WO2016143524A1 - Fiber-reinforced resin material, fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article - Google Patents

Fiber-reinforced resin material, fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article Download PDF

Info

Publication number
WO2016143524A1
WO2016143524A1 PCT/JP2016/055509 JP2016055509W WO2016143524A1 WO 2016143524 A1 WO2016143524 A1 WO 2016143524A1 JP 2016055509 W JP2016055509 W JP 2016055509W WO 2016143524 A1 WO2016143524 A1 WO 2016143524A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced resin
fiber
fiber reinforced
resin material
heating
Prior art date
Application number
PCT/JP2016/055509
Other languages
French (fr)
Japanese (ja)
Inventor
林 豊
武俊 中山
福田 寛
穂奈美 野田
Original Assignee
小松精練株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松精練株式会社 filed Critical 小松精練株式会社
Priority to JP2017504957A priority Critical patent/JPWO2016143524A1/en
Publication of WO2016143524A1 publication Critical patent/WO2016143524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a fiber-reinforced resin material, a fiber-reinforced resin molded body using the material, and a method for producing a fiber-reinforced resin molded body.
  • thermosetting prepreg sheet thermosetting prepreg sheet
  • reinforcing fibers such as glass fiber
  • thermosetting resins such as thermosetting epoxy resin
  • thermosetting prepreg sheet cannot be remolded, and there is a problem that a low temperature cold storage warehouse is required for storing the uncured (before thermosetting) sheet. Moreover, it took a long time to cure the uncured material of the thermosetting resin, and there was a problem in productivity.
  • a fiber reinforced resin molded article using a reinforced fiber and a thermoplastic resin is known.
  • a fiber reinforced resin molded article using a thermoplastic resin can be remolded by heating even after curing.
  • the fiber reinforced resin molded product obtained using a thermoplastic resin and a reinforced fiber is used in a high temperature environment exceeding 100 ° C.
  • the fiber reinforced resin molded product becomes flexible or deforms.
  • the fiber reinforced resin molded article using the thermoplastic resin and the reinforcing fiber is suitable for use at room temperature, although it depends on the glass transition temperature of the thermoplastic resin, and in an environment of about 80 ° C. Suitable when used.
  • a high-strength fiber composite has been proposed in which the surface of a prepreg composed of high-strength fibers and a thermoplastic resin is coated with a thermosetting resin (Patent Documents 1 and 2).
  • the present invention provides a fiber reinforced resin material and a fiber reinforced resin material that can be easily molded into a desired shape by heating and that can provide a fiber reinforced resin molded product having a stable form even under a high temperature environment after molding. It aims at providing the resin molding.
  • the inventors of the present invention have made the present invention as a result of intensive studies in order to solve the above problems.
  • the present invention has, for example, the following configurations (1) to (14).
  • the fiber reinforced resin material according to the present invention is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, which can be molded by heating, and has a specific temperature during or after the molding. After heating, it cannot be reshaped by heating.
  • thermoplastic resin may be an epoxy resin.
  • the fiber reinforced resin material according to the present invention may contain a crosslinking agent having two or more functional groups.
  • the cross-linking agent may include at least one of a block type isocyanate compound and a novolac type resin.
  • the specific temperature may be 130 ° C. or higher.
  • the fiber reinforced resin material according to the present invention may not be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at the specific temperature or higher.
  • the fiber-reinforced resin molded body according to the present invention is obtained using the fiber-reinforced resin material described in any one of (1) to (6) above.
  • a fiber-reinforced resin molded body according to the present invention is a fiber-reinforced resin molded body molded by heating the fiber-reinforced resin material according to any one of (1) to (6), It is heated at the specified temperature or higher at the time of molding or after the molding, and after heating at the specified temperature or higher, it cannot be reshaped by heating.
  • the fiber reinforced resin molded body according to the present invention cannot be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at the specific temperature or higher.
  • the fiber reinforced resin molded body is molded by applying a solution containing a thermoplastic resin to the reinforced fiber and heating at a predetermined molding temperature.
  • the fiber reinforced resin molded body is heated at a specific temperature or higher at the time of molding or after molding of the reinforced resin molded body, it cannot be remolded by heating.
  • thermoplastic resin may be an epoxy resin.
  • the solution may contain a crosslinking agent having two or more functional groups.
  • the cross-linking agent may include at least one of a block-type isocyanate compound and a novolac-type resin.
  • the specific temperature may be 130 ° C. or higher.
  • the fiber reinforced resin material according to the present invention since molding by heat is possible, a molded body can be easily manufactured, and a molded body having excellent shape stability by heat can be obtained. A fiber-reinforced resin molded product that can be used even in an environment can be obtained.
  • the fiber reinforced resin molded article according to the present invention since the form at high temperature is stable, it can be used even in a high temperature environment.
  • a fiber-reinforced resin molded body having a stable form at a high temperature can be obtained.
  • the fiber reinforced resin material according to the present embodiment is a fiber reinforced resin material including a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressurization), and at the time of the molding or After heating at a specific temperature or higher after the molding, it cannot be remolded by reheating (or heating and pressing).
  • thermoplastic resin itself is deformed at a temperature at which it can be heated and molded or at a temperature higher than that temperature.
  • the thermoplastic resin is generally deformed at a temperature higher than the glass transition temperature of the thermoplastic resin. Therefore, in general, a molded body obtained by molding a resin material containing a thermoplastic resin is deformed when heated at a moldable temperature even after molding. It can be used only in an environment where the temperature is lower than the moldable temperature of the thermoplastic resin.
  • the fiber reinforced resin material according to the present embodiment cannot be re-molded by reheating after heating by heating at a specific temperature or higher during molding or after molding. Therefore, the fiber reinforced resin molded product obtained by molding the fiber reinforced resin material according to the present embodiment is molded using a fiber reinforced resin material containing a thermoplastic resin, although it is a high temperature. It can be used even in an environment of That is, the fiber reinforced resin molded body obtained using the fiber reinforced resin material according to the present embodiment exceeds a specific temperature for making re-molding impossible even after being molded once. Further, it can be used beyond the temperature at the time of molding. The heating time above a specific temperature is, for example, about 15 seconds to 1 hour.
  • the temperature at which the fiber-reinforced resin material according to the present embodiment is molded is preferably 70 ° C. to 250 ° C.
  • the temperature (molding temperature) when molding the fiber reinforced resin material is more preferably 80 ° C. or higher, and more preferably 90 ° C. or higher.
  • the temperature when molding the fiber reinforced resin material is more preferably 200 ° C. or less, and further preferably 150 ° C. or less.
  • the heating time (molding time) is 15 seconds to 24 hours, preferably about 1 minute to 1 hour.
  • a plurality of fiber reinforced resin materials that have been solidified once such as a plurality of fiber reinforced resin materials, for example, two or more plate-like fiber reinforced resin materials, two or more chip-like fiber reinforced resin materials, or combinations thereof.
  • the temperature at which the fiber reinforced resin material is molded is preferably 130 ° C. or lower.
  • the specific temperature at which re-molding cannot be performed by heating depends on the use environment of the fiber-reinforced resin molded body obtained by using the fiber-reinforced resin material, but a temperature of 80 ° C. or higher is preferable, and a temperature of 130 ° C. or higher. More preferably it is. Further, from the viewpoint of shape stability due to heat of the obtained fiber-reinforced resin molded body, it is preferable that re-molding cannot be performed by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa.
  • the fiber reinforced resin material may be any material that cannot be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at a specific temperature or higher after thermoforming.
  • the heating and pressurizing time is, for example, about 15 seconds to 1 hour.
  • the fiber reinforced resin material in the present embodiment does not include those that can be reshaped by reheating (or heating and pressurizing) at a temperature considerably higher than the specific temperature after being heated at a specific temperature or higher. Absent.
  • the temperature at which re-molding after heating at a specific temperature or higher is 50 ° C or higher, preferably 100 ° C or higher, more preferably higher than the specific temperature. It is 150 ° C or higher, more preferably 200 ° C or higher.
  • the temperature at which re-molding can be performed is preferably 350 ° C. or less, more preferably 250 ° C. or less, and even more preferably 200 ° C. or less.
  • those that cannot be reshaped by reheating are preferred. That is, those which are not softened or deformed by reheating are preferable.
  • the reinforcing fibers constituting the fiber reinforced resin material according to the present embodiment are preferably carbon fibers.
  • carbon fibers are light and strong, and are preferable from the viewpoint of corrosion resistance.
  • the shape of the reinforcing fiber is not particularly limited, and may be staple, cotton, thread, string, tape, sheet, woven fabric, knitted fabric, nonwoven fabric, or the like. Further, when the reinforcing fiber is carbon fiber or the like, it may or may not be opened.
  • the thermoplastic resin constituting the fiber reinforced resin material according to the present embodiment is preferably an epoxy resin.
  • Epoxy resins are preferred from the viewpoints of strength such as fracture toughness, bending strength, impact resistance and compressive strength, and durability including chemical resistance against acid resistance and alkali resistance.
  • the fiber reinforced resin material according to the present embodiment may contain a crosslinking agent having two or more functional groups.
  • a crosslinking agent having two or more functional groups.
  • a cross-linking agent to be included in the fiber reinforced resin material is a block type isocyanate compound or a novolac type resin, and the fiber reinforced resin material may contain at least one of them.
  • thermoplastic resin When a block type isocyanate compound or a novolak type resin is used as the crosslinking agent, the thermoplastic resin will be linearly polymerized when a thermoplastic resin, which will be described later, particularly a reactive type thermoplastic resin, is used. At the temperature, the crosslinking agent does not react as a crosslinking agent, and a fiber-reinforced resin material having thermoplasticity can be obtained stably.
  • the crosslinking agent does not react as a crosslinking agent, and a fiber-reinforced resin material having thermoplasticity can be obtained stably.
  • the isocyanate group is blocked with the blocking agent, and thus does not react as the crosslinking agent.
  • the crosslinking agent is activated by heating at a specific temperature or higher performed later, for example, the block with the blocking agent is removed, the linear thermoplastic resin is crosslinked so as to bridge each other, or an isocyanate type Bonds with other compounds and low molecular weight thermoplastic resins to become obstacles, impedes fluidity of linear thermoplastic resins at high temperatures, and then fiber reinforced resin materials and fiber reinforced resins obtained using them It is possible to stably prevent the molded body from being reshaped by reheating. Therefore, when a block-type isocyanate compound or novolac resin is used, it is easy to set a specific temperature, and it is easy to manage a state where it has thermoplasticity and can be easily molded, and a state where it cannot be molded. From the viewpoints of productivity and quality stability of the fiber reinforced resin material and the fiber reinforced resin molded article, a block type isocyanate compound or a novolak type resin may be used as a crosslinking agent.
  • the cross-linking agent having two or more functional groups may be contained in an amount of 1 part by weight or more with respect to 100 parts by weight of the thermoplastic resin, although it varies depending on the number of functional groups of the cross-linking agent and the thermoplastic resin. If the content of the cross-linking agent is less than 1 part by weight, re-molding can be performed even after heating at a specific temperature or higher, and softening or deformation due to heat may be too large, and the object of the present invention may not be achieved.
  • the content of the crosslinking agent is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and still more preferably 15 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.
  • the upper limit of the content of the crosslinking agent is not particularly limited, but the upper limit is about 100 parts by weight. In addition, even if 100 parts by weight or more of the crosslinking agent is added, there is a risk that the effect of the addition is not so much improved, fragile, or softened easily with respect to the obtained fiber reinforced resin material or fiber reinforced resin molded body. There is.
  • the content of the crosslinking agent is more preferably 60 parts by weight or less, further preferably 50 parts by weight or less, and still more preferably 40 parts by weight or less.
  • the specific temperature at which re-molding by reheating cannot be performed is preferably 130 ° C. or higher.
  • This specific temperature refers to the temperature at which the fiber reinforced resin material or the fiber reinforced resin molded body is heated during molding or after molding, and the reinforced fiber resin molded body cannot be remolded after heating at that temperature. This is because when a specific temperature is 130 ° C. or higher and a block type isocyanate compound is used as a crosslinking agent, the isocyanate compound having an active NCO is released from the block and acts as a crosslinking agent.
  • These thermoplastic resins are cross-linked in a bridging manner, or combined with isocyanate compounds and low molecular weight thermoplastic resins to become obstacles, which inhibits the flowability of linear thermoplastic resins at high temperatures. I guess that there is.
  • the specific temperature at which re-molding by reheating is impossible is 150 ° C. or higher.
  • it is 190 ° C. or higher, more preferably 200 ° C. or higher.
  • this specific temperature is low, for example, when obtaining a thermoplastic resin having a linear molecular structure from a reactive thermoplastic resin, the moldability of the fiber-reinforced resin material may be lowered. This is presumed to be because, for example, crosslinking between linear molecules and reaction between crosslinking agents occur simultaneously.
  • the upper limit of the specific temperature is 350 ° C., more preferably 300 ° C., even more preferably 270 ° C., and even more preferably from the viewpoint of obtaining a fiber-reinforced resin molded article having a target shape with good productivity. 250 ° C.
  • the fact that it cannot be reshaped by heating means that it cannot be formed into a specific shape by heating (or heating and pressurizing).
  • not being able to be reshaped by heating includes not only being unable to be reshaped at all by heating, but also being difficult to regenerate by heating. If it cannot be molded, it will be softened by heating, or force will be applied during heating. It includes deformation that occurs when it is deformed but does not deform unless heated.
  • the fiber reinforced resin molded product obtained by molding the fiber reinforced resin material may be softened by heating.
  • the fiber reinforced resin molded product is softened at the use environment temperature. The thing which does not deform
  • the fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber is preferably a fiber reinforced resin material containing a thermoplastic resin and a bundle of reinforced fibers arranged in one direction, and the thermoplastic resin is reactive. It may be a resin.
  • the fiber-reinforced resin material according to the present embodiment includes a thermoplastic resin and a bundle of carbon fibers
  • the fiber-reinforced resin material has thermoplasticity and can be easily molded by heating (or heating and pressurizing), and has a desired shape.
  • a fiber-reinforced resin molded product can be obtained.
  • the obtained fiber-reinforced resin molded product can be easily re-molded by heat treatment even after being molded once by heat treatment at a temperature lower than a specific temperature, and conversely after heat treatment at a specific temperature or higher. Cannot be reshaped even if the heat treatment is performed again at the specific temperature.
  • thermoplastic resin can be deformed any number of times by heating at a moldable temperature, but the fiber-reinforced resin molded body in the present embodiment is not specified after being heated at a specific temperature or higher. Even if heating is performed again at a temperature of 1, this does not deform.
  • a preferable embodiment of the present embodiment is a case where the reaction type thermoplastic resin is heated to become a thermoplastic resin having a molecular structure bonded in a straight chain.
  • the thermoplastic resin since the thermoplastic resin is linear, it has a relatively low glass transition temperature, and can be molded any number of times as long as the temperature is equal to or higher than that temperature.
  • the fiber reinforced resin material before heating at a specific temperature or higher does not need to be stored in a strict low temperature environment unlike a thermosetting resin, it can be easily stored.
  • the fiber reinforced resin material includes a crosslinking agent having two or more functional groups.
  • Form stability against heat is improved by heating this fiber reinforced resin material above the temperature at which the cross-linking agent and the linear thermoplastic resin react, or above the temperature at which the cross-linking agents react with each other. To do. That is, it becomes difficult to remold by reheating.
  • thermosetting resin In addition, about the fiber reinforced resin material which concerns on this Embodiment, it is not necessary to store the thing before heating more than specific temperature like a thermosetting resin at low temperature, and a crosslinking agent is made to react. At the time of heating, the heat treatment can be easily performed without requiring a long time as in the case of curing the thermosetting resin.
  • the shape of the fiber reinforced resin material of the present embodiment is not particularly limited, and may be a sheet shape, a tape shape, a column shape, a string shape, a linear shape, a granular shape, a chip shape, a plate shape, a block shape, or the like.
  • vertical direction with respect to the fiber-axis direction of a reinforced fiber is circular, elliptical, flat shape, polygonal shape, etc., and is not specifically limited.
  • the perpendicular direction here should just be a direction substantially perpendicular
  • the size of the fiber reinforced resin material is not particularly limited, but in the case of a chip shape in which the fiber axis directions of the reinforced fibers contained in the fiber reinforced resin material are arranged in one direction, the fiber reinforced resin material From the viewpoint of strength such as fracture toughness, bending strength, impact resistance, and compressive strength, the length in the fiber axis direction of the fiber reinforced resin material is preferably 5 mm to 500 mm.
  • the length in the fiber axis direction of the fiber reinforced resin material is more preferably 10 mm or more, and even more preferably 20 mm or more.
  • the length of the fiber reinforced resin material in the fiber axis direction is more preferably 30 mm or more, further preferably 40 mm or more, and further preferably more than 50 mm.
  • the chip-like fiber reinforced resin material is superior in moldability in any direction and stability in various strengths compared to the case of using a woven fabric or the like.
  • the upper limit of the length of the fiber reinforced resin material in the fiber axis direction is not particularly limited. Depending on the size of the obtained fiber reinforced resin molded product, if the length of the fiber reinforced resin material in the fiber axis direction is 500 mm or less, the fiber reinforced resin material may be greatly bent, or the fiber reinforced resin material may be used. Since the anisotropy related to the strength of the resulting fiber reinforced resin molded article can be suppressed, a fiber reinforced resin molded article having stable strength including compressive strength and impact resistance can be obtained.
  • the length in the fiber axis direction of the fiber reinforced resin material depends on the size of the obtained fiber reinforced resin molded article, but is preferably 300 mm or less, and more preferably 100 mm or less.
  • the length in the fiber axis direction of the fiber reinforced resin material refers to the length in the fiber axis direction of the reinforced fiber that is a component of the fiber reinforced resin material.
  • the length other than the fiber axis direction is not particularly limited, but from the viewpoint of the productivity of the fiber reinforced resin material and the strength of the obtained fiber reinforced resin molded product, the length other than the fiber axis direction is the length in the fiber axis direction. Shorter than the length is better.
  • the width of the fiber reinforced resin material is preferably 300 mm or less, preferably 100 mm or less, more preferably 50 mm or less, even more preferably 30 mm or less, even more preferably 10 mm or less, and even more preferably 5 mm or less.
  • variety of fiber reinforced resin material is good to be 1 mm or more from viewpoints, such as handling property at the time of production and rationalization of cost.
  • the width of the fiber reinforced resin material is equal to or less than the above upper limit value, the fiber axis direction of the bundle of reinforcing fibers is likely to be random in the fiber reinforced resin molded body obtained by heating and pressing, and thus the fiber reinforcement obtained From the viewpoint of the strength of the resin molding and its stability, the upper limit of the width of the fiber reinforced resin material is preferably set to the above value.
  • the relationship between the length and the width of the fiber reinforced resin material in the fiber axis direction is preferably larger in the fiber axis direction than the width.
  • the width of the fiber reinforced resin material is 1, the length in the fiber axis direction is 1.5 or more, preferably 2.0 or more, more preferably 3.0 or more, even more preferably 4.0 or more, Even more preferably, it is 5.0 or more.
  • the fiber reinforced resin material overlaps not only in the surface direction but also in the thickness direction in the fiber reinforced resin molded product if the value is equal to or greater than the above lower limit value.
  • the strength is improved, especially in the case of a thick molded body, the compressive strength is improved, and in the case of a thin molded body, the safety of the cut surface in the event of a crack is improved as will be described later. To do.
  • the reason why the compressive strength is improved in this way is considered to be that the movement due to compression is suppressed because the fiber reinforced resin materials are randomly overlapped in three dimensions.
  • the length in the fiber axis direction is preferably 50.0 or less, more preferably 30.0 or less, more preferably 20.0 or less.
  • the thickness of the fiber reinforced resin material of the present embodiment is not particularly limited, but is 0.10 mm or more, preferably 0.15 mm or more, more preferably 0.20 mm or more, and even more preferably 0.00. It may be 3 mm or more, further 0.5 mm or more, and even more preferably 1.0 mm or more.
  • the upper limit of the thickness of the fiber reinforced resin material is about 100 mm.
  • the handleability of the obtained fiber reinforced resin material is improved.
  • carbon fiber or basalt fiber is used as the reinforcing fiber, there is anisotropy in strength. Therefore, if the thickness of the fiber reinforced resin material is less than the above lower limit, before manufacturing the fiber reinforced resin molded product The fiber reinforced resin material may break.
  • the fiber reinforced resin material is manufactured by heating and pressurizing a fiber reinforced resin material obtained from the viewpoint of the productivity of the fiber reinforced resin material or by using the fiber reinforced resin material, the fiber reinforced resin material is adjusted.
  • the thickness of the fiber-reinforced resin material is preferably equal to or more than the above lower limit value from the viewpoint of strength improvement and strength stability because the material is deformed in the thickness or width direction and the gap is filled.
  • the thickness of the fiber reinforced resin material is not more than the above upper limit value, the thermoplastic resin can be sufficiently impregnated into the carbon fiber bundle. Further, the thickness of the fiber reinforced resin material is preferably not more than the above upper limit value from the viewpoint of the productivity of the fiber reinforced resin material and the strength of the fiber reinforced resin molded product obtained using the fiber reinforced resin material. Furthermore, when the thickness of the fiber reinforced resin material is equal to or less than the above upper limit value, when the fiber reinforced resin molded body is manufactured by heating and pressurizing, the fiber reinforced resin molded body is prevented from containing air. , Strength and production are stable.
  • thermoplastic resin used by being melted by heat is difficult to impregnate the bundle of reinforcing fibers, so the bundle of reinforcing fibers needs to be made into a thin sheet of 0.13 mm or less. If it is a fiber reinforced resin material, since a reactive thermoplastic resin is used, the thermoplastic resin easily impregnates the bundle of reinforcing fibers, so there is no need to make the bundle of reinforcing fibers thin, and a thick fiber reinforced resin. A material is obtained.
  • the above description is for a chip shape in which the fiber axis directions of the reinforcing fibers contained in the fiber reinforced resin material are arranged in one direction, but the shape of the fiber reinforced resin material is not limited to these. , Can be any shape.
  • the fiber volume content (Vf value) in the fiber reinforced resin material of the present embodiment is preferably 20% to 80%.
  • the Vf value of the fiber reinforced resin material is preferably 30% or more, and more preferably 40% or more, from the viewpoint of the strength of the fiber reinforced resin molded article obtained using the fiber reinforced resin material.
  • the Vf value of the fiber reinforced resin material is more preferably 70% or less, and still more preferably. Is preferably around 60%.
  • the fiber reinforced resin material has a Vf value of 50% or less, more preferably 45% or less. If there is a space between the fiber reinforced resin materials, the strength of the resulting fiber reinforced resin molded product may be reduced or stable. There is a risk that the obtained strength may not be obtained.
  • the thermoplastic resin used for the fiber reinforced resin material according to the present embodiment is epoxy resin, polyamide resin, acrylic resin, polyphenylene sulfide resin, polyvinyl chloride resin, polyethylene, polypropylene, polyacetal resin, polycarbonate, polyurethane, polybutylene terephthalate. , Acrylonitrile butadiene styrene (ABS) resin, modified polyphenylene ether resin, phenoxy resin, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, and aromatic polyester.
  • ABS Acrylonitrile butadiene styrene
  • the thermoplastic resin is preferably a reaction type that cures by adding or heating an additive such as a curing agent, a catalyst, a polymerization initiator, or a polymerization accelerator, or by starting the reaction or promoting the reaction.
  • a resin that has thermoplasticity after curing is preferable.
  • the thermoplastic resin preferably has a linear molecular structure in order to maintain thermoplasticity. Moreover, you may mix
  • thermoplastic resin may change after the reaction.
  • the epoxy resin becomes a phenoxy resin after the reaction.
  • the fiber reinforced resin material obtained by using such a thermoplastic resin can be easily deformed by heating, and cannot be remolded by heating at or above a specific temperature during or after molding. Is.
  • a reactive thermoplastic epoxy is particularly preferable as a reactive thermoplastic resin. Resin. Moreover, when using carbon fiber as the reinforcing fiber, a reactive thermoplastic epoxy resin is preferable from the viewpoint of affinity with the carbon fiber, and the strength of the fiber reinforced resin molded product obtained using the fiber reinforced resin material and Its durability is further improved.
  • the reactive thermoplastic epoxy resin in this Embodiment includes what becomes a phenoxy resin after reaction.
  • the epoxy resin preferably has a functional group capable of reacting with a cross-linking agent described later, for example, an OH group (—OH).
  • the fiber reinforced resin molded object obtained using the fiber reinforced resin material of this Embodiment has the outstanding intensity
  • the reaction type thermoplastic resin has a smaller molecular weight of the thermoplastic resin before the reaction than the unreacted thermoplastic resin used after being melted by heating, and improves the fluidity.
  • the number average molecular weight is 10,000. It can be polymerized to 30,000 or more and the state of crosslinking can be adjusted, and the strength can be improved, and flexibility and heat deformation can be adjusted. Moreover, mixing with a crosslinking agent having two or more functional groups is also easy.
  • the temperature at which the thermoplastic resin can be molded and the glass transition temperature before reacting the thermoplastic resin with the crosslinking agent described below are preferably 70 to 250 ° C. From the viewpoint of the thermal stability of the obtained fiber-reinforced resin molded article, the temperature at which the thermoplastic resin can be molded and the glass transition temperature are more preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. Further, from the viewpoint of moldability of the obtained fiber reinforced resin molded article, the temperature at which the thermoplastic resin can be molded and the glass transition temperature are more preferably 200 ° C. or less, and further preferably 150 ° C. or less.
  • a plurality of fiber reinforced resin materials that have been solidified once such as a plurality of fiber reinforced resin materials, for example, two or more plate-like fiber reinforced resin materials, two or more chip-like fiber reinforced resin materials, or combinations thereof.
  • the temperature and glass transition temperature at which the thermoplastic resin before heating at a specific temperature or higher can be molded is preferably less than 150 ° C., and 130 ° C. or lower is used between the fiber reinforced resin materials. From the viewpoint of integration (strength, appearance quality, etc.), it is more preferable.
  • the temperature at which re-molding can be performed by heating the thermoplastic resin after reacting the thermoplastic resin with the crosslinking agent described below or after the crosslinking agents are reacted with each other (after heating at a specific temperature or higher) is higher than 150 ° C. It is preferable. From the viewpoint of the thermal stability of the obtained fiber reinforced resin molded article, the temperature at which the thermoplastic resin can be reshaped by heating is more preferably 190 ° C or higher, and further preferably 240 ° C or higher. In addition, from the viewpoint of moldability of the obtained fiber reinforced resin molded article, the upper limit of the temperature that can be remolded by heating the thermoplastic resin is not particularly limited, and varies depending on the type of resin, the crosslinking agent, etc. It is about 400 ° C.
  • the glass transition temperature of the thermoplastic resin and the temperature at which the fiber reinforced resin material containing the thermoplastic resin and the reinforced fiber can be molded by heat substantially coincide with each other, and heating above a specific temperature.
  • the glass transition temperature of the thermoplastic resin increases, and it seems that the moldability at a specific temperature thereafter is lost.
  • the glass transition temperature of the thermoplastic resin does not coincide with the temperature at which it cannot be molded by heating, and is heated at a specific temperature or higher. Even after that, although the glass transition temperature of the thermoplastic resin hardly increases, there are those that cannot be re-molded even at a temperature that can be molded before the heat treatment above a specific temperature.
  • thermoplastic resin having a small number of cross-linked parts to the linear molecular structure of the thermoplastic resin and / or a low molecular weight thermoplastic resin may react with the crosslinking agent, or a reaction product of the crosslinking agents may be generated. Therefore, it is thought that the fluidity of the thermoplastic resin is hindered, and re-molding by heat cannot be performed.
  • the glass transition temperature is measured by differential scanning calorimetry (DSC).
  • thermoplastic resin after reacting the thermoplastic resin with the crosslinking agent described below includes those that become thermosetting.
  • thermosetting resin after the reaction between the thermoplastic resin and the crosslinking agent described below includes those that soften by heating and those that deform somewhat by pressure, but have no moldability. Preferably, those which are not softened by heating are more preferable.
  • the cross-linking agent used in the fiber-reinforced resin material according to the present embodiment is a cross-linking agent having two or more functional groups (hereinafter also simply referred to as “cross-linking agent”).
  • the crosslinking agent may be arbitrarily selected from those having reactivity with the thermoplastic resin used.
  • the thermoplastic resin is a reactive resin, it is preferable to use a crosslinking agent having a reaction initiation temperature higher than the reaction initiation temperature of the thermoplastic resin by the curing agent.
  • the reactive thermoplastic resin solution contains a crosslinking agent as the curing agent
  • the reactive thermoplastic resin solution is activated at a higher temperature than the crosslinking agent as the curing agent, and the linear thermoplastic resin and the linear It is preferable to use a cross-linking agent that causes a cross-linking reaction with a thermoplastic resin or a reaction between cross-linking agents.
  • Reaction start temperature of reaction type thermoplastic resin by curing agent, accelerator, etc., and specific temperature that is, temperature at which fiber reinforced resin material or fiber reinforced resin molded product will not be remolded (for example, linear thermoplastic resin
  • the difference (temperature difference) between the reaction temperature and the crosslinking agent of the present embodiment is a fiber-reinforced resin material excellent in moldability and is stable in shape after heat at a specific temperature or higher. From the viewpoint of obtaining an excellent fiber-reinforced resin molded article, 10 ° C or higher is preferable, 30 ° C or higher is more preferable, and 50 ° C or higher is more preferable.
  • the upper limit of the temperature difference is not particularly limited, but if the temperature difference is too large, it is necessary to make the temperature high when manufacturing a fiber-reinforced resin molded article excellent in thermal stability.
  • ° C or lower is preferable, more preferably 150 ° C or lower, and still more preferably 100 ° C or lower.
  • a linear epoxy resin (phenoxy resin) obtained by reacting an epoxy resin is used as a thermoplastic resin
  • a functional group capable of reacting with the OH group of the epoxy resin examples thereof include isocyanate compounds having two or more groups and novolac resins.
  • Examples of the isocyanate compound having two functional groups include: (1) aliphatic diisocyanates having 6 to 12 carbon atoms [excluding carbon in the NCO group, the same applies to (2) to (4) below], (2 And alicyclic diisocyanates having 6 to 15 carbon atoms, (3) araliphatic diisocyanates having 8 to 12 carbon atoms, (4) aromatic diisocyanates having 6 to 30 carbon atoms, and mixtures of two or more thereof. .
  • aliphatic diisocyanate examples include hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 1,3,6-trimethylhexamethylene diisocyanate and the like.
  • HDI hexamethylene diisocyanate
  • dodecamethylene diisocyanate 2,2,4-trimethylhexamethylene diisocyanate
  • lysine diisocyanate 1,3,6-trimethylhexamethylene diisocyanate and the like.
  • alicyclic diisocyanate examples include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), 1,4-cyclohexane diisocyanate, methylcyclohexane-2,4-diisocyanate (hydrogenated TDI). ), 1,4-bis (2-isocyanatoethyl) cyclohexane and the like.
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4′-diisocyanate
  • TDI methylcyclohexane-2,4-diisocyanate
  • 1,4-bis (2-isocyanatoethyl) cyclohexane examples of the alicyclic diisocyanate
  • araliphatic diisocyanate examples include p- or m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate and the like.
  • aromatic diisocyanates include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 2,4'- or 4,4'-diphenylmethane diisocyanate. (MDI), naphthalene-1,5-diisocyanate, 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate, and the like. Of these, preferred are aromatic diisocyanates, and particularly preferred is MDI.
  • an isocyanate compound having 3 or more functional groups for example, a urethane-modified product obtained by reacting the above organic diisocyanate (3 mol) with trimethylolpropane (TMP) (1 mol) (for example, HDI or IPDI or TDI and TMP). Modified adducts, etc.), and burette modified products obtained by reacting the organic diisocyanate (3 mol) with water (1 mol) (for example, modified products obtained by reacting HDI or IPDI with water).
  • TMP trimethylolpropane
  • Modified adducts, etc. and burette modified products obtained by reacting the organic diisocyanate (3 mol) with water (1 mol) (for example, modified products obtained by reacting HDI or IPDI with water).
  • Isocyanurate-modified products of the above organic diisocyanates for example, HDI or IPDI or TDI trimers
  • dimers of the above-mentioned modified products for example, urethane-modified products, burette-modified products, or isocyanurate-modified products ( 2 mol) and water or ethylene glycol (1 mol) Etc.
  • trimers of the above-mentioned modified products for example, modified products obtained by reacting urethane-modified products, burette-modified products or isocyanurate-modified products (3 mol) with water or ethylene glycol (2 mol)), etc.
  • a mixture of two or more thereof for example, HDI or IPDI or TDI trimers
  • dimers of the above-mentioned modified products for example, urethane-modified products, burette-modified products, or isocyanurate-modified products ( 2 mol) and water or ethylene glycol (1 mol) Etc.
  • an aliphatic polyisocyanate that is a modified product using an aliphatic diisocyanate
  • an alicyclic polyisocyanate that is a modified product using an alicyclic diisocyanate and a mixture of two or more of these. More preferably, an isocyanurate-modified aliphatic polyisocyanate, an isocyanurate-modified alicyclic polyisocyanurate, and a mixture of two or more of these.
  • the fiber-reinforced resin molded body can be easily molded, and a fiber-reinforced resin molded body having excellent thermal stability after molding can be easily obtained.
  • the block type isocyanate compound is a compound that does not react at a temperature lower than a specific temperature, but is capable of obtaining an active NCO by dissociating the blocking agent of the isocyanate compound at a specific temperature or higher. It is said to be masked isocyanate.
  • the blocking agent include phenols such as phenol and xylenol, oximes such as methyl ethyl ketone oxime, lactams such as caprolactam, and alcohols such as methanol.
  • the temperature at which dissociation starts is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 200 ° C. or higher from the viewpoint of moldability.
  • a reactive thermoplastic resin when used when the temperature at which dissociation starts below 120 ° C., the crosslinking reaction with the crosslinking agent proceeds simultaneously during the reaction of the thermoplastic resin with the curing agent, and before the molding, the plastic epoxy resin There is a possibility that moldability due to heat is lowered.
  • the temperature at which dissociation begins varies somewhat depending on the type of blocking agent, the presence of a functional group of the thermoplastic resin that becomes a reaction partner with the isocyanate compound, and the presence or absence of a catalyst.
  • the reaction initiation temperature between the thermoplastic resin (cured with the curing agent) and the crosslinking agent of the present embodiment is that the block agent is dissociated when a block-type isocyanate compound is used.
  • the temperature at which the fiber-reinforced resin material or the fiber-reinforced resin molded body cannot be re-molded is considered to be the “specific temperature” in the present embodiment.
  • a novolac resin may be used as a crosslinking agent.
  • the novolak resin has a higher reaction initiation temperature with the functional group of the preceding thermoplastic resin (cured with the curing agent) than the isocyanate compound, and has a preferable reaction initiation temperature easily without blocking the functional group.
  • the thermoplastic resin and the novolac resin those having a reaction start temperature of 200 ° C. or higher are generally available.
  • the flame-retardant property of the obtained fiber-reinforced resin molded article is improved.
  • the reinforcing fibers used in the fiber-reinforced resin material according to the present embodiment include inorganic fibers, organic fibers, metal fibers, or a combination of these.
  • the reinforcing fiber includes carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, glass fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultra high molecular weight.
  • Examples include polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, polyphenylene sulfide (PPS) fiber, polyimide fiber, fluorine fiber, polyvinyl alcohol (PVA fiber), stainless steel, and iron.
  • the reinforcing fibers are preferably carbon fibers and basalt fibers, and particularly preferably carbon fibers.
  • any of PAN-based and pitch-based carbon fibers can be used.
  • PAN-based carbon fibers are preferable from the viewpoint of the balance between strength and elastic modulus.
  • any form such as staples, cotton (cotton), bundles of reinforcing fibers arranged in one direction, reinforcing fiber nonwoven fabrics, reinforcing fiber fabrics, reinforcing fiber knitted fabrics are used as the reinforcing fiber. Can do.
  • a bundle of reinforcing fibers arranged in one direction and bundled is preferably used.
  • the reinforcing fiber in one direction is what united the fiber axis direction of the reinforcing fiber.
  • the bundle of reinforcing fibers may be a bundle of two or more reinforcing fibers that are converged, even if they are converged with a sizing agent, and without using a sizing agent. It may be bundled. From the viewpoint of productivity, a product converged with a sizing agent is preferable.
  • the bundle of reinforcing fibers arranged in one direction is preferably a bundle of 1000 or more single fibers of reinforcing fibers, more preferably 10,000 or more, and even more preferably 100,000 or more.
  • the upper limit of the number of reinforcing fiber bundles is not particularly limited, but in the case where the reinforcing fiber bundle is not opened, it is about one million. When the bundle of reinforcing fibers arranged in one direction is opened and used, the number of fibers may be further increased.
  • a product obtained by bundling 6000 (6K) single fibers of carbon fiber supplied from a carbon fiber manufacturer or 12000 (12K), 24000 (24K), 50000 (50K), Product such as 60000 (60K) can be used as it is without opening, or more than one bundle of these can be used as it is without opening.
  • a product obtained by bundling a plurality of carbon fibers supplied from a carbon fiber manufacturer may be opened and used.
  • the carbon fiber may be any of a non-twisted yarn, a twisted yarn, and a flame-retardant yarn.
  • the cross-sectional shape cut in the direction perpendicular to the fiber axis direction of the bundle of carbon fibers is not particularly limited, such as a circle, an ellipse, or a polygon.
  • a reactive thermoplastic resin is used, and the resin easily impregnates the inside of the bundle of reinforcing fibers. Therefore, the bundle of reinforcing fibers molded with a large number of single fibers is not necessarily opened. There is no need to do etc. Thereby, the reinforced fiber wound around the drum etc. which are supplied from a fiber maker can be used as it is, and there are few processes and it is excellent in productivity. Moreover, since a thermoplastic resin can be provided at once to a bundle of reinforcing fibers composed of many single fibers, the productivity is excellent.
  • the fiber reinforced resin material of the present embodiment draws out a bundle of reinforcing fibers arranged in one direction, wound around a drum or the like supplied from a fiber maker such as a carbon fiber maker, and then draws a thermoplastic resin solution.
  • a fiber maker such as a carbon fiber maker
  • thermoplastic resin solution a thermoplastic resin solution.
  • what was pulled out from one drum supplied from a carbon fiber manufacturer or the like may be used as a bundle of reinforcing fibers, or a plurality of drums are attached to a creel, and a bundle of a plurality of reinforcing fibers is further bundled into one bundle. It may be used as a bundle of reinforcing fibers.
  • the bundle of reinforcing fibers may be opened by performing a fiber opening process or may not be opened.
  • thermoplastic resin solution in the present embodiment includes the above-mentioned various reaction-type thermoplastic resins and a curing agent, and further has a higher reaction initiation temperature than the reaction initiation temperature of the thermoplastic resin by the curing agent.
  • the group contains two or more crosslinkers.
  • the thermoplastic resin solution further contains a solvent.
  • thermoplastic epoxy resin and the crosslinking agent having 2 or more functional groups are as described above.
  • the thermoplastic resin solution includes not only a solution in which a solute is completely dissolved in a solvent, but also an emulsion and a dispersion.
  • Solvents include water, dimethylformamide, toluene, xylene, cyclohexane, methyl acetate, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methanol, ethanol, butanol, isopropyl alcohol, methyl cellosolve, Examples include cellsolve and anon.
  • thermoplastic resin By using a resin solution containing a solvent, it becomes easy to adjust the viscosity and fluidity of the resin, and it becomes easy to mix a thermoplastic resin with a curing agent and a crosslinking agent having two or more functional groups.
  • Curing agents include epoxy resins, aliphatic polyamines, polyaminoamides, ketimines, aliphatic diamines, aromatic diamines, imidazoles, tertiary amines and other amine compounds, phosphate compounds, acid anhydride compounds, mercaptan compounds. Phenol resin, amino resin, dicyandiamide, Lewis acid complex compound and the like.
  • thermoplastic resin solution contains additives such as a catalyst, a polymerization initiator, a polymerization accelerator, an antioxidant, an ultraviolet absorber, a pigment, a thickener, an emulsifier, and a dispersant without departing from the object of the present invention. You may add in the range.
  • the viscosity of the thermoplastic resin solution of the present embodiment is preferably 5 to 1000 mPa ⁇ s at room temperature. When the viscosity of the thermoplastic resin solution is 5 mPa ⁇ s or more, a sufficient amount of thermoplastic resin can be imparted to the bundle of reinforcing fibers.
  • the viscosity of the thermoplastic resin solution is preferably 10 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more. Further, if the viscosity of the thermoplastic resin solution is 1000 mP ⁇ s or less, the thermoplastic resin can be penetrated into the bundle of reinforcing fibers.
  • the viscosity of the thermoplastic resin solution is more preferably 800 mPa ⁇ s or less, and further preferably 500 mPa ⁇ s or less.
  • the method of applying the thermoplastic resin to the bundle of reinforcing fibers includes a dip method in which the bundle of reinforcing fibers is immersed in the thermoplastic resin solution, a dip nip method in which the bundle is squeezed with a mangle after immersion, a kiss roll, a gravure roll, etc. And a transfer method in which a thermoplastic resin is transferred from the kiss roll or the like to a bundle of reinforcing fibers, or a spray method in which a mist-like thermoplastic resin solution is applied to the bundle of reinforcing fibers.
  • thermoplastic resin is pushed into the reinforcing fiber by bringing the bundle of reinforcing fibers with the thermoplastic resin solution into contact with an orifice, a die, a roll, etc.
  • the amount of the thermoplastic resin applied to the bundle of reinforcing fibers can be adjusted by removing the excess thermoplastic resin.
  • the amount of the thermoplastic resin solution applied to the reinforcing fiber and the amount of the thermoplastic resin in the thermoplastic resin may be adjusted so that the amount of the thermoplastic resin in the bundle of reinforcing fibers becomes the above-described preferable Vf value.
  • thermoplastic resin solution since the viscosity of the thermoplastic resin solution is low, even when the thermoplastic resin is applied to one side of the bundle of reinforcing fibers by the transfer method, the thermoplastic resin penetrates to the inside of the bundle of reinforcing carbon fibers. Can be made. Of course, a thermoplastic resin may be applied to both surfaces of the bundle of reinforcing fibers by a transfer method.
  • thermoplastic resin After applying a thermoplastic resin to the bundle of reinforcing fibers, drying and / or heat treatment is performed. Drying and heat treatment may be performed simultaneously.
  • the reaction based on the thermoplastic resin and the curing agent may be completed, but the reaction is stopped in a certain state (or the reaction rate is reduced).
  • the thermoplastic resin may be completely reacted during the production of the fiber-reinforced resin molded body or during heating at a specific temperature above the temperature at which the crosslinking agent having two or more functional groups starts to react.
  • the purpose of drying and / or heat treatment after applying the thermoplastic resin to the bundle of reinforcing fibers is to solidify at least the fiber-reinforced resin material and eliminate surface tack.
  • a reactive thermoplastic resin reacts with a curing agent, and a tack-free fiber-reinforced resin material containing a thermoplastic resin having a linear molecular structure is obtained.
  • the handling in the manufacturing process of the fiber reinforced resin material is improved, so that the productivity is improved.
  • a fiber reinforced resin molded product obtained using the fiber reinforced resin material can be easily obtained without anisotropy, and also in the manufacturing process of the fiber reinforced resin molded product. Improved handling and productivity.
  • tackiness is eliminated, even when the fiber reinforced resin material is stored, the fiber reinforced resin material can be prevented from adhering to each other, so that excellent storability can be secured.
  • the heating temperature is such that the reaction based on the thermoplastic resin and the curing agent is completely completed, the reaction is stopped in a certain state (or the reaction rate is reduced), and the functional group is It is performed at a temperature at which two or more crosslinking agents are not activated, for example, a temperature and a time at which the reaction between the crosslinking agent and the thermoplastic resin does not start.
  • a temperature at which two or more crosslinking agents are not activated for example, a temperature and a time at which the reaction between the crosslinking agent and the thermoplastic resin does not start.
  • the cross-linking agent having two or more functional groups may undergo some reaction with the thermoplastic resin without departing from the object of the present invention.
  • drying and / or heat treatment may be performed at 40 to 200 ° C. If there is no longer any tack of the thermoplastic resin material, heating may be performed in two steps of drying and heat treatment, or only one of them may be performed. Drying is preferably performed at 40 to 120 ° C. for about 1 minute to 1 hour, and in the case of heat treatment, it is preferably performed at 120 ° C. to 200 ° C. for about 1 minute to 1 hour. More preferably, drying is performed at 60 to 120 ° C. for 10 minutes to 30 minutes, and heat treatment is performed at 121 ° C. to 180 ° C. for 3 minutes to 40 minutes. Such a range of conditions is preferable from the viewpoint of the quality and productivity of the obtained fiber-reinforced resin molded article.
  • thermoplastic resin is applied to a bundle of carbon fibers, and after drying and / or heat treatment, the bundle of reinforcing fibers to which the thermoplastic resin is applied is cut to obtain a chip-like fiber reinforced resin material.
  • the cutting of the bundle of reinforcing fibers provided with the thermoplastic resin is cut in a direction perpendicular to the fiber axis direction of the bundle of reinforcing fibers arranged in one direction.
  • the perpendicular direction here does not need to be exactly perpendicular to the fiber axis direction of the reinforcing fiber, and may be any one cut in a substantially perpendicular direction.
  • disconnected in the diagonal direction may be sufficient with respect to the fiber axial direction of the reinforcing fiber bundle arranged in one direction.
  • the length of the cut fiber reinforced resin material is as described above.
  • thermoplastic resin when the shape of the bundle of reinforcing fibers to which the thermoplastic resin is applied is a wide sheet-like or thick columnar shape, etc.
  • a chip-shaped product may be manufactured by cutting in parallel.
  • a chip-like fiber reinforced resin material including a bundle of reinforced fibers arranged in one direction and a thermoplastic resin and a method for manufacturing the same have been described.
  • the shape is not limited, and may be any shape such as a sheet shape, a plate shape, a block shape, a line shape, or a string shape.
  • the fiber reinforced resin molded body according to the present embodiment is obtained by molding the above fiber reinforced resin material by heating.
  • the fiber reinforced resin material is obtained by heating and pressing. Further, it is obtained by heating a fiber reinforced resin material or a fiber reinforced resin molded body at a specific temperature or higher, and cannot be remolded by reheating.
  • the fiber reinforced resin material constituting the fiber reinforced resin molded body according to the present embodiment includes a thermoplastic resin, it is thermoplastic. Therefore, even after heating and pressurizing once to form a fiber reinforced resin molded article, if it is not heated above a specific temperature, it can be easily selected by heating the fiber reinforced resin molded article, particularly by heating and pressing. It can be reshaped into a shape.
  • a temperature above a specific temperature that is, substantially In particular, by heating at a temperature at which the thermoplastic resin loses its thermoplasticity and the re-molding of the fiber-reinforced resin molding cannot be performed, it cannot be re-molded by heating again.
  • the above-mentioned linear thermoplastic resin is crosslinked at a temperature at which the crosslinking agent having a functional group of 2 or more crosslinks with a crosslinking agent having 2 or more functional groups, and the crosslinking agent having a functional group of 2 or more starts reaction.
  • the linear thermoplastic resin becomes thermosetting, the glass transition temperature rises, the cross-linking agents are bonded to each other, the thermoplasticity is substantially lost, and the fiber-reinforced resin molded article I think that it will be impossible to re-form by heat.
  • substantially losing thermoplasticity means that the fiber-reinforced resin molded product cannot be re-molded at the temperature at which the fiber reinforced resin molded product is used, and re-moldability at temperatures above the usage environment or some softening in the usage environment. It does not exclude things that change or deform.
  • the fiber reinforced resin molded article is not softened or deformed at the temperature of use environment.
  • the fiber reinforced resin molded product that can no longer be reshaped by reheating is softened or temporarily deformed depending on the magnitude of the temperature or pressure by heating (or heating and pressurizing), Including the ones that may be slightly deformed, but in terms of the intended use and environment of the resulting fiber reinforced resin molded product, it refers to those that cannot be substantially remolded at a level that can achieve the purpose of use, and must be softened or deformed. Good.
  • the obtained fiber-reinforced resin molded body is used for applications that are used in a high-temperature environment of about 70 ° C. at high temperatures in summer, such as automobile interior parts. be able to.
  • the obtained fiber-reinforced resin molded body can be used in a portion connected to a driving unit such as a motor. It can be used as a robot arm.
  • the obtained fiber-reinforced resin molded body can be used in a higher temperature environment.
  • the pressure is 2 MPa, and the time cannot be reshaped by heating and pressurizing for 15 seconds to 1 hour. .
  • a chip-like fiber-reinforced resin material including a bundle of reinforcing fibers arranged in one direction, a thermoplastic resin, and a crosslinking agent having two or more functional groups This will be described in more detail in the case of using.
  • description is abbreviate
  • the fiber-reinforced resin molded body of the present embodiment is a fiber including a thermoplastic resin and a strip-shaped reinforcing fiber bundle (reinforced fiber bundle) in which a plurality of reinforcing fibers are arranged in one direction. It is made of a reinforced resin material and has a laminated structure in which a bundle of strip-like reinforcing fibers are randomly laminated in three dimensions. By forming a bundle of strip-shaped reinforcing fibers randomly in three dimensions, a molded article having excellent impact resistance and fracture toughness can be obtained.
  • a bundle of strip-like reinforcing fibers in which a plurality of reinforcing fibers are arranged in one direction is randomly laminated in three dimensions, which is obtained by arranging a plurality of reinforcing fibers in one direction.
  • a plurality of strip-shaped reinforcing fiber bundles, the fiber axis direction of each bundle is randomly arranged with respect to the surface direction of the fiber-reinforced resin molded body, and the bundle of the plurality of reinforcing fibers is a fiber-reinforced resin molded body. This refers to a state in which the layers are stacked so as to overlap each other in the thickness direction.
  • a plurality of strip-shaped reinforcing fiber bundles are randomly arranged in the fiber axis direction of each bundle on the upper and lower surfaces of each bundle.
  • the bundles are stacked so as to be partially overlapped with each other, and each bundle is slightly inclined at random with respect to the surface direction of the fiber-reinforced resin molded body and folded over each other.
  • the fiber reinforced resin material constituting the fiber reinforced resin molded body of the present embodiment is a bundle of a plurality of reinforced fibers arranged in one direction.
  • a bundle of a plurality of reinforcing fibers arranged in one direction is a combination of the fiber axis directions of the plurality of reinforcing fibers constituting the bundle of reinforcing fibers. Therefore, as long as the approximate axial directions of the reinforcing fibers constituting the reinforcing fiber bundle are matched, the reinforcing fiber bundle and the reinforcing fibers constituting the reinforcing fiber bundle may be bent or meandering.
  • the reinforced fiber and the bundle of reinforcing fibers are bent or meandered by the concavo-convex shape of the molded body, the entanglement of the reinforcing fibers and the bundles thereof.
  • the concept that a bundle of strip-like reinforcing fibers is randomly stacked in three dimensions is a state in which the reinforcing fibers and the bundle of reinforcing fibers are deformed by bending or meandering due to pressure or the like. are also included.
  • the bundle of strip-shaped reinforcing fibers does not necessarily have to be inclined with respect to the surface direction of the fiber-reinforced resin molded body. May include those not inclined with respect to the surface direction of the fiber-reinforced resin molded body.
  • the fiber reinforced resin material constituting the fiber reinforced resin molded body may contain substances other than the reinforced fiber and the thermoplastic resin, such as a catalyst, an antioxidant, and a pigment.
  • the fiber reinforced resin molded body of the present embodiment is obtained using a plurality of fiber reinforced resin materials, and the reinforced fibers arranged in one direction constituting these fiber reinforced resin materials.
  • the fiber axis directions of the bundle are random, and anisotropy is suppressed. That is, as the bundle of reinforcing fibers, the reinforcing fibers are arranged in one direction, but the bundles of a plurality of reinforcing fibers constituting the fiber-reinforced resin molded body have random fiber axis directions. If it sees as the whole molded object, the fiber axis direction of the reinforced fiber is random.
  • the fiber-reinforced resin molded body has no anisotropy and can exhibit uniform strength in all directions.
  • the fiber reinforced resin molded product obtained by laminating the carbon fiber fabric is easily cracked when a large force is applied, and the fracture surface of the cracked portion is sharp. The cut surface tends to be exposed. For this reason, in the unlikely event that the fiber reinforced resin molded body is cracked due to an accident or the like, there is a risk of causing secondary damage such as causing a cut in the body due to the fracture surface.
  • the fiber axis directions of the bundles of reinforcing fibers arranged in one direction constituting the fiber-reinforced resin material are random, and thus a large force is applied. Even in the case of cracking, it is suppressed that the fracture surface becomes sharp and that the sharp fracture surface is exposed. Thereby, since generation
  • the length of the fiber reinforced resin material and the reinforcing fiber is 10 mm to less than 30 mm, it is easy to crack with a certain force or more, and even if it is cracked, it is difficult to form a sharp fracture surface.
  • the length of the fiber reinforced resin material and the reinforcing fiber is 30 mm or more, more preferably 40 mm or more, it is difficult to break even when subjected to a stronger impact, and even if it is cracked, a sharp fracture surface is difficult to be formed. Therefore, the characteristic of the fiber reinforced resin molding obtained can be adjusted by the length of the fiber reinforced resin material and the reinforced fiber.
  • the shape of the fiber-reinforced resin molded body of the present embodiment is not particularly limited, and examples thereof include a sheet shape, a plate shape, and a block shape.
  • examples thereof include a sheet shape, a plate shape, and a block shape.
  • the shape of interior parts such as car insert panels, the shape of automotive parts such as chassis, the shape of industrial equipment parts such as robot arms, or the shape of parts for household appliances such as TV housings, etc. It may be formed directly into the intended unevenness or curved shape.
  • the fiber volume content (Vf value) in the fiber reinforced resin material of the present embodiment is preferably 30% to 80%.
  • the Vf value is more preferably 40% or more, still more preferably 50% or more, from the viewpoint of the strength of the fiber-reinforced resin molded product obtained using the fiber-reinforced resin material.
  • the Vf value is preferably 70% or less, more preferably around 60%.
  • the fiber reinforced resin material when a space is generated between the fiber reinforced resin material and the fiber reinforced resin material constituting the fiber reinforced resin molded body, the fiber reinforced resin material has a Vf value so that no space is generated. Is preferably 50% or less, more preferably 45% or less. If a space is formed between the fiber reinforced resin material and the fiber reinforced resin material constituting the fiber reinforced resin material, the strength of the obtained fiber reinforced resin molded article may be reduced.
  • the Vf value of the fiber reinforced resin molded product is small, the strength of the fiber reinforced resin molded product may be lowered. Therefore, if a high strength product is required, the fiber reinforced resin molded product described below is used. At the time of heating and pressurization for obtaining, excess thermoplastic resin may be removed to increase the Vf value.
  • the Vf value of the fiber reinforced resin molding is larger than the Vf value of the fiber reinforced resin material.
  • the thickness of the fiber-reinforced resin molded body of the present embodiment is not particularly limited and can be arbitrarily set for the intended use of the molded body, for example, 0.1 mm to 1000 mm. is there. Further, the lengths in the vertical direction and the horizontal direction of the fiber-reinforced resin molded body in the present embodiment are not particularly limited, and can be arbitrarily set for the intended use of the molded body.
  • the fiber reinforced resin material constituting the fiber reinforced resin molded body is compared with the thermoplastic resin used by being melted by heating.
  • the thermoplastic resin enters the bundle of reinforcing fibers.
  • the fiber reinforced resin molding which has the outstanding intensity
  • the fiber-reinforced resin molded body of the present embodiment can be molded even after being cured as compared with a thermosetting resin, and can be stored and stored at a low temperature until molding like a thermosetting epoxy resin. It is easy to use without a problem of period, does not require a long curing time, and is excellent in productivity.
  • the fiber-reinforced resin molded body of the present embodiment can be remolded until it is heated at the specific temperature or higher.
  • the fiber-reinforced resin molded body of the present embodiment is not re-molded even after being heated again at the specific temperature after being heated above the specific temperature.
  • the fiber-reinforced resin molded body of the present embodiment includes those that are somewhat softened or deformed depending on the temperature or pressure even when heated at a specific temperature or higher, but are not remolded. Therefore, it has thermal stability even in an environment of room temperature or higher, and can be used in a wide range of applications.
  • the fiber-reinforced resin molded body of the present embodiment is strong and lightweight, and further has been suppressed from deformation against heat, and thus has been conventionally manufactured using a metal such as iron or a thermosetting resin.
  • a metal such as iron or a thermosetting resin.
  • building materials such as reinforcing bars, columns, beams, spacers, anchor plates, jack plates, electrical appliances such as TVs, computers, refrigerators, etc. It can be used for various objects and applications such as a member that comes into contact with a drive unit such as a motor of an industrial device such as a robot arm.
  • the fiber reinforced resin molded product of the present embodiment by using carbon fiber as the reinforcing fiber and using an epoxy resin as the thermoplastic resin, a molded product excellent in durability, light weight, high strength, and rust prevention property is obtained. Obtainable.
  • a preferable manufacturing method of the fiber-reinforced resin molded body of the present embodiment (a thermoplastic resin, a reinforcing fiber, and a functional group containing a crosslinking agent having two or more functional groups) will be described.
  • the manufacturing method of the fiber reinforced resin molding of this Embodiment is not limited to the following method.
  • a part of the description overlapping with the description previously described is partially omitted or simplified.
  • the method for manufacturing a fiber-reinforced resin molded body according to the present embodiment includes a step of heating the fiber-reinforced resin material.
  • heating and pressurization when heating, not only heating but also pressing should be performed.
  • heating and pressurization may be performed simultaneously, pressurization may be performed after heating, or heating and pressurization may be performed simultaneously after heating.
  • the heating and pressurizing method include a mold pressing method, an autoclave method, and a heating / cold pressing method.
  • the fiber axis directions of the bundles of reinforcing fibers arranged in one direction constituting each of the plurality of chip-like fiber reinforced resin materials according to the present embodiment are random. And then heating and pressurizing while removing air from the mold, and then cooling.
  • a fiber reinforced resin material in which a thermoplastic resin is added to a woven fabric obtained using the opened reinforcing fibers, a plurality of the fiber reinforced resin materials are laminated by shifting the fiber axis direction or the like. Then, it is placed on the mold, heated and pressurized while venting the air in the mold, and then cooled.
  • a method of laminating the bundles in such a manner that the fiber axis directions of the bundles are random, heating and pressurizing while removing air in the molds, and then cooling is not particularly limited.
  • the temperature at which the fiber reinforced resin material is heated is, for example, about 50 to 400 ° C., depending on the type of thermoplastic resin, crosslinking agent and reinforcing fiber used, and the thickness of the fiber reinforced resin molding to be obtained.
  • the pressure when pressing the fiber reinforced resin material is, for example, about 1 to 50 MPa, and the pressing time is, for example, about 15 seconds to 24 hours, preferably 30 seconds to 6 hours, more preferably 1 minute. About 1 hour.
  • the heating temperature of the fiber reinforced resin material cannot be remolded.
  • the temperature or a temperature at which the cross-linking agent reacts (specific temperature), for example, a temperature equal to or higher than a temperature at which the cross-linking agent reacts with the linear thermoplastic resin may be used.
  • the heating time may be any time as long as the fiber-reinforced resin molded product obtained at the temperature cannot be re-molded, and is preferably about 30 seconds to 6 hours, more preferably about 15 seconds to 1 hour.
  • the heating temperature at the time of molding is less than the temperature at which the cross-linking agent etc. reacts (specific temperature), and then at a certain temperature or higher at any time What is necessary is just to heat at the temperature.
  • the cross-linking agent may be heated at a temperature equal to or higher than the temperature (specific temperature) at which reaction with the linear thermoplastic resin starts.
  • the fiber reinforced resin material when molding a fiber reinforced resin material by heating, the fiber reinforced resin material is sufficiently softened at a low temperature, and is heated to a specific temperature or higher after it is molded into the desired shape with adhesiveness or fluidity. Good. Thereby, the obtained fiber reinforced resin molded product is excellent in shape, appearance quality, strength and the like.
  • the above method when producing a flat sheet-like fiber reinforced resin molded product, the above method may be used, but a continuous method such as a double belt press method may be used.
  • a fiber reinforced resin molded body is formed into a sheet shape, plate shape, string shape, line shape, etc., it is reshaped by heating (or heating and pressurizing) to the desired shape at any time. May be.
  • heating is preferably performed at a specific temperature or higher in order to increase stability against heat.
  • the obtained bar may be used as a reinforcing material for concrete, a brace material, a building material such as a wire, or the like.
  • Example 1 Fiber reinforced resin material
  • Example 2 Fiber reinforced resin material
  • PAN-based carbon fiber Torayca (registered trademark) T700SC manufactured by Toray Industries, Inc.
  • thermoplastic resin solution was applied to one side of the carbon fiber bundle using a kiss roll while pulling out the carbon fiber bundle as it was without performing the fiber opening treatment from the drum around which the carbon fiber bundle was wound.
  • cross-sectional shape of the bundle of carbon fibers when pulled out from the drum was a flat shape.
  • Thermoplastic resin solution (viscosity: 80 mPa ⁇ s)] -Thermoplastic epoxy resin (Reactive resin: DENATEITE TPEP-AA-MEK-05B: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (XNH6850RIN-K: manufactured by Nagase ChemteX Corporation) 6.5 parts ⁇ Crosslinking agent (HDI compound blocked with oxime (adduct modified). Solid content 55% by weight) 20 parts ⁇ Methyl ethyl ketone 10 parts
  • thermoplastic resin solution After drying at 60 ° C. for 10 minutes, followed by heat treatment at 120 ° C. for 10 minutes, a reactive thermoplastic into a bundle of reinforcing fibers arranged in one direction with a length of 50 m, a width of 4 mm, and a thickness of 0.38 mm A tape-like fiber reinforced resin material provided with a resin was obtained.
  • the glass transition temperature of the thermoplastic resin was 100 ° C.
  • thermoplastic resin solution The viscosity of the thermoplastic resin solution was measured using a B-type viscometer (TVB-15 type viscometer: manufactured by Toki Sangyo Co., Ltd.). Measured at 20, 12 rpm and room temperature (15 ° C.).
  • the obtained tape-like fiber reinforced resin material (carbon fiber resin material) was subjected to the following (thermal deformation test), (re-molding test), and (storage ease test).
  • each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a mold having 5 mm irregularities, preheated at 120 ° C. for 10 minutes, and then heated and heated at 240 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: ⁇ 0.1 MPa). Pressure was applied.
  • the sample 1 taken out of the mold was molded into a clean shape along the shape of the mold with a depth of 5 mm, but the sample 2 was in a wavy state, but a clean uneven shape. It was not possible to mold.
  • the obtained fiber reinforced resin material can be molded by heating at 240 ° C., and after heating at 200 ° C., it cannot be remolded at least at 240 ° C. and 4 MPa.
  • the above deformation test by heat
  • the sample 1 was placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
  • the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sagging to a nearly vertical state), and the thermoplasticity was high. It was confirmed that it was maintained.
  • Sample 1 can be stored easily without being stored at low temperatures, such as a fiber reinforced resin material before curing using a thermosetting resin or a fiber reinforced resin molded body after molding.
  • the fiber reinforced resin material of Example 1 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding.
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • the tape-like fiber reinforced resin material is cut so as to have a length of 40 to 50 mm substantially perpendicular to the axial direction of the carbon fiber, and a cross section having a length of 40 to 50 mm, a width of 4 mm, and a thickness of 0.38 mm is flattened.
  • a chip-like fiber-reinforced resin material was obtained in a simple shape.
  • the Vf value of the obtained fiber reinforced resin material was 45%.
  • the length of the carbon fiber in the obtained fiber reinforced resin material is the same as the length of the fiber reinforced resin material because the carbon fiber is a long fiber, and is 40 to 50 mm.
  • thermoplastic resin exuded from the mold was removed to obtain a fiber-reinforced resin molded body formed into a plate shape having a thickness of 1.3 mm.
  • the appearance quality of the obtained fiber reinforced resin molded article was good, and when the cross section of the fiber reinforced resin molded article was observed at 50 times using an electron microscope, there was no space inside. Further, the Vf value of the obtained fiber reinforced resin molded product was 55%.
  • the obtained plate-like fiber reinforced resin molded article was cut into a length of 15 cm and a width of 3 cm and used as a sample.
  • the sample thickness was 1.3 mm.
  • this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
  • the sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 240 ° C. for 10 minutes, then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 240 ° C. and 4 MPa for 30 minutes. Pressurization was performed.
  • the heated and pressurized sample taken out of the mold was in a state where the plate-like object was slightly depressed, but it was not shaped along the tray shape with a depth of 5 mm, but was remolded. I could't.
  • the fiber reinforced resin material can be molded by heating at 240 ° C., but after being heated at 240 ° C., it cannot be remolded at 240 ° C. and 4 MPa.
  • the fiber reinforced resin molded product of Example 1 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 240 ° C. or less.
  • the fiber-reinforced resin molded body of Example 1 can be used even in a high temperature environment of about 240 ° C.
  • Example 2 In Example 2, a bundle of 60000 single carbon fibers was used as a bundle of reinforcing fibers arranged in one direction (PAN-based carbon fiber filament: Pyofil # TRH50 60M manufactured by Mitsubishi Rayon Co., Ltd.).
  • thermoplastic resin solution was applied to one side of the carbon fiber bundle using a kiss roll while pulling out the carbon fiber bundle as it was without performing the fiber opening treatment from the drum around which the carbon fiber bundle was wound.
  • cross-sectional shape of the bundle of carbon fibers when pulled out from the drum was a flat shape.
  • Thermoplastic resin solution (viscosity: 15 mPa ⁇ s or less (equipment measurement limit value or less))] -Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts Crosslinking agent (HDI compound blocked with caprolactam (adduct modified). Solid content 55% by mass) 40 parts Methyl ethyl ketone 200 parts
  • thermoplastic resin solution After squeezing the bundle of carbon fibers by bringing the bundle of carbon fibers provided with the thermoplastic resin solution into contact with four rolls (the upper and lower surfaces of the bundle of carbon fibers are alternately contacted twice each) , By drying at 110 ° C. for 3 minutes, a tape-form in which a reactive thermoplastic resin is applied to a bundle of reinforcing fibers arranged in one direction in a width of 5 to 10 mm and a thickness of 0.5 to 1.5 mm A fiber reinforced resin material was obtained.
  • the glass transition temperature of the thermoplastic resin was 100 ° C.
  • thermoplastic resin solution The viscosity of the thermoplastic resin solution was measured using a B-type viscometer (TVB-15 type viscometer: manufactured by Toki Sangyo Co., Ltd.). It is measured at 20, 60 rpm and room temperature (15 ° C.).
  • the obtained tape-like fiber reinforced resin material (carbon fiber resin material) was subjected to the following (thermal deformation test), (re-molding test), and (storage ease test).
  • each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a mold having 5 mm irregularities, preheated at 120 ° C. for 10 minutes, and then heated and heated at 240 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: ⁇ 0.1 MPa). Pressure was applied.
  • the sample 1 taken out of the mold was molded into a clean shape along the shape of the mold with a depth of 5 mm, but the sample 2 was clean but slightly wavy. It was not uneven and could not be molded.
  • the obtained fiber reinforced resin material can be molded by heating at 240 ° C., and after heating at 200 ° C., it cannot be remolded at least at 240 ° C. and 4 MPa.
  • the above deformation test by heat
  • the sample 1 was placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
  • the sample 1 after being left as it was when it was heated in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag almost vertically) and had thermoplasticity. It was confirmed that
  • the fiber reinforced resin material of Example 2 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding.
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • the tape-like fiber reinforced resin material is cut so as to have a length of 20 to 30 mm substantially perpendicular to the axial direction of the carbon fiber, and is 20 to 30 mm in length, 5 to 10 mm in width, and 0.5 to 1 in thickness.
  • a 5 mm chip-like fiber-reinforced resin material was obtained.
  • the Vf value of the obtained fiber reinforced resin material was 44 to 53%.
  • the length of the carbon fiber in the obtained fiber reinforced resin material is the same as the length of the fiber reinforced resin material because the carbon fiber is a long fiber, and is 20 to 30 mm.
  • the obtained chip-like fiber reinforced resin material was randomly laminated in a mold, pre-heated at 120 ° C. for 5 minutes, and then in a vacuum state (vacuum degree: ⁇ 0.1 MPa), the pressure was increased from 120 ° C. to 240 ° C. at 2 ° C./min while pressurizing to 4 MPa, and heating and pressurization were performed at 240 ° C. and 4 MPa for 30 minutes.
  • thermoplastic resin exuded from the mold was removed to obtain a plate-like fiber-reinforced resin molded body having a thickness of 25.5 mm, a length of 150 mm, and a width of 150 mm.
  • the appearance quality of the obtained fiber reinforced resin molded article was good, and when the cross section of this fiber reinforced resin molded article was observed at 50 times using an electron microscope, no space was confirmed inside. Further, the Vf value of the obtained fiber reinforced resin molded product was 55%.
  • the obtained plate-like fiber reinforced resin molded article was cut into a length of 15 cm and a width of 3 cm and used as a sample.
  • the thickness of the sample was 25.5 mm.
  • this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
  • the sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 240 ° C. for 10 minutes, then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 240 ° C. and 4 MPa for 30 minutes. Pressurization was performed.
  • the fiber reinforced resin material can be molded by heating at 240 ° C., but after being heated at 240 ° C., it cannot be remolded at 240 ° C. and 4 MPa.
  • the fiber reinforced resin molded body of Example 2 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 240 ° C. or less.
  • the fiber reinforced resin molded body of Example 2 is used in an environment of about 240 ° C., for example, in a place where it comes into contact with a drive unit such as a motor of a robot arm that becomes an environment of about 130 ° C. or in a high temperature environment. It can also be used as a spacer or jack plate.
  • Example 3 In Example 3, a plain fabric (Torayca (registered trademark) CO6343B manufactured by Toray Industries, Inc., 3K carbon obtained by bundling and opening 3000 carbon fibers) obtained by using carbon fibers of long fibers as reinforcing fibers of long fibers. Plain fabric obtained using fiber bundles) was used.
  • Torayca registered trademark
  • CO6343B manufactured by Toray Industries, Inc., 3K carbon obtained by bundling and opening 3000 carbon fibers
  • thermoplastic resin solution As in Example 2 was immersed in the same thermoplastic resin solution as in Example 2 to give the thermoplastic fabric solution to the plain fabric.
  • the upper and lower surfaces of the plain woven fabric to which the thermoplastic resin solution is applied are brought into contact with 10 rolls (the upper and lower surfaces of the plain woven fabric are alternately contacted 5 times each), and then rubbed at 60 ° C. for 20 minutes. Dry, and then heated at 110 ° C. for 10 minutes, a sheet-like form in which a reactive thermoplastic resin is applied to a woven fabric obtained by using long carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm A fiber reinforced resin material was obtained.
  • the thermoplastic resin dried at 60 ° C. and heated at a temperature equal to or higher than the specific temperature heated at 110 ° C. has a glass transition temperature of 100 ° C., and the obtained sheet-like fiber reinforced resin material has a Vf value of 50. %Met.
  • thermo deformation test The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
  • each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 150 ° C. and 2 MPa for 15 minutes. And pressurization.
  • the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
  • the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 2 MPa.
  • the above deformation test by heat
  • the sample 1 was placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
  • the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
  • the fiber reinforced resin material of Example 3 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding.
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • the obtained substantially L-shaped fiber reinforced resin molded article was cut from a flat portion to a length of 15 cm and a width of 3 cm and used as a sample.
  • the sample thickness was 1.25 mm.
  • this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
  • the sample was placed on a flat mold with the L-shaped apex facing upward, preheated again at 150 ° C. for 10 minutes, and then in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 150 ° C. and 2 MPa. Heating and pressurization for 15 minutes were performed.
  • the heated and pressurized sample had a shape in which the L-shaped tip was slightly opened, but could not be reshaped into a flat plate shape.
  • the fiber reinforced resin material can be molded by heating at 150 ° C., it was confirmed that after heating at 150 ° C., re-molding cannot be performed at 150 ° C. and 2 MPa.
  • the fiber reinforced resin molded body of Example 3 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 150 ° C. or less.
  • the fiber reinforced resin molded body of Example 3 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
  • the fiber reinforced resin materials of Example 1, Example 2 and Example 3 can be molded by heating, and an arbitrary molded body can be easily obtained.
  • the fiber reinforced resin molded articles of Example 1, Example 2 and Example 3 are excellent in storability, and can be stored without performing special refrigeration and the convenience of industrial use. improves.
  • the fiber reinforced resin molded bodies of Example 1, Example 2 and Example 3 are heated at a specific temperature or higher as compared with the fiber reinforced resin material having thermoplasticity used to obtain the fiber reinforced resin molded body. This increases the thermal stability of the shape against heat and can be used in a higher temperature environment.
  • Example 4 Next, the results of an experiment conducted on the specific temperature during or after the molding described above will be described using Example 4.
  • Example 4 first, a fiber-reinforced resin material was obtained by changing the amount of the crosslinking agent in the thermoplastic resin solution used in Example 3 to 0 part, 5 parts, and 10 parts. In addition, it was the same as that of Example 3 except having changed the quantity of the crosslinking agent.
  • the obtained sheet-like fiber reinforced resin material is cut into a length of 10 cm and a width of 4 cm, and the amount of the cross-linking agent is 0 part, 5 parts, and 10 parts as Sample 1, Sample 2, and Sample 3, respectively. Got ready.
  • samples 1 to 3 were subjected to the heat treatment at 150 ° C. for 10 minutes and then subjected to the molding test, and samples 1 to 3 were subjected to the molding test without being subjected to heat treatment.
  • the bending strength was measured. The bending strength was measured at a speed of 5 mm / min and a fulcrum distance of 40 mm.
  • the thickness of each fiber reinforced resin molding was 1.0 mm.
  • Table 2 shows the measurement of bending strength for Samples 1 to 3 that were subjected to the above-described molding test after heat treatment at 150 ° C. for 10 minutes and Samples 1 to 3 that were subjected to the above-mentioned molding test without performing heat treatment. Results are shown. For Samples 1 to 3 that were not heat-treated, only the case ((i)) in the above-described molding test was heated and pressurized at 125 ° C., 8 MPa, and 10 minutes.
  • Example 4 in the case of Example 4, at least the specific temperature is 150 ° C. or lower, and before heating at a specific temperature or higher, the four fiber reinforced resin materials have the appearance and strength. From the viewpoint, it was confirmed that the integral molding was performed. In addition, after heating at a specific temperature or higher, the appearance quality is not sufficient as shown in Table 1, even if the fiber reinforced resin material appears to be integrated (reformed) at first glance. In addition, as shown in Table 2, it did not have sufficient strength and was not integrated (reformed). That is, it was confirmed that after heating at a specific temperature or higher, re-molding cannot be performed by reheating.
  • Example 5 In Example 5, except that the following were used as the thermoplastic resin solution, the same procedure as in Example 3 was applied to a woven fabric obtained by using long-fiber carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm. A sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained. In addition, the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
  • Thermoplastic resin solution (viscosity: 80 mPa ⁇ s)] -Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts ⁇ Crosslinking agent (IPDI compound blocked with oxime. Solid content 55% by mass) 30 parts ⁇ Methyl ethyl ketone 10 parts
  • thermo deformation test The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 120 ° C. for 10 minutes, and then heated at 200 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: ⁇ 0.1 MPa). And pressurization.
  • the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
  • the obtained fiber reinforced resin material can be molded by heating at 200 ° C. and cannot be remolded at 200 ° C. and 4 MPa at least after heating at 200 ° C.
  • the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
  • the fiber reinforced resin material of Example 5 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • Fiber reinforced resin molding Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a flat plate mold, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree: ⁇ 0 .1 MPa) at 200 ° C. and 4 MPa for 30 minutes while heating to obtain a flat fiber-reinforced resin molded body.
  • the thickness of the obtained fiber reinforced resin molded product was 1.25 mm.
  • the Vf value of the fiber reinforced resin molded product was 47%.
  • the obtained flat fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample.
  • the sample thickness was 1.25 mm.
  • the sample is placed on a substantially L-shape of 102 °, preheated again at 200 ° C. for 10 minutes, and then heated at 200 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: ⁇ 0.1 MPa). And pressurization.
  • the heated and pressurized sample had a slightly bent shape, but could not be reshaped into a clean L-shape.
  • the fiber-reinforced resin material can be molded by heating at 200 ° C., but cannot be remolded at 200 ° C. and 4 MPa after being heated at 200 ° C.
  • the fiber reinforced resin molded body of Example 5 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • the fiber-reinforced resin molded body of Example 5 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
  • Example 6 In Example 6, except that the following were used as the thermoplastic resin solution, the same procedure as in Example 5 was applied to a woven fabric obtained by using long carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm. A sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained. In addition, the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
  • Thermoplastic resin solution viscosity: 80 mPa ⁇ s
  • -Thermoplastic epoxy resin reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass
  • 100 parts-Curing agent DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass
  • Crosslinking agent hydrogenated MDI type compound blocked with caprolactam. Solid content 55% by mass) 20 parts ⁇ Methyl ethyl ketone 10 parts
  • thermo deformation test The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 150 ° C. and 4 MPa for 30 minutes. And pressurization.
  • the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
  • the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 4 MPa.
  • the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
  • the fiber reinforced resin material of Example 6 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding.
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • the obtained substantially L-shaped fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample.
  • the sample thickness was 1.25 mm.
  • the sample was placed on a flat mold with the L-shaped apex facing upward, preheated again at 200 ° C. for 10 minutes, and then in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 200 ° C. and 4 MPa. Heating and pressurization for 30 minutes were performed.
  • the heated and pressurized sample had a shape in which the L-shaped tip was slightly opened, but could not be reshaped into a flat plate shape.
  • the fiber reinforced resin material can be molded by heating at 230 ° C., it was confirmed that after heating at 230 ° C., it cannot be remolded at 200 ° C. and 4 MPa.
  • the fiber reinforced resin molded product of Example 6 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 230 ° C. or less.
  • the fiber reinforced resin molded body of Example 6 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
  • Example 7 a woven fabric obtained by using carbon fibers of long fibers having a length of 50 m, a width of 48 cm and a thickness of 0.39 mm in the same manner as in Example 5 except that the following were used as the thermoplastic resin solution.
  • a sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained.
  • the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
  • Thermoplastic resin solution viscosity: 80 mPa ⁇ s
  • -Thermoplastic epoxy resin reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass
  • 100 parts-Curing agent DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass
  • Crosslinking agent novolak-type resin, solid content 55% by mass
  • thermo deformation test The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
  • sample 1 those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed.
  • sample 2 the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
  • each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 150 ° C. and 4 MPa for 30 minutes. And pressurization.
  • the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
  • the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 4 MPa.
  • the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
  • the fiber reinforced resin material of Example 7 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding.
  • the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
  • Fiber reinforced resin molding Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a flat plate mold, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree: ⁇ 0 .1 MPa) at 270 ° C. and 8 MPa for 30 minutes while heating to obtain a flat fiber-reinforced resin molded body.
  • the thickness of the obtained fiber reinforced resin molded product was 1.25 mm.
  • the Vf value of the fiber reinforced resin molded product was 47%.
  • the obtained flat fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample.
  • the sample thickness was 1.25 mm.
  • the sample is placed on a substantially L-shape of 102 °, preheated again at 150 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: ⁇ 0.1 MPa) at 150 ° C. and 2 MPa for 30 minutes. And pressurization.
  • the heated and pressurized sample had a slightly bent shape, but could not be reshaped into a clean L-shape.
  • the fiber reinforced resin material can be molded by heating at 270 ° C., but cannot be remolded at 150 ° C. and 2 MPa after being heated at 270 ° C.
  • the fiber reinforced resin molded product of Example 7 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing).
  • the specific temperature is in the range of more than 120 ° C. and 270 ° C. or less.
  • the fiber-reinforced resin molded body of Example 7 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
  • the fiber reinforced resin materials of Examples 5, 6, and 7 can be molded by heating, and an arbitrary molded body can be easily obtained.
  • the fiber reinforced resin molded articles of Example 5, Example 6 and Example 7 are excellent in storability, and can be stored without performing special refrigeration and the convenience of industrial use. improves.
  • the fiber reinforced resin moldings of Example 5, Example 6, and Example 7 are heated at a specific temperature or higher as compared with the fiber reinforced resin material having thermoplasticity used to obtain the fiber reinforced resin molding. This increases the thermal stability of the shape against heat and can be used in a higher temperature environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The fiber-reinforced resin material according to the present invention comprises a thermoplastic resin and reinforcing fibers. The fiber-reinforced resin material can be molded through heating, and cannot be remolded through heating after being heated at a specific temperature or at a higher temperature during or after molding.

