer 12 facilitates bonding with the glass paste 21.
  • an active layer 13, a gate insulating layer 14, and a gate layer 15 are disposed under the interlayer insulating layer 12.
  • the interlayer is absolutely The surface of the edge layer 12 is provided with a recess.
  • the interlayer insulating layer 12 and the glass paste 21 of the package substrate 2 can be bonded to each other through the recess. It is possible to increase the lateral tensile strength between the interlayer insulating layer 12 and the glass paste 21, that is, to increase the lateral tensile force between the OLED substrate 1 and the package substrate 2, thereby improving the structural stability of the OLED panel. Ensure the sealing effect of the OLED panel and improve the service life of the OLED panel.
  • FIG. 4 is a flow chart of a method for preparing an OLED substrate according to an embodiment of the present invention.
  • the method for preparing an OLED substrate includes the following steps S1 to S3.
  • step S1 the substrate 10 is provided.
  • step S2 at least one layer of insulating material is formed on the edge region of the substrate 10, as shown in FIG.
  • the material of the insulating material layer may specifically be SiO x , SiN x or other insulating materials.
  • SiO x and SiN x are sequentially deposited, thereby obtaining two insulating material layers 120, 121, that is, an SiO x layer and a SiN x layer, on the substrate 1.
  • the at least one layer of insulating material that is, the gate in the display region of the OLED substrate, may be formed on the edge region of the substrate 10 while forming the insulating layer over the gate layer in the display region of the OLED substrate.
  • the insulating layer above the layer and the at least one layer of insulating material may be formed in the same patterning process.
  • step S3 a recess is formed on the surface of the formed uppermost insulating material layer to form an interlayer insulating layer 12, as shown in FIG.
  • a recess is formed on the surface of the SiN x layer 121.
  • the preparation of the recess can be achieved by a photolithography process.
  • the photolithography process for preparing the recess may include the following steps S30 to S33.
  • a photoresist 30 is coated on the surface of the uppermost layer of the insulating material, as shown in FIG.
  • the photoresist 30 may be a positive photoresist or a negative photoresist.
  • step S31 the photoresist 30 is exposed and developed as shown in FIG.
  • step S32 etching is performed to form a recess on the surface of the uppermost layer of the insulating material, as shown in FIG.
  • the exposed regions of the insulating material layer are all circular, and a circular recess can be obtained by the etching process of step S32.
  • the mask used for exposing the photoresist 30 is set to have a circular light transmission.
  • the region, as shown in FIG. 9; in the case where the photoresist 30 is a negative photoresist, the mask used for exposing the photoresist 30 is disposed to have a circular non-transmissive region.
  • step S33 the residual photoresist 30 on the surface of the insulating material layer is peeled off, and after removing, the interlayer insulating layer 12 as shown in FIG. 2 is obtained.
  • the surface of the interlayer insulating layer 12 prepared according to the above steps has a recess.
  • the glass paste 21 of the package substrate 2 can be inlaid into the interlayer insulating layer through the recess. 12, the glass paste 21 and the interlayer insulating layer 12 are bonded to each other, so that the lateral tensile strength between the interlayer insulating layer 12 and the glass paste 21 can be increased, that is, the OLED substrate 1 and the package substrate 2 are enlarged.
  • the lateral tensile force can improve the structural stability of the OLED panel, ensure the sealing effect of the OLED panel, and improve the service life of the OLED panel.
  • the etching depth in the etching process is not more than 20% of the total thickness of the insulating material layer.
  • the depth of the recess is no more than 20% of the sum of the thicknesses of the SiO x layer 120 and the SiN x layer 121.
  • Such an arrangement can make the recess have a certain depth, thereby ensuring the lateral tensile strength between the interlayer insulating layer 12 and the glass paste 21, while ensuring that the interlayer insulating layer 12 has a sufficient thickness at a position corresponding to the recess, thereby To good insulation.
  • a plurality of depressions are formed on the surface of the insulating material layer, and edges of adjacent depressions are in contact with each other, that is, the plurality of depressions form a "zigzag" structure, which can be maximized.
  • the transverse tensile strength between the interlayer insulating layer 12 and the glass paste 21 improves the stability of the OLED panel.
