WO2016142763A1 - Power conversion circuit and power conversion device using same - Google Patents

Power conversion circuit and power conversion device using same Download PDF

Info

Publication number
WO2016142763A1
WO2016142763A1 PCT/IB2016/000220 IB2016000220W WO2016142763A1 WO 2016142763 A1 WO2016142763 A1 WO 2016142763A1 IB 2016000220 W IB2016000220 W IB 2016000220W WO 2016142763 A1 WO2016142763 A1 WO 2016142763A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
electrically connected
output
power conversion
capacitor
Prior art date
Application number
PCT/IB2016/000220
Other languages
French (fr)
Japanese (ja)
Inventor
向志 秋政
祐輔 岩松
守雄 中村
後藤 周作
靖久 井原
光武 義雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016142763A1 publication Critical patent/WO2016142763A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention generally relates to a power conversion circuit and a power conversion device using the same, and more particularly to a power conversion circuit that converts DC power into AC power and a power conversion device using the same.
  • Patent Document 1 Japanese Patent
  • the control circuit (control unit) of Patent Document 1 controls on / off of the switch element of the switching circuit (bridge unit) using a phase shift control method.
  • a power conversion circuit includes a first input terminal and a second input terminal that are electrically connected to a DC power source, respectively, and a first input terminal that is electrically connected to a load.
  • An inverter circuit having one output end and a second output end, a first control unit for controlling the inverter circuit, and a clamp switch electrically connected between the first output end and the second output end And a second control unit that controls the clamp circuit.
  • the inverter circuit includes a first arm including a series circuit of a first switch and a second switch, a third switch, and a fourth switch.
  • a second arm composed of a series circuit, wherein the first arm and the second arm are electrically connected in parallel between the first input end and the second input end, and Switch And a connection point of the second switch is electrically connected to the first output terminal, and a connection point of the third switch and the fourth switch is electrically connected to the second output terminal.
  • a power conversion device includes the above-described power conversion circuit and a housing that houses the power conversion circuit. Advantageous Effects of Invention According to the present invention, it is possible to provide a power conversion circuit that suppresses common mode noise and a power conversion device using the same.
  • FIG. 1 is a circuit diagram illustrating a power conversion circuit according to the first embodiment.
  • FIG. 2 is a diagram illustrating the relationship between the operating state of the switching element and the output voltage of the power conversion circuit according to the first embodiment.
  • 3A to 3C are diagrams for explaining operations in the power conversion circuit according to the first embodiment.
  • 4A to 4C are diagrams for explaining another operation in the power conversion circuit according to the first embodiment.
  • FIG. 5 is a diagram illustrating still another operation in the power conversion circuit according to the first embodiment.
  • FIG. 6 is a diagram illustrating the output voltage of the power conversion circuit of the comparative example of the first embodiment.
  • FIG. 7 is a diagram illustrating the output voltage of the power conversion circuit according to the first embodiment.
  • FIG. 8 is a diagram illustrating the difference between the output voltage of the power conversion circuit according to the first embodiment and the output voltage of the comparative example.
  • FIG. 9 is a circuit diagram showing a power conversion circuit according to a modification of the first embodiment.
  • FIG. 10 is a circuit diagram showing a power conversion circuit according to the second embodiment.
  • FIG. 11 is a circuit diagram showing a power conversion circuit according to a modification of the second embodiment.
  • the power conversion circuit 1 includes an inverter circuit 2, a clamp circuit 4, a (first) capacitor 61, and a (second) capacitor 62.
  • the power conversion circuit 1 includes a first control unit (control unit 3) and a second control unit (control unit 3).
  • the power conversion circuit 1 of the present embodiment further includes a first reactor 51, a second reactor 52, a filter circuit 104, and a filter circuit 105.
  • the power conversion device 100 includes the above-described power conversion circuit 1 and a casing 110 that houses the power conversion circuit 1.
  • the inverter circuit 2 has a (first) input terminal 201 and a (second) input terminal 202 that are electrically connected to a power source 107 (DC power source).
