WO2016144061A1 - 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법 - Google Patents

부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법 Download PDF

Info

Publication number
WO2016144061A1
WO2016144061A1 PCT/KR2016/002214 KR2016002214W WO2016144061A1 WO 2016144061 A1 WO2016144061 A1 WO 2016144061A1 KR 2016002214 W KR2016002214 W KR 2016002214W WO 2016144061 A1 WO2016144061 A1 WO 2016144061A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
signal
basic mode
core layer
broadcast signal
Prior art date
Application number
PCT/KR2016/002214
Other languages
English (en)
French (fr)
Inventor
박성익
이재영
권선형
김흥묵
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160025829A external-priority patent/KR102454643B1/ko
Priority to BR112017019145-8A priority Critical patent/BR112017019145B1/pt
Priority to CN201680026196.9A priority patent/CN107567711B/zh
Priority to CA2978718A priority patent/CA2978718C/en
Priority to CN202010222855.4A priority patent/CN111245573B/zh
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to CN202010223268.7A priority patent/CN111245574B/zh
Priority to MX2017011385A priority patent/MX370019B/es
Priority to US15/556,243 priority patent/US10142152B2/en
Publication of WO2016144061A1 publication Critical patent/WO2016144061A1/ko
Priority to US16/041,930 priority patent/US10411936B2/en
Priority to US16/518,058 priority patent/US10917276B2/en
Priority to US17/140,430 priority patent/US11218352B2/en
Priority to US17/540,301 priority patent/US11658858B2/en
Priority to US18/298,498 priority patent/US20230246897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2742Irregular interleaver wherein the permutation pattern is not obtained by a computation rule, e.g. interleaver based on random generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2792Interleaver wherein interleaving is performed jointly with another technique such as puncturing, multiplexing or routing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • H03M13/6368Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
    • H03M13/6393Rate compatible low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6552DVB-T2
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/70Media network packetisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/08Speed or phase control by synchronisation signals the synchronisation signals recurring cyclically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234327Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers

Definitions

  • the present invention relates to a broadcast signal transmission / reception technique used in a broadcast system, and more particularly, to a broadcast signal transmission / reception system for transmitting / receiving a broadcast signal using a frame including a signaling field such as bootstrap or preamble. .
  • Bit-Interleaved Coded Modulation is a bandwidth-efficient transmission technology that includes an error-correction coder, a bit-by-bit interleaver, and a high-order modulator. In combined form.
  • BICM can provide excellent performance with a simple structure by using a low-density parity check (LDPC) encoder or a turbo encoder as an error correction encoder.
  • LDPC low-density parity check
  • turbo encoder a turbo encoder
  • BICM provides a high level of flexibility because it can select various modulation orders, error correction codes, lengths, and code rates. Because of these advantages, BICM is not only used in broadcasting standards such as DVB-T2 and DVB-NGH, but also in other next generation broadcasting systems.
  • Such BICM can be used not only for data transmission but also for signaling information transmission.
  • channel coding and modulation techniques for signaling information transmission need to be more robust than channel coding and modulation techniques for data transmission.
  • an object of the present invention is to enable signaling BICM mode suitable for a desired service using signaling BICM modes that provide various SNRs.
  • the bootstrap may be shorter than the preamble and have a fixed length.
  • the preamble may include L1-Basic and L1-Detail
  • the bootstrap may include a symbol representing the structure of the L1-Basic.
  • the symbol may correspond to a fixed-length bit string signaling the BICM mode and the OFDM parameter of the L1-Basic together.
  • the BICM mode is a first mode for identifying the QPSK and the inefficiency 3/15, and a first mode for identifying the QPSK and the inefficiency 3/15, the non uniform constellation (16-NUC) and the inefficiency 3/15, respectively.
  • Fourth mode, 64-NON (Non Uniform Constellation), and a fifth mode for identifying inefficiency 3/15 may be included.
  • the first mode, the second mode, and the third mode use parity repetition and parity puncturing size (parity) while using the same constellation and code rate.
  • parity parity repetition and parity puncturing size
  • robustness may be in different modes.
  • the first mode may perform parity repetition
  • the second and third modes may not perform parity repetition
  • the parity puncturing size of the second mode may be larger than the parity puncturing size of the first mode and smaller than the parity puncturing size of the third mode.
  • the preamble structure corresponding to the second guard interval length shorter than the first guard interval length is preferred to the preamble structure corresponding to the first guard interval length. It may correspond to a lookup table to be allocated.
  • the symbol is the first mode, the second mode, the third mode, the fourth mode and the first mode for the combination of the same FFT size, Guard Interval length and pilot pattern (pilot pattern)
  • the five modes may correspond to lookup tables that are allocated in robustness order.
  • the broadcast signal frame generation method interleaving the BICM output signal to generate a time interleaved signal; And generating a broadcast signal frame including a bootstrap and a preamble by using the time interleaved signal.
  • the bootstrap may be shorter than the preamble and have a fixed length.
  • the preamble may include L1-Basic and L1-Detail
  • the bootstrap may include a symbol representing the structure of the L1-Basic.
  • the symbol may correspond to a fixed-length bit string signaling the BICM mode and the OFDM parameter of the L1-Basic together.
  • the BICM mode is a first mode for identifying the QPSK and the inefficiency 3/15, and a first mode for identifying the QPSK and the inefficiency 3/15, the non uniform constellation (16-NUC) and the inefficiency 3/15, respectively.
  • Fourth mode, 64-NON (Non Uniform Constellation), and a fifth mode for identifying inefficiency 3/15 may be included.
  • the first mode, the second mode, and the third mode use parity repetition and parity puncturing size (parity) while using the same constellation and code rate.
  • parity parity repetition and parity puncturing size
  • robustness may be in different modes.
  • the first mode may perform parity repetition
  • the second and third modes may not perform parity repetition
  • the parity puncturing size of the second mode may be larger than the parity puncturing size of the first mode and smaller than the parity puncturing size of the third mode.
  • the preamble structure corresponding to the second guard interval length shorter than the first guard interval length is preferred to the preamble structure corresponding to the first guard interval length. It may correspond to a lookup table to be allocated.
  • the first mode, the second mode, the third mode, the fourth mode, and the fifth mode are allocated in the order of robustness for a combination of the same FFT size, guard interval length, and pilot pattern. It may correspond to a lookup table.
  • a new broadcast signal frame structure capable of efficiently signaling a BICM mode or an OFDM parameter of a signaling field used for transmitting signaling information in a broadcast system channel is provided.
  • the present invention can efficiently use a signaling BICM mode suitable for a desired service by using signaling BICM modes providing various SNRs.
  • the present invention can efficiently signal the BICM mode such as constellation or code rate and OFDM parameters such as FFT size, guard interval or pilot pattern at the same time.
  • FIG. 1 is a block diagram illustrating a broadcast signal transmission / reception system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a broadcast signal transmission / reception method according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating an example of an apparatus for generating broadcast signal frames shown in FIG. 1.
  • FIG. 4 is a diagram illustrating an example of a broadcast signal frame structure.
  • FIG. 5 is a block diagram illustrating another example of the apparatus for generating broadcast signal frames shown in FIG. 1.
  • FIG. 6 is a block diagram illustrating an example of the signal demultiplexing apparatus illustrated in FIG. 1.
  • FIG. 7 is a block diagram illustrating an example of a core layer BICM decoder and an enhanced layer symbol extractor illustrated in FIG. 6.
  • FIG. 8 is a block diagram illustrating another example of the core layer BICM decoder and the enhanced layer symbol extractor illustrated in FIG. 6.
  • FIG. 9 is a block diagram illustrating another example of the core layer BICM decoder and the enhanced layer symbol extractor illustrated in FIG. 6.
  • FIG. 10 is a block diagram illustrating another example of the signal demultiplexing apparatus illustrated in FIG. 1.
  • FIG. 11 is a diagram illustrating a power increase due to a combination of a core layer signal and an enhanced layer signal.
  • FIG. 12 is a flowchart illustrating a broadcast signal frame generation method according to an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a signaling information encoding / decoding system according to an embodiment of the present invention.
  • FIG. 14 illustrates a broadcast signal frame according to an embodiment of the present invention.
  • FIG. 15 is a diagram illustrating an example of an operation of a zero padding unit illustrated in FIG. 13.
  • FIG. 16 is a diagram illustrating an example of an operation of the parity permutation unit illustrated in FIG. 13.
  • 17 is a diagram illustrating an example of an operation of the zero removing unit illustrated in FIG. 13.
  • FIG. 1 is a block diagram illustrating a broadcast signal transmission / reception system according to an embodiment of the present invention.
  • a broadcast signal transmission / reception system includes a broadcast signal transmission device 110, a wireless channel 120, and a broadcast signal reception device 130.
  • the broadcast signal transmitting apparatus 110 includes a broadcast signal frame generating apparatus 111 and an OFDM transmitter 113 for generating a broadcast signal frame by multiplexing core layer data and enhanced layer data.
  • the broadcast signal frame generating apparatus 111 combines the core layer signal corresponding to the core layer data and the enhanced layer signal corresponding to the enhanced layer data into different power levels, and the core layer signal and the enhanced layer signal. Interleaving is applied together to generate a multiplexed signal.
  • the broadcast signal frame generation device 111 may generate a broadcast signal frame including the bootstrap and the preamble using the time interleaved signal.
  • the broadcast signal frame may be an ATSC 3.0 frame.
  • the broadcast signal frame generating apparatus 111 may interleave one layer signal and generate a broadcast signal frame without combining two layer signals.
  • the OFDM transmitter 113 transmits the generated broadcast signal frame through the antenna 117 using an OFDM communication scheme, so that the transmitted OFDM signal is transmitted through the wireless channel 120 to the antenna 137 of the broadcast signal receiving apparatus 130. To be received via.
  • the broadcast signal receiving apparatus 130 includes an OFDM receiver 133 and a signal demultiplexing apparatus 131.
  • the OFDM receiver 133 receives the OFDM signal through synchronization, channel estimation, and equalization processes. do.
  • the OFDM receiver 133 detects and demodulates a bootstrap from the OFDM signal, demodulates a preamble using information included in the bootstrap, and demodulates a data payload using information included in the preamble.
  • the data payload may be a superimposed payload in which two or more layer data are combined.
  • the signal demultiplexing apparatus 131 first recovers core layer data from a signal (superimposed payload) received through the OFDM receiver 133, and through cancellation corresponding to the recovered core layer data. Restore the enhanced layer data.
  • the signal demultiplexing apparatus 131 first generates a broadcast signal frame, restores a bootstrap from the broadcast signal frame, restores a preamble using information included in the bootstrap, and then includes signaling information data included in the preamble. It can be used to restore the signal.
  • the signaling information may be L1 signaling information, and may include injection level information, normalizing factor information, and the like.
  • the apparatus for generating broadcast signal frame 111 shown in FIG. 1 includes: a combiner for generating a multiplexed signal by combining a core layer signal and an enhanced layer signal with different power levels; A power normalizer for lowering the power of the multiplexed signal to a power corresponding to the core layer signal; A time interleaver for generating a time interleaved signal by performing interleaving applied to the core layer signal and the enhanced layer signal together; And a frame builder for generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal.
  • a combiner for generating a multiplexed signal by combining the core layer signal and the enhanced layer signal with different power levels;
  • a power normalizer for lowering the power of the multiplexed signal to a power corresponding to the core layer signal;
  • a time interleaver for generating a time interleaved signal by performing interleaving applied to the core layer signal and the enhanced layer signal together;
  • a frame builder for generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal;
  • an OFDM transmitter for transmitting the broadcast signal frame through an antenna using an OFDM communication scheme.
  • the broadcast signal frame generating apparatus 111 shown in FIG. 1 includes a time interleaver for interleaving a BICM output signal to generate a time interleaved signal in the case of a single layer; And a frame builder for generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal.
  • the BICM output signal may be an output signal of the BICM device to be described later.
  • the broadcast signal transmission apparatus 110 shown in Figure 1 includes a time interleaver for interleaving the BICM output signal to generate a time interleaved signal; A frame builder for generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal; And an OFDM transmitter for transmitting the broadcast signal frame through an antenna using an OFDM communication scheme.
  • the signal demultiplexing apparatus shown in FIG. 1 includes a time deinterleaver for generating time deinterleaving signals by applying time deinterleaving to a received signal corresponding to a broadcast signal frame; A de-normalizer for raising the power of the received signal or the time deinterleaving signal by a power reduction by the power normalizer of the transmitter; A core layer BICM decoder for recovering core layer data from the signal adjusted by the de-normalizer; An enhancement for extracting an enhanced layer signal by performing a cancellation corresponding to the core layer data with respect to a signal controlled by the de-normalizer using an output signal of a core layer FEC decoder of the core layer BICM decoder.
  • De-layer symbol extractor A de-injection level controller for raising the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter; And an enhanced layer BICM decoder for restoring enhanced layer data by using the output signal of the de-injection level controller.
  • 1 includes an OFDM receiver for generating a received signal by performing any one or more of synchronization, channel estimation, and equalization on a transmitted signal corresponding to a broadcast signal frame; A time deinterleaver for generating a time deinterleaving signal by applying time deinterleaving to the received signal; A de-normalizer for raising the power of the received signal or the time deinterleaving signal by a power reduction by the power normalizer of the transmitter; A core layer BICM decoder for recovering core layer data from the signal adjusted by the de-normalizer; An enhancement for extracting an enhanced layer signal by performing a cancellation corresponding to the core layer data with respect to a signal controlled by the de-normalizer using an output signal of a core layer FEC decoder of the core layer BICM decoder.
  • De-layer symbol extractor A de-injection level controller for raising the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter; And an enhanced layer BICM decoder for restoring enhanced layer data by using the output signal of the de-injection level controller.
  • the broadcast signal transmission / reception system may multiplex / demultiplex one or more enhancement layer data in addition to core layer data and enhanced layer data.
  • the enhancement layer data may be multiplexed at a lower power level than the core layer data and the enhanced layer data.
  • the injection power level of the second extension layer is lower than the injection power level of the first extension layer
  • the injection power level of the third extension layer is lower than the injection power level of the second extension layer. Can be.
  • FIG. 2 is a flowchart illustrating a broadcast signal transmission / reception method according to an embodiment of the present invention.
  • a broadcast signal frame including a bootstrap and a preamble is formed by combining and multiplexing a core layer signal and an enhanced layer signal at different power levels. It generates (S210).
  • the broadcast signal frame generated by step S210 may include a bootstrap, a preamble, and a data payload.
  • the data payload may be a super-impended payload.
  • any one or more of the bootstrap and the preamble may include L1 signaling information.
  • the L1 signaling information may include injection level information and normalizing factor information.
  • step S210 may generate a broadcast signal frame including a bootstrap and a preamble by interleaving the BICM output signal.
  • the broadcast signal transmission / reception method performs OFDM transmission of a broadcast signal frame (S220).
  • the broadcast signal transmission / reception method receives the transmitted signal by OFDM (S230).
  • step S230 may perform synchronization, channel estimation, and equalization processes.
  • step S230 may restore the bootstrap, restore the preamble using the signal included in the restored bootstrap, and restore the data signal using the signaling information included in the preamble.
  • the broadcast signal transmission / reception method restores core layer data from the received signal (S240).
  • the broadcast signal transmission / reception method restores enhanced layer data through core layer signal cancellation (S250).
  • steps S240 and S250 illustrated in FIG. 2 may correspond to a demultiplexing operation corresponding to step S210.
  • step S210 illustrated in FIG. 2 may include combining a core layer signal and an enhanced layer signal at different power levels to generate a multiplexed signal; Lowering the power of the multiplexed signal to a power corresponding to the core layer signal; Generating a time interleaved signal by performing interleaving applied to the core layer signal and the enhanced layer signal together; And generating a broadcast signal frame including a bootstrap and a preamble by using the time interleaved signal.
  • the broadcast signal transmission method of step S210 and step S220 includes the steps of combining the core layer signal and the enhanced layer signal at different power levels to generate a multiplexed signal; Lowering the power of the multiplexed signal to a power corresponding to the core layer signal; Generating a time interleaved signal by performing interleaving applied to the core layer signal and the enhanced layer signal together; Generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal; And transmitting the broadcast signal frame through an antenna using an OFDM communication scheme.
  • step S210 illustrated in FIG. 2 may include interleaving a BICM output signal to generate a time interleaved signal; And generating a broadcast signal frame including a bootstrap and a preamble by using the time interleaved signal.
  • the broadcast signal transmission method of step S210 and step S220 includes the steps of: interleaving the BICM output signal to generate a time interleaved signal; Generating a broadcast signal frame including a bootstrap and a preamble using the time interleaved signal; And transmitting the broadcast signal frame through an antenna using an OFDM communication scheme.
  • steps S240 and S250 illustrated in FIG. 2 may include generating time deinterleaving signals by applying time deinterleaving to a received signal corresponding to a broadcast signal frame; Increasing the power of the received signal or the time deinterleaving signal by a power reduction by a power normalizer of the transmitter; Restoring core layer data from the power adjusted signal; Extracting an enhanced layer signal by performing cancellation on the core layer data with respect to the power adjusted signal; Increasing the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter; And restoring enhanced layer data by using the adjusted power enhancement layer signal.
  • the broadcast signal receiving method generating a received signal by performing any one or more of the synchronization, channel estimation and equalization for the transmitted signal corresponding to the broadcast signal frame; Generating a time deinterleaving signal by applying time deinterleaving to the received signal; Increasing the power of the received signal or the time deinterleaving signal by a power reduction by a power normalizer of the transmitter; Restoring core layer data from the power adjusted signal; Extracting an enhanced layer signal by performing cancellation on the core layer data with respect to the power adjusted signal; Increasing the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter; And restoring enhanced layer data by using the adjusted power enhancement signal.
  • FIG. 3 is a block diagram illustrating an example of an apparatus for generating broadcast signal frames shown in FIG. 1.
  • the apparatus for generating broadcast signal frame includes a core layer BICM unit 310, an enhanced layer BICM unit 320, an injection level controller 330, a combiner 340, and a power source. It may include a normalizer 345, a time interleaver 350, a signaling generator 360, and a frame builder 370.
  • a bit-interleaved coded modulation (BICM) device includes an error correction encoder, a bit interleaver, and a symbol mapper, and the core layer BICM unit 310 and the enhanced layer BICM unit 320 illustrated in FIG. It may include a correction encoder, a bit interleaver, and a symbol mapper.
  • the error correction encoder illustrated in FIG. 3 may be a combination of a BCH encoder and an LDPC encoder in series. At this time, the input of the error correction encoder may be input to the BCH encoder, the output of the BCH encoder may be input to the LDPC encoder, and the output of the LDPC encoder may be the output of the error correction encoder.
  • the core layer data and the enhanced layer data pass through different BICM units and then merge through the combiner 340.
  • layered division multiplexing may refer to a plurality of layers combined and transmitted using a power difference.
  • the core layer data passes through the core layer BICM unit 310, and the enhanced layer data passes through the enhanced layer BICM unit 320 and then is combined in the combiner 340 through the injection level controller 330.
  • the enhanced layer BICM unit 320 may perform different BICM encoding from the core layer BICM unit 310. That is, the enhanced layer BICM unit 320 may perform error correction encoding or symbol mapping corresponding to a higher bit rate than the core layer BICM unit 310. In addition, the enhanced layer BICM unit 320 may perform error correction encoding or symbol mapping that is less robust than the core layer BICM unit 310.
  • the core layer error correction encoder may have a lower bit rate than the enhanced layer error correction encoder.
  • the enhanced layer symbol mapper may be less robust than the core layer symbol mapper.
  • the combiner 340 may be regarded as combining the core layer signal and the enhanced layer signal at different power levels. According to an embodiment, the power level adjustment may be performed on the core layer signal rather than the enhanced layer signal. In this case, the power for the core layer signal may be adjusted to be greater than the power of the enhanced layer signal.
  • Core layer data uses low code rate forward error correction (FEC) codes for robust reception, while enhanced layer data uses high code rate FEC codes for high data rates. Can be.
  • FEC forward error correction
  • the core layer data may have a wider coverage area in the same reception environment as compared with the enhanced layer data.
  • the enhanced layer data passing through the enhanced layer BICM unit 320 is adjusted through the injection level controller 330 to be combined with the core layer data by the combiner 340.
  • the injection level controller 330 reduces the power of the enhanced layer signal to generate a power reduced enhanced layer signal.
  • the magnitude of the signal adjusted by the injection level controller 330 may be determined according to the injection level.
  • the injection level when the signal B is inserted into the signal A may be defined as in Equation 1 below.
  • the injection level is 3 dB when inserting the enhanced layer signal into the core layer signal, it means that the enhanced layer signal has a power amount corresponding to half of the core layer signal.
  • the injection level controller 330 may adjust the power level of the enhanced layer signal from 0 dB to 10.0 dB in 0.5 dB or 1 dB intervals.
  • the transmit power allocated to the core layer is larger than the transmit power allocated to the enhanced layer, and thus the receiver can preferentially decode the core layer.
  • the combiner 340 may be considered to generate a multiplexed signal by combining the core layer signal and the power reduced enhanced layer signal.
  • the signal coupled by the combiner 340 is provided to the power normalizer 345 to lower the power by the power increase generated by the combination of the core layer signal and the enhanced layer signal, thereby performing power adjustment. That is, the power normalizer 345 lowers the power of the signal multiplexed by the combiner 340 to a power level corresponding to the core layer signal. Since the level of the combined signal is higher than the level of one layer signal, power normalization of the power normalizer 345 is necessary to prevent amplitude clipping or the like in the rest of the broadcast signal transmission / reception system.
  • the power normalizer 345 may multiply the normalizing factor of Equation 2 by the magnitude of the combined signal to adjust the appropriate signal size. Injection level information for calculating Equation 2 may be transferred to the power normalizer 345 through a signaling flow.
  • the combined signal is It can be expressed as
  • represents a scaling factor corresponding to various injection levels. That is, the injection level controller 330 may correspond to a scaling factor.
  • the combined signal It can be expressed as
  • the power normalizer 345 Since the power of the combined signal (multiplexed signal) has increased compared to the core layer signal, the power normalizer 345 must mitigate this power increase.
  • the output of the power normalizer 345 is It can be expressed as
  • represents a normalizing factor according to various injection levels of the enhanced layer.
  • the output of the power normalizer 345 is It can be expressed as
  • the relationship between the injection level and the scaling factor ⁇ and the normalizing factor ⁇ may be defined as follows.
  • the power normalizer 345 corresponds to a normalizing factor, and may be viewed as lowering the power of the multiplexed signal by the combiner 340.
  • the normalizing factor and the scaling factor may be rational numbers larger than 0 and smaller than 1, respectively.
  • the scaling factor may decrease as the power reduction corresponding to the injection level controller 330 increases, and the normalizing factor may increase as the power reduction corresponding to the injection level controller 330 increases.
  • the power normalized signal passes through a time interleaver 350 to distribute the burst errors occurring in the channel.
  • the time interleaver 350 may be regarded as performing interleaving applied to both the core layer signal and the enhanced layer signal. That is, since the core layer and the enhanced layer share the time interleaver, unnecessary memory usage can be prevented and latency at the receiver can be reduced.
  • the enhanced layer signal may correspond to enhanced layer data reconstructed based on cancellation corresponding to reconstruction of core layer data corresponding to the core layer signal, and the combiner 340 may correspond to the core layer.
  • One or more extension layer signals of a lower power level than the signal and enhanced layer signal may be combined with the core layer signal and the enhanced layer signal.
  • the L1 signaling information including the injection level information is encoded by the signaling generator 360 including the signaling-only BICM.
  • the signaling generator 360 may receive the injection level information IL INFO from the injection level controller 330 to generate the L1 signaling signal.
  • L1 represents Layer-1, which is the lowest layer of the ISO 7 layer model.
  • the L1 signaling may be included in the preamble.
  • the L1 signaling may include an FFT size, a guard interval size, which are the main parameters of the OFDM transmitter, a channel code rate, modulation information, etc. which are the main parameters of the BICM.
  • the L1 signaling signal is combined with the data signal to form a broadcast signal frame.
  • the frame builder 370 combines the L1 signaling signal and the data signal to generate a broadcast signal frame.
  • the frame builder 370 may generate a broadcast signal frame including the bootstrap and the preamble using the time interleaved signal.
  • the frame builder 370 may include a bootstrap generator that generates the bootstrap
  • a preamble generating unit generating the preamble; And a data payload generator configured to generate a data payload corresponding to the time interleaved signal. At this time, the data payload may be a super-imposed payload.
  • the frame builder 370 may generate a time interleaved signal by interleaving the BICM output signal of the core layer BICM unit 310.
  • the frame builder 370 may generate a broadcast signal frame including the bootstrap and the preamble using the time interleaved signal.
  • the bootstrap may be shorter than the preamble and have a fixed length.
  • the preamble may include L1-Basic and L1-Detail
  • the bootstrap may include a symbol representing the structure of the L1-Basic.
  • the symbol may correspond to a fixed-length bit string signaling the BICM mode and the OFDM parameter of the L1-Basic together.
  • the symbol may correspond to a fixed-length bit string representing a combination of a modulation method / coding rate of the preamble, an FFT size, a guard interval length, and a pilot pattern.
  • the BICM mode may correspond to the constellation (modulation method) / code rate.
  • the OFDM parameter may include an FFT size, a guard interval length, and a pilot pattern.
  • the BICM mode is a first mode for identifying the QPSK and the inefficiency 3/15, and a first mode for identifying the QPSK and the inefficiency 3/15, the non uniform constellation (16-NUC) and the inefficiency 3/15, respectively.
  • Fourth mode, 64-NON (Non Uniform Constellation), and a fifth mode for identifying inefficiency 3/15 may be included.
  • the first mode, the second mode, and the third mode use parity repetition and parity puncturing size (parity) while using the same constellation and code rate.
  • parity parity repetition and parity puncturing size
  • robustness may be in different modes.
  • the first mode may perform parity repetition
  • the second and third modes may not perform parity repetition
  • the parity puncturing size of the second mode may be larger than the parity puncturing size of the first mode and smaller than the parity puncturing size of the third mode.
  • the preamble structure corresponding to the second guard interval length shorter than the first guard interval length is preferred to the preamble structure corresponding to the first guard interval length. It may correspond to a lookup table to be allocated.
  • the first mode, the second mode, the third mode, the fourth mode, and the fifth mode are allocated in the order of robustness for a combination of the same FFT size, guard interval length, and pilot pattern. It may correspond to a lookup table.
  • the preamble structure corresponding to the second FFT size smaller than the first FFT size is preferentially allocated to the preamble structure corresponding to the first FFT size, and the modulation is performed. If the method / code rate and the FFT size are the same, a lookup table to which a preamble structure corresponding to a second guard interval length greater than the first guard interval length is preferentially assigned to a lookup table, rather than a preamble structure corresponding to a first guard interval length May be equivalent.
  • the broadcast signal frame is transmitted through an OFDM transmitter that is robust to multipath and Doppler.
  • the OFDM transmitter may be regarded as responsible for generating a transmission signal of a next generation broadcasting system.
  • FIG. 4 is a diagram illustrating an example of a broadcast signal frame structure.
  • the broadcast signal frame includes a bootstrap 410, a preamble 420, and a data payload 430.
  • the data payload may be a super-imposed payload.
  • the frame shown in FIG. 4 may be included in a super-frame.
  • the broadcast signal frame may be composed of one or more OFDM symbols.
  • the broadcast signal frame may include a reference symbol or a pilot symbol.
  • the frame structure to which Layered Division Multiplexing (LDM) is applied includes a bootstrap 410, a preamble 420, and a super-imposed payload 430 as shown in FIG. 4.
  • LDM Layered Division Multiplexing
  • the bootstrap 410 and the preamble 420 may be regarded as hierarchical two preambles.
  • the bootstrap 410 may have a length shorter than that of the preamble 420 for fast acquisition and detection.
  • the bootstrap 410 may have a fixed length.
  • the bootstrap 410 may include a symbol of a fixed length.
  • the bootstrap 410 may consist of four OFDM symbols each 0.5 ms long and may have a fixed time length of 2 ms in total.
  • the bootstrap 410 may have a fixed bandwidth, and the preamble 420 and the super-imposed payload 430 may have a wider and variable bandwidth than the bootstrap 410.
  • the preamble 420 may transmit detailed signaling information using a robust LDPC code.
  • the length of the preamble 420 may vary according to the signaling information.
  • the bootstrap 410 and the payload 430 may both be seen as corresponding to a common signal shared by several layers.
  • the super-imposed payload 430 may correspond to a signal in which two or more layer signals are multiplexed.
  • the super-imposed payload 430 may be a combination of the core layer payload and the enhanced layer payload at different power levels.
  • an in-band signaling section may be included in the core layer payload.
  • the in-band signaling unit may include signaling information for the enhanced layer service.
  • the bootstrap 410 may include a symbol indicating the structure of the preamble.
  • the symbol included in the bootstrap to indicate the structure of the preamble may be set as shown in Table 1 below.
  • a fixed symbol of 7 bits may be allocated.
  • L1-Basic Mode 1, L1-Basic Mode 2, and L1-Basic Mode 3 described in Table 1 may correspond to QPSK and 3/15 LDPC.
  • L1-Basic Mode 1 may correspond to 3/15, QPSK, parity repetition ON, and first puncturing size. Parity repetition and puncturing will be described later.
  • L1-Basic Mode 2 may correspond to a second puncturing size that is greater than 3/15, QPSK, parity repetition off and first puncturing size.
  • L1-Basic Mode 3 may correspond to a third puncturing size that is greater than 3/15, QPSK, parity repetition off, and second puncturing size.
  • L1-Basic Mode 4 described in Table 1 may correspond to 16-NUC (Non Uniform Constellation) and 3/15 LDPC.
  • L1-Basic Mode 5 described in Table 1 may correspond to 64-NUC (Non Uniform Constellation) and 3/15 LDPC.
  • L1-Basic Mode 6 and L1-Basic Mode 7 described in Table 1 may correspond to 256-NUC (Non Uniform Constellation) and 3/15 LDPC.
  • the modulation method / code rate described below represents a combination of a modulation method and a code rate, such as QPSK and 3/15 LDPC.
  • the FFT size described in Table 1 may indicate a Fast Fourier Transform size.
  • the GI length described in Table 1 indicates a guard interval length and may indicate a length of a guard interval rather than data in the time domain. At this time, the longer the guard interval length, the more robust the system is.
  • the pilot pattern described in Table 1 may indicate the Dx of the pilot pattern.
  • all Dy may be 1.
  • the preamble structure corresponding to the second modulation method / coding rate which is stronger than the first modulation method / coding rate, takes precedence over the preamble structure corresponding to the first modulation method / coding rate. Can be assigned to a table.
  • the preferential allocation may be stored in the lookup table corresponding to a smaller number of indexes.
  • a preamble structure corresponding to a second FFT size smaller than the first FFT size may be allocated to the lookup table in preference to the preamble structure corresponding to the first FFT size.
  • a preamble structure corresponding to a second guard interval larger than the first guard interval may be allocated to the lookup table in preference to the preamble structure corresponding to the first guard interval.
  • the preamble structure identification using the bootstrap can be more efficiently performed by setting the order in which the preamble structures are allocated to the lookup table.
  • Table 2 below is another example of a lookup table.
  • preamble_structure FFT Size GI Length (samples) Preamble Pilot DX L1-BasicFEC Mode 0 8192 192 16 L1-Basic Mode 1 One 8192 192 16 L1-Basic Mode 2 2 8192 192 16 L1-Basic Mode 3 3 8192 192 16 L1-Basic Mode 4 4 8192 192 16 L1-Basic Mode 5 5 8192 384 8 L1-Basic Mode 1 6 8192 384 8 L1-Basic Mode 2 7 8192 384 8 L1-Basic Mode 3 8 8192 384 8 L1-Basic Mode 4 9 8192 384 8 L1-Basic Mode 5 10 8192 512 6 L1-Basic Mode 1 11 8192 512 6 L1-Basic Mode 2 12 8192 512 6 L1-Basic Mode 3 13 8192 512 6 L1-Basic Mode 4 14 8192 512 6 L1-Basic Mode 5 15 8192 768 4 L1-Basic Mode 1 16 8192 768 4 L1-Basic Mode
  • the preamble structure corresponding to the second guard interval length shorter than the first guard interval length is preferentially assigned to the preamble structure corresponding to the first guard interval length. Can be.
  • the first mode, the second mode, the third mode, the fourth mode, and the fifth mode are in order of robustness. May be assigned.
  • the order of allocation of the lookup table of Table 1 or Table 2 may greatly influence the performance of the system. That is, since an error may occur in some bits of the signaling signal received at the receiver, the signaling signal recovery performance may vary greatly depending on how the allocation order is set.
  • Tables 3 and 4 below show the robustness of the seven BICM modes of L1-Basic.
  • L1-Detail is more robust by 1.5 dB than the most robust DB in data FEC, and L1-Basic is 1.5 dB more robust than L1-Detail.
  • the core layer data is demodulated using the signaling information, and the enhanced layer signal is demodulated through a cancellation process corresponding to the core layer data.
  • the cancellation corresponding to the core layer data will be described in more detail later.
  • the signaling information may be L1 (Layer-1) signaling information.
  • the L1 signaling information may include information necessary for configuring physical layer parameters.
  • the broadcast signal frame includes an L1 signaling signal and a data signal.
  • the broadcast signal frame may be an ATSC 3.0 frame.
  • FIG. 5 is a block diagram illustrating another example of the apparatus for generating broadcast signal frames shown in FIG. 1.
  • the apparatus for generating broadcast signal frames multiplexes data corresponding to N extension layers in addition to the core layer data and the enhanced layer data. .
  • the apparatus for generating a broadcast signal frame illustrated in FIG. 5 includes the core layer BICM unit 310, the enhanced layer BICM unit 320, the injection level controller 330, the combiner 340, the power normalizer 345, and the time.
  • the signaling generator 360 and the frame builder 370 the N enhancement layer BICM units 410, ..., 430 and injection level controllers 440, ..., 460 are included. .
  • 360 and the frame builder 370 have already been described in detail with reference to FIG. 3.
  • the N enhancement layer BICM units 410, ..., 430 independently perform BICM encoding, and the injection level controllers 440, ..., 460 perform power reducing corresponding to each enhancement layer.
  • the power reduced extended layer signal is combined with other layer signals through the combiner 340.
  • the error correction encoder of each of the enhancement layer BICM units 410,..., 430 may be a BCH encoder and an LDPC encoder connected in series.
  • the power reduction corresponding to each of the injection level controllers 440,... 460 is preferably greater than the power reduction of the injection level controller 330. That is, the injection level controllers 330, 440,..., 460 illustrated in FIG. 5 may correspond to a large power reduction as it descends.
  • the injection level information provided from the injection level controllers 330, 440, and 460 illustrated in FIG. 5 is included in the broadcast signal frame of the frame builder 370 via the signaling generator 360 and transmitted to the receiver. That is, the injection level of each layer is delivered to the receiver in the L1 signaling information.
  • the power adjustment may be to increase or decrease the power of the input signal, or may be to increase or decrease the gain of the input signal.
  • the power normalizer 345 mitigates the power increase caused by combining the plurality of layer signals by the combiner 340.
  • the power normalizer 345 may adjust the signal power to an appropriate signal size by multiplying the normalizing factor by the magnitude of the signal combined with the signals of each layer using Equation 4 below. .
  • the time interleaver 350 performs interleaving on signals combined by the combiner 340, thereby interleaving the signals of the layers.
  • FIG. 6 is a block diagram illustrating an example of the signal demultiplexing apparatus shown in FIG. 1.
  • the signal demultiplexing apparatus includes a time deinterleaver 510, a de-normalizer 1010, a core layer BICM decoder 520, and an enhanced layer symbol extractor 530.
  • the signal demultiplexing apparatus illustrated in FIG. 6 may correspond to the broadcast signal frame generating apparatus illustrated in FIG. 3.
  • the time deinterleaver 510 receives a received signal from an OFDM receiver that performs operations such as time / frequency synchronization, channel estimation, and equalization, and a burst error occurred in a channel. Performs operations on distribution
  • the L1 signaling information may be preferentially decoded in the OFDM receiver and used for data decoding.
  • the injection level information among the L1 signaling information may be delivered to the de-normalizer 1010 and the de-injection level controller 1020.
  • the OFDM receiver may decode the received signal in the form of a broadcast signal frame (eg, an ATSC 3.0 frame), extract a data symbol portion of the frame, and provide the same to the time deinterleaver 510. That is, the time deinterleaver 510 performs a deinterleaving process while passing a data symbol to distribute clustering errors occurring in a channel.
  • the de-normalizer 1010 corresponds to the power normalizer of the transmitter, increasing power by a decrease in the power normalizer. That is, the de-normalizer 1010 divides the received signal by the normalizing factor of Equation 2 above.
  • the de-normalizer 1010 is shown to adjust the power of the output signal of the time interleaver 510, but according to an embodiment the de-normalizer 1010 may be a time interleaver 510. It can also be placed in front of to allow power adjustment to be performed before interleaving.
  • the de-normalizer 1010 may be located in front of or behind the time interleaver 510 to amplify the signal size for LLR calculation of the core layer symbol demapper.
  • the output of the time deinterleaver 510 (or the output of the de-normalizer 1010) is provided to the core layer BICM decoder 520, and the core layer BICM decoder 520 restores the core layer data.
  • the core layer BICM decoder 520 includes a core layer symbol demapper, a core layer bit deinterleaver, and a core layer error correction decoder.
  • the core layer symbol demapper calculates the Log-Likelihood Ratio (LLR) values associated with the symbol
  • the core layer bit deinterleaver strongly mixes the calculated LLR values with the clustering error
  • the core layer error correction decoder Correct is the core layer error correction decoder Correct.
  • the core layer symbol demapper may calculate the LLR value for each bit using a predetermined constellation.
  • the constellation used in the core layer symbol mapper may be different according to a combination of a code rate and a modulation order used in the transmitter.
  • the core layer bit deinterleaver may perform deinterleaving on the calculated LLR values in LDPC codeword units.
  • the core layer error correction decoder may output only information bits, or may output all bits in which information bits and parity bits are combined.
  • the core layer error correction decoder may output only information bits as core layer data, and output all bits in which parity bits are combined to the enhanced layer symbol extractor 530.
  • the core layer error correction decoder may have a form in which a core layer LDPC decoder and a core layer BCH decoder are connected in series. That is, the input of the core layer error correction decoder is input to the core layer LDPC decoder, the output of the core layer LDPC decoder is input to the core layer BCH decoder, and the output of the core layer BCH decoder is It can be an output. At this time, the LDPC decoder performs LDPC decoding, and the BCH decoder performs BCH decoding.
  • the enhanced layer error correction decoder may also be in the form of an enhanced layer LDPC decoder and an enhanced layer BCH decoder connected in series. That is, the input of the enhanced layer error correction decoder is input to the enhanced layer LDPC decoder, the output of the enhanced layer LDPC decoder is input to the enhanced layer BCH decoder, and the output of the enhanced layer BCH decoder is enhanced. It can be the output of the layer error correction decoder.
  • the enhanced layer symbol extractor 530 receives the entire bits from the core layer error correction decoder of the core layer BICM decoder 520 and receives an enhanced layer from the output signal of the time deinterleaver 510 or the de-normalizer 1010. Symbols can be extracted. According to an embodiment, the enhanced layer symbol extractor 530 does not receive the entire bits from the error correction decoder of the core layer BICM decoder 520, receives information bits of the LDPC, or receives BCH information bits. You can be provided.