  • the plurality of recesses may be uniformly distributed on the surface of the insulating material layer, such that the interlayer insulating layer 12 and the glass paste 21 may be disposed. Each zone is evenly subjected to friction.
  • At least one of the active layer 13, the gate insulating layer 14, and the gate layer 15 is formed under the interlayer insulating layer 12.
  • Active layer 13, gate insulating layer 14 and/or gate layer 15 Forming simultaneously with the active layer, the gate insulating layer, and/or the gate layer in the circuit of the OLED substrate, that is, in the active layer, the gate insulating layer, and/or the gate layer in the circuit forming the OLED substrate, in the OLED
  • the edge region of the substrate retains the structure of the active layer 13, the gate insulating layer 14 and/or the gate layer 15 without being etched away, so that the interlayer insulating layer 12 can be raised, that is, on the substrate 20
  • the interlayer insulating layer 12 is prepared at a high height to facilitate bonding with the glass paste 21.
  • FIG. 10 is a schematic diagram of a partial structure of an OLED panel according to an embodiment of the present invention.
  • the OLED panel includes the OLED substrate 1 and the package substrate 2 provided by the above embodiments of the present invention.
  • the surface of the OLED substrate 1 that is in contact with the package substrate 2 is an interlayer insulating layer 12 .
  • the surface of the package substrate 2 that is in contact with the OLED substrate 1 is a glass paste 21, and the interlayer insulating layer 12 is welded to the glass paste 21, and the surface of the interlayer insulating layer 12 has a recess.
  • the surface of the interlayer insulating layer 12 has a recess, so that the OLED substrate 1 and the glass paste 21 of the package substrate 2 are bonded to each other through the recess, so that the interlayer insulating layer 12 and the glass can be enlarged.
  • the transverse tensile strength between the glue 21 increases the lateral tensile force between the OLED substrate 1 and the package substrate 2, thereby improving the structural stability of the OLED panel, improving the sealing effect of the OLED panel, and improving the OLED panel. The service life.