Description

繊維強化樹脂材料、繊維強化樹脂成形体および繊維強化樹脂成形体の製造方法Fiber-reinforced resin material, fiber-reinforced resin molded body, and method for producing fiber-reinforced resin molded body
 本発明は、繊維強化樹脂材料、それを用いた繊維強化樹脂成形体および繊維強化樹脂成形体の製造方法に関する。 The present invention relates to a fiber-reinforced resin material, a fiber-reinforced resin molded body using the material, and a method for producing a fiber-reinforced resin molded body.
 強化繊維と樹脂を用いた繊維強化樹脂成形体としては、ガラス繊維などの強化繊維と熱硬化性エポキシ樹脂などの熱硬化性樹脂とを用いたシート状の熱硬化型プリプレグ(熱硬化型プリプレグシート)が知られている。 As a fiber reinforced resin molding using reinforced fibers and resin, a sheet-like thermosetting prepreg (thermosetting prepreg sheet) using reinforcing fibers such as glass fiber and thermosetting resins such as thermosetting epoxy resin is used. )It has been known.
 しかしながら、熱硬化型プリプレグシートは、再成形することができず、また、未硬化(熱硬化前)のシートの保管には低温の保冷倉庫などが必要であるという問題があった。また、熱硬化性樹脂の未硬化物を硬化するにあたっては、長時間を要し、生産性に問題があった。 However, the thermosetting prepreg sheet cannot be remolded, and there is a problem that a low temperature cold storage warehouse is required for storing the uncured (before thermosetting) sheet. Moreover, it took a long time to cure the uncured material of the thermosetting resin, and there was a problem in productivity.
 これらの欠点を克服するために、強化繊維と熱可塑性樹脂とを用いた繊維強化樹脂成形体が知られている。熱可塑性樹脂を用いた繊維強化樹脂成形体は、硬化後も加熱により再成形することができる。 In order to overcome these drawbacks, a fiber reinforced resin molded article using a reinforced fiber and a thermoplastic resin is known. A fiber reinforced resin molded article using a thermoplastic resin can be remolded by heating even after curing.
 しかしながら、熱可塑性樹脂と強化繊維とを用いて得られた繊維強化樹脂成形体は、100℃を超える高温環境で使用されると、繊維強化樹脂成形体が柔軟になったり、変形したりすることがある。このため、熱可塑性樹脂と強化繊維とを用いた繊維強化樹脂成形体は、熱可塑性樹脂のガラス転移温度にもよるが、常温での使用に適しており、概ね80℃程度の環境下にて使用される場合に適している。 However, when a fiber reinforced resin molded product obtained using a thermoplastic resin and a reinforced fiber is used in a high temperature environment exceeding 100 ° C., the fiber reinforced resin molded product becomes flexible or deforms. There is. For this reason, the fiber reinforced resin molded article using the thermoplastic resin and the reinforcing fiber is suitable for use at room temperature, although it depends on the glass transition temperature of the thermoplastic resin, and in an environment of about 80 ° C. Suitable when used.
 そこで、高強力繊維と熱可塑性樹脂とを複合したプリプレグの表面を熱硬化性樹脂で被覆してなる高強力繊維複合体が提案されている(特許文献1、特許文献2)。 Therefore, a high-strength fiber composite has been proposed in which the surface of a prepreg composed of high-strength fibers and a thermoplastic resin is coated with a thermosetting resin (Patent Documents 1 and 2).
 しかしながら、特許文献1及び特許文献2に開示された高強力繊維複合体では、熱硬化性樹脂の取り扱いの煩雑さや成形性の課題が解決されていない。 However, in the high-strength fiber composites disclosed in Patent Document 1 and Patent Document 2, the complexity of handling the thermosetting resin and the problem of moldability have not been solved.
特開平6-91816号公報JP-A-6-91816 特開2013-233681号公報JP 2013-233681 A
 本発明は、加熱によって容易に目的とする形状に成形することができ、成形後は高温環境下であっても形態が安定した繊維強化樹脂成形体を得ることができる繊維強化樹脂材料および繊維強化樹脂成形体を提供することを目的としている。 INDUSTRIAL APPLICABILITY The present invention provides a fiber reinforced resin material and a fiber reinforced resin material that can be easily molded into a desired shape by heating and that can provide a fiber reinforced resin molded product having a stable form even under a high temperature environment after molding. It aims at providing the resin molding.
 本発明者らは、上記課題を解決するために鋭意検討の結果、本発明をするに至った。 The inventors of the present invention have made the present invention as a result of intensive studies in order to solve the above problems.
 すなわち、本発明は、例えば、以下の構成(1)~(14)である。 That is, the present invention has, for example, the following configurations (1) to (14).
 (1)本発明に係る繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱により再成形できない。 (1) The fiber reinforced resin material according to the present invention is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, which can be molded by heating, and has a specific temperature during or after the molding. After heating, it cannot be reshaped by heating.
 (2)本発明に係る繊維強化樹脂材料において、前記熱可塑性樹脂が、エポキシ樹脂であるとよい。 (2) In the fiber reinforced resin material according to the present invention, the thermoplastic resin may be an epoxy resin.
 (3)本発明に係る繊維強化樹脂材料には、官能基が2以上の架橋剤が含まれているとよい。 (3) The fiber reinforced resin material according to the present invention may contain a crosslinking agent having two or more functional groups.
 (4)本発明に係る繊維強化樹脂材料において、前記架橋剤は、ブロック型のイソシアネート系化合物およびノボラック型樹脂の少なくともいずれか1種を含むとよい。 (4) In the fiber reinforced resin material according to the present invention, the cross-linking agent may include at least one of a block type isocyanate compound and a novolac type resin.
 (5)本発明に係る繊維強化樹脂材料において、前記特定の温度は、130℃以上の温度であるとよい。 (5) In the fiber reinforced resin material according to the present invention, the specific temperature may be 130 ° C. or higher.
 (6)本発明に係る繊維強化樹脂材料は、前記特定の温度以上で加熱した後に、温度が150℃で、圧力が2MPaの加熱および加圧により再成形できないとよい。 (6) The fiber reinforced resin material according to the present invention may not be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at the specific temperature or higher.
 (7)本発明に係る繊維強化樹脂成形体は、上記(1)~(6)のいずれかに記載の繊維強化樹脂材料を用いて得られる。 (7) The fiber-reinforced resin molded body according to the present invention is obtained using the fiber-reinforced resin material described in any one of (1) to (6) above.
 (8)本発明に係る繊維強化樹脂成形体は、上記(1)~(6)のいずれかに記載の繊維強化樹脂材料を加熱することにより成形された繊維強化樹脂成形体であって、当該成形時または当該成形後に前記特定の温度以上で加熱されており、前記特定の温度以上で加熱した後は、加熱により再成形できない。 (8) A fiber-reinforced resin molded body according to the present invention is a fiber-reinforced resin molded body molded by heating the fiber-reinforced resin material according to any one of (1) to (6), It is heated at the specified temperature or higher at the time of molding or after the molding, and after heating at the specified temperature or higher, it cannot be reshaped by heating.
 (9)本発明に係る繊維強化樹脂成形体は、前記特定の温度以上で加熱した後に、温度が150℃で、圧力が2MPaの加熱および加圧により再成形できない。 (9) The fiber reinforced resin molded body according to the present invention cannot be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at the specific temperature or higher.
 (10)本発明に係る繊維強化樹脂成形体の製造方法は、熱可塑性樹脂を含む溶液を強化繊維に付与して所定の成形温度で加熱することによって繊維強化樹脂成形体を成形し、前記繊維強化樹脂成形体の成形時または成形後に特定の温度以上で前記繊維強化樹脂成形体を加熱することで加熱により再成形できない。 (10) In the method for producing a fiber reinforced resin molded body according to the present invention, the fiber reinforced resin molded body is molded by applying a solution containing a thermoplastic resin to the reinforced fiber and heating at a predetermined molding temperature. When the fiber reinforced resin molded body is heated at a specific temperature or higher at the time of molding or after molding of the reinforced resin molded body, it cannot be remolded by heating.
 (11)本発明に係る繊維強化樹脂成形体の製造方法において、前記熱可塑性樹脂は、エポキシ樹脂であるとよい。 (11) In the method for producing a fiber-reinforced resin molded body according to the present invention, the thermoplastic resin may be an epoxy resin.
 (12)本発明に係る繊維強化樹脂成形体の製造方法において、前記溶液には、官能基が2以上の架橋剤が含まれているとよい。 (12) In the method for producing a fiber-reinforced resin molded body according to the present invention, the solution may contain a crosslinking agent having two or more functional groups.
 (13)本発明に係る繊維強化樹脂成形体の製造方法において、前記架橋剤は、ブロック型のイソシアネート系化合物およびノボラック型樹脂の少なくともいずれか1種を含むとよい。 (13) In the method for producing a fiber-reinforced resin molded body according to the present invention, the cross-linking agent may include at least one of a block-type isocyanate compound and a novolac-type resin.
 (14)本発明に係る繊維強化樹脂成形体の製造方法において、前記特定の温度は、130℃以上の温度であるとよい。 (14) In the method for producing a fiber-reinforced resin molded body according to the present invention, the specific temperature may be 130 ° C. or higher.
 本発明に係る繊維強化樹脂材料によれば、熱による成形が可能なため成形体を容易に製造することができ、かつ、熱による形態安定性に優れた成形体を得ることができるため、高温環境下でも使用することが可能な繊維強化樹脂成形体を得ることができる。 According to the fiber reinforced resin material according to the present invention, since molding by heat is possible, a molded body can be easily manufactured, and a molded body having excellent shape stability by heat can be obtained. A fiber-reinforced resin molded product that can be used even in an environment can be obtained.
 また、本発明に係る繊維強化樹脂成形体によれば、高温での形態が安定しているため高温環境下においても使用できる。 Further, according to the fiber reinforced resin molded article according to the present invention, since the form at high temperature is stable, it can be used even in a high temperature environment.
 また、本発明に係る繊維強化樹脂成形体の製造方法によれば、高温での形態が安定している繊維強化樹脂成形体を得ることができる。 Further, according to the method for producing a fiber-reinforced resin molded body according to the present invention, a fiber-reinforced resin molded body having a stable form at a high temperature can be obtained.
 以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの態様のみに限定されるものではなく、本発明の精神と実施の範囲において多くの変形が可能である。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and many modifications can be made within the spirit and scope of the present invention.
 <繊維強化樹脂材料>
 本実施の形態に係る繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は、再度の加熱(または加熱および加圧)により再成形できないものである。
<Fiber-reinforced resin material>
The fiber reinforced resin material according to the present embodiment is a fiber reinforced resin material including a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressurization), and at the time of the molding or After heating at a specific temperature or higher after the molding, it cannot be remolded by reheating (or heating and pressing).
 熱可塑性樹脂そのものは、加熱して成形することができる温度またはその温度以上で変形してしまう。熱可塑性樹脂は、一般的には熱可塑性樹脂のガラス転移温度以上の温度で変形してしまう。そのため、一般的に、熱可塑性樹脂を含む樹脂材料を成形することで得られる成形体は、成形後であっても成形可能な温度で加熱すると変形してしまうので、一旦成形された後は、熱可塑性樹脂の成形可能な温度よりも低温の環境下でしか使用できない。 The thermoplastic resin itself is deformed at a temperature at which it can be heated and molded or at a temperature higher than that temperature. The thermoplastic resin is generally deformed at a temperature higher than the glass transition temperature of the thermoplastic resin. Therefore, in general, a molded body obtained by molding a resin material containing a thermoplastic resin is deformed when heated at a moldable temperature even after molding. It can be used only in an environment where the temperature is lower than the moldable temperature of the thermoplastic resin.
 これに対して、本実施の形態に係る繊維強化樹脂材料は、成形時または成形後に特定の温度以上で加熱することによって、この加熱後には再加熱による再成形ができないものである。そのため、本実施の形態に係る繊維強化樹脂材料を成形することで得られる繊維強化樹脂成形体は、熱可塑性樹脂を含む繊維強化樹脂材料を用いて成形されたものであるにもかかわらず、高温の環境下であっても使用することができる。つまり、本実施の形態に係る繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体は、一旦成形された後であっても、再成形を不可能とするための特定の温度を超えて、さらには、成形時の温度を越えて使用することも可能となる。なお、特定の温度以上での加熱の時間は、例えば、15秒~1時間程度である。 On the other hand, the fiber reinforced resin material according to the present embodiment cannot be re-molded by reheating after heating by heating at a specific temperature or higher during molding or after molding. Therefore, the fiber reinforced resin molded product obtained by molding the fiber reinforced resin material according to the present embodiment is molded using a fiber reinforced resin material containing a thermoplastic resin, although it is a high temperature. It can be used even in an environment of That is, the fiber reinforced resin molded body obtained using the fiber reinforced resin material according to the present embodiment exceeds a specific temperature for making re-molding impossible even after being molded once. Further, it can be used beyond the temperature at the time of molding. The heating time above a specific temperature is, for example, about 15 seconds to 1 hour.
 本実施の形態に係る繊維強化樹脂材料を成形するときの温度(つまり、特定の温度以上で加熱する前の温度)は、70℃~250℃であることが好ましい。得られる繊維強化樹脂成形体の熱安定性の観点からは、繊維強化樹脂材料を成形するときの温度(成形温度)は、80℃以上がより好ましく、90℃以上がより好ましい。また、得られる繊維強化樹脂成形体の成形性の観点からは、繊維強化樹脂材料を成形するときの温度は、200℃以下がより好ましく、150℃以下がさらに好ましい。この場合、加熱時間(成形時間)は、15秒~24時間、好ましくは、1分~1時間程度である。 The temperature at which the fiber-reinforced resin material according to the present embodiment is molded (that is, the temperature before heating at a specific temperature or higher) is preferably 70 ° C. to 250 ° C. From the viewpoint of the thermal stability of the obtained fiber reinforced resin molding, the temperature (molding temperature) when molding the fiber reinforced resin material is more preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. Moreover, from the viewpoint of moldability of the obtained fiber reinforced resin molded article, the temperature when molding the fiber reinforced resin material is more preferably 200 ° C. or less, and further preferably 150 ° C. or less. In this case, the heating time (molding time) is 15 seconds to 24 hours, preferably about 1 minute to 1 hour.
 特に、複数の繊維強化樹脂材料、たとえば2枚以上の板状の繊維強化樹脂材料や2以上のチップ状の繊維強化樹脂材料、またはこれらを組み合わせたものなど、一度固化した繊維強化樹脂材料を複数組み合わせて成形体を得る場合、繊維強化樹脂材料同士の一体化(強度、外観品位等)の観点から、繊維強化樹脂材料を成形するときの温度は130℃以下が好ましい。 In particular, a plurality of fiber reinforced resin materials that have been solidified once, such as a plurality of fiber reinforced resin materials, for example, two or more plate-like fiber reinforced resin materials, two or more chip-like fiber reinforced resin materials, or combinations thereof. When combining and obtaining a molded object, from the viewpoint of integration (strength, appearance quality, etc.) of fiber reinforced resin materials, the temperature at which the fiber reinforced resin material is molded is preferably 130 ° C. or lower.
 また、繊維強化樹脂材料を成形して特定の温度以上で加熱した後において加熱により再成形できないとは、少なくともこの特定の温度で再成形できないものをいう。この場合、加熱により再成形できなくなる特定の温度は、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の使用環境にもよるが、80℃以上の温度が好ましく、130℃以上の温度であることがさらに好ましい。また、得られる繊維強化樹脂成形体の熱による形態安定性の観点からは、加熱により再成形できないとは、温度が150℃で、圧力が2MPaの加熱および加圧にて再成形できないとよい。つまり、繊維強化樹脂材料は、加熱成形後にさらに特定の温度以上で加熱された後、温度が150℃で、圧力が2MPaの加熱および加圧により再成形できないものであればよい。この場合、加熱および加圧の時間は、例えば、15秒~1時間程度である。 Also, after a fiber reinforced resin material is molded and heated at a specific temperature or higher, it cannot be remolded by heating at least at a specific temperature. In this case, the specific temperature at which re-molding cannot be performed by heating depends on the use environment of the fiber-reinforced resin molded body obtained by using the fiber-reinforced resin material, but a temperature of 80 ° C. or higher is preferable, and a temperature of 130 ° C. or higher. More preferably it is. Further, from the viewpoint of shape stability due to heat of the obtained fiber-reinforced resin molded body, it is preferable that re-molding cannot be performed by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa. That is, the fiber reinforced resin material may be any material that cannot be remolded by heating and pressurizing at a temperature of 150 ° C. and a pressure of 2 MPa after being heated at a specific temperature or higher after thermoforming. In this case, the heating and pressurizing time is, for example, about 15 seconds to 1 hour.
 なお、本実施の形態における繊維強化樹脂材料は、特定の温度以上で加熱した後は、特定の温度よりもかなり高温での再加熱(または加熱および加圧)で再成形できるものを除くものではない。得られる繊維強化樹脂成形体の形体安定性の観点からは、特定の温度以上で加熱した後の再成形ができる温度は、特定の温度よりも50℃以上、好ましくは100℃以上、さらに好ましくは150℃以上、さらにより好ましくは200℃以上である。また、繊維強化樹脂成形体の再利用の観点からは、再成形ができる温度は、350℃以下が好ましく、より好ましくは250℃以下、さらにより好ましくは200℃以下である。 In addition, the fiber reinforced resin material in the present embodiment does not include those that can be reshaped by reheating (or heating and pressurizing) at a temperature considerably higher than the specific temperature after being heated at a specific temperature or higher. Absent. From the viewpoint of shape stability of the obtained fiber-reinforced resin molded article, the temperature at which re-molding after heating at a specific temperature or higher is 50 ° C or higher, preferably 100 ° C or higher, more preferably higher than the specific temperature. It is 150 ° C or higher, more preferably 200 ° C or higher. Further, from the viewpoint of reuse of the fiber-reinforced resin molded body, the temperature at which re-molding can be performed is preferably 350 ° C. or less, more preferably 250 ° C. or less, and even more preferably 200 ° C. or less.
 再生する必要がなければ、再加熱によって再成形できないものが好ましい。つまり、再加熱によって軟化または変形しないものが好ましい。 If it is not necessary to regenerate, those that cannot be reshaped by reheating are preferred. That is, those which are not softened or deformed by reheating are preferable.
 本実施の形態に係る繊維強化樹脂材料を構成する強化繊維は、好ましくは、炭素繊維であるとよい。強化繊維の中でも、炭素繊維は、軽量で強度があり、耐腐食性の観点から好ましい。 The reinforcing fibers constituting the fiber reinforced resin material according to the present embodiment are preferably carbon fibers. Among the reinforcing fibers, carbon fibers are light and strong, and are preferable from the viewpoint of corrosion resistance.
 また、強化繊維の形状は、特に限定されるものではなく、ステープル、綿状、糸状、紐状、テープ状、シート状、織物、編物または不織布等であってもよい。また、強化繊維が炭素繊維等の場合には、開繊されていてもいなくともよい。 The shape of the reinforcing fiber is not particularly limited, and may be staple, cotton, thread, string, tape, sheet, woven fabric, knitted fabric, nonwoven fabric, or the like. Further, when the reinforcing fiber is carbon fiber or the like, it may or may not be opened.
 本実施の形態に係る繊維強化樹脂材料を構成する熱可塑性樹脂は、好ましくは、エポキシ樹脂であるとよい。エポキシ樹脂は、破壊靱性、曲げ強度、耐衝撃性、圧縮強度などの強度の観点、および、耐酸、耐アルカリなどに対する耐薬品性も含めた耐久性の観点から好ましい。 The thermoplastic resin constituting the fiber reinforced resin material according to the present embodiment is preferably an epoxy resin. Epoxy resins are preferred from the viewpoints of strength such as fracture toughness, bending strength, impact resistance and compressive strength, and durability including chemical resistance against acid resistance and alkali resistance.
 また、本実施の形態に係る繊維強化樹脂材料には、官能基が2以上の架橋剤が含まれているとよい。このような架橋剤が含まれていることによって、特定の温度以上で加熱されることにより、繊維強化樹脂材料に含まれる熱可塑性樹脂が加熱による成形性を失い、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体の熱に対する形体安定性が増す。つまり、得られた繊維強化樹脂成形体が再加熱により再成形しにくくなる。 Further, the fiber reinforced resin material according to the present embodiment may contain a crosslinking agent having two or more functional groups. By including such a crosslinking agent, the thermoplastic resin contained in the fiber reinforced resin material loses moldability due to heating when heated at a specific temperature or higher, and is obtained using the fiber reinforced resin material. The shape stability against heat of the obtained fiber-reinforced resin molded body is increased. That is, the obtained fiber reinforced resin molded product is difficult to be remolded by reheating.
 繊維強化樹脂材料に含める架橋剤として特に好ましものは、ブロック型のイソシアネート系化合物またはノボラック型樹脂であり、繊維強化樹脂材料には、これらの少なくともいずれか1種が含まれているとよい。 Particularly preferred as a cross-linking agent to be included in the fiber reinforced resin material is a block type isocyanate compound or a novolac type resin, and the fiber reinforced resin material may contain at least one of them.
 架橋剤として、ブロック型のイソシアネート系化合物またはノボラック型樹脂を用いると、後に説明を行う熱可塑性樹脂、特に反応型の熱可塑性樹脂を用いた場合には、熱可塑性樹脂が直鎖状に重合する温度では当該架橋剤が架橋剤として反応せず、熱可塑性を有する繊維強化樹脂材料を安定して得ることができる。例えば、架橋剤として、ブロック型のイソシアネート系化合物を用いた場合には、イソシアネート基がブロック剤でブロックされているため架橋剤として反応しない。しかも、後に行う特定の温度以上での加熱では架橋剤が活性化し、例えば、前記のブロック剤でのブロックが外れ、直鎖状の熱可塑性樹脂同士を橋渡しするように架橋し、もしくは、イソシアネート系化合物同士や分子量の小さい熱可塑性樹脂と結合し障害物となり、直鎖状の熱可塑性樹脂の高温時の流動性を阻害し、その後、繊維強化樹脂材料およびそれを用いて得られた繊維強化樹脂成形体が再加熱で再成形できなくすることを、安定しておこなうことができる。したがって、ブロック型のイソシアネート系化合物またはノボラック型樹脂を用いると、特定の温度の設定が容易であり、熱可塑性を有し成形が容易な状態と、成形ができなくなる状態との管理が行いやすいので、繊維強化樹脂材料および繊維強化樹脂成形体の生産性や品質安定性の観点から、架橋剤としてブロック型のイソシアネート系化合物またはノボラック型樹脂を用いるとよい。 When a block type isocyanate compound or a novolak type resin is used as the crosslinking agent, the thermoplastic resin will be linearly polymerized when a thermoplastic resin, which will be described later, particularly a reactive type thermoplastic resin, is used. At the temperature, the crosslinking agent does not react as a crosslinking agent, and a fiber-reinforced resin material having thermoplasticity can be obtained stably. For example, when a block-type isocyanate compound is used as the crosslinking agent, the isocyanate group is blocked with the blocking agent, and thus does not react as the crosslinking agent. In addition, the crosslinking agent is activated by heating at a specific temperature or higher performed later, for example, the block with the blocking agent is removed, the linear thermoplastic resin is crosslinked so as to bridge each other, or an isocyanate type Bonds with other compounds and low molecular weight thermoplastic resins to become obstacles, impedes fluidity of linear thermoplastic resins at high temperatures, and then fiber reinforced resin materials and fiber reinforced resins obtained using them It is possible to stably prevent the molded body from being reshaped by reheating. Therefore, when a block-type isocyanate compound or novolac resin is used, it is easy to set a specific temperature, and it is easy to manage a state where it has thermoplasticity and can be easily molded, and a state where it cannot be molded. From the viewpoints of productivity and quality stability of the fiber reinforced resin material and the fiber reinforced resin molded article, a block type isocyanate compound or a novolak type resin may be used as a crosslinking agent.
 また、官能基が2以上の架橋剤は、架橋剤および熱可塑性樹脂の官能基の数によっても異なるが、熱可塑性樹脂100重量部に対し、1重量部以上含むとよい。この架橋剤の含有量が1重量部未満では、特定の温度以上による加熱後も再成形ができたり、熱による軟化や変形が大きすぎたりして、本発明の目的を達成できないおそれがある。この架橋剤の含有量は、好ましくは、熱可塑性樹脂100重量部に対して5重量部以上、さらに好ましくは10重量部以上、さらにより好ましくは15重量部以上である。この架橋剤の含有量の上限は特に限定されるものではないが、100重量部程度が上限である。なお、架橋剤を100重量部以上添加しても、得られる繊維強化樹脂材料や繊維強化樹脂成形体に対し、添加による効果がさほど向上しなかったり、もろくなったり、軟化しやすくなったりするおそれがある。架橋剤の含有量は、より好ましくは60重量部以下、さらに好ましくは50重量部以下、さらにより好ましくは40重量部以下である。 The cross-linking agent having two or more functional groups may be contained in an amount of 1 part by weight or more with respect to 100 parts by weight of the thermoplastic resin, although it varies depending on the number of functional groups of the cross-linking agent and the thermoplastic resin. If the content of the cross-linking agent is less than 1 part by weight, re-molding can be performed even after heating at a specific temperature or higher, and softening or deformation due to heat may be too large, and the object of the present invention may not be achieved. The content of the crosslinking agent is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and still more preferably 15 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin. The upper limit of the content of the crosslinking agent is not particularly limited, but the upper limit is about 100 parts by weight. In addition, even if 100 parts by weight or more of the crosslinking agent is added, there is a risk that the effect of the addition is not so much improved, fragile, or softened easily with respect to the obtained fiber reinforced resin material or fiber reinforced resin molded body. There is. The content of the crosslinking agent is more preferably 60 parts by weight or less, further preferably 50 parts by weight or less, and still more preferably 40 parts by weight or less.
 また、再加熱による再成形ができなくなる特定の温度は、130℃以上の温度であるとよい。この特定の温度とは、成形時または成形後に繊維強化樹脂材料または繊維強化樹脂成形体に行われる加熱であって強化繊維樹脂成形体がその温度での加熱以降、再成形できなくなる温度をいう。これは、特定の温度が130℃以上では、架橋剤としてブロック型のイソシアネート系化合物を用いた場合に、そのブロックが外れて活性のNCOを有するイソシアネート系化合物が、架橋剤として働き、直鎖状の熱可塑性樹脂同士を橋掛け状に架橋、もしくは、イソシアネート系化合物同士や分子量の小さい熱可塑性樹脂と結合して障害物となり、直鎖状の熱可塑性樹脂の高温時の流動性を阻害しているのではないかと推測している。 Also, the specific temperature at which re-molding by reheating cannot be performed is preferably 130 ° C. or higher. This specific temperature refers to the temperature at which the fiber reinforced resin material or the fiber reinforced resin molded body is heated during molding or after molding, and the reinforced fiber resin molded body cannot be remolded after heating at that temperature. This is because when a specific temperature is 130 ° C. or higher and a block type isocyanate compound is used as a crosslinking agent, the isocyanate compound having an active NCO is released from the block and acts as a crosslinking agent. These thermoplastic resins are cross-linked in a bridging manner, or combined with isocyanate compounds and low molecular weight thermoplastic resins to become obstacles, which inhibits the flowability of linear thermoplastic resins at high temperatures. I guess that there is.
 再加熱による再成形ができなくなる特定の温度は、成形が容易な熱可塑性樹脂材料を得るとの観点(つまり熱可塑性に優れた繊維強化樹脂材料を得るとの観点)からは、150℃以上が好ましく、さらに好ましくは190℃以上、さらにより好ましくは200℃以上である。この特定の温度が低いと、例えば、反応型の熱可塑性樹脂から直鎖状の分子構造を有する熱可塑性樹脂を得る際に、繊維強化樹脂材料の成形性が低下するおそれがある。これは、直鎖状の分子同士の橋掛けや架橋剤同士の反応も同時に起こる等からではないかと推測している。 From the viewpoint of obtaining a thermoplastic resin material that can be easily molded (that is, from the viewpoint of obtaining a fiber-reinforced resin material excellent in thermoplasticity), the specific temperature at which re-molding by reheating is impossible is 150 ° C. or higher. Preferably, it is 190 ° C. or higher, more preferably 200 ° C. or higher. When this specific temperature is low, for example, when obtaining a thermoplastic resin having a linear molecular structure from a reactive thermoplastic resin, the moldability of the fiber-reinforced resin material may be lowered. This is presumed to be because, for example, crosslinking between linear molecules and reaction between crosslinking agents occur simultaneously.
 また、特定の温度の上限は、目的とする形状の繊維強化樹脂成形体を生産性よく得るとの観点からは、350℃、より好ましくは300℃、さらにより好ましくは270℃、さらにより好ましくは250℃である。 In addition, the upper limit of the specific temperature is 350 ° C., more preferably 300 ° C., even more preferably 270 ° C., and even more preferably from the viewpoint of obtaining a fiber-reinforced resin molded article having a target shape with good productivity. 250 ° C.
 なお、本実施の形態に係る繊維強化樹脂材料において、加熱により再成形できないとは、加熱(または加熱および加圧)により特定の形状に成形することができなくなることをいう。つまり、加熱により再成形できないとは、加熱により全く再成形できないことだけではなく、加熱により再生しにくいことも含んでおり、成形できなければ、加熱により軟化すること、または、加熱時に力がかかっているときには変形するが加熱しなければ変形しないようなことも含む。このように、繊維強化樹脂材料を成形することで得られた繊維強化樹脂成形体は、加熱により軟化するものであってもよいが、好ましくは、繊維強化樹脂成形体の使用環境温度では軟化および/または変形しないものがよい。 In the fiber reinforced resin material according to the present embodiment, the fact that it cannot be reshaped by heating means that it cannot be formed into a specific shape by heating (or heating and pressurizing). In other words, not being able to be reshaped by heating includes not only being unable to be reshaped at all by heating, but also being difficult to regenerate by heating. If it cannot be molded, it will be softened by heating, or force will be applied during heating. It includes deformation that occurs when it is deformed but does not deform unless heated. As described above, the fiber reinforced resin molded product obtained by molding the fiber reinforced resin material may be softened by heating. Preferably, the fiber reinforced resin molded product is softened at the use environment temperature. The thing which does not deform | transform is good.
 また、本実施の形態に係る繊維強化樹脂材料の好ましい一例について、さらに詳細に説明する。 Further, a preferred example of the fiber reinforced resin material according to the present embodiment will be described in more detail.
 熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料は、好ましくは、熱可塑性樹脂と一方向に配列された強化繊維の束とを含む繊維強化樹脂材料であって、前記熱可塑性樹脂が反応型樹脂であるとよい。 The fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber is preferably a fiber reinforced resin material containing a thermoplastic resin and a bundle of reinforced fibers arranged in one direction, and the thermoplastic resin is reactive. It may be a resin.
 本実施の形態に係る繊維強化樹脂材料は、熱可塑性樹脂と炭素繊維の束とを含むものであるので、熱可塑性があり、加熱(または加熱および加圧)により容易に成形することができ、所望の繊維強化樹脂成形体を得ることができる。得られた繊維強化樹脂成形体は、特定の温度未満での加熱処理では、一度、成形させた後であっても加熱処理により容易に再成形でき、逆に、特定の温度以上で加熱処理後は、当該特定の温度で再度加熱処理を行っても再成形できないものである。 Since the fiber-reinforced resin material according to the present embodiment includes a thermoplastic resin and a bundle of carbon fibers, the fiber-reinforced resin material has thermoplasticity and can be easily molded by heating (or heating and pressurizing), and has a desired shape. A fiber-reinforced resin molded product can be obtained. The obtained fiber-reinforced resin molded product can be easily re-molded by heat treatment even after being molded once by heat treatment at a temperature lower than a specific temperature, and conversely after heat treatment at a specific temperature or higher. Cannot be reshaped even if the heat treatment is performed again at the specific temperature.
 一般に、熱可塑性樹脂は、成形可能な温度であれば加熱により何度でも変形させることができるが、本実施の形態における繊維強化樹脂成形体は、特定の温度以上で加熱した後は、当該特定の温度で再度加熱を行っても変形しないものである。 In general, a thermoplastic resin can be deformed any number of times by heating at a moldable temperature, but the fiber-reinforced resin molded body in the present embodiment is not specified after being heated at a specific temperature or higher. Even if heating is performed again at a temperature of 1, this does not deform.
 本実施の好ましい形態は、反応型の熱可塑性樹脂が加熱されることで、直鎖状に結合した分子構造の熱可塑性樹脂になる場合である。この状態では、熱可塑性樹脂が直鎖状のため比較的低温のガラス転移温度を有し、当該温度以上であれば、何度でも成形は可能である。また、特定の温度以上で加熱する前の繊維強化樹脂材料は、熱硬化性樹脂のように厳格な低温環境での保存等を行う必要がないため、保管等も容易である。 A preferable embodiment of the present embodiment is a case where the reaction type thermoplastic resin is heated to become a thermoplastic resin having a molecular structure bonded in a straight chain. In this state, since the thermoplastic resin is linear, it has a relatively low glass transition temperature, and can be molded any number of times as long as the temperature is equal to or higher than that temperature. Moreover, since the fiber reinforced resin material before heating at a specific temperature or higher does not need to be stored in a strict low temperature environment unlike a thermosetting resin, it can be easily stored.
 一方、この繊維強化樹脂材料を特定の温度以上で加熱することにより直鎖状の熱可塑性樹脂を更に結合させたり、好ましくは繊維強化樹脂材料に官能基が2以上の架橋剤等を含めることにより架橋剤と直鎖状の熱可塑性樹脂とが反応する温度以上に、あるいは、架橋剤同士が反応する温度以上に、この繊維強化樹脂材料を加熱したりすることにより、熱に対する形態安定性が向上する。つまり、再加熱により再成形しにくくなる。 On the other hand, by heating the fiber reinforced resin material at a specific temperature or higher, a linear thermoplastic resin is further bonded, or preferably, the fiber reinforced resin material includes a crosslinking agent having two or more functional groups. Form stability against heat is improved by heating this fiber reinforced resin material above the temperature at which the cross-linking agent and the linear thermoplastic resin react, or above the temperature at which the cross-linking agents react with each other. To do. That is, it becomes difficult to remold by reheating.
 この理由は、特定の温度以上で加熱することにより、直鎖状のものが架橋剤により橋掛けされた分子構造の樹脂となったり、熱可塑性樹脂のガラス転移温度が大きく上昇したり、熱可塑性樹脂が熱硬化性となったり、架橋剤による他の化合物が生成したりなどにより、当該温度で処理する前には成形が可能であった加熱及び加圧条件で再度加熱しても、繊維強化樹脂材料およびこれを用いて得られた繊維強化樹脂成形体は再成形できなくなるものと推測している。 The reason for this is that by heating at a specific temperature or higher, a linear resin becomes a resin having a molecular structure crosslinked by a crosslinking agent, the glass transition temperature of the thermoplastic resin is greatly increased, or thermoplasticity is increased. Even if it is heated again under heating and pressurization conditions that could be molded before processing at that temperature due to the resin becoming thermosetting or other compounds formed by the crosslinking agent, etc., fiber reinforcement It is presumed that the resin material and the fiber reinforced resin molded product obtained using the resin material cannot be remolded.
 なお、本実施の形態に係る繊維強化樹脂材料については、熱硬化性樹脂のように特定の温度以上に加熱する前のものを低温で保管したりする必要がなく、また、架橋剤を反応させる加熱時においては熱硬化性樹脂の硬化時のように長時間を要することなく容易に加熱処理を行うことができる。 In addition, about the fiber reinforced resin material which concerns on this Embodiment, it is not necessary to store the thing before heating more than specific temperature like a thermosetting resin at low temperature, and a crosslinking agent is made to react. At the time of heating, the heat treatment can be easily performed without requiring a long time as in the case of curing the thermosetting resin.
 本実施の形態の繊維強化樹脂材料の形状は、シート状、テープ状、柱状、紐状、線状、粒状、チップ状、板状、ブロック状等であり、特に限定されるものではない。また、強化繊維の繊維軸方向に対し垂直方向に切断した断面も、円状、楕円状、扁平状、多角形状等であり、特に限定されるものではない。なお、ここでいう垂直方向とは、繊維強化樹脂材料に含まれる強化繊維の繊維軸方向が一方向に配列している場合には強化繊維の繊維軸方向におおよそ垂直な方向であればよい。 The shape of the fiber reinforced resin material of the present embodiment is not particularly limited, and may be a sheet shape, a tape shape, a column shape, a string shape, a linear shape, a granular shape, a chip shape, a plate shape, a block shape, or the like. Moreover, the cross section cut | disconnected by the orthogonal | vertical direction with respect to the fiber-axis direction of a reinforced fiber is circular, elliptical, flat shape, polygonal shape, etc., and is not specifically limited. In addition, the perpendicular direction here should just be a direction substantially perpendicular | vertical to the fiber axis direction of a reinforced fiber, when the fiber axis direction of the reinforced fiber contained in a fiber reinforced resin material has arranged in one direction.
 また、繊維強化樹脂材料の大きさも特に限定されるものではないが、繊維強化樹脂材料に含まれる強化繊維の繊維軸方向が一方向に配列しているチップ状の場合には、繊維強化樹脂材料の破壊靱性、曲げ強度、耐衝撃性、圧縮強度などの強度の観点より、繊維強化樹脂材料の繊維軸方向の長さは5mm~500mmであることが好ましい。繊維強化樹脂材料の繊維軸方向の長さが10mm以上であるとより好ましく、20mm以上であるとさらにより好ましい。また、繊維強化樹脂材料の繊維軸方向の長さは、さらに好ましくは30mm以上であるとよく、また、さらに好ましくは40mm以上、また、さらに好ましくは50mm超であるとよい。 Also, the size of the fiber reinforced resin material is not particularly limited, but in the case of a chip shape in which the fiber axis directions of the reinforced fibers contained in the fiber reinforced resin material are arranged in one direction, the fiber reinforced resin material From the viewpoint of strength such as fracture toughness, bending strength, impact resistance, and compressive strength, the length in the fiber axis direction of the fiber reinforced resin material is preferably 5 mm to 500 mm. The length in the fiber axis direction of the fiber reinforced resin material is more preferably 10 mm or more, and even more preferably 20 mm or more. The length of the fiber reinforced resin material in the fiber axis direction is more preferably 30 mm or more, further preferably 40 mm or more, and further preferably more than 50 mm.
 また、高温にて再成形して使用する場合も、織物等を用いた場合に比べ、チップ状の繊維強化樹脂材料は、任意の方向への成形性や各種強度の安定性が優れている。 In addition, even when remolded at high temperatures, the chip-like fiber reinforced resin material is superior in moldability in any direction and stability in various strengths compared to the case of using a woven fabric or the like.
 また、繊維強化樹脂材料の繊維軸方向の長さの上限も特に限定されるものではない。得られる繊維強化樹脂成形体の大きさにもよるが、繊維強化樹脂材料の繊維軸方向の長さが500mm以下であると、繊維強化樹脂材料が大きく折り曲げられたり、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の強度に関する異方性を抑制したりできるので、圧縮強度や耐衝撃性も含めて安定した強度を有する繊維強化樹脂成形体が得られる。繊維強化樹脂材料の繊維軸方向の長さは、得られる繊維強化樹脂成形体の大きさにもよるが、好ましくは300mm以下がよく、100mm以下がさらによりよい。 Also, the upper limit of the length of the fiber reinforced resin material in the fiber axis direction is not particularly limited. Depending on the size of the obtained fiber reinforced resin molded product, if the length of the fiber reinforced resin material in the fiber axis direction is 500 mm or less, the fiber reinforced resin material may be greatly bent, or the fiber reinforced resin material may be used. Since the anisotropy related to the strength of the resulting fiber reinforced resin molded article can be suppressed, a fiber reinforced resin molded article having stable strength including compressive strength and impact resistance can be obtained. The length in the fiber axis direction of the fiber reinforced resin material depends on the size of the obtained fiber reinforced resin molded article, but is preferably 300 mm or less, and more preferably 100 mm or less.
 なお、繊維強化樹脂材料の繊維軸方向の長さとは、繊維強化樹脂材料の構成要素である強化繊維の繊維軸方向の長さをいう。 The length in the fiber axis direction of the fiber reinforced resin material refers to the length in the fiber axis direction of the reinforced fiber that is a component of the fiber reinforced resin material.
 また、繊維軸方向以外の長さについても特に限定されないが、繊維強化樹脂材料の生産性と得られる繊維強化樹脂成形体の強度の観点より、繊維軸方向以外の長さは、繊維軸方向の長さよりも短い方がよい。 Further, the length other than the fiber axis direction is not particularly limited, but from the viewpoint of the productivity of the fiber reinforced resin material and the strength of the obtained fiber reinforced resin molded product, the length other than the fiber axis direction is the length in the fiber axis direction. Shorter than the length is better.
