WO2016143348A1 - Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink - Google Patents

Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink Download PDF

Info

Publication number
WO2016143348A1
WO2016143348A1 PCT/JP2016/001346 JP2016001346W WO2016143348A1 WO 2016143348 A1 WO2016143348 A1 WO 2016143348A1 JP 2016001346 W JP2016001346 W JP 2016001346W WO 2016143348 A1 WO2016143348 A1 WO 2016143348A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
catalyst
fuel cell
catalyst ink
water
Prior art date
Application number
PCT/JP2016/001346
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 浜田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2016143348A1 publication Critical patent/WO2016143348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell and a method for producing the same.
  • a polymer electrolyte fuel cell having a structure in which a polymer electrolyte membrane is sandwiched between a cathode electrode catalyst layer and an anode electrode catalyst layer operates at room temperature and has a short start-up time.
  • the electrode catalyst layer is manufactured by a method of applying and drying a catalyst ink to a polymer electrolyte membrane, a method of applying a catalyst ink to a transfer substrate, and then transferring the catalyst ink to a polymer electrolyte membrane.
  • the catalyst ink used in the above production is usually one in which carbon particles carrying a catalyst and a polymer electrolyte are dissolved in alcohol.
  • Patent Document 1 uses a method in which only water is used as a dispersion medium without using alcohol.
  • the dispersibility of the catalyst ink decreases, and cracks and pinholes are generated in the catalyst layer during coating and drying, leading to a decrease in power generation performance.
  • the application becomes impossible due to the repelling of the catalyst ink.
  • there is a method of preventing ignition by a method in which the catalyst is dissolved in water in advance and alcohol is added thereto but this method also causes the above problem because a large amount of water is required.
  • Patent Document 2 describes a method using t-butanol and 1-butanol as a dispersion medium.
  • t-butanol becomes a solid at room temperature, it is difficult to handle, and 1-butanol has a high boiling point, and it is necessary to set the drying temperature to a high temperature. May be reduced.
  • the present invention can reduce the risk of ignition during the production of a catalyst ink, and can be used to form an electrode catalyst layer of a polymer electrolyte fuel cell that can reduce the occurrence of cracks and pinholes during the coating and drying process. It is an object of the present invention to provide a catalyst ink and a method for producing the same.
  • a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell is a water-dispersed polymer electrolyte in which a polymer electrolyte having ion conductivity is dispersed in water.
  • a solution, catalyst-supporting carbon particles in which a catalyst is supported on a carbon particle carrier, and a dispersion medium in order to solve the above problems, a method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to one embodiment of the present invention comprises dispersing a polymer electrolyte having ion conductivity in water.
  • a step of obtaining a water-dispersed polymer electrolyte solution a step of mixing a catalyst-supported carbon particle having a catalyst supported on a carbon particle carrier and the water-dispersed polymer electrolyte solution to obtain a slurry, and diluting the slurry with a dispersion medium And mixing with the dispersion medium.
  • a water-dispersed polymer electrolyte solution obtained by dispersing a polymer electrolyte in water is obtained, and a slurry is obtained by adding the water-dispersed polymer electrolyte solution to catalyst-carrying carbon particles.
  • a catalyst ink is produced by diluting with a dispersion medium and mixing with the dispersion medium. Therefore, it is possible to reduce the risk of ignition during production with a small amount of water compared to the conventional case. Furthermore, since the amount of water can be reduced, it is possible to suppress a decrease in the dispersibility of the catalyst ink due to an increase in water concentration. As a result, it is possible to reduce the occurrence of cracks and pinholes when applying and drying the catalyst ink.
  • FIG. 1 is an exploded perspective view showing an example of the internal structure of the polymer electrolyte fuel cell according to the present embodiment.
  • a polymer electrolyte membrane 51 constituting a solid polymer fuel cell 50 has a pair of electrode catalyst layers 52A and 52F facing each other across the polymer electrolyte membrane 51 on both sides.
  • a gas diffusion layer 53A is provided on the surface of the electrode catalyst layer 52A opposite to the surface facing the polymer electrolyte membrane 51
  • a gas diffusion layer 53A is provided on the surface of the electrode catalyst layer 52F opposite to the surface opposite to the polymer electrolyte membrane 51.
  • the diffusion layer 53F is disposed so as to face each other across the polymer electrolyte membrane 51 and the pair of electrode catalyst layers 52A and 52F.
  • the surface of the gas diffusion layer 53A opposite to the surface facing the electrode catalyst layer 52A is provided with a gas flow channel 55A for reaction gas flow on the surface facing this surface, and cooling for circulating cooling water on the opposite main surface.
  • a separator 54A having a water passage 56A is disposed.
  • the surface of the gas diffusion layer 53F opposite to the surface facing the electrode catalyst layer 52F is provided with a gas flow channel 55F for reaction gas flow on the surface facing this surface, and the coolant flow is provided on the opposite main surface.
  • a separator 54F having a cooling water passage 56F is disposed.
  • the electrode catalyst layers 52A and 52F may be simply referred to as “electrode catalyst layer 52”.
  • FIG. 2 is a diagram illustrating a manufacturing process of the catalyst ink according to the present embodiment. As shown in FIG. 2, first, a polymer electrolyte having ion conductivity is dispersed in water to obtain a water-dispersed polymer electrolyte solution.
  • a slurry (hereinafter may be referred to as “polymer electrolyte slurry”) is obtained by adding and mixing the water-dispersed polymer electrolyte solution to the catalyst-supported carbon particles in which the catalyst is supported on the carbon particle carrier.
  • polymer electrolyte slurry a slurry
  • the risk of ignition can be reduced with a smaller amount of water than the method of adding water alone.
  • a planetary mixer, a dissolver, a kneader or the like can be used.
  • the catalyst-supporting carbon particles carbon black (platinum-supporting carbon particles) in which platinum is supported as a catalyst on a carbon particle support is used.