  • Another embodiment of the present invention provides an OLED display device.
  • the OLED display device includes the OLED panel provided by the above embodiments of the present invention.
  • the lateral tensile force of the OLED panel is larger, so that the OLED panel of the OLED display device has better stability and sealing effect, thereby improving the service life of the OLED display device.
  • the active layer 13, the gate insulating layer 14, and/or the gate layer 15 are sequentially disposed or formed on the substrate 10 under the interlayer insulating layer 12.
  • the gate layer 15, the gate insulating layer 14, and/or the active layer 13 may be sequentially disposed or formed on the substrate 10 as long as the gate layer 15 and the gate insulating layer
  • the layer 14 and/or the active layer 13 may be used to raise the interlayer insulating layer 12.
  • the term "and/or" refers to any of the listed elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED基板(1)及制备方法、OLED面板及OLED显示装置。在所述OLED基板(1)的边缘区域中形成有层间绝缘层(12),在所述层间绝缘层(12)的表面上形成有凹陷,从而可以增加层间绝缘层(12)与封装基板的横向抗拉强度,即,增大OLED基板(1)与封装基板之间的横向抗拉力,从而提高OLED面板的稳定性,保证OLED面板的密封效果,提高OLED面板的使用寿命。

Description

OLED基板及制备方法、OLED面板及显示装置 技术领域
本发明涉及显示技术领域,具体地涉及OLED基板及制备方法、OLED面板及OLED显示装置。
背景技术
OLED器件的封装的密封程度直接影响OLED器件的寿命,因此,其是评价OLED器件好坏的重要指标。
图1为现有技术中的OLED面板的部分结构的示意图。如图1所示,OLED面板由OLED基板1和封装基板2对盒形成。OLED基板1包括基板10以及制备在基板10上的发光结构(包括阳极层、阴极层、有机功能层等)。在OLED基板1的边缘区域中还设置有层间绝缘层(ILD)12,所述层间绝缘层12位于OLED基板1的最外侧。封装基板2包括玻璃层20以及制备在玻璃层20的边缘区域中的玻璃胶21。在将OLED基板1和封装基板2对盒时,使玻璃胶21与层间绝缘层12对接,并且通过激光照射使玻璃胶21熔融,从而使OLED基板1和封装基板2粘结在一起。
在实际中,玻璃胶21与层间绝缘层12之间的横向强度较小,使得上述OLED面板难以承受较大的横向拉力(即,方向平行于基板10和玻璃层20的力)。在横向拉力较大时,上述OLED面板中的OLED基板1和封装基板2之间会发生相对移动,从而导致OLED面板的密封效果变差,影响OLED面板的寿命。
发明内容
为了解决现有技术中存在的至少上述技术问题,本发明实施例提供OLED基板及制备方法、OLED面板及OLED显示装置,其可以提高OLED面板的横向抗拉力,使OLED面板的结构稳定性更高,具有 良好的密封效果,进而使OLED面板具有较长的使用寿命。
本发明的一个实施例提供一种OLED基板,在所述OLED基板的边缘区域中设置有层间绝缘层,在所述层间绝缘层的表面上设置有至少一个凹陷。
所述层间绝缘层可以包括至少一层绝缘材料层。
所述凹陷的深度可以不大于所述层间绝缘层的厚度的20%。
所述凹陷的数量可以为多个,并且相邻凹陷的边缘可以彼此相接。
所述凹陷的数量可以为多个,并且所述多个凹陷在所述层间绝缘层的表面上均匀分布。
所述层间绝缘层与所述OLED基板的显示区域中的栅极层上方的绝缘层设置在同一层。