  • the enhanced layer symbol extractor 530 includes a buffer, a subtracter, a core layer symbol mapper, and a core layer bit interleaver.
  • the buffer stores the output signal of the time deinterleaver 510 or de-normalizer 1010.
  • the core layer bit interleaver receives the entire bits (information bits + parity bits) of the core layer BICM decoder and performs the same core layer bit interleaving as the transmitter.
  • the core layer symbol mapper generates the same core layer symbol as the transmitter from the interleaved signal.
  • the subtractor subtracts the output signal of the core layer symbol mapper from the signal stored in the buffer, thereby obtaining the enhanced layer symbol and passing it to the de-injection level controller 1020.
  • the enhanced layer symbol extractor 530 may further include a core layer LDPC encoder.
  • the enhanced layer symbol extractor 530 may further include a core layer BCH encoder as well as a core layer LDPC encoder.
  • the core layer LDPC encoder, the core layer BCH encoder, the core layer bit interleaver, and the core layer symbol mapper included in the enhanced layer symbol extractor 530 may be LDPC encoder, BCH encoder, or bit interleaver of the core layer described with reference to FIG. 3. And symbol mapper.
  • the de-injection level controller 1020 receives the enhanced layer symbol and increases the power by the power dropped by the injection level controller of the transmitter. That is, the de-injection level controller 1020 amplifies the input signal and provides the amplified signal to the enhanced layer BICM decoder 540. For example, if the transmitter combines the power of the enhanced layer signal by 3 dB less than the power of the core layer signal, the de-injection level controller 1020 serves to increase the power of the input signal by 3 dB.
  • the de-injection level controller 1020 may be regarded as multiplying the enhanced layer signal obtained by receiving the injection level information from the OFDM receiver and the enhanced layer gain of Equation 5 below.
  • the enhanced layer BICM decoder 540 receives the enhanced layer symbol whose power is increased by the de-injection level controller 1020 and restores the enhanced layer data.
  • the enhanced layer BICM decoder 540 may include an enhanced layer symbol demapper, an enhanced layer bit deinterleaver, and an enhanced layer error correction decoder.
  • the enhanced layer symbol demapper calculates the Log-Likelihood Ratio (LLR) values associated with the enhanced layer symbol
  • the enhanced layer bit deinterleaver strongly mixes the calculated LLR values with the clustering error and decrypts the enhanced layer error correction.
  • the device corrects errors that occur in the channel.
  • the enhanced layer BICM decoder 540 performs operations similar to the core layer BICM decoder 520, but in general, the enhanced layer LDPC decoder performs LDPC decoding for a code rate of 6/15 or more.
  • the core layer may use an LDPC code having a code rate of 5/15 or less
  • the enhanced layer may use an LDPC code having a code rate of 6/15 or more.
  • core layer data can be decoded by only a small number of LDPC decoding iterations.
  • the receiver hardware can share a single LDPC decoder between the core layer and the enhanced layer to reduce the cost of implementing the hardware.
  • the core layer LDPC decoder uses only a small amount of time resources (LDPC decoding iterations), and most of the time resources can be used by the enhanced layer LDPC decoder.
  • the signal demultiplexing apparatus illustrated in FIG. 6 first restores core layer data, cancels core layer symbols from a received signal symbol to leave only enhanced layer symbols, and then increases power of an enhanced layer symbol to enhance it. Restores the layer data. As described above with reference to FIGS. 3 and 5, since signals corresponding to the respective layers are combined at different power levels, the data having the lowest error may be recovered only from the signal having the strongest power.
  • the signal demultiplexing apparatus includes: a time deinterleaver 510 which applies time deinterleaving to a received signal to generate a time deinterleaving signal; A de-normalizer (1010) for increasing the power of the received signal or the time deinterleaving signal by a power reduction by a power normalizer of the transmitter; A core layer BICM decoder (520) for recovering core layer data from the signal adjusted by the de-normalizer (1010); Enhanced using the output signal of the core layer FEC decoder of the core layer BICM decoder 520 to perform cancellation corresponding to the core layer data with respect to the signal adjusted by the de-normalizer 1010.
  • An enhanced layer symbol extractor 530 for extracting a layer signal;
  • a de-injection level controller 1020 for raising the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter;
  • an enhanced layer BICM decoder 540 for restoring enhanced layer data by using the output signal of the de-injection level controller 1020.
  • the enhanced layer symbol extractor may receive the entire codeword from the core layer LDPC decoder of the core layer BICM decoder and may directly bit interleave the entire codeword.
  • the enhanced layer symbol extractor may receive information bits from a core layer LDPC decoder of the core layer BICM decoder, perform bit interleaving after performing core layer LDPC encoding on the information bits.
  • the enhanced layer symbol extractor may receive information bits from a core layer BCH decoder of the core layer BICM decoder, perform bit interleaving after performing core layer BCH encoding and core layer LDPC encoding.
  • the de-normalizer and the de-injection level controller may receive the injection level information IL INFO provided based on the L1 signaling and perform power control based on the injection level information.
  • the core layer BICM decoder may have a lower bit rate than the enhanced layer BICM decoder and may be more robust than the enhanced layer BICM decoder.
  • the de-normalizer may correspond to the inverse of the normalizing factor.
  • the de-injection level controller may correspond to the inverse of the scaling factor.
  • the enhanced layer data may be reconstructed based on a cancellation corresponding to reconstruction of the core layer data corresponding to the core layer signal.
  • the signal demultiplexing apparatus may include one or more enhancement layer symbol extractors configured to extract an enhancement layer signal by performing cancellation corresponding to previous layer data; One or more extensions that restore one or more enhancement layer data using one or more de-injection level controllers that increase the power of the enhancement layer signal by a power reduction of the injection level controller of the transmitter and the output signals of the one or more de-injection level controllers. It may further include a layer BICM decoder.
  • a signal demultiplexing method may include generating time deinterleaving signals by applying time deinterleaving to a received signal; Increasing the power of the received signal or the time deinterleaving signal by a power reduction by a power normalizer of the transmitter; Restoring core layer data from the power adjusted signal; Extracting an enhanced layer signal by performing cancellation on the core layer data with respect to the power adjusted signal; Increasing the power of the enhanced layer signal by a power reduction of the injection level controller of the transmitter; And restoring enhanced layer data by using the power-adjusted enhanced layer signal.
  • the extracting of the enhanced layer signal may receive the entire codeword from the core layer LDPC decoder of the core layer BICM decoder and directly interleave the entire codeword.
  • the extracting of the enhanced layer signal may receive information bits from the core layer LDPC decoder of the core layer BICM decoder, perform bit interleaving after performing core layer LDPC encoding on the information bits.
  • the extracting of the enhanced layer signal may receive information bits from the core layer BCH decoder of the core layer BICM decoder, perform bit interleaving after performing the core layer BCH encoding and core layer LDPC encoding. .
  • FIG. 7 is a block diagram illustrating an example of the core layer BICM decoder 520 and the enhanced layer symbol extractor 530 illustrated in FIG. 6.
  • the core layer BICM decoder 520 includes a core layer symbol demapper, a core layer bit deinterleaver, a core layer LDPC decoder, and a core layer BCH decoder.
  • the core layer error correction decoder includes a core layer LDPC decoder and a core layer BCH decoder.
  • the core layer LDPC decoder provides a whole codeword including parity bits to the enhanced layer symbol extractor 530. That is, in general, the LDPC decoder outputs only information bits of the entire LDPC codeword, but may output the entire codeword.
  • the enhanced layer symbol extractor 530 does not need to include a core layer LDPC encoder or a core layer BCH encoder, the implementation is simple, but there is a possibility that residual errors remain in the LDPC code parity part.
  • FIG. 8 is a block diagram illustrating another example of the core layer BICM decoder 520 and the enhanced layer symbol extractor 530 illustrated in FIG. 6.
  • the core layer BICM decoder 520 includes a core layer symbol demapper, a core layer bit deinterleaver, a core layer LDPC decoder, and a core layer BCH decoder.
  • the core layer error correction decoder includes a core layer LDPC decoder and a core layer BCH decoder.
  • the core layer LDPC decoder provides information bits that do not include parity bits to the enhanced layer symbol extractor 530.
  • the enhanced layer symbol extractor 530 does not need to include a core layer BCH encoder separately, but must include a core layer LDPC encoder.
  • the example illustrated in FIG. 8 may remove residual errors that may remain in the LDPC code parity portion as compared to the example illustrated in FIG. 7.
  • FIG. 9 is a block diagram illustrating another example of the core layer BICM decoder 520 and the enhanced layer symbol extractor 530 illustrated in FIG. 6.
  • the core layer BICM decoder 520 includes a core layer symbol demapper, a core layer bit deinterleaver, a core layer LDPC decoder, and a core layer BCH decoder.
  • the core layer error correction decoder includes a core layer LDPC decoder and a core layer BCH decoder.
  • the output of the core layer BCH decoder corresponding to the core layer data is provided to the enhanced layer symbol extractor 530.
  • the enhanced layer symbol extractor 530 since the enhanced layer symbol extractor 530 must include both the core layer LDPC encoder and the core layer BCH encoder, the complexity is high, but the highest performance is guaranteed compared to the examples of FIGS. 7 and 8.
  • FIG. 10 is a block diagram illustrating another example of the signal demultiplexing apparatus illustrated in FIG. 1.
  • the signal demultiplexing apparatus includes a time deinterleaver 510, a de-normalizer 1010, a core layer BICM decoder 520, and an enhanced layer symbol extractor 530.
  • the signal demultiplexing apparatus illustrated in FIG. 10 may correspond to the broadcast signal frame generating apparatus illustrated in FIG. 5.
  • the time deinterleaver 510 receives a received signal from an OFDM receiver that performs operations such as synchronization, channel estimation, and equalization, and relates to distribution of burst errors occurring in a channel. Perform the action.
  • the L1 signaling information may be preferentially decoded in the OFDM receiver and used for data decoding.
  • the injection level information among the L1 signaling information may be delivered to the de-normalizer 1010 and the de-injection level controllers 1020, 1150, and 1170.
  • the de-normalizer 1010 may obtain injection level information of all layers, obtain a de-normalizing factor using Equation 6, and then multiply the input signal.
  • the de-normalizing factor is an inverse of the normalizing factor expressed by Equation 4 above.
  • the de-normalizer 1010 when the N1 signaling includes not only the injection level information but also the normalizing factor information, the de-normalizer 1010 simply takes a reciprocal of the normalizing factor without using the injection level and calculates the inverse of the normalizing factor. Normalizing factor can be obtained.
  • the de-normalizer 1010 corresponds to the power normalizer of the transmitter, increasing power by a decrease in the power normalizer.
  • the de-normalizer 1010 is shown to adjust the power of the output signal of the time interleaver 510, but according to an embodiment the de-normalizer 1010 may be a time interleaver 510. It can also be placed in front of to allow power adjustment to be performed before interleaving.
  • the de-normalizer 1010 may be located in front of or behind the time interleaver 510 to amplify the signal size for LLR calculation of the core layer symbol demapper.
  • the output of the time deinterleaver 510 (or the output of the de-normalizer 1010) is provided to the core layer BICM decoder 520, and the core layer BICM decoder 520 restores the core layer data.
  • the core layer BICM decoder 520 includes a core layer symbol demapper, a core layer bit deinterleaver, and a core layer error correction decoder.
  • the core layer symbol demapper calculates the Log-Likelihood Ratio (LLR) values associated with the symbol
  • the core layer bit deinterleaver strongly mixes the calculated LLR values with the clustering error
  • the core layer error correction decoder Correct is the core layer error correction decoder Correct.
  • the core layer error correction decoder may output only information bits, or may output all bits in which information bits and parity bits are combined.
  • the core layer error correction decoder may output only information bits as core layer data, and output all bits in which parity bits are combined to the enhanced layer symbol extractor 530.
  • the core layer error correction decoder may have a form in which a core layer LDPC decoder and a core layer BCH decoder are connected in series. That is, the input of the core layer error correction decoder is input to the core layer LDPC decoder, the output of the core layer LDPC decoder is input to the core layer BCH decoder, and the output of the core layer BCH decoder is It can be an output. At this time, the LDPC decoder performs LDPC decoding, and the BCH decoder performs BCH decoding.
  • the enhanced layer error correction decoder may also have a form in which the enhanced layer LDPC decoder and the enhanced layer BCH decoder are connected in series. That is, the input of the enhanced layer error correction decoder is input to the enhanced layer LDPC decoder, the output of the enhanced layer LDPC decoder is input to the enhanced layer BCH decoder, and the output of the enhanced layer BCH decoder is enhanced. It can be the output of the layer error correction decoder.
  • the enhancement layer error correction decoder may also have a form in which the enhancement layer LDPC decoder and the enhancement layer BCH decoder are connected in series. That is, the input of the enhancement layer error correction decoder is input to the enhancement layer LDPC decoder, the output of the enhancement layer LDPC decoder is input to the enhancement layer BCH decoder, and the output of the enhancement layer BCH decoder is It can be an output.
  • the trade off between implementation complexity and performance depending on which of the outputs of the error correction decoder described with reference to FIGS. 7, 8 and 9 is to be used is the core layer BICM decoder 520 of FIG.
  • the enhancement layer symbol extractors 650 and 670 and the enhancement layer BICM decoders 660 and 680 are applied.
  • the enhanced layer symbol extractor 530 receives the entire bits from the core layer error correction decoder of the core layer BICM decoder 520 and receives an enhanced layer from the output signal of the time deinterleaver 510 or the de-normalizer 1010. Symbols can be extracted. According to an embodiment, the enhanced layer symbol extractor 530 does not receive the entire bits from the error correction decoder of the core layer BICM decoder 520, receives information bits of the LDPC, or receives BCH information bits. You can be provided.
  • the enhanced layer symbol extractor 530 includes a buffer, a subtracter, a core layer symbol mapper, and a core layer bit interleaver.
  • the buffer stores the output signal of the time deinterleaver 510 or de-normalizer 1010.
  • the core layer bit interleaver receives the entire bits (information bits + parity bits) of the core layer BICM decoder and performs the same core layer bit interleaving as the transmitter.
  • the core layer symbol mapper generates the same core layer symbol as the transmitter from the interleaved signal.
  • the subtractor subtracts the output signal of the core layer symbol mapper from the signal stored in the buffer, thereby obtaining the enhanced layer symbol and passing it to the de-injection level controller 1020.
  • the core layer bit interleaver and the core layer symbol mapper included in the enhanced layer symbol extractor 530 may be the same as the bit interleaver and symbol mapper of the core layer illustrated in FIG. 5.
  • the de-injection level controller 1020 receives the enhanced layer symbol and increases the power by the power dropped by the injection level controller of the transmitter. That is, the de-injection level controller 1020 amplifies the input signal and provides the amplified signal to the enhanced layer BICM decoder 540.
  • the enhanced layer BICM decoder 540 receives the enhanced layer symbol whose power is increased by the de-injection level controller 1020 and restores the enhanced layer data.
  • the enhanced layer BICM decoder 540 may include an enhanced layer symbol demapper, an enhanced layer bit deinterleaver, and an enhanced layer error correction decoder.
  • the enhanced layer symbol demapper calculates the Log-Likelihood Ratio (LLR) values associated with the enhanced layer symbol
  • the enhanced layer bit deinterleaver strongly mixes the calculated LLR values with the clustering error and decrypts the enhanced layer error correction.
  • the device corrects errors that occur in the channel.
  • the enhanced layer error correction decoder may output only information bits, or may output all bits in which information bits and parity bits are combined.
  • the enhanced layer error correction decoder may output only information bits as enhanced layer data, and output all bits in which the parity bits are combined with the information bits to the enhancement layer symbol extractor 650.
  • the enhancement layer symbol extractor 650 receives the entire bits from the enhanced layer error correction decoder of the enhanced layer BICM decoder 540 and extracts extension layer symbols from the output signal of the de-injection level controller 1020. do.
  • the de-injection level controller 1020 may amplify the power of the output signal of the subtractor of the enhanced layer symbol extractor 530.
  • the enhancement layer symbol extractor 650 includes a buffer, a subtracter, an enhanced layer symbol mapper, and an enhanced layer bit interleaver.
  • the buffer stores the output signal of the de-injection level controller 1020.
  • the enhanced layer bit interleaver receives the entire bits (information bits + parity bits) of the enhanced layer BICM decoder and performs the same enhanced layer bit interleaving as the transmitter.
  • the enhanced layer symbol mapper generates the same enhanced layer symbol as the transmitter from the interleaved signal.
  • the subtractor subtracts the output signal of the enhanced layer symbol mapper from the signal stored in the buffer, thereby obtaining the enhancement layer symbol and delivering it to the de-injection level controller 1150.
  • the enhanced layer bit interleaver and the enhanced layer symbol mapper included in the enhancement layer symbol extractor 650 may be the same as the bit interleaver and symbol mapper of the enhanced layer illustrated in FIG. 5.
  • the de-injection level controller 1150 increases the power by the injection level controller of the layer at the transmitter.
  • the de-injection level controller may be regarded as performing an operation of multiplying the enhancement layer gain of Equation 7 below.
  • the 0 th injection level may be regarded as 0 dB.
  • the enhancement layer BICM decoder 660 receives the enhancement layer symbol whose power is increased by the de-injection level controller 1150 and restores the enhancement layer data.
  • the enhancement layer BICM decoder 660 may include an enhancement layer symbol demapper, an enhancement layer bit deinterleaver, and an enhancement layer error correction decoder.
  • the enhancement layer symbol demapper calculates the Log-Likelihood Ratio (LLR) values associated with the enhancement layer symbol
  • the enhancement layer bit deinterleaver strongly mixes the calculated LLR values with the clustering error
  • LLR Log-Likelihood Ratio
  • two or more enhancement layer symbol extractors and enhancement layer BICM decoders may be provided when there are two or more enhancement layers.
  • the enhancement layer error correction decoder of the enhancement layer BICM decoder 660 may output only information bits and output all bits in which the information bits and the parity bits are combined. It may be. In this case, the enhancement layer error correction decoder may output only information bits as enhancement layer data, and output all bits in which parity bits are combined with the information bits to the next enhancement layer symbol extractor 670.
  • the structure and operation of the enhancement layer symbol extractor 670, the enhancement layer BICM decoder 680, and the de-injection level controller 1170 are described in detail above with the enhancement layer symbol extractor 650, the enhancement layer BICM decoder 660 and de-injection. It can be easily seen from the structure and operation of the level controller 1150.
  • the de-injection level controllers 1020, 1150, and 1170 shown in FIG. 10 may correspond to a greater power rise as it goes down. That is, the de-injection level controller 1150 increases power more than the de-injection level controller 1020, and the de-injection level controller 1170 increases the power more significantly than the de-injection level controller 1150. You can.
  • the signal demultiplexing apparatus illustrated in FIG. 10 first restores core layer data, restores enhanced layer data using cancellation of the core layer symbols, and extends the extended layer data using cancellation of the enhanced layer symbols. It can be seen that the restoration. Two or more enhancement layers may be provided, in which case they are restored from the combined enhancement layers at higher power levels.
  • FIG. 11 is a diagram illustrating a power increase due to a combination of a core layer signal and an enhanced layer signal.
  • the power level of the multiplexed signal is determined by the core layer signal or the enhanced layer signal. It can be seen that the power level is higher.
  • the injection level adjusted by the injection level controller shown in FIGS. 3 and 5 may be adjusted in 0.5dB or 1dB intervals from 0dB to 10.0dB.
  • the power of the enhanced layer signal is 3dB lower than the power of the core layer signal.
  • the power of the enhanced layer signal is 10 dB lower than the power of the core layer signal. This relationship may be applied not only between the core layer signal and the enhanced layer signal but also between the enhanced layer signal and the enhancement layer signal or the enhancement layer signals.
  • the power normalizer shown in FIGS. 3 and 5 may adjust the power level after coupling to solve problems such as distortion of a signal that may be caused by power increase due to coupling.
  • FIG. 12 is a flowchart illustrating a broadcast signal frame generation method according to an embodiment of the present invention.
  • BICM is applied to core layer data (S1210).
  • the method for generating broadcast signal frame applies BICM to enhanced layer data (S1220).
  • the BICM applied at step S1220 and the BICM applied at step S1210 may be different. At this time, the BICM applied in step S1220 may be less robust than the BICM applied in step S1210. At this time, the bit rate of the BICM applied in step S1220 may be greater than the bit rate applied in step S1210.
  • the enhanced layer signal may correspond to enhanced layer data reconstructed based on a cancellation corresponding to reconstruction of core layer data corresponding to the core layer signal.
  • the broadcast signal frame generation method generates a power reduced enhanced layer signal by reducing the power of the enhanced layer signal (S1230).
  • step S1230 may change the injection level in 0.5 dB or 1 dB intervals between 0 dB and 10.0 dB.
  • the broadcast signal frame generation method generates a multiplexed signal by combining the core layer signal and the power reduced enhanced layer signal (S1240).
  • step S1240 the core layer signal and the enhanced layer signal are combined at different power levels, but the power layer of the enhanced layer signal is combined to be lower than the power level of the core layer signal.
  • one or more extension layer signals having a lower power level than the core layer signal and the enhanced layer signal may be combined with the core layer signal and the enhanced layer signal.
  • the method for generating a broadcast signal frame lowers the power of the signal multiplexed by step S1250 (S1250).
  • step S1250 may lower the power of the multiplexed signal by the power of the core layer signal. In this case, step S1250 may lower the power of the multiplexed signal as much as it is increased by step S1240.
  • the method for generating a broadcast signal frame generates a time interleaved signal by performing time interleaving applied to both the core layer signal and the enhanced layer signal (S1260).
  • step S1260 may generate a time interleaved signal by interleaving the BICM output signal.
  • the method for generating a broadcast signal frame generates a broadcast signal frame including a bootstrap and a preamble using a time interleaved signal (S1270).
  • step S1270 may include generating the bootstrap; Generating the preamble; And generating a data payload corresponding to the time interleaved signal.
  • the data payload may be a super-impended payload.
  • the bootstrap may be shorter than the preamble and have a fixed length.
  • the preamble may include L1-Basic and L1-Detail
  • the bootstrap may include a symbol representing the structure of the L1-Basic.
  • the symbol may correspond to a fixed-length bit string signaling the BICM mode and the OFDM parameter of the L1-Basic together.
  • the BICM mode is a first mode for identifying the QPSK and the inefficiency 3/15, and a first mode for identifying the QPSK and the inefficiency 3/15, the non uniform constellation (16-NUC) and the inefficiency 3/15, respectively.
  • Fourth mode, 64-NON (Non Uniform Constellation), and a fifth mode for identifying inefficiency 3/15 may be included.
  • the first mode, the second mode, and the third mode use parity repetition and parity puncturing size (parity) while using the same constellation and code rate.
  • parity parity repetition and parity puncturing size
  • robustness may be in different modes.
  • the first mode may perform parity repetition
  • the second and third modes may not perform parity repetition
  • the parity puncturing size of the second mode may be larger than the parity puncturing size of the first mode and smaller than the parity puncturing size of the third mode.
  • the preamble structure corresponding to the second guard interval length shorter than the first guard interval length is preferred to the preamble structure corresponding to the first guard interval length. It may correspond to a lookup table to be allocated.
  • the symbol is the first mode, the second mode, the third mode, the fourth mode and the first mode for the combination of the same FFT size, Guard Interval length and pilot pattern (pilot pattern)
  • the five modes may correspond to lookup tables that are allocated in robustness order.
  • the method for generating broadcast signal frames may further include generating signaling information including injection level information corresponding to step S1230.
  • the signaling information may be L1 signaling information.
  • the broadcast signal frame generation method shown in FIG. 12 may correspond to step S210 shown in FIG. 2.
  • FIG. 13 is a block diagram illustrating a signaling information encoding / decoding system according to an embodiment of the present invention.
  • the signaling information encoding / decoding system includes a signaling information encoding apparatus 2100 and a signaling information decoding apparatus 2300.
  • the signaling information encoding apparatus 2100 and the signaling information decoding apparatus 2300 communicate with each other via the wireless channel 2200.
  • the signaling information encoding apparatus 2100 performs channel encoding and modulation on signaling information such as L1-Basic or L1-Detail.
  • the signaling information encoding apparatus 2100 may include a segmentation unit 2110, a scrambling unit 2120, a BCH encoder 2130, a zero padding unit 2140, an LDPC encoder 2150, a parity permutation unit 2160, and a parity puncturing unit. 2170, a zero removing unit 2180, a bit interleaving unit 2190, and a constellation mapping unit 2195.
  • the signaling information encoding apparatus 2100 illustrated in FIG. 13 may be considered to correspond to a bit-interleaved coded modulation (BICM) apparatus.
  • the error correcting encoder of the BICM apparatus may include the segmentation unit 2110 illustrated in FIG. 13.
  • the scrambling unit 2120, the BCH encoder 2130, the zero padding unit 2140, the LDPC encoder 2150, the parity permutation unit 2160, the parity puncturing unit 2170, and the zero removing unit 2180 It can be seen as.
  • the segmentation unit 2100 divides the signaling information into several groups to divide the signaling information into several LDPC codewords and transmit the signaling information. That is, when signaling information cannot be contained in one LDPC codeword, the segmentation unit may determine how many codewords to include signaling information and may divide the signaling information according to the determined number.
  • the signaling information encoding apparatus 2100 may not include the segmentation unit 2100.
  • the signaling information encoding apparatus 2100 may include a segmentation unit 2100.
  • the scrambling unit 2120 performs scrambling to protect the signaling information. At this time, scrambling may be performed in various ways known in the art.
  • the BCH encoding may be the same as the BCH encoding for an LDPC code having a length of 16200 of the data BICM.
  • the BCH polynomial used for BCH encoding may be expressed as shown in Table 5 below, and the BCH encoding shown in Table 5 may have an error correction capability of 12 bits.
  • the zero padding unit 2140 After performing BCH encoding, the zero padding unit 2140 performs zero padding or shortening.
  • zero padding means filling a portion of the bit string with bit '0'.
  • N bch K sig + N It can be expressed as bch _Parity.
  • K sig may be the number of information bits of BCH encoding. For example, if K sig is fixed at 200 bits, then N bch may be 368 bits.
  • the information length K ldpc of the LDPC is 3240 bits.
  • the information to be actually transmitted is N bch bits, and the length of the LDPC information portion is K ldpc bits, so K ldpc -N Zero padding is performed, which is a process of filling bch bits with bit '0'.
  • K ldpc -N for L1-Basic bch may be 2872.
  • the order of zero padding plays a very important role in determining the performance of the encoder, and the order of zero padding may be expressed as a shortening pattern order.
  • the zero padded bits are used only in LDPC encoding and are not actually transmitted.
  • LDPC information bits of the K ldpc bit are divided into N info_group groups as shown in Equation 8. For example, when K ldpc is 3240, since N info_group is 9, LDPC information bits may be grouped into 9 groups.
  • Z j represents a group consisting of 360 bits.
  • Step 1 First, a number of groups in which all the bits shall be padded with '0' is calculated using Equation 9 below.
  • K ldpc is 3240 and N When bch is 368, N pad may be 7. N pad equals 7 indicates that there are 7 groups to fill all bits with zeros.
  • Step 2 When N pad is not 0, for N pad groups according to the shortening pattern order ⁇ S (j) shown in Table 6 below. Zero padding in order.
  • ⁇ S (j) may represent the shortening pattern order of the j-th bit group.
  • the shortening pattern orders shown in Table 6 are the fifth group indexed by 4, the second group indexed by 1, the sixth group indexed by 5, the third group indexed by 2, the ninth group indexed by 8, and 6 It means that the zero padding is performed in the order of the seventh group indexed, the first group indexed by 0, the eighth group indexed by 7, and the fourth group indexed by 3. That is, in the example of Table 6, if only seven groups are selected for the zero padding, the fifth group indexed by 4, the second group indexed by 1, the sixth group indexed by 5, and the 3 indexed by 2 A total of seven groups of the first group indexed to 8, the ninth group indexed to 8, the seventh group indexed to 6, and the first group indexed to 0 are selected as zero padding targets.
  • the shortening pattern order of Table 6 may be optimized for fixed length signaling information.
  • Step 3 For the group corresponding to Z ⁇ s (N pad ), (K ldpc -N bch -360 x N pad ) bits are additionally zero padded from the front of the group.
  • zero padding from the front of the group may mean zero padding from a bit corresponding to a small index.
  • Step 4 When all zero padding is completed, the LDPC information bit string is generated by sequentially mapping the BCH-encoded N bch bits to the remaining portion without the zero padding.
  • the LDPC encoder 2150 performs LDPC encoding using K ldpc to which zero padding and signaling information are mapped.
  • the LDPC encoder 2150 may correspond to an LDPC codeword having a code rate of 3/15 and a length of 16200.
  • the LDPC codeword is a systematic code, and the LDPC encoder 2150 generates an output vector as shown in Equation 10 below.
  • the parity bit may be 12960 bits.
  • the parity permutation unit 2160 is a preliminary operation for parity puncturing, and performs group-wise parity interleaving for the parity portion rather than the information portion.
  • the parity permutation unit 2160 may perform parity interleaving using Equation 11 below.
  • Y j represents a j-th group-wise interleaved bit group
  • ⁇ (j) represents an order of group-wise interleaving. It can be defined as
  • the parity permutation unit 2160 outputs 3240 bits (9 bit groups) corresponding to information bits among 16200 bits (45 bit groups) of the LDPC codeword as it is, and 12960 parity bits. These groups are grouped into 36 bit groups each containing 360 bits and then interleaved in the order of the 36 bit groups in the order of group-wise interleaving corresponding to Table 7 above.
  • the 21st group indexed with 20 is positioned at the 10th group position indexed with 9, and the 24th group indexed with 23 is positioned at the 11th group position indexed with 10,
  • the 26th group indexed to 25 is positioned at the 12th group position indexed to 11, and the 18th bit group indexed to 17 is positioned at the 45th group position indexed to 44,.
  • bit group in the front position (a group of bits indexed to 20) may correspond to an important parity bit
  • bit group in the rear position (a group of bits indexed to 17) may correspond to an insignificant parity bit
  • the group-wise interleaving order of Table 7 may be optimized for fixed length signaling information.
  • the parity puncturing unit 2170 may puncture some parity of the LDPC codeword. Punched bits are not transmitted. In this case, after parity interleaving is completed, parity repetition may be performed in which a part of parity interleaved LDPC parity bits are repeated before parity puncturing is performed.
  • the parity puncturing unit 2170 calculates a final puncturing size and punctures bits corresponding to the calculated final puncturing size.
  • the final puncturing size corresponding to the number of bits to be punctured is the length of the BCH encoded bit string (N bch ) can be calculated as follows.
  • Step 1 Temporary puncturing size (N punc _temp) is to be calculated using the equation (12).
  • K ldpc represents the length of the LDPC information bit string
  • N bch represents the length of the BCH encoded bit string
  • A represents the first integer
  • B represents the second integer.
  • the difference between the length of the LDPC information bit string and the length of the BCH encoded bit string may correspond to zero padding length or shortening length.
  • Equation 12 The puncturing parameters required for the calculation of Equation 12 may be defined as shown in Table 8 below.
  • N represents the number _parity ldpc parity bits of the LDPC codeword
  • ⁇ MOD denotes the modulation order (modulation order).
  • the modulation order may be 2, which may represent QPSK.
  • the puncturing parameters of Table 8 may be optimized for fixed length signaling information.
  • Step 2 Calculated temporary puncturing size (N punc _temp) and calculates the number of the temporary transmission bits (N FEC_temp) steps, to the equation (13) using the N ldpc _parity of Table 8.
  • Step 3 The calculated number of transmission bits N FEC is calculated using the calculated temporary transmission bits N FEC_temp as shown in Equation 14 below.
  • N FEC The number of transmission bits
  • Step 4 The final puncturing size (N punc ) is calculated using Equation 15 below using the calculated number of transmission bits (N FEC ).
  • the final puncturing size (N punc ) means the size of parity to be punctured.
  • the parity puncture ring (2170) is popped to puncturing the parity permutation and the last N punc bits of the repetition whole LDPC codeword design has been completed (the last N punc bits of the whole LDPC codeword with parity permutation and repetition) Can be.
  • the zero removing unit 2180 removes zero padded bits from the information portion of the LDPC codeword.
  • the bit interleaving unit 2190 performs bit interleaving on the zero removed LDPC codeword.
  • bit interleaving may be performed in a manner in which the direction in which the LDPC codeword is written and the direction in which the LDPC codewords are read are different from each other in a memory having a predetermined size.
  • the constellation mapping unit 2195 performs symbol mapping.
  • the constellation mapping unit 2195 may be implemented in a QPSK scheme.
  • the signaling information decoding apparatus 2300 demodulates and channel-decodes signaling information such as L1-Basic or L1-Detail.
  • the signaling information decoding apparatus 2300 may include a constellation demapping unit 2395, a bit deinterleaving unit 2390, an inverse zero removing unit 2380, an inverse parity puncturing unit 2370, and an inverse parity permutation unit 360. , An LDPC decoder 360, an inverse zero padding unit 2340, a BCH decoder 2330, an inverse scrambling unit 2320, and an inverse segmentation unit 2310.
  • the signaling information decoding apparatus 2300 illustrated in FIG. 13 may be considered to correspond to a bit-interleaved coded modulation (BICM) decoding apparatus.
  • the error correction decoder of the BICM decoding apparatus may include an inverse zero limo illustrated in FIG. 13. Ice section 2380, reverse parity puncturing section 2370, reverse parity permutation section 2360, LDPC decoder 2350, reverse zero padding section 2340, BCH decoder 2330, reverse scrambling section 2320 and reverse It may be regarded as corresponding to the segmentation unit 2310.
  • the reverse segmentation unit 2310 performs the reverse process of the segmentation unit 2110.
  • the reverse scrambling unit 2320 performs the reverse process of the scrambling unit 2120.
  • the BCH decoder 2330 performs the reverse process of the BCH encoder 2130.
  • the reverse zero padding unit 2340 performs the reverse process of the zero padding unit 2140.
  • the inverse zero padding unit 2340 receives the LDPC information bit stream from the LDPC decoder 2350, selects groups in which all bits are filled with zeros using a shortening pattern order, and uses the groups except for the groups.
  • a BCH encoded bit string may be generated from the LDPC information bit string.
  • the LDPC decoder 2350 performs the reverse process of the LDPC encoder 2150.
  • the inverse parity permutation unit 2360 performs a reverse process of the parity permutation unit 2160.
  • the inverse parity permutation unit 2360 divides the parity bits of the LDPC codeword into a plurality of groups, and decodes the groups using a group-wise interleaving order to decode the LDPC codeword to be LDPC decoded. Can be generated.
  • the reverse parity puncturing unit 370 performs the reverse process of the parity puncturing unit 2170.
  • the inverse parity puncturing unit 370 uses the first integer multiplied by the difference between the length of the LDPC information bit string and the length of the BCH encoded bit string, and the temporary puncturing size using a second integer different from the first integer. puncturing size), calculates the number of temporary transmission bits using the difference between the length of the BCH encoded bit string and the sum of 12960 and the temporary puncturing size, and transmits the bits using the temporary transmission bits and the modulation order. Calculates a number, calculates a final puncturing size using the temporary transmission bit number, the transmission bit number, and the temporary transmission bit number, and considers the final puncturing size to the inverse parity permutation unit 2360.
  • the provided LDPC codeword can be generated.
  • the reverse zero removing unit 2380 performs a reverse process of the zero removing unit 2180.
  • the bit deinterleaving unit 2390 performs a reverse process of the bit interleaving unit 2190.
  • the constellation demapping unit 2395 performs the reverse process of the constellation mapping unit 2195.
  • FIG. 14 illustrates a broadcast signal frame according to an embodiment of the present invention.
  • a broadcast signal frame 2410 may include a bootstrap 2421, a preamble 2423, and data symbols 2425.
  • the preamble 2423 includes signaling information.
  • the preamble 2423 may include L1-Basic 2431 and L1-Detail 2433.
  • L1-Basic 2431 may be fixed length signaling information.
  • L1-Basic 2431 may correspond to 200 bits.
  • L1-Detail 2433 may be variable length signaling information.
  • L1-Detail 2433 may correspond to 200 to 2352 bits.
  • the broadcast signal frame 2410 begins with a bootstrap 2421 containing version information and the most general signaling information of the system, followed by L1-Basic 2431 and L1-Detail 2433.
  • the L1-Basic 2431 may transmit general signaling information such as the number of PLPs, the FFT size, the guard interval, and the modulation / code rate information for the L1-Detail 2433 at a constant number of bits, and the L1-Detail 2433 may carry the rest.
  • Detailed signaling information can be transmitted.
  • the number of bits of the L1-Detail 2433 may vary according to the number of PLPs transmitted.
  • the bootstrap 2421 may signal the BICM mode and the OFDM parameter of the L1-Basic 2431, and the L1-Basic 2431 may signal the BICM mode and the OFDM parameter of the L1-Detail 2433. have.
  • the BICM mode may include a constellation and a code rate
  • the OFDM parameter may include an FFT size, a guard interval length, and a pilot pattern.
  • FIG. 15 is a diagram illustrating an example of an operation of a zero padding unit illustrated in FIG. 13.
  • the zero padding operation when the shortening pattern order is [4 1 5 2 8 6 0 7 3].
  • the length of the LDPC information bit string is 3240, and therefore the LDPC information bits are composed of groups of nine 360 bits.
  • the shortening pattern order is [4 1 5 2 8 6 0 7 3]
  • the fifth group 2610 indexed by 4 the second group 2620 indexed by 1, and the sixth indexed by 5 Group 2630, third group 2640 indexed by 2, ninth group 2650 indexed by 8, seventh group 2660 indexed by 6, first group indexed by 0 ( A total of seven groups of 2670 are selected so that all bits in the group are filled with zeros.
  • FIG. 16 is a diagram illustrating an example of an operation of the parity permutation unit illustrated in FIG. 13.
  • a group-wise interleaving order is a sequence [20 23 25 32 38 41 18 9 10 11 31 24 14 15 26 40 33 19 28 34 16 39 27 30 21 44 43 35 42 36 12 13 29 22 37 17 Parity permutation behavior in the case of
  • the permutation unit locates the 21st group indexed with 20 at the 10th group position 2710 indexed with 9, and locates the 24th group indexed with 23 at the 11th group position 2720 indexed with 10,. .. 38 places the 38 th group indexed 37 at the 44 th group position 2730 indexed at 43 and the 18 th bit group indexed 17 at the 45 th group position 2740 indexed 44.
  • Parity puncturing may be performed behind the parity interleaved parity bits (to the 18th bitgroup indexed to 17).
  • 17 is a diagram illustrating an example of an operation of the zero removing unit illustrated in FIG. 13.
  • the zero removing unit removes zero-padded portions from the information portion of the LDPC codeword to generate signaling information for transmission.
  • the apparatus and method for generating a broadcast signal frame according to the present invention is not limited to the configuration and method of the embodiments described as described above, but the embodiments may be modified in various ways. All or some of these may optionally be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방법이 개시된다. 본 발명의 일실시예에 따른 방송 신호 프레임 생성 장치는 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 및 상기 타임 인터리빙된 신호를 이용하여, 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더를 포함한다.