  • the concentration of the water-dispersed polymer electrolyte solution used in the present embodiment is such that the water concentration in the finally provided catalyst ink is in the range of 10% by mass to 35% by mass, preferably 15% by mass to 30% by mass. Adjust so that it is within the following range. In this embodiment, if the water concentration is too low, specifically, if it is less than 10% by mass, the risk of ignition may increase. In the present embodiment, if the water concentration is too high, specifically, if it exceeds 35% by mass, the dispersibility of the catalyst ink is lowered, and cracks and pinholes are likely to occur during coating and drying.
  • the dry mass value (equivalent weight; EW (Equivalent Weight)) per mole of the proton donating group of the polymer electrolyte used for the production of the catalyst ink is in the range of 500 (g / eq) to 800 (g / eq).
  • EW Equivalent Weight
  • the dry mass value (equivalent weight; EW) per mole of the proton donating group is the mass of the proton conducting material per unit mole of the introduced proton donating group, and the smaller the value, the proton conducting material. It indicates that the ratio of proton donating groups is high.
  • a polymer material having proton conductivity for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte is used.
  • commercially available aqueous dispersions of polymer electrolytes can also be used, but if the dispersion medium contains a small amount of alcohol, the catalyst-carrying carbon particles are pre-moistened with water to prevent ignition. Risk can be reduced. If the ratio of the polymer electrolyte to the carbon particle carrier is too small, specifically, if it is less than 0.9, the proton transport resistance increases, causing a decrease in power generation performance, and the strength of the coating film becomes weak at the time of application. Cause cracking.
  • the weight ratio which is the ratio of the polymer electrolyte to the carbon particle carrier, is set in the range of 0.9 to 1.5.
  • the catalyst ink is manufactured by diluting and mixing the polymer electrolyte slurry manufactured by the above process with a dispersion medium.
  • the dispersion medium used for dilution / mixing include alcohols (organic solvents) such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and pentanol. Any one of these can be selected and used.
  • a planetary mixer, a dissolver, a bead mill, and the like can be used. Among them, it is preferable to use a bead mill.
  • a polymer electrolyte slurry is prepared by adding a water-dispersed polymer electrolyte solution, in which a polymer electrolyte having ion conductivity is dispersed in water, to catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier during the production of a catalyst ink.
  • a water-dispersed polymer electrolyte solution in which a polymer electrolyte having ion conductivity is dispersed in water
  • catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier during the production of a catalyst ink.
  • the concentration of the water-dispersed polymer electrolyte solution is set so that the final catalyst ink has a water concentration in the range of 10% by mass to 35% by mass, a catalyst ink having a good dispersion state can be obtained. This makes it possible to reduce the occurrence of cracks and pinholes during application and drying.
  • a dispersion medium containing one or more solvents belonging to alcohols is used as a dispersion medium for diluting and mixing the polymer electrolyte slurry, the polymer electrolyte can be sufficiently dissolved, and the catalyst It becomes possible to ensure relatively good dispersibility of the supported carbon particles.
  • alcohol since alcohol has a low boiling point, it becomes possible to reduce energy required in the drying step.
  • the dry mass value (equivalent weight; EW) per mole of the proton-donating group of the polymer electrolyte was set within the range of 500 (g / eq) to 800 (g / eq)
  • the dry mass value was When it is too small, specifically, less than 500 (g / eq), the catalyst layer becomes more hydrophilic, and flooding occurs during power generation, and it is possible to suppress a decrease in power generation performance.
  • the dry mass value is too large, specifically, exceeding 800 (g / eq)
  • the bond between the carbon particles is weakened, the strength of the coating film is weakened at the time of application, and cracks are generated. It becomes possible to suppress.
  • the weight ratio which is the ratio of the polymer electrolyte to the carbon particle carrier, is in the range of 0.9 to 1.5, so that the weight ratio is too small, specifically less than 0.9. It is possible to suppress a decrease in gas permeability and a decrease in coating strength at the time of application, which are caused by the above. In addition, it is possible to suppress a decrease in gas permeability and a decrease in power generation performance caused by an excessively large weight ratio, specifically, exceeding 1.5.
  • Example 2 Next, a second embodiment of the present invention will be described.
  • the catalyst of Example 2 was the same as Example 1 except that the final water concentration in the catalyst ink was 20% and the mass ratio (I / C) of the polymer electrolyte to carbon was 1.2. Ink was obtained. The catalyst ink of Example 2 did not ignite during the production process, and the electrode catalyst layer obtained by coating and drying was satisfactory without defects such as cracks and pinholes.
  • Example 3 Next, a third embodiment of the present invention will be described. A catalyst ink of Example 3 was obtained in the same manner as in Example 1 except that the final water concentration in the catalyst ink was 15% and 1-butanol was used as a dispersion medium for diluting the slurry. The catalyst ink of Example 3 did not ignite during the production process, and the electrode catalyst layer obtained by coating and drying was satisfactory without defects such as cracks and pinholes.
  • Comparative Example 1 A catalyst ink of Comparative Example 1 was obtained in the same manner as in Example 1 except that the final water concentration in the catalyst ink was 5%. In the production process of the catalyst ink of Comparative Example 1, good catalyst-carrying carbon particles and a polymer electrolyte slurry could not be obtained, and when a dispersion medium was added for dilution, heat generation was confirmed.
  • Comparative Example 2 A catalyst ink of Comparative Example 2 was obtained in the same manner as in Example 1 except that the mass ratio (I / C) of the polymer electrolyte to carbon was 0.6. The catalyst ink of Comparative Example 2 did not ignite during the production process, but cracks and pinholes were confirmed in the electrode catalyst layer obtained by coating and drying.
  • Comparative Example 3 A catalyst ink of Comparative Example 3 was obtained in the same manner as in Example 1 except that the equivalent weight of the polymer electrolyte was 1000 (g / eq). The catalyst ink of Comparative Example 3 did not ignite during the production process, but cracks and pinholes were confirmed in the electrode catalyst layer obtained by coating and drying.
  • SYMBOLS 50 Solid polymer fuel cell 51 ... Polymer electrolyte membrane 52A, 52F ... Electrode catalyst layer 53A, 53F ... Gas diffusion layer 54A, 54F ... Separator 55A, 55F ... Gas flow path 56A, 56F ... Cooling water path