所述OLED基板的边缘区域还包括形成在所述层间绝缘层下方的有源层、栅绝缘层和栅极层中的至少一种。所述OLED基板的边缘区域中的有源层、栅绝缘层和/或栅极层分别与所述OLED基板的薄膜晶体管电路中的有源层、栅绝缘层和/或栅极层设置在同一层。
本发明的另一个实施例提供一种制备OLED基板的方法,其包括:提供基板;在所述基板的边缘区域上形成至少一层绝缘材料层;以及在所述至少一层绝缘材料层的表面上制备凹陷,以形成层间绝缘层。
在制备所述凹陷之前,在形成所述OLED基板的显示区域中的栅极层上方的绝缘层的同时,可以形成所述至少一层绝缘材料层。
所述凹陷可以通过光刻工艺形成。
在形成所述OLED基板的显示区域中的栅极层上方的绝缘层时,可以利用半曝光工艺形成表面具有凹陷的层间绝缘层。
所述凹陷的深度可以不大于所述至少一层绝缘材料层的总厚度的20%。
在形成所述至少一层绝缘材料层之前,所述方法还可以包括:在所述基板的边缘区域上形成有源层、栅绝缘层和栅极层中的至少一种。在形成所述OLED基板的薄膜晶体管电路中的有源层、栅绝缘 层和/或栅极层的同时,可以在所述基板的边缘区域上形成所述有源层、所述栅绝缘层和/或所述栅极层。
本发明的又一个实施例提供一种OLED面板,其包括上述OLED基板。
所述OLED面板还可以包括封装基板,在所述封装基板的边缘区域中形成有玻璃胶,所述层间绝缘层的具有凹陷的表面与所述玻璃胶结合在一起。
本发明的再一个实施例提供一种OLED显示装置,其包括上述OLED面板。
在本发明提供的OLED基板及制备方法、OLED面板及OLED显示装置中,在层间绝缘层的表面设有凹陷,在将OLED基板与封装基板对盒而进行封装时,封装基板的玻璃胶通过凹陷镶嵌至层间绝缘层,使得玻璃胶和层间绝缘层彼此结合,这样可以增大层间绝缘层与玻璃胶之间的横向抗拉强度,即,增大OLED基板与封装基板之间的横向抗拉力,从而可以提高OLED面板的结构稳定性,保证OLED面板的密封效果,提高OLED面板的使用寿命。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为现有技术中的OLED面板的部分结构的示意图;
图2为根据本发明实施例的OLED基板的部分结构的示意图;
图3为根据本发明实施例在OLED基板与封装基板对盒之后的部分结构的示意图;
图4为根据本发明实施例的制备层间绝缘层的流程图;
图5为根据本发明实施例在绝缘材料层制备完成之后的OLED基板的边缘结构的示意图;
图6为根据本发明实施例在绝缘材料层上涂布光刻胶之后的OLED基板的边缘结构的示意图;
图7为根据本发明实施例在曝光显影之后的OLED基板的边缘结构的示意图;
图8为根据本发明实施例在刻蚀之后的OLED基板的边缘结构的示意图;
图9为根据本发明实施例在制作层间绝缘层的结构时使用的掩模板的示意图;
图10为根据本发明实施例的OLED面板的部分结构的示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明的一个实施例提供了一种OLED基板,图2为本发明实施例提供的OLED基板1的部分结构的示意图。在本实施例中,如图2所示,OLED基板1包括基板10和设置在OLED基板1的边缘区域中的层间绝缘层12,在层间绝缘层12的表面上设置有至少一个凹陷。
图3为根据本发明实施例在OLED基板1与封装基板2对盒之后的部分结构的示意图。如图3所示,封装基板2包括玻璃层20和设置在封装基板2的边缘区域中的玻璃胶21。
参照图2和图3,在层间绝缘层12的表面上设置有凹陷,在将OLED基板1与封装基板2对盒而进行封装时,封装基板2的玻璃胶21可以通过所述凹陷镶嵌至层间绝缘层12,使得玻璃胶21和层间绝缘层12彼此结合在一起,这样可以增大层间绝缘层12与玻璃胶21之间的横向抗拉强度,即,增大OLED基板1与封装基板2之间的横向抗拉力,从而可以提高OLED面板的稳定性,保证OLED面板的密封效果,提高OLED面板的使用寿命。
在本实施例中,层间绝缘层12包括至少一层绝缘材料层。例如,如图2所示,层间绝缘层12包括两个绝缘材料层120、121,绝缘材料层120的绝缘材料为SiOx,绝缘材料层121的绝缘材料为SiNx
在本实施例中,例如,所述凹陷的深度不大于所述层间绝缘层12的厚度的20%。这样设置可以使所述凹陷具有一定的深度,从而保证层间绝缘层12与玻璃胶21之间的横向抗拉强度,同时保证层间绝缘层12在与所述凹陷对应的位置处具有足够的厚度,从而起到良好的绝缘作用。
在本实施例中,所述凹陷的数量可以为多个。在此基础上,可以将相邻凹陷的边缘设置为彼此相接在一起,即,多个凹陷形成“锯齿形”,这样可以最大程度地增加层间绝缘层12与玻璃胶21之间的横向抗拉强度,提高OLED面板的稳定性。
此外,在所述凹陷的数量为多个的情况下,所述多个凹陷可以在所述层间绝缘层12表面上均匀地分布,这样设置可以使层间绝缘层12和玻璃胶21的各区域均匀地承受摩擦力。
层间绝缘层12与显示区域中的栅极层上方的绝缘层设置在同一层,并且OLED基板1的边缘区域还包括形成在层间绝缘层12下方的有源层13、栅绝缘层14和栅极层15中的至少一种。