Description

부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
본 발명은 방송 시스템에서 사용되는 방송 신호 송/수신 기술에 관한 것으로, 특히 부트스트랩이나 프리앰블과 같은 시그널링 필드를 포함하는 프레임을 이용하여 방송 신호를 송/수신하는 방송 신호 송/수신 시스템에 관한 것이다.
BICM(Bit-Interleaved Coded Modulation)은 대역-효율적인(bandwidth-efficient) 전송기술로 오류정정 부호화기(error-correction coder), 비트단위 인터리버(bit-by-bit interleaver) 및 높은 차수의 변조기(modulator)가 결합된 형태이다.
BICM은 오류정정 부호화기로 LDPC(Low-Density Parity Check) 부호기 또는 터보 부호기를 이용함으로써, 간단한 구조로 뛰어난 성능을 제공할 수 있다. 또한, BICM은 변조 차수(modulation order)와 오류정정 부호의 길이 및 부호율 등을 다양하게 선택할 수 있기 때문에, 높은 수준의 플렉서빌러티(flexibility)를 제공한다. 이와 같은 장점 때문에, BICM은 DVB-T2나 DVB-NGH 와 같은 방송표준에서 사용되고 있을 뿐만 아니라 다른 차세대 방송시스템에서도 사용될 가능성이 높다.
이와 같은 BICM은 데이터 전송뿐만 아니라 시그널링 정보 전송을 위해서도 사용될 수 있다. 특히, 시그널링 정보 전송을 위한 채널부호화 및 변조기법은 데이터 전송을 위한 채널부호화 및 변조기법에 비해 더욱 강인할 필요가 있다.
또한, 방송 통신 시스템에서 시그널링 정보 전송을 위한 프리앰블의 구조나 OFDM 파라미터를, 효과적으로 시그널링하는 것은 방송 통신 시스템의 효율성을 결정하는 매우 중요한 요소이다.
본 발명의 목적은 방송 시스템 채널에서 시그널링 정보 전송에 사용되는 시그널링 필드의 BICM 모드나 OFDM 파라미터를 효율적으로 시그널링할 수 있는 새로운 방송 신호 프레임 구조를 제공하는 것이다.
또한, 본 발명의 목적은 다양한 SNR을 제공하는 시그널링 BICM 모드들을 이용하여 효율적으로 원하는 서비스에 적합한 시그널링 BICM 모드를 사용할 수 있도록 하는 것이다.
또한, 본 발명의 목적은 컨스틸레이션이나 부호율 같은 BICM 모드와 FFT 사이즈, 가드 인터벌이나 파일럿 패턴과 같은 OFDM 파라미터를 동시에 효율적으로 시그널링하는 것이다.
상기한 목적을 달성하기 위한 본 발명에 따른 방송 신호 프레임 생성 장치는 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 및 상기 타임 인터리빙된 신호를 이용하여, 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더를 포함한다.
이 때, 부트스트랩은 상기 프리앰블보다 짧고, 고정된 길이를 가질 수 있다.
이 때, 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함할 수 있다.
이 때, 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응할 수 있다.
이 때, BICM 모드는 각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드, 16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드, 64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함할 수 있다.
이 때, 제1 모드, 제2 모드 및 제3 모드는 동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들일 수 있다.
이 때, 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않는 것일 수 있다.
이 때, 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작을 수 있다.
이 때, 심볼은 상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
이 때, 심볼은 동일한 FFT 사이즈(FFT size), 가드 인터벌 길이(Guard Interval length) 및 파일럿 패턴(pilot pattern)의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은, BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 및 상기 타임 인터리빙된 신호를 이용하여, 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 단계를 포함한다.
이 때, 부트스트랩은 상기 프리앰블보다 짧고, 고정된 길이를 가질 수 있다.
이 때, 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함할 수 있다.
이 때, 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응하는 것일 수 있다.
이 때, BICM 모드는 각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드, 16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드, 64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함할 수 있다.
이 때, 제1 모드, 제2 모드 및 제3 모드는 동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들일 수 있다.
이 때, 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않을 수 있다.
이 때, 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작을 수 있다.
이 때, 심볼은 상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
이 때, 심볼은 동일한 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
본 발명에 따르면, 방송 시스템 채널에서 시그널링 정보 전송에 사용되는 시그널링 필드의 BICM 모드나 OFDM 파라미터를 효율적으로 시그널링할 수 있는 새로운 방송 신호 프레임 구조가 제공된다.
또한, 본 발명은 다양한 SNR을 제공하는 시그널링 BICM 모드들을 이용하여 효율적으로 원하는 서비스에 적합한 시그널링 BICM 모드를 사용할 수 있도록 할 수 있다.
또한, 본 발명은 컨스틸레이션이나 부호율 같은 BICM 모드와 FFT 사이즈, 가드 인터벌이나 파일럿 패턴과 같은 OFDM 파라미터를 동시에 효율적으로 시그널링할 수 있다.
도 1은 본 발명의 일실시예에 따른 방송 신호 송/수신 시스템을 나타낸 블록도이다.
도 2는 본 발명의 일실시예에 따른 방송 신호 송/수신 방법을 나타낸 동작 흐름도이다.
도 3은 도 1에 도시된 방송 신호 프레임 생성 장치의 일 예를 나타낸 블록도이다.
도 4는 방송 신호 프레임 구조의 일 예를 나타낸 도면이다.
도 5는 도 1에 도시된 방송 신호 프레임 생성 장치의 다른 예를 나타낸 블록도이다.
도 6는 도 1에 도시된 신호 디멀티플렉싱 장치의 일 예를 나타낸 블록도이다.
도 7은 도 6에 도시된 코어 레이어 BICM 디코더 및 인핸스드 레이어 심볼 추출기의 일 예를 나타낸 블록도이다.
도 8은 도 6에 도시된 코어 레이어 BICM 디코더 및 인핸스드 레이어 심볼 추출기의 다른 예를 나타낸 블록도이다.
도 9는 도 6에 도시된 코어 레이어 BICM 디코더 및 인핸스드 레이어 심볼 추출기의 또 다른 예를 나타낸 블록도이다.
도 10은 도 1에 도시된 신호 디멀티플렉싱 장치의 다른 예를 나타낸 블록도이다.
도 11은 코어 레이어 신호 및 인핸스드 레이어 신호의 결합으로 인한 파워 상승을 나타낸 도면이다.
도 12는 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법을 나타낸 동작 흐름도이다.
도 13은 본 발명의 일실시예에 따른 시그널링 정보 부호화/복호화 시스템을 나타낸 블록도이다.
도 14는 본 발명의 일실시예에 따른 방송 신호 프레임을 나타낸 도면이다.
도 15은 도 13에 도시된 제로 패딩부의 동작의 일 예를 나타낸 도면이다.
도 16은 도 13에 도시된 패리티 퍼뮤테이션부의 동작의 일 예를 나타낸 도면이다.
도 17은 도 13에 도시된 제로 리무빙부의 동작의 일 예를 나타낸 도면이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 방송 신호 송/수신 시스템을 나타낸 블록도이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 방송 신호 송/수신 시스템은 방송 신호 송신 장치(110), 무선 채널(120) 및 방송 신호 수신 장치(130)를 포함한다.
방송 신호 송신 장치(110)는 코어 레이어 데이터 및 인핸스드 레이어 데이터를 멀티플렉싱하여 방송 신호 프레임을 생성하는 방송 신호 프레임 생성 장치(111) 및 OFDM 송신기(113)를 포함한다.
방송 신호 프레임 생성 장치(111)는 코어 레이어 데이터에 상응하는 코어 레이어 신호 및 인핸스드 레이어 데이터에 상응하는 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합(combine)하고, 코어 레이어 신호 및 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하여 멀티플렉싱된 신호를 생성한다. 이 때, 방송 신호 프레임 생성 장치(111)는 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성할 수 있다. 이 때, 방송 신호 프레임은 ATSC 3.0 프레임일 수 있다.
실시예에 따라, 방송 신호 프레임 생성 장치(111)는 두 개의 레이어 신호들을 결합하지 않고, 하나의 레이어 신호를 인터리빙하고, 방송 신호 프레임을 생성할 수도 있다.
OFDM 송신기(113)는 생성된 방송 신호 프레임을 OFDM 통신 방식을 이용하여 안테나(117)를 통해 송신하여 송신된 OFDM 신호가 무선 채널(120)을 통해 방송 신호 수신 장치(130)의 안테나(137)를 통해 수신되도록 한다.
방송 신호 수신 장치(130)는 OFDM 수신기(133) 및 신호 디멀티플렉싱 장치(131)를 포함한다. 무선 채널(120)을 통해 전송된 신호가 안테나(137)를 통해 수신되면, OFDM 수신기(133)는 동기(synchronization), 채널 추정(channel estimation) 및 등화(equalization) 과정 등을 통해 OFDM 신호를 수신한다.
이 때, OFDM 수신기(133)는 상기 OFDM 신호로부터 부트스트랩을 검출하여 복조하고, 부트스트랩에 포함된 정보를 이용하여 프리앰블을 복조하고, 프리앰블에 포함된 정보를 이용하여 데이터 페이로드를 복조할 수도 있다. 이 때, 데이터 페이로드는 두 개 이상의 계층 데이터가 결합된 수퍼 임포우즈드 페이로드일 수 있다.
신호 디멀티플렉싱 장치(131)는 OFDM 수신기(133)를 통해 수신된 신호(수퍼 임포우즈드 페이로드)로부터 먼저 코어 레이어 데이터를 복원하고, 복원된 코어 레이어 데이터에 상응하는 캔슬레이션(cancellation)을 통해 인핸스드 레이어 데이터를 복원한다. 이 때, 신호 디멀티플렉싱 장치(131)는 먼저 방송 신호 프레임을 생성하고, 방송 신호 프레임으로부터 부트스트랩을 복원하고, 부트스트랩에 포함된 정보를 이용하여 프리앰블을 복원한 후 프리앰블에 포함된 시그널링 정보 데이터 신호의 복원에 활용할 수 있다. 이 때, 시그널링 정보는 L1 시그널링 정보일 수 있고, 인젝션 레벨 정보, 노멀라이징 팩터 정보 등을 포함할 수 있다.
후술하겠지만, 도 1에 도시된 방송 신호 프레임 생성 장치(111)는 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합(combine)하여 멀티플렉싱된 신호를 생성하는 결합기; 상기 멀티플렉싱된 신호의 파워를, 상기 코어 레이어 신호에 상응하는 파워로 낮추는 파워 노멀라이저; 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 및 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더를 포함할 수 있다. 이 때, 도 1에 도시된 방송 신호 송신 장치(110)는 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합(combine)하여 멀티플렉싱된 신호를 생성하는 결합기; 상기 멀티플렉싱된 신호의 파워를, 상기 코어 레이어 신호에 상응하는 파워로 낮추는 파워 노멀라이저; 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더; 및 상기 방송 신호 프레임을 OFDM 통신 방식을 이용하여 안테나를 통해 송신하는 OFDM 송신기를 포함하는 것으로 볼 수 있다.
실시예에 따라, 도 1에 도시된 방송 신호 프레임 생성 장치(111)는 싱글 레이어의 경우에 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 및 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더를 포함할 수 있다. 이 때, BICM 출력 신호는 후술할 BICM 장치의 출력 신호일 수 있다. 이 때, 도 1에 도시된 방송 신호 송신 장치(110)는 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더; 및 상기 방송 신호 프레임을 OFDM 통신 방식을 이용하여 안테나를 통해 송신하는 OFDM 송신기를 포함하는 것으로 볼 수 있다.
후술하겠지만, 도 1에 도시된 신호 디멀티플렉싱 장치는 방송 신호 프레임에 상응하는 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 타임 디인터리버; 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 디-노멀라이저; 상기 디-노멀라이저에 의해 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 코어 레이어 BICM 디코더; 상기 코어 레이어 BICM 디코더의 코어 레이어 FEC 디코더의 출력 신호를 이용하여, 상기 디-노멀라이저에 의해 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 인핸스드 레이어 심볼 추출기; 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 디-인젝션 레벨 컨트롤러; 및 상기 디-인젝션 레벨 컨트롤러의 출력 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 인핸스드 레이어 BICM 디코더를 포함할 수 있다. 이 때, 도 1에 도시된 방송 신호 수신 장치(130)는 방송 신호 프레임에 상응하는 전송된 신호에 대한 동기, 채널추정 및 등화 중 어느 하나 이상을 수행하여 수신 신호를 생성하는 OFDM 수신기; 상기 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 타임 디인터리버; 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 디-노멀라이저; 상기 디-노멀라이저에 의해 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 코어 레이어 BICM 디코더; 상기 코어 레이어 BICM 디코더의 코어 레이어 FEC 디코더의 출력 신호를 이용하여, 상기 디-노멀라이저에 의해 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 인핸스드 레이어 심볼 추출기; 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 디-인젝션 레벨 컨트롤러; 및 상기 디-인젝션 레벨 컨트롤러의 출력 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 인핸스드 레이어 BICM 디코더를 포함하는 것으로 볼 수 있다.
도 1에는 명시적으로 도시되지 아니하였으나, 본 발명의 일실시예에 따른 방송 신호 송/수신 시스템은 코어 레이어 데이터 및 인핸스드 레이어 데이터 이외에도 하나 이상의 확장 레이어 데이터를 멀티플렉싱/디멀티플렉싱할 수 있다. 이 때, 확장 레이어 데이터는 코어 레이어 데이터 및 인핸스드 레이어 데이터보다 낮은 파워 레벨로 멀티플렉싱될 수 있다. 나아가, 둘 이상의 확장 레이어들이 포함되는 경우, 첫 번째 확장 레이어의 인젝션 파워 레벨보다 두 번째 확장 레이어의 인젝션 파워 레벨이 낮고, 두 번째 확장 레이어의 인젝션 파워 레벨보다 세 번째 확장 레이어의 인젝션 파워 레벨이 낮을 수 있다.
도 2는 본 발명의 일실시예에 따른 방송 신호 송/수신 방법을 나타낸 동작 흐름도이다.
도 2를 참조하면, 본 발명의 일실시예에 따른 방송 신호 송/수신 방법은 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합하여 멀티플렉싱하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성한다(S210).
이 때, 단계(S210)에 의하여 생성되는 방송 신호 프레임은 부트스트랩, 프리앰블 및 데이터 페이로드를 포함할 수 있다. 이 때, 데이터 페이로드는 수퍼-임포우즈드 페이로드일 수 있다. 이 때, 부트스트랩 및 프리앰블 중 어느 하나 이상은 L1 시그널링 정보를 포함할 수 있다. 이 때, L1 시그널링 정보는 인젝션 레벨 정보 및 노멀라이징 팩터 정보를 포함할 수 있다.
실시예에 따라, 단계(S210)는 BICM 출력 신호를 인터리빙하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성할 수도 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 송/수신 방법은 방송 신호 프레임을 OFDM 전송한다(S220).
또한, 본 발명의 일실시예에 따른 방송 신호 송/수신 방법은 전송된 신호를 OFDM 수신한다(S230).
이 때, 단계(S230)는 동기(synchronization), 채널 추정(channel estimation) 및 등화(equalization) 과정 등을 수행할 수 있다.
이 때, 단계(S230)는 부트스트랩을 복원하고, 복원된 부트스트랩에 포함된 신호를 이용하여 프리앰블을 복원하고, 프리앰블에 포함된 시그널링 정보를 이용하여 데이터 신호를 복원할 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 송/수신 방법은 수신된 신호에서 코어 레이어 데이터를 복원한다(S240).
또한, 본 발명의 일실시예에 따른 방송 신호 송/수신 방법은 코어 레이어 신호 캔슬레이션을 통해 인핸스드 레이어 데이터를 복원한다(S250).
특히, 도 2에 도시된 단계(S240) 및 단계(S250)는 단계(S210)에 상응하는 디멀티플렉싱 동작에 해당하는 것일 수 있다.
후술하겠지만, 도 2에 도시된 단계(S210)는 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합하여 멀티플렉싱된 신호를 생성하는 단계; 상기 멀티플렉싱된 신호의 파워를, 상기 코어 레이어 신호에 상응하는 파워로 낮추는 단계; 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 및 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성하는 단계를 포함할 수 있다. 이 때, 단계(S210) 및 단계(S220)의 방송 신호 송신 방법은, 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합하여 멀티플렉싱된 신호를 생성하는 단계; 상기 멀티플렉싱된 신호의 파워를, 상기 코어 레이어 신호에 상응하는 파워로 낮추는 단계; 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성하는 단계; 및 상기 방송 신호 프레임을 OFDM 통신 방식을 이용하여 안테나를 통해 송신하는 단계를 포함하는 것으로 볼 수 있다.
실시예에 따라, 도 2에 도시된 단계(S210)는 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 및 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성하는 단계를 포함할 수 있다. 이 때, 단계(S210) 및 단계(S220)의 방송 신호 송신 방법은, BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 상기 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성하는 단계; 및 상기 방송 신호 프레임을 OFDM 통신 방식을 이용하여 안테나를 통해 송신하는 단계를 포함하는 것으로 볼 수 있다.
후술하겠지만, 도 2에 도시된 단계들(S240, S250)은 방송 신호 프레임에 상응하는 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 단계; 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 단계; 상기 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 단계; 상기 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 단계; 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 단계; 및 파워 조절된 상기 인핸스드 레이어 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 단계를 포함할 수 있다. 이 때, 본 발명의 일실시예에 따른 방송 신호 수신 방법은, 방송 신호 프레임에 상응하는 전송된 신호에 대한 동기, 채널추정 및 등화 중 어느 하나 이상을 수행하여 수신 신호를 생성하는 단계; 상기 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 단계; 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 단계; 상기 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 단계; 상기 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 단계; 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 단계; 및 파워 조절된 상기 인핸스드 레이어 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 단계를 포함하는 것으로 볼 수 있다.
도 3은 도 1에 도시된 방송 신호 프레임 생성 장치의 일 예를 나타낸 블록도이다.
도 3을 참조하면, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 장치는 코어 레이어 BICM부(310), 인핸스드 레이어 BICM부(320), 인젝션 레벨 컨트롤러(330), 결합기(340), 파워 노멀라이저(345), 타임 인터리버(350), 시그널링 생성부(360) 및 프레임 빌더(370)를 포함할 수 있다.
일반적으로, BICM(Bit-Interleaved Coded Modulation) 장치는 오류정정 부호화기, 비트 인터리버 및 심볼 맵퍼로 구성되며, 도 3에 도시된 코어 레이어 BICM부(310) 및 인핸스드 레이어 BICM부(320)도 각각 오류정정 부호화기, 비트 인터리버 및 심볼 맵퍼를 포함할 수 있다. 특히, 도 3에 도시된 오류정정 부호화기(CORE LAYER FEC ENCODER, ENHANCED LAYER FEC ENCODER)는 각각 BCH 인코더 및 LDPC 인코더가 직렬로 결합된 것일 수 있다. 이 때, 오류정정 부호화기의 입력은 BCH 인코더로 입력되고, BCH 인코더의 출력은 LDPC 인코더로 입력되며, LDPC 인코더의 출력은 오류정정 부호화기의 출력이 될 수 있다.
도 3에 도시된 바와 같이, 코어 레이어 데이터(Core Layer data) 및 인핸스드 레이어 데이터(Enhanced Layer data)는 각각 서로 다른 BICM부를 통과한 후 결합기(340)를 통해 합쳐진다. 즉, 본 발명에서 레이어드 디비전 멀티플렉싱(Layered Division Multiplexing; LDM)이라 함은 다수 개의 계층을 파워 차이를 이용하여 하나로 결합하여 전송하는 것을 의미할 수 있다.
즉, 코어 레이어 데이터는 코어 레이어 BICM부(310)를 통과하고, 인핸스드 레이어 데이터는 인핸스드 레이어 BICM부(320)를 통과한 후 인젝션 레벨 컨트롤러(330)를 거쳐서 결합기(340)에서 결합된다. 이 때, 인핸스드 레이어 BICM부(320)는 코어 레이어 BICM부(310)와는 상이한 BICM 인코딩을 수행할 수 있다. 즉, 인핸스드 레이어 BICM부(320)는 코어 레이어 BICM부(310)보다 높은 비트율에 상응하는 오류정정 부호화나 심볼 맵핑을 수행할 수 있다. 또한, 인핸스드 레이어 BICM부(320)는 코어 레이어 BICM부(310)보다 덜 강인한(less robust) 오류정정 부호화나 심볼 맵핑을 수행할 수 있다.
예를 들어, 코어 레이어 오류정정 부호화기가 인핸스드 레이어 오류정정 부호화기보다 비트율이 낮을 수 있다. 이 때, 인핸스드 레이어 심볼 맵퍼는 코어 레이어 심볼 맵퍼보다 덜 강인(less robust)할 수 있다.
결합기(340)는 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합(combine)하는 것으로 볼 수 있다. 실시예에 따라, 파워 레벨 조절은 인핸스드 레이어 신호가 아닌 코어 레이어 신호에 대하여 수행될 수도 있다. 이 때, 코어 레이어 신호에 대한 파워는 인핸스드 레이어 신호의 파워보다 커지도록 조절될 수 있다.
코어 레이어 데이터는 강인한(robust) 수신을 위해 낮은 부호율(low code rate)의 FEC(Forward error correction) 코드를 사용하는 반면, 인핸스드 레이어 데이터는 높은 데이터 전송률을 위해 높은 부호율의 FEC 코드를 사용할 수 있다.
즉, 코어 레이어 데이터는 인핸스드 레이어 데이터와 비교하여 동일한 수신환경에서 더 넓은 방송구역(coverage)을 가질 수 있다.
인핸스드 레이어 BICM부(320)를 통과한 인핸스드 레이어 데이터는 인젝션 레벨 컨트롤러(330)를 통해 그 게인(또는 파워)가 조절되어 결합기(340)에 의해 코어 레이어 데이터와 결합된다.
즉, 인젝션 레벨 컨트롤러(330)는 인핸스드 레이어 신호의 파워를 줄여서 파워 리듀스드 인핸스드 레이어 신호를 생성한다. 이 때, 인젝션 레벨 컨트롤러(330)에서 조절되는 신호의 크기는 인젝션 레벨(injection level)에 따라 결정될 수 있다. 이 때, 신호 A에 신호 B를 삽입하는 경우의 인젝션 레벨은 하기 수학식 1과 같이 정의될 수 있다.
[수학식 1]
Figure PCTKR2016002214-appb-I000001
예를 들어, 코어 레이어 신호에 인핸스드 레이어 신호를 삽입할 때 인젝션 레벨을 3dB라고 가정하면, 인핸스드 레이어 신호는 코어 레이어 신호의 절반에 해당하는 파워 크기를 가지는 것을 의미한다.
이 때, 인젝션 레벨 컨트롤러(330)는 인핸스드 레이어 신호의 파워 레벨을 0dB에서 10.0dB까지 0.5dB 또는 1dB 간격으로 조절할 수 있다.
일반적으로, 코어 레이어에 할당되는 전송 파워가 인핸스드 레이어에 할당되는 전송 파워에 비해 크게 할당되며, 이를 통해 수신기에서 코어 레이어에 대한 우선적인 복호가 가능하다.
이 때, 결합기(340)는 코어 레이어 신호 및 파워 리듀스드 인핸스드 레이어 신호를 결합하여 멀티플렉싱된 신호를 생성하는 것으로 볼 수 있다.
결합기(340)에 의해 결합된 신호는 코어 레이어 신호와 인핸스드 레이어 신호의 결합에 의하여 발생한 파워 상승만큼 파워를 낮추기 위해 파워 노멀라이저(345)로 제공되어 파워 조절이 수행된다. 즉, 파워 노멀라이저(345)는 결합기(340)에 의해 멀티플렉싱된 신호의 파워를, 코어 레이어 신호에 상응하는 파워 레벨로 낮춘다. 결합된 신호의 레벨이 한 레이어 신호의 레벨보다 높기 때문에 방송 신호 송/수신 시스템의 나머지 부분에서 진폭 클리핑(amplitude clipping) 등을 방지하기 위해서 파워 노멀라이저(345)의 파워 노멀라이징이 필요하다.
이 때, 파워 노멀라이저(345)는 하기 수학식 2의 노멀라이징 팩터(normalizing factor)를 결합된 신호의 크기에 곱하여 알맞은 신호의 크기로 조절할 수 있다. 하기 수학식 2를 계산하기 위한 인젝션 레벨 정보는 시그널링 플로우(signaling flow)를 통해 파워 노멀라이저(345)로 전달될 수 있다.
[수학식 2]
Figure PCTKR2016002214-appb-I000002
인핸스드 레이어 신호 SE가 코어 레이어 신호 SC에 기설정된 인젝션 레벨에 의해 인젝션될 때 코어 레이어 신호 및 인핸스드 레이어 신호의 파워 레벨이 1로 노멀라이즈된다고 가정하면, 결합 신호는
Figure PCTKR2016002214-appb-I000003
와 같이 표현될 수 있다.
이 때, α는 다양한 인젝션 레벨들에 상응하는 스케일링 팩터(scaling factor)를 나타낸다. 즉, 인젝션 레벨 컨트롤러(330)는 스케일링 팩터에 상응하는 것일 수 있다.
예를 들어, 인핸스드 레이어의 인젝션 레벨이 3dB이면, 결합된 신호는
Figure PCTKR2016002214-appb-I000004
와 같이 표현될 수 있다.
결합된(combined) 신호(멀티플렉싱된 신호)의 파워가 코어 레이어 신호와 비교하여 증가하였기 때문에, 파워 노멀라이저(345)는 이와 같은 파워 증가를 완화(mitigate)시켜야 한다.
파워 노멀라이저(345)의 출력은
Figure PCTKR2016002214-appb-I000005
와 같이 표현될 수 있다.
이 때, β는 인핸스드 레이어의 다양한 인젝션 레벨에 따른 노멀라이징 팩터(normalizing factor)를 나타낸다.
인핸스드 레이어의 인젝션 레벨이 3dB인 경우, 코어 레이어 신호 대비 결합 신호의 파워 증가는 50%이다. 따라서, 파워 노멀라이저(345)의 출력은
Figure PCTKR2016002214-appb-I000006
와 같이 표현될 수 있다.
인젝션 레벨과 스케일링 팩터 α및 노멀라이징 팩터 β와의 관계는 아래와 같이 정의될 수 있다.
[수학식 3]
Figure PCTKR2016002214-appb-I000007
즉, 파워 노멀라이저(345)는 노멀라이징 팩터(normalizing factor)에 상응하고, 멀티플렉싱된 신호의 파워를 결합기(340)에 의하여 상승된 만큼 낮추는 것으로 볼 수 있다.
이 때, 노멀라이징 팩터 및 스케일링 팩터는 각각 0보다 크고 1보다 작은 유리수일 수 있다.
이 때, 스케일링 팩터는 인젝션 레벨 컨트롤러(330)에 상응하는 파워 감소가 클수록 감소하고, 노멀라이징 팩터는 인젝션 레벨 컨트롤러(330)에 상응하는 파워 감소가 클수록 증가할 수 있다.
파워 노멀라이징된 신호는 채널에서 발생하는 군집오류(burst error)를 분산시키기 위한 타임 인터리버(time interleaver)(350)를 통과한다.
이 때, 타임 인터리버(350)는 코어 레이어 신호 및 인핸스드 레이어 신호에 함께 적용되는 인터리빙을 수행하는 것으로 볼 수 있다. 즉, 코어 레이어와 인핸스드 레이어가 타임 인터리버를 공유함으로써 불필요한 메모리 사용을 방지하고, 수신기에서의 레이턴시를 줄일 수 있다.
후술하겠지만, 인핸스드 레이어 신호는 코어 레이어 신호에 상응하는 코어 레이어 데이터의 복원에 상응하는 캔슬레이션(cancellation)에 기반하여 복원되는 인핸스드 레이어 데이터에 상응하는 것일 수 있고, 결합기(340)는 코어 레이어 신호 및 인핸스드 레이어 신호보다 낮은 파워 레벨의 하나 이상의 확장 레이어(extension layer) 신호를 상기 코어 레이어 신호 및 인핸스드 레이어 신호와 함께 결합할 수 있다.
한편, 인젝션 레벨 정보를 포함하는 L1 시그널링 정보는 시그널링 전용의 BICM을 포함하는 시그널링 생성부(360)에서 부호화된다. 이 때, 시그널링 생성부(360)는 인젝션 레벨 컨트롤러(330)로부터 인젝션 레벨 정보(IL INFO)를 제공 받아서 L1 시그널링 신호를 생성할 수 있다.
L1 시그널링에서 L1은 ISO 7 레이어 모델의 최하위 레이어(lowest layer)인 레이어 1(Layer-1)을 나타낸다. 이 때, L1 시그널링은 프리앰블(preamble)에 포함될 수도 있다.
일반적으로, L1 시그널링은 OFDM 송신기의 주요 파라미터인 FFT 사이즈, 가드 인터벌 사이즈(guard interval size) 등과 BICM 주요 파라미터인 채널 코드 레이트(channel code rate), 모듈레이션 정보 등을 포함할 수 있다. 이러한 L1 시그널링 신호는 데이터 신호와 결합하여 방송 신호 프레임을 구성한다.
프레임 빌더(370)는 L1 시그널링 신호와 데이터 신호를 결합하여 방송 신호 프레임을 생성한다. 이 때, 프레임 빌더(370)는 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성할 수 있다.
이 때, 프레임 빌더(370)는 상기 부트스트랩을 생성하는 부트스트랩 생성부;
상기 프리앰블을 생성하는 프리앰블 생성부; 및 상기 타임 인터리빙된 신호에 상응하는 데이터 페이로드를 생성하는 데이터 페이로드 생성부를 포함할 수 있다. 이 때, 데이터 페이로드는 수퍼 임포우즈드 페이로드일 수 있다.
*싱글 레이어의 경우, 인핸스드 레이어 BICM부(320), 인젝션 레벨 컨트롤러(330), 결합기(340) 및 파워 노멀라이저(345)는 생략될 수 있다. 이 때, 프레임 빌더(370)는 코어 레이어 BICM부(310)의 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성할 수 있다. 또한, 프레임 빌더(370)는 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성할 수 있다.
이 때, 부트스트랩은 상기 프리앰블보다 짧고, 고정된 길이를 가질 수 있다.
이 때, 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함할 수 있다.
이 때, 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응하는 것일 수 있다.
이 때, 심볼은 상기 프리앰블의 변조방법/부호율, FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴의 조합을 나타내는 고정(fixed-length) 비트열(bit string)에 상응하는 것일 수 있다.
이 때, BICM 모드는 컨스틸레이션(변조방법)/부호율에 상응하는 것일 수 있다.
이 때, OFDM 파라미터는 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴을 포함하는 것일 수 있다.
이 때, BICM 모드는 각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드, 16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드, 64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함할 수 있다.
이 때, 제1 모드, 제2 모드 및 제3 모드는 동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들일 수 있다.
이 때, 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않을 수 있다.
이 때, 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작을 수 있다.
이 때, 심볼은 상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
이 때, 심볼은 동일한 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
이 때, 심볼은 상기 변조방법/부호율이 동일한 경우, 제1 FFT 사이즈에 상응하는 프리앰블 구조보다, 상기 제1 FFT 사이즈보다 작은 제2 FFT 사이즈에 상응하는 프리앰블 구조가 우선적으로 할당되고, 상기 변조방법/부호율 및 상기 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 큰 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
방송 신호 프레임은 멀티패스(multi-path) 및 도플러(Doppler)에 강인한 OFDM 송신기를 거쳐서 전송된다. 이 때, OFDM 송신기는 차세대 방송시스템의 전송신호 생성을 담당하는 것으로 볼 수 있다.
도 4는 방송 신호 프레임 구조의 일 예를 나타낸 도면이다.
도 4를 참조하면, 방송 신호 프레임은 부트스트랩(410), 프리앰블(420) 및 데이터 페이로드(430)를 포함한다. 이 때, 데이터 페이로드는 수퍼-임포우즈드 페이로드(super-imposed payload)일 수 있다.
도 4에 도시된 프레임은 수퍼프레임(super-frame)에 포함될 수 있다.
이 때, 방송 신호 프레임은 하나 이상의 OFDM 심볼들로 구성될 수 있다. 방송 신호 프레임은 레퍼런스 심볼 또는 파일럿 심볼을 포함할 수도 있다.
LDM(Layered Division Multiplexing)이 적용된 프레임 구조는 도 4에 도시된 바와 같이 부트스트랩(410) 및 프리앰블(420) 및 수퍼-임포우스드 페이로드(430)를 포함한다.
이 때, 부트스트랩(410) 및 프리앰블(420)은 두 개의 프리앰블들이 계층화된(hierarchical) 것으로 볼 수 있다.
이 때, 부트스트랩(410)은 빠른(fast) 획득(acquisition) 및 검출(detection)을 위해 프리앰블(420)보다 짧은 길이를 가질 수 있다. 이 때, 부트스트랩(410)은 고정된 길이를 가질 수 있다. 이 때, 부트스트랩(410)은 고정된 길이의 심볼을 포함할 수 있다. 예를 들어, 부트스트랩(410)은 각각 0.5ms 길이의 OFDM 심볼들 4개로 구성되어 총 2ms의 고정된 시간길이를 가질 수 있다.
이 때, 부트스트랩(410)은 고정된 대역폭(bandwidth)을 가지고, 프리앰블(420) 및 수퍼-임포우스드 페이로드(430)는 부트스트랩(410)보다 넓고 가변적인 대역폭을 가질 수 있다.
프리앰블(420)은 강인(robust)한 LDPC 코드를 사용하여 상세한 시그널링 정보를 전송할 수 있다. 이 때, 프리앰블(420)은 시그널링 정보에 따라 길이가 가변될 수 있다.
이 때, 부트스트랩(410) 및 페이로드(430)는 모두 여러 레이어들이 공유하는 공통 신호에 상응하는 것으로 볼 수 있다.
수퍼-임포우스드 페이로드(430)는 두 개 이상의 계층(layer) 신호들이 멀티플렉싱된 신호에 상응하는 것일 수 있다. 이 때, 수퍼-임포우스드 페이로드(430)는 코어 레이어 페이로드 및 인핸스드 레이어 페이로드가 서로 다른 파워 레벨로 결합된 것일 수 있다. 이 때, 코어 레이어 페이로드에는 인-밴드 시그널링부(in-band signaling section)가 포함될 수 있다. 이 때, 인-밴드 시그널링부는 인핸스드 레이어 서비스를 위한 시그널링 정보를 포함할 수 있다.
이 때, 부트스트랩(410)은 프리앰블의 구조(preamble structure)를 나타내는 심볼을 포함할 수 있다.
이 때, 프리앰블의 구조를 나타내기 위해 부트스트랩에 포함되는 심볼은 하기 표 1와 같이 설정될 수 있다.
preamble_structure L1-Basic Mode FFT Size GI Length (samples) Pilot Pattern (DX)
0 L1-Basic Mode 1 8192 2048 3
1 L1-Basic Mode 1 8192 1536 4
2 L1-Basic Mode 1 8192 1024 3
3 L1-Basic Mode 1 8192 768 4
4 L1-Basic Mode 1 16384 4096 3
5 L1-Basic Mode 1 16384 3648 4
6 L1-Basic Mode 1 16384 2432 3
7 L1-Basic Mode 1 16384 1536 4
8 L1-Basic Mode 1 16384 1024 6
9 L1-Basic Mode 1 16384 768 8
10 L1-Basic Mode 1 32768 4864 3
11 L1-Basic Mode 1 32768 3648 3
12 L1-Basic Mode 1 32768 3648 8
13 L1-Basic Mode 1 32768 2432 6
14 L1-Basic Mode 1 32768 1536 8
15 L1-Basic Mode 1 32768 1024 12
16 L1-Basic Mode 1 32768 768 16
17 L1-Basic Mode 2 8192 2048 3
18 L1-Basic Mode 2 8192 1536 4
19 L1-Basic Mode 2 8192 1024 3
20 L1-Basic Mode 2 8192 768 4
21 L1-Basic Mode 2 16384 4096 3
22 L1-Basic Mode 2 16384 3648 4
23 L1-Basic Mode 2 16384 2432 3
24 L1-Basic Mode 2 16384 1536 4
25 L1-Basic Mode 2 16384 1024 6
26 L1-Basic Mode 2 16384 768 8
27 L1-Basic Mode 2 32768 4864 3
28 L1-Basic Mode 2 32768 3648 3
29 L1-Basic Mode 2 32768 3648 8
30 L1-Basic Mode 2 32768 2432 6
31 L1-Basic Mode 2 32768 1536 8
32 L1-Basic Mode 2 32768 1024 12
33 L1-Basic Mode 2 32768 768 16
34 L1-Basic Mode 3 8192 2048 3
35 L1-Basic Mode 3 8192 1536 4
36 L1-Basic Mode 3 8192 1024 3
37 L1-Basic Mode 3 8192 768 4
38 L1-Basic Mode 3 16384 4096 3
39 L1-Basic Mode 3 16384 3648 4
40 L1-Basic Mode 3 16384 2432 3
41 L1-Basic Mode 3 16384 1536 4
42 L1-Basic Mode 3 16384 1024 6
43 L1-Basic Mode 3 16384 768 8
44 L1-Basic Mode 3 32768 4864 3
45 L1-Basic Mode 3 32768 3648 3
46 L1-Basic Mode 3 32768 3648 8
47 L1-Basic Mode 3 32768 2432 6