 また、繊維強化樹脂材料の幅は、300mm以下がよく、好ましくは100mm以下、さらに好ましくは50mm以下、さらにより好ましくは30mm以下であり、さらにより好ましくは10mm以下、さらにより好ましくは5mm以下である。なお、繊維強化樹脂材料の幅の下限値には特に制限はないが、生産時のハンドリング性やコストの合理化などの観点より繊維強化樹脂材料の幅は1mm以上であるとよい。 The width of the fiber reinforced resin material is preferably 300 mm or less, preferably 100 mm or less, more preferably 50 mm or less, even more preferably 30 mm or less, even more preferably 10 mm or less, and even more preferably 5 mm or less. . In addition, although there is no restriction | limiting in particular in the lower limit of the width | variety of fiber reinforced resin material, the width | variety of fiber reinforced resin material is good to be 1 mm or more from viewpoints, such as handling property at the time of production and rationalization of cost.
 繊維強化樹脂材料の幅が上記の上限値以下であれば、加熱及び加圧して得られる繊維強化樹脂成形体中にて強化繊維の束の繊維軸方向がランダムになりやすいので、得られる繊維強化樹脂成形体の強度及びその安定性の観点から、繊維強化樹脂材料の幅の上限値は上記の値にするとよい。 If the width of the fiber reinforced resin material is equal to or less than the above upper limit value, the fiber axis direction of the bundle of reinforcing fibers is likely to be random in the fiber reinforced resin molded body obtained by heating and pressing, and thus the fiber reinforcement obtained From the viewpoint of the strength of the resin molding and its stability, the upper limit of the width of the fiber reinforced resin material is preferably set to the above value.
 また、繊維強化樹脂材料の繊維軸方向の長さと幅との関係は、幅に対して、繊維軸方向の長さが大きい方がよい。好ましくは、繊維強化樹脂材料の幅を1とすると、繊維軸方向の長さは1.5以上、好ましくは2.0以上、さらに好ましくは3.0以上、さらにより好ましくは4.0以上、さらにより好ましくは5.0以上であるとよい。 Also, the relationship between the length and the width of the fiber reinforced resin material in the fiber axis direction is preferably larger in the fiber axis direction than the width. Preferably, when the width of the fiber reinforced resin material is 1, the length in the fiber axis direction is 1.5 or more, preferably 2.0 or more, more preferably 3.0 or more, even more preferably 4.0 or more, Even more preferably, it is 5.0 or more.
 繊維強化樹脂材料の繊維軸方向の長さと幅との関係において、上記の下限値以上であると、繊維強化樹脂材料が繊維強化樹脂成形体中で面方向だけではなく厚み方向にも複雑に重なり合って3次元にランダムな状態となり、強度が向上、特に厚みの厚い成形体では圧縮強度が向上し、また、厚みの薄い成形体では後述するように万が一割れた場合の切断面の安全性が向上する。このように圧縮強度が向上する理由は、繊維強化樹脂材料が3次元にランダムに重なり合っているために圧縮による移動が抑制されるからであると考えられる。 In the relationship between the length and width in the fiber axis direction of the fiber reinforced resin material, the fiber reinforced resin material overlaps not only in the surface direction but also in the thickness direction in the fiber reinforced resin molded product if the value is equal to or greater than the above lower limit value. In a three-dimensional random state, the strength is improved, especially in the case of a thick molded body, the compressive strength is improved, and in the case of a thin molded body, the safety of the cut surface in the event of a crack is improved as will be described later. To do. The reason why the compressive strength is improved in this way is considered to be that the movement due to compression is suppressed because the fiber reinforced resin materials are randomly overlapped in three dimensions.
 また、繊維強化樹脂材料の繊維軸方向の長さと幅との関係における上限については、繊維強化樹脂材料の幅を1とすると、繊維軸方向の長さは50.0以下がよく、より好ましくは30.0以下、さらに好ましくは20.0以下である。 Moreover, about the upper limit in the relationship between the length and width of the fiber reinforced resin material in the fiber axis direction, when the width of the fiber reinforced resin material is 1, the length in the fiber axis direction is preferably 50.0 or less, more preferably 30.0 or less, more preferably 20.0 or less.
 繊維強化樹脂材料の繊維軸方向の長さと幅との関係において、上記の上限値を超えると、繊維強化樹脂成形体の生産性や強度の安定性が低下するおそれがある。 In the relationship between the length and width in the fiber axis direction of the fiber reinforced resin material, if the above upper limit is exceeded, the productivity and strength stability of the fiber reinforced resin molded product may be lowered.
 また、本実施の形態の繊維強化樹脂材料の厚みは、特に限定されるものではないが、0.10mm以上、好ましくは0.15mm以上、さらに好ましくは0.20mm以上、さらにより好ましくは0.3mm以上であるとよく、さらには0.5mm以上、さらにより好ましくは1.0mm以上であるとよい。繊維強化樹脂材料の厚みの上限はおおよそ100mm程度である。 The thickness of the fiber reinforced resin material of the present embodiment is not particularly limited, but is 0.10 mm or more, preferably 0.15 mm or more, more preferably 0.20 mm or more, and even more preferably 0.00. It may be 3 mm or more, further 0.5 mm or more, and even more preferably 1.0 mm or more. The upper limit of the thickness of the fiber reinforced resin material is about 100 mm.
 繊維強化樹脂材料の厚みは、上記の下限値以上であれば、得られる繊維強化樹脂材料のハンドリング性が向上する。炭素繊維やバサルト繊維を強化繊維として用いた場合には、強度に異方性があるため、繊維強化樹脂材料の厚みが上記の下限値未満であると、繊維強化樹脂成形体を製造する前に、繊維強化樹脂材料が割れるおそれがある。また、繊維強化樹脂材料の生産性の観点や、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体を加熱及び加圧して製造する際に繊維強化樹脂材料同士の隙間に合わせて繊維強化樹脂材料が厚みや幅方向等に変形して当該隙間が埋められて強度向上及び強度の安定性の観点からも繊維強化樹脂材料の厚みは上記の下限値以上であるとよい。 If the thickness of the fiber reinforced resin material is not less than the above lower limit value, the handleability of the obtained fiber reinforced resin material is improved. When carbon fiber or basalt fiber is used as the reinforcing fiber, there is anisotropy in strength. Therefore, if the thickness of the fiber reinforced resin material is less than the above lower limit, before manufacturing the fiber reinforced resin molded product The fiber reinforced resin material may break. In addition, when the fiber reinforced resin material is manufactured by heating and pressurizing a fiber reinforced resin material obtained from the viewpoint of the productivity of the fiber reinforced resin material or by using the fiber reinforced resin material, the fiber reinforced resin material is adjusted. The thickness of the fiber-reinforced resin material is preferably equal to or more than the above lower limit value from the viewpoint of strength improvement and strength stability because the material is deformed in the thickness or width direction and the gap is filled.
 また、繊維強化樹脂材料の厚みが上記の上限値以下であれば、炭素繊維の束の内部にまで熱可塑性樹脂を十分に含浸させることができる。また、繊維強化樹脂材料の生産性の観点及び繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の強度の観点からも繊維強化樹脂材料の厚みは上記の上限値以下であるとよい。さらに、繊維強化樹脂材料の厚みが上記の上限値以下であれば、繊維強化樹脂成形体を加熱及び加圧して製造する際に、繊維強化樹脂成形体中に空気が含まれることなどを抑制し、強度や生産が安定する。 Further, if the thickness of the fiber reinforced resin material is not more than the above upper limit value, the thermoplastic resin can be sufficiently impregnated into the carbon fiber bundle. Further, the thickness of the fiber reinforced resin material is preferably not more than the above upper limit value from the viewpoint of the productivity of the fiber reinforced resin material and the strength of the fiber reinforced resin molded product obtained using the fiber reinforced resin material. Furthermore, when the thickness of the fiber reinforced resin material is equal to or less than the above upper limit value, when the fiber reinforced resin molded body is manufactured by heating and pressurizing, the fiber reinforced resin molded body is prevented from containing air. , Strength and production are stable.
 熱により溶融して用いられる熱可塑性樹脂は、強化繊維の束への含浸が困難であるため、強化繊維の束を0.13mm以下の薄いシート状にする必要があるが、本実施の形態の繊維強化樹脂材料であれば、反応型の熱可塑性樹脂を用いているため熱可塑性樹脂が強化繊維の束に容易に含浸するので強化繊維の束を薄くする必要がなく、厚みの厚い繊維強化樹脂材料が得られる。 The thermoplastic resin used by being melted by heat is difficult to impregnate the bundle of reinforcing fibers, so the bundle of reinforcing fibers needs to be made into a thin sheet of 0.13 mm or less. If it is a fiber reinforced resin material, since a reactive thermoplastic resin is used, the thermoplastic resin easily impregnates the bundle of reinforcing fibers, so there is no need to make the bundle of reinforcing fibers thin, and a thick fiber reinforced resin. A material is obtained.
 なお、上記は繊維強化樹脂材料に含まれる強化繊維の繊維軸方向が一方向に配列しているチップ状の場合の説明であるが、繊維強化樹脂材料の形状はこれらに限定されるものではなく、任意の形状とすることができる。 The above description is for a chip shape in which the fiber axis directions of the reinforcing fibers contained in the fiber reinforced resin material are arranged in one direction, but the shape of the fiber reinforced resin material is not limited to these. , Can be any shape.
 また、本実施の形態の繊維強化樹脂材料における繊維体積含有率(Vf値)は20%~80%であることが好ましい。繊維強化樹脂材料のVf値は、当該繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の強度の観点から、より好ましくは30%以上、さらに好ましくは40%以上がよい。また、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の外観品位の観点、成形性の観点及び強度の観点から、繊維強化樹脂材料のVf値は、より好ましくは70%以下、さらに好ましくは60%前後がよい。 Further, the fiber volume content (Vf value) in the fiber reinforced resin material of the present embodiment is preferably 20% to 80%. The Vf value of the fiber reinforced resin material is preferably 30% or more, and more preferably 40% or more, from the viewpoint of the strength of the fiber reinforced resin molded article obtained using the fiber reinforced resin material. In addition, from the viewpoint of appearance quality, moldability, and strength of the fiber reinforced resin molded article obtained using the fiber reinforced resin material, the Vf value of the fiber reinforced resin material is more preferably 70% or less, and still more preferably. Is preferably around 60%.
 なお、繊維強化樹脂材料の形状にもよるが、繊維強化樹脂成形体を得るために、繊維強化樹脂材料を加熱及び加圧した際に、繊維強化樹脂材料の内部に空間が発生する場合には、繊維強化樹脂材料のVf値は、50%以下、より好ましくは45%以下がよい繊維強化樹脂材料の材料間に空間ができると、得られる繊維強化樹脂成形体の強度が低下したり、安定した強度が得られなかったりするおそれがある。 Depending on the shape of the fiber reinforced resin material, when a space is generated inside the fiber reinforced resin material when the fiber reinforced resin material is heated and pressurized to obtain a fiber reinforced resin molded product, The fiber reinforced resin material has a Vf value of 50% or less, more preferably 45% or less. If there is a space between the fiber reinforced resin materials, the strength of the resulting fiber reinforced resin molded product may be reduced or stable. There is a risk that the obtained strength may not be obtained.
 <<熱可塑性樹脂>>
 本実施の形態に係る繊維強化樹脂材料に用いられる熱可塑性樹脂は、エポキシ樹脂、ポリアミド樹脂、アクリル樹脂、ポリフェニレンサルファイド樹脂、ポリ塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリアセタール樹脂、ポリカーボネート、ポリウレタン、ポリブチレンテレフタレート、アクリロニトリルブタジエンスチレン(ABS)樹脂、変性ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリエステル等の熱可塑性樹脂である。熱可塑性樹脂としては、好ましくは、硬化剤や触媒、重合開始剤、重合促進剤などの添加剤を添加したり加熱したりすることにより、反応が開始又は反応が促進等されて硬化する反応型樹脂であり、硬化した後も熱可塑性を有するものがよい。また、熱可塑性樹脂としては、熱可塑性を維持するため、分子構造が直鎖状のものが好ましい。また、複数種の熱可塑性樹脂を配合して用いてもよい。
<< Thermoplastic resin >>
The thermoplastic resin used for the fiber reinforced resin material according to the present embodiment is epoxy resin, polyamide resin, acrylic resin, polyphenylene sulfide resin, polyvinyl chloride resin, polyethylene, polypropylene, polyacetal resin, polycarbonate, polyurethane, polybutylene terephthalate. , Acrylonitrile butadiene styrene (ABS) resin, modified polyphenylene ether resin, phenoxy resin, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, and aromatic polyester. The thermoplastic resin is preferably a reaction type that cures by adding or heating an additive such as a curing agent, a catalyst, a polymerization initiator, or a polymerization accelerator, or by starting the reaction or promoting the reaction. A resin that has thermoplasticity after curing is preferable. The thermoplastic resin preferably has a linear molecular structure in order to maintain thermoplasticity. Moreover, you may mix | blend and use multiple types of thermoplastic resins.
 なお、熱可塑性樹脂は、反応後に化学構造が変わる場合もあり、例えば、エポキシ樹脂は、反応後にフェノキシ樹脂になる。また、本発明の目的を逸脱しない範囲で、熱可塑性樹脂に熱硬化性樹脂を配合してもよい。 In addition, the chemical structure of the thermoplastic resin may change after the reaction. For example, the epoxy resin becomes a phenoxy resin after the reaction. Moreover, you may mix | blend a thermosetting resin with a thermoplastic resin in the range which does not deviate from the objective of this invention.
 このような熱可塑性樹脂を用いて得られた繊維強化樹脂材料は、加熱することにより容易に変形させることができ、また、成形時または成形後に特定の温度以上で加熱することにより再成形できなくなるものである。 The fiber reinforced resin material obtained by using such a thermoplastic resin can be easily deformed by heating, and cannot be remolded by heating at or above a specific temperature during or after molding. Is.
 破壊靱性、曲げ強度、耐衝撃性、圧縮強度などの強度、耐酸、耐アルカリなどに対する耐薬品性も含めた耐久性の観点より、反応型の熱可塑性樹脂として特に好ましくは反応型の熱可塑性エポキシ樹脂である。また、強化繊維として炭素繊維を用いる場合には、炭素繊維との親和性の観点からも反応型の熱可塑性エポキシ樹脂が好ましく、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の強度及びその耐久性がより向上する。なお、本実施の形態における反応型の熱可塑性エポキシ樹脂は、反応後にフェノキシ樹脂になるものも含む。また、エポキシ樹脂は、後に説明をおこなう架橋剤と反応することが可能な官能基、たとえばOH基(-OH)を有するとよい。 From the viewpoint of durability including fracture toughness, bending strength, impact resistance, compressive strength, and chemical resistance against acid and alkali resistance, a reactive thermoplastic epoxy is particularly preferable as a reactive thermoplastic resin. Resin. Moreover, when using carbon fiber as the reinforcing fiber, a reactive thermoplastic epoxy resin is preferable from the viewpoint of affinity with the carbon fiber, and the strength of the fiber reinforced resin molded product obtained using the fiber reinforced resin material and Its durability is further improved. In addition, the reactive thermoplastic epoxy resin in this Embodiment includes what becomes a phenoxy resin after reaction. The epoxy resin preferably has a functional group capable of reacting with a cross-linking agent described later, for example, an OH group (—OH).
 このような反応型の熱可塑性樹脂は、硬化剤で硬化させる前は、常温で液状又は溶剤により溶解又は分散したものとすることができるため、樹脂を強化繊維の束の内部にまで含浸させることができる。また、強化繊維の束の内部にまで樹脂が存在しているため、強化繊維と熱可塑性樹脂が十分絡み合う(接触し合う)。このため、本実施の形態の繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体は、優れた強度を有し、また、ばらつきを抑制した安定した強度を有する。 Since such a reactive thermoplastic resin can be dissolved or dispersed in a liquid or solvent at room temperature before being cured with a curing agent, the resin is impregnated into the bundle of reinforcing fibers. Can do. Further, since the resin is present even inside the bundle of reinforcing fibers, the reinforcing fibers and the thermoplastic resin are sufficiently intertwined (contacted with each other). For this reason, the fiber reinforced resin molded object obtained using the fiber reinforced resin material of this Embodiment has the outstanding intensity | strength, and has the stable intensity | strength which suppressed the dispersion | variation.
 また、反応型の熱可塑性樹脂は、加熱溶融させて使用する未反応型の熱可塑性樹脂に比べ、反応前の熱可塑性樹脂の分子量が小さく流動性を高め、反応後に例えば数平均分子量で1万以上ないし3万以上に高分子化すること、また、架橋の状態も調整することが可能であり、強度の向上や可撓性、熱変形性の調整も可能である。また、官能基が2以上の架橋剤との混合も容易である。 In addition, the reaction type thermoplastic resin has a smaller molecular weight of the thermoplastic resin before the reaction than the unreacted thermoplastic resin used after being melted by heating, and improves the fluidity. After the reaction, for example, the number average molecular weight is 10,000. It can be polymerized to 30,000 or more and the state of crosslinking can be adjusted, and the strength can be improved, and flexibility and heat deformation can be adjusted. Moreover, mixing with a crosslinking agent having two or more functional groups is also easy.
 また、熱可塑性樹脂と以下に説明する架橋剤を反応させる前の熱可塑性樹脂の成形することができる温度及びガラス転移温度は70~250℃であることが好ましい。得られる繊維強化樹脂成形体の熱安定性の観点からは、熱可塑性樹脂の成形することができる温度及びガラス転移温度は、80℃以上がより好ましく、90℃以上がより好ましい。また、得られる繊維強化樹脂成形体の成形性の観点からは、熱可塑性樹脂の成形することのできる温度およびガラス転移温度は、200℃以下がより好ましく、150℃以下がさらに好ましい。 The temperature at which the thermoplastic resin can be molded and the glass transition temperature before reacting the thermoplastic resin with the crosslinking agent described below are preferably 70 to 250 ° C. From the viewpoint of the thermal stability of the obtained fiber-reinforced resin molded article, the temperature at which the thermoplastic resin can be molded and the glass transition temperature are more preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. Further, from the viewpoint of moldability of the obtained fiber reinforced resin molded article, the temperature at which the thermoplastic resin can be molded and the glass transition temperature are more preferably 200 ° C. or less, and further preferably 150 ° C. or less.
 特に、複数の繊維強化樹脂材料、たとえば2枚以上の板状の繊維強化樹脂材料や2以上のチップ状の繊維強化樹脂材料、またはこれらを組み合わせたものなど、一度固化した繊維強化樹脂材料を複数組み合わせて成形体を得る場合には、特定の温度以上で加熱する前の熱可塑性樹脂を成形することのできる温度およびガラス転移温度は150℃未満が好ましく、130℃以下が、繊維強化樹脂材料同士の一体化(強度、外観品位等)の観点より、より好ましい。 In particular, a plurality of fiber reinforced resin materials that have been solidified once, such as a plurality of fiber reinforced resin materials, for example, two or more plate-like fiber reinforced resin materials, two or more chip-like fiber reinforced resin materials, or combinations thereof. In the case of obtaining a molded body in combination, the temperature and glass transition temperature at which the thermoplastic resin before heating at a specific temperature or higher can be molded is preferably less than 150 ° C., and 130 ° C. or lower is used between the fiber reinforced resin materials. From the viewpoint of integration (strength, appearance quality, etc.), it is more preferable.
 また、熱可塑性樹脂と以下に説明する架橋剤とをあるいは架橋剤同士を反応させた後(特定の温度以上で加熱した後)の熱可塑性樹脂の加熱により再成形できる温度は150℃超であることが好ましい。得られる繊維強化樹脂成形体の熱安定性の観点からは、熱可塑性樹脂の加熱により再成形できる温度は、190℃以上がより好ましく、さらに好ましくは240℃以上がよい。また、得られる繊維強化樹脂成形体の成形性の観点からは、熱可塑性樹脂の加熱により再成形できる温度の上限は、特に限定されるものではなく、樹脂の種類や架橋剤等により変わるが、400℃程度である。 Further, the temperature at which re-molding can be performed by heating the thermoplastic resin after reacting the thermoplastic resin with the crosslinking agent described below or after the crosslinking agents are reacted with each other (after heating at a specific temperature or higher) is higher than 150 ° C. It is preferable. From the viewpoint of the thermal stability of the obtained fiber reinforced resin molded article, the temperature at which the thermoplastic resin can be reshaped by heating is more preferably 190 ° C or higher, and further preferably 240 ° C or higher. In addition, from the viewpoint of moldability of the obtained fiber reinforced resin molded article, the upper limit of the temperature that can be remolded by heating the thermoplastic resin is not particularly limited, and varies depending on the type of resin, the crosslinking agent, etc. It is about 400 ° C.
 また、一般的には、熱可塑性樹脂のガラス転移温度と、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料の熱による成形可能な温度とはほぼ一致しており、特定の温度以上の加熱により熱可塑性樹脂のガラス転移温度が上昇して以後の特定の温度での成形性を失うように思われる。しかしながら、本実施の形態の繊維強化樹脂材料では、このようなもの以外、具体的には熱可塑性樹脂のガラス転移温度と加熱により成形できなくなる温度とは一致せず、特定の温度以上で加熱した後も熱可塑性樹脂のガラス転移温度の上昇はほとんど発生しないにも関わらず、特定の温度以上の熱処理前では成形できた温度であっても再成形できないものも含まれる。このような場合には熱可塑性樹脂の直鎖状の分子構造に対する橋掛け部分が少ないおよび/または分子量の小さな熱可塑性樹脂と架橋剤が反応したり架橋剤同士の反応生成物が生成したりして、熱可塑性樹脂の流動性に障害が生じ、熱による再成形ができなくなるのではないかと考えている。 In general, the glass transition temperature of the thermoplastic resin and the temperature at which the fiber reinforced resin material containing the thermoplastic resin and the reinforced fiber can be molded by heat substantially coincide with each other, and heating above a specific temperature. As a result, the glass transition temperature of the thermoplastic resin increases, and it seems that the moldability at a specific temperature thereafter is lost. However, in the fiber reinforced resin material of the present embodiment, other than the above, specifically, the glass transition temperature of the thermoplastic resin does not coincide with the temperature at which it cannot be molded by heating, and is heated at a specific temperature or higher. Even after that, although the glass transition temperature of the thermoplastic resin hardly increases, there are those that cannot be re-molded even at a temperature that can be molded before the heat treatment above a specific temperature. In such a case, a thermoplastic resin having a small number of cross-linked parts to the linear molecular structure of the thermoplastic resin and / or a low molecular weight thermoplastic resin may react with the crosslinking agent, or a reaction product of the crosslinking agents may be generated. Therefore, it is thought that the fluidity of the thermoplastic resin is hindered, and re-molding by heat cannot be performed.
 なお、ガラス転移温度は、示差走査熱量測定法(DSC)にて測定したものである。 The glass transition temperature is measured by differential scanning calorimetry (DSC).
 また、熱可塑性樹脂と以下に説明する架橋剤とを反応させた後の熱可塑性樹脂は、熱硬化性となるものも含むものである。なお、熱可塑性樹脂と以下に説明する架橋剤を反応させた後の熱硬化性樹脂は、加熱により軟化するものや加圧により多少変形するものも含むものであるが、成形性のないものである。好ましくは、加熱により軟化しないものがより好ましい。 Also, the thermoplastic resin after reacting the thermoplastic resin with the crosslinking agent described below includes those that become thermosetting. The thermosetting resin after the reaction between the thermoplastic resin and the crosslinking agent described below includes those that soften by heating and those that deform somewhat by pressure, but have no moldability. Preferably, those which are not softened by heating are more preferable.
 <<架橋剤>>
 本実施の形態に係る繊維強化樹脂材料に用いられる架橋剤は、官能基が2以上の架橋剤(以下、単に「架橋剤」ともいう)である。架橋剤は用いられる熱可塑性樹脂に対し、反応性を有するものを任意に選択するとよい。熱可塑性樹脂が反応型の樹脂である場合には、好ましくは、前記硬化剤による熱可塑性樹脂の反応開始温度よりも反応開始温度が高い架橋剤を用いるとよい。反応型の熱可塑性樹脂溶液に前記硬化剤としての架橋剤が含まれている場合には、前記硬化剤としての架橋剤よりも高温で活性し、直鎖状の熱可塑性樹脂と直鎖状の熱可塑性樹脂とを橋掛けするような反応や架橋剤同士の反応がおこる架橋剤を用いるとよい。
<< Crosslinking agent >>
The cross-linking agent used in the fiber-reinforced resin material according to the present embodiment is a cross-linking agent having two or more functional groups (hereinafter also simply referred to as “cross-linking agent”). The crosslinking agent may be arbitrarily selected from those having reactivity with the thermoplastic resin used. When the thermoplastic resin is a reactive resin, it is preferable to use a crosslinking agent having a reaction initiation temperature higher than the reaction initiation temperature of the thermoplastic resin by the curing agent. When the reactive thermoplastic resin solution contains a crosslinking agent as the curing agent, the reactive thermoplastic resin solution is activated at a higher temperature than the crosslinking agent as the curing agent, and the linear thermoplastic resin and the linear It is preferable to use a cross-linking agent that causes a cross-linking reaction with a thermoplastic resin or a reaction between cross-linking agents.
 反応型の熱可塑性樹脂の硬化剤、促進剤等による反応開始温度と、特定の温度、つまり繊維強化樹脂材料や繊維強化樹脂成形体が再成形しなくなる温度(たとえば、直鎖状の熱可塑性樹脂と本実施の形態の架橋剤との反応開始温度)との差(温度差)は、成形性に優れた繊維強化樹脂材料でありかつ特定の温度以上での加熱後は熱に対する形体安定性に優れた繊維強化樹脂成形体を得るとの観点からは10℃以上が好ましく、30℃以上がより好ましく、さらに好ましくは50℃以上がよい。温度差の上限は特に限定されるものではないが、温度差が大きすぎると熱安定性に優れた繊維強化樹脂成形体を製造するときにかなりの高温にする必要があるため、温度差は200℃以下が好ましく、より好ましくは150℃以下、さらに好ましくは100℃以下がよい。 Reaction start temperature of reaction type thermoplastic resin by curing agent, accelerator, etc., and specific temperature, that is, temperature at which fiber reinforced resin material or fiber reinforced resin molded product will not be remolded (for example, linear thermoplastic resin The difference (temperature difference) between the reaction temperature and the crosslinking agent of the present embodiment is a fiber-reinforced resin material excellent in moldability and is stable in shape after heat at a specific temperature or higher. From the viewpoint of obtaining an excellent fiber-reinforced resin molded article, 10 ° C or higher is preferable, 30 ° C or higher is more preferable, and 50 ° C or higher is more preferable. The upper limit of the temperature difference is not particularly limited, but if the temperature difference is too large, it is necessary to make the temperature high when manufacturing a fiber-reinforced resin molded article excellent in thermal stability. ° C or lower is preferable, more preferably 150 ° C or lower, and still more preferably 100 ° C or lower.
 具体的な架橋剤としては、熱可塑性樹脂として、エポキシ樹脂を反応させて得られる直鎖状のエポキシ樹脂(フェノキシ樹脂)を用いる場合には、エポキシ樹脂のOH基と反応することが可能な官能基を2個以上有するイソシアネート系化合物やノボラック型樹脂が挙げられる。 As a specific crosslinking agent, when a linear epoxy resin (phenoxy resin) obtained by reacting an epoxy resin is used as a thermoplastic resin, a functional group capable of reacting with the OH group of the epoxy resin. Examples thereof include isocyanate compounds having two or more groups and novolac resins.
 官能基を2個有するイソシアネート系化合物としては、例えば、(1)炭素数6~12[NCO基中の炭素を除く、以下、(2)~(4)も同様]の脂肪族ジイソシアネート、(2)炭素数6~15の脂環式ジイソシアネート、(3)炭素数8~12の芳香脂肪族ジイソシアネート、(4)炭素数6~30の芳香族ジイソシアネートおよびこれらの2種以上の混合物などが挙げられる。 Examples of the isocyanate compound having two functional groups include: (1) aliphatic diisocyanates having 6 to 12 carbon atoms [excluding carbon in the NCO group, the same applies to (2) to (4) below], (2 And alicyclic diisocyanates having 6 to 15 carbon atoms, (3) araliphatic diisocyanates having 8 to 12 carbon atoms, (4) aromatic diisocyanates having 6 to 30 carbon atoms, and mixtures of two or more thereof. .
 脂肪族ジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネートなどが挙げられる。 Specific examples of the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 1,3,6-trimethylhexamethylene diisocyanate and the like.
 脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキサン-2,4-ジイソシアネート(水添TDI)、1,4-ビス(2-イソシアナートエチル)シクロヘキサンなどが挙げられる。 Specific examples of the alicyclic diisocyanate include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), 1,4-cyclohexane diisocyanate, methylcyclohexane-2,4-diisocyanate (hydrogenated TDI). ), 1,4-bis (2-isocyanatoethyl) cyclohexane and the like.
 芳香脂肪族ジイソシアネートの具体例としては、p-またはm-キシリレンジイソシアネート、α、α、α’、α’-テトラメチルキシリレンジイソシアネートなどが挙げられる。 Specific examples of the araliphatic diisocyanate include p- or m-xylylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate and the like.
 芳香族ジイソシアネートの具体例としては、1,3-または1,4-フェニレンジイソシアネート、2,4-または2,6-トリレンジイソシアネート(TDI)、2,4’-または4,4’-ジフェニルメタンジイソシアネート(MDI)、ナフタレン-1,5-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネートなどが挙げられる。これらのうち好ましいものは芳香族ジイソシアネートであり、特に好ましいものはMDIである。 Specific examples of aromatic diisocyanates include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 2,4'- or 4,4'-diphenylmethane diisocyanate. (MDI), naphthalene-1,5-diisocyanate, 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate, and the like. Of these, preferred are aromatic diisocyanates, and particularly preferred is MDI.
 官能基数3以上のイソシアネート系化合物としては、例えば、上記の有機ジイソシアネート(3モル)とトリメチロールプロパン(TMP)(1モル)とを反応させたウレタン変性体(例えば、HDIまたはIPDIまたはTDIとTMPとを反応させたアダクト変性体など)、上記の有機ジイソシアネート(3モル)と水(1モル)とを反応させたビューレット変性体(例えば、HDIまたはIPDIと水を反応させた変性体など)、上記の有機ジイソシアネートのイソシアヌレート変性体(例えば、HDIまたはIPDIまたはTDIの3量体など)、上記の変性体の2量体(例えば、ウレタン変性体またはビューレット変性体またはイソシアヌレート変性体(2モル)と水またはエチレングリコール(1モル)とを反応させた変性体など)、上記の変性体の3量体(例えば、ウレタン変性体またはビューレット変性体またはイソシアヌレート変性体(3モル)と水またはエチレングリコール(2モル)とを反応させた変性体など)など、およびこれらの2種以上の混合物などが挙げられる。これらのうち好ましいものは、脂肪族ジイソシアネートを用いた変性体である脂肪族ポリイソシアネートおよび脂環式ジイソシアネートを用いた変性体である脂環式ポリイソシアネートおよびこれらの2種以上の混合物が挙げられ、さらに好ましくはイソシアヌレート変性体の脂肪族ポリイソシアネート、イソシアヌレート変性体の脂環式ポリイソシアヌレートおよびこれらの2種以上の混合物が挙げられる。 As an isocyanate compound having 3 or more functional groups, for example, a urethane-modified product obtained by reacting the above organic diisocyanate (3 mol) with trimethylolpropane (TMP) (1 mol) (for example, HDI or IPDI or TDI and TMP). Modified adducts, etc.), and burette modified products obtained by reacting the organic diisocyanate (3 mol) with water (1 mol) (for example, modified products obtained by reacting HDI or IPDI with water). , Isocyanurate-modified products of the above organic diisocyanates (for example, HDI or IPDI or TDI trimers), dimers of the above-mentioned modified products (for example, urethane-modified products, burette-modified products, or isocyanurate-modified products ( 2 mol) and water or ethylene glycol (1 mol) Etc.), trimers of the above-mentioned modified products (for example, modified products obtained by reacting urethane-modified products, burette-modified products or isocyanurate-modified products (3 mol) with water or ethylene glycol (2 mol)), etc. , And a mixture of two or more thereof. Among these, preferred are an aliphatic polyisocyanate that is a modified product using an aliphatic diisocyanate, an alicyclic polyisocyanate that is a modified product using an alicyclic diisocyanate, and a mixture of two or more of these. More preferably, an isocyanurate-modified aliphatic polyisocyanate, an isocyanurate-modified alicyclic polyisocyanurate, and a mixture of two or more of these.
 好ましくはイソシアネート系化合物を用いる場合には、官能基が一定以上の温度が与えられるまでブロックされたブロック型のイソシアネート系化合物を用いるとよい。これにより、繊維強化樹脂成形体の成形が容易になり、かつ、成形後の熱安定性に優れた繊維強化樹脂成形体を容易に得ることができる。 Preferably, when an isocyanate compound is used, a blocked isocyanate compound in which a functional group is blocked until a temperature equal to or higher than a certain level is applied. As a result, the fiber-reinforced resin molded body can be easily molded, and a fiber-reinforced resin molded body having excellent thermal stability after molding can be easily obtained.
 ブロック型のイソシアネート系化合物とは、特定の温度未満では反応しないが、特定の温度以上になるとイソシアネート系化合物のブロック剤が解離して、活性のNCOを得ることができる化合物であり、ブロックイソシアネートまたはマスクドイソシアネートなどといわれる。ブロック剤としては、フェノール、キシレノールなどのフェノール類、メチルエチルケトンオキシムなどのオキシム、カプロラクタムなどのラクタム、メタノールなどのアルコール類などがあげられる。 The block type isocyanate compound is a compound that does not react at a temperature lower than a specific temperature, but is capable of obtaining an active NCO by dissociating the blocking agent of the isocyanate compound at a specific temperature or higher. It is said to be masked isocyanate. Examples of the blocking agent include phenols such as phenol and xylenol, oximes such as methyl ethyl ketone oxime, lactams such as caprolactam, and alcohols such as methanol.
 解離を始める温度は、成形性の観点から120℃以上が好ましく、より好ましくは150℃以上、さらに好ましくは170℃以上、さらにより好ましくは200℃以上である。解離を始める温度が120℃を下回ると反応性の熱可塑性樹脂を用いた場合、硬化剤による熱可塑性樹脂の反応の際に、架橋剤による架橋反応が同時に進み、成形する前に可塑性エポキシ樹脂の熱による成形性が低下するおそれがある。 The temperature at which dissociation starts is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 200 ° C. or higher from the viewpoint of moldability. When a reactive thermoplastic resin is used when the temperature at which dissociation starts below 120 ° C., the crosslinking reaction with the crosslinking agent proceeds simultaneously during the reaction of the thermoplastic resin with the curing agent, and before the molding, the plastic epoxy resin There is a possibility that moldability due to heat is lowered.
 解離を始める温度は、ブロック剤の種類、イソシアネート系化合物との反応パートナーとなる熱可塑性樹脂の官能基や触媒の有無により多少変化する。 The temperature at which dissociation begins varies somewhat depending on the type of blocking agent, the presence of a functional group of the thermoplastic resin that becomes a reaction partner with the isocyanate compound, and the presence or absence of a catalyst.
 なお、先の熱可塑性樹脂(硬化剤で硬化されたもの)と本実施の形態の架橋剤との反応開始温度とは、ブロック型のイソシアネート系化合物を用いた場合には、ブロック剤が解離し、熱可塑性樹脂の官能基と結合する温度であり、熱可塑性樹脂の直鎖状の分子構造は橋渡しされ、橋掛け構造の分子構造となったり、ブロック剤が解離し架橋剤同士が架橋したりして、繊維強化樹脂材料や繊維強化樹脂成形体が再成形できなくなる温度が本実施の形態の「特定の温度」になると考えている。 Note that the reaction initiation temperature between the thermoplastic resin (cured with the curing agent) and the crosslinking agent of the present embodiment is that the block agent is dissociated when a block-type isocyanate compound is used. The temperature at which the thermoplastic resin is bonded to the functional group, and the linear molecular structure of the thermoplastic resin is bridged to form a crosslinked molecular structure, or the blocking agent is dissociated and the crosslinking agents are crosslinked. Thus, the temperature at which the fiber-reinforced resin material or the fiber-reinforced resin molded body cannot be re-molded is considered to be the “specific temperature” in the present embodiment.
 また、架橋剤として、ノボラック型樹脂を用いるとよい。ノボラック型樹脂は、イソシアネート系化合物に比べ先の熱可塑性樹脂(硬化剤で硬化されたもの)の官能基との反応開始温度が高く、官能基をブロックしなくとも容易に好ましい反応開始温度を有する。熱可塑性樹脂とノボラック型樹脂は、反応開始温度が200℃以上のものが一般的に入手可能である。また、架橋剤としてノボラック樹脂を用いると、得られる繊維強化樹脂成形体は、難燃性が向上する。 Also, a novolac resin may be used as a crosslinking agent. The novolak resin has a higher reaction initiation temperature with the functional group of the preceding thermoplastic resin (cured with the curing agent) than the isocyanate compound, and has a preferable reaction initiation temperature easily without blocking the functional group. . As the thermoplastic resin and the novolac resin, those having a reaction start temperature of 200 ° C. or higher are generally available. Moreover, when a novolak resin is used as a crosslinking agent, the flame-retardant property of the obtained fiber-reinforced resin molded article is improved.
 <<強化繊維>>
 本実施の形態に係る繊維強化樹脂材料に用いられる強化繊維は、無機繊維、有機繊維、金属繊維又はこれらを複合して用いたものが挙げられる。具体的には、強化繊維としては、炭素繊維、黒鉛繊維、炭化ケイ素繊維、アルミナ繊維、タングステンカーバイト繊維、ボロン繊維、ガラス繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)、ステンレス、鉄などが挙げられる。
<< Reinforcing fiber >>
Examples of the reinforcing fibers used in the fiber-reinforced resin material according to the present embodiment include inorganic fibers, organic fibers, metal fibers, or a combination of these. Specifically, the reinforcing fiber includes carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, glass fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultra high molecular weight. Examples include polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, polyphenylene sulfide (PPS) fiber, polyimide fiber, fluorine fiber, polyvinyl alcohol (PVA fiber), stainless steel, and iron.
 軽量で強度が大きいとの観点から、強化繊維は、好ましくは、炭素繊維、バサルト繊維がよく、特に好ましくは炭素繊維がよい。 From the viewpoint of light weight and high strength, the reinforcing fibers are preferably carbon fibers and basalt fibers, and particularly preferably carbon fibers.
 炭素繊維は、PAN系及びピッチ系のいずれの炭素繊維でも使用できる。このうち、強度と弾性率とのバランスの観点から、PAN系の炭素繊維が好ましい。 As the carbon fiber, any of PAN-based and pitch-based carbon fibers can be used. Of these, PAN-based carbon fibers are preferable from the viewpoint of the balance between strength and elastic modulus.
 また、本実施の形態では、強化繊維の形態として、ステープル、綿(ワタ)、一方向に配列された強化繊維の束、強化繊維不織布、強化繊維織物、強化繊維編物等任意のものを用いることができる。 In the present embodiment, any form such as staples, cotton (cotton), bundles of reinforcing fibers arranged in one direction, reinforcing fiber nonwoven fabrics, reinforcing fiber fabrics, reinforcing fiber knitted fabrics are used as the reinforcing fiber. Can do.
 特に、強化繊維を一方向に配列させて束ねたものが好ましく用いられる。ここで、強化繊維を一方向に配列させたものとは、強化繊維の繊維軸方向を合わせたものである。また、強化繊維を束ねたものとは、2本以上の強化繊維の単繊維を収束させたものであればよく、集束剤で収束させたものであっても、また、集束剤を用いずに束ねたものであってもよい。生産性の観点からは集束剤で収束させたものがよい。なお、集束剤を用いる場合には、熱可塑性樹脂と親和性の高いものを用いるとよい。この場合、強化繊維の束の中に熱可塑性樹脂が含浸しやすくなり、優れた強度を有し、かつ、強度が安定した繊維強化樹脂成形体が得やすくなる。 In particular, a bundle of reinforcing fibers arranged in one direction and bundled is preferably used. Here, what arranged the reinforcing fiber in one direction is what united the fiber axis direction of the reinforcing fiber. Further, the bundle of reinforcing fibers may be a bundle of two or more reinforcing fibers that are converged, even if they are converged with a sizing agent, and without using a sizing agent. It may be bundled. From the viewpoint of productivity, a product converged with a sizing agent is preferable. In addition, when using a sizing agent, it is good to use a thing with high affinity with a thermoplastic resin. In this case, it becomes easy to impregnate the bundle of reinforcing fibers with the thermoplastic resin, and it becomes easy to obtain a fiber-reinforced resin molded article having excellent strength and stable strength.
 一方向に配列された強化繊維の束は、好ましくは強化繊維の単繊維を1000本以上束ねたものが好ましく、より好ましくは1万本以上、さらに好ましくは10万本以上がよい。強化繊維の束の本数の上限は、特に限定されないが、強化繊維の束が開繊されていないものの場合は、100万本程度である。なお、一方向に配列させた強化繊維の束を開繊して用いる場合には、さらに本数が多くてもよい。 The bundle of reinforcing fibers arranged in one direction is preferably a bundle of 1000 or more single fibers of reinforcing fibers, more preferably 10,000 or more, and even more preferably 100,000 or more. The upper limit of the number of reinforcing fiber bundles is not particularly limited, but in the case where the reinforcing fiber bundle is not opened, it is about one million. When the bundle of reinforcing fibers arranged in one direction is opened and used, the number of fibers may be further increased.
 したがって、本実施の形態では、炭素繊維メーカーから供給される炭素繊維の単繊維を6000本(6K)束ねた製品、あるいは、12000本(12K)、24000本(24K)、50000本(50K)、60000本(60K)等の製品を、開繊等せずにそのまま用いたり、あるいは、さらにこれらのものを複数本束ねたものを開繊せずにそのまま用いたりすることができるので、生産性に優れている。もちろん、炭素繊維メーカーから供給される炭素繊維の単繊維を複数本束ねた製品を、開繊して用いてもよい。 Therefore, in the present embodiment, a product obtained by bundling 6000 (6K) single fibers of carbon fiber supplied from a carbon fiber manufacturer, or 12000 (12K), 24000 (24K), 50000 (50K), Product such as 60000 (60K) can be used as it is without opening, or more than one bundle of these can be used as it is without opening. Are better. Of course, a product obtained by bundling a plurality of carbon fibers supplied from a carbon fiber manufacturer may be opened and used.