应该理解的是,在本发明实施例中,“设置在同一层”指的是“在同一个构图工艺中形成”,即,在构图工艺中利用同一个掩膜板形成。
在OLED基板1的显示区域中制作薄膜晶体管电路,即,依次形成有源层、栅绝缘层、栅极层、层间绝缘层、S/D层等结构。在本实施例中,OLED基板1的边缘区域中的有源层13、栅绝缘层14和/或栅极层15与OLED基板1的薄膜晶体管电路中的有源层、栅绝缘层和/或栅极层同时形成,即,在形成OLED基板1的电路中的有源层、栅绝缘层和/或栅极层时,在OLED基板1的边缘区域中保留有源层13、栅绝缘层14和/或栅极层15的结构,而不将其刻蚀掉,这样可以将OLED基板1的边缘区域中的层间绝缘层12垫高,即在从基板10的表面较高的高度处制备层间绝缘层12,便于与玻璃胶21进行结合。例如,在一个实施例中,如图2所示,在层间绝缘层12下方设置有有源层13、栅绝缘层14和栅极层15。
综上所述,在本发明实施例提供的OLED基板1中,在层间绝 缘层12的表面上设置有凹陷,在将OLED基板1与封装基板2对盒而进行封装时,层间绝缘层12与封装基板2的玻璃胶21可以通过所述凹陷彼此结合在一起,这样就可以增大层间绝缘层12与玻璃胶21之间的横向抗拉强度,即,增大OLED基板1与封装基板2之间的横向抗拉力,从而可以提高OLED面板的结构稳定性,保证OLED面板的密封效果,提高OLED面板的使用寿命。
本发明的另一个实施例提供了一种制备OLED基板的方法,图4为本发明实施例提供的制备OLED基板的方法的流程图。在本实施例中,如图4所示,所述制备OLED基板的方法包括以下步骤S1至步骤S3。
步骤S1中,提供基板10。
步骤S2中,在基板10的边缘区域上形成至少一层绝缘材料层,如图5所示。
具体地,所述绝缘材料层的材料具体可以为SiOx、SiNx或其他绝缘材料。例如,如图5所示,依次沉积了SiOx和SiNx,从而在基板1上获得两个绝缘材料层120、121,即SiOx层和SiNx层。
此外,在形成OLED基板的显示区域中的栅极层上方的绝缘层的同时,可以在基板10的边缘区域上形成所述至少一层绝缘材料层,即,OLED基板的显示区域中的栅极层上方的绝缘层和所述至少一层绝缘材料层可以在同一个构图工艺中形成。
步骤S3中,在所形成的最上一层绝缘材料层的表面上制备凹陷,以形成层间绝缘层12,如图2所示。例如,在图5所示的绝缘材料层120、121沉积完成之后,在SiNx层121表面上制备凹陷。
制备凹陷可以通过光刻工艺实现。具体地,制备凹陷的光刻工艺可以包括以下步骤S30至步骤S33。
步骤S30中,在最上一层绝缘材料层的表面上涂布光刻胶30,如图6所示。光刻胶30可以是正性光刻胶,也可以是负性光刻胶。
步骤S31中,对光刻胶30进行曝光和显影,如图7所示。
步骤S32中,进行刻蚀以在最上一层绝缘材料层的表面上形成凹陷,如图8所示。
例如,光刻胶30的各部分去除之后,绝缘材料层的暴露的区域均为圆形,通过步骤S32的刻蚀工艺,可以获得圆形的凹陷。具体地,为获得绝缘材料层的圆形的暴露区域,在光刻胶30为正性光刻胶的情况下,将对光刻胶30曝光所使用的掩模板设置为具有圆形的透光区,如图9所示;在光刻胶30为负性光刻胶的情况下,将对光刻胶30曝光所使用的掩模板设置为具有圆形的非透光区。
步骤S33中,剥离绝缘材料层表面上残余的光刻胶30,去除之后获得如图2所示的层间绝缘层12。
根据上述步骤制备出的层间绝缘层12的表面具有凹陷,在将OLED基板1与封装基板2对盒而进行封装时,封装基板2的玻璃胶21可以通过所述凹陷镶嵌至层间绝缘层12,使得玻璃胶21和层间绝缘层12彼此结合在一起,这样可以增大层间绝缘层12与玻璃胶21之间的横向抗拉强度,即,增大OLED基板1与封装基板2之间的横向抗拉力,从而可以提高OLED面板的结构稳定性,保证OLED面板的密封效果,提高OLED面板的使用寿命。
在本实施例中,例如,所述刻蚀工艺中的刻蚀深度不大于绝缘材料层的总厚度的20%。例如,在图2所示实施例中,凹陷的深度不大于SiOx层120、SiNx层121厚度之和的20%。这样设置可以使凹陷具有一定的深度,从而保证层间绝缘层12与玻璃胶21之间的横向抗拉强度,同时保证层间绝缘层12在与凹陷对应的位置处具有足够的厚度,从而起到良好的绝缘作用。
在本实施例中,例如,在所述绝缘材料层的表面上形成多个凹陷,并且相邻凹陷的边缘彼此相接,即,多个凹陷形成“锯齿形”结构,这样可以最大程度地增加层间绝缘层12与玻璃胶21之间的横向抗拉强度,提高OLED面板的稳定性。
同时,在所述绝缘材料层表面上形成有多个凹陷的情况下,所述多个凹陷可以在所述绝缘材料层表面上均匀分布,这样设置可以使层间绝缘层12与玻璃胶21的各区域均匀地承受摩擦力。
具体地,在层间绝缘层12下方形成有源层13、栅绝缘层14和栅极层15中的至少一种。有源层13、栅绝缘层14和/或栅极层15 与OLED基板的电路中的有源层、栅绝缘层和/或栅极层同时形成,即,在形成OLED基板的电路中的有源层、栅绝缘层和/或栅极层时,在OLED基板的边缘区域保留有源层13、栅绝缘层14和/或栅极层15的结构,而不将其刻蚀掉,这样可以将层间绝缘层12垫高,即,在从基板20较高的高度处制备层间绝缘层12,便于与玻璃胶21进行结合。