  • the inverter circuit 2 is a circuit that converts DC power supplied from the power source 107 into AC power and outputs the AC power.
  • the inverter circuit 2 of the present embodiment converts a DC voltage input between the input terminals 201 and 202 into an AC voltage and outputs the AC voltage.
  • the power source 107 includes, for example, a power storage device or a solar power generation device, and is configured to output a DC voltage V0.
  • the positive electrode of the power source 107 is electrically connected to the input end 201, and the negative electrode of the power source 107 is electrically connected to the input end 202.
  • the filter circuit 104 is electrically connected between the input terminals 201 and 202.
  • the filter circuit 104 includes a series circuit of capacitors 101 and 102 that are electrically connected between the input terminals 201 and 202.
  • the filter circuit 104 is configured to suppress, for example, radiation noise or conduction noise from the power source 107. Further, the filter circuit 104 suppresses switching noise from the inverter circuit 2 from being transmitted to the power source 107.
  • Capacitors 101 and 102 have the same capacitance and are composed of the same type of capacitors. A voltage V1 that is half the voltage V0 output from the power supply 107 is applied to both ends of each of the capacitors 101 and 102.
  • the housing 110 is made of a metal material and houses the power conversion circuit 1.
  • the housing 110 is configured to have a sufficiently large capacitance with respect to the power conversion circuit 1, and defines a reference potential for the power conversion circuit 1.
  • the reference potential for the power conversion circuit 1 is not limited to being determined by the housing 110.
  • An appropriate member having a sufficiently large capacitance so that the reference potential for the power conversion circuit 1 can be determined may be electrically connected to the connection point 106. That is, the potential at the connection point 106 is equal to the reference potential.
  • the potential at the connection point 106 is described as a reference potential.
  • the voltage V1 that is half of the voltage V0 is applied to both ends of the capacitors 101 and 102.
  • the potential of the input end 201 to which one end of the capacitor 101 is electrically connected is a positive potential that is higher than the reference potential by the voltage V1.
  • the potential of the input terminal 202 to which the other end of the capacitor 102 is electrically connected is a negative potential that is lower than the reference potential by the voltage V1.
  • the inverter circuit 2 includes a series circuit (first arm) of a first switch 21 and a second switch 22 that are electrically connected between the input terminal 201 and the input terminal 202.
  • the inverter circuit 2 includes a series circuit (second arm) of a third switch 23 and a fourth switch 24 that are electrically connected between the input terminal 201 and the input terminal 202.
  • the first switch 21 includes a switching element 211 having a unidirectional conduction direction and a diode 212 connected in reverse parallel to the switching element 211.
  • the second switch 22 includes a switching element 221 having a unidirectional conduction direction and a diode 222 connected in reverse parallel to the switching element 221.
  • the third switch 23 includes a switching element 231 having a one-way conduction direction and a diode 232 connected in reverse parallel to the switching element 231.
  • the fourth switch 24 includes a switching element 241 having a unidirectional conduction direction and a diode 242 connected in reverse parallel to the switching element 241.
  • the diodes 212, 222, 232, and 242 are provided such that the conduction direction is from the input end 202 to the input end 201.
  • the switching elements 211, 221, 231, 241 are constituted by insulated gate bipolar transistors.
  • the switching element having a unidirectional conduction direction may be, for example, a gate turn-off thyristor, a gate commutation type turn-off thyristor, an optical trigger thyristor, or a bidirectional thyristor.
  • each of the first switch 21 to the fourth switch 24 may be a MOSFET (metal-oxide-field-effect transistor) having a parasitic diode.
  • the inverter circuit 2 includes a (first) output terminal 203 and a (second) output terminal 204 that are electrically connected to the load 103.
  • the output terminal 203 is electrically connected to a connection point 205 between the first switch 21 and the second switch 22.
  • the output end 204 is electrically connected to a connection point 206 between the third switch 23 and the fourth switch 24.
  • the connection point 205 is a connection point provided for convenience, and is not limited to the provision of a terminal to which the first switch 21 and the second switch 22 are connected.