 また、炭素繊維は、無撚糸、有撚糸、解燃糸のいずれであってもよい。 Further, the carbon fiber may be any of a non-twisted yarn, a twisted yarn, and a flame-retardant yarn.
 本実施の形態において、炭素繊維の束の繊維軸方向に対して垂直方向に切断した断面形状は、円形、楕円、多角形等、特に限定されるものではない。なお、ここでいう垂直方向とは、強化繊維(炭素繊維)の繊維軸方向におおよそ垂直な方向であればよい。 In the present embodiment, the cross-sectional shape cut in the direction perpendicular to the fiber axis direction of the bundle of carbon fibers is not particularly limited, such as a circle, an ellipse, or a polygon. In addition, the perpendicular direction here should just be a direction substantially perpendicular | vertical to the fiber axis direction of a reinforced fiber (carbon fiber).
 本実施の形態では、反応型の熱可塑性樹脂を用いており、強化繊維の束の内部にまで樹脂が容易に含浸するので、多くの単繊維本数で成形される強化繊維の束を必ずしも開繊等をする必要がない。これにより、繊維メーカーから供給されるドラム等に巻かれた強化繊維をそのまま用いることができ、工程数も少なく生産性に優れている。また、多くの単繊維からなる強化繊維の束に熱可塑性樹脂を一度に付与できるため生産性に優れる。 In this embodiment, a reactive thermoplastic resin is used, and the resin easily impregnates the inside of the bundle of reinforcing fibers. Therefore, the bundle of reinforcing fibers molded with a large number of single fibers is not necessarily opened. There is no need to do etc. Thereby, the reinforced fiber wound around the drum etc. which are supplied from a fiber maker can be used as it is, and there are few processes and it is excellent in productivity. Moreover, since a thermoplastic resin can be provided at once to a bundle of reinforcing fibers composed of many single fibers, the productivity is excellent.
 <繊維強化樹脂材料の製造方法>
 次に、本実施の形態の中の繊維強化樹脂材料の好ましい一製造方法について、一方向に配列された強化繊維の束と熱可塑性樹脂とを含むチップ状の繊維強化樹脂材料を例に説明を行う。なお、本実施の形態の繊維強化樹脂材料の製造方法は、以下の方法に限定されるものではない。なお、先に説明を行ったものと重複する事項については一部説明を省略又は簡略化する。
<Method for producing fiber-reinforced resin material>
Next, a preferred method for producing the fiber reinforced resin material in the present embodiment will be described by taking a chip-like fiber reinforced resin material including a bundle of reinforced fibers arranged in one direction and a thermoplastic resin as an example. Do. In addition, the manufacturing method of the fiber reinforced resin material of this Embodiment is not limited to the following method. In addition, about the matter which overlaps with what was demonstrated previously, description is abbreviate | omitted or simplified partially.
 本実施の形態の繊維強化樹脂材料は、炭素繊維メーカー等の繊維メーカーから供給されるドラム等に巻かれた上記の一方向に配列された強化繊維の束を引き出し、その後、熱可塑性樹脂溶液を付与する。なお、炭素繊維メーカー等から供給される一つのドラムから引き出したものを強化繊維の束として用いてもよいし、複数のドラムをクリールに取り付け、複数本の強化繊維の束をさらに束ねて一つの強化繊維の束として用いてもよい。また、強化繊維の束は、開繊処理を施して開繊してもよいし、開繊しなくてもよい。 The fiber reinforced resin material of the present embodiment draws out a bundle of reinforcing fibers arranged in one direction, wound around a drum or the like supplied from a fiber maker such as a carbon fiber maker, and then draws a thermoplastic resin solution. Give. In addition, what was pulled out from one drum supplied from a carbon fiber manufacturer or the like may be used as a bundle of reinforcing fibers, or a plurality of drums are attached to a creel, and a bundle of a plurality of reinforcing fibers is further bundled into one bundle. It may be used as a bundle of reinforcing fibers. The bundle of reinforcing fibers may be opened by performing a fiber opening process or may not be opened.
 <<熱可塑性樹脂溶液>>
 本実施の形態における好ましい熱可塑性樹脂溶液は、前記の種々の反応型の熱可塑性樹脂と硬化剤とを含み、さらに、前記硬化剤による熱可塑性樹脂の反応開始温度よりも反応開始温度が高い官能基が2以上の架橋剤を含む。熱可塑性樹脂溶液は、さらに溶剤も含む。
<< Thermoplastic resin solution >>
A preferable thermoplastic resin solution in the present embodiment includes the above-mentioned various reaction-type thermoplastic resins and a curing agent, and further has a higher reaction initiation temperature than the reaction initiation temperature of the thermoplastic resin by the curing agent. The group contains two or more crosslinkers. The thermoplastic resin solution further contains a solvent.
 熱可塑性エポキシ樹脂、官能基が2以上の架橋剤は前記の通りである。なお、熱可塑性樹脂溶液には、溶剤に溶質が完全に溶解した溶液だけではなく、エマルジョンやディスパージョンも含むものである。 The thermoplastic epoxy resin and the crosslinking agent having 2 or more functional groups are as described above. The thermoplastic resin solution includes not only a solution in which a solute is completely dissolved in a solvent, but also an emulsion and a dispersion.
 溶剤としては、水、ジメチルホルムアミド、トルエン、キシレン、シクロヘキサン、酢酸メチル、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、メタノール、エタノール、ブタノール、イソプロピルアルコール、メチルセルソルブ、セルソルブ、アノンなどが挙げられる。 Solvents include water, dimethylformamide, toluene, xylene, cyclohexane, methyl acetate, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methanol, ethanol, butanol, isopropyl alcohol, methyl cellosolve, Examples include cellsolve and anon.
 溶剤を含む樹脂溶液とすることで、樹脂の粘度や流動性を調整することが容易になり、熱可塑性樹脂と硬化剤や官能基が2以上の架橋剤との混合が容易となる。 By using a resin solution containing a solvent, it becomes easy to adjust the viscosity and fluidity of the resin, and it becomes easy to mix a thermoplastic resin with a curing agent and a crosslinking agent having two or more functional groups.
 硬化剤としては、エポキシ樹脂では、脂肪族ポリアミン、ポリアミノアミド、ケティミン、脂肪族ジアミン、芳香族ジアミン、イミダゾール、3級アミンなどのアミン系化合物、リン酸化合物、酸無水物系化合物、メルカプタン系化合物、フェノール樹脂、アミノ樹脂、ジシアンジアミド、ルイス酸錯化合物などが挙げられる。 Curing agents include epoxy resins, aliphatic polyamines, polyaminoamides, ketimines, aliphatic diamines, aromatic diamines, imidazoles, tertiary amines and other amine compounds, phosphate compounds, acid anhydride compounds, mercaptan compounds. Phenol resin, amino resin, dicyandiamide, Lewis acid complex compound and the like.
 また、熱可塑性樹脂溶液には、触媒、重合開始剤、重合促進剤、酸化防止剤、紫外線吸収剤、顔料、増粘剤、乳化剤、分散剤などの添加剤を、本発明の目的を逸脱しない範囲で添加してもよい。 Further, the thermoplastic resin solution contains additives such as a catalyst, a polymerization initiator, a polymerization accelerator, an antioxidant, an ultraviolet absorber, a pigment, a thickener, an emulsifier, and a dispersant without departing from the object of the present invention. You may add in the range.
 本実施の形態の熱可塑性樹脂溶液の粘度は、常温で5~1000mPa・sであるとよい。熱可塑性樹脂溶液の粘度が5mPa・s以上であれば、強化繊維の束へ熱可塑性樹脂を十分な量付与することができる。また、熱可塑性樹脂溶液の粘度は、好ましくは、10mPa・s以上、より好ましくは50mPa・s以上がよい。また、熱可塑性樹脂溶液の粘度が1000mP・s以下であれば強化繊維の束に内部にまで熱可塑性樹脂を浸透させることができる。熱可塑性樹脂溶液の粘度は、より好ましくは800mPa・s以下、さらには500mPa・s以下であるとよい。 The viscosity of the thermoplastic resin solution of the present embodiment is preferably 5 to 1000 mPa · s at room temperature. When the viscosity of the thermoplastic resin solution is 5 mPa · s or more, a sufficient amount of thermoplastic resin can be imparted to the bundle of reinforcing fibers. The viscosity of the thermoplastic resin solution is preferably 10 mPa · s or more, more preferably 50 mPa · s or more. Further, if the viscosity of the thermoplastic resin solution is 1000 mP · s or less, the thermoplastic resin can be penetrated into the bundle of reinforcing fibers. The viscosity of the thermoplastic resin solution is more preferably 800 mPa · s or less, and further preferably 500 mPa · s or less.
 強化繊維の束への熱可塑性樹脂の付与方法は、熱可塑性樹脂溶液に強化繊維の束を浸漬させるディップ法、浸漬した後にマングルなどで絞るディップニップ法、熱可塑性樹脂溶液をキスロールやグラビアロール等に付着させて当該キスロール等から強化繊維の束に熱可塑性樹脂を転写する転写法、又は、霧状の熱可塑性樹脂溶液を強化繊維の束に付与するスプレー法などが挙げられる。また、ディップ法、転写法、スプレー法などでは、熱可塑性樹脂溶液が付着した強化繊維の束を、オリフィスやダイス、ロール等と接触させることにより、強化繊維の内部にまで熱可塑性樹脂を押し込んだり、余分な熱可塑性樹脂を除去して強化繊維の束への熱可塑性樹脂の付与量を調整したりできる。 The method of applying the thermoplastic resin to the bundle of reinforcing fibers includes a dip method in which the bundle of reinforcing fibers is immersed in the thermoplastic resin solution, a dip nip method in which the bundle is squeezed with a mangle after immersion, a kiss roll, a gravure roll, etc. And a transfer method in which a thermoplastic resin is transferred from the kiss roll or the like to a bundle of reinforcing fibers, or a spray method in which a mist-like thermoplastic resin solution is applied to the bundle of reinforcing fibers. In addition, in the dipping method, transfer method, spray method, etc., the thermoplastic resin is pushed into the reinforcing fiber by bringing the bundle of reinforcing fibers with the thermoplastic resin solution into contact with an orifice, a die, a roll, etc. The amount of the thermoplastic resin applied to the bundle of reinforcing fibers can be adjusted by removing the excess thermoplastic resin.
 強化繊維の束への熱可塑性樹脂の量が前記の好ましいVf値となるように、強化繊維への熱可塑性樹脂溶液の付与量や熱可塑性樹脂中の熱可塑性樹脂量を調整するとよい。 The amount of the thermoplastic resin solution applied to the reinforcing fiber and the amount of the thermoplastic resin in the thermoplastic resin may be adjusted so that the amount of the thermoplastic resin in the bundle of reinforcing fibers becomes the above-described preferable Vf value.
 本実施の形態では、熱可塑性樹脂溶液の粘度が低いため、転写法によって熱可塑性樹脂を強化繊維の束の片面に付与した場合においても、強化炭素繊維の束の内部にまで熱可塑性樹脂を浸透させることができる。もちろん、強化繊維の束の両面に転写法により熱可塑性樹脂を付与してもよい。 In this embodiment, since the viscosity of the thermoplastic resin solution is low, even when the thermoplastic resin is applied to one side of the bundle of reinforcing fibers by the transfer method, the thermoplastic resin penetrates to the inside of the bundle of reinforcing carbon fibers. Can be made. Of course, a thermoplastic resin may be applied to both surfaces of the bundle of reinforcing fibers by a transfer method.
 強化繊維の束に熱可塑性樹脂を付与した後、乾燥及び/又は熱処理を行う。乾燥と熱処理は同時に行ってもよい。なお、繊維強化樹脂材料を得る段階においては、熱可塑性樹脂と硬化剤に基づく反応を完全にさせてしまってもよいが、ある程度の状態で反応が止まった(もしくは反応速度が低下した)状態とし、繊維強化樹脂成形体の製造時またはその後の官能基が2以上の架橋剤が反応を開始する温度以上の特定の温度以上での加熱時に熱可塑性樹脂を完全に反応させてもよい。 After applying a thermoplastic resin to the bundle of reinforcing fibers, drying and / or heat treatment is performed. Drying and heat treatment may be performed simultaneously. In the step of obtaining the fiber reinforced resin material, the reaction based on the thermoplastic resin and the curing agent may be completed, but the reaction is stopped in a certain state (or the reaction rate is reduced). The thermoplastic resin may be completely reacted during the production of the fiber-reinforced resin molded body or during heating at a specific temperature above the temperature at which the crosslinking agent having two or more functional groups starts to react.
 強化繊維の束に熱可塑性樹脂を付与した後に乾燥及び/又は熱処理を行う目的は、少なくとも繊維強化樹脂材料を固化し、表面のタックを解消するためである。好ましくは、反応型の熱可塑性樹脂が硬化剤と反応し、直鎖状の分子構造を持つ熱可塑性樹脂を含むタックのない繊維強化樹脂材料が得られるとよい。 The purpose of drying and / or heat treatment after applying the thermoplastic resin to the bundle of reinforcing fibers is to solidify at least the fiber-reinforced resin material and eliminate surface tack. Preferably, a reactive thermoplastic resin reacts with a curing agent, and a tack-free fiber-reinforced resin material containing a thermoplastic resin having a linear molecular structure is obtained.
 繊維強化樹脂材料の表面のタックが解消されることにより、繊維強化樹脂材料の製造工程でのハンドリングが向上するので、生産性が向上する。また、タックが解消することで、当該繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体においても、異方性のないものが容易に得られるとともに、繊維強化樹脂成形体の製造工程においてもハンドリングが向上して生産性が向上する。また、タックが解消することで、繊維強化樹脂材料を保管しているときも、繊維強化樹脂材料が接着しあうことを防止できるので、優れた保管性を確保できる。 Since the tack of the surface of the fiber reinforced resin material is eliminated, the handling in the manufacturing process of the fiber reinforced resin material is improved, so that the productivity is improved. In addition, by eliminating tack, a fiber reinforced resin molded product obtained using the fiber reinforced resin material can be easily obtained without anisotropy, and also in the manufacturing process of the fiber reinforced resin molded product. Improved handling and productivity. Moreover, since tackiness is eliminated, even when the fiber reinforced resin material is stored, the fiber reinforced resin material can be prevented from adhering to each other, so that excellent storability can be secured.
 加熱の温度は、前記の通り熱可塑性樹脂と硬化剤に基づく反応を完全にさせてしまった状態、ある程度の状態で反応が止まった(もしくは反応速度が低下した)状態とし、かつ、官能基が2以上の架橋剤が活性化しない温度、たとえば、架橋剤と熱可塑性樹脂との反応が開始しない温度と時間で行う。なお、本発明の目的を逸脱しない範囲で、官能基が2以上の架橋剤が熱可塑性樹脂との反応が多少起こっていてもよい。 As described above, the heating temperature is such that the reaction based on the thermoplastic resin and the curing agent is completely completed, the reaction is stopped in a certain state (or the reaction rate is reduced), and the functional group is It is performed at a temperature at which two or more crosslinking agents are not activated, for example, a temperature and a time at which the reaction between the crosslinking agent and the thermoplastic resin does not start. It should be noted that the cross-linking agent having two or more functional groups may undergo some reaction with the thermoplastic resin without departing from the object of the present invention.
 熱可塑性樹脂、硬化剤、官能基が2以上の架橋剤、又は、溶剤にもよるが、熱可塑性樹脂としてエポキシ樹脂を用いた場合では、乾燥及び/又は熱処理は40~200℃で行うとよく、熱可塑性樹脂材料のタックがなくなれば、乾燥と熱処理の2回に分けて加熱を行なってもよいし、いずれか一方のみ行なってもよい。乾燥は、40~120℃で1分~1時間程度行うことがよく、熱処理の場合は120℃~200℃で1分から1時間程度行うとよい。より好ましくは、乾燥は60~120℃で10分~30分、熱処理は121℃~180℃で3分~40分がよい。このような条件の範囲は、得られる繊維強化樹脂成形体の品位及び生産性の観点から好ましい。 Depending on the thermoplastic resin, the curing agent, the crosslinking agent having two or more functional groups, or a solvent, when an epoxy resin is used as the thermoplastic resin, drying and / or heat treatment may be performed at 40 to 200 ° C. If there is no longer any tack of the thermoplastic resin material, heating may be performed in two steps of drying and heat treatment, or only one of them may be performed. Drying is preferably performed at 40 to 120 ° C. for about 1 minute to 1 hour, and in the case of heat treatment, it is preferably performed at 120 ° C. to 200 ° C. for about 1 minute to 1 hour. More preferably, drying is performed at 60 to 120 ° C. for 10 minutes to 30 minutes, and heat treatment is performed at 121 ° C. to 180 ° C. for 3 minutes to 40 minutes. Such a range of conditions is preferable from the viewpoint of the quality and productivity of the obtained fiber-reinforced resin molded article.
 炭素繊維の束に熱可塑性樹脂を付与し、乾燥及び/又は熱処理後、当該熱可塑性樹脂が付与された強化繊維の束を切断することによりチップ状の繊維強化樹脂材料が得られる。 A thermoplastic resin is applied to a bundle of carbon fibers, and after drying and / or heat treatment, the bundle of reinforcing fibers to which the thermoplastic resin is applied is cut to obtain a chip-like fiber reinforced resin material.
 熱可塑性樹脂が付与された強化繊維の束の切断は、一方向に配列された強化繊維の束の繊維軸方向に対し垂直方向に切断される。なお、ここでいう垂直方向とは、正確に強化繊維の繊維軸方向に対し垂直でなくともよく、おおよそ垂直な方向に切断したものであればよい。また、一方向に配列された強化繊維束の繊維軸方向に対し、斜め方向に切断したものであってもよい。切断された繊維強化樹脂材料の長さは前記の通りである。 The cutting of the bundle of reinforcing fibers provided with the thermoplastic resin is cut in a direction perpendicular to the fiber axis direction of the bundle of reinforcing fibers arranged in one direction. In addition, the perpendicular direction here does not need to be exactly perpendicular to the fiber axis direction of the reinforcing fiber, and may be any one cut in a substantially perpendicular direction. Moreover, what was cut | disconnected in the diagonal direction may be sufficient with respect to the fiber axial direction of the reinforcing fiber bundle arranged in one direction. The length of the cut fiber reinforced resin material is as described above.
 また、熱可塑性樹脂が付与された強化繊維の束の形状が、幅が広くシート状であったり厚みが厚く柱状であったりなどの場合には、必要に応じ強化繊維の束の繊維軸方向と平行にも切断して、チップ状のものを製造してもよい。 In addition, when the shape of the bundle of reinforcing fibers to which the thermoplastic resin is applied is a wide sheet-like or thick columnar shape, etc. A chip-shaped product may be manufactured by cutting in parallel.
 なお、上記では一方向に配列された強化繊維の束と熱可塑性樹脂を含むチップ状の繊維強化樹脂材料およびその製造方法について述べたが、繊維強化樹脂材料は、先にも述べたとおりこれらに限定されるものではなく、シート状、板状、ブロック状、線状、紐状等任意の形状であってもよい。 In the above description, a chip-like fiber reinforced resin material including a bundle of reinforced fibers arranged in one direction and a thermoplastic resin and a method for manufacturing the same have been described. The shape is not limited, and may be any shape such as a sheet shape, a plate shape, a block shape, a line shape, or a string shape.
 <繊維強化樹脂成形体>
 本実施の形態に係る繊維強化樹脂成形体は、上記の繊維強化樹脂材料を加熱により成形して得られたものである。好ましくは、上記の繊維強化樹脂材料を加熱及び加圧して成形して得られたものであるとよい。また、繊維強化樹脂材料または繊維強化樹脂成形体を特定の温度以上で加熱して得られたものであり、再度の加熱により再成形できないものである。
<Fiber-reinforced resin molding>
The fiber reinforced resin molded body according to the present embodiment is obtained by molding the above fiber reinforced resin material by heating. Preferably, the fiber reinforced resin material is obtained by heating and pressing. Further, it is obtained by heating a fiber reinforced resin material or a fiber reinforced resin molded body at a specific temperature or higher, and cannot be remolded by reheating.
 本実施の形態に係る繊維強化樹脂成形体を構成する繊維強化樹脂材料は、熱可塑性樹脂を含むため、熱可塑性がある。従って、一度、加熱および加圧し繊維強化樹脂成形体を成形した後であっても、特定の温度以上で加熱しなければ、繊維強化樹脂成形体を加熱、特に加熱及び加圧することにより容易に任意の形状に再成形させることができる。 Since the fiber reinforced resin material constituting the fiber reinforced resin molded body according to the present embodiment includes a thermoplastic resin, it is thermoplastic. Therefore, even after heating and pressurizing once to form a fiber reinforced resin molded article, if it is not heated above a specific temperature, it can be easily selected by heating the fiber reinforced resin molded article, particularly by heating and pressing. It can be reshaped into a shape.
 さらに、前記の繊維強化樹脂材料を用いての加熱(または加熱及び加圧)による成形と同時、または、加熱(または加熱及び加圧)により成形した後に、特定の温度以上の温度、つまり、実質的に熱可塑性を失い、繊維強化樹脂成形体の熱による再成形をできなくなる温度で加熱することで、再度の加熱により再成形できなくなる。 Further, at the same time as or after molding by heating (or heating and pressing) using the above-mentioned fiber reinforced resin material, or after molding by heating (or heating and pressing), a temperature above a specific temperature, that is, substantially In particular, by heating at a temperature at which the thermoplastic resin loses its thermoplasticity and the re-molding of the fiber-reinforced resin molding cannot be performed, it cannot be re-molded by heating again.
 これは、前記の直鎖状の熱可塑性樹脂が、官能基が2以上の架橋剤などにより橋掛け状に架橋などし、官能基が2以上の架橋剤が反応を開始する温度以上で加熱することにより、直鎖状の熱可塑性樹脂が熱硬化性となったり、ガラス転移温度が上昇したり、架橋剤同士が結合したりして、実質的に熱可塑性を失って繊維強化樹脂成形体の熱による再成形をできなくなるのではないかと考えている。 This is because the above-mentioned linear thermoplastic resin is crosslinked at a temperature at which the crosslinking agent having a functional group of 2 or more crosslinks with a crosslinking agent having 2 or more functional groups, and the crosslinking agent having a functional group of 2 or more starts reaction. As a result, the linear thermoplastic resin becomes thermosetting, the glass transition temperature rises, the cross-linking agents are bonded to each other, the thermoplasticity is substantially lost, and the fiber-reinforced resin molded article I think that it will be impossible to re-form by heat.
 なお、実質的に熱可塑性を失うとは、繊維強化樹脂成形体の使用環境化の温度にて再成形できないものであり、使用環境以上の温度での再成形性や使用環境での多少の軟化や変形をするものを除くものではない。好ましくは、繊維強化樹脂成形体の使用環境化の温度では軟化や変形しないものがよい。 It should be noted that substantially losing thermoplasticity means that the fiber-reinforced resin molded product cannot be re-molded at the temperature at which the fiber reinforced resin molded product is used, and re-moldability at temperatures above the usage environment or some softening in the usage environment. It does not exclude things that change or deform. Preferably, the fiber reinforced resin molded article is not softened or deformed at the temperature of use environment.
 再加熱により再成形ができなくなった繊維強化樹脂成形体は、加熱(または加熱および加圧)を行なうことにより、当該温度や圧力の大きさによっては、軟化したり、一時的に変形したり、多少変形することがあるものを含むが、得られる繊維強化樹脂成形体の使用用途、環境において、使用目的が達成できるレベルにおいて、実質的に再成形できないものをいい、また、軟化や変形しないとよい。 The fiber reinforced resin molded product that can no longer be reshaped by reheating is softened or temporarily deformed depending on the magnitude of the temperature or pressure by heating (or heating and pressurizing), Including the ones that may be slightly deformed, but in terms of the intended use and environment of the resulting fiber reinforced resin molded product, it refers to those that cannot be substantially remolded at a level that can achieve the purpose of use, and must be softened or deformed. Good.
 たとえば、再加熱により再成形しない温度が100℃以上である場合、得られる繊維強化樹脂成形体は、自動車の内装部品など、夏場の高温時70℃程度の高温環境下において使用される用途に用いることができる。 For example, when the temperature at which re-molding is not performed by reheating is 100 ° C. or higher, the obtained fiber-reinforced resin molded body is used for applications that are used in a high-temperature environment of about 70 ° C. at high temperatures in summer, such as automobile interior parts. be able to.
 また、再加熱により再成形しない温度が130℃以上である場合、得られる繊維強化樹脂成形体は、モータなどの駆動部と接続される部分でも用いることができるので、工作機械、特に工作機械のロボットアームとして用いることができる。 In addition, when the temperature at which re-molding is not performed by reheating is 130 ° C. or higher, the obtained fiber-reinforced resin molded body can be used in a portion connected to a driving unit such as a motor. It can be used as a robot arm.
 また、再加熱により再成形しない温度が150℃以上、さらに200℃以上であれば、得られる繊維強化樹脂成形体をより高温環境下で使用することができる。 Further, when the temperature at which re-molding is not performed by reheating is 150 ° C. or higher, and further 200 ° C. or higher, the obtained fiber-reinforced resin molded body can be used in a higher temperature environment.
 好ましくは、特定の温度以上で加熱した後に再加熱により再成形できないとは、温度が150℃で、圧力が2MPa、時間が15秒~1時間の加熱および加圧にて再成形できない場合である。 Preferably, after being heated above a specific temperature, it cannot be reshaped by reheating when the temperature is 150 ° C., the pressure is 2 MPa, and the time cannot be reshaped by heating and pressurizing for 15 seconds to 1 hour. .
 以下に、本実施の形態の繊維強化樹脂成形体について、一方向に配列された強化繊維の束と、熱可塑性樹脂と、官能基が2以上の架橋剤とを含むチップ状の繊維強化樹脂材料を用いた場合にてさらに詳細に説明を行う。なお、先に説明を行ったものと重複する事項については一部説明を省略又は簡略化する。 Hereinafter, with respect to the fiber-reinforced resin molded body of the present embodiment, a chip-like fiber-reinforced resin material including a bundle of reinforcing fibers arranged in one direction, a thermoplastic resin, and a crosslinking agent having two or more functional groups This will be described in more detail in the case of using. In addition, about the matter which overlaps with what was demonstrated previously, description is abbreviate | omitted or simplified partially.
 具体的には、本実施の形態の繊維強化樹脂成形体は、熱可塑性樹脂と、複数の強化繊維が一方向に配列してなる短冊状の強化繊維の束(強化繊維束)とを含む繊維強化樹脂材料からなり、短冊状の強化繊維の束が3次元にランダムに積層された積層構造である。短冊状の強化繊維の束を3次元にランダムに積層することによって、耐衝撃性及び破壊靱性に優れる成形体を得ることができる。 Specifically, the fiber-reinforced resin molded body of the present embodiment is a fiber including a thermoplastic resin and a strip-shaped reinforcing fiber bundle (reinforced fiber bundle) in which a plurality of reinforcing fibers are arranged in one direction. It is made of a reinforced resin material and has a laminated structure in which a bundle of strip-like reinforcing fibers are randomly laminated in three dimensions. By forming a bundle of strip-shaped reinforcing fibers randomly in three dimensions, a molded article having excellent impact resistance and fracture toughness can be obtained.
 ここで、複数の強化繊維が一方向に配列されてなる短冊状の強化繊維の束が3次元にランダムに積層しているとは、複数本の強化繊維を一方向に配列することにより得られた短冊状の強化繊維の束が複数、各束の繊維軸方向が繊維強化樹脂成形体の面方向に対してランダムに配置され、かつ、当該複数の強化繊維の束が繊維強化樹脂成形体の厚み方向に互いに重なり合うように積層されている状態のものをいい、より具体的には、複数の短冊状の強化繊維の束が、各束の上面及び下面において互いの束の繊維軸方向がランダムとなるように部分的に重なり合うように、かつ、各束が繊維強化樹脂成形体の面方向に対してランダムに僅かに傾斜して相互に折り重なって積層されている状態のものをいう。 Here, a bundle of strip-like reinforcing fibers in which a plurality of reinforcing fibers are arranged in one direction is randomly laminated in three dimensions, which is obtained by arranging a plurality of reinforcing fibers in one direction. A plurality of strip-shaped reinforcing fiber bundles, the fiber axis direction of each bundle is randomly arranged with respect to the surface direction of the fiber-reinforced resin molded body, and the bundle of the plurality of reinforcing fibers is a fiber-reinforced resin molded body. This refers to a state in which the layers are stacked so as to overlap each other in the thickness direction. More specifically, a plurality of strip-shaped reinforcing fiber bundles are randomly arranged in the fiber axis direction of each bundle on the upper and lower surfaces of each bundle. In such a state, the bundles are stacked so as to be partially overlapped with each other, and each bundle is slightly inclined at random with respect to the surface direction of the fiber-reinforced resin molded body and folded over each other.
 このように、本実施の形態の繊維強化樹脂成形体を構成する繊維強化樹脂材料は、複数本の強化繊維を一方向に配列させて束ねたものである。複数本の強化繊維を一方向に配列させて束ねたものとは、強化繊維の束を構成する複数本の強化繊維の各々の繊維軸方向を合わせたものである。従って、強化繊維の束を構成する強化繊維のおおよその軸方向が合わせられていれば、強化繊維の束やこれを構成する強化繊維は、曲がっていたり蛇行したりしていてもよい。特に、加熱及び加圧されて形成された繊維強化樹脂成形体では、成形体の凹凸形状、強化繊維及びその束同士の交絡によって強化繊維や強化繊維の束が曲がったり蛇行したりする形状のものが多く存在する。なお、短冊状の強化繊維の束が3次元にランダムに積層されたもの、という概念には、このように強化繊維や強化繊維の束が加圧等によって曲がったり蛇行したりして変形した状態のものも含まれる。 Thus, the fiber reinforced resin material constituting the fiber reinforced resin molded body of the present embodiment is a bundle of a plurality of reinforced fibers arranged in one direction. A bundle of a plurality of reinforcing fibers arranged in one direction is a combination of the fiber axis directions of the plurality of reinforcing fibers constituting the bundle of reinforcing fibers. Therefore, as long as the approximate axial directions of the reinforcing fibers constituting the reinforcing fiber bundle are matched, the reinforcing fiber bundle and the reinforcing fibers constituting the reinforcing fiber bundle may be bent or meandering. In particular, in a fiber reinforced resin molded body formed by heating and pressurizing, the reinforced fiber and the bundle of reinforcing fibers are bent or meandered by the concavo-convex shape of the molded body, the entanglement of the reinforcing fibers and the bundles thereof. There are many. In addition, the concept that a bundle of strip-like reinforcing fibers is randomly stacked in three dimensions is a state in which the reinforcing fibers and the bundle of reinforcing fibers are deformed by bending or meandering due to pressure or the like. Are also included.
 なお、繊維強化樹脂成形体において、短冊状の強化繊維の束は、必ずしも繊維強化樹脂成形体の面方向に対して傾斜している必要はなく、複数の短冊状の強化繊維の束の中には、繊維強化樹脂成形体の面方向に対して傾斜していないものが含まれていてもよい。また、繊維強化樹脂成形体を構成する繊維強化樹脂材料には、触媒、酸化防止剤、顔料など、強化繊維及び熱可塑性樹脂以外の物質が含まれていてもよい。 In the fiber-reinforced resin molded body, the bundle of strip-shaped reinforcing fibers does not necessarily have to be inclined with respect to the surface direction of the fiber-reinforced resin molded body. May include those not inclined with respect to the surface direction of the fiber-reinforced resin molded body. Further, the fiber reinforced resin material constituting the fiber reinforced resin molded body may contain substances other than the reinforced fiber and the thermoplastic resin, such as a catalyst, an antioxidant, and a pigment.
 このように、本実施の形態の繊維強化樹脂成形体は、複数の繊維強化樹脂材料を用いて得られたものであり、これらの繊維強化樹脂材料を構成する一方向に配列された強化繊維の束の繊維軸方向がそれぞれランダムになっており、異方性が抑制されているものである。つまり、強化繊維の束としては強化繊維は一方向に配列しているが、繊維強化樹脂成形体を構成する複数の強化繊維の束はそれぞれ繊維軸方向がランダムになっているため、繊維強化樹脂成形体全体としてみれば、強化繊維は繊維軸方向がランダムとなっている。 Thus, the fiber reinforced resin molded body of the present embodiment is obtained using a plurality of fiber reinforced resin materials, and the reinforced fibers arranged in one direction constituting these fiber reinforced resin materials. The fiber axis directions of the bundle are random, and anisotropy is suppressed. That is, as the bundle of reinforcing fibers, the reinforcing fibers are arranged in one direction, but the bundles of a plurality of reinforcing fibers constituting the fiber-reinforced resin molded body have random fiber axis directions. If it sees as the whole molded object, the fiber axis direction of the reinforced fiber is random.
 従って、繊維強化樹脂成形体は、異方性がなく、あらゆる方向に対し、均一な強度を発揮することができる。 Therefore, the fiber-reinforced resin molded body has no anisotropy and can exhibit uniform strength in all directions.
 さらに、炭素繊維織物を積層して得られた繊維強化樹脂成形体では、大きな力が加わった場合に繊維強化樹脂成形体が割れ易く、また、割れた部分の破断面は鋭利であり、さらにその切断面はむき出しになりやすい。このため、万が一、事故などで繊維強化樹脂成形体が割れた場合、破断面により身体に切り傷などを発生させるなど2次被害の原因となるおそれがある。 Furthermore, in the fiber reinforced resin molded product obtained by laminating the carbon fiber fabric, the fiber reinforced resin molded product is easily cracked when a large force is applied, and the fracture surface of the cracked portion is sharp. The cut surface tends to be exposed. For this reason, in the unlikely event that the fiber reinforced resin molded body is cracked due to an accident or the like, there is a risk of causing secondary damage such as causing a cut in the body due to the fracture surface.
 これに対し、本実施の形態の繊維強化樹脂成形体では、繊維強化樹脂材料を構成する一方向に配列された強化繊維の束の繊維軸方向がそれぞれランダムになっているため、大きな力が加わって割れた場合においても、破断面が鋭利になることや、その鋭利な破断面がむき出しになることが抑制される。これにより、前記のような2次被害の発生が抑えられるので安全性に優れる繊維強化樹脂成形体が得られる。 In contrast, in the fiber-reinforced resin molded body of the present embodiment, the fiber axis directions of the bundles of reinforcing fibers arranged in one direction constituting the fiber-reinforced resin material are random, and thus a large force is applied. Even in the case of cracking, it is suppressed that the fracture surface becomes sharp and that the sharp fracture surface is exposed. Thereby, since generation | occurrence | production of the above secondary damage is suppressed, the fiber reinforced resin molding which is excellent in safety is obtained.
 特に、繊維強化樹脂材料及び強化繊維の長さが10mm~30mm未満であれば、一定以上の力で割れやすく、割れても鋭利な破断面が形成され難い。また、繊維強化樹脂材料及び強化繊維の長さが30mm以上、より好ましくは40mm以上であればより強い衝撃を受けても割れにくく、割れても鋭利な破断面が形成され難い。従って、繊維強化樹脂材料及び強化繊維の長さによって、得られる繊維強化樹脂成形体の特性の調整ができる。 In particular, if the length of the fiber reinforced resin material and the reinforcing fiber is 10 mm to less than 30 mm, it is easy to crack with a certain force or more, and even if it is cracked, it is difficult to form a sharp fracture surface. Further, if the length of the fiber reinforced resin material and the reinforcing fiber is 30 mm or more, more preferably 40 mm or more, it is difficult to break even when subjected to a stronger impact, and even if it is cracked, a sharp fracture surface is difficult to be formed. Therefore, the characteristic of the fiber reinforced resin molding obtained can be adjusted by the length of the fiber reinforced resin material and the reinforced fiber.
 本実施の形態の繊維強化樹脂成形体の形状は、特に限定されるものではなく、シート状、板状、ブロック状が挙げられる。また、車のインサートパネルなどの内装部品の形状、車台などの自動車用部品の形状、ロボットアームなどの産業機器部品の形状又は、テレビの筺体などの家電製品用部品の形状など繊維強化樹脂材料から直接目的とする凹凸や曲面形状に成形されたものであってもよい。 The shape of the fiber-reinforced resin molded body of the present embodiment is not particularly limited, and examples thereof include a sheet shape, a plate shape, and a block shape. In addition, from the shape of interior parts such as car insert panels, the shape of automotive parts such as chassis, the shape of industrial equipment parts such as robot arms, or the shape of parts for household appliances such as TV housings, etc. It may be formed directly into the intended unevenness or curved shape.
 また、本実施の形態の繊維強化樹脂材料における繊維体積含有率(Vf値)は、30%~80%であることが好ましい。Vf値は、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の強度の観点から、より好ましくは40%以上、さらに好ましくは50%以上がよい。また、繊維強化樹脂材料を用いて得られる繊維強化樹脂成形体の外観品位の観点及び成形性の観点から、Vf値は、好ましくは70%以下、さらに好ましくは60%前後がよい。 Further, the fiber volume content (Vf value) in the fiber reinforced resin material of the present embodiment is preferably 30% to 80%. The Vf value is more preferably 40% or more, still more preferably 50% or more, from the viewpoint of the strength of the fiber-reinforced resin molded product obtained using the fiber-reinforced resin material. Further, from the viewpoint of appearance quality and moldability of the fiber reinforced resin molded article obtained using the fiber reinforced resin material, the Vf value is preferably 70% or less, more preferably around 60%.
 なお、前記の通り、繊維強化樹脂成形体を構成する繊維強化樹脂材料と繊維強化樹脂材料との間に空間が発生する場合には、空間が発生しないように、繊維強化樹脂材料は、Vf値が50%以下、より好ましくは45%以下のものを用いるとよい。繊維強化樹脂材料を構成する繊維強化樹脂材料と繊維強化樹脂材料との間に空間ができると、得られる繊維強化樹脂成形体の強度が低下するおそれがある。 As described above, when a space is generated between the fiber reinforced resin material and the fiber reinforced resin material constituting the fiber reinforced resin molded body, the fiber reinforced resin material has a Vf value so that no space is generated. Is preferably 50% or less, more preferably 45% or less. If a space is formed between the fiber reinforced resin material and the fiber reinforced resin material constituting the fiber reinforced resin material, the strength of the obtained fiber reinforced resin molded article may be reduced.
 また、繊維強化樹脂成形体のVf値が小さいと繊維強化樹脂成形体の強度が低下するおそれがあるため、高強度のものが必要な場合には、以下で説明を行う繊維強化樹脂成形体を得るための加熱及び加圧時に過剰な熱可塑性樹脂を除去し、Vf値を高くするとよい。 In addition, if the Vf value of the fiber reinforced resin molded product is small, the strength of the fiber reinforced resin molded product may be lowered. Therefore, if a high strength product is required, the fiber reinforced resin molded product described below is used. At the time of heating and pressurization for obtaining, excess thermoplastic resin may be removed to increase the Vf value.
 つまり、繊維強化樹脂材料のVf値に比べ、繊維強化樹脂成形体のVf値が大きいことが好ましい。 That is, it is preferable that the Vf value of the fiber reinforced resin molding is larger than the Vf value of the fiber reinforced resin material.
 また、本実施の形態の繊維強化樹脂成形体の厚みは、特に限定されることはなく、目的とする成形体の用途等に対して任意に設定することができ、例えば0.1mm~1000mmである。また、本実施の形態における繊維強化樹脂成形体のタテ方向、ヨコ方向の長さも特に限定されることはなく、目的とする成形体の用途に対して任意に設定することができる。 Further, the thickness of the fiber-reinforced resin molded body of the present embodiment is not particularly limited and can be arbitrarily set for the intended use of the molded body, for example, 0.1 mm to 1000 mm. is there. Further, the lengths in the vertical direction and the horizontal direction of the fiber-reinforced resin molded body in the present embodiment are not particularly limited, and can be arbitrarily set for the intended use of the molded body.
 本実施の形態の繊維強化樹脂成形体では、反応型の熱可塑性樹脂が用いられているため、加熱溶融して使用する熱可塑性樹脂に比べ、繊維強化樹脂成形体を構成する繊維強化樹脂材料の強化繊維の束の内部にまで熱可塑性樹脂が入り込む。これにより、優れた強度を有し、且つ、安定した強度を発揮できる繊維強化樹脂成形体を得ることができる。 In the fiber reinforced resin molded body of the present embodiment, since a reactive thermoplastic resin is used, the fiber reinforced resin material constituting the fiber reinforced resin molded body is compared with the thermoplastic resin used by being melted by heating. The thermoplastic resin enters the bundle of reinforcing fibers. Thereby, the fiber reinforced resin molding which has the outstanding intensity | strength and can exhibit the stable intensity | strength can be obtained.
 以上のように、本実施の形態の繊維強化樹脂成形体は、熱硬化性樹脂に比べて硬化させた後でも成形が可能であり、熱硬化性のエポキシ樹脂のように成形まで低温保存や保存期間の問題もなく使用しやすく、長時間の硬化時間も必要とせず生産性にも優れたものである。 As described above, the fiber-reinforced resin molded body of the present embodiment can be molded even after being cured as compared with a thermosetting resin, and can be stored and stored at a low temperature until molding like a thermosetting epoxy resin. It is easy to use without a problem of period, does not require a long curing time, and is excellent in productivity.
 また、本実施の形態の繊維強化樹脂成形体は、前記の特定の温度以上で加熱を行うまでは再成形も可能である。 In addition, the fiber-reinforced resin molded body of the present embodiment can be remolded until it is heated at the specific temperature or higher.
 また、本実施の形態の繊維強化樹脂成形体は、前記の特定の温度以上で加熱した後は、当該特定の温度で再度加熱処理を行っても再成形しないものである。なお、本実施の形態の繊維強化樹脂成形体は、上述のとおり、特定の温度以上で加熱しても温度や圧力によっては多少軟化や変形するものも含まれるが、再成形はされないものであるので、常温以上の環境においても熱安定性を有し、幅広い用途で用いることができる。 In addition, the fiber-reinforced resin molded body of the present embodiment is not re-molded even after being heated again at the specific temperature after being heated above the specific temperature. In addition, as described above, the fiber-reinforced resin molded body of the present embodiment includes those that are somewhat softened or deformed depending on the temperature or pressure even when heated at a specific temperature or higher, but are not remolded. Therefore, it has thermal stability even in an environment of room temperature or higher, and can be used in a wide range of applications.