需要说明的是,在本实施例中,还可以在形成显示区域中的栅极层上方的绝缘层时,利用半曝光工艺,同时形成表面具有凹陷的层间绝缘层12。相比于上述方法,这样可以减少工艺布置,从而降低生产时间,提高生产效率。
本发明的另一个实施例提供了一种OLED面板,图10为本发明实施例提供的OLED面板的部分结构的示意图。在本实施例中,如图10所示,所述OLED面板包括本发明上述实施例提供的OLED基板1和封装基板2,OLED基板1的与封装基板2接触的表面为层间绝缘层12,封装基板2的与OLED基板1接触的表面为玻璃胶21,层间绝缘层12与玻璃胶21熔接在一起,并且层间绝缘层12表面具有凹陷。
本发明实施例提供的OLED面板中,层间绝缘层12的表面具有凹陷,使得OLED基板1与封装基板2的玻璃胶21通过凹陷彼此结合在一起,这样可以增大层间绝缘层12与玻璃胶21之间的横向抗拉强度,即增大OLED基板1与封装基板2之间的横向抗拉力,从而可以提高OLED面板的结构稳定性,使OLED面板的密封效果较好,提高OLED面板的使用寿命。
本发明的另一个实施例提供一种OLED显示装置。在本实施例中,所述OLED显示装置包括本发明上述实施例提供的OLED面板。
本发明实施例提供的OLED显示装置中,OLED面板的横向抗拉力更大,使得OLED显示装置的OLED面板具有更好的稳定性和密封效果,从而可以提高OLED显示装置的使用寿命。
需要说明的是,在附图中,尽管示出了在层间绝缘层12下方在基板10上依次设置或形成有源层13、栅绝缘层14和/或栅极层15 的示例,但本发明不限于此。在本发明其他实施例中,在层间绝缘层12下方,在基板10上可以依次设置或形成栅极层15、栅绝缘层14和/或有源层13,只要栅极层15、栅绝缘层14和/或有源层13将层间绝缘层12垫高即可。此外,术语“和/或”指的是所列出的各要素中的任意个要素。
可以理解的是,以上实施例仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (18)

  1. 一种OLED基板,在所述OLED基板的边缘区域中设置有层间绝缘层,其中,在所述层间绝缘层的表面上设置有至少一个凹陷。
  2. 根据权利要求1所述的OLED基板,其中,所述层间绝缘层包括至少一层绝缘材料层。
  3. 根据权利要求1所述的OLED基板,其中,所述凹陷的深度不大于所述层间绝缘层的厚度的20%。
  4. 根据权利要求1所述的OLED基板,其中,所述凹陷的数量为多个,并且相邻凹陷的边缘彼此相接。
  5. 根据权利要求1所述的OLED基板,其中,所述凹陷的数量为多个,并且所述多个凹陷在所述层间绝缘层的表面上均匀分布。
  6. 根据权利要求1所述的OLED基板,其中,所述层间绝缘层与所述OLED基板的显示区域中的栅极层上方的绝缘层设置在同一层。
  7. 根据权利要求1所述的OLED基板,其中,所述OLED基板的边缘区域还包括形成在所述层间绝缘层下方的有源层、栅绝缘层和栅极层中的至少一种。
  8. 根据权利要求7所述的OLED基板,其中,所述OLED基板的边缘区域中的有源层、栅绝缘层和/或栅极层分别与所述OLED基板的薄膜晶体管电路中的有源层、栅绝缘层和/或栅极层设置在同一层。
  9. 一种制备OLED基板的方法,包括:
    提供基板;
    在所述基板的边缘区域上形成至少一层绝缘材料层;以及
    在所述至少一层绝缘材料层的表面上制备凹陷,以形成层间绝缘层。
  10. 根据权利要求9所述的方法,其中,在制备所述凹陷之前,在形成所述OLED基板的显示区域中的栅极层上方的绝缘层的同时,形成所述至少一层绝缘材料层。
  11. 根据权利要求9所述的方法,其中,所述凹陷通过光刻工艺形成。
  12. 根据权利要求10所述的方法,其中,在形成所述OLED基板的显示区域中的栅极层上方的绝缘层时,利用半曝光工艺形成表面具有凹陷的层间绝缘层。
  13. 根据权利要求9所述的方法,其中,所述凹陷的深度不大于所述至少一层绝缘材料层的总厚度的20%。
  14. 根据权利要求9所述的方法,其中,在形成所述至少一层绝缘材料层之前,所述方法还包括:在所述基板的边缘区域上形成有源层、栅绝缘层和栅极层中的至少一种。
  15. 根据权利要求14所述的方法,其中,在形成所述OLED基板的薄膜晶体管电路中的有源层、栅绝缘层和/或栅极层的同时,在所述基板的边缘区域上形成所述有源层、所述栅绝缘层和/或所述栅极层。
  16. 一种OLED面板,包括权利要求1至8中任意一项所述的 OLED基板。
  17. 根据权利要求16所述的OLED面板,还包括封装基板,在所述封装基板的边缘区域中形成有玻璃胶,其中,所述层间绝缘层的具有凹陷的表面与所述玻璃胶结合在一起。
  18. 一种OLED显示装置,包括权利要求16或17所述的OLED面板。