Abstract

Provided are a catalyst ink for forming an electrode catalyst layer of a solid polymer fuel cell, with which it is possible to reduce the danger of ignition when manufacturing the catalyst ink and to reduce the incidence of cracking and pinholing during application and drying steps. Also provided is a method for manufacturing said catalyst ink. In one embodiment of the present invention, the catalyst ink is manufactured by adding an aqueous-dispersion polymer electrolyte solution, in which a polymer electrolyte is dispersed in water, to catalyst-carrying carbon particles in which a catalyst is carried on a carbon-particulate carrier to obtain a slurry, and the slurry is diluted using a dispersion medium and mixed with the dispersion medium.

Description

固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell and method for producing the same
 本発明は、固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法に関する。 The present invention relates to a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell and a method for producing the same.
 高分子電解質膜をカソード電極触媒層及びアノード電極触媒層で挟持する構造を持つ固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車用電源、定置用電源などとして期待されている。
 通常、電極触媒層は、高分子電解質膜に触媒インクを塗布・乾燥する方法や、触媒インクを転写基材に塗布し、その後高分子電解質膜に転写する方法などにより製造される。
 上記製造で使用される触媒インクは、通常、触媒を担持した炭素粒子と高分子電解質をアルコール中に溶解させたものが用いられる。しかしこの場合、インク製造時に触媒とアルコールが直接接触することで、触媒の活性により発火する危険を有している。
A polymer electrolyte fuel cell having a structure in which a polymer electrolyte membrane is sandwiched between a cathode electrode catalyst layer and an anode electrode catalyst layer operates at room temperature and has a short start-up time. Has been.
Usually, the electrode catalyst layer is manufactured by a method of applying and drying a catalyst ink to a polymer electrolyte membrane, a method of applying a catalyst ink to a transfer substrate, and then transferring the catalyst ink to a polymer electrolyte membrane.
The catalyst ink used in the above production is usually one in which carbon particles carrying a catalyst and a polymer electrolyte are dissolved in alcohol. However, in this case, there is a risk of ignition due to the activity of the catalyst due to direct contact between the catalyst and the alcohol during ink production.
 上記危険の防止策として、例えば、特許文献1ではアルコールを使わず分散媒として実質水のみを使用する方法が行われている。しかし、水の含有量が増えると触媒インクの分散性が低下し、塗布・乾燥の際触媒層にひび割れやピンホールが生じ、発電性能の低下の原因となる。また、撥水性のある転写フィルムに塗布する際には、触媒インクのはじきにより塗布が不可となる。
 また、触媒を予め水で溶解させておき、そこにアルコールを加える方法により発火の防止を行う方法があるが、その方法においても多量の水を必要とするため、上記の問題を引き起こす。この問題に対し、例えば、特許文献2では、t-ブタノールと1-ブタノールを分散媒として使用する方法が記載されている。しかし、t-ブタノールは常温で固体となるため、扱いづらく、また、1-ブタノールは沸点が高く、乾燥温度を高温に設定する必要があるため、多くの熱量を要することになり、生産性が低下する可能性がある。
As a measure for preventing the danger, for example, Patent Document 1 uses a method in which only water is used as a dispersion medium without using alcohol. However, when the water content increases, the dispersibility of the catalyst ink decreases, and cracks and pinholes are generated in the catalyst layer during coating and drying, leading to a decrease in power generation performance. Further, when applied to a transfer film having water repellency, the application becomes impossible due to the repelling of the catalyst ink.
In addition, there is a method of preventing ignition by a method in which the catalyst is dissolved in water in advance and alcohol is added thereto, but this method also causes the above problem because a large amount of water is required. To solve this problem, for example, Patent Document 2 describes a method using t-butanol and 1-butanol as a dispersion medium. However, since t-butanol becomes a solid at room temperature, it is difficult to handle, and 1-butanol has a high boiling point, and it is necessary to set the drying temperature to a high temperature. May be reduced.
特開2004-139899号公報JP 2004-139899 A 特開2012-182153号公報JP 2012-182153 A
 本発明は、触媒インク製造時の発火の危険性を低減することが可能で、塗布・乾燥工程中のひび割れ、ピンホールの発生を低減可能な固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法を提供することを目的とする。 The present invention can reduce the risk of ignition during the production of a catalyst ink, and can be used to form an electrode catalyst layer of a polymer electrolyte fuel cell that can reduce the occurrence of cracks and pinholes during the coating and drying process. It is an object of the present invention to provide a catalyst ink and a method for producing the same.
 上記課題を解決するため、本発明の一態様に係る固体高分子形燃料電池の電極触媒層形成用の触媒インクは、イオン伝導性を有する高分子電解質を水に分散させた水分散高分子電解質溶液と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、分散媒と、を含む。
 また、上記課題を解決するため、本発明の一態様に係る固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法は、イオン伝導性を有する高分子電解質を水に分散させて水分散高分子電解質溶液を得る工程と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と前記水分散高分子電解質溶液とを混合してスラリーを得る工程と、前記スラリーを分散媒により希釈しかつ該分散媒と混合する工程とを有する。
In order to solve the above problems, a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to an aspect of the present invention is a water-dispersed polymer electrolyte in which a polymer electrolyte having ion conductivity is dispersed in water. A solution, catalyst-supporting carbon particles in which a catalyst is supported on a carbon particle carrier, and a dispersion medium.
In addition, in order to solve the above problems, a method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to one embodiment of the present invention comprises dispersing a polymer electrolyte having ion conductivity in water. A step of obtaining a water-dispersed polymer electrolyte solution, a step of mixing a catalyst-supported carbon particle having a catalyst supported on a carbon particle carrier and the water-dispersed polymer electrolyte solution to obtain a slurry, and diluting the slurry with a dispersion medium And mixing with the dispersion medium.
 本発明によれば、高分子電解質を水に分散してなる水分散高分子電解質溶液を得て、この水分散高分子電解質溶液を触媒担持炭素粒子に加えることでスラリーを得て、このスラリーを分散媒により希釈しかつ該分散媒と混合することで触媒インクを製造する。そのため、従来と比較して、少ない水量で製造時の発火の危険性を低減することが可能となる。さらに、水量を少量にできることから、水濃度が高くなることによる触媒インクの分散性の低下を抑制することが可能となる。その結果、触媒インクの塗布・乾燥の際のひび割れ、ピンホールの発生を低減することが可能となる。 According to the present invention, a water-dispersed polymer electrolyte solution obtained by dispersing a polymer electrolyte in water is obtained, and a slurry is obtained by adding the water-dispersed polymer electrolyte solution to catalyst-carrying carbon particles. A catalyst ink is produced by diluting with a dispersion medium and mixing with the dispersion medium. Therefore, it is possible to reduce the risk of ignition during production with a small amount of water compared to the conventional case. Furthermore, since the amount of water can be reduced, it is possible to suppress a decrease in the dispersibility of the catalyst ink due to an increase in water concentration. As a result, it is possible to reduce the occurrence of cracks and pinholes when applying and drying the catalyst ink.