 また、本実施の形態の繊維強化樹脂成形体は、強度がありかつ軽量で、さらに熱に対する変形が抑制されているため、従来、鉄などの金属や熱硬化性樹脂を用いて製造されていた物、例えば自動車のシャーシなどの自動車部品、鉄筋、柱、梁、スペーサ、アンカープレート、ジャッキ用プレートなどの建築材料、テレビ、パソコン、冷蔵庫などの電化製品の筺体などに加え、常温以上の環境となるロボットアームなどの産業機器のモータなどの駆動部と接触する部材など、種々の物や用途に使用することが可能である。 In addition, the fiber-reinforced resin molded body of the present embodiment is strong and lightweight, and further has been suppressed from deformation against heat, and thus has been conventionally manufactured using a metal such as iron or a thermosetting resin. In addition to objects such as automobile parts such as automobile chassis, building materials such as reinforcing bars, columns, beams, spacers, anchor plates, jack plates, electrical appliances such as TVs, computers, refrigerators, etc. It can be used for various objects and applications such as a member that comes into contact with a drive unit such as a motor of an industrial device such as a robot arm.
 また、本実施の形態の繊維強化樹脂成形体において、強化繊維として炭素繊維を用い、熱可塑性樹脂としてエポキシ樹脂を用いることで、耐久性、軽量、高強度及び防錆性に優れた成形体を得ることができる。 Moreover, in the fiber reinforced resin molded product of the present embodiment, by using carbon fiber as the reinforcing fiber and using an epoxy resin as the thermoplastic resin, a molded product excellent in durability, light weight, high strength, and rust prevention property is obtained. Obtainable.
 <繊維強化樹脂成形体の製造方法>
 次に、本実施の形態の繊維強化樹脂成形体(熱可塑性樹脂と強化繊維と官能基が2以上の架橋剤を含むもの)の好ましい一製造方法について説明を行う。なお、本実施の形態の繊維強化樹脂成形体の製造方法は以下の方法に限定されるものではない。また、先に説明を行ったものと重複する事項については一部説明を省略又は簡略化する。
<Method for producing fiber-reinforced resin molded article>
Next, a preferable manufacturing method of the fiber-reinforced resin molded body of the present embodiment (a thermoplastic resin, a reinforcing fiber, and a functional group containing a crosslinking agent having two or more functional groups) will be described. In addition, the manufacturing method of the fiber reinforced resin molding of this Embodiment is not limited to the following method. In addition, a part of the description overlapping with the description previously described is partially omitted or simplified.
 本実施の形態に係る繊維強化樹脂成形体の製造方法は、繊維強化樹脂材料を加熱する工程を含む。 The method for manufacturing a fiber-reinforced resin molded body according to the present embodiment includes a step of heating the fiber-reinforced resin material.
 加熱する際、加熱だけではなく加圧も行うとよい。加熱および加圧は、加熱と加圧とを同時に行ってもよいし、加熱後に加圧を行ってもよいし、一旦加熱した後に加熱と加圧とを同時に行ったりしてもよい。 When heating, not only heating but also pressing should be performed. For heating and pressurization, heating and pressurization may be performed simultaneously, pressurization may be performed after heating, or heating and pressurization may be performed simultaneously after heating.
 具体的な加熱および加圧の方法としては、金型プレス法、オートクレーブ法、加熱・冷間プレス法等の方法が挙げられる。 Specific examples of the heating and pressurizing method include a mold pressing method, an autoclave method, and a heating / cold pressing method.
 より具体的には、本実施の形態の複数のチップ状の繊維強化樹脂材料を、それぞれの繊維強化樹脂材料を構成する一方向に配列された強化繊維の束の繊維軸方向がそれぞれランダムになるように型枠に積層し、型枠の中の空気を抜きながら加熱及び加圧し、その後冷却する。 More specifically, the fiber axis directions of the bundles of reinforcing fibers arranged in one direction constituting each of the plurality of chip-like fiber reinforced resin materials according to the present embodiment are random. And then heating and pressurizing while removing air from the mold, and then cooling.
 また、開繊した強化繊維を用いて得られた織物に熱可塑性樹脂を付与した繊維強化樹脂材料の場合には、当該繊維強化樹脂材料を1枚あるいは繊維軸方向をずらしなどして複数枚積層して型枠に設置し、型枠の中の空気を抜きながら加熱及び加圧し、その後冷却する。 In the case of a fiber reinforced resin material in which a thermoplastic resin is added to a woven fabric obtained using the opened reinforcing fibers, a plurality of the fiber reinforced resin materials are laminated by shifting the fiber axis direction or the like. Then, it is placed on the mold, heated and pressurized while venting the air in the mold, and then cooled.
 さらにまた、開繊した強化繊維を用いて得られた織物に熱可塑性樹脂を付与した繊維強化樹脂材料の間や片面にチップ状の繊維強化樹脂材料を構成する一方向に配列された強化繊維の束の繊維軸方向がそれぞれランダムになるように型枠に積層し型枠の中の空気を抜きながら加熱及び加圧し、その後冷却するなどの方法があげられるが特に限定されるものではない。 Furthermore, between the fiber reinforced resin materials provided with the thermoplastic resin to the woven fabric obtained by using the opened reinforcing fibers, or the reinforced fibers arranged in one direction constituting the chip-like fiber reinforced resin material on one side. A method of laminating the bundles in such a manner that the fiber axis directions of the bundles are random, heating and pressurizing while removing air in the molds, and then cooling is not particularly limited.
 用いる熱可塑性樹脂や架橋剤、強化繊維の種類、また、得ようとする繊維強化樹脂成形体の厚みにもよるが、繊維強化樹脂材料を加熱する時の温度は、例えば50~400℃程度であり、繊維強化樹脂材料を加圧する時の圧力は、例えば1~50MPa程度であり、加圧時間は、例えば15秒~24時間程度、好ましくは、30秒~6時間、より好ましくは、1分~1時間程度である。 The temperature at which the fiber reinforced resin material is heated is, for example, about 50 to 400 ° C., depending on the type of thermoplastic resin, crosslinking agent and reinforcing fiber used, and the thickness of the fiber reinforced resin molding to be obtained. The pressure when pressing the fiber reinforced resin material is, for example, about 1 to 50 MPa, and the pressing time is, for example, about 15 seconds to 24 hours, preferably 30 seconds to 6 hours, more preferably 1 minute. About 1 hour.
 本実施の形態に係る繊維強化樹脂材料から直接目的とする成形体を成形し、その後変形させる必要がなければ、繊維強化樹脂材料の加熱温度は、得られる繊維強化樹脂成形体が再成形できなくなる温度または架橋剤同士が反応する温度(特定の温度)、たとえば架橋剤が直鎖状の熱可塑性樹脂と反応する温度以上の温度であればよい。また、加熱時間も当該温度で得られる繊維強化樹脂成形体が再成形できなくなる時間であればよく、例えば、好ましくは、30秒~6時間、より好ましくは、15秒~1時間程度である。 If it is not necessary to mold the desired molded body directly from the fiber reinforced resin material according to the present embodiment and then deform it, the heating temperature of the fiber reinforced resin material cannot be remolded. The temperature or a temperature at which the cross-linking agent reacts (specific temperature), for example, a temperature equal to or higher than a temperature at which the cross-linking agent reacts with the linear thermoplastic resin may be used. Further, the heating time may be any time as long as the fiber-reinforced resin molded product obtained at the temperature cannot be re-molded, and is preferably about 30 seconds to 6 hours, more preferably about 15 seconds to 1 hour.
 また、一度成形した後、再成形させる可能がある場合には、成形時の加熱温度は架橋剤等が反応する温度(特定の温度)未満で加熱し、その後、任意の時期に特定の温度以上の温度で加熱すればよい。再成形させる際は、その後、再成形させる必要がなければ架橋剤が直鎖状の熱可塑性樹脂と反応を開始する温度(特定の温度)以上の温度で加熱すればよい。 In addition, if it is possible to re-mold after molding once, the heating temperature at the time of molding is less than the temperature at which the cross-linking agent etc. reacts (specific temperature), and then at a certain temperature or higher at any time What is necessary is just to heat at the temperature. When re-molding, if it is not necessary to re-mold thereafter, the cross-linking agent may be heated at a temperature equal to or higher than the temperature (specific temperature) at which reaction with the linear thermoplastic resin starts.
 また、直接目的とする形状に成形した場合であっても、成形後、任意の時期に特定の温度以上で加熱を行なうことで、再加熱により再成形しないものとしてもよい。 In addition, even when it is directly molded into a desired shape, it may not be remolded by reheating by heating at a certain temperature or higher after molding.
 また、繊維強化樹脂材料を加熱して成形する際には、低温で十分繊維強化樹脂材料を軟化させ、粘着性あるいは流動性を持たせて目的となる形状に成形した後に特定の温度以上で加熱するとよい。これにより、得られる繊維強化樹脂成形体は、形状、外観品位および強度等が優れたものとなる。 In addition, when molding a fiber reinforced resin material by heating, the fiber reinforced resin material is sufficiently softened at a low temperature, and is heated to a specific temperature or higher after it is molded into the desired shape with adhesiveness or fluidity. Good. Thereby, the obtained fiber reinforced resin molded product is excellent in shape, appearance quality, strength and the like.
 また、フラットなシート状の繊維強化樹脂成形体を製造する場合には、上記の方法を用いてもよいが、ダブルベルトプレス法などの連続法を用いてもよい。 Further, when producing a flat sheet-like fiber reinforced resin molded product, the above method may be used, but a continuous method such as a double belt press method may be used.
 さらに、フラットなシート状の繊維強化樹脂成形体に一度成形した後にこの成形体を用いて厚みの厚いブロック状の繊維強化樹脂成形体や凹凸のある繊維強化樹脂成形体を製造する場合、フラットなシート状の繊維強化樹脂成形体を成形する際には、特定の温度以上の加熱を行なわない方がよい。 Furthermore, when a thick block-shaped fiber reinforced resin molded product or an uneven fiber reinforced resin molded product is produced using this molded product after being molded once into a flat sheet-like fiber reinforced resin molded product, When molding a sheet-like fiber-reinforced resin molded article, it is better not to heat above a specific temperature.
 また、一旦、シート状、板状、紐状、線状等に繊維強化樹脂成形体を成形しておき、任意の時期に目的とする形状に加熱(または加熱と加圧)により再度成形しなおしてもよい。この場合、目的の形状に成形した後、熱に対する安定性を増加させるために、特定の温度以上で加熱を行うとよい。 In addition, once a fiber reinforced resin molded body is formed into a sheet shape, plate shape, string shape, line shape, etc., it is reshaped by heating (or heating and pressurizing) to the desired shape at any time. May be. In this case, after forming into the target shape, heating is preferably performed at a specific temperature or higher in order to increase stability against heat.
 たとえば、線状の繊維強化樹脂成形体として成形後、必要に応じて線状の繊維強化樹脂成形体を複数本より合わせ、その後、特定の温度以上で加熱して熱安定性の優れた棒材とする。得られた棒材は、コンクリート用補強筋やブレース材、ワイヤーなどの建材等に用いてもよい。 For example, after molding as a linear fiber reinforced resin molded product, if necessary, combine multiple linear fiber reinforced resin molded products, and then heat at a specific temperature or higher to make a bar with excellent thermal stability And The obtained bar may be used as a reinforcing material for concrete, a brace material, a building material such as a wire, or the like.
 以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。また、以下の実施例中の「部」は質量部である。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. Further, “parts” in the following examples are parts by mass.
 (実施例1)
 (繊維強化樹脂材料)
 実施例1では、一方向に配列された強化繊維の束として、炭素繊維の単繊維を24000本束ねたものを用いた(PAN系炭素繊維:東レ株式会社製のトレカ(登録商標)T700SC)。
(Example 1)
(Fiber reinforced resin material)
In Example 1, as a bundle of reinforcing fibers arranged in one direction, a bundle of 24,000 carbon fibers was used (PAN-based carbon fiber: Torayca (registered trademark) T700SC manufactured by Toray Industries, Inc.).
 この炭素繊維の束を巻いたドラムから開繊処理を行わずにそのまま炭素繊維の束を引き出しながら、炭素繊維の束の片面にキスロールを用いて以下に示す熱可塑性樹脂溶液を付与した。なお、ドラムから引き出したときの炭素繊維の束の断面形状は、偏平な形状であった。 The following thermoplastic resin solution was applied to one side of the carbon fiber bundle using a kiss roll while pulling out the carbon fiber bundle as it was without performing the fiber opening treatment from the drum around which the carbon fiber bundle was wound. In addition, the cross-sectional shape of the bundle of carbon fibers when pulled out from the drum was a flat shape.
 [熱可塑性樹脂溶液(粘度:80mPa・s)]
 ・熱可塑性エポキシ樹脂(反応型樹脂:DENATITE TPEP-AA-MEK-05B:ナガセケムテックス株式会社製。固形分85質量%)                              100部
 ・硬化剤(XNH6850RIN-K:ナガセケムテックス株式会社製。固形分70質量%)                       6.5部
 ・架橋剤(オキシムでブロックしたHDI系化合物(アダクト変性体)。固形分55質量%)                      20部
 ・メチルエチルケトン                    10部
[Thermoplastic resin solution (viscosity: 80 mPa · s)]
-Thermoplastic epoxy resin (Reactive resin: DENATEITE TPEP-AA-MEK-05B: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (XNH6850RIN-K: manufactured by Nagase ChemteX Corporation) 6.5 parts ・ Crosslinking agent (HDI compound blocked with oxime (adduct modified). Solid content 55% by weight) 20 parts ・ Methyl ethyl ketone 10 parts
 次に、熱可塑性樹脂溶液を付与した炭素繊維の束を4本のロールに接触(炭素繊維の束の上面及び下面を交互にそれぞれ2回ずつ接触)させることにより炭素繊維の束をシゴいた後、60℃で10分間乾燥し、引き続き120℃で10分間加熱処理を行うことで、長さ50m、幅4mm、厚み0.38mmの一方向に配列された強化繊維の束に反応型の熱可塑性樹脂が付与されたテープ状の繊維強化樹脂材料を得た。熱可塑性樹脂のガラス転移温度は100℃であった。 Next, after squeezing the bundle of carbon fibers by bringing the bundle of carbon fibers provided with the thermoplastic resin solution into contact with four rolls (the upper and lower surfaces of the bundle of carbon fibers are alternately contacted twice each) , By drying at 60 ° C. for 10 minutes, followed by heat treatment at 120 ° C. for 10 minutes, a reactive thermoplastic into a bundle of reinforcing fibers arranged in one direction with a length of 50 m, a width of 4 mm, and a thickness of 0.38 mm A tape-like fiber reinforced resin material provided with a resin was obtained. The glass transition temperature of the thermoplastic resin was 100 ° C.
 繊維強化樹脂材料のカットした切断面を、電子顕微鏡を用い100倍で観察したところ、炭素繊維の束の中央部にまで樹脂が入り込んでいた。 When the cut surface of the fiber reinforced resin material was observed at 100 times using an electron microscope, the resin entered the center of the bundle of carbon fibers.
 なお、熱可塑性樹脂溶液の粘度は、B型粘度計(TVB-15形粘度計:東機産業株式会社製)を用いて、ロータNo.20、12rpm、室温(15℃)で測定したものである。 The viscosity of the thermoplastic resin solution was measured using a B-type viscometer (TVB-15 type viscometer: manufactured by Toki Sangyo Co., Ltd.). Measured at 20, 12 rpm and room temperature (15 ° C.).
 得られたテープ状の繊維強化樹脂材料(炭素繊維樹脂材料)に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The obtained tape-like fiber reinforced resin material (carbon fiber resin material) was subjected to the following (thermal deformation test), (re-molding test), and (storage ease test).
 (熱による変形試験)
 得られたテープ状の繊維強化樹脂材料を長さ15cmにカットしたものを試料1として用いた。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は100℃であり、加熱処理前と比べガラス転移温度は上昇していなかった。
(Deformation test by heat)
The tape-like fiber reinforced resin material obtained was cut into a length of 15 cm and used as Sample 1. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. In addition, the glass transition temperature of the thermoplastic resin which performed the heat processing for 10 minutes at 200 degreeC was 100 degreeC, and the glass transition temperature was not rising compared with before heat processing.
 まず、カットした試料1、2について、各試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から各試料の長辺の10cm分がはみ出るような状態にする。 First, with respect to the cut samples 1 and 2, 5 cm from the end of the long side of each sample is sandwiched between two stainless steel plates so that the 10 cm of the long side of each sample protrudes from the two stainless steel plates. To do.
 次に、試料1、2について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に各試料を設置する。そして、170℃および240℃のそれぞれの熱風オーブンで10分経過後、各試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, with respect to Samples 1 and 2, the portions protruding from the two stainless steel plates are placed in a horizontal state in the air, and each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
 この試験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this test, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を5mmの凹凸を有する型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、240℃、4MPaで30分間の加熱及び加圧を行った。 First, each sample was placed on a mold having 5 mm irregularities, preheated at 120 ° C. for 10 minutes, and then heated and heated at 240 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: −0.1 MPa). Pressure was applied.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいな形状に成形されたが、試料2については少し波打ったような状態にはなったものの、きれいな凹凸形状にはならず、成形できなかった。 After cooling, the sample 1 taken out of the mold was molded into a clean shape along the shape of the mold with a depth of 5 mm, but the sample 2 was in a wavy state, but a clean uneven shape. It was not possible to mold.
 したがって、得られた繊維強化樹脂材料は、240℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、240℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 240 ° C., and after heating at 200 ° C., it cannot be remolded at least at 240 ° C. and 4 MPa.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、保管性に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test relating to storability was performed.
 具体的には、試料1を、60℃の熱風オーブンの中で5日間放置した後、上記の(熱による変形試験)を行った。つまり、試料1について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料1を設置する。 Specifically, after the sample 1 was left in a hot air oven at 60 ° C. for 5 days, the above (deformation test by heat) was performed. That is, with respect to the sample 1, the part protruding from the two stainless steel plates is placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
 この結果、放置後の試料1は、60℃の熱風オーブン中で放置する前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直な状態まで垂れ下がり)、熱可塑性が維持していることが確認された。 As a result, the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sagging to a nearly vertical state), and the thermoplasticity was high. It was confirmed that it was maintained.
 したがって、試料1は、熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that Sample 1 can be stored easily without being stored at low temperatures, such as a fiber reinforced resin material before curing using a thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例1の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内ある。 From the above test, the fiber reinforced resin material of Example 1 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、テープ状の繊維強化樹脂材料を炭素繊維の軸方向に対しほぼ垂直に40~50mmの長さとなるようにカットし、長さ40~50mm、幅4mm、厚み0.38mmの断面が偏平な形状でチップ状の繊維強化樹脂材料を得た。得られた繊維強化樹脂材料のVf値は45%であった。なお、得られた繊維強化樹脂材料中の炭素繊維の長さは、炭素繊維が長繊維であるので繊維強化樹脂材料の長さと同じで、40~50mmである。
(Fiber reinforced resin molding)
Next, the tape-like fiber reinforced resin material is cut so as to have a length of 40 to 50 mm substantially perpendicular to the axial direction of the carbon fiber, and a cross section having a length of 40 to 50 mm, a width of 4 mm, and a thickness of 0.38 mm is flattened. A chip-like fiber-reinforced resin material was obtained in a simple shape. The Vf value of the obtained fiber reinforced resin material was 45%. The length of the carbon fiber in the obtained fiber reinforced resin material is the same as the length of the fiber reinforced resin material because the carbon fiber is a long fiber, and is 40 to 50 mm.
 次に、得られたチップ状の繊維強化樹脂材料を複数、金型の中にランダムに積層し、120℃で5分間予備加熱した後、真空プレス機を用いて真空状態(真空度:-0.1MPa)で、240℃、4MPaで30分間の加熱及び加圧を行った。 Next, a plurality of the obtained chip-like fiber reinforced resin materials were randomly stacked in a mold, preheated at 120 ° C. for 5 minutes, and then vacuumed using a vacuum press (degree of vacuum: −0 .1 MPa) at 240 ° C. and 4 MPa for 30 minutes.
 その後、型枠から滲み出した熱可塑性樹脂を除去することで、厚さは1.3mmの板状に成形された繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の外観品位は良好であり、この繊維強化樹脂成形体の断面を、電子顕微鏡を用いて50倍で観察したところ、内部に空間はなかった。また、得られた繊維強化樹脂成形体のVf値は55%であった。 Thereafter, the thermoplastic resin exuded from the mold was removed to obtain a fiber-reinforced resin molded body formed into a plate shape having a thickness of 1.3 mm. The appearance quality of the obtained fiber reinforced resin molded article was good, and when the cross section of the fiber reinforced resin molded article was observed at 50 times using an electron microscope, there was no space inside. Further, the Vf value of the obtained fiber reinforced resin molded product was 55%.
 (熱による変形試験)
 得られた板状の繊維強化樹脂成形体をタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは1.3mmであった。
(Deformation test by heat)
The obtained plate-like fiber reinforced resin molded article was cut into a length of 15 cm and a width of 3 cm and used as a sample. The sample thickness was 1.3 mm.
 カットした試料について、試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から試料の長辺の10cm分がはみ出るような状態にする。 For the cut sample, 5 cm from the end of the long side of the sample is sandwiched between two stainless plates so that the 10 cm of the long side of the sample protrudes from the two stainless plates.
 次に、この試料を、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料を設置する。そして、170℃および240℃の熱風オーブンそれぞれで10分経過後、試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
 この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 As a result of this test, no stickiness (sagging) was confirmed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、240℃の加熱により成形することができ、240℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 240 ° C., and after heating at 240 ° C., it was confirmed that the stability of the shape against heat was improved.
 (再成形試験)
 この試験では、得られた板状物を試料として用いた。
(Re-molding test)
In this test, the obtained plate was used as a sample.
 まず、試料を深さ5mmのトレイ形の型の上に置き、240℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、240℃、4MPaで30分間の加熱及び加圧を行った。 First, the sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 240 ° C. for 10 minutes, then heated in a vacuum state (vacuum degree: −0.1 MPa) at 240 ° C. and 4 MPa for 30 minutes. Pressurization was performed.
 冷却後、型から取り出した加熱および加圧後の試料は、板状物が少しくぼんだような状態にはなったが、深さ5mmのトレイ形に沿った形状にはならず、再成形することができなかった。 After cooling, the heated and pressurized sample taken out of the mold was in a state where the plate-like object was slightly depressed, but it was not shaped along the tray shape with a depth of 5 mm, but was remolded. I couldn't.
 したがって、繊維強化樹脂材料は、240℃の加熱により成形することができるが、240℃で加熱した後は、240℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the fiber reinforced resin material can be molded by heating at 240 ° C., but after being heated at 240 ° C., it cannot be remolded at 240 ° C. and 4 MPa.
 以上の試験より、実施例1の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超240℃以下の範囲内にある。 From the above test, the fiber reinforced resin molded product of Example 1 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In this embodiment, the specific temperature is in the range of more than 120 ° C. and 240 ° C. or less.
 したがって、実施例1の繊維強化樹脂成形体は、240℃程度の高温環境であっても使用することができる。 Therefore, the fiber-reinforced resin molded body of Example 1 can be used even in a high temperature environment of about 240 ° C.
 (実施例2)
 実施例2では、一方向に配列された強化繊維の束として、炭素繊維の単繊維を60000本束ねたものを用いた(PAN系炭素繊維フィラメント:三菱レイヨン株式会社製のパイオフィル#TRH50 60M)。
(Example 2)
In Example 2, a bundle of 60000 single carbon fibers was used as a bundle of reinforcing fibers arranged in one direction (PAN-based carbon fiber filament: Pyofil # TRH50 60M manufactured by Mitsubishi Rayon Co., Ltd.).
 この炭素繊維の束を巻いたドラムから開繊処理を行わずにそのまま炭素繊維の束を引き出しながら、炭素繊維の束の片面にキスロールを用いて以下に示す熱可塑性樹脂溶液を付与した。なお、ドラムから引き出したときの炭素繊維の束の断面形状は、偏平な形状であった。 The following thermoplastic resin solution was applied to one side of the carbon fiber bundle using a kiss roll while pulling out the carbon fiber bundle as it was without performing the fiber opening treatment from the drum around which the carbon fiber bundle was wound. In addition, the cross-sectional shape of the bundle of carbon fibers when pulled out from the drum was a flat shape.
 [熱可塑性樹脂溶液(粘度:15mPa・s以下(装置の測定限界値以下))]
 ・熱可塑性エポキシ樹脂(反応型樹脂:DENATITE XNR6850V:ナガセケムテックス株式会社製。固形分85質量%)   100部
 ・硬化剤(DENATITE XNH6850V:ナガセケムテックス株式会社製。固形分30質量%)                6.5部
 ・架橋剤(カプロラクタムでブロックしたHDI系化合物(アダクト変性体)。固形分55質量%)                   40部
 ・メチルエチルケトン                   200部
[Thermoplastic resin solution (viscosity: 15 mPa · s or less (equipment measurement limit value or less))]
-Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts Crosslinking agent (HDI compound blocked with caprolactam (adduct modified). Solid content 55% by mass) 40 parts Methyl ethyl ketone 200 parts
 次に、熱可塑性樹脂溶液を付与した炭素繊維の束を4本のロールに接触(炭素繊維の束の上面及び下面を交互にそれぞれ2回ずつ接触)させることにより炭素繊維の束をシゴいた後、110℃で3分間の乾燥を行うことで、幅5~10mm、厚み0.5~1.5mmの一方向に配列された強化繊維の束に反応型の熱可塑性樹脂が付与されたテープ状の繊維強化樹脂材料を得た。熱可塑性樹脂のガラス転移温度は100℃であった。 Next, after squeezing the bundle of carbon fibers by bringing the bundle of carbon fibers provided with the thermoplastic resin solution into contact with four rolls (the upper and lower surfaces of the bundle of carbon fibers are alternately contacted twice each) , By drying at 110 ° C. for 3 minutes, a tape-form in which a reactive thermoplastic resin is applied to a bundle of reinforcing fibers arranged in one direction in a width of 5 to 10 mm and a thickness of 0.5 to 1.5 mm A fiber reinforced resin material was obtained. The glass transition temperature of the thermoplastic resin was 100 ° C.
 繊維強化樹脂材料のカットした切断面を、電子顕微鏡を用い100倍で観察したところ、炭素繊維の束の中央部にまで樹脂が入り込んでいた。 When the cut surface of the fiber reinforced resin material was observed at 100 times using an electron microscope, the resin entered the center of the bundle of carbon fibers.
 なお、熱可塑性樹脂溶液の粘度は、B型粘度計(TVB-15形粘度計:東機産業株式会社製)を用いて、ロータNo.20、60rpm、室温(15℃)で測定したものである。 The viscosity of the thermoplastic resin solution was measured using a B-type viscometer (TVB-15 type viscometer: manufactured by Toki Sangyo Co., Ltd.). It is measured at 20, 60 rpm and room temperature (15 ° C.).
 得られたテープ状の繊維強化樹脂材料(炭素繊維樹脂材料)に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The obtained tape-like fiber reinforced resin material (carbon fiber resin material) was subjected to the following (thermal deformation test), (re-molding test), and (storage ease test).
 (熱による変形試験)
 得られたテープ状の繊維強化樹脂材料(幅8mm、厚み1.0mm)を長さ15cmにカットしたもの試料1として用いた。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は110℃であり、加熱処理前と比べ上昇していた。
(Deformation test by heat)
The tape-like fiber reinforced resin material (width 8 mm, thickness 1.0 mm) obtained was cut to a length of 15 cm and used as sample 1. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. The glass transition temperature of the thermoplastic resin subjected to the heat treatment at 200 ° C. for 10 minutes was 110 ° C., which was higher than before the heat treatment.
 まず、カットした試料1、2について、各試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から各試料の長辺の10cm分がはみ出るような状態にする。 First, with respect to the cut samples 1 and 2, 5 cm from the end of the long side of each sample is sandwiched between two stainless steel plates so that the 10 cm of the long side of each sample protrudes from the two stainless steel plates. To do.
 次に、試料1、2について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に各試料を設置する。そして、170℃および240℃のそれぞれの熱風オーブンで10分経過後、各試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, with respect to Samples 1 and 2, the portions protruding from the two stainless steel plates are placed in a horizontal state in the air, and each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
 この実験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this experiment, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を5mmの凹凸を有する型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、240℃、4MPaで30分間の加熱及び加圧を行った。 First, each sample was placed on a mold having 5 mm irregularities, preheated at 120 ° C. for 10 minutes, and then heated and heated at 240 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: −0.1 MPa). Pressure was applied.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいな形状に成形されたが、試料2については、少し波打ったような状態にとはなったものの、きれいな凹凸形状にはならず、成形できなかった。 After cooling, the sample 1 taken out of the mold was molded into a clean shape along the shape of the mold with a depth of 5 mm, but the sample 2 was clean but slightly wavy. It was not uneven and could not be molded.
 したがって、得られた繊維強化樹脂材料は、240℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、240℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 240 ° C., and after heating at 200 ° C., it cannot be remolded at least at 240 ° C. and 4 MPa.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、保管性に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test relating to storability was performed.
 具体的には、試料1を、60℃の熱風オーブンの中で5日間放置した後、上記の(熱による変形試験)を行った。つまり、試料1について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料1を設置する。 Specifically, after the sample 1 was left in a hot air oven at 60 ° C. for 5 days, the above (deformation test by heat) was performed. That is, with respect to the sample 1, the part protruding from the two stainless steel plates is placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
 この結果、放置後の試料1は、60℃の熱風オーブン中で放置する前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直に垂れ下がった)、熱可塑性を有していることが確認された。 As a result, the sample 1 after being left as it was when it was heated in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag almost vertically) and had thermoplasticity. It was confirmed that
 したがって、従来の熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that it can be easily stored without being stored at low temperature, such as a fiber reinforced resin material before curing using a conventional thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例2の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 From the above test, the fiber reinforced resin material of Example 2 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、テープ状の繊維強化樹脂材料を炭素繊維の軸方向に対しほぼ垂直に20~30mmの長さとなるようにカットし、長さ20~30mm、幅5~10mm、厚み0.5~1.5mmのチップ状の繊維強化樹脂材料を得た。得られた繊維強化樹脂材料のVf値は44~53%であった。なお、得られた繊維強化樹脂材料中の炭素繊維の長さは、炭素繊維が長繊維であるので繊維強化樹脂材料の長さと同じで、20~30mmである。
(Fiber reinforced resin molding)
Next, the tape-like fiber reinforced resin material is cut so as to have a length of 20 to 30 mm substantially perpendicular to the axial direction of the carbon fiber, and is 20 to 30 mm in length, 5 to 10 mm in width, and 0.5 to 1 in thickness. A 5 mm chip-like fiber-reinforced resin material was obtained. The Vf value of the obtained fiber reinforced resin material was 44 to 53%. The length of the carbon fiber in the obtained fiber reinforced resin material is the same as the length of the fiber reinforced resin material because the carbon fiber is a long fiber, and is 20 to 30 mm.
 次に、得られたチップ状の繊維強化樹脂材料を、金型の中にランダムに積層し、120℃で予備加熱を5分行った後、真空プレス機を用いて真空状態(真空度:-0.1MPa)で、4MPaに加圧しながら120℃から240℃まで2℃/分で昇温し、240℃、4MPaで30分間の加熱及び加圧を行った。 Next, the obtained chip-like fiber reinforced resin material was randomly laminated in a mold, pre-heated at 120 ° C. for 5 minutes, and then in a vacuum state (vacuum degree: − 0.1 MPa), the pressure was increased from 120 ° C. to 240 ° C. at 2 ° C./min while pressurizing to 4 MPa, and heating and pressurization were performed at 240 ° C. and 4 MPa for 30 minutes.
 その後、型枠から滲み出した熱可塑性樹脂を除去することで、厚さ25.5mm、タテ150mm、ヨコ150mmの板状の繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の外観品位は良好であり、この繊維強化樹脂成形体の断面を、電子顕微鏡を用いて50倍で観察したところ、内部に空間は確認されなかった。また、得られた繊維強化樹脂成形体のVf値は55%であった。 Thereafter, the thermoplastic resin exuded from the mold was removed to obtain a plate-like fiber-reinforced resin molded body having a thickness of 25.5 mm, a length of 150 mm, and a width of 150 mm. The appearance quality of the obtained fiber reinforced resin molded article was good, and when the cross section of this fiber reinforced resin molded article was observed at 50 times using an electron microscope, no space was confirmed inside. Further, the Vf value of the obtained fiber reinforced resin molded product was 55%.
 (熱による変形試験)
 得られた板状の繊維強化樹脂成形体をタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは25.5mmであった。
(Deformation test by heat)
The obtained plate-like fiber reinforced resin molded article was cut into a length of 15 cm and a width of 3 cm and used as a sample. The thickness of the sample was 25.5 mm.
 カットした試料について、試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から試料の長辺の10cm分がはみ出るような状態にする。 For the cut sample, 5 cm from the end of the long side of the sample is sandwiched between two stainless plates so that the 10 cm of the long side of the sample protrudes from the two stainless plates.
 次に、この試料を、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料を設置する。そして、170℃および240℃の熱風オーブンそれぞれで10分経過後、試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
 この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 As a result of this test, no stickiness (sagging) was confirmed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、240℃の加熱により成形することができ、240℃で加熱した後は、熱による形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 240 ° C. After heating at 240 ° C., it was confirmed that the stability of the shape by heat was improved.
 (再成形試験)
 この試験では、得られた板状物を試料として用いた。
(Re-molding test)
In this test, the obtained plate was used as a sample.
 まず、試料を深さ5mmのトレイ形の型の上に置き、240℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、240℃、4MPaで30分間の加熱及び加圧を行った。 First, the sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 240 ° C. for 10 minutes, then heated in a vacuum state (vacuum degree: −0.1 MPa) at 240 ° C. and 4 MPa for 30 minutes. Pressurization was performed.
 冷却後、型から取り出した加熱および加圧後の試料は、ややくぼんだがほとんど変形せず再成形できなかった。 After cooling, the sample after heating and pressurization taken out from the mold was slightly depressed but was hardly deformed and could not be reshaped.
 したがって、繊維強化樹脂材料は、240℃の加熱により成形することができるが、240℃で加熱した後は、240℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the fiber reinforced resin material can be molded by heating at 240 ° C., but after being heated at 240 ° C., it cannot be remolded at 240 ° C. and 4 MPa.
 以上の試験より、実施例2の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超240℃以下の範囲内にある。 From the above test, the fiber reinforced resin molded body of Example 2 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In this embodiment, the specific temperature is in the range of more than 120 ° C. and 240 ° C. or less.
 また、実施例2の繊維強化樹脂成形体は、240℃程度の環境下で使用されるもの、たとえば、130℃程度の環境となるロボットアームのモータなどの駆動部と接する箇所や高温環境で用いられるスペーサやジャッキ用プレート等としても使用できる。 Further, the fiber reinforced resin molded body of Example 2 is used in an environment of about 240 ° C., for example, in a place where it comes into contact with a drive unit such as a motor of a robot arm that becomes an environment of about 130 ° C. or in a high temperature environment. It can also be used as a spacer or jack plate.
 (実施例3)
 実施例3では、長繊維の強化繊維として、長繊維の炭素繊維を用いて得られた平織物(東レ株式会社製のトレカ(登録商標)CO6343B。炭素繊維3000本を束ね開繊した3Kの炭素繊維束を用いて得られた平織物)を用いた。
(Example 3)
In Example 3, a plain fabric (Torayca (registered trademark) CO6343B manufactured by Toray Industries, Inc., 3K carbon obtained by bundling and opening 3000 carbon fibers) obtained by using carbon fibers of long fibers as reinforcing fibers of long fibers. Plain fabric obtained using fiber bundles) was used.
 まず、この平織物を、実施例2と同じ熱可塑性樹脂溶液に浸漬して、平織物に熱可塑性樹脂溶液を付与した。 First, this plain fabric was immersed in the same thermoplastic resin solution as in Example 2 to give the thermoplastic fabric solution to the plain fabric.
 次に、熱可塑性樹脂溶液を付与した平織物の上下面を10本のロールに接触(平織物の上面及び下面を交互にそれぞれ5回ずつ接触)させてしごいた後、60℃で20分間乾燥し、引き続き110℃で10分間の加熱を行い、長さ50m、幅48cm、厚み0.39mmの長繊維の炭素繊維を用いて得られた織物に反応型の熱可塑性樹脂を付与したシート状の繊維強化樹脂材料を得た。なお、60℃で乾燥し、110℃で加熱した特定の温度以上で加熱する前の熱可塑性樹脂は、ガラス転移温度が100℃で、得られたシート状の繊維強化樹脂材料のVf値が50%であった。 Next, the upper and lower surfaces of the plain woven fabric to which the thermoplastic resin solution is applied are brought into contact with 10 rolls (the upper and lower surfaces of the plain woven fabric are alternately contacted 5 times each), and then rubbed at 60 ° C. for 20 minutes. Dry, and then heated at 110 ° C. for 10 minutes, a sheet-like form in which a reactive thermoplastic resin is applied to a woven fabric obtained by using long carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm A fiber reinforced resin material was obtained. The thermoplastic resin dried at 60 ° C. and heated at a temperature equal to or higher than the specific temperature heated at 110 ° C. has a glass transition temperature of 100 ° C., and the obtained sheet-like fiber reinforced resin material has a Vf value of 50. %Met.
 得られたシート状の繊維強化樹脂材料に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
 (熱による変形試験)
 得られたシート状の繊維強化樹脂材料を長さ15cm、幅3cmにカットしたもの試料1として用いた。また、試料1の厚みは0.39mmであった。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。この試料1、2を用いて、以下の試験を行った。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は110℃であり、加熱処理前と比べ上昇していた。
(Deformation test by heat)
The obtained sheet-like fiber reinforced resin material was cut into a length of 15 cm and a width of 3 cm and used as Sample 1. The thickness of Sample 1 was 0.39 mm. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. Using the samples 1 and 2, the following tests were performed. The glass transition temperature of the thermoplastic resin subjected to the heat treatment at 200 ° C. for 10 minutes was 110 ° C., which was higher than before the heat treatment.
 まず、カットした試料1、2について、各試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から各試料の長辺の10cm分がはみ出るような状態にする。 First, with respect to the cut samples 1 and 2, 5 cm from the end of the long side of each sample is sandwiched between two stainless steel plates so that the 10 cm of the long side of each sample protrudes from the two stainless steel plates. To do.
 次に、試料1、2について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に各試料を設置する。そして、170℃および240℃のそれぞれの熱風オーブンで10分経過後、各試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, with respect to Samples 1 and 2, the portions protruding from the two stainless steel plates are placed in a horizontal state in the air, and each sample is placed in each of a 170 ° C. hot air oven and a 240 ° C. hot air oven. Then, after 10 minutes had passed in each hot air oven at 170 ° C. and 240 ° C., it was confirmed whether each sample was scuttled by heat (sagging).
 この実験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this experiment, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を深さ5mmのトレイ形の型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、150℃、2MPaで15分間の加熱及び加圧を行った。 First, each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: −0.1 MPa) at 150 ° C. and 2 MPa for 15 minutes. And pressurization.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいなトレイ形状となったが、試料2については、少しくぼんだような状態にはなったものの、深さ5mmのトレイの形状にはならず、再成形できなかった。 After cooling, the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