PCT/CN2015/089920 2015-03-18 2015-09-18 Oled基板及制备方法、oled面板及显示装置 WO2016145810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/507,044 US10033010B2 (en) 2015-03-18 2015-09-18 OLED substrate and preparation method thereof, OLED panel, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510119584.9A CN104733504A (zh) 2015-03-18 2015-03-18 Oled基板及制备方法、oled面板及显示装置
CN201510119584.9 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016145810A1 true WO2016145810A1 (zh) 2016-09-22

Family

ID=53457220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089920 WO2016145810A1 (zh) 2015-03-18 2015-09-18 Oled基板及制备方法、oled面板及显示装置

Country Status (3)

Country Link
US (1) US10033010B2 (zh)
CN (1) CN104733504A (zh)
WO (1) WO2016145810A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733504A (zh) 2015-03-18 2015-06-24 京东方科技集团股份有限公司 Oled基板及制备方法、oled面板及显示装置
CN106025096B (zh) * 2016-07-28 2018-04-13 昆山国显光电有限公司 封装结构及封装方法
CN108538881B (zh) * 2017-03-01 2021-01-08 京东方科技集团股份有限公司 一种待封装基板、封装器件及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189196A1 (en) * 2002-10-15 2004-09-30 Eastman Kodak Company OLED display with circular polarizer
CN101740726A (zh) * 2008-11-25 2010-06-16 京东方科技集团股份有限公司 有机电致发光器件及其制造方法
CN203339167U (zh) * 2012-11-19 2013-12-11 三星显示有限公司 有机发光显示***
CN103579534A (zh) * 2012-07-24 2014-02-12 力志国际光电股份有限公司 Oled平面照明单元的制法、其制品及其装置
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104733504A (zh) * 2015-03-18 2015-06-24 京东方科技集团股份有限公司 Oled基板及制备方法、oled面板及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597111B2 (en) * 2001-11-27 2003-07-22 Universal Display Corporation Protected organic optoelectronic devices
JP4464682B2 (ja) * 2001-12-13 2010-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディスプレイ装置のための密封構造
TW556447B (en) * 2002-09-05 2003-10-01 Au Optronics Corp An organic light emitting diode
JP2005071646A (ja) * 2003-08-28 2005-03-17 Chi Mei Electronics Corp 有機elディスプレイおよびその製造方法
KR100645533B1 (ko) * 2005-05-27 2006-11-14 삼성에스디아이 주식회사 유기전계발광표시소자 및 그의 제조 방법
CN100585771C (zh) * 2005-12-06 2010-01-27 康宁股份有限公司 包封显示元件的方法
US7597603B2 (en) 2005-12-06 2009-10-06 Corning Incorporated Method of encapsulating a display element
KR100688791B1 (ko) 2006-01-27 2007-03-02 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법.