48 L1-Basic Mode 3 32768 1536 8
49 L1-Basic Mode 3 32768 1024 12
50 L1-Basic Mode 3 32768 768 16
51 L1-Basic Mode 4 8192 2048 3
52 L1-Basic Mode 4 8192 1536 4
53 L1-Basic Mode 4 8192 1024 3
54 L1-Basic Mode 4 8192 768 4
55 L1-Basic Mode 4 16384 4096 3
56 L1-Basic Mode 4 16384 3648 4
57 L1-Basic Mode 4 16384 2432 3
58 L1-Basic Mode 4 16384 1536 4
59 L1-Basic Mode 4 16384 1024 6
60 L1-Basic Mode 4 16384 768 8
61 L1-Basic Mode 4 32768 4864 3
62 L1-Basic Mode 4 32768 3648 3
63 L1-Basic Mode 4 32768 3648 8
64 L1-Basic Mode 4 32768 2432 6
65 L1-Basic Mode 4 32768 1536 8
66 L1-Basic Mode 4 32768 1024 12
67 L1-Basic Mode 4 32768 768 16
68 L1-Basic Mode 5 8192 2048 3
69 L1-Basic Mode 5 8192 1536 4
70 L1-Basic Mode 5 8192 1024 3
71 L1-Basic Mode 5 8192 768 4
72 L1-Basic Mode 5 16384 4096 3
73 L1-Basic Mode 5 16384 3648 4
74 L1-Basic Mode 5 16384 2432 3
75 L1-Basic Mode 5 16384 1536 4
76 L1-Basic Mode 5 16384 1024 6
77 L1-Basic Mode 5 16384 768 8
78 L1-Basic Mode 5 32768 4864 3
79 L1-Basic Mode 5 32768 3648 3
80 L1-Basic Mode 5 32768 3648 8
81 L1-Basic Mode 5 32768 2432 6
82 L1-Basic Mode 5 32768 1536 8
83 L1-Basic Mode 5 32768 1024 12
84 L1-Basic Mode 5 32768 768 16
85 L1-Basic Mode 6 8192 2048 3
86 L1-Basic Mode 6 8192 1536 4
87 L1-Basic Mode 6 8192 1024 3
88 L1-Basic Mode 6 8192 768 4
89 L1-Basic Mode 6 16384 4096 3
90 L1-Basic Mode 6 16384 3648 4
91 L1-Basic Mode 6 16384 2432 3
92 L1-Basic Mode 6 16384 1536 4
93 L1-Basic Mode 6 16384 1024 6
94 L1-Basic Mode 6 16384 768 8
95 L1-Basic Mode 6 32768 4864 3
96 L1-Basic Mode 6 32768 3648 3
97 L1-Basic Mode 6 32768 3648 8
98 L1-Basic Mode 6 32768 2432 6
99 L1-Basic Mode 6 32768 1536 8
100 L1-Basic Mode 6 32768 1024 12
101 L1-Basic Mode 6 32768 768 16
102 L1-Basic Mode 7 8192 2048 3
103 L1-Basic Mode 7 8192 1536 4
104 L1-Basic Mode 7 8192 1024 3
105 L1-Basic Mode 7 8192 768 4
106 L1-Basic Mode 7 16384 4096 3
107 L1-Basic Mode 7 16384 3648 4
108 L1-Basic Mode 7 16384 2432 3
109 L1-Basic Mode 7 16384 1536 4
110 L1-Basic Mode 7 16384 1024 6
111 L1-Basic Mode 7 16384 768 8
112 L1-Basic Mode 7 32768 4864 3
113 L1-Basic Mode 7 32768 3648 3
114 L1-Basic Mode 7 32768 3648 8
115 L1-Basic Mode 7 32768 2432 6
116 L1-Basic Mode 7 32768 1536 8
117 L1-Basic Mode 7 32768 1024 12
118 L1-Basic Mode 7 32768 768 16
119 Reserved Reserved Reserved Reserved
120 Reserved Reserved Reserved Reserved
121 Reserved Reserved Reserved Reserved
122 Reserved Reserved Reserved Reserved
123 Reserved Reserved Reserved Reserved
124 Reserved Reserved Reserved Reserved
125 Reserved Reserved Reserved Reserved
126 Reserved Reserved Reserved Reserved
127 Reserved Reserved Reserved Reserved
예를 들어, 상기 표 1에 표시된 프리앰블 구조를 나타내기 위해, 7비트의 고정된 심볼이 할당될 수 있다.
상기 표 1에 기재된 L1-Basic Mode 1, L1-Basic Mode 2 및 L1-Basic Mode 3은 QPSK 및 3/15 LDPC에 상응하는 것일 수 있다.
특히, L1-Basic Mode 1은 3/15, QPSK, 패리티 리피티션(parity repetition) 온(ON) 및 제1 펑처링 사이즈(puncturing size)에 상응할 수 있다. 패리티 리피티션 및 펑처링에 대해서는 후술한다.
또한, L1-Basic Mode 2는 3/15, QPSK, 패리티 리피티션 오프 및 제1 펑처링 사이즈보다 큰 제2 펑처링 사이즈에 상응할 수 있다.
또한, L1-Basic Mode 3은 3/15, QPSK, 패리티 리피티션 오프 및 제2 펑처링 사이즈보다 큰 제3 펑처링 사이즈에 상응할 수 있다.
상기 표 1에 기재된 L1-Basic Mode 4는 16-NUC(Non Uniform Constellation) 및 3/15 LDPC에 상응하는 것일 수 있다.
상기 표 1에 기재된 L1-Basic Mode 5는 64-NUC(Non Uniform Constellation) 및 3/15 LDPC에 상응하는 것일 수 있다.
상기 표 1에 기재된 L1-Basic Mode 6 및 L1-Basic Mode 7은 256-NUC(Non Uniform Constellation) 및 3/15 LDPC에 상응하는 것일 수 있다. 이하에서 설명하는 변조방법/부호율은 QPSK 및 3/15 LDPC와 같이 변조방법과 부호율의 조합을 나타낸다.
상기 표 1에 기재된 FFT size는 Fast Fourier Transform 크기를 나타내는 것일 수 있다.
상기 표 1에 기재된 GI length는 가드 인터벌 길이(Guard Interval Length)를 나타내는 것으로, 시간 영역에서 데이터가 아닌 가드 인터벌의 길이를 나타내는 것일 수 있다. 이 때, 가드 인터벌 길이가 길수록 시스템은 강인(robust)해진다.
상기 표 1에 기재된 Pilot Pattern은 파일럿 패턴의 Dx를 나타내는 것일 수 있다. 표 1에는 명시적으로 기재하지 않았으나 표 1에 기재된 예에서 Dy는 모두 1일 수 있다. 예를 들어, Dx = 3은 채널 추정을 위한 파일럿이 x축 방향으로 3개 중 하나 포함됨을 의미할 수 있다. 예를 들어, Dy = 1은 y축 방향으로 매 번 파일럿이 포함됨을 의미할 수 있다.
표 1의 예에서 알 수 있는 바와 같이, 제1 변조방법/부호율보다 강인한 제2 변조방법/부호율에 상응하는 프리앰블 구조가 상기 제1 변조방법/부호율에 상응하는 프리앰블 구조보다 우선적으로 룩업테이블에 할당될 수 있다.
이 때, 우선적으로 할당된다 함은 룩업테이블에 보다 작은 수의 인덱스에 상응하여 저장되는 것일 수 있다.
또한, 같은 변조방법/부호율의 경우 제1 FFT 사이즈보다 작은 제2 FFT 사이즈에 상응하는 프리앰블 구조가 상기 제1 FFT 사이즈에 상응하는 프리앰블 구조보다 우선적으로 룩업테이블에 할당될 수 있다.
또한, 같은 변조방법/부호율 및 FFT 사이즈의 경우 제1 가드 인터벌보다 큰 제2 가드 인터벌에 상응하는 프리앰블 구조가 상기 제1 가드 인터벌에 상응하는 프리앰블 구조보다 우선적으로 룩업테이블에 할당될 수 있다.
표 1에 기재된 바와 같이 룩업테이블에 프리앰블 구조가 할당되는 순서를 설정함으로써 부트스트랩을 이용한 프리앰블 구조 식별이 보다 효율적으로 수행될 수 있다.
하기 표 2는 룩업테이블의 다른 예이다.
preamble_structure FFT Size GI Length (samples) Preamble Pilot DX L1-BasicFEC Mode
0 8192 192 16 L1-Basic Mode 1
1 8192 192 16 L1-Basic Mode 2
2 8192 192 16 L1-Basic Mode 3
3 8192 192 16 L1-Basic Mode 4
4 8192 192 16 L1-Basic Mode 5
5 8192 384 8 L1-Basic Mode 1
6 8192 384 8 L1-Basic Mode 2
7 8192 384 8 L1-Basic Mode 3
8 8192 384 8 L1-Basic Mode 4
9 8192 384 8 L1-Basic Mode 5
10 8192 512 6 L1-Basic Mode 1
11 8192 512 6 L1-Basic Mode 2
12 8192 512 6 L1-Basic Mode 3
13 8192 512 6 L1-Basic Mode 4
14 8192 512 6 L1-Basic Mode 5
15 8192 768 4 L1-Basic Mode 1
16 8192 768 4 L1-Basic Mode 2
17 8192 768 4 L1-Basic Mode 3
18 8192 768 4 L1-Basic Mode 4
19 8192 768 4 L1-Basic Mode 5
20 8192 1024 3 L1-Basic Mode 1
21 8192 1024 3 L1-Basic Mode 2
22 8192 1024 3 L1-Basic Mode 3
23 8192 1024 3 L1-Basic Mode 4
24 8192 1024 3 L1-Basic Mode 5
25 8192 1536 4 L1-Basic Mode 1
26 8192 1536 4 L1-Basic Mode 2
27 8192 1536 4 L1-Basic Mode 3
28 8192 1536 4 L1-Basic Mode 4
29 8192 1536 4 L1-Basic Mode 5
30 8192 2048 3 L1-Basic Mode 1
31 8192 2048 3 L1-Basic Mode 2
32 8192 2048 3 L1-Basic Mode 3
33 8192 2048 3 L1-Basic Mode 4
34 8192 2048 3 L1-Basic Mode 5
35 16384 192 32 L1-Basic Mode 1
36 16384 192 32 L1-Basic Mode 2
37 16384 192 32 L1-Basic Mode 3
38 16384 192 32 L1-Basic Mode 4
39 16384 192 32 L1-Basic Mode 5
40 16384 384 16 L1-Basic Mode 1
41 16384 384 16 L1-Basic Mode 2
42 16384 384 16 L1-Basic Mode 3
43 16384 384 16 L1-Basic Mode 4
44 16384 384 16 L1-Basic Mode 5
45 16384 512 12 L1-Basic Mode 1
46 16384 512 12 L1-Basic Mode 2
47 16384 512 12 L1-Basic Mode 3
48 16384 512 12 L1-Basic Mode 4
49 16384 512 12 L1-Basic Mode 5
50 16384 768 8 L1-Basic Mode 1
51 16384 768 8 L1-Basic Mode 2
52 16384 768 8 L1-Basic Mode 3
53 16384 768 8 L1-Basic Mode 4
54 16384 768 8 L1-Basic Mode 5
55 16384 1024 6 L1-Basic Mode 1
56 16384 1024 6 L1-Basic Mode 2
57 16384 1024 6 L1-Basic Mode 3
58 16384 1024 6 L1-Basic Mode 4
59 16384 1024 6 L1-Basic Mode 5
60 16384 1536 4 L1-Basic Mode 1
61 16384 1536 4 L1-Basic Mode 2
62 16384 1536 4 L1-Basic Mode 3
63 16384 1536 4 L1-Basic Mode 4
64 16384 1536 4 L1-Basic Mode 5
65 16384 2048 3 L1-Basic Mode 1
66 16384 2048 3 L1-Basic Mode 2
67 16384 2048 3 L1-Basic Mode 3
68 16384 2048 3 L1-Basic Mode 4
69 16384 2048 3 L1-Basic Mode 5
70 16384 2432 3 L1-Basic Mode 1
71 16384 2432 3 L1-Basic Mode 2
72 16384 2432 3 L1-Basic Mode 3
73 16384 2432 3 L1-Basic Mode 4
74 16384 2432 3 L1-Basic Mode 5
75 16384 3072 4 L1-Basic Mode 1
76 16384 3072 4 L1-Basic Mode 2
77 16384 3072 4 L1-Basic Mode 3
78 16384 3072 4 L1-Basic Mode 4
79 16384 3072 4 L1-Basic Mode 5
80 16384 3648 4 L1-Basic Mode 1
81 16384 3648 4 L1-Basic Mode 2
82 16384 3648 4 L1-Basic Mode 3
83 16384 3648 4 L1-Basic Mode 4
84 16384 3648 4 L1-Basic Mode 5
85 16384 4096 3 L1-Basic Mode 1
86 16384 4096 3 L1-Basic Mode 2
87 16384 4096 3 L1-Basic Mode 3
88 16384 4096 3 L1-Basic Mode 4
89 16384 4096 3 L1-Basic Mode 5
90 32768 192 32 L1-Basic Mode 1
91 32768 192 32 L1-Basic Mode 2
92 32768 192 32 L1-Basic Mode 3
93 32768 192 32 L1-Basic Mode 4
94 32768 192 32 L1-Basic Mode 5
95 32768 384 32 L1-Basic Mode 1
96 32768 384 32 L1-Basic Mode 2
97 32768 384 32 L1-Basic Mode 3
98 32768 384 32 L1-Basic Mode 4
99 32768 384 32 L1-Basic Mode 5
100 32768 512 24 L1-Basic Mode 1
101 32768 512 24 L1-Basic Mode 2
102 32768 512 24 L1-Basic Mode 3
103 32768 512 24 L1-Basic Mode 4
104 32768 512 24 L1-Basic Mode 5
105 32768 768 16 L1-Basic Mode 1
106 32768 768 16 L1-Basic Mode 2
107 32768 768 16 L1-Basic Mode 3
108 32768 768 16 L1-Basic Mode 4
109 32768 768 16 L1-Basic Mode 5
110 32768 1024 12 L1-Basic Mode 1
111 32768 1024 12 L1-Basic Mode 2
112 32768 1024 12 L1-Basic Mode 3
113 32768 1024 12 L1-Basic Mode 4
114 32768 1024 12 L1-Basic Mode 5
115 32768 1536 8 L1-Basic Mode 1
116 32768 1536 8 L1-Basic Mode 2
117 32768 1536 8 L1-Basic Mode 3
118 32768 1536 8 L1-Basic Mode 4
119 32768 1536 8 L1-Basic Mode 5
120 32768 2048 6 L1-Basic Mode 1
121 32768 2048 6 L1-Basic Mode 2
122 32768 2048 6 L1-Basic Mode 3
123 32768 2048 6 L1-Basic Mode 4
124 32768 2048 6 L1-Basic Mode 5
125 32768 2432 6 L1-Basic Mode 1
126 32768 2432 6 L1-Basic Mode 2
127 32768 2432 6 L1-Basic Mode 3
128 32768 2432 6 L1-Basic Mode 4
129 32768 2432 6 L1-Basic Mode 5
130 32768 3072 8 L1-Basic Mode 1
131 32768 3072 8 L1-Basic Mode 2
132 32768 3072 8 L1-Basic Mode 3
133 32768 3072 8 L1-Basic Mode 4
134 32768 3072 8 L1-Basic Mode 5
135 32768 3072 3 L1-Basic Mode 1
136 32768 3072 3 L1-Basic Mode 2
137 32768 3072 3 L1-Basic Mode 3
138 32768 3072 3 L1-Basic Mode 4
139 32768 3072 3 L1-Basic Mode 5
140 32768 3648 8 L1-Basic Mode 1
141 32768 3648 8 L1-Basic Mode 2
142 32768 3648 8 L1-Basic Mode 3
143 32768 3648 8 L1-Basic Mode 4
144 32768 3648 8 L1-Basic Mode 5
145 32768 3648 3 L1-Basic Mode 1
146 32768 3648 3 L1-Basic Mode 2
147 32768 3648 3 L1-Basic Mode 3
148 32768 3648 3 L1-Basic Mode 4
149 32768 3648 3 L1-Basic Mode 5
150 32768 4096 3 L1-Basic Mode 1
151 32768 4096 3 L1-Basic Mode 2
152 32768 4096 3 L1-Basic Mode 3
153 32768 4096 3 L1-Basic Mode 4
154 32768 4096 3 L1-Basic Mode 5
155 32768 4864 3 L1-Basic Mode 1
156 32768 4864 3 L1-Basic Mode 2
157 32768 4864 3 L1-Basic Mode 3
158 32768 4864 3 L1-Basic Mode 4
159 32768 4864 3 L1-Basic Mode 5
160-255 Reserved Reserved Reserved Reserved
상기 표 2와 같이 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당될 수 있다. 또한, 상기 표 2와 같이 동일한 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당될 수도 있다.
표 1 또는 표 2의 룩업테이블의 할당 순서는 시스템의 성능을 크게 좌우할 수 있다. 즉, 수신기에서 수신된 시그널링 신호의 일부 비트에 에러가 발생할 수 있기 때문에 할당 순서를 어떻게 설정하느냐에 따라 시그널링 신호 복원 성능이 크게 달라질 수 있다.
하기 표 3 및 표 4는 L1-Basic의 7가지 BICM 모드들의 로버스트니스(robustness)를 나타낸 표이다.
표 3 및 표 4를 참조하면, 데이터 FEC에서 가장 로버스트한 DB보다 L1-Detail이 1.5dB만큼 로버스트하고, L1-Detail보다 L1-Basic이 1.5dB만큼 로버스트한 것을 알 수 있다.
L1-Basic L1-Detail Most robust data FEC
L1-Basic Mode 1 -9.2 dB -7.7 dB -6.2 dB
L1-Basic Mode 2 -0.3 dB 1.2 dB
L1-Basic Mode 3 1.2 dB 2.7 dB 4.2 dB
L1-Basic Mode 4 7.1 dB 8.6 dB
L1-Basic Mode 5 9.9 dB 11.4 dB 12.9 dB
L1-Basic Mode 6 16.7 dB 18.2 dB
L1-Basic Mode 7 24.1 dB 25.6 dB
L1-Basic L1-Detail Most robust data FEC
L1-Basic Mode 1 -9.2 dB -7.7 dB -6.2 dB
L1-Basic Mode 2 -1.8 dB -0.3 dB 1.2 dB
L1-Basic Mode 3 1.2 dB 2.7 dB 4.2 dB
L1-Basic Mode 4 5.6 dB 7.1 dB 8.6 dB
L1-Basic Mode 5 9.9 dB 11.4 dB 12.9 dB
L1-Basic Mode 6 15.2 dB 16.7 dB 18.2 dB
L1-Basic Mode 7 22.6 dB 24.1 dB 25.6 dB
시그널링 정보를 이용하여 코어 레이어 데이터가 복조되고, 코어 레이어 데이터에 상응하는 캔슬레이션 과정을 거쳐서 인핸스드 레이어 신호가 복조된다. 이 때, 코어 레이어 데이터에 상응하는 캔슬레이션에 대해서는 이후 보다 상세히 설명한다.
이 때, 시그널링 정보는 L1(Layer-1) 시그널링 정보일 수 있다. L1 시그널링 정보는 물리 계층 파라미터들을 구성하기 위해 필요한 정보를 포함할 수 있다.
도 4를 참조하면, 방송 신호 프레임은 L1 시그널링 신호 및 데이터 신호를 포함한다. 예를 들어, 방송 신호 프레임은 ATSC 3.0 프레임일 수 있다.
도 5는 도 1에 도시된 방송 신호 프레임 생성 장치의 다른 예를 나타낸 블록도이다.
도 5를 참조하면, 방송 신호 프레임 생성 장치가 코어 레이어 데이터 및 인핸스드 레이어 데이터 이외에도 N개(N은 1이상의 자연수)의 확장 레이어들(Extension Layers)에 상응하는 데이터를 함께 멀티플렉싱하는 것을 알 수 있다.
즉, 도 5에 도시된 방송 신호 프레임 생성 장치는 코어 레이어 BICM부(310), 인핸스드 레이어 BICM부(320), 인젝션 레벨 컨트롤러(330), 결합기(340), 파워 노멀라이저(345), 타임 인터리버(350), 시그널링 생성부(360) 및 프레임 빌더(370) 이외에도 N개의 확장 레이어 BICM부들(410, ..., 430) 및 인젝션 레벨 컨트롤러들(440, ..., 460)을 포함한다.
도 5에 도시된 코어 레이어 BICM부(310), 인핸스드 레이어 BICM부(320), 인젝션 레벨 컨트롤러(330), 결합기(340), 파워 노멀라이저(345), 타임 인터리버(350), 시그널링 생성부(360) 및 프레임 빌더(370)에 대해서는 도 3을 통하여 이미 상세히 설명한 바 있다.
N개의 확장 레이어 BICM부들(410, ..., 430)은 각각 독립적으로 BICM 인코딩을 수행하고, 인젝션 레벨 컨트롤러들(440, ..., 460)은 각각의 확장 레이어에 상응하는 파워 리듀싱을 수행하여 파워 리듀싱된 확장 레이어 신호가 결합기(340)를 통해 다른 레이어 신호들과 결합되도록 한다.
이 때, 확장 레이어 BICM부들(410, ..., 430) 각각의 오류정정 부호화기는 BCH 인코더와 LDPC 인코더가 직렬연결된 것일 수 있다.
특히, 인젝션 레벨 컨트롤러들(440, ..., 460) 각각에 상응하는 파워 감소는 인젝션 레벨 컨트롤러(330)의 파워 감소보다 큰 것이 바람직하다. 즉, 도 5에 도시된 인젝션 레벨 컨트롤러들(330, 440, ..., 460)은 아래로 내려올수록 큰 파워 감소에 상응할 수 있다.
도 5에 도시된 인젝션 레벨 컨트롤러들(330, 440, 460)로부터 제공된 인젝션 레벨 정보는 시그널링 생성부(360)를 거쳐서 프레임 빌더(370)의 방송 신호 프레임에 포함되어 수신기로 전송된다. 즉, 각 계층의 인젝션 레벨은 L1 시그널링 정보에 담겨, 수신기로 전달된다.
본 발명에서 파워 조절은 입력 신호의 파워를 증가 또는 감소시키는 것일 수도 있고, 입력 신호의 게인을 증가 또는 감소시키는 것일 수도 있다.
파워 노멀라이저(345)는 결합기(340)에 의하여 복수의 레이어 신호들이 결합됨으로써 야기되는 파워 증가를 완화(mitigate)시킨다.
도 5에 도시된 예에서, 파워 노멀라이저(345)는 하기 수학식 4를 이용하여 노멀라이징 팩터를 각 계층(layer)들의 신호가 결합된 신호의 크기에 곱하여 알맞은 신호 크기로 신호 파워를 조절할 수 있다.
[수학식 4]
Normalizing Factor =
Figure PCTKR2016002214-appb-I000008
타임 인터리버(350)는 결합기(340)에 의하여 결합된 신호에 대한 인터리빙을 수행함으로써, 레이어들의 신호들에 함께 적용되는 인터리빙을 수행한다.
도 6은 도 1에 도시된 신호 디멀티플렉싱 장치의 일 예를 나타낸 블록도이다.
도 6를 참조하면, 본 발명의 일실시예에 따른 신호 디멀티플렉싱 장치는 타임 디인터리버(510), 디-노멀라이저(1010), 코어 레이어 BICM 디코더(520), 인핸스드 레이어 심볼 추출기(530), 디-인젝션 레벨 컨트롤러(1020) 및 인핸스드 레이어 BICM 디코더(540)를 포함한다.
이 때, 도 6에 도시된 신호 디멀티플렉싱 장치는 도 3에 도시된 방송 신호 프레임 생성 장치에 상응하는 것일 수 있다.
타임 디인터리버(510)는 시간/주파수 동기(synchronization), 채널추정(channel estimation) 및 등화(equalization) 등의 동작을 수행하는 OFDM 수신기로부터 수신 신호를 제공 받고, 채널에서 발생한 군집오류(burst error) 분산에 관한 동작을 수행한다. 이 때, L1 시그널링 정보는 OFDM 수신기에서 우선적으로 복호되어, 데이터 복호에 활용될 수 있다. 특히, L1 시그널링 정보 중 인젝션 레벨 정보는 디-노멀라이저(1010)와 디-인젝션 레벨 컨트롤러(1020)에 전달될 수 있다. 이 때, OFDM 수신기는 수신 신호를 방송 신호 프레임(예를 들어, ATSC 3.0 프레임)의 형태로 복호화한 후, 프레임의 데이터 심볼 부분을 추출하여 타임 디인터리버(510)로 제공할 수 있다. 즉, 타임 디인터리버(510)는 데이터 심볼을 통과시키면서 역인터리빙 과정을 수행하여 채널에서 발생한 군집오류를 분산시킨다.
디-노멀라이저(1010)는 송신기의 파워 노멀라이저에 상응하는 것으로, 파워 노멀라이저에서 감소시킨 만큼 파워를 높인다. 즉, 디-노멀라이저(1010)는 수신 신호를 상기 수학식 2의 노멀라이징 팩터로 나눈다.
도 6에 도시된 예에서, 디-노멀라이저(1010)는 타임 인터리버(510)의 출력 신호의 파워를 조절하는 것으로 도시되었으나, 실시예에 따라 디-노멀라이저(1010)는 타임 인터리버(510)의 앞에 위치하여 인터리빙 되기 전에 파워 조절이 수행되도록 할 수도 있다.
즉, 디-노멀라이저(1010)는 타임 인터리버(510)의 앞 또는 뒤에 위치하여 코어 레이어 심볼 디맵퍼의 LLR 계산 등을 위해 신호의 크기를 증폭하는 것으로 볼 수 있다.
타임 디인터리버(510)의 출력(또는 디-노멀라이저(1010)의 출력)은 코어 레이어 BICM 디코더(520)로 제공되고, 코어 레이어 BICM 디코더(520)는 코어 레이어 데이터를 복원한다.
이 때, 코어 레이어 BICM 디코더(520)는 코어 레이어 심볼 디맵퍼, 코어 레이어 비트 디인터리버 및 코어 레이어 오류정정 복호화기를 포함한다. 코어 레이어 심볼 디맵퍼는 심볼과 관련된 LLR(Log-Likelihood Ratio) 값들을 계산하고, 코어 레이어 비트 디인터리버는 계산된 LLR 값들을 군집오류에 강하게 섞으며, 코어 레이어 오류정정 복호화기는 채널에서 발생한 오류를 정정한다.
이 때, 코어 레이어 심볼 디맵퍼는 미리 결정된 성상도를 이용하여 비트별로 LLR 값을 계산할 수 있다. 이 때 코어 레이어 심볼 맵퍼에서 이용하는 성상도는 송신기에서 사용되는 코드 레이트와 모듈레이션 차수(modulation order)의 조합에 따라 상이할 수 있다.
이 때, 코어 레이어 비트 디인터리버는 계산된 LLR 값들에 대하여 LDPC 코드워드 단위로 역인터리빙을 수행할 수 있다.
특히, 코어 레이어 오류정정 복호화기는 정보(information) 비트들만을 출력할 수도 있고, 정보 비트들과 패러티 비트들이 결합된 전체 비트들을 출력할 수도 있다. 이 때, 코어 레이어 오류정정 복호화기는 정보 비트들만을 코어 레이어 데이터로 출력하고, 정보 비트들에 패러티 비트들이 결합된 전체 비트들을 인핸스드 레이어 심볼 추출기(530)로 출력할 수 있다.
코어 레이어 오류 정정 복호화기는 코어 레이어 LDPC 복호화기와 코어 레이어 BCH 복호화기가 직렬 연결된 형태일 수 있다. 즉, 코어 레이어 오류 정정 복호화기의 입력이 코어 레이어 LDPC 복호화기로 입력되고, 코어 레이어 LDPC 복호화기의 출력이 코어 레이어 BCH 복호화기로 입력되고, 코어 레이어 BCH 복호화기의 출력이 코어 레이어 오류 정정 복호화기의 출력이 될 수 있다. 이 때, LDPC 복호화기는 LDPC 복호룰 수행하고, BCH 복호화기는 BCH 복호를 수행한다.
나아가, 인핸스드 레이어 오류 정정 복호화기도 인핸스드 레이어 LDPC 복호화기와 인핸스드 레이어 BCH 복호화기가 직렬 연결된 형태일 수 있다. 즉, 인핸스드 레이어 오류 정정 복호화기의 입력이 인핸스드 레이어 LDPC 복호화기로 입력되고, 인핸스드 레이어 LDPC 복호화기의 출력이 인핸스드 레이어 BCH 복호화기로 입력되고, 인핸스드 레이어 BCH 복호화기의 출력이 인핸스드 레이어 오류정정 복호화기의 출력이 될 수 있다.
인핸스드 레이어 심볼 추출기(530)는 코어 레이어 BICM 디코더(520)의 코어 레이어 오류정정 복호화기로부터 전체 비트들을 제공 받아서 타임 디인터리버(510) 또는 디-노멀라이저(1010)의 출력 신호로부터 인핸스드 레이어 심볼들을 추출할 수 있다. 실시예에 따라 인핸스드 레이어 심볼 추출기(530)는 코어 레이어 BICM 디코더(520)의 오류정정 복호화기로부터 전체 비트들을 제공 받지 않고, LDPC의 정보비트들(information bits)을 제공 받거나, BCH 정보 비트들을 제공 받을 수 있다.
이 때, 인핸스드 레이어 심볼 추출기(530)는 버퍼, 감산기(subtracter), 코어 레이어 심볼 맵퍼 및 코어 레이어 비트 인터리버를 포함한다. 버퍼는 타임 디인터리버(510) 또는 디-노멀라이저(1010)의 출력 신호를 저장한다. 코어 레이어 비트 인터리버는 코어 레이어 BICM 디코더의 전체 비트들(정보 비트들+패러티 비트들)을 입력 받아 송신기와 동일한 코어 레이어 비트 인터리빙을 수행한다. 코어 레이어 심볼 맵퍼는 인터리빙된 신호로부터 송신기와 동일한 코어 레이어 심볼을 생성한다. 감산기는 버퍼에 저장된 신호에서 코어 레이어 심볼 맵퍼의 출력 신호를 감산함으로써, 인핸스드 레이어 심볼을 획득하고 이를 디-인젝션 레벨 컨트롤러(1020)에 전달한다. 특히, LDPC 정보비트들을 제공 받는 경우 인핸스드 레이어 심볼 추출기(530)는 코어 레이어 LDPC 인코더를 더 포함할 수 있다. 또한, BCH 정보 비트들을 제공 받는 경우 인핸스드 레이어 심볼 추출기(530)는 코어 레이어 LDPC 인코더뿐만 아니라 코어 레이어 BCH 인코더를 더 포함할 수 있다.
이 때, 인핸스드 레이어 심볼 추출기(530)에 포함되는 코어 레이어 LDPC 인코더, 코어 레이어 BCH 인코더, 코어 레이어 비트 인터리버 및 코어 레이어 심볼 맵퍼는 도 3을 통하여 설명한 코어 레이어의 LDPC 인코더, BCH 인코더, 비트 인터리버 및 심볼 맵퍼와 동일한 것일 수 있다.
디-인젝션 레벨 컨트롤러(1020)는 인핸스드 레이어 심볼을 입력 받아서 송신기의 인젝션 레벨 컨트롤러에 의하여 떨어진 파워만큼 파워를 증가시킨다. 즉, 디-인젝션 레벨 컨트롤러(1020)는 입력 신호를 증폭하여 인핸스드 레이어 BICM 디코더(540)로 제공한다. 예를 들어, 송신기에서 인핸스드 레이어 신호의 파워를 코어 레이어 신호의 파워보다 3dB 작게 결합하였다면, 디-인젝션 레벨 컨트롤러(1020)는 입력 신호의 파워를 3dB 증가시키는 역할을 한다.
이 때, 디-인젝션 레벨 컨트롤러(1020)는 OFDM 수신기로부터 인젝션 레벨 정보를 받아서 추출된 인핸스드 레이어 신호에 하기 수학식 5의 인핸스드 레이어 게인을 곱하는 것으로 볼 수 있다.
[수학식 5]
Enhanced Layer Gain =
Figure PCTKR2016002214-appb-I000009
인핸스드 레이어 BICM 디코더(540)는 디-인젝션 레벨 컨트롤러(1020)에 의하여 파워가 상승된 인핸스드 레이어 심볼을 입력 받아서 인핸스드 레이어 데이터를 복원한다.
이 때, 인핸스드 레이어 BICM 디코더(540)는 인핸스드 레이어 심볼 디맵퍼, 인핸스드 레이어 비트 디인터리버 및 인핸스드 레이어 오류정정 복호화기를 포함할 수 있다. 인핸스드 레이어 심볼 디맵퍼는 인핸스드 레이어 심볼과 관련된 LLR(Log-Likelihood Ratio) 값들을 계산하고, 인핸스드 레이어 비트 디인터리버는 계산된 LLR 값들을 군집오류에 강하게 섞으며, 인핸스드 레이어 오류정정 복호화기는 채널에서 발생한 오류를 정정한다.
인핸스드 레이어 BICM 디코더(540)는 코어 레이어 BICM 디코더(520)와 유사한 작업을 수행하지만, 일반적으로 인핸스드 레이어 LDPC 디코더는 6/15 이상인 코드레이트에 대한 LDPC 복호를 수행한다.
예를 들어, 코어 레이어는 5/15 이하의 코드 레이트를 가지는 LDPC 코드를 사용하고, 인핸스드 레이어는 6/15 이상의 코드 레이트를 가지는 LDPC 코드를 사용할 수 있다. 이 때, 인핸스드 레이어 데이터의 복호가 가능한 수신 환경에서는 코어 레이어 데이터는 적은 수의 LDPC 디코딩 이터레이션(iteration)만으로도 복호가 가능하다. 이러한 성질을 이용하면 수신기 하드웨어는 하나의 LDPC 디코더를 코어 레이어와 인핸스드 레이어가 공유하여 하드웨어 구현시 발생하는 비용을 줄일 수 있다. 이 때, 코어 레이어 LDPC 디코더는 약간의 시간자원(LDPC 디코딩 이터레이션)만을 사용하고 대부분의 시간자원을 인핸스드 레이어 LDPC 디코더가 사용할 수 있다.
도 6에 도시된 신호 디멀티플렉싱 장치는 먼저 코어 레이어 데이터를 복원하고, 수신 신호 심볼에서 코어 레이어 심볼들을 캔슬레이션(cancellation)하여 인핸스드 레이어 심볼들만 남긴 후, 인핸스드 레이어 심볼의 파워를 증가시켜서 인핸스드 레이어 데이터를 복원한다. 도 3 및 5를 통해 이미 설명한 바와 같이, 각각의 레이어에 상응하는 신호들이 서로 다른 파워레벨로 결합되므로 가장 강한 파워로 결합된 신호부터 복원되어야 가장 오류가 적은 데이터 복원이 가능하다.
결국 도 6에 도시된 예에서 신호 디멀티플렉싱 장치는, 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 타임 디인터리버(510); 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 디-노멀라이저(1010); 상기 디-노멀라이저(1010)에 의해 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 코어 레이어 BICM 디코더(520); 상기 코어 레이어 BICM 디코더(520)의 코어 레이어 FEC 디코더의 출력 신호를 이용하여, 상기 디-노멀라이저(1010)에 의해 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 인핸스드 레이어 심볼 추출기(530); 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 디-인젝션 레벨 컨트롤러(1020); 및 상기 디-인젝션 레벨 컨트롤러(1020)의 출력 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 인핸스드 레이어 BICM 디코더(540)를 포함할 수 있다.
이 때, 인핸스드 레이어 심볼 추출기는 상기 코어 레이어 BICM 디코더의 코어 레이어 LDPC 디코더로부터 전체 코드워드를 입력 받고, 상기 전체 코드워드를 바로 비트 인터리빙할 수 있다.
이 때, 인핸스드 레이어 심볼 추출기는 상기 코어 레이어 BICM 디코더의 코어 레이어 LDPC 디코더로부터 정보 비트들을 입력 받고, 상기 정보 비트들을 코어 레이어 LDPC 인코딩한 후 비트 인터리빙을 수행할 수 있다.
이 때, 인핸스드 레이어 심볼 추출기는 상기 코어 레이어 BICM 디코더의 코어 레이어 BCH 디코더로부터 정보 비트들을 입력 받고, 상기 정보 비트들을 코어 레이어 BCH 인코딩 및 코어 레이어 LDPC 인코딩한 후 비트 인터리빙을 수행할 수 있다.
이 때, 상기 디-노멀라이저 및 상기 디-인젝션 레벨 컨트롤러는 L1 시그널링에 기반하여 제공된 인젝션 레벨 정보(IL INFO)를 제공 받고, 상기 인젝션 레벨 정보에 기반하여 파워 컨트롤을 수행할 수 있다.
이 때, 상기 코어 레이어 BICM 디코더는 상기 인핸스드 레이어 BICM 디코더보다 낮은 비트율을 가지고, 상기 인핸스드 레이어 BICM 디코더보다 강인할(robust) 수 있다.
이 때, 상기 디-노멀라이저는 노멀라이징 팩터의 역수에 상응할 수 있다.
이 때, 상기 디-인젝션 레벨 컨트롤러는 스케일링 팩터의 역수에 상응할 수 있다.
이 때, 인핸스드 레이어 데이터는 코어 레이어 신호에 상응하는 코어 레이어 데이터의 복원에 상응하는 캔슬레이션에 기반하여 복원될 수 있다.
이 때, 신호 디멀티플렉싱 장치는 이전 레이어 데이터에 상응하는 캔슬레이션을 수행하여 확장 레이어 신호를 추출하는 하나 이상의 확장 레이어 심볼 추출기; 상기 확장 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 하나 이상의 디-인젝션 레벨 컨트롤러 및 상기 하나 이상의 디-인젝션 레벨 컨트롤러의 출력 신호를 이용하여 하나 이상의 확장 레이어 데이터를 복원하는 하나 이상의 확장 레이어 BICM 디코더를 더 포함할 수 있다.
도 6에 도시된 구성을 통해 본 발명의 일실시예에 따른 신호 디멀티플렉싱 방법은, 수신 신호에 타임 디인터리빙을 적용하여 타임 디인터리빙 신호를 생성하는 단계; 상기 수신 신호 또는 상기 타임 디인터리빙 신호의 파워를 송신기의 파워 노멀라이저에 의한 파워 감소만큼 높이는 단계; 상기 파워 조절된 신호로부터 코어 레이어 데이터를 복원하는 단계; 상기 파워 조절된 신호에 대한 상기 코어 레이어 데이터에 상응하는 캔슬레이션을 수행하여 인핸스드 레이어 신호를 추출하는 단계; 상기 인핸스드 레이어 신호의 파워를 송신기의 인젝션 레벨 컨트롤러의 파워 감소만큼 높이는 단계; 및 파워 조절된 상기 인핸스드 레이어 신호를 이용하여 인핸스드 레이어 데이터를 복원하는 단계를 포함함을 알 수 있다.
이 때, 인핸스드 레이어 신호를 추출하는 단계는 코어 레이어 BICM 디코더의 코어 레이어 LDPC 디코더로부터 전체 코드워드를 입력 받고, 상기 전체 코드워드를 바로 비트 인터리빙할 수 있다.
이 때, 인핸스드 레이어 신호를 추출하는 단계는 코어 레이어 BICM 디코더의 코어 레이어 LDPC 디코더로부터 정보 비트들을 입력 받고, 상기 정보 비트들을 코어 레이어 LDPC 인코딩한 후 비트 인터리빙을 수행할 수 있다.
이 때, 인핸스드 레이어 신호를 추출하는 단계는 코어 레이어 BICM 디코더의 코어 레이어 BCH 디코더로부터 정보 비트들을 입력 받고, 상기 정보 비트들을 코어 레이어 BCH 인코딩 및 코어 레이어 LDPC 인코딩한 후 비트 인터리빙을 수행할 수 있다.
도 7은 도 6에 도시된 코어 레이어 BICM 디코더(520) 및 인핸스드 레이어 심볼 추출기(530)의 일 예를 나타낸 블록도이다.
도 7을 참조하면, 코어 레이어 BICM 디코더(520)는 코어 레이어 심볼 디맵퍼, 코어 레이어 비트 디인터리버, 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
즉, 도 7에 도시된 예에서 코어 레이어 오류정정 복호화기는 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
또한, 도 7에 도시된 예에서 코어 레이어 LDPC 디코더는 패러티 비트들이 포함된 전체 코드워드(whole codeword)를 인핸스드 레이어 심볼 추출기(530)로 제공한다. 즉, 일반적으로 LDPC 디코더는 전체 LDPC 코드워드 중에서 정보 비트들(information bits)만을 출력하나, 전체 코드워드를 출력하는 것도 가능하다.
이 경우, 인핸스드 레이어 심볼 추출기(530)는 별도로 코어 레이어 LDPC 인코더나 코어 레이어 BCH 인코더를 구비할 필요가 없어서 구현이 간단하나, LDPC 코드 패러티 부분에 잔여 오류가 남아 있을 가능성이 존재한다.
도 8은 도 6에 도시된 코어 레이어 BICM 디코더(520) 및 인핸스드 레이어 심볼 추출기(530)의 다른 예를 나타낸 블록도이다.
도 8을 참조하면, 코어 레이어 BICM 디코더(520)는 코어 레이어 심볼 디맵퍼, 코어 레이어 비트 디인터리버, 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
즉, 도 8에 도시된 예에서 코어 레이어 오류정정 복호화기는 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
또한, 도 8에 도시된 예에서 코어 레이어 LDPC 디코더는 패러티 비트들이 포함되지 않은 정보 비트들(information bits)을 인핸스드 레이어 심볼 추출기(530)로 제공한다.
이 경우, 인핸스드 레이어 심볼 추출기(530)는 별도로 코어 레이어 BCH 인코더를 구비할 필요가 없으나, 코어 레이어 LDPC 인코더를 포함하여야 한다.
도 8에 도시된 예는 도 7에 도시된 예에 비하여 LDPC 코드 패러티 부분에 남아 있을 수 있는 잔여 오류를 제거할 수 있다.
도 9는 도 6에 도시된 코어 레이어 BICM 디코더(520) 및 인핸스드 레이어 심볼 추출기(530)의 또 다른 예를 나타낸 블록도이다.
도 9를 참조하면, 코어 레이어 BICM 디코더(520)는 코어 레이어 심볼 디맵퍼, 코어 레이어 비트 디인터리버, 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
즉, 도 9에 도시된 예에서 코어 레이어 오류정정 복호화기는 코어 레이어 LDPC 디코더 및 코어 레이어 BCH 디코더를 포함한다.
도 9에 도시된 예에서는 코어 레이어 데이터에 해당하는 코어 레이어 BCH 디코더의 출력을 인핸스드 레이어 심볼 추출기(530)로 제공한다.