  • the connection point 206 is a connection point provided for convenience, and is not limited to the provision of a terminal to which the third switch 23 and the fourth switch 24 are connected.
  • On / off of the first switch 21 to the fourth switch 24 of the inverter circuit 2 is controlled by the control unit 3 described later.
  • the control unit 3 converts the DC voltage into a rectangular AC voltage by periodically turning on and off the first switch 21 and the third switch 23 and the second switch 22 and the fourth switch 24 periodically.
  • One end of the (first) reactor 51 is electrically connected to the output end 203.
  • a connection point 511 is provided at the other end of the reactor 51.
  • One end of the load 103 is electrically connected to the connection point 511.
  • One end of the (second) reactor 52 is electrically connected to the output end 204.
  • a connection point 521 is provided at the other end of the reactor 52.
  • the other end of the load 103 is electrically connected to the connection point 521.
  • a sine wave AC voltage output from the filter circuit 105 is applied between both ends of the load 103.
  • the power conversion circuit 1 of this embodiment further includes a filter circuit 105 connected in parallel with the load 103.
  • the filter circuit 105 includes, for example, a large-capacity capacitor, and smoothes the waveform of the AC voltage V3 output from the inverter circuit 2 to a sine wave AC voltage.
  • the filter circuit 105 suppresses transmission of noise such as radiation noise, conduction noise, and switching noise from the inverter circuit 2 and the clamp circuit 4 to the load 103.
  • the clamp circuit 4 is electrically connected between the output terminals 203 and 204.
  • the clamp circuit 4 has a clamp switch composed of a series circuit of a fifth switch 45 (first clamp switch) and a sixth switch 46 (second clamp switch), and the output terminals 203 and 204 are short-circuited or Open.
  • the fifth switch 45 includes a switching element 451 having a one-way conduction direction (clamping switching element) and a diode 452 (clamping diode) connected in reverse parallel to the switching element 451.
  • the sixth switch 46 includes a switching element 461 (clamping switching element) whose conduction direction is one-way and a diode 462 (clamping diode) connected in reverse parallel to the switching element 461.
  • the diodes 452 and 462 are provided so that the conduction directions are opposite to each other.
  • the clamp circuit 4 has a function of short-circuiting or opening the reactors 51 and 52.
  • Clamp circuit 4 short-circuits reactors 51 and 52 when switching elements 451 and 461 are on.
  • the reactors 51 and 52 are short-circuited, the voltage between the output terminals 203 and 204 is clamped to zero volts, and no voltage is applied from the output terminals 203 and 204 to the load 103 side.
  • the clamp circuit 4 has a function of preventing the output voltage of the inverter circuit 2 from being applied to the load 103.
  • the reactors 51 and 52 release energy as a current, so that a regenerative current flows through the clamp circuit 4 and the load 103.
  • the switching elements 451 and 461 are constituted by insulated gate bipolar transistors in the present embodiment.
  • the switching element having a unidirectional conduction direction may be, for example, a gate turn-off thyristor, a gate commutation type turn-off thyristor, an optical trigger thyristor, or a bidirectional thyristor.
  • the fifth switch and the sixth switch may be MOSFETs having parasitic diodes.
  • the fifth switch 45 and the sixth switch 46 are ON / OFF controlled by the second control unit (control unit 3). When at least one of the fifth switch 45 and the sixth switch 46 is turned on, the reactors 51 and 52 are short-circuited, and a current flowing through the reactors 51 and 52 is caused to flow to the load 103. The operation of the second control unit will be described later.
  • Each of the first switch 21 to the fourth switch 24, the fifth switch 45, and the sixth switch 46 of the present embodiment has a parasitic capacitance, but the illustration of the capacitance component is omitted.
  • a capacitor 61 is electrically connected between the output end 203 and the input end 201.
  • the capacitor 61 of this embodiment is electrically connected directly between the connection point 511 of the reactor 51 and the load 103 and the input terminal 201.
  • the direct connection here means that two components are connected without passing through other elements or circuits.