本発明の実施形態に係る固体高分子形燃料電池の内部構造の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the internal structure of the polymer electrolyte fuel cell which concerns on embodiment of this invention. 本発明の実施形態に係る触媒インクの製造工程を示す図である。It is a figure which shows the manufacturing process of the catalyst ink which concerns on embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。
 また、以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
Embodiments of the present invention will be described below with reference to the drawings.
The present embodiment is not limited to the embodiment described below, and modifications such as design changes based on the knowledge of those skilled in the art can be added, and such modifications have been added. The embodiment is also included in the scope of the present embodiment.
Also, in the following detailed description, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are shown in schematic form in order to simplify the drawing.
(固体高分子形燃料電池の構造)
 図1は、本実施形態に係る固体高分子形燃料電池の内部構造の一例を示す分解斜視図である。
 図1中に示すように、固体高分子形燃料電池50を構成する高分子電解質膜51には、その両面に、高分子電解質膜51を挟んで互いに向い合う一対の電極触媒層52A、52Fが配置されている。
 電極触媒層52Aの高分子電解質膜51と対向する面と反対側の面には、ガス拡散層53Aが、電極触媒層52Fの高分子電解質膜51と対向する面と反対側の面にはガス拡散層53Fが、高分子電解質膜51及び一対の電極触媒層52A、52Fを挟んで互いに向い合うように配置されている。
(Structure of polymer electrolyte fuel cell)
FIG. 1 is an exploded perspective view showing an example of the internal structure of the polymer electrolyte fuel cell according to the present embodiment.
As shown in FIG. 1, a polymer electrolyte membrane 51 constituting a solid polymer fuel cell 50 has a pair of electrode catalyst layers 52A and 52F facing each other across the polymer electrolyte membrane 51 on both sides. Has been placed.
A gas diffusion layer 53A is provided on the surface of the electrode catalyst layer 52A opposite to the surface facing the polymer electrolyte membrane 51, and a gas diffusion layer 53A is provided on the surface of the electrode catalyst layer 52F opposite to the surface opposite to the polymer electrolyte membrane 51. The diffusion layer 53F is disposed so as to face each other across the polymer electrolyte membrane 51 and the pair of electrode catalyst layers 52A and 52F.
 ガス拡散層53Aの電極触媒層52Aと対向する面と反対側の面には、この面に対向する面に反応ガス流通用のガス流路55Aを備え、相対する主面に冷却水流通用の冷却水通路56Aを備えたセパレーター54Aが配置されている。
 さらに、ガス拡散層53Fの電極触媒層52Fと対向する面と反対側の面には、この面に対向する面に反応ガス流通用のガス流路55Fを備え、相対する主面に冷却水流通用の冷却水通路56Fを備えたセパレーター54Fが配置されている。
 以下、区別する必要がない場合に電極触媒層52A及び52Fを、単に「電極触媒層52」と記載する場合がある。
The surface of the gas diffusion layer 53A opposite to the surface facing the electrode catalyst layer 52A is provided with a gas flow channel 55A for reaction gas flow on the surface facing this surface, and cooling for circulating cooling water on the opposite main surface. A separator 54A having a water passage 56A is disposed.
Further, the surface of the gas diffusion layer 53F opposite to the surface facing the electrode catalyst layer 52F is provided with a gas flow channel 55F for reaction gas flow on the surface facing this surface, and the coolant flow is provided on the opposite main surface. A separator 54F having a cooling water passage 56F is disposed.
Hereinafter, when it is not necessary to distinguish, the electrode catalyst layers 52A and 52F may be simply referred to as “electrode catalyst layer 52”.
(触媒インクの製造方法)
 次に、図2を参照しつつ、本実施形態に係る固体高分子形燃料電池50の電極触媒層52(固体高分子形燃料電池用電極触媒層)形成用の触媒インクの製造方法について説明する。図2は、本実施形態に係る触媒インクの製造工程を示す図である。
 図2に示すように、まず、イオン伝導性を有する高分子電解質を水に分散させて水分散高分子電解質溶液を得る。続いて、炭素粒子担体に触媒を担持させた触媒担持炭素粒子に水分散高分子電解質溶液を加え混合することでスラリー(以下、「高分子電解質スラリー」と記載する場合がある)を得る。このように、触媒担持炭素粒子に高分子電解質の水分散溶液を加えることで、水単独で加える方法より少量の水量で発火の危険性を下げることができる。なお、混合には、例えばプラネタリーミキサー、ディゾルバー、ニーダー等が使用できる。また、本実施形態では、触媒担持炭素粒子の一例として、炭素粒子担体に触媒として白金を担持させたカーボンブラック(白金担持炭素粒子)を用いる。
(Method for producing catalyst ink)
Next, a method for producing a catalyst ink for forming an electrode catalyst layer 52 (an electrode catalyst layer for a polymer electrolyte fuel cell) of the polymer electrolyte fuel cell 50 according to the present embodiment will be described with reference to FIG. . FIG. 2 is a diagram illustrating a manufacturing process of the catalyst ink according to the present embodiment.
As shown in FIG. 2, first, a polymer electrolyte having ion conductivity is dispersed in water to obtain a water-dispersed polymer electrolyte solution. Subsequently, a slurry (hereinafter may be referred to as “polymer electrolyte slurry”) is obtained by adding and mixing the water-dispersed polymer electrolyte solution to the catalyst-supported carbon particles in which the catalyst is supported on the carbon particle carrier. Thus, by adding the polymer electrolyte in water dispersion to the catalyst-supporting carbon particles, the risk of ignition can be reduced with a smaller amount of water than the method of adding water alone. For mixing, for example, a planetary mixer, a dissolver, a kneader or the like can be used. In this embodiment, as an example of the catalyst-supporting carbon particles, carbon black (platinum-supporting carbon particles) in which platinum is supported as a catalyst on a carbon particle support is used.
 本実施形態で用いられる水分散高分子電解質溶液の濃度は、最終的に提供される触媒インク中の水濃度が10質量%以上35質量%以下の範囲内、好ましくは15質量%以上30質量%以下の範囲内となるように調整する。本実施形態では、水濃度が低くなりすぎると、具体的には10質量%未満になると、発火の危険性が増すことがある。また、本実施形態では、水濃度が高すぎると、具体的には35質量%を超えると触媒インクの分散性が低下し、塗布・乾燥の際にひび割れ、ピンホールが生じやすくなる。
 触媒インクの製造に用いる高分子電解質のプロトン供与性基1モル当たりの乾燥質量値(当量重量;EW(Equivalent Weight))は、500(g/eq)以上800(g/eq)以下の範囲内とする。上記乾燥質量値が小さすぎること、具体的には500(g/eq)未満となることで、触媒層がより親水性となるため、発電時にフラッディングが生じ、発電性能が低下する。加えて、上記乾燥質量値が大きすぎること、具体的には800(g/eq)を超えることで、炭素粒子同士の結合が弱まり、塗布時に塗膜の強度が弱くなり、ひび割れが生じる。ここで、プロトン供与性基1モル当たりの乾燥質量値(当量重量;EW)とは、導入されたプロトン供与性基の単位モル当たりのプロトン伝導材の質量であり、値が小さいほどプロトン伝導材中のプロトン供与性基の割合が高いことを示す。
The concentration of the water-dispersed polymer electrolyte solution used in the present embodiment is such that the water concentration in the finally provided catalyst ink is in the range of 10% by mass to 35% by mass, preferably 15% by mass to 30% by mass. Adjust so that it is within the following range. In this embodiment, if the water concentration is too low, specifically, if it is less than 10% by mass, the risk of ignition may increase. In the present embodiment, if the water concentration is too high, specifically, if it exceeds 35% by mass, the dispersibility of the catalyst ink is lowered, and cracks and pinholes are likely to occur during coating and drying.