이 경우, 인핸스드 레이어 심볼 추출기(530)는 코어 레이어 LDPC 인코더 및 코어 레이어 BCH 인코더를 모두 포함하여야 하므로 복잡도가 높지만, 도 7 및 도 8의 예와 비교하여 가장 높은 성능을 보장한다.
도 10은 도 1에 도시된 신호 디멀티플렉싱 장치의 다른 예를 나타낸 블록도이다.
도 10을 참조하면, 본 발명의 일실시예에 따른 신호 디멀티플렉싱 장치는 타임 디인터리버(510), 디-노멀라이저(1010), 코어 레이어 BICM 디코더(520), 인핸스드 레이어 심볼 추출기(530), 인핸스드 레이어 BICM 디코더(540), 하나 이상의 확장 레이어 심볼 추출기들(650, 670), 하나 이상의 확장 레이어 BICM 디코더들(660, 680) 및 디-인젝션 레벨 컨트롤러들(1020, 1150, 1170)을 포함한다.
이 때, 도 10에 도시된 신호 디멀티플렉싱 장치는 도 5에 도시된 방송 신호 프레임 생성 장치에 상응하는 것일 수 있다.
타임 디인터리버(510)는 동기(synchronization), 채널추정(channel estimation) 및 등화(equalization) 등의 동작을 수행하는 OFDM 수신기로부터 수신 신호를 제공 받고, 채널에서 발생한 군집오류(burst error) 분산에 관한 동작을 수행한다. 이 때, L1 시그널링 정보는 OFDM 수신기에서 우선적으로 복호되어, 데이터 복호에 활용될 수 있다. 특히, L1 시그널링 정보 중 인젝션 레벨 정보는 디-노멀라이저(1010)와 디-인젝션 레벨 컨트롤러들(1020, 1150, 1170)에 전달될 수 있다.
이 때, 디-노멀라이저(1010)는 모든 레이어의 인젝션 레벨 정보를 취득하여 하기 수학식 6을 이용하여 디-노멀라이징 팩터를 구한 후, 입력신호에 곱할 수 있다.
[수학식 6]
De-Normalizing factor = (Normalizing factor)-1 =
Figure PCTKR2016002214-appb-I000010
즉, 디-노멀라이징 팩터는 상기 수학식 4에 의하여 표현된 노멀라이징 팩터의 역수이다.
실시예에 따라, N1 시그널링에 인젝션 레벨 정보뿐만 아니라 노멀라이징 팩터 정보가 포함된 경우 디-노멀라이저(1010)는 인젝션 레벨을 이용하여 디-노멀라이징 팩터를 계산할 필요 없이 노멀라이징 팩터의 역수를 취하여 간단히 디-노멀라이징 팩터를 구할 수 있다.
디-노멀라이저(1010)는 송신기의 파워 노멀라이저에 상응하는 것으로, 파워 노멀라이저에서 감소시킨 만큼 파워를 높인다.
도 10에 도시된 예에서, 디-노멀라이저(1010)는 타임 인터리버(510)의 출력 신호의 파워를 조절하는 것으로 도시되었으나, 실시예에 따라 디-노멀라이저(1010)는 타임 인터리버(510)의 앞에 위치하여 인터리빙 되기 전에 파워 조절이 수행되도록 할 수도 있다.
즉, 디-노멀라이저(1010)는 타임 인터리버(510)의 앞 또는 뒤에 위치하여 코어 레이어 심볼 디맵퍼의 LLR 계산 등을 위해 신호의 크기를 증폭하는 것으로 볼 수 있다.
타임 디인터리버(510)의 출력(또는 디-노멀라이저(1010)의 출력)은 코어 레이어 BICM 디코더(520)로 제공되고, 코어 레이어 BICM 디코더(520)는 코어 레이어 데이터를 복원한다.
이 때, 코어 레이어 BICM 디코더(520)는 코어 레이어 심볼 디맵퍼, 코어 레이어 비트 디인터리버 및 코어 레이어 오류정정 복호화기를 포함한다. 코어 레이어 심볼 디맵퍼는 심볼과 관련된 LLR(Log-Likelihood Ratio) 값들을 계산하고, 코어 레이어 비트 디인터리버는 계산된 LLR 값들을 군집오류에 강하게 섞으며, 코어 레이어 오류정정 복호화기는 채널에서 발생한 오류를 정정한다.
특히, 코어 레이어 오류정정 복호화기는 정보(information) 비트들만을 출력할 수도 있고, 정보 비트들과 패러티 비트들이 결합된 전체 비트들을 출력할 수도 있다. 이 때, 코어 레이어 오류정정 복호화기는 정보 비트들만을 코어 레이어 데이터로 출력하고, 정보 비트들에 패러티 비트들이 결합된 전체 비트들을 인핸스드 레이어 심볼 추출기(530)로 출력할 수 있다.
코어 레이어 오류 정정 복호화기는 코어 레이어 LDPC 복호화기와 코어 레이어 BCH 복호화기가 직렬 연결된 형태일 수 있다. 즉, 코어 레이어 오류 정정 복호화기의 입력이 코어 레이어 LDPC 복호화기로 입력되고, 코어 레이어 LDPC 복호화기의 출력이 코어 레이어 BCH 복호화기로 입력되고, 코어 레이어 BCH 복호화기의 출력이 코어 레이어 오류 정정 복호화기의 출력이 될 수 있다. 이 때, LDPC 복호화기는 LDPC 복호룰 수행하고, BCH 복호화기는 BCH 복호를 수행한다.
인핸스드 레이어 오류 정정 복호화기도 인핸스드 레이어 LDPC 복호화기와 인핸스드 레이어 BCH 복호화기가 직렬 연결된 형태일 수 있다. 즉, 인핸스드 레이어 오류 정정 복호화기의 입력이 인핸스드 레이어 LDPC 복호화기로 입력되고, 인핸스드 레이어 LDPC 복호화기의 출력이 인핸스드 레이어 BCH 복호화기로 입력되고, 인핸스드 레이어 BCH 복호화기의 출력이 인핸스드 레이어 오류정정 복호화기의 출력이 될 수 있다.
나아가, 확장 레이어 오류 정정 복호화기도 확장 레이어 LDPC 복호화기와 확장 레이어 BCH 복호화기가 직렬 연결된 형태일 수 있다. 즉, 확장 레이어 오류 정정 복호화기의 입력이 확장 레이어 LDPC 복호화기로 입력되고, 확장 레이어 LDPC 복호화기의 출력이 확장 레이어 BCH 복호화기로 입력되고, 확장 레이어 BCH 복호화기의 출력이 확장 레이어 오류정정 복호화기의 출력이 될 수 있다.
특히, 도 7, 도 8 및 도 9를 통하려 설명한 오류정정 복호화기의 출력 중 어느 것을 사용할지에 따른 구현의 복잡성과 성능 사이의 트레이드 오프(trade off)는 도 10의 코어 레이어 BICM 디코더(520)와 인핸스드 레이어 심볼 추출기(530)뿐만 아니라, 확장 레이어 심볼 추출기들(650, 670), 확장 레이어 BICM 디코더들(660, 680)에도 적용된다.
인핸스드 레이어 심볼 추출기(530)는 코어 레이어 BICM 디코더(520)의 코어 레이어 오류정정 복호화기로부터 전체 비트들을 제공 받아서 타임 디인터리버(510) 또는 디-노멀라이저(1010)의 출력 신호로부터 인핸스드 레이어 심볼들을 추출할 수 있다. 실시예에 따라 인핸스드 레이어 심볼 추출기(530)는 코어 레이어 BICM 디코더(520)의 오류정정 복호화기로부터 전체 비트들을 제공 받지 않고, LDPC의 정보비트들(information bits)을 제공 받거나, BCH 정보 비트들을 제공 받을 수 있다.
이 때, 인핸스드 레이어 심볼 추출기(530)는 버퍼, 감산기(subtracter), 코어 레이어 심볼 맵퍼 및 코어 레이어 비트 인터리버를 포함한다. 버퍼는 타임 디인터리버(510) 또는 디-노멀라이저(1010)의 출력 신호를 저장한다. 코어 레이어 비트 인터리버는 코어 레이어 BICM 디코더의 전체 비트들(정보 비트들+패러티 비트들)을 입력 받아 송신기와 동일한 코어 레이어 비트 인터리빙을 수행한다. 코어 레이어 심볼 맵퍼는 인터리빙된 신호로부터 송신기와 동일한 코어 레이어 심볼을 생성한다. 감산기는 버퍼에 저장된 신호에서 코어 레이어 심볼 맵퍼의 출력 신호를 감산함으로써, 인핸스드 레이어 심볼을 획득하고 이를 디-인젝션 레벨 컨트롤러(1020)에 전달한다.
이 때, 인핸스드 레이어 심볼 추출기(530)에 포함되는 코어 레이어 비트 인터리버 및 코어 레이어 심볼 맵퍼는 도 5에 도시된 코어 레이어의 비트 인터리버 및 심볼 맵퍼와 동일한 것일 수 있다.
디-인젝션 레벨 컨트롤러(1020)는 인핸스드 레이어 심볼을 입력 받아서 송신기의 인젝션 레벨 컨트롤러에 의하여 떨어진 파워만큼 파워를 증가시킨다. 즉, 디-인젝션 레벨 컨트롤러(1020)는 입력 신호를 증폭하여 인핸스드 레이어 BICM 디코더(540)로 제공한다.
인핸스드 레이어 BICM 디코더(540)는 디-인젝션 레벨 컨트롤러(1020)에 의하여 파워가 상승된 인핸스드 레이어 심볼을 입력 받아서 인핸스드 레이어 데이터를 복원한다.
이 때, 인핸스드 레이어 BICM 디코더(540)는 인핸스드 레이어 심볼 디맵퍼, 인핸스드 레이어 비트 디인터리버 및 인핸스드 레이어 오류정정 복호화기를 포함할 수 있다. 인핸스드 레이어 심볼 디맵퍼는 인핸스드 레이어 심볼과 관련된 LLR(Log-Likelihood Ratio) 값들을 계산하고, 인핸스드 레이어 비트 디인터리버는 계산된 LLR 값들을 군집오류에 강하게 섞으며, 인핸스드 레이어 오류정정 복호화기는 채널에서 발생한 오류를 정정한다.
특히, 인핸스드 레이어 오류정정 복호화기는 정보(information) 비트들만을 출력할 수도 있고, 정보 비트들과 패러티 비트들이 결합된 전체 비트들을 출력할 수도 있다. 이 때, 인핸스드 레이어 오류정정 복호화기는 정보 비트들만을 인핸스드 레이어 데이터로 출력하고, 정보 비트들에 패러티 비트들이 결합된 전체 비트들을 확장 레이어 심볼 추출기(650)로 출력할 수 있다.
확장 레이어 심볼 추출기(650)는 인핸스드 레이어 BICM 디코더(540)의 인핸스드 레이어 오류정정 복호화기로부터 전체 비트들을 제공 받아서 디-인젝션 레벨 컨트롤러(1020)의 출력 신호로부터 확장(extension) 레이어 심볼들을 추출한다.
이 때, 디-인젝션 레벨 컨트롤러(1020)는 인핸스드 레이어 심볼 추출기(530)의 감산기의 출력 신호의 파워를 증폭시킬 수 있다.
이 때, 확장 레이어 심볼 추출기(650)는 버퍼, 감산기(subtracter), 인핸스드 레이어 심볼 맵퍼 및 인핸스드 레이어 비트 인터리버를 포함한다. 버퍼는 디-인젝션 레벨 컨트롤러(1020)의 출력 신호를 저장한다. 인핸스드 레이어 비트 인터리버는 인핸스드 레이어 BICM 디코더의 전체 비트들(정보 비트들+패러티 비트들)을 입력 받아 송신기와 동일한 인핸스드 레이어 비트 인터리빙을 수행한다. 인핸스드 레이어 심볼 맵퍼는 인터리빙된 신호로부터 송신기와 동일한 인핸스드 레이어 심볼을 생성한다. 감산기는 버퍼에 저장된 신호에서 인핸스드 레이어 심볼 맵퍼의 출력 신호를 감산함으로써, 확장 레이어 심볼을 획득하고 이를 디-인젝션 레벨 컨트롤러(1150)에 전달한다.
이 때, 확장 레이어 심볼 추출기(650)에 포함되는 인핸스드 레이어 비트 인터리버 및 인핸스드 레이어 심볼 맵퍼는 도 5에 도시된 인핸스드 레이어의 비트 인터리버 및 심볼 맵퍼와 동일한 것일 수 있다.
디-인젝션 레벨 컨트롤러(1150)는 송신기에서 해당 레이어의 인젝션 레벨 컨트롤러에 의하여 감소된 만큼 파워를 증가시킨다.
이 때, 디-인젝션 레벨 컨트롤러는 하기 수학식 7의 확장 레이어 게인을 곱하는 동작을 수행하는 것으로 볼 수 있다. 이 때, 0번째 인젝션 레벨은 0dB로 간주할 수 있다.
[수학식 7]
n-th Extension Layer Gain =
Figure PCTKR2016002214-appb-I000011
확장 레이어 BICM 디코더(660)는 디-인젝션 레벨 컨트롤러(1150)에 의하여 파워가 증가된 확장 레이어 심볼을 입력 받아서 확장 레이어 데이터를 복원한다.
이 때, 확장 레이어 BICM 디코더(660)는 확장 레이어 심볼 디맵퍼, 확장 레이어 비트 디인터리버 및 확장 레이어 오류정정 복호화기를 포함할 수 있다. 확장 레이어 심볼 디맵퍼는 확장 레이어 심볼과 관련된 LLR(Log-Likelihood Ratio) 값들을 계산하고, 확장 레이어 비트 디인터리버는 계산된 LLR 값들을 군집오류에 강하게 섞으며, 확장 레이어 오류정정 복호화기는 채널에서 발생한 오류를 정정한다.
특히, 확장 레이어 심볼 추출기 및 확장 레이어 BICM 디코더는 확장 레이어가 둘 이상인 경우 각각 둘 이상 구비될 수 있다.
즉, 도 10에 도시된 예에서, 확장 레이어 BICM 디코더(660)의 확장 레이어 오류정정 복호화기는 정보(information) 비트들만을 출력할 수도 있고, 정보 비트들과 패러티 비트들이 결합된 전체 비트들을 출력할 수도 있다. 이 때, 확장 레이어 오류정정 복호화기는 정보 비트들만을 확장 레이어 데이터로 출력하고, 정보 비트들에 패러티 비트들이 결합된 전체 비트들을 다음 확장 레이어 심볼 추출기(670)로 출력할 수 있다.
확장 레이어 심볼 추출기(670), 확장 레이어 BICM 디코더(680) 및 디-인젝션 레벨 컨트롤러(1170)의 구조 및 동작은 전술한 확장 레이어 심볼 추출기(650), 확장 레이어 BICM 디코더(660) 및 디-인젝션 레벨 컨트롤러(1150)의 구조 및 동작으로부터 쉽게 알 수 있다.
도 10에 도시된 디-인젝션 레벨 컨트롤러들(1020, 1150, 1170)은 아래로 내려갈수록 더 큰 파워 상승에 상응하는 것일 수 있다. 즉, 디-인젝션 레벨 컨트롤러(1020)보다 디-인젝션 레벨 컨트롤러(1150)가 파워를 더 크게 증가시키고, 디-인젝션 레벨 컨트롤러(1150)보다 디-인젝션 레벨 컨트롤러(1170)가 더 파워를 크게 증가시킬 수 있다.
도 10에 도시된 신호 디멀티플렉싱 장치는 가장 먼저 코어 레이어 데이터를 복원하고, 코어 레이어 심볼의 캔슬레이션을 이용하여 인핸스드 레이어 데이터를 복원하고, 인핸스드 레이어 심볼의 캔슬레이션을 이용하여 확장 레이어 데이터를 복원하는 것을 알 수 있다. 확장 레이어는 둘 이상 구비될 수 있고, 이 경우 더 높은 파워 레벨로 결합된 확장 레이어부터 복원된다.
도 11은 코어 레이어 신호 및 인핸스드 레이어 신호의 결합으로 인한 파워 상승을 나타낸 도면이다.
도 11을 참조하면, 코어 레이어 신호에 인젝션 레벨(injection level)만큼 파워 감소된 인핸스드 레이어 신호가 결합되어 멀티플렉싱된 신호가 생성된 경우 멀티플렉싱된 신호의 파워 레벨이 코어 레이어 신호나 인핸스드 레이어 신호의 파워 레벨보다 높은 것을 알 수 있다.
이 때, 도 3 및 도 5에 도시된 인젝션 레벨 컨트롤러(injection level controller)에 의해 조절되는 인젝션 레벨은 0dB부터 10.0dB까지 0.5dB 또는 1dB 간격으로 조절될 수 있다. 인젝션 레벨이 3.0dB인 경우 인핸스드 레이어 신호의 파워가 코어 레이어 신호의 파워보다 3dB 만큼 낮다. 인젝션 레벨이 10.0dB인 경우 인핸스드 레이어 신호의 파워가 코어 레이어 신호의 파워보다 10dB 만큼 낮다. 이와 같은 관계는 코어 레이어 신호와 인핸스드 레이어 신호 사이에만 적용되는 것이 아니라, 인핸스드 레이어 신호와 확장 레이어 신호 또는 확장 레이어 신호들 사이에도 적용될 수 있다.
도 3 및 도 5에 도시된 파워 노멀라이저는 결합 후의 파워 레벨을 조절하여 결합으로 인한 파워 증가로 야기될 수 있는 신호의 왜곡 등의 문제를 해결할 수 있다.
도 12는 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법을 나타낸 동작 흐름도이다.
도 12를 참조하면, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 코어 레이어 데이터에 BICM을 적용한다(S1210).
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 인핸스드 레이어 데이터에 BICM을 적용한다(S1220).
단계(S1220)에서 적용되는 BICM과 단계(S1210)에서 적용되는 BICM은 상이한 것일 수 있다. 이 때, 단계(S1220)에서 적용되는 BICM이 단계(S1210)에서 적용되는 BICM보다 덜 강인한 것일 수 있다. 이 때, 단계(S1220)에서 적용되는 BICM의 비트율이 단계(S1210)에서 적용되는 비트율보다 클 수 있다.
이 때, 인핸스드 레이어 신호는 상기 코어 레이어 신호에 상응하는 코어 레이어 데이터의 복원에 상응하는 캔슬레이션(cancellation)에 기반하여 복원되는 인핸스드 레이어 데이터에 상응하는 것일 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 인핸스드 레이어 신호의 파워를 줄여서 파워 리듀스드 인핸스드 레이어 신호를 생성한다(S1230).
이 때, 단계(S1230)는 인젝션 레벨을 0dB에서 10.0dB 사이에서 0.5dB 또는 1dB 간격으로 변화시킬 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 코어 레이어 신호 및 파워 리듀스드 인핸스드 레이어 신호를 결합하여 멀티플렉싱된 신호를 생성한다(S1240).
즉, 단계(S1240)는 코어 레이어 신호 및 인핸스드 레이어 신호를 서로 다른 파워 레벨로 결합하되, 인핸스드 레이어 신호의 파워 레벨이 코어 레이어 신호의 파워 레벨보다 낮도록 하여 결합한다.
이 때, 단계(S1240)는 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호보다 낮은 파워 레벨의 하나 이상의 확장 레이어(extension layer) 신호를 상기 코어 레이어 신호 및 상기 인핸스드 레이어 신호와 함께 결합할 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 단계(S1250)에 의하여 멀티플렉싱된 신호의 파워를 낮춘다(S1250).
이 때, 단계(S1250)는 멀티플렉싱된 신호의 파워를 상기 코어 레이어 신호의 파워만큼 낮출 수 있다. 이 때, 단계(S1250)는 상기 멀티플렉싱된 신호의 파워를 상기 단계(S1240)에 의하여 상승된 만큼 낮출 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 상기 코어 레이어 신호 및 인핸스드 레이어 신호에 함께 적용되는 타임 인터리빙을 수행하여 타임 인터리빙된 신호를 생성한다(S1260).
실시예에 따라, 싱글 레이어의 경우에 단계(S1260)는 BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성할 수 있다.
또한, 본 발명의 일실시예에 따른 방송 신호 프레임 생성 방법은 타임 인터리빙된 신호를 이용하여 부트스트랩 및 프리앰블이 포함된 방송 신호 프레임을 생성한다(S1270).
이 때, 단계(S1270)는 상기 부트스트랩을 생성하는 단계; 상기 프리앰블을 생성하는 단계; 및 상기 타임 인터리빙된 신호에 상응하는 데이터 페이로드를 생성하는 단계를 포함할 수 있다. 이 때, 데이터 페이로드는 수퍼-임포우즈드 페이로드일 수 있다.
이 때, 부트스트랩은 상기 프리앰블보다 짧고, 고정된 길이를 가질 수 있다.
이 때, 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함할 수 있다.
이 때, 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응할 수 있다.
이 때, BICM 모드는 각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드, 16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드, 64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함할 수 있다.
이 때, 제1 모드, 제2 모드 및 제3 모드는 동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들일 수 있다.
이 때, 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않는 것일 수 있다.
이 때, 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작을 수 있다.
이 때, 심볼은 상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
이 때, 심볼은 동일한 FFT 사이즈(FFT size), 가드 인터벌 길이(Guard Interval length) 및 파일럿 패턴(pilot pattern)의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것일 수 있다.
도 12에는 명시적으로 도시되지 아니하였지만, 방송 신호 프레임 생성 방법은 단계(S1230)에 상응하는 인젝션 레벨 정보를 포함하는 시그널링 정보를 생성하는 단계를 더 포함할 수 있다. 이 때, 시그널링 정보는 L1 시그널링 정보일 수 있다.
도 12에 도시된 방송 신호 프레임 생성 방법은 도 2에 도시된 단계(S210)에 상응하는 것일 수 있다.
도 13은 본 발명의 일실시예에 따른 시그널링 정보 부호화/복호화 시스템을 나타낸 블록도이다.
도 13을 참조하면, 시그널링 정보 부호화/복호화 시스템은 시그널링 정보 부호화 장치(2100) 및 시그널링 정보 복호화 장치(2300)를 포함한다.
시그널링 정보 부호화 장치(2100) 및 시그널링 정보 복호화 장치(2300)는 무선 채널(2200)을 매개로 통신을 수행한다.
시그널링 정보 부호화 장치(2100)는 L1-Basic이나 L1-Detail 등의 시그널링 정보를 채널부호화 및 변조한다.
시그널링 정보 부호화 장치(2100)는 세그먼테이션부(2110), 스크램블링부(2120), BCH 인코더(2130), 제로 패딩부(2140), LDPC 인코더(2150), 패리티 퍼뮤테이션부(2160), 패리티 펑쳐링부(2170), 제로 리무빙부(2180), 비트 인터리빙부(2190) 및 컨스틸레이션 맵핑부(2195)를 포함한다.
도 13에 도시된 시그널링 정보 부호화 장치(2100)는 BICM(Bit-Interleaved Coded Modulation) 장치에 상응하는 것으로 볼 수 있고, 이 때, BICM 장치의 오류정정부호화기는 도 13에 도시된 세그먼테이션부(2110), 스크램블링부(2120), BCH 인코더(2130), 제로 패딩부(2140), LDPC 인코더(2150), 패리티 퍼뮤테이션부(2160), 패리티 펑쳐링부(2170) 및 제로 리무빙부(2180)에 상응하는 것으로 볼 수 있다.
세그멘테이션부(2100)는 시그널링 정보의 길이가 기설정된 길이보다 긴 경우, 시그널링 정보를 여러 개의 LDPC 코드워드(codeword)에 나누어서 송신하기 위해 시그널링 정보를 여러 그룹들로 분할한다. 즉, 시그널링 정보를 하나의 LDPC 코드워드에 담지 못하는 경우에, 세그멘테이션부는 몇 개의 코드워드에 시그널링 정보를 담을지를 결정하고, 결정된 개수에 맞추어 시그널링 정보를 분할할 수 있다.
예를 들어, 시그널링 정보의 길이가 L1-Basic과 같이 고정된 경우, 시그널링 정보 부호화 장치(2100)는 세그멘테이션부(2100)를 포함하지 않을 수도 있다.
*예를 들어, 시그널링 정보의 길이가 L1-Detail과 같이 가변인 경우, 시그널링 정보 부호화 장치(2100)는 세그멘테이션부(2100)를 포함할 수 있다.
스크램블링부(2120)는 시그널링 정보를 보호하기 위한 스크램블링을 수행한다. 이 때, 스크램블링은 본 기술분야에서 알려진 다양한 방식으로 수행될 수 있다.
BCH 인코더(2130)는 패리티 길이 N bch _parity = 168비트인 BCH 패리티를 이용하여 BCH 인코딩을 수행한다.
이 때, BCH 인코딩은 데이터 BICM의 길이가 16200인 LDPC 코드를 위한 BCH 인코딩과 동일한 것일 수 있다.
이 때, BCH 인코딩에 사용되는 BCH 다항식(polynomial)은 하기 표 5과 같이 표현될 수 있고, 표 5에 표현된 BCH 인코딩은 12비트의 오류정정능력을 가질 수 있다.
Figure PCTKR2016002214-appb-T000001
BCH 인코딩 수행 후, 제로 패딩부(2140)는 제로 패딩(zero padding) 혹은 쇼트닝(shortening)을 수행한다.
이 때, 제로 패딩(zero padding)은 비트열의 일부를 비트 '0'으로 채우는 것을 의미한다.
BCH 인코딩의 결과 비트열의 길이는 N bch = Ksig + N bch _Parity와 같이 표현될 수 있다. 이 때, Ksig는 BCH 인코딩의 정보 비트들의 개수일 수 있다. 예를 들어, Ksig이 200비트로 고정된 경우, N bch는 368비트일 수 있다.
LDPC 인코더(2150)가 부호율이 3/15이고 길이가 16200인 LDPC 코드를 사용하는 경우, LDPC의 정보길이 Kldpc는 3240 비트이다. 이 때, 실제 전송하고자 하는 정보는 N bch 비트이고, LDPC 정보부분의 길이는 Kldpc 비트이므로, Kldpc-N bch만큼의 비트들을 비트 '0'으로 채워 넣는 과정인 제로 패딩이 수행된다. L1-Basic의 경우, Kldpc-N bch는 2872일 수 있다.
이 때, 제로 패딩의 순서는 인코더의 성능을 결정하는 매우 중요한 역할을 하며, 제로 패딩의 순서를 쇼트닝 패턴 오더(shortening pattern order)라고 표현할 수 있다.
이 때, 제로 패딩된 비트들은 LDPC 인코딩시에만 사용되며, 실제로 전송되지는 않는다.
Kldpc 비트의 LDPC 정보 비트들은 하기 수학식 8과 같이 N info_ group개의 그룹으로 나뉘어진다. 예를 들어, Kldpc가 3240인 경우, N info_group은 9이므로, LDPC 정보 비트들은 9개의 그룹들로 그룹핑될 수 있다.
[수학식 8]
Figure PCTKR2016002214-appb-I000012
이 때, Zj는 360개의 비트들로 이루어진 그룹을 나타낸다.
Kldpc 비트들 중에서 어느 부분을 제로 패딩할지는 아래의 과정에 의해 결정된다.
(Step 1) 먼저, 하기 수학식 9를 이용하여 모든 비트를 0으로 채울 그룹들의 수(number of groups in which all the bits shall be padded with '0')를 계산한다.
[수학식 9]
Figure PCTKR2016002214-appb-I000013
예를 들어, Kldpc가 3240이고 N bch는 368인 경우, Npad는 7일 수 있다. Npad가 7이라는 것은 모든 비트를 0으로 채울 그룹의 수가 7개임을 나타낸다.
(Step 2) Npad가 0이 아닌 경우에 하기 표 6의 쇼트닝 패턴 오더(shortening pattern order) πS(j)에 따라 Npad개의 그룹들에 대하여
Figure PCTKR2016002214-appb-I000014
순서로 제로 패딩한다. 이 때, πS(j)는 j번째 비트 그룹의 쇼트닝 패턴 오더를 나타낼 수 있다.
Npad가 0인 경우에는 위의 절차(above procedure)가 생략된다.
Figure PCTKR2016002214-appb-T000002
상기 표 6의 쇼트닝 패턴 오더는 4로 인덱싱되는 5번째 그룹, 1로 인덱싱되는 2번째 그룹, 5로 인덱싱되는 6번째 그룹, 2로 인덱싱되는 3번째 그룹, 8로 인덱싱되는 9번째 그룹, 6으로 인덱싱되는 7번째 그룹, 0으로 인덱싱되는 첫 번째 그룹, 7로 인덱싱되는 8번째 그룹 및 3으로 인덱싱되는 4번째 그룹의 순서로 제로 패딩 대상이 됨을 의미한다. 즉, 상기 표 6의 예에서 7개의 그룹만이 제로 패딩의 대상으로 선택된다면, 4로 인덱싱되는 5번째 그룹, 1로 인덱싱되는 2번째 그룹, 5로 인덱싱되는 6번째 그룹, 2로 인덱싱되는 3번째 그룹, 8로 인덱싱되는 9번째 그룹, 6으로 인덱싱되는 7번째 그룹, 0으로 인덱싱되는 첫 번째 그룹의 총 7개 그룹들이 제로 패딩 대상으로 선택된다.
특히, 상기 표 6의 쇼트닝 패턴 오더는 고정 길이 시그널링 정보에 최적화된 것일 수 있다.
모든 비트를 0으로 채울 그룹들의 수 및 해당 그룹들이 결정되면, 결정된 그룹들의 모든 비트는 '0'으로 채워진다.
(Step 3) 추가로, Zπs(Npad)에 상응하는 그룹에 대해서는 (Kldpc - N bch - 360 x Npad)만큼의 비트들을 해당 그룹의 앞에서부터 추가적으로 제로 패딩한다. 이 때, 해당 그룹의 앞에서부터 제로 패딩한다 함은 작은 인덱스에 해당하는 비트부터 제로 패딩함을 의미할 수 있다.
(Step 4) 제로 패딩이 모두 완료되면, 제로 패딩되지 않고 남은 부분에, BCH 인코딩된 Nbch비트들을 순차적으로 맵핑하여 LDPC 정보 비트열을 생성한다.
LDPC 인코더(2150)는 제로 패딩 및 시그널링 정보가 맵핑된 Kldpc를 이용하여 LDPC 인코딩을 수행한다.
이 때, LDPC 인코더(2150)는 부호율이 3/15이고, 길이가 16200인 LDPC 부호어에 상응하는 것일 수 있다. LDPC 부호어는 시스터매틱(systematic) 코드이며, LDPC 인코더(2150)는 하기 수학식 10과 같은 출력 벡터를 생성한다.
[수학식 10]
Figure PCTKR2016002214-appb-I000015
예를 들어, Kldpc가 3240인 경우, 패리티 비트는 12960비트일 수 있다.
패리티 퍼뮤테이션부(2160)는 패리티 펑처링(parity puncturing)을 하기 위한 사전 작업으로, 정보 부분이 아닌 패리티 부분에 대한 그룹-와이즈 패리티 인터리빙(group-wise parity interleaving)을 수행한다.
이 때, 패리티 퍼뮤테이션부(2160)는 하기 수학식 11을 이용하여 패리티 인터리빙을 수행할 수 있다.
[수학식 11]
Figure PCTKR2016002214-appb-I000016
이 때, Yj는 j번째 그룹-와이즈 인터리빙된 비트 그룹(group-wise interleaved bit group)을 나타내며, π(j)는 그룹-와이즈 인터리빙 순서(order of group-wise interleaving)를 나타내는 것으로 하기 표 7과 같이 정의될 수 있다.
Figure PCTKR2016002214-appb-T000003
즉, 패리티 퍼뮤테이션부(2160)는 LDPC 부호어의 16200개의 비트들(45개의 비트그룹들) 중 정보 비트에 해당하는 3240비트들(9개의 비트그룹들)은 그대로 출력하고, 12960개의 패리티 비트들을 각각 360개의 비트들을 포함하는 36개의 비트 그룹들로 그룹핑한 후 36개의 비트 그룹들의 순서를 상기 표 7에 상응하는 그룹-와이즈 인터리빙 순서(order of group-wise interleaving)로 인터리빙한다.
상기 표 7의 그룹-와이즈 인터리빙 순서는 9로 인덱싱되는 10번째 그룹 위치에 20으로 인덱싱되는 21번째 그룹을 위치시키고, 10으로 인덱싱되는 11번째 그룹 위치에 23으로 인덱싱되는 24번째 그룹을 위치시키고, 11로 인덱싱되는 12번째 그룹 위치에 25로 인덱싱되는 26번째 그룹을 위치시키고, ..., 44로 인덱싱되는 45번째 그룹 위치에 17로 인덱싱되는 18번째 비트 그룹을 위치시키는 것을 나타낸다.
이 때, 앞쪽 위치의 비트 그룹(20으로 인덱싱되는 비트 그룹)이 중요한 패리티 비트에 해당하고, 뒤쪽 위치의 비트 그룹(17로 인덱싱되는 비트 그룹)이 중요하지 않은 패리티 비트에 해당할 수 있다.
특히, 상기 표 7의 그룹-와이즈 인터리빙 순서는 고정 길이 시그널링 정보에 최적화된 것일 수 있다.
패리티 인터리빙(패리티 퍼뮤테이션)이 완료된 후, 패리티 펑처링부(2170)는 LDPC 부호어의 일부 패리티를 펑처링할 수 있다. 펑처링된 비트들은 전송되지 않는다. 이 때, 패리티 인터리빙이 완료된 후, 패리티 펑처링이 수행되기 전에 패리티 인터리빙된 LDPC 패리티 비트들의 일부분이 반복되는 패리티 리피티션(parity repetition)이 수행될 수도 있다.
패리티 펑처링부(2170)는 최종 펑처링 사이즈를 계산하고, 계산된 최종 펑처링 사이즈에 해당하는 비트들을 펑처링한다. 펑처링될 비트수에 해당하는 최종 펑처링 사이즈는 BCH 인코딩된 비트열의 길이(N bch)에 따라 다음과 같이 계산될 수 있다.
(Step 1) 임시 펑처링 사이즈(N punc _temp)는 하기 수학식 12를 이용하여 계산된다.
[수학식 12]
Figure PCTKR2016002214-appb-I000017
이 때, Kldpc는 LDPC 정보 비트열의 길이를 나타내고, N bch는 BCH 인코딩된 비트열의 길이를 나타내고, A는 제1 정수, B는 제2 정수를 나타낸다.
이 때, LDPC 정보 비트열의 길이 및 BCH 인코딩된 비트열의 길이의 차(Kldpc - N bch)는 제로 패딩 길이 또는 쇼트닝 길이에 해당할 수 있다.
상기 수학식 12의 계산에 필요한 펑처링 파라미터들(parameters for puncturing)은 하기 표 8와 같이 정의될 수 있다.
Figure PCTKR2016002214-appb-T000004
이 때, Nldpc _parity는 LDPC 부호어의 패리티 비트수를 나타내고, ηMOD는 모듈레이션 오더(modulation order)를 나타낸다. 이 때, 모듈레이션 오더는 2일 수 있고, 이는 QPSK를 나타내는 것일 수 있다.
특히, 상기 표 8의 펑처링 파라미터들은 고정 길이 시그널링 정보에 최적화된 것일 수 있다.
(Step 2) 계산된 임시 펑처링 사이즈(N punc _temp)와 상기 표 8의 Nldpc _parity를 이용하여, 하기 수학식 13과 같이 임시 전송 비트수(NFEC_temp)를 계산한다.
[수학식 13]
Figure PCTKR2016002214-appb-I000018
(Step 3) 계산된 임시 전송 비트수(NFEC_temp)를 이용하여 하기 수학식 14와 같이 전송 비트수(NFEC)를 계산한다.
[수학식 14]
Figure PCTKR2016002214-appb-I000019
전송 비트수(NFEC)는 펑처링 완료 후 정보부분과 패리티부분의 길이의 총 합을 의미한다.
(Step 4) 계산된 전송 비트수(NFEC)를 이용하여 하기 수학식 15와 같이 최종 펑처링 사이즈(Npunc)를 계산한다.
[수학식 15]
Figure PCTKR2016002214-appb-I000020
최종 펑처링 사이즈(Npunc)는 펑처링해야 하는 패리티의 사이즈를 의미한다.
즉, 패리티 펑처링부(2170)는 패리티 퍼뮤테이션 및 리피티션이 완료된 전체 LDPC 코드워드의 마지막 Npunc개의 비트들(the last Npunc bits of the whole LDPC codeword with parity permutation and repetition)을 펑처링할 수 있다.
제로 리무빙부(2180)는 LDPC 코드워드의 정보 부분에서 제로 패딩된 비트들을 제거한다.
비트 인터리빙부(2190)는 제로 리무빙된 LDPC 코드워드에 대하여 비트 인터리빙을 수행한다. 이 때, 비트 인터리빙은 기설정된 사이즈의 메모리에 LDPC 코드워드를 기록하는 방향과 읽는 방향을 다르게 하는 방식으로 수행될 수 있다.
컨스틸레이션 맵핑부(2195)는 심볼 맵핑을 수행한다. 예를 들어, 컨스틸레이션 맵핑부(2195)는 QPSK 방식으로 구현될 수 있다.
시그널링 정보 복호화 장치(2300)는 L1-Basic이나 L1-Detail 등의 시그널링 정보를 복조 및 채널복호화한다.
시그널링 정보 복호화 장치(2300)는 컨스틸레이션 디맵핑부(2395), 비트 디인터리빙부(2390), 역 제로 리무빙부(2380), 역 패리티 펑처링부(2370), 역 패리티 퍼뮤테이션부(360), LDPC 디코더(360), 역 제로 패딩부(2340), BCH 디코더(2330), 역 스크램블링부(2320) 및 역 세그멘테이션부(2310)를 포함한다.
도 13에 도시된 시그널링 정보 복호화 장치(2300)는 BICM(Bit-Interleaved Coded Modulation) 디코딩 장치에 상응하는 것으로 볼 수 있고, 이 때, BICM 디코딩 장치의 오류정정복호화기는 도 13에 도시된 역 제로 리무빙부(2380), 역 패리티 펑처링부(2370), 역 패리티 퍼뮤테이션부(2360), LDPC 디코더(2350), 역 제로 패딩부(2340), BCH 디코더(2330), 역 스크램블링부(2320) 및 역 세그멘테이션부(2310)에 상응하는 것으로 볼 수 있다.
역 세그멘테이션부(2310)는 세그먼테이션부(2110)의 역과정을 수행한다.
역 스크램블링부(2320)는 스크램블링부(2120)의 역과정을 수행한다.
BCH 디코더(2330)는 BCH 인코더(2130)의 역과정을 수행한다.
역 제로 패딩부(2340)는 제로 패딩부(2140)의 역과정을 수행한다.
특히, 역 제로 패딩부(2340)는 LDPC 디코더(2350)로부터 LDPC 정보 비트열을 수신하고, 쇼트닝 패턴 오더를 이용하여 모든 비트가 0으로 채워진 그룹들을 선별하고, 상기 그룹들을 제외한 그룹들을 이용하여 상기 LDPC 정보 비트열로부터 BCH 인코딩된 비트열을 생성할 수 있다.
LDPC 디코더(2350)는 LDPC 인코더(2150)의 역과정을 수행한다.
역 패리티 퍼뮤테이션부(2360)는 패리티 퍼뮤테이션부(2160)의 역과정을 수행한다.
특히, 역 패리티 퍼뮤테이션부(2360)는 LDPC 부호어의 패리티 비트들을 복수개의 그룹들로 분할하고, 상기 그룹들을 그룹-와이즈 인터리빙 오더를 이용하여 그룹-와이즈 디인터리빙하여 LDPC 디코딩될 LDPC 부호어를 생성할 수 있다.
역 패리티 펑처링부(370)는 패리티 펑처링부(2170)의 역과정을 수행한다.
이 때, 역 패리티 펑처링부(370)는 LDPC 정보 비트열의 길이 및 BCH 인코딩된 비트열의 길이의 차에 곱해지는 제1 정수 및 상기 제1 정수와 상이한 제2 정수를 이용하여 임시 펑처링 사이즈(temporary puncturing size)를 계산하고, 상기 BCH 인코딩된 비트열의 길이와 12960의 합과 상기 임시 펑처링 사이즈의 차를 이용하여 임시 전송 비트수를 계산하고, 상기 임시 전송 비트수와 모듈레이션 오더를 이용하여 전송 비트수를 계산하고, 상기 임시 전송 비트수, 상기 전송 비트수 및 상기 임시 전송 비트수를 이용하여 최종 펑처링 사이즈를 계산하고, 상기 최종 펑처링 사이즈를 고려하여 상기 역 패리티 퍼뮤테이션부(2360)로 제공되는 LDPC 부호어를 생성할 수 있다.
역 제로 리무빙부(2380)는 제로 리무빙부(2180)의 역과정을 수행한다.
비트 디인터리빙부(2390)는 비트 인터리빙부(2190)의 역과정을 수행한다.
컨스틸레이션 디맵핑부(2395)는 컨스틸레이션 맵칭부(2195)의 역과정을 수행한다.
도 14는 본 발명의 일실시예에 따른 방송 신호 프레임을 나타낸 도면이다.
도 14를 참조하면, 본 발명의 일실시예에 따른 방송 신호 프레임(2410)은 부트스트랩(2421), 프리앰블(2423) 및 데이터 심볼들(2425)로 이루어질 수 있다.
프리앰블(2423)은 시그널링 정보를 포함한다.
도 14에 도시된 예에서, 프리앰블(2423)은 L1-Basic(2431) 및 L1-Detail(2433)을 포함할 수 있다.
이 때, L1-Basic(2431)는 고정 길이 시그널링 정보일 수 있다.
예를 들어, L1-Basic(2431)는 200비트에 상응하는 것일 수 있다.
이 때, L1-Detail(2433)은 가변 길이 시그널링 정보일 수 있다.
예를 들어, L1-Detail(2433)은 200~2352비트에 상응하는 것일 수 있다.
방송 신호 프레임(2410)은 시스템의 버전(version) 정보 및 가장 일반적인 시그널링 정보를 포함하는 부트스트랩(2421)으로 시작되며, 이후 L1-Basic(2431)과 L1-Detail(2433)이 뒤따른다. L1-Basic(2431)은 PLP 개수, FFT 사이즈, 가드 인터벌 및 L1-Detail(2433)을 위한 모듈레이션/코드 레이트 정보 등 일반적인 시그널링 정보를 일정한 비트수로 전송할 수 있고, L1-Detail(2433)은 나머지 상세한 시그널링 정보를 전송할 수 있다. 이 때, L1-Detail(2433)의 비트수는 전송되는 PLP 개수에 따라 가변될 수 있다.
이 때, 부트스트랩(2421)은 L1-Basic(2431)의 BICM 모드 및 OFDM 파라미터를 시그널링할 수 있고, L1-Basic(2431)은 L1-Detail(2433)의 BICM 모드 및 OFDM 파라미터를 시그널링할 수 있다.
이 때, BICM 모드는 컨스틸레이션 및 부호율을 포함할 수 있고, OFDM 파라미터는 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴을 포함할 수 있다.
도 15은 도 13에 도시된 제로 패딩부의 동작의 일 예를 나타낸 도면이다.
도 15을 참조하면, 쇼트닝 패턴 오더가 [4 1 5 2 8 6 0 7 3]인 경우의 제로 패딩 동작을 알 수 있다.
도 15에 도시된 예에서, LDPC 정보 비트열의 길이는 3240이고, 따라서 LDPC 정보 비트들은 9개의 360비트들의 그룹들로 구성된다.
먼저, 상기 수학식 9를 이용하여 모든 비트를 0으로 채울 그룹들의 개수를 결정하면, (3240-368)/360 = 7.9이므로 7개의 그룹들이 0으로 채워질 그룹들로 결정된다.
또한, 쇼트닝 패턴 오더가 [4 1 5 2 8 6 0 7 3]이므로, 4에 의하여 인덱싱되는 5번째 그룹(2610), 1에 의하여 인덱싱되는 두 번째 그룹(2620), 5에 의하여 인덱싱되는 여섯 번째 그룹(2630), 2에 의하여 인덱싱되는 세 번째 그룹(2640), 8에 의하여 인덱싱되는 9번째 그룹(2650), 6에 의하여 인덱싱되는 7번째 그룹(2660), 0에 의하여 인덱싱되는 첫 번째 그룹(2670)의 총 7개 그룹들이 선택되어 그룹 내의 모든 비트들이 0으로 채워진다.
또한, 0으로 인덱싱되는 첫 번째 그룹(2670)의 다음 순서는 7로 인덱싱되는 8번째 그룹(2680)이므로, 7로 인덱싱되는 8번째 그룹(2680)의 앞에서부터 (3240 - 368 - (360 x 7)) = 352개의 비트들이 0으로 채워진다.
제로 패딩이 완료된 후, 3으로 인덱싱되는 4번째 그룹(2690)의 360비트 및 7로 인덱싱되는 8번째 그룹(2680)의 남은 8비트의 총 368비트에 Nbch(=368) 비트들의 BCH 인코딩된 비트열이 순차적으로 맵핑된다.
도 16은 도 13에 도시된 패리티 퍼뮤테이션부의 동작의 일 예를 나타낸 도면이다.
도 16을 참조하면, 그룹-와이즈 인터리빙 오더가 시퀀스 [20 23 25 32 38 41 18 9 10 11 31 24 14 15 26 40 33 19 28 34 16 39 27 30 21 44 43 35 42 36 12 13 29 22 37 17]에 상응하는 경우의 패리티 퍼뮤테이션 동작을 알 수 있다.
Kldpc(=3240)개의 정보 비트들은 인터리빙되지 않고, 36개의 360비트들의 그룹들(총 12960비트들)이 인터리빙 대상이 된다.
그룹-와이즈 인터리빙 오더가 시퀀스 [20 23 25 32 38 41 18 9 10 11 31 24 14 15 26 40 33 19 28 34 16 39 27 30 21 44 43 35 42 36 12 13 29 22 37 17]에 상응하므로, 패리티 퍼뮤테이션부는 9로 인덱싱되는 10번째 그룹 위치(2710)에 20으로 인덱싱되는 21번째 그룹을 위치시키고, 10으로 인덱싱되는 11번째 그룹 위치(2720)에 23으로 인덱싱되는 24번째 그룹을 위치시키고, ..., 43으로 인덱싱되는 44번째 그룹 위치(2730)에 37로 인덱싱되는 38번째 그룹을 위치시키고, 44로 인덱싱되는 45번째 그룹 위치(2740)에 17로 인덱싱되는 18번째 비트 그룹을 위치시킨다.
패리티 펑처링은 패리티 인터리빙된 패리티 비트들의 뒤쪽(17로 인덱싱되는 18번째 비트그룹쪽)에서 수행될 수 있다.
도 17은 도 13에 도시된 제로 리무빙부의 동작의 일 예를 나타낸 도면이다.
도 17을 참조하면, 제로 리무빙부는 LDPC 코드워드의 정보 부분에서 제로 패딩된 부분들은 제거하여, 전송을 위한 시그널링 정보를 생성하는 것을 알 수 있다.
이상에서와 같이 본 발명에 따른 방송 신호 프레임 생성 장치 및 방법은 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (18)