 したがって、得られた繊維強化樹脂材料は、150℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、150℃、2MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 2 MPa.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、保管性に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test relating to storability was performed.
 具体的には、試料1を、60℃の熱風オーブンの中で5日間放置した後、上記の(熱による変形試験)を行った。つまり、試料1について、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料1を設置する。 Specifically, after the sample 1 was left in a hot air oven at 60 ° C. for 5 days, the above (deformation test by heat) was performed. That is, with respect to the sample 1, the part protruding from the two stainless steel plates is placed in a horizontal state in the air, and the sample 1 is placed in each of the hot air oven at 170 ° C. and the hot air oven at 240 ° C.
 この結果、放置後の試料1は、60℃の熱風オーブン中での放置前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直な状態に垂れ下がり)、熱可塑性を有していることが確認された。 As a result, the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
 したがって、従来の熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that it can be easily stored without being stored at low temperature, such as a fiber reinforced resin material before curing using a conventional thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例3の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 According to the above test, the fiber reinforced resin material of Example 3 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、このシート状の繊維強化樹脂材料を5枚、繊維軸方向ずらしながら重ねて、102°の略L字型の上に設置し、120℃で10分間予備加熱し、真空状態(真空度:-0.1MPa)にて、150℃、2MPaで15分間、加熱しながら加圧することで、略L字型(L部の角度102°)の繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の平坦な部分(L部の頂点ではない部分)の厚みは1.25mmであった。また、繊維強化樹脂成形体のVf値は、52%であった。
(Fiber reinforced resin molding)
Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a substantially L-shape of 102 °, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree) : -0.1 MPa) at 150 ° C. and 2 MPa for 15 minutes while heating, a substantially L-shaped (L portion angle of 102 °) fiber-reinforced resin molded body was obtained. The thickness of the flat part (part which is not the top of L part) of the obtained fiber reinforced resin molding was 1.25 mm. The Vf value of the fiber reinforced resin molded product was 52%.
 (熱による変形試験)
 得られた略L字型の繊維強化樹脂成形体の平坦部よりタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは1.25mmであった。
(Deformation test by heat)
The obtained substantially L-shaped fiber reinforced resin molded article was cut from a flat portion to a length of 15 cm and a width of 3 cm and used as a sample. The sample thickness was 1.25 mm.
 カットした試料について、試料の長辺の端部から5cm分を2枚のステンレス板の間に挟み、2枚のステンレス板から試料の長辺の10cm分がはみ出るような状態にする。 For the cut sample, 5 cm from the end of the long side of the sample is sandwiched between two stainless plates so that the 10 cm of the long side of the sample protrudes from the two stainless plates.
 次に、この試料を、2枚のステンレス板からはみ出した部分が空中で水平状態となるようにし、170℃の熱風オーブンと240℃の熱風オーブンの各々の中に試料を設置する。そして、170℃および240℃の熱風オーブンそれぞれで10分経過後、試料が熱によりヘタル(垂れ下がる)かを確認した。 Next, this sample is placed in a horizontal state in the air so that the part protruding from the two stainless steel plates is placed in each of a hot air oven at 170 ° C. and a hot air oven at 240 ° C. Then, after 10 minutes had passed in each of the hot air ovens at 170 ° C. and 240 ° C., it was confirmed whether the sample was scuttled by heat.
 この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 As a result of this test, no stickiness (sagging) was confirmed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、150℃の加熱により成形することができ、150℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 150 ° C. After heating at 150 ° C., it was confirmed that the stability of the shape against heat was improved.
 (再成形試験)
 この試験では、得られたL字型に成形された繊維強化樹脂成形体を試料として用いた。
(Re-molding test)
In this test, the obtained fiber reinforced resin molded product molded into an L-shape was used as a sample.
 まず、試料をフラットな型の上に、L字の頂点を上向きに置き、再度、150℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、150℃、2MPaで15分間の加熱及び加圧を行った。 First, the sample was placed on a flat mold with the L-shaped apex facing upward, preheated again at 150 ° C. for 10 minutes, and then in a vacuum state (vacuum degree: −0.1 MPa) at 150 ° C. and 2 MPa. Heating and pressurization for 15 minutes were performed.
 冷却後、加熱および加圧した試料は、L字の先端が少し開いたような形状となったが、フラットな板状には再成形できなかった。 After cooling, the heated and pressurized sample had a shape in which the L-shaped tip was slightly opened, but could not be reshaped into a flat plate shape.
 したがって、繊維強化樹脂材料は、150℃の加熱により成形することができるが、150℃で加熱した後は、150℃、2MPaでは再成形できないことが確認された。 Therefore, although the fiber reinforced resin material can be molded by heating at 150 ° C., it was confirmed that after heating at 150 ° C., re-molding cannot be performed at 150 ° C. and 2 MPa.
 以上の結果より、実施例3の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超150℃以下の範囲内にある。 From the above results, the fiber reinforced resin molded body of Example 3 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In the present embodiment, the specific temperature is in the range of more than 120 ° C. and 150 ° C. or less.
 また、実施例3の繊維強化樹脂成形体は、240℃程度の環境下で使用されるもの、たとえば、アスファルトの舗装時の熱にも耐える鋼製床版補強用のL字プレート等としても使用できる。 The fiber reinforced resin molded body of Example 3 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
 以上の結果より、実施例1、実施例2および実施例3の繊維強化樹脂材料は、加熱により成形することができ、容易に任意の成形体を得ることができる。 From the above results, the fiber reinforced resin materials of Example 1, Example 2 and Example 3 can be molded by heating, and an arbitrary molded body can be easily obtained.
 また、実施例1、実施例2および実施例3の繊維強化樹脂成形体は、保管性に優れており、特別な冷蔵保存などを行わなくとも保管することができ、産業上利用の利便性が向上する。 In addition, the fiber reinforced resin molded articles of Example 1, Example 2 and Example 3 are excellent in storability, and can be stored without performing special refrigeration and the convenience of industrial use. improves.
 また、実施例1、実施例2および実施例3の繊維強化樹脂材料を用いれば、熱による成形が容易で、かつ、高温環境下でも使用できる繊維強化樹脂成形体を提供することができる。 Further, if the fiber reinforced resin materials of Examples 1, 2 and 3 are used, it is possible to provide a fiber reinforced resin molded article that can be easily molded by heat and can be used even in a high temperature environment.
 また、実施例1、実施例2および実施例3の繊維強化樹脂成形体は、繊維強化樹脂成形体を得るために用いられる熱可塑性を有する繊維強化樹脂材料に比べ、特定の温度以上で加熱することにより熱に対する形状の熱安定性が増し、より高温環境下にて使用することが可能である。 Further, the fiber reinforced resin molded bodies of Example 1, Example 2 and Example 3 are heated at a specific temperature or higher as compared with the fiber reinforced resin material having thermoplasticity used to obtain the fiber reinforced resin molded body. This increases the thermal stability of the shape against heat and can be used in a higher temperature environment.
 (実施例4)
 次に、上記の成形時または成形後の特定の温度に関して行った実験結果について、実施例4を用いて説明する。
Example 4
Next, the results of an experiment conducted on the specific temperature during or after the molding described above will be described using Example 4.
 実施例4では、まず、実施例3で用いた熱可塑性樹脂溶液中の架橋剤の量を、0部、5部、10部に変更したもので繊維強化樹脂材料を得た。なお、架橋剤の量を変更した以外は、実施例3と同様とした。 In Example 4, first, a fiber-reinforced resin material was obtained by changing the amount of the crosslinking agent in the thermoplastic resin solution used in Example 3 to 0 part, 5 parts, and 10 parts. In addition, it was the same as that of Example 3 except having changed the quantity of the crosslinking agent.
 次に、得られたシート状の繊維強化樹脂材料をタテ10cm、ヨコ4cmにカットして、架橋剤の量が0部、5部、10部のものをそれぞれ試料1、試料2、試料3として準備した。 Next, the obtained sheet-like fiber reinforced resin material is cut into a length of 10 cm and a width of 4 cm, and the amount of the cross-linking agent is 0 part, 5 parts, and 10 parts as Sample 1, Sample 2, and Sample 3, respectively. Got ready.
 その後、各試料に対して150℃で10分間熱処理を行った後に以下の成形試験を行ったものと、各試料に対して熱処理を行うことなく以下の成形試験を行ったものとを用意した。 Then, after performing heat treatment at 150 ° C. for 10 minutes for each sample, the following molding test was performed, and for each sample, the following molding test was performed without performing heat treatment.
 (成形試験)
 それぞれの試料を4枚重ねてフラットな型の上に置き、真空状態(真空度:-0.1MPa)で、(i)125℃、8MPa、10分間、(ii)150℃、8MPa、10分間、(iii)175℃、8MPa、10分間、(iv)200℃、8MPa、10分間で、加熱及び加圧を行った。つまり、圧力及び時間の条件は一定とし、温度を変えて加熱及び加圧を行った。
(Molding test)
Four samples are stacked and placed on a flat mold, and in a vacuum state (vacuum degree: -0.1 MPa), (i) 125 ° C., 8 MPa, 10 minutes, (ii) 150 ° C., 8 MPa, 10 minutes (Iii) Heating and pressing were performed at 175 ° C., 8 MPa, 10 minutes, and (iv) 200 ° C., 8 MPa, 10 minutes. That is, the conditions of pressure and time were constant, and heating and pressurization were performed while changing the temperature.
 この成形試験後の繊維強化樹脂材料に関して、150℃で10分間の熱処理を行った後に上記の成形試験を行った試料1~3と、熱処理を行うことなく上記成形試験を行った試料1~3とについて、得られたシート状の繊維強化樹脂成形体の外観を観察するとともに、曲げ強度を測定した。曲げ強度の測定は、速度を5mm/分、支点間距離を40mmで行った。また、各繊維強化樹脂成形体の厚みは、いずれも1.0mmであった。 With respect to the fiber reinforced resin material after the molding test, samples 1 to 3 were subjected to the heat treatment at 150 ° C. for 10 minutes and then subjected to the molding test, and samples 1 to 3 were subjected to the molding test without being subjected to heat treatment. In addition to observing the appearance of the obtained sheet-like fiber-reinforced resin molded article, the bending strength was measured. The bending strength was measured at a speed of 5 mm / min and a fulcrum distance of 40 mm. Moreover, the thickness of each fiber reinforced resin molding was 1.0 mm.
 その結果、150℃で10分間の熱処理を行った後に上記成形試験を行った試料1~3について、外観品位の評価結果を表1に示す。なお、試料2、3については、加熱温度が上昇するにしたがって、表面の光沢が強くなった。 As a result, the evaluation results of the appearance quality are shown in Table 1 for Samples 1 to 3 which were subjected to the above-described molding test after heat treatment at 150 ° C. for 10 minutes. For samples 2 and 3, the gloss of the surface became stronger as the heating temperature increased.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一方、表1には示していないが、熱処理を行うことなく上記成形試験を行った試料1~3の外観品位については、いずれも4枚の試料が一体化しており、表面が平滑になり、鏡面状になっていた。つまり、再成形していることが確認できた。 On the other hand, although not shown in Table 1, with respect to the appearance quality of Samples 1 to 3 that were subjected to the above molding test without heat treatment, all four samples were integrated, and the surface became smooth. It was mirror-like. That is, it was confirmed that remolding was performed.
 また、曲げ強度の測定結果を表2に示す。表2には、150℃で10分間の熱処理を行った後に上記成形試験を行った試料1~3と、熱処理を行うことなく上記成形試験を行った試料1~3とについて、曲げ強度の測定結果が示されている。なお、熱処理を行わなかった試料1~3については、上記成形試験のうち、125℃、8MPa、10分間の加熱及び加圧した場合((i))のみを示している。 Also, the measurement results of bending strength are shown in Table 2. Table 2 shows the measurement of bending strength for Samples 1 to 3 that were subjected to the above-described molding test after heat treatment at 150 ° C. for 10 minutes and Samples 1 to 3 that were subjected to the above-mentioned molding test without performing heat treatment. Results are shown. For Samples 1 to 3 that were not heat-treated, only the case ((i)) in the above-described molding test was heated and pressurized at 125 ° C., 8 MPa, and 10 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実験結果によれば、実施例4の場合については、少なくとも特定の温度は150℃以下であり、特定の温度以上で加熱する前は、4枚の繊維強化樹脂材料は、外観及び強度の観点から、一体成型がなされていることが確認できた。また、特定の温度以上で加熱した後は、一見すると外観上は繊維強化樹脂材料は一体化(再成形)されているように見えても、表1に示されるように外観品位は十分ではなく、また、表2に示されるように十分な強度も有しておらず、一体化(再成形)できているものではなかった。つまり、特定の温度以上で加熱した後は再加熱により再成形できないことが確認できた。 According to the above experimental results, in the case of Example 4, at least the specific temperature is 150 ° C. or lower, and before heating at a specific temperature or higher, the four fiber reinforced resin materials have the appearance and strength. From the viewpoint, it was confirmed that the integral molding was performed. In addition, after heating at a specific temperature or higher, the appearance quality is not sufficient as shown in Table 1, even if the fiber reinforced resin material appears to be integrated (reformed) at first glance. In addition, as shown in Table 2, it did not have sufficient strength and was not integrated (reformed). That is, it was confirmed that after heating at a specific temperature or higher, re-molding cannot be performed by reheating.
 (実施例5)
 実施例5では、熱可塑性樹脂溶液として下記のものを用いた以外は実施例3と同様にし、長さ50m、幅48cm、厚み0.39mmの長繊維の炭素繊維を用いて得られた織物に反応型の熱可塑性樹脂を付与したシート状の繊維強化樹脂材料を得た。なお、60℃で乾燥し、110℃で加熱した特定の温度以上で加熱する前の熱可塑性樹脂は、ガラス転移温度が100℃で、得られたシート状の繊維強化樹脂材料のVf値が45%であった。
(Example 5)
In Example 5, except that the following were used as the thermoplastic resin solution, the same procedure as in Example 3 was applied to a woven fabric obtained by using long-fiber carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm. A sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained. In addition, the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
 [熱可塑性樹脂溶液(粘度:80mPa・s)]
 ・熱可塑性エポキシ樹脂(反応型樹脂:DENATITE XNR6850V:ナガセケムテックス株式会社製。固形分85質量%)   100部
 ・硬化剤(DENATITE XNH6850V:ナガセケムテックス株式会社製。固形分30質量%)                6.5部
 ・架橋剤(オキシムでブロックしたIPDI系化合物。固形分55質量%)                              30部
 ・メチルエチルケトン                    10部
[Thermoplastic resin solution (viscosity: 80 mPa · s)]
-Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts ・ Crosslinking agent (IPDI compound blocked with oxime. Solid content 55% by mass) 30 parts ・ Methyl ethyl ketone 10 parts
 得られたシート状の繊維強化樹脂材料に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
 (熱による変形試験)
 得られたシート状の繊維強化樹脂材料を長さ15cm、幅3cmにカットしたもの試料1として用いた。また、試料1の厚みは0.39mmであった。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。この試料1、2を用いて、実施例3と同様に(熱による変形試験)を行った。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は120℃であり、加熱処理前と比べ上昇していた。
(Deformation test by heat)
The obtained sheet-like fiber reinforced resin material was cut into a length of 15 cm and a width of 3 cm and used as Sample 1. The thickness of Sample 1 was 0.39 mm. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. Using Samples 1 and 2, a heat deformation test was performed in the same manner as in Example 3. The glass transition temperature of the thermoplastic resin subjected to the heat treatment at 200 ° C. for 10 minutes was 120 ° C., which was higher than before the heat treatment.
 この実験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this experiment, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を深さ5mmのトレイ形の型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、200℃、4MPaで30分間の加熱及び加圧を行った。 First, each sample was placed on a tray-shaped mold having a depth of 5 mm, pre-heated at 120 ° C. for 10 minutes, and then heated at 200 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: −0.1 MPa). And pressurization.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいなトレイ形状となったが、試料2については、少しくぼんだような状態にはなったものの、深さ5mmのトレイの形状にはならず、再成形できなかった。 After cooling, the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
 したがって、得られた繊維強化樹脂材料は、200℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、200℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 200 ° C. and cannot be remolded at 200 ° C. and 4 MPa at least after heating at 200 ° C.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、実施例3と同様の(保管容易性)に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test related to (easy storage) similar to that in Example 3 was performed.
 この結果、放置後の試料1は、60℃の熱風オーブン中での放置前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直な状態に垂れ下がり)、熱可塑性を有していることが確認された。 As a result, the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
 したがって、従来の熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that it can be easily stored without being stored at low temperature, such as a fiber reinforced resin material before curing using a conventional thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例5の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 From the above test, the fiber reinforced resin material of Example 5 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、このシート状の繊維強化樹脂材料を5枚、繊維軸方向ずらしながら重ねて、平板状の型の上に設置し、120℃で10分間予備加熱し、真空状態(真空度:-0.1MPa)にて、200℃、4MPaで30分間、加熱しながら加圧することで、平板状の繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の厚みは1.25mmであった。また、繊維強化樹脂成形体のVf値は、47%であった。
(Fiber reinforced resin molding)
Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a flat plate mold, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree: −0 .1 MPa) at 200 ° C. and 4 MPa for 30 minutes while heating to obtain a flat fiber-reinforced resin molded body. The thickness of the obtained fiber reinforced resin molded product was 1.25 mm. The Vf value of the fiber reinforced resin molded product was 47%.
 (熱による変形試験)
 得られた平板状の繊維強化樹脂成形体をタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは1.25mmであった。
(Deformation test by heat)
The obtained flat fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample. The sample thickness was 1.25 mm.
 カットした試料について、実施例3と同様の(熱による変形試験)を行った。この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 The cut sample was subjected to the same test (deformation test by heat) as in Example 3. As a result of this test, no stickiness (sagging) was observed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、200℃の加熱により成形することができ、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 200 ° C., and after heating at 200 ° C., it was confirmed that the stability of the shape against heat was improved.
 (再成形試験)
 この試験では、得られた平板状に成形された繊維強化樹脂成形体を試料として用いた。
(Re-molding test)
In this test, the obtained fiber reinforced resin molded product molded into a flat plate shape was used as a sample.
 まず、試料を102°の略L字型の上に置き、再度、200℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、200℃、4MPaで30分間の加熱及び加圧を行った。 First, the sample is placed on a substantially L-shape of 102 °, preheated again at 200 ° C. for 10 minutes, and then heated at 200 ° C. and 4 MPa for 30 minutes in a vacuum state (vacuum degree: −0.1 MPa). And pressurization.
 冷却後、加熱および加圧した試料は、やや曲がったような形状となったが、きれいな略L字型には再成形できなかった。 After cooling, the heated and pressurized sample had a slightly bent shape, but could not be reshaped into a clean L-shape.
 したがって、繊維強化樹脂材料は、200℃の加熱により成形することができるが、200℃で加熱した後は、200℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the fiber-reinforced resin material can be molded by heating at 200 ° C., but cannot be remolded at 200 ° C. and 4 MPa after being heated at 200 ° C.
 以上の結果より、実施例5の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 From the above results, the fiber reinforced resin molded body of Example 5 is a fiber reinforced resin molded body obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In this embodiment, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 また、実施例5の繊維強化樹脂成形体は、240℃程度の環境下で使用されるもの、たとえば、アスファルトの舗装時の熱にも耐える鋼製床版補強用のL字プレート等としても使用できる。 Further, the fiber-reinforced resin molded body of Example 5 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
 (実施例6)
 実施例6では、熱可塑性樹脂溶液として下記のものを用いた以外は実施例5と同様にし、長さ50m、幅48cm、厚み0.39mmの長繊維の炭素繊維を用いて得られた織物に反応型の熱可塑性樹脂を付与したシート状の繊維強化樹脂材料を得た。なお、60℃で乾燥し、110℃で加熱した特定の温度以上で加熱する前の熱可塑性樹脂は、ガラス転移温度が100℃で、得られたシート状の繊維強化樹脂材料のVf値が45%であった。
(Example 6)
In Example 6, except that the following were used as the thermoplastic resin solution, the same procedure as in Example 5 was applied to a woven fabric obtained by using long carbon fibers having a length of 50 m, a width of 48 cm, and a thickness of 0.39 mm. A sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained. In addition, the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
 [熱可塑性樹脂溶液(粘度:80mPa・s]
 ・熱可塑性エポキシ樹脂(反応型樹脂:DENATITE XNR6850V:ナガセケムテックス株式会社製。固形分85質量%)   100部
 ・硬化剤(DENATITE XNH6850V:ナガセケムテックス株式会社製。固形分30質量%)                6.5部
 ・架橋剤(カプロラクタムでブロックした水添MDI系型化合物。固形分55質量%)                         20部
 ・メチルエチルケトン                    10部
[Thermoplastic resin solution (viscosity: 80 mPa · s]
-Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts ・ Crosslinking agent (hydrogenated MDI type compound blocked with caprolactam. Solid content 55% by mass) 20 parts ・ Methyl ethyl ketone 10 parts
 得られたシート状の繊維強化樹脂材料に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
 (熱による変形試験)
 得られたシート状の繊維強化樹脂材料を長さ15cm、幅3cmにカットしたもの試料1として用いた。また、試料1の厚みは0.39mmであった。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。この試料1、2を用いて、実施例5と同様の(熱による変形試験)を行った。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は120℃であり、加熱処理前と比べガラス転移温度は上昇していた。
(Deformation test by heat)
The obtained sheet-like fiber reinforced resin material was cut into a length of 15 cm and a width of 3 cm and used as Sample 1. The thickness of Sample 1 was 0.39 mm. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. Using Samples 1 and 2, the same test as in Example 5 (thermal deformation test) was performed. In addition, the glass transition temperature of the thermoplastic resin which performed the heat processing for 10 minutes at 200 degreeC was 120 degreeC, and the glass transition temperature was rising compared with before heat processing.
 この実験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this experiment, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を深さ5mmのトレイ形の型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、150℃、4MPaで30分間の加熱及び加圧を行った。 First, each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: −0.1 MPa) at 150 ° C. and 4 MPa for 30 minutes. And pressurization.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいなトレイ形状となったが、試料2については、少しくぼんだような状態にはなったものの、深さ5mmのトレイの形状にはならず、再成形できなかった。 After cooling, the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
 したがって、得られた繊維強化樹脂材料は、150℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、150℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 4 MPa.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、実施例5と同様の(保管容易性)に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test related to (storability) similar to that in Example 5 was performed.
 この結果、放置後の試料1は、60℃の熱風オーブン中での放置前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直な状態に垂れ下がり)、熱可塑性を有していることが確認された。 As a result, the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
 したがって、従来の熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that it can be easily stored without being stored at low temperature, such as a fiber reinforced resin material before curing using a conventional thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例6の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 From the above test, the fiber reinforced resin material of Example 6 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、このシート状の繊維強化樹脂材料を5枚、繊維軸方向にずらしながら重ねて、略L字型の上に設置し、120℃で10分間予備加熱し、真空状態(真空度:-0.1MPa)にて、230℃、6MPaで30分間、加熱しながら加圧することで、略L字型(L部の角度102°)の繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の平坦な部分(L部頂点ではない部分)の厚みは1.25mmであった。また、繊維強化樹脂成形体のVf値は、47%であった。
(Fiber reinforced resin molding)
Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a substantially L-shape, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree: − 0.1 MPa) at 230 ° C. and 6 MPa for 30 minutes while heating to obtain an approximately L-shaped (L portion angle of 102 °) fiber-reinforced resin molded body. The thickness of the flat part (the part which is not the top of the L part) of the obtained fiber reinforced resin molded product was 1.25 mm. The Vf value of the fiber reinforced resin molded product was 47%.
 (熱による変形試験)
 得られた略L字型の繊維強化樹脂成形体をタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは1.25mmであった。
(Deformation test by heat)
The obtained substantially L-shaped fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample. The sample thickness was 1.25 mm.
 カットした試料について、実施例5と同様の(熱による変形試験)を行った。この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 The cut sample was subjected to the same test as in Example 5 (thermal deformation test). As a result of this test, no stickiness (sagging) was observed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、230℃の加熱により成形することができ、230℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 230 ° C., and after heating at 230 ° C., it was confirmed that the stability of the shape against heat was improved.
 (再成形試験)
 この試験では、得られた略L字型に成形された繊維強化樹脂成形体を試料として用いた。
(Re-molding test)
In this test, the obtained fiber reinforced resin molded product formed into a substantially L-shape was used as a sample.
 まず、試料をフラットな型の上に、L字の頂点を上向きに置き、再度、200℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、200℃、4MPaで30分間の加熱及び加圧を行った。 First, the sample was placed on a flat mold with the L-shaped apex facing upward, preheated again at 200 ° C. for 10 minutes, and then in a vacuum state (vacuum degree: −0.1 MPa) at 200 ° C. and 4 MPa. Heating and pressurization for 30 minutes were performed.
 冷却後、加熱および加圧した試料は、L字の先端が少し開いたような形状となったが、フラットな板状には再成形できなかった。 After cooling, the heated and pressurized sample had a shape in which the L-shaped tip was slightly opened, but could not be reshaped into a flat plate shape.
 したがって、繊維強化樹脂材料は、230℃の加熱により成形することができるが、230℃で加熱した後は、200℃、4MPaでは再成形できないことが確認された。 Therefore, although the fiber reinforced resin material can be molded by heating at 230 ° C., it was confirmed that after heating at 230 ° C., it cannot be remolded at 200 ° C. and 4 MPa.
 以上の結果より、実施例6の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超230℃以下の範囲内にある。 From the above results, the fiber reinforced resin molded product of Example 6 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In this embodiment, the specific temperature is in the range of more than 120 ° C. and 230 ° C. or less.
 また、実施例6の繊維強化樹脂成形体は、240℃程度の環境下で使用されるもの、たとえば、アスファルトの舗装時の熱にも耐える鋼製床版補強用のL字プレート等としても使用できる。 Further, the fiber reinforced resin molded body of Example 6 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
 (実施例7)
 実施例7では、熱可塑性樹脂溶液として下記のものを用いた以外は実施例5と同様にし、長さ50m、幅48cm、厚み0.39mmの長繊維の炭素繊維を用いて得られた織物に反応型の熱可塑性樹脂を付与したシート状の繊維強化樹脂材料を得た。なお、60℃で乾燥し、110℃で加熱した特定の温度以上で加熱する前の熱可塑性樹脂は、ガラス転移温度が100℃で、得られたシート状の繊維強化樹脂材料のVf値が45%であった。
(Example 7)
In Example 7, a woven fabric obtained by using carbon fibers of long fibers having a length of 50 m, a width of 48 cm and a thickness of 0.39 mm in the same manner as in Example 5 except that the following were used as the thermoplastic resin solution. A sheet-like fiber reinforced resin material provided with a reactive thermoplastic resin was obtained. In addition, the thermoplastic resin before heating above the specific temperature heated at 110 degreeC after drying at 60 degreeC has a glass transition temperature of 100 degreeC, and Vf value of the obtained sheet-like fiber reinforced resin material is 45. %Met.
 [熱可塑性樹脂溶液(粘度:80mPa・s]
 ・熱可塑性エポキシ樹脂(反応型樹脂:DENATITE XNR6850V:ナガセケムテックス株式会社製。固形分85質量%)   100部
 ・硬化剤(DENATITE XNH6850V:ナガセケムテックス株式会社製。固形分30質量%)                6.5部
 ・架橋剤(ノボラック型樹脂。固形分55質量%)       20部
 ・メチルエチルケトン                    10部
[Thermoplastic resin solution (viscosity: 80 mPa · s]
-Thermoplastic epoxy resin (reactive resin: DENATEITE XNR6850V: manufactured by Nagase ChemteX Corporation. Solid content: 85% by mass) 100 parts-Curing agent (DENATEITE XNH6850V: manufactured by Nagase ChemteX Corp .: solid content: 30% by mass) 5 parts ・ Crosslinking agent (novolak-type resin, solid content 55% by mass) 20 parts ・ Methyl ethyl ketone 10 parts
 得られたシート状の繊維強化樹脂材料に対して、以下の(熱による変形試験)、(再成形試験)、および、(保管容易性試験)を行った。 The following (thermal deformation test), (re-molding test), and (storability test) were performed on the obtained sheet-like fiber reinforced resin material.
 (熱による変形試験)
 得られたシート状の繊維強化樹脂材料を長さ15cm、幅3cmにカットしたもの試料1として用いた。また、試料1の厚みは0.39mmであった。また、当該試料1を熱風オーブンにて200℃で10分間の加熱処理を施したものを試料2として用いた。この試料1、2を用いて、実施例5と同様の(熱による変形試験)を行った。なお、200℃で10分間の加熱処理を施した熱可塑性樹脂のガラス転移温度は100℃であり、加熱処理前と比べガラス転移温度は上昇していなかった。
(Deformation test by heat)
The obtained sheet-like fiber reinforced resin material was cut into a length of 15 cm and a width of 3 cm and used as Sample 1. The thickness of Sample 1 was 0.39 mm. Further, Sample 2 obtained by subjecting Sample 1 to heat treatment at 200 ° C. for 10 minutes in a hot air oven was used as Sample 2. Using Samples 1 and 2, the same test as in Example 5 (thermal deformation test) was performed. In addition, the glass transition temperature of the thermoplastic resin which performed the heat processing for 10 minutes at 200 degreeC was 100 degreeC, and the glass transition temperature was not rising compared with before heat processing.
 この実験の結果、試料1については、170℃および240℃で加熱したものはいずれも軟化し、大きくヘタリ(ほぼ垂直な状態に垂れ下がり)が確認された。一方、試料2については、170℃および240℃で加熱したものはいずれもヘタリ(垂れ下がり)は確認されなかった。 As a result of this experiment, as for sample 1, those heated at 170 ° C. and 240 ° C. were both softened, and large settling (sagging in a substantially vertical state) was confirmed. On the other hand, for sample 2, the samples heated at 170 ° C. and 240 ° C. were not confirmed to be drooping (sagging).
 したがって、200℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was confirmed that the shape stability against heat was improved after heating at 200 ° C.
 (再成形試験)
 上記の(熱による変形試験)で試料として準備した試料1と試料2を用いて、再成形試験を行った。
(Re-molding test)
A re-molding test was performed using Sample 1 and Sample 2 prepared as samples in the above (deformation test by heat).
 まず、各試料を深さ5mmのトレイ形の型の上に置き、120℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、150℃、4MPaで30分間の加熱及び加圧を行った。 First, each sample was placed on a tray-shaped mold having a depth of 5 mm, preheated at 120 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: −0.1 MPa) at 150 ° C. and 4 MPa for 30 minutes. And pressurization.
 冷却後、型から取り出した試料1については、深さ5mmの型の形状に沿ったきれいなトレイ形状となったが、試料2については、少しくぼんだような状態にはなったものの、深さ5mmのトレイの形状にはならず、再成形できなかった。 After cooling, the sample 1 taken out of the mold became a clean tray shape along the shape of the mold having a depth of 5 mm, but the sample 2 was slightly depressed, but the depth was 5 mm. It was not possible to reshape the tray.
 したがって、得られた繊維強化樹脂材料は、150℃の加熱により成形することができ、200℃で加熱した後は、少なくとも、150℃、4MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the obtained fiber reinforced resin material can be molded by heating at 150 ° C., and after heating at 200 ° C., it cannot be remolded at least at 150 ° C. and 4 MPa.
 (保管容易性)
 上記の(熱による変形試験)で試料として準備した試料1を用いて、実施例3と同様の(保管容易性)に関する試験を行った。
(Easy storage)
Using the sample 1 prepared as a sample in the above (deformation test by heat), a test related to (easy storage) similar to that in Example 3 was performed.
 この結果、放置後の試料1は、60℃の熱風オーブン中での放置前と同様に、170℃および240℃で加熱したいずれのものも大きくヘタリ(ほぼ垂直な状態に垂れ下がり)、熱可塑性を有していることが確認された。 As a result, the sample 1 after being left as it was when left in a hot air oven at 60 ° C. was heated substantially at 170 ° C. and 240 ° C. (sag in a substantially vertical state). It was confirmed to have.
 したがって、従来の熱硬化性樹脂を用いた硬化前の繊維強化樹脂材料や成形後の繊維強化樹脂成形体のように、低温保管しなくとも簡便に保管できることが確認された。 Therefore, it was confirmed that it can be easily stored without being stored at low temperature, such as a fiber reinforced resin material before curing using a conventional thermosetting resin or a fiber reinforced resin molded body after molding.
 以上の試験により、実施例7の繊維強化樹脂材料は、熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱(または加熱および加圧)により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱(または加熱および加圧)により再成形できないことが確認された。なお、上記の試験より、本実施例において、特定の温度は、120℃超200℃以下の範囲内にある。 From the above test, the fiber reinforced resin material of Example 7 is a fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, and can be molded by heating (or heating and pressing), and It was confirmed that re-molding cannot be performed by heating (or heating and pressing) after heating at a specific temperature or higher during molding or after molding. From the above test, in this example, the specific temperature is in the range of more than 120 ° C. and 200 ° C. or less.
 (繊維強化樹脂成形体)
 次に、このシート状の繊維強化樹脂材料を5枚、繊維軸方向ずらしながら重ねて、平板状の型の上に設置し、120℃で10分間予備加熱し、真空状態(真空度:-0.1MPa)にて、270℃、8MPaで30分間、加熱しながら加圧することで、平板状の繊維強化樹脂成形体を得た。得られた繊維強化樹脂成形体の厚みは1.25mmであった。また、繊維強化樹脂成形体のVf値は、47%であった。
(Fiber reinforced resin molding)
Next, five sheet-like fiber reinforced resin materials are stacked while being shifted in the fiber axis direction, placed on a flat plate mold, preheated at 120 ° C. for 10 minutes, and in a vacuum state (vacuum degree: −0 .1 MPa) at 270 ° C. and 8 MPa for 30 minutes while heating to obtain a flat fiber-reinforced resin molded body. The thickness of the obtained fiber reinforced resin molded product was 1.25 mm. The Vf value of the fiber reinforced resin molded product was 47%.
 (熱による変形試験)
 得られた平板状の繊維強化樹脂成形体をタテ15cm、ヨコ3cmにカットしたもの試料として用いた。また、試料の厚みは1.25mmであった。
(Deformation test by heat)
The obtained flat fiber-reinforced resin molded product was cut into a length of 15 cm and a width of 3 cm and used as a sample. The sample thickness was 1.25 mm.
 カットした試料について、実施例5と同様の(熱による変形試験)を行った。この試験の結果、170℃および240℃で加熱したいずれのものもヘタリ(垂れ下がり)は確認されなかった。 The cut sample was subjected to the same test as in Example 5 (thermal deformation test). As a result of this test, no stickiness (sagging) was observed in any of the samples heated at 170 ° C. and 240 ° C.
 したがって、270℃の加熱により成形することができ、270℃で加熱した後は、熱に対する形状の安定性が向上していることが確認された。 Therefore, it was possible to mold by heating at 270 ° C., and after heating at 270 ° C., it was confirmed that the shape stability against heat was improved.
 (再成形試験)
 この試験では、得られた平板状に成形された繊維強化樹脂成形体を試料として用いた。
(Re-molding test)
In this test, the obtained fiber reinforced resin molded product molded into a flat plate shape was used as a sample.
 まず、試料を102°の略L字型の上に置き、再度、150℃で10分間予備加熱した後、真空状態(真空度:-0.1MPa)で、150℃、2MPaで30分間の加熱及び加圧を行った。 First, the sample is placed on a substantially L-shape of 102 °, preheated again at 150 ° C. for 10 minutes, and then heated in a vacuum state (vacuum degree: −0.1 MPa) at 150 ° C. and 2 MPa for 30 minutes. And pressurization.
 冷却後、加熱および加圧した試料は、やや曲がったような形状となったが、きれいな略L字型には再成形できなかった。 After cooling, the heated and pressurized sample had a slightly bent shape, but could not be reshaped into a clean L-shape.
 したがって、繊維強化樹脂材料は、270℃の加熱により成形することができるが、270℃で加熱した後は、150℃、2MPaでは再成形できないことが確認された。 Therefore, it was confirmed that the fiber reinforced resin material can be molded by heating at 270 ° C., but cannot be remolded at 150 ° C. and 2 MPa after being heated at 270 ° C.
 以上の結果より、実施例7の繊維強化樹脂成形体は、繊維強化樹脂材料を用いて得られた繊維強化樹脂成形体であって、特定の温度以上で加熱処理することで得られるものであり、再加熱(または加熱および加圧)により再成形できないものであった。また、本実施例において、特定の温度は、120℃超270℃以下の範囲内にある。 From the above results, the fiber reinforced resin molded product of Example 7 is a fiber reinforced resin molded product obtained using a fiber reinforced resin material, and is obtained by heat treatment at a specific temperature or higher. , And could not be reshaped by reheating (or heating and pressing). In this embodiment, the specific temperature is in the range of more than 120 ° C. and 270 ° C. or less.
 また、実施例7の繊維強化樹脂成形体は、240℃程度の環境下で使用されるもの、たとえば、アスファルトの舗装時の熱にも耐える鋼製床版補強用のL字プレート等としても使用できる。 The fiber-reinforced resin molded body of Example 7 is used in an environment of about 240 ° C., for example, as an L-shaped plate for reinforcing a steel floor slab that can withstand heat during paving of asphalt. it can.
 以上の結果より、実施例5、実施例6および実施例7の繊維強化樹脂材料は、加熱により成形することができ、容易に任意の成形体を得ることができる。 From the above results, the fiber reinforced resin materials of Examples 5, 6, and 7 can be molded by heating, and an arbitrary molded body can be easily obtained.
 また、実施例5、実施例6および実施例7の繊維強化樹脂成形体は、保管性に優れており、特別な冷蔵保存などを行わなくとも保管することができ、産業上利用の利便性が向上する。 In addition, the fiber reinforced resin molded articles of Example 5, Example 6 and Example 7 are excellent in storability, and can be stored without performing special refrigeration and the convenience of industrial use. improves.
 また、実施例5、実施例6および実施例7の繊維強化樹脂材料を用いれば、熱による成形が容易で、かつ、高温環境下でも使用できる繊維強化樹脂成形体を提供することができる。 Further, if the fiber reinforced resin materials of Examples 5, 6, and 7 are used, it is possible to provide a fiber reinforced resin molded body that can be easily molded by heat and can be used even in a high temperature environment.
 また、実施例5、実施例6および実施例7の繊維強化樹脂成形体は、繊維強化樹脂成形体を得るために用いられる熱可塑性を有する繊維強化樹脂材料に比べ、特定の温度以上で加熱することにより熱に対する形状の熱安定性が増し、より高温環境下にて使用することが可能である。 Moreover, the fiber reinforced resin moldings of Example 5, Example 6, and Example 7 are heated at a specific temperature or higher as compared with the fiber reinforced resin material having thermoplasticity used to obtain the fiber reinforced resin molding. This increases the thermal stability of the shape against heat and can be used in a higher temperature environment.