The dry mass value (equivalent weight; EW (Equivalent Weight)) per mole of the proton donating group of the polymer electrolyte used for the production of the catalyst ink is in the range of 500 (g / eq) to 800 (g / eq). And When the dry mass value is too small, specifically less than 500 (g / eq), the catalyst layer becomes more hydrophilic, so that flooding occurs during power generation and power generation performance is reduced. In addition, when the dry mass value is too large, specifically, more than 800 (g / eq), the bonds between the carbon particles are weakened, the strength of the coating film is weakened during coating, and cracks occur. Here, the dry mass value (equivalent weight; EW) per mole of the proton donating group is the mass of the proton conducting material per unit mole of the introduced proton donating group, and the smaller the value, the proton conducting material. It indicates that the ratio of proton donating groups is high.
 高分子電解質としては、プロトン伝導性を有する高分子材料、例えば、フッ素系高分子電解質や炭化水素系高分子電解質を用いる。
 市販の高分子電解質の水分散溶液を使用することもできるが、分散媒中に若干量のアルコールを含んでいる場合には、予め触媒担持炭素粒子を水で湿らせておくことで、発火の危険性を下げることができる。
 高分子電解質の炭素粒子担体に対する割合が小さすぎると、具体的には0.9未満であるとプロトン輸送抵抗が増加し、発電性能の低下を引き起こすことや、塗布時に塗膜の強度が弱くなり、ひび割れが発生することの原因となる。また、高分子電解質の炭素粒子担体に対する割合が大きすぎると、具体的には1.5を超えるとガス透過性の低下を引き起こすことや、発電により生成した水の排出の妨げとなり発電性能の低下を引き起こすことの原因となる。
 以上のことから、本実施形態では、高分子電解質の炭素粒子担体に対する割合である重量比を、0.9以上1.5以下の範囲内とする。
As the polymer electrolyte, a polymer material having proton conductivity, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte is used.
Commercially available aqueous dispersions of polymer electrolytes can also be used, but if the dispersion medium contains a small amount of alcohol, the catalyst-carrying carbon particles are pre-moistened with water to prevent ignition. Risk can be reduced.
If the ratio of the polymer electrolyte to the carbon particle carrier is too small, specifically, if it is less than 0.9, the proton transport resistance increases, causing a decrease in power generation performance, and the strength of the coating film becomes weak at the time of application. Cause cracking. In addition, if the ratio of the polymer electrolyte to the carbon particle carrier is too large, specifically, if it exceeds 1.5, the gas permeability may be deteriorated, or the generated water may be prevented from being discharged due to power generation. Cause it.
From the above, in this embodiment, the weight ratio, which is the ratio of the polymer electrolyte to the carbon particle carrier, is set in the range of 0.9 to 1.5.
 次に上記工程により製造された高分子電解質スラリーを分散媒にて希釈、混合することで触媒インクの製造を行う。希釈・混合に用いる分散媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、ペンタノール等のアルコール類(有機溶媒)の中からいずれか一種を選択して用いることが可能である。また、上述した溶媒のうち二種以上が混合された溶媒を用いることが可能である。混合には、例えば、プラネタリーミキサー、ディゾルバー、ビーズミル等が使用できるが、中でもビーズミルを使用することが好ましい。 Next, the catalyst ink is manufactured by diluting and mixing the polymer electrolyte slurry manufactured by the above process with a dispersion medium. Examples of the dispersion medium used for dilution / mixing include alcohols (organic solvents) such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and pentanol. Any one of these can be selected and used. Moreover, it is possible to use the solvent with which 2 or more types was mixed among the solvents mentioned above. For mixing, for example, a planetary mixer, a dissolver, a bead mill, and the like can be used. Among them, it is preferable to use a bead mill.
(本実施形態の効果)
 本実施形態であれば、以下の効果を得ることが可能である。
 触媒インクの製造時において、イオン伝導性を有する高分子電解質を水に分散させた水分散高分子電解質溶液を、炭素粒子担体に触媒を担持させた触媒担持炭素粒子に加えることで高分子電解質スラリーを得るようにした。これにより、従来の水単独で加える方法と比較して、少ない水量で製造時の発火の危険性を低減することが可能となる。さらに、加える水量を少量とすることが可能となるので、水濃度が高くなることによる触媒インクの分散性の低下を抑制することが可能となる。その結果、触媒インクの塗布・乾燥の際のひび割れ、ピンホールの発生を低減することが可能となり、ひび割れ、ピンホールによる外観不良の発生を低減することが可能となる。
(Effect of this embodiment)
According to the present embodiment, the following effects can be obtained.
A polymer electrolyte slurry is prepared by adding a water-dispersed polymer electrolyte solution, in which a polymer electrolyte having ion conductivity is dispersed in water, to catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier during the production of a catalyst ink. To get. Thereby, compared with the conventional method of adding water alone, it becomes possible to reduce the risk of ignition during production with a small amount of water. Furthermore, since the amount of water to be added can be made small, it is possible to suppress a decrease in the dispersibility of the catalyst ink due to an increase in water concentration. As a result, it is possible to reduce the occurrence of cracks and pinholes when applying and drying the catalyst ink, and it is possible to reduce the occurrence of appearance defects due to cracks and pinholes.
 また、水分散高分子電解質溶液の濃度を、最終的な触媒インクの水濃度が10質量%以上35質量%以下の範囲内となる濃度としたので、良好な分散状態の触媒インクを得ることが可能となり、塗布・乾燥の際のひび割れ、ピンホールの発生をより低減することが可能となる。
 また、高分子電解質スラリーを希釈・混合する分散媒として、アルコール類に属する1種類以上の溶媒を含む分散媒を用いるようにしたので、高分子電解質を十分に溶解することが可能となり、かつ触媒担持炭素粒子の比較的良好な分散性を確保することが可能となる。また、アルコールは沸点が低いため、乾燥工程で必要となるエネルギーを低減することが可能となる。
In addition, since the concentration of the water-dispersed polymer electrolyte solution is set so that the final catalyst ink has a water concentration in the range of 10% by mass to 35% by mass, a catalyst ink having a good dispersion state can be obtained. This makes it possible to reduce the occurrence of cracks and pinholes during application and drying.
In addition, since a dispersion medium containing one or more solvents belonging to alcohols is used as a dispersion medium for diluting and mixing the polymer electrolyte slurry, the polymer electrolyte can be sufficiently dissolved, and the catalyst It becomes possible to ensure relatively good dispersibility of the supported carbon particles. Moreover, since alcohol has a low boiling point, it becomes possible to reduce energy required in the drying step.
 また、高分子電解質のプロトン供与性基1モル当たりの乾燥質量値(当量重量;EW)を、500(g/eq)以上800(g/eq)以下の範囲内としたので、乾燥質量値が小さすぎること、具体的には500(g/eq)未満となることで、触媒層がより親水性となり、発電時にフラッディングが生じ、発電性能が低下することを抑制することが可能となる。加えて、上記乾燥質量値が大きすぎること、具体的には800(g/eq)を超えることで、炭素粒子同士の結合が弱まり、塗布時に塗膜の強度が弱くなり、ひび割れが生じることを抑制することが可能となる。
 また、高分子電解質の炭素粒子担体に対する割合である重量比を、0.9以上1.5以下の範囲内としたので、重量比が小さすぎること、具体的には0.9未満にすることで生じる、ガス透過性の低下及び塗布時の塗膜強度の低下を抑制することが可能となる。加えて、重量比が大きすぎること、具体的には1.5を超えることで生じる、ガス透過性の低下及び発電性能の低下を抑制することが可能となる。