  • the fact that two components are connected without passing through other elements or circuits is referred to as direct connection.
  • a capacitor 62 is electrically connected between the output end 204 and the input end 202.
  • the second capacitor 62 of the present embodiment is electrically directly connected between the connection point 521 of the reactor 52 and the load 103 and the input end 202.
  • Capacitors 61 and 62 have the same capacitance and are composed of the same type of capacitors.
  • Capacitors 61 and 62 are each composed of a capacitor having an impedance lower than that of load 103. Therefore, when the current flowing between the connection points 511 and 521 changes rapidly, most of the current flows to the capacitors 61 and 62 rather than the load 103.
  • the first control unit controls the inverter circuit 2.
  • the first control unit controls on / off of each of the first switch 21 to the fourth switch 24, converts a DC voltage input between the input terminals 201 and 202 into a rectangular AC voltage, and outputs between the output terminals 203 and 204. Output from.
  • the first control unit controls the on / off timing of each of the first switch 21 to the fourth switch 24 to change the duty ratio of the rectangular AC voltage.
  • the 1st control part of this embodiment is realized by control part 3 mentioned below.
  • the second control unit controls the clamp circuit 4.
  • the clamp circuit 4 of the present embodiment has a clamp switch composed of a series circuit of a fifth switch 45 (first clamp switch) and a sixth switch 46 (second clamp switch). That is, the second control unit controls the switching operation of the fifth switch 45 and the sixth switch 46.
  • the second control unit controls ON / OFF of the fifth switch 45 and the sixth switch 46 to short-circuit the reactors 51 and 52 or to control the direction of current flowing through the reactors 51 and 52.
  • the second control unit controls the current regenerated by the reactors 51 and 52 to bring the waveform of the alternating current supplied to the load 103 closer to a sine wave.
  • the second control unit of the present embodiment is realized by the control unit 3.
  • the first control unit and the second control unit are realized by the control unit 3, but the first control unit and the second control unit may be provided separately.
  • the control unit 3 is composed of a microcomputer.
  • the control unit 3 implements a desired function by reading and executing an appropriate program stored in a memory included in the microcomputer.
  • the control unit 3 has a program that realizes the control functions of the first control unit and the second control unit.
  • the control unit 3 is not limited to being configured by a microcomputer, and may be configured by an IC (Integrated Circuit) or the like.
  • the control unit 3 outputs signals S31 to S36 for ON / OFF control of the switching elements 211, 221, 231, 241, 451, and 461, respectively.
  • the control unit 3 outputs the signal S31 to the gate terminal of the switching element 211, outputs the signal S32 to the gate terminal of the switching element 221, outputs the signal S33 to the gate terminal of the switching element 231, and outputs the signal S33 to the gate terminal of the switching element 241.
  • the control unit 3 outputs a signal S35 to the gate terminal of the switching element 451 and outputs a signal S36 to the gate terminal of the switching element 461.
  • the control unit 3 outputs high level voltage signals as signals S31 to S36, and turns on the corresponding switching elements.
  • the control unit 3 outputs low level voltage signals as signals S31 to S36, and turns off the corresponding switching elements.
  • the control unit 3 may be configured to output a high level voltage signal to turn off the corresponding switching element and output a low level voltage signal to turn on the corresponding switching element. Good.
  • the control unit 3 is not limited to the on / off control of the switching element with the voltage signal, and an appropriate signal such as a current signal may be used.
  • the power source 107, the switching elements and diodes of the inverter circuit 2, the output terminals 203 and 204, the reactors 51 and 52, the load 103 is shown, and the other components are not shown.
  • 3A to 3C, 4A to 4C, and FIG. 5 to be described later, the switching elements in the on state are illustrated surrounded by dotted circles for easy understanding.
  • the control unit 3 is set with first to sixth modes having different operation modes. In each operation mode, the switching elements that are on / off controlled by the control unit 3 are different.
  • the control unit 3 converts the DC voltage into the AC voltage by periodically repeating the first mode to the sixth mode.
  • the control unit 3 In the first mode, the control unit 3 outputs high level signals S31, S34, and S36 to turn on the switching elements 211, 241, and 461.