Claims (14)

  1.  熱可塑性樹脂と強化繊維とを含む繊維強化樹脂材料であって、加熱により成形することができ、かつ、当該成形時または当該成形後に特定の温度以上で加熱した後は加熱により再成形できない
     繊維強化樹脂材料。
    A fiber reinforced resin material containing a thermoplastic resin and a reinforced fiber, which can be molded by heating, and cannot be remolded by heating after being heated at a specific temperature or higher at the time of molding or after molding. Resin material.
  2.  前記熱可塑性樹脂が、エポキシ樹脂である
     請求項1に記載の繊維強化樹脂材料。
    The fiber-reinforced resin material according to claim 1, wherein the thermoplastic resin is an epoxy resin.
  3.  前記繊維強化樹脂材料には、官能基が2以上の架橋剤が含まれている
     請求項1または2に記載の繊維強化樹脂材料。
    The fiber-reinforced resin material according to claim 1 or 2, wherein the fiber-reinforced resin material includes a crosslinking agent having two or more functional groups.
  4.  前記架橋剤は、ブロック型のイソシアネート系化合物およびノボラック型樹脂の少なくともいずれか1種を含む
     請求項3に記載の繊維強化樹脂材料。
    The fiber-reinforced resin material according to claim 3, wherein the crosslinking agent includes at least one of a block-type isocyanate compound and a novolac-type resin.
  5.  前記特定の温度は、130℃以上の温度である
     請求項1~4のいずれか1項に記載の繊維強化樹脂材料。
    The fiber-reinforced resin material according to any one of claims 1 to 4, wherein the specific temperature is 130 ° C or higher.
  6.  前記繊維強化樹脂材料は、前記特定の温度以上で加熱した後に、温度が150℃で、圧力が2MPaの加熱および加圧により再成形できない
     請求項1~5のいずれか1項に記載の繊維強化樹脂材料。
    The fiber reinforced resin material according to any one of claims 1 to 5, wherein the fiber reinforced resin material cannot be remolded by heating and pressurizing at a temperature of 150 ° C and a pressure of 2MPa after being heated above the specific temperature. Resin material.
  7.  請求項1~6のいずれか1項に記載の繊維強化樹脂材料を用いて得られた
     繊維強化樹脂成形体。
    A fiber reinforced resin molded article obtained by using the fiber reinforced resin material according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の繊維強化樹脂材料を加熱することにより成形された繊維強化樹脂成形体であって、当該成形時または当該成形後に前記特定の温度以上で加熱されており、前記特定の温度以上で加熱した後は、加熱により再成形できない
     繊維強化樹脂成形体。
    A fiber reinforced resin molded article molded by heating the fiber reinforced resin material according to any one of claims 1 to 6, wherein the molded article is heated at the specified temperature or higher during or after the molding. In addition, a fiber-reinforced resin molded body that cannot be re-molded by heating after being heated above the specific temperature.
  9.  前記繊維強化樹脂成形体は、前記特定の温度以上で加熱した後に、温度が150℃で、圧力が2MPaの加熱および加圧により再成形できない
     請求項8に記載の繊維強化樹脂成形体。
    The fiber-reinforced resin molded body according to claim 8, wherein the fiber-reinforced resin molded body cannot be remolded by heating and pressurizing at a temperature of 150 ° C and a pressure of 2 MPa after being heated at the specific temperature or higher.
  10.  熱可塑性樹脂を含む溶液を強化繊維に付与して所定の成形温度で加熱することによって繊維強化樹脂成形体を成形し、前記繊維強化樹脂成形体の成形時または成形後に特定の温度以上で前記繊維強化樹脂成形体を加熱することで加熱により再成形できない
     繊維強化樹脂成形体の製造方法。
    A fiber reinforced resin molded body is formed by applying a solution containing a thermoplastic resin to the reinforced fibers and heating at a predetermined molding temperature, and the fibers at a specific temperature or higher during or after the molding of the fiber reinforced resin molded body. A method for producing a fiber-reinforced resin molded body, which cannot be remolded by heating by heating the reinforced resin molded body.
  11.  前記熱可塑性樹脂は、エポキシ樹脂である
     請求項10に記載の繊維強化樹脂成形体の製造方法。
    The method for producing a fiber-reinforced resin molded body according to claim 10, wherein the thermoplastic resin is an epoxy resin.
  12.  前記溶液に、官能基が2以上の架橋剤が含まれている
     請求項10または11に記載の繊維強化樹脂成形体の製造方法。
    The method for producing a fiber-reinforced resin molded article according to claim 10 or 11, wherein the solution contains a crosslinking agent having two or more functional groups.
  13.  前記架橋剤は、ブロック型のイソシアネート系化合物およびノボラック型樹脂の少なくともいずれか1種を含む
     請求項12に記載の繊維強化樹脂成形体の製造方法。
    The method for producing a fiber-reinforced resin molded article according to claim 12, wherein the cross-linking agent includes at least one of a block-type isocyanate compound and a novolac-type resin.
  14.  前記特定の温度は、130℃以上の温度である
     請求項10~13のいずれか1項に記載の繊維強化樹脂成形体の製造方法。
    The method for producing a fiber-reinforced resin molded article according to any one of claims 10 to 13, wherein the specific temperature is a temperature of 130 ° C or higher.
PCT/JP2016/055509 2015-03-09 2016-02-24 Fiber-reinforced resin material, fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article WO2016143524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504957A JPWO2016143524A1 (en) 2015-03-09 2016-02-24 Fiber-reinforced resin material, fiber-reinforced resin molded body, and method for producing fiber-reinforced resin molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046408 2015-03-09
JP2015046408 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143524A1 true WO2016143524A1 (en) 2016-09-15