Moreover, since the dry mass value (equivalent weight; EW) per mole of the proton-donating group of the polymer electrolyte was set within the range of 500 (g / eq) to 800 (g / eq), the dry mass value was When it is too small, specifically, less than 500 (g / eq), the catalyst layer becomes more hydrophilic, and flooding occurs during power generation, and it is possible to suppress a decrease in power generation performance. In addition, when the dry mass value is too large, specifically, exceeding 800 (g / eq), the bond between the carbon particles is weakened, the strength of the coating film is weakened at the time of application, and cracks are generated. It becomes possible to suppress.
In addition, the weight ratio, which is the ratio of the polymer electrolyte to the carbon particle carrier, is in the range of 0.9 to 1.5, so that the weight ratio is too small, specifically less than 0.9. It is possible to suppress a decrease in gas permeability and a decrease in coating strength at the time of application, which are caused by the above. In addition, it is possible to suppress a decrease in gas permeability and a decrease in power generation performance caused by an excessively large weight ratio, specifically, exceeding 1.5.
[実施例]
(実施例1)
 以下、本発明の実施例1を説明する。
(触媒担持炭素粒子と高分子電解質のスラリーの製造)
 白金を50wt%担持した触媒担持炭素粒子(商品名:TEC10E50E、田中貴金属社製)に、最終的に触媒インク中の水濃度が25%となるよう調整した水分散高分子電解質溶液を加え、プラネタリーミキサーで混合した。この時、高分子電解質とカーボンの質量比率(上記実施形態の重量比に相当)(I/C)は1.0とした。また高分子電解質の当量重量は700(g/eq)とした。
[Example]
(Example 1)
Embodiment 1 of the present invention will be described below.
(Production of catalyst-supported carbon particles and polymer electrolyte slurry)
To a catalyst-supporting carbon particle (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) supporting 50 wt% platinum, a water-dispersed polymer electrolyte solution adjusted so that the water concentration in the catalyst ink is finally 25% is added, It mixed with the Lee mixer. At this time, the mass ratio of the polymer electrolyte to carbon (corresponding to the weight ratio of the above embodiment) (I / C) was 1.0. The equivalent weight of the polymer electrolyte was 700 (g / eq).
(触媒インクの製造)
 上記の方法で製造したスラリーに1-プロパノールを加え、ビーズミルにて混合を行い触媒インクとした。
(成膜工程)
 次いで、上記の触媒インクをダイコーティング法により転写シートに塗布し、転写シート上に塗布された触媒インクを、温度80℃の大気雰囲気中で5分間乾燥させることにより、電極触媒層52を得た。この際、触媒物質の担持量が0.3mg/cmとなるように、電極触媒層52の厚さを調節した。実施例1の触媒インクは製造過程で発火することなく、塗工・乾燥し得られた電極触媒層は、ひび割れやピンホールなどの欠陥がなく、良好であった。
(Manufacture of catalyst ink)
1-Propanol was added to the slurry produced by the above method and mixed with a bead mill to obtain a catalyst ink.
(Film formation process)
Next, the above catalyst ink was applied to a transfer sheet by a die coating method, and the catalyst ink applied on the transfer sheet was dried in an air atmosphere at a temperature of 80 ° C. for 5 minutes to obtain an electrode catalyst layer 52. . At this time, the thickness of the electrode catalyst layer 52 was adjusted so that the supported amount of the catalyst substance was 0.3 mg / cm 2 . The catalyst ink of Example 1 did not ignite during the production process, and the electrode catalyst layer obtained by coating and drying was satisfactory without defects such as cracks and pinholes.
(実施例2)
 次に、本発明の実施例2を説明する。
 最終的な触媒インク中の水濃度を20%とし、高分子電解質とカーボンの質量比率(I/C)を1.2にしたこと以外は、上記実施例1と同様として、実施例2の触媒インクを得た。実施例2の触媒インクは製造過程で発火することなく、塗工・乾燥し得られた電極触媒層は、ひび割れやピンホールなどの欠陥がなく、良好であった。
(実施例3)
 次に、本発明の実施例3を説明する。
 最終的な触媒インク中の水濃度を15%とし、スラリーを希釈する分散媒として1-ブタノールを使用したこと以外は、上記実施例1と同様として、実施例3の触媒インクを得た。実施例3の触媒インクは製造過程で発火することなく、塗工・乾燥し得られた電極触媒層は、ひび割れやピンホールなどの欠陥がなく、良好であった。
(Example 2)
Next, a second embodiment of the present invention will be described.
The catalyst of Example 2 was the same as Example 1 except that the final water concentration in the catalyst ink was 20% and the mass ratio (I / C) of the polymer electrolyte to carbon was 1.2. Ink was obtained. The catalyst ink of Example 2 did not ignite during the production process, and the electrode catalyst layer obtained by coating and drying was satisfactory without defects such as cracks and pinholes.
(Example 3)
Next, a third embodiment of the present invention will be described.
A catalyst ink of Example 3 was obtained in the same manner as in Example 1 except that the final water concentration in the catalyst ink was 15% and 1-butanol was used as a dispersion medium for diluting the slurry. The catalyst ink of Example 3 did not ignite during the production process, and the electrode catalyst layer obtained by coating and drying was satisfactory without defects such as cracks and pinholes.
(比較例1)
 最終的な触媒インク中の水濃度を5%としたこと以外は、上記実施例1と同様として、比較例1の触媒インクを得た。比較例1の触媒インクは、その製造過程で、良好な触媒担持炭素粒子と高分子電解質のスラリーが得られず、希釈の為分散媒を加えたところ発熱が確認された。
(比較例2)
 高分子電解質とカーボンの質量比率(I/C)を0.6にしたこと以外は、上記実施例1と同様として、比較例2の触媒インクを得た。比較例2の触媒インクは、その製造過程で発火することはなかったが、塗工・乾燥し得られた電極触媒層にひび割れやピンホールが確認された。
(比較例3)
 高分子電解質の当量重量は1000(g/eq)としたこと以外は、上記実施例1と同様として、比較例3の触媒インクを得た。比較例3の触媒インクは、その製造過程で発火することはなかったが、塗工・乾燥し得られた電極触媒層にひび割れやピンホールが確認された。
(Comparative Example 1)
A catalyst ink of Comparative Example 1 was obtained in the same manner as in Example 1 except that the final water concentration in the catalyst ink was 5%. In the production process of the catalyst ink of Comparative Example 1, good catalyst-carrying carbon particles and a polymer electrolyte slurry could not be obtained, and when a dispersion medium was added for dilution, heat generation was confirmed.
(Comparative Example 2)
A catalyst ink of Comparative Example 2 was obtained in the same manner as in Example 1 except that the mass ratio (I / C) of the polymer electrolyte to carbon was 0.6. The catalyst ink of Comparative Example 2 did not ignite during the production process, but cracks and pinholes were confirmed in the electrode catalyst layer obtained by coating and drying.
(Comparative Example 3)
A catalyst ink of Comparative Example 3 was obtained in the same manner as in Example 1 except that the equivalent weight of the polymer electrolyte was 1000 (g / eq). The catalyst ink of Comparative Example 3 did not ignite during the production process, but cracks and pinholes were confirmed in the electrode catalyst layer obtained by coating and drying.
 50…固体高分子形燃料電池
 51…高分子電解質膜
 52A、52F…電極触媒層
 53A、53F…ガス拡散層
 54A、54F…セパレーター
 55A、55F…ガス流路
 56A、56F…冷却水通路
DESCRIPTION OF SYMBOLS 50 ... Solid polymer fuel cell 51 ... Polymer electrolyte membrane 52A, 52F ... Electrode catalyst layer 53A, 53F ... Gas diffusion layer 54A, 54F ... Separator 55A, 55F ... Gas flow path 56A, 56F ... Cooling water path