JP5138459B2 (ja) * 2008-05-15 2013-02-06 新光電気工業株式会社 配線基板の製造方法
US8344389B2 (en) * 2010-01-29 2013-01-01 General Electric Company Optoelectronic device array
KR20130025717A (ko) 2011-09-02 2013-03-12 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR102058387B1 (ko) * 2011-11-28 2019-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유리 패턴 및 그 형성 방법, 밀봉체 및 그 제작 방법, 및 발광 장치
KR102370035B1 (ko) * 2015-02-05 2022-03-07 삼성디스플레이 주식회사 투명 표시 기판, 투명 표시 장치 및 투명 표시 장치의 제조 방법
TWI606771B (zh) * 2015-04-01 2017-11-21 群創光電股份有限公司 顯示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189196A1 (en) * 2002-10-15 2004-09-30 Eastman Kodak Company OLED display with circular polarizer
CN101740726A (zh) * 2008-11-25 2010-06-16 京东方科技集团股份有限公司 有机电致发光器件及其制造方法
CN103579534A (zh) * 2012-07-24 2014-02-12 力志国际光电股份有限公司 Oled平面照明单元的制法、其制品及其装置
CN203339167U (zh) * 2012-11-19 2013-12-11 三星显示有限公司 有机发光显示***
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104733504A (zh) * 2015-03-18 2015-06-24 京东方科技集团股份有限公司 Oled基板及制备方法、oled面板及显示装置

Also Published As

Publication number Publication date
CN104733504A (zh) 2015-06-24
US20170288165A1 (en) 2017-10-05
US10033010B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2016074554A1 (zh) 一种像素单元及其制备方法、发光器件、显示装置
WO2019042299A1 (zh) Oled显示母板及其制备方法、oled显示面板的制备方法及其oled显示装置
WO2016206236A1 (zh) 低温多晶硅背板及其制造方法和发光器件
JP4864520B2 (ja) 有機el表示装置および有機el表示装置の製造方法
KR101274713B1 (ko) 인쇄판의 제조 방법 및 그를 이용한 박막 패턴의 제조 방법
WO2019037166A1 (zh) 柔性显示面板的制作方法及柔性显示面板
WO2016019638A1 (zh) 像素单元及其制作方法、显示面板、显示装置
JP2010251320A (ja) 薄膜蒸着用マスクフレーム組立体、その製造方法及び有機発光表示装置の製造方法
WO2016145810A1 (zh) Oled基板及制备方法、oled面板及显示装置
WO2014000361A1 (zh) 一种阵列基板过孔的制作方法及阵列基板制作工艺
WO2016000399A1 (zh) 有机薄膜晶体管及其制备方法、阵列基板及其制备方法、显示装置
WO2013127229A1 (zh) 薄膜晶体管及其制造方法、阵列基板、显示装置
WO2013170581A1 (zh) 有机发光二极管显示面板及其制造方法
WO2020077861A1 (zh) 一种阵列基板及其制备方法
KR100699994B1 (ko) 라미네이션 장비 및 레이저 열전사 방법
WO2015043315A1 (zh) 阵列基板及其制造方法、显示装置
KR102335496B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
WO2019171432A1 (ja) 蒸着マスク、その製造方法及び有機el表示装置の製造方法
WO2016127618A1 (zh) 阵列基板制造方法、阵列基板和显示装置
WO2020056814A1 (zh) 一种柔性显示装置及其制备方法
CN107611084A (zh) 一种阵列基板接触孔制备方法、阵列基板及显示器件
KR101942826B1 (ko) 새도우 마스크 제조 방법 및 이를 이용한 oled 소자 제조 방법
KR20110122322A (ko) 평판 표시 소자 및 그 제조 방법
KR101726641B1 (ko) 인쇄판의 제조 방법
WO2018161536A1 (zh) 用于显示面板的基板及其制作方法、显示面板及封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15507044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885183

Country of ref document: EP

Kind code of ref document: A1