  • a current I1 flows as shown in FIG. 3A. That is, the current I1 flows in the order of the positive electrode of the power source 107 ⁇ the switching element 211 ⁇ the reactor 51 ⁇ the load 103 ⁇ the reactor 52 ⁇ the switching element 241 ⁇ the negative electrode of the power source 107.
  • Reactors 51 and 52 store energy by current I1.
  • a voltage V4 having a voltage value equal to V0 is applied between the output terminals 203 and 204.
  • the potential at the output end 203 is a positive potential
  • the potential at the output end 204 is a negative potential.
  • the arrow direction of the voltage V4 shown in FIG. 3A (the direction from the output end 204 toward the output end 203) is defined as the positive voltage V4.
  • the first mode is an operation mode in which a positive voltage is applied between the power source 107 and the output terminals 203 and 204.
  • 3A is defined as the forward direction of the current I1 (the direction in which the current flows from the reactor 51 to the load 103). That is, in the first mode, a forward current I1 flows.
  • the control unit 3 turns on the switching element 461. However, the state of the switching element 461 may be maintained in the off state.
  • the control part 3 should just be comprised so that the switching element 461 may be turned on after 1st mode.
  • the controller 3 operates in the second mode after operating in the first mode for a desired period.
  • the second mode is an operation mode in which no voltage is applied between the power supply 107 and the output terminals 203 and 204.
  • the control unit 3 outputs low level signals S31 to S34 to turn off all the switching elements 211, 221, 231, and 241.
  • current I1 flows in the order of reactor 52 ⁇ switching element 461 ⁇ diode 452 ⁇ reactor 51 ⁇ load 103. Since the reactors 51 and 52 release the stored energy as a current, a forward current I1 flows through the load 103.
  • the control unit 3 Since the output terminals 203 and 204 are short-circuited, the voltage V4 is clamped to zero volts.
  • the controller 3 operates in the third mode after repeating the first mode and the second mode for a predetermined period.
  • the third mode is an operation mode in which a reverse voltage is applied between the power source 107 and the output terminals 203 and 204.
  • the control unit 3 outputs low level signals S31 to S36 and turns off all the switching elements 211, 221, 231, 241, 451, and 461.
  • the current I1 flowing in the forward direction flows through the diodes 232 and 222 as shown in FIG. 3C. Therefore, the output terminal 203 and the negative electrode of the power source 107 are electrically connected, and the output terminal 204 and the positive electrode of the power source 107 are electrically connected. That is, a negative voltage V4 (voltage value is ⁇ V0) is applied between the output terminals 203 and 204.
  • V4 voltage value is ⁇ V0
  • the current I1 starts flowing in the reverse direction after flowing in the forward direction until the energy stored in the reactors 51 and 52 becomes zero.
  • the controller 3 operates in the fourth mode after operating in the third mode for a desired period.
  • the control unit 3 outputs high level signals S32, S33, and S35 to turn on the switching elements 221, 231, and 451.
  • a current I1 flows in the order of positive electrode of the power source 107 ⁇ switching element 231 ⁇ reactor 52 ⁇ load 103 ⁇ reactor 51 ⁇ switching element 221 ⁇ negative electrode of the power source 107.
  • Reactors 51 and 52 store energy by current I1.
  • a negative voltage V4 (voltage value is ⁇ V0) is applied between the output terminals 203 and 204.
  • the potential at the output end 203 is a negative potential
  • the potential at the output end 204 is a positive potential.
  • the fourth mode is an operation mode in which a negative voltage V4 (voltage value is ⁇ V0) is applied between the output terminals 203 and 204, and a current I1 in the reverse direction flows.
  • the control unit 3 turns on the switching element 451.
  • the state of the switching element 451 may be maintained in the off state.
  • the control part 3 should just be comprised so that the switching element 451 may be turned on after a 4th mode.
  • the controller 3 operates in the fifth mode after operating in the fourth mode for a desired period.