Claims (13)

  1.  固体高分子形燃料電池の電極触媒層形成用の触媒インクであって、
     イオン伝導性を有する高分子電解質を水に分散させた水分散高分子電解質溶液と、
     炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、
     分散媒と、を含むことを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インク。
    A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell,
    A water-dispersed polymer electrolyte solution in which a polymer electrolyte having ion conductivity is dispersed in water;
    Catalyst-supporting carbon particles in which a catalyst is supported on a carbon particle support; and
    A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, comprising a dispersion medium.
  2.  前記水分散高分子電解質溶液は、前記触媒インク中の水濃度が10質量%以上35質量%以下の範囲内となるように濃度が調整されていることを特徴とする請求項1に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 2. The solid according to claim 1, wherein the concentration of the water-dispersed polymer electrolyte solution is adjusted so that the water concentration in the catalyst ink is within a range of 10 mass% to 35 mass%. Catalyst ink for forming an electrode catalyst layer of a polymer fuel cell.
  3.  固体高分子形燃料電池の電極触媒層形成用の触媒インクであって、
     イオン伝導性を有する高分子電解質と、
     前記高分子電解質を分散させるための水と、
     炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、
     前記水とは異なる溶媒である分散媒と、を含むことを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インク。
    A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell,
    A polymer electrolyte having ionic conductivity;
    Water for dispersing the polymer electrolyte;
    Catalyst-supporting carbon particles in which a catalyst is supported on a carbon particle support; and
    A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, comprising: a dispersion medium that is a solvent different from water.
  4.  前記触媒インク中の水濃度は、10質量%以上35質量%以下の範囲内であることを特徴とする請求項3に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 4. The catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 3, wherein the water concentration in the catalyst ink is in the range of 10% by mass to 35% by mass.
  5.  前記分散媒は、アルコール類に属する1種類以上の溶媒を含むことを特徴とする請求項1から請求項4のいずれか1項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 The catalyst for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the dispersion medium contains one or more solvents belonging to alcohols. ink.
  6.  前記高分子電解質は、プロトン供与性基1モル当たりの乾燥質量値(当量重量;EW(Equivalent Weight))が500(g/eq)以上800(g/eq)以下の範囲内であることを特徴とする請求項1から請求項5のいずれか1項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 The polymer electrolyte has a dry mass value (equivalent weight; EW (Equivalent Weight)) per mole of the proton donating group within a range of 500 (g / eq) to 800 (g / eq). The catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to any one of claims 1 to 5.
  7.  前記水分散高分子電解質溶液は、前記炭素粒子担体に対する重量比が0.9以上1.5以下の範囲内の前記高分子電解質を含むことを特徴とする請求項1又は請求項2に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 The said water-dispersed polymer electrolyte solution contains the said polymer electrolyte in the range whose weight ratio with respect to the said carbon particle support is 0.9 or more and 1.5 or less, The Claim 1 or Claim 2 characterized by the above-mentioned. Catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.
  8.  前記触媒インク中の前記高分子電解質の前記炭素粒子担体に対する重量比は、0.9以上1.5以下の範囲内であることを特徴とする請求項1から請求項6のいずれか1項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 7. The weight ratio of the polymer electrolyte to the carbon particle carrier in the catalyst ink is in the range of 0.9 to 1.5. A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to the description.
  9.  固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法であって、
     イオン伝導性を有する高分子電解質を水に分散させて水分散高分子電解質溶液を得る工程と、
     炭素粒子担体に触媒を担持させた触媒担持炭素粒子と前記水分散高分子電解質溶液とを混合してスラリーを得る工程と、
     前記スラリーを分散媒により希釈しかつ該分散媒と混合する工程とを有することを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。
    A method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, comprising:
    A step of dispersing a polymer electrolyte having ion conductivity in water to obtain a water-dispersed polymer electrolyte solution;
    Mixing a catalyst-supported carbon particle having a catalyst supported on a carbon particle carrier and the water-dispersed polymer electrolyte solution to obtain a slurry;
    A method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, comprising the steps of diluting the slurry with a dispersion medium and mixing with the dispersion medium.
  10.  前記水分散高分子電解質溶液を得る工程においては、前記触媒インク中の水濃度が10質量%以上35質量%以下の範囲内となるように前記水分散高分子電解質溶液の濃度を調整することを特徴とする請求項9に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 In the step of obtaining the water-dispersed polymer electrolyte solution, the concentration of the water-dispersed polymer electrolyte solution is adjusted so that the water concentration in the catalyst ink is in the range of 10% by mass to 35% by mass. The method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 9.
  11.  前記分散媒は、アルコール類に属する1種類以上の溶媒を含むことを特徴とする請求項9又は請求項10に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 The method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 9 or 10, wherein the dispersion medium contains one or more solvents belonging to alcohols.
  12.  前記高分子電解質のプロトン供与性基1モル当たりの乾燥質量値(当量重量;EW(Equivalent Weight))は、500(g/eq)以上800(g/eq)以下の範囲内であることを特徴とする請求項9から請求項11のいずれか1項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 The dry weight value (equivalent weight; EW (Equivalent Weight)) per mole of the proton-donating group of the polymer electrolyte is in the range of 500 (g / eq) to 800 (g / eq). The method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to any one of claims 9 to 11.
  13.  前記触媒インク中の前記高分子電解質の前記炭素粒子担体に対する重量比は、0.9以上1.5以下の範囲内であることを特徴とする請求項9から請求項12のいずれか1項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 13. The weight ratio of the polymer electrolyte to the carbon particle carrier in the catalyst ink is in the range of 0.9 to 1.5, according to claim 9. A method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 1.
PCT/JP2016/001346 2015-03-12 2016-03-10 Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink WO2016143348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-049393 2015-03-12
JP2015049393A JP6569251B2 (en) 2015-03-12 2015-03-12 Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell and method for producing the same