Family

ID=56880049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055509 WO2016143524A1 (en) 2015-03-09 2016-02-24 Fiber-reinforced resin material, fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article

Country Status (2)

Country Link
JP (1) JPWO2016143524A1 (en)
WO (1) WO2016143524A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094633A1 (en) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JP6176691B1 (en) * 2016-10-07 2017-08-09 サンコロナ小田株式会社 Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
US20180100043A1 (en) * 2016-10-07 2018-04-12 Suncorona Oda Co., Ltd. Unidirectional prepreg, fiber-reinforced thermoplastic resin sheet, manufacturing methods of unidirectional prepreg and fiber-reinforced thermoplastic resin sheet, and molded body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143244A (en) * 1995-11-20 1997-06-03 Mitsubishi Rayon Co Ltd Epoxy resin composition for composite material
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2007125979A1 (en) * 2006-04-28 2007-11-08 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate, and wiring board
WO2008010823A2 (en) * 2005-09-09 2008-01-24 L & L Products, Inc. Thermoplastic based composites
JP2008291056A (en) * 2007-05-22 2008-12-04 Asahi Kasei Chemicals Corp Epoxy resin composition, prepreg using the same, and metal foil clad laminated plate and printed wiring board using them
JP2009513171A (en) * 2003-07-01 2009-04-02 ナイキ インコーポレーティッド Athletic shoes
JP2011516654A (en) * 2008-03-30 2011-05-26 アイキュー テック スウィツァランド ゲーエムベーハー Apparatus and method for making a reactive polymer prepreg
JP2012045887A (en) * 2010-08-30 2012-03-08 Sumitomo Bakelite Co Ltd Metal clad laminated plate and method for manufacturing the same
WO2015105051A1 (en) * 2014-01-10 2015-07-16 小松精練株式会社 Fiber-reinforced resin material and fiber-reinforced resin compact using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143244A (en) * 1995-11-20 1997-06-03 Mitsubishi Rayon Co Ltd Epoxy resin composition for composite material
JP2009513171A (en) * 2003-07-01 2009-04-02 ナイキ インコーポレーティッド Athletic shoes
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2008010823A2 (en) * 2005-09-09 2008-01-24 L & L Products, Inc. Thermoplastic based composites
WO2007125979A1 (en) * 2006-04-28 2007-11-08 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate, and wiring board
JP2008291056A (en) * 2007-05-22 2008-12-04 Asahi Kasei Chemicals Corp Epoxy resin composition, prepreg using the same, and metal foil clad laminated plate and printed wiring board using them
JP2011516654A (en) * 2008-03-30 2011-05-26 アイキュー テック スウィツァランド ゲーエムベーハー Apparatus and method for making a reactive polymer prepreg
JP2012045887A (en) * 2010-08-30 2012-03-08 Sumitomo Bakelite Co Ltd Metal clad laminated plate and method for manufacturing the same
WO2015105051A1 (en) * 2014-01-10 2015-07-16 小松精練株式会社 Fiber-reinforced resin material and fiber-reinforced resin compact using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094633A1 (en) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JPWO2017094633A1 (en) * 2015-12-01 2018-09-13 新日鉄住金マテリアルズ株式会社 In-situ polymerization type thermoplastic prepreg, thermoplastic composite and production method thereof
US10961363B2 (en) 2015-12-01 2021-03-30 Nippon Steel Chemical & Material Co., Ltd. In-situ polymerized type thermoplastic prepreg, thermoplastic composite, and methods of manufacturing the same
US11384211B2 (en) 2015-12-01 2022-07-12 Nippon Steel Chemical & Material Co., Ltd. In-situ polymerized type thermoplastic prepreg, thermoplastic composite, and methods of manufacturing the same
JP6176691B1 (en) * 2016-10-07 2017-08-09 サンコロナ小田株式会社 Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
US20180100043A1 (en) * 2016-10-07 2018-04-12 Suncorona Oda Co., Ltd. Unidirectional prepreg, fiber-reinforced thermoplastic resin sheet, manufacturing methods of unidirectional prepreg and fiber-reinforced thermoplastic resin sheet, and molded body
JP2018062638A (en) * 2016-10-07 2018-04-19 サンコロナ小田株式会社 Unidirectional prepreg and fiber-reinforced thermoplastic resin sheet
JP2018062641A (en) * 2016-10-07 2018-04-19 サンコロナ小田株式会社 Unidirectional prepreg, fiber-reinforced thermoplastic resin sheet, methods of producing unidirectional prepreg and fiber-reinforced thermoplastic resin sheet, and, molding

Also Published As

Publication number Publication date
JPWO2016143524A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP7303261B2 (en) Fiber-reinforced resin material and fiber-reinforced resin molding using the same
EP3175979B1 (en) Molded object and process for producing same
US9512260B2 (en) Storage stable resin films and fibre composite components produced therefrom
JP5984933B2 (en) Flexible reinforcing fiber yarn pre-impregnated with resin
WO2015076070A1 (en) Production method for fibre-reinforced composite material, prepreg, particle-containing resin composition, and fibre-reinforced composite material
US20150224751A1 (en) Functional film for improving impregnation properties of composite material and method for manufacturing composite material using same
KR101898394B1 (en) Towpreg including epoxy resin composition
CN110505958B (en) Fiber-reinforced composite material molded article and method for producing same
WO2016143524A1 (en) Fiber-reinforced resin material, fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article
WO2017055920A1 (en) Prepreg with variable cure rate resin compositions
EP3475346B1 (en) Composition comprising a fibrous material, a multistage polymer and a (meth) acrylic polymer, its method of preparation and its use
US20170159212A1 (en) Fiber-reinforced composite material and method for producing the same
US20230017814A1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
KR102341164B1 (en) Towpreg for filament winding and manufacturing method thereof
JP2014163000A (en) Carbon fiber bundle and carbon-fiber-reinforced composite material using the same
JP6934119B2 (en) Resin-filled fiber base material, fiber-reinforced composite material and its manufacturing method
KR20190061662A (en) Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect
US11118023B2 (en) Preform, its method of preparation and its use
WO2021081154A1 (en) Manufacture of fiber reinforced composite materials with isocyanate resin
US20230002536A1 (en) Manufacture of fiber reinforced composite materials with isocyanate resin
CN113412189A (en) Resin-filled fiber base material, fiber-reinforced composite material, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761495

Country of ref document: EP

Kind code of ref document: A1