  • the fifth mode is an operation mode in which no voltage is applied between the power supply 107 and the output terminals 203 and 204.
  • the control unit 3 outputs low level signals S31 to S34 to turn off all the switching elements 211, 221, 231, and 241.
  • the current I1 flows in the order of the reactor 51 ⁇ the switching element 451 ⁇ the diode 462 ⁇ the reactor 52 ⁇ the load 103. Since the reactors 51 and 52 release the stored energy as a current, a current I1 in the reverse direction flows through the load 103. Since the output terminals 203 and 204 are short-circuited, the voltage V4 is clamped to zero volts.
  • the controller 3 operates in the sixth mode after repeating the fourth mode and the fifth mode for a predetermined period.
  • the sixth mode is an operation mode in which a positive voltage is applied between the power source 107 and the output terminals 203 and 204.
  • the control unit 3 outputs low level signals S31 to S36 and turns off all the switching elements 211, 221, 231, 241, 451, and 461.
  • the current I1 flowing in the reverse direction flows through the diodes 212 and 242 as shown in FIG. 4C. Therefore, the output terminal 203 and the positive electrode of the power source 107 are electrically connected, and the output terminal 204 and the negative electrode of the power source 107 are electrically connected. That is, a positive voltage V4 (voltage value is V0) is applied between the output terminals 203 and 204.
  • the current I1 starts flowing in the forward direction after flowing in the reverse direction until the energy stored in the reactors 51 and 52 becomes zero.
  • the inverter circuit 2 outputs the positive voltage V4 (voltage value is V0) or the negative voltage V4 (voltage value is ⁇ V0) between the output terminals 203 and 204.
  • the controller 3 repeats the operations of the first mode and the second mode for a predetermined period, and switches the operation mode in the order of the second mode, the third mode, and the fourth mode.
  • the control unit 3 repeats the operations of the fourth mode and the fifth mode for a predetermined period, and switches the operation mode in the order of the fifth mode, the sixth mode, and the first mode.
  • the control unit 3 repeats the operations of the first mode to the sixth mode, so that a positive rectangular wave voltage and a negative rectangular wave voltage are alternately output from the inverter circuit 2.
  • the control unit 3 performs PWM (Pulse Width Modulation) control on the duty ratio of the rectangular wave voltage, and the rectangular wave voltage is smoothed by the filter circuit 105, whereby the sine wave voltage is applied to the load 103.
  • the control unit 3 is not limited to PWM control of the duty ratio of the rectangular wave voltage between the output terminals 203 and 204.
  • the power conversion circuit 1 should just be comprised so that the alternating voltage output between the output terminals 203 and 204 may be made into a sine wave voltage by an appropriate method.
  • the timing when the switching element 211 is turned off and the timing when the switching element 241 is turned off may be slightly different.
  • the second mode when the switching element 241 is off and the switching element 211 is on, as shown in FIG. 5, the reactor 52 ⁇ the diode 232 ⁇ the switching element 211 ⁇ the reactor 51 ⁇ the load 103.
  • a current I2 flows.
  • the output terminals 203 and 204 are short-circuited to the positive electrode of the power source 107. That is, during the period in which the current I2 flows, the potentials of the output terminals 203 and 204 are higher than the reference potential (the potential at the connection point 106 in FIG.
  • the potential between the output terminals 203 and 204 when the switching element 211 is in the on state and the switching element 241 is in the off state will be described with reference to FIGS. 5, 6, 7, and 8. explain.
  • the potential of the output terminal 203 with respect to the reference potential is denoted as voltage V203
  • the potential of the output terminal 204 with respect to the reference potential is denoted as voltage V204.
  • the voltage V203 is indicated by a solid line
  • the voltage V204 is indicated by a one-dot chain line.
  • the off timing of the switching element 211 may be delayed with respect to the off timing of the switching element 241. For example, as shown in FIG.