Publications (1)

Publication Number Publication Date
WO2016143348A1 true WO2016143348A1 (en) 2016-09-15

Family

ID=56880316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001346 WO2016143348A1 (en) 2015-03-12 2016-03-10 Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink

Country Status (2)

Country Link
JP (1) JP6569251B2 (en)
WO (1) WO2016143348A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388820A (en) * 2021-12-09 2022-04-22 同济大学 Catalyst slurry for fuel cell and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266901A (en) * 2000-03-22 2001-09-28 Toyota Motor Corp Electrode catalyst solution for fuel cell and its manufacturing method
JP2005310545A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of polyelectrolyte fuel cell
JP2008031464A (en) * 2006-07-04 2008-02-14 Sumitomo Chemical Co Ltd Polymer electrolyte emulsion and use thereof
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2009218006A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Method of manufacturing electrolyte membrane-electrode assembly
JP2012004048A (en) * 2010-06-18 2012-01-05 Asahi Kasei E-Materials Corp Electrolyte membrane and method for manufacturing the same, electrode catalyst layer and method for manufacturing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2012069276A (en) * 2010-09-21 2012-04-05 Toyota Motor Corp Method of manufacturing electrode for fuel batteries
JP2013225433A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266901A (en) * 2000-03-22 2001-09-28 Toyota Motor Corp Electrode catalyst solution for fuel cell and its manufacturing method
JP2005310545A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of polyelectrolyte fuel cell
JP2008031464A (en) * 2006-07-04 2008-02-14 Sumitomo Chemical Co Ltd Polymer electrolyte emulsion and use thereof
JP2009218006A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Method of manufacturing electrolyte membrane-electrode assembly
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2012004048A (en) * 2010-06-18 2012-01-05 Asahi Kasei E-Materials Corp Electrolyte membrane and method for manufacturing the same, electrode catalyst layer and method for manufacturing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2012069276A (en) * 2010-09-21 2012-04-05 Toyota Motor Corp Method of manufacturing electrode for fuel batteries
JP2013225433A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Fuel cell

Also Published As

Publication number Publication date
JP6569251B2 (en) 2019-09-04
JP2016170949A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US9640824B2 (en) Fuel cell electrodes with conduction networks
US20060105226A1 (en) Metal catalyst and fuel cell with electrode including the same
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
US7285354B2 (en) Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
JP4661825B2 (en) Catalyst powder production method
JP7020061B2 (en) Catalyst ink
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP4831831B2 (en) Solid polymer fuel cell and method for producing the same
KR20140082971A (en) Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink
JP2013020816A (en) Membrane electrode assembly and manufacturing method therefor, and fuel cell
WO2016143348A1 (en) Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink
JP2003077479A (en) Polymer electrolyte type fuel cell and its manufacturing method
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
CN115939417A (en) Membrane electrode for proton exchange membrane fuel cell and preparation method thereof
JP6897017B2 (en) Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5262156B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP5664519B2 (en) Manufacturing method of membrane electrode assembly
JP2009009768A (en) Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells
WO2014155929A1 (en) Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
JP2005285670A (en) Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell
JP7152992B2 (en) Electrodes for fuel cells
WO2023106392A1 (en) Catalyst composition and catalyst layer for fuel cells using catalyst composition
JP5045021B2 (en) FUEL CELL ELECTRODE, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE FUEL CELL ELECTRODE
JP2011003473A (en) Catalyst particle for fuel cell and manufacturing method of membrane electrode assembly using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761321

Country of ref document: EP

Kind code of ref document: A1