  1. BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 타임 인터리버; 및
    상기 타임 인터리빙된 신호를 이용하여, 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 프레임 빌더
    를 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  2. 청구항 1에 있어서,
    상기 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  3. 청구항 2에 있어서,
    상기 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  4. 청구항 3에 있어서,
    상기 BICM 모드는
    각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드,
    16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드,
    64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  5. 청구항 4에 있어서,
    제1 모드, 제2 모드 및 제3 모드는
    동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들인 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  6. 청구항 5에 있어서,
    상기 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  7. 청구항 6에 있어서,
    상기 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작은 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  8. 청구항 7에 있어서,
    상기 심볼은
    상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  9. 청구항 8에 있어서,
    상기 심볼은
    동일한 FFT 사이즈(FFT size), 가드 인터벌 길이(Guard Interval length) 및 파일럿 패턴(pilot pattern)의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 장치.
  10. BICM 출력 신호에 인터리빙을 수행하여 타임 인터리빙된 신호를 생성하는 단계; 및
    상기 타임 인터리빙된 신호를 이용하여, 부트스트랩 및 프리앰블을 포함하는 방송 신호 프레임을 생성하는 단계
    를 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  11. 청구항 10에 있어서,
    상기 프리앰블은 L1-Basic 및 L1-Detail을 포함하고, 상기 부트스트랩은 상기 L1-Basic의 구조(structure)를 나타내는 심볼을 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  12. 청구항 11에 있어서,
    상기 심볼은 상기 L1-Basic의 BICM 모드 및 OFDM 파라미터를 함께 시그널링하는 고정-길이(fixed-length) 비트열(bit string)에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  13. 청구항 12에 있어서,
    상기 BICM 모드는
    각각, QPSK 및 부효율 3/15를 식별하기 위한 제1 모드, 제2 모드 및 제3 모드,
    16-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제4 모드,
    64-NUC(Non Uniform Constellation) 및 부효율 3/15를 식별하기 위한 제5 모드를 포함하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  14. 청구항 13에 있어서,
    제1 모드, 제2 모드 및 제3 모드는
    동일한 컨스틸레이션(constellation) 및 부효율(code rate)을 사용하면서, 패리티 리피티션(parity repetition) 수행 여부 및 패리티 펑처링 사이즈(parity puncturing size)를 서로 달리 하여, 로버스트니스(robustness)가 상이한 모드들인 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  15. 청구항 14에 있어서,
    상기 제1 모드는 패리티 리피티션(parity repetition)을 수행하고, 상기 제2 및 제3 모드들은 패리티 리피티션을 수행하지 않는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  16. 청구항 15에 있어서,
    상기 제2 모드의 패리티 펑처링 사이즈는, 상기 제1 모드의 패리티 펑처링 사이즈보다 크고 상기 제3 모드의 패리티 펑처링 사이즈보다 작은 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  17. 청구항 16에 있어서,
    상기 심볼은
    상기 OFDM 파라미터에 상응하는 FFT 사이즈가 동일한 경우, 제1 가드 인터벌 길이에 상응하는 프리앰블 구조보다, 상기 제1 가드 인터벌 길이보다 짧은 제2 가드 인터벌 길이에 상응하는 프리앰블 구조가 우선적으로 할당되는 룩업 테이블에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
  18. 청구항 17에 있어서,
    상기 심볼은
    동일한 FFT 사이즈, 가드 인터벌 길이 및 파일럿 패턴의 조합에 대하여 상기 제1 모드, 제2 모드, 제3 모드, 제4 모드 및 제5 모드가 로버스트니스(robustness) 순서대로 할당되는 룩업 테이블에 상응하는 것을 특징으로 하는 방송 신호 프레임 생성 방법.
PCT/KR2016/002214 2015-03-06 2016-03-04 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법 WO2016144061A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US15/556,243 US10142152B2 (en) 2015-03-06 2016-03-04 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
MX2017011385A MX370019B (es) 2015-03-06 2016-03-04 Aparato generador de tramas de señal de difusión y método generador de tramas de señal de difusión utilizando rutina de arranque y preámbulo.
CN201680026196.9A CN107567711B (zh) 2015-03-06 2016-03-04 使用引导码和前导码的广播信号帧生成设备和广播信号帧生成方法
CA2978718A CA2978718C (en) 2015-03-06 2016-03-04 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
CN202010222855.4A CN111245573B (zh) 2015-03-06 2016-03-04 使用引导码和前导码的广播信号接收设备和方法
BR112017019145-8A BR112017019145B1 (pt) 2015-03-06 2016-03-04 Aparelho de geração de quadro de sinal de difusão e método de geração de um quadro de sinal amplo
CN202010223268.7A CN111245574B (zh) 2015-03-06 2016-03-04 使用引导码和前导码的广播信号帧生成方法
US16/041,930 US10411936B2 (en) 2015-03-06 2018-07-23 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US16/518,058 US10917276B2 (en) 2015-03-06 2019-07-22 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US17/140,430 US11218352B2 (en) 2015-03-06 2021-01-04 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US17/540,301 US11658858B2 (en) 2015-03-06 2021-12-02 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US18/298,498 US20230246897A1 (en) 2015-03-06 2023-04-11 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150031746 2015-03-06
KR10-2015-0031746 2015-03-06
KR20150032353 2015-03-09
KR10-2015-0032353 2015-03-09
KR10-2015-0046942 2015-04-02
KR20150046942 2015-04-02
KR1020160025829A KR102454643B1 (ko) 2015-03-06 2016-03-03 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR10-2016-0025829 2016-03-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/556,243 A-371-Of-International US10142152B2 (en) 2015-03-06 2016-03-04 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US16/041,930 Continuation US10411936B2 (en) 2015-03-06 2018-07-23 Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble

Publications (1)

Publication Number Publication Date
WO2016144061A1 true WO2016144061A1 (ko) 2016-09-15

Family

ID=56880346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002214 WO2016144061A1 (ko) 2015-03-06 2016-03-04 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법

Country Status (5)

Country Link
US (3) US11218352B2 (ko)
KR (1) KR102634690B1 (ko)
CN (2) CN111245573B (ko)
CA (1) CA3065394C (ko)
WO (1) WO2016144061A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3065394C (en) * 2015-03-06 2022-05-17 Electronics And Telecommunications Research Institute Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
US11539557B1 (en) * 2021-12-16 2022-12-27 Qualcomm Incorporated Multi-level coding for power efficient channel coding
US11799700B1 (en) * 2022-08-31 2023-10-24 Qualcomm Incorporated Decoding multi-level coded (MLC) systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046675A1 (en) * 2005-01-11 2010-02-25 Qualcomm Incorporated Methods and apparatus for transmitting layered and non-layered data via layered modulation
US20100316115A1 (en) * 2007-11-01 2010-12-16 Wu Zheng Method and apparatus for transmitting/receiving audio/video contents in wireless access networks
WO2012036429A2 (ko) * 2010-09-14 2012-03-22 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 및 방송 신호 송/수신 장치에서 방송 신호 송수신 방법
KR20140050054A (ko) * 2011-08-24 2014-04-28 소니 주식회사 부호화 장치 및 방법, 복호 장치 및 방법, 및 프로그램
US20150055728A1 (en) * 2009-02-13 2015-02-26 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060146A1 (en) * 2001-01-26 2002-08-01 Nokia Corporation Method of implementing modulation and modulator
US7474710B2 (en) * 2002-10-25 2009-01-06 The Directv Group, Inc. Amplitude and phase matching for layered modulation reception
JP4718442B2 (ja) * 2003-02-19 2011-07-06 クゥアルコム・インコーポレイテッド マルチユーザ通信システムにおける制御重畳コーディング
DE60337035D1 (de) * 2003-07-29 2011-06-16 Fujitsu Ltd Pilot-Multiplex-Verfahren und Sendeeinrichtung für einem OFDM-System
GB0320352D0 (en) * 2003-09-01 2003-10-01 Secr Defence Digital modulation waveforms for use in ranging systems
CN1849769B (zh) * 2003-09-15 2010-06-16 英特尔公司 利用高吞吐量空间频率分组码的多天线***和方法
US7701917B2 (en) * 2004-02-05 2010-04-20 Qualcomm Incorporated Channel estimation for a wireless communication system with multiple parallel data streams
DE102004059978B4 (de) * 2004-10-15 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen einer codierten Videosequenz und zum Decodieren einer codierten Videosequenz unter Verwendung einer Zwischen-Schicht-Restwerte-Prädiktion sowie ein Computerprogramm und ein computerlesbares Medium
EP1804391A1 (en) * 2004-11-08 2007-07-04 Matsushita Electric Industrial Co., Ltd. Radio transmitter and pilot signal inserting method
FI20055012A0 (fi) * 2005-01-07 2005-01-07 Nokia Corp Lähetyssignaalin leikkaaminen
EP1958408B1 (en) * 2005-12-06 2019-11-06 Microsoft Technology Licensing, LLC Apparatus and method for transmitting data using a plurality of carriers
EP2020158B1 (en) * 2006-04-25 2016-11-02 LG Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
US8626177B2 (en) * 2006-05-17 2014-01-07 Lg Electronics Inc. Method of implementing superposition coding for a forward link in a wireless communication system
CA2653602A1 (en) * 2006-06-21 2007-12-27 Qualcomm Incorporated Wireless resource allocation methods and apparatus
US20080165892A1 (en) * 2007-01-10 2008-07-10 Yunsong Yang Using the Preamble in an OFDM-Based Communications System to Indicate the Number of Guard Tones
US8238488B1 (en) * 2008-09-02 2012-08-07 Marvell International Ltd. Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
US8411806B1 (en) * 2008-09-03 2013-04-02 Marvell International Ltd. Method and apparatus for receiving signals in a MIMO system with multiple channel encoders
US8761303B2 (en) * 2008-11-13 2014-06-24 Qualcomm Incorporated Unequal multipath protection of different frames within a superframe using different cyclic prefix lengths
CN102308577B (zh) 2009-02-11 2015-07-01 Lg电子株式会社 用于发送和接收信号的装置以及用于发送和接收信号的方法
KR101634188B1 (ko) * 2009-02-12 2016-06-28 엘지전자 주식회사 신호 송수신 장치 및 방법
US8335286B2 (en) * 2009-08-26 2012-12-18 Qualcomm Incorporated Methods for determining decoding order in a MIMO system with successive interference cancellation
US8917796B1 (en) * 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
US8687740B2 (en) * 2010-02-11 2014-04-01 Electronics And Telecommunications Research Institute Receiver and reception method for layered modulation
WO2011099749A2 (ko) * 2010-02-12 2011-08-18 엘지전자 주식회사 방송 신호 송/수신기 및 방송 신호 송/수신 방법
US8675751B2 (en) * 2010-04-08 2014-03-18 Comtech Ef Data Corp. Meta-carrier embedding technique with improved performance for BPSK, MSK, and O-QPSK modulation
EP2566156A4 (en) * 2010-04-28 2015-04-29 Lg Electronics Inc BROADCAST TRANSMITTER, BROADCAST RECEIVER AND METHOD FOR SENDING AND RECEIVING BROADCAST SIGNALS WITH DEVICES FOR TRANSMITTING AND RECEIVING BROADCAST SIGNALS
US9348691B2 (en) * 2010-09-14 2016-05-24 Lg Electronics Inc. Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, and method for transmitting/receiving broadcast signal through apparatus for transmitting/receiving broadcasting signal
US8774322B2 (en) * 2010-10-11 2014-07-08 Infinera Corporation Carrier phase estimation filter length optimization
WO2012067362A2 (ko) * 2010-11-17 2012-05-24 엘지전자 주식회사 방송 신호 송/수신기 및 방송 신호 송/수신 방법
US9769635B2 (en) * 2010-11-23 2017-09-19 Lg Electronics Inc. Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, and broadcast signal transceiving method in broadcasting signal transmitting and receiving apparatuses
WO2012070837A2 (ko) * 2010-11-23 2012-05-31 엘지전자 주식회사 방송 신호 송/수신기 및 방송 신호 송/수신 방법
CA2819221C (en) * 2010-11-23 2016-07-19 Lg Electronics Inc. Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, and broadcast signal transceiving method in broadcast signal transmitting and receiving apparatuses
US8565336B2 (en) * 2011-02-08 2013-10-22 Electronics And Telecommunications Research Institute Data transmission apparatus and method, and data reconstitution apparatus and method
KR101820731B1 (ko) * 2011-08-25 2018-01-22 삼성전자주식회사 다수의 직교 주파수 분할 다중 파라미터 셋을 지원하는 무선통신 시스템에서 통신 방법 및 장치
US9049233B2 (en) 2012-10-05 2015-06-02 Cisco Technology, Inc. MPLS segment-routing
EP2957083B1 (en) * 2013-04-21 2018-10-10 LG Electronics Inc. Method and apparatus for transmitting and for receiving broadcast signals
WO2015016668A1 (en) 2013-08-01 2015-02-05 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP3039834B1 (en) * 2013-08-30 2018-10-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and apparatus for transmitting a signal with constant envelope
JP2015080089A (ja) * 2013-10-17 2015-04-23 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 送信装置、通信システム、回路装置、通信方法およびプログラム(直流インバランスを補償するための強調された信号点配置操作)
JP6567548B2 (ja) * 2014-04-21 2019-08-28 エルジー エレクトロニクス インコーポレイティド 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
KR102384790B1 (ko) * 2014-08-25 2022-04-08 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
GB2532233A (en) * 2014-11-12 2016-05-18 Sony Corp Transmitter and receiver and methods of transmitting and receiving
EP3242429A4 (en) * 2014-12-29 2018-10-03 LG Electronics Inc. -1- Broadcast signal transmitting device, broadcast signal receiving device, broadcast signal transmitting method, and broadcast signal receiving method
CN107113450B (zh) * 2015-01-05 2020-03-06 Lg 电子株式会社 广播信号发送装置、广播信号接收装置、广播信号发送方法以及广播信号接收方法
KR102362788B1 (ko) * 2015-01-08 2022-02-15 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
US20160204804A1 (en) * 2015-01-13 2016-07-14 Sony Corporation Data processing apparatus and method
US10313749B2 (en) * 2015-01-15 2019-06-04 Electronics And Telecommunications Research Institute Apparatus for broadcasting scalable video contents and method using the same
KR102109409B1 (ko) * 2015-02-04 2020-05-28 엘지전자 주식회사 방송 신호 송수신 장치 및 방법
KR102553320B1 (ko) * 2015-03-05 2023-07-10 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
CA3065394C (en) * 2015-03-06 2022-05-17 Electronics And Telecommunications Research Institute Broadcast signal frame generating apparatus and broadcast signal frame generating method using bootstrap and preamble
KR102454643B1 (ko) * 2015-03-06 2022-10-17 한국전자통신연구원 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102553316B1 (ko) * 2015-03-06 2023-07-10 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102575378B1 (ko) * 2015-03-16 2023-09-08 한국전자통신연구원 프리앰블의 bicm 모드 및 ofdm 파라미터를 함께 시그널링하는 심볼을 포함한 부트스트랩을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102465856B1 (ko) * 2015-03-27 2022-11-11 한국전자통신연구원 코어 레이어의 피지컬 레이어 파이프들의 경계를 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102553322B1 (ko) * 2015-04-20 2023-07-10 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102524210B1 (ko) * 2015-07-01 2023-04-24 한국전자통신연구원 복수의 동작 모드들을 지원하는 타임 인터리버에 상응하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
WO2017003259A1 (en) * 2015-07-01 2017-01-05 Samsung Electronics Co., Ltd. Transmitting apparatus and receiving apparatus and controlling method thereof
US10225040B2 (en) * 2015-07-16 2019-03-05 Electronics And Telecommunications Research Institute Apparatus for transmitting/receiving broadcasting signal using combination mode of layered division multiplexing and channel bonding, and method thereof
WO2017018607A1 (ko) * 2015-07-27 2017-02-02 엘지전자(주) 방송 신호 송수신 장치 및 방법
KR102582843B1 (ko) * 2015-11-02 2023-09-27 한국전자통신연구원 인젝션 레벨 정보를 시그널링하는 프리앰블을 포함하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
KR102492712B1 (ko) * 2015-12-30 2023-01-31 한국전자통신연구원 전송 식별자를 이용한 방송 신호 송신 장치 및 이를 이용한 방법
KR102501864B1 (ko) * 2016-01-05 2023-02-22 한국전자통신연구원 4-비트 인젝션 레벨 코드를 이용하여 스케일링되는 전송 식별자를 이용한 방송 신호 송신 장치 및 이를 이용한 방법
EP3223446A1 (en) * 2016-03-22 2017-09-27 Xieon Networks S.à r.l. A method for protecting a link in an optical network
KR102295323B1 (ko) * 2016-03-24 2021-08-31 한국전자통신연구원 인핸스드 레이어 더미 값들을 이용하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
US10361799B2 (en) * 2016-03-24 2019-07-23 Electronics And Telecommunications Research Institute Apparatus for generating broadcast signal frame using enhanced layer dummy values and method using the same
CA2963107C (en) * 2016-04-04 2020-06-30 Electronics And Telecommunications Research Institute Apparatus for generating broadcast signal frame for signaling time interleaving mode and method using the same
US11336393B2 (en) * 2016-04-04 2022-05-17 Electronics And Telecommunications Research Institute Apparatus for generating broadcast signal frame for signaling time interleaving mode and method using the same
US10476997B2 (en) * 2016-04-14 2019-11-12 Electronics And Telecommunications Research Institute Apparatus for generating broadcast signal frame for signaling time interleaving mode and method using the same
CA2965067C (en) * 2016-04-26 2020-08-25 Electronics And Telecommunications Research Institute Apparatus for time interleaving and method using the same
KR102362802B1 (ko) * 2016-07-06 2022-02-15 한국전자통신연구원 인핸스드 레이어 피지컬 레이어 파이프를 이용하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
MX2019002833A (es) * 2016-09-12 2019-05-27 Electronics & Telecommunications Res Inst Dispositivo para generar una trama de señal de difusión que incluye un preámbulo que indica la posición de inicio del primer bloque fec completo, y método para generar una trama de señal de difusión.
WO2018048262A1 (ko) * 2016-09-12 2018-03-15 한국전자통신연구원 첫 번째 완전한 fec 블록의 시작 위치를 나타내는 프리앰블을 포함하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
CN114285712B (zh) * 2016-10-24 2024-06-04 松下电器(美国)知识产权公司 发送装置、发送方法和接收方法
KR20190050705A (ko) * 2017-11-03 2019-05-13 한국전자통신연구원 채널 본딩을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
KR102557444B1 (ko) * 2017-11-10 2023-07-20 한국전자통신연구원 인젝션 레벨 정보에 상응하는 인핸스드 레이어 피지컬 레이어 파이프를 이용하는 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
US11005694B2 (en) * 2018-03-22 2021-05-11 Electronics And Telecommunications Research Institute Apparatus for analyzing transmitter identification signal and method using the same
US11153849B2 (en) * 2018-10-22 2021-10-19 Electronics And Telecommunications Research Institute Method of broadcast gateway signaling for channel bonding, and apparatus for the same
US10797920B1 (en) * 2020-03-18 2020-10-06 Rockwell Collins, Inc. High-entropy continuous phase modulation data transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046675A1 (en) * 2005-01-11 2010-02-25 Qualcomm Incorporated Methods and apparatus for transmitting layered and non-layered data via layered modulation
US20100316115A1 (en) * 2007-11-01 2010-12-16 Wu Zheng Method and apparatus for transmitting/receiving audio/video contents in wireless access networks
US20150055728A1 (en) * 2009-02-13 2015-02-26 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
WO2012036429A2 (ko) * 2010-09-14 2012-03-22 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 및 방송 신호 송/수신 장치에서 방송 신호 송수신 방법
KR20140050054A (ko) * 2011-08-24 2014-04-28 소니 주식회사 부호화 장치 및 방법, 복호 장치 및 방법, 및 프로그램

Also Published As

Publication number Publication date
CN111245573B (zh) 2022-09-20
CA3065394A1 (en) 2016-09-15
CN111245573A (zh) 2020-06-05
US11658858B2 (en) 2023-05-23
CN111245574A (zh) 2020-06-05
US20210152412A1 (en) 2021-05-20
US20230246897A1 (en) 2023-08-03
CA3065394C (en) 2022-05-17
KR102634690B1 (ko) 2024-02-08
US11218352B2 (en) 2022-01-04
CN111245574B (zh) 2022-11-15
KR20220143615A (ko) 2022-10-25
US20220094585A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2016137258A1 (en) Transmitter and method for generating additional parity thereof
WO2016137234A1 (en) Transmitter and repetition method thereof
WO2016137256A1 (en) Transmitter and method for generating additional parity thereof
WO2016140514A1 (en) Transmitter and segmentation method thereof
WO2016140516A2 (en) Transmitter and parity permutation method thereof
WO2010134783A2 (en) Digital broadcast transmitter, digital broadcast receiver, and methods for configuring and processing streams thereof
WO2016140515A1 (en) Transmitter and parity permutation method thereof
WO2017069508A1 (en) Receiving apparatus and decoding method thereof
EP3050305A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2015023150A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016140511A1 (en) Transmitter and method for generating additional parity thereof
WO2016140513A1 (en) Transmitter and parity permutation method thereof
AU2016226715C1 (en) Transmitter and shortening method thereof
WO2016140445A1 (ko) 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
WO2015023149A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016085084A1 (ko) 방송 신호 송수신 장치 및 방법
WO2015002415A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016140504A1 (en) Transmitter and shortening method thereof
WO2015005715A1 (ko) 방송신호 송신방법, 방송신호 수신방법, 방송신호 송신장치, 방송신호 수신장치
WO2014171673A9 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법
WO2016006878A1 (ko) 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
WO2016140509A1 (en) Transmitter and shortening method thereof
WO2016144061A1 (ko) 부트스트랩 및 프리앰블을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
WO2016140512A1 (en) Transmitter and puncturing method thereof
WO2016148466A1 (ko) 프리앰블의 bicm 모드 및 ofdm 파라미터를 함께 시그널링하는 심볼을 포함한 부트스트랩을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2978718

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/011385

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15556243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017019145

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16761948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017019145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170906