  • the output end 204 is short-circuited with the positive electrode of the power source 107 via the diode 232. Therefore, the potentials of the output terminals 203 and 204 are higher than the reference potential (positive potential). Therefore, at time t4, the potentials of the output terminals 203 and 204 are equal to each other in a state of being a positive potential higher than the reference potential. In this case, the voltages V203 and V204 are both the voltage V205. That is, common mode noise is generated such that the potentials of the output terminals 203 and 204 are higher than the reference potential by the voltage V205.
  • the potentials of the output terminals 203 and 204 change in phase with respect to the reference potential.
  • the potential of the output terminal 203 with respect to the reference potential when the common mode noise is generated is expressed as a voltage V206.
  • a waveform of the voltage V206 is shown by a dotted line in FIG. FIG. 8 shows a waveform in which a high level voltage and a low level voltage are alternately output for the voltage V206.
  • the voltage V206 has a waveform in which an AC component due to common mode noise is further added to the high level portion of the rectangular wave voltage. Note that common mode noise may also occur when the on-timing of the switching elements 211 and 241 is shifted.
  • One end of the capacitor 61 is electrically connected to the input end 201. Since the input terminal 201 is electrically connected to the positive electrode of the power source 107, the potential at the input terminal 201 is less likely to fluctuate even when a current flows from the other end of the capacitor 61.
  • One end of the capacitor 62 is electrically connected to the input end 202. Since the input terminal 202 is electrically connected to the negative electrode of the power source 107, the potential at the input terminal 202 is less likely to fluctuate even when a current flows from the other end of the capacitor 62.
  • the voltage waveform of the voltage V203 is shown by changing the time scale of FIG.
  • FIG. 8 shows a voltage waveform in which a high level voltage and a low level voltage are alternately output as the voltage V203. In the voltage V203 indicated by the solid line in FIG.
  • the power conversion circuit 1 of the present embodiment includes the inverter circuit 2, the first control unit (control unit 3 in the present embodiment), the clamp circuit 4, and the second control unit (control in the present embodiment). Unit 3), a first capacitor 61, and a second capacitor 62, which are configured as follows.
  • the inverter circuit 2 includes a first input terminal 201 and a second input terminal 202 that are electrically connected to a DC power supply (power supply 107 in this embodiment), respectively, and a first output that is electrically connected to the load 103. It has an end 203 and a second output end 204.
  • the first control unit controls the inverter circuit 2.
  • the clamp circuit 4 has a clamp switch (in this embodiment, a series circuit of a fifth switch 45 and a sixth switch 46) electrically connected between the first output terminal 203 and the second output terminal 204.
  • the second control unit controls the clamp circuit 4.
  • Inverter circuit 2 further includes a first arm composed of a series circuit of first switch 21 and second switch 22, and a second arm composed of a series circuit of third switch 23 and fourth switch 24. The first arm and the second arm are electrically connected in parallel between the first input end 201 and the second input end 202.
  • a connection point 205 between the first switch 21 and the second switch 22 is electrically connected to the first output terminal 203.
  • a connection point 206 between the third switch 23 and the fourth switch 24 is electrically connected to the second output end 204.
  • the first capacitor 61 is electrically connected between the first output end 203 and the first input end 201.
  • the second capacitor 62 is electrically connected between the second output end 204 and the second input end 202. According to the above configuration, the capacitor 61 is electrically connected between the input end 201 and the output end 203.
  • the potential of the input terminal 201 becomes a stable potential (positive potential in this embodiment) by the power source 107.
  • the capacitor 62 is electrically connected between the input end 202 and the output end 204.
  • the potential of the input terminal 202 becomes a stable potential (negative potential in this embodiment) by the power source 107.
  • Each of the first switch 21 to the fourth switch 24 in the power conversion circuit 1 of the present embodiment may include switching elements 211, 221, 231, 241 and diodes 212, 222, 232, 242.
  • the switching elements 211, 221, 231, and 241 are unidirectional switching elements.
  • the diodes 212, 222, 232, and 242 are connected in antiparallel with the switching elements 211, 221, 231, 241.
  • the diodes 212, 222, 232, and 242 of each of the first switch 21 to the fourth switch 24 are preferably provided so that the conduction direction is the direction from the second input end 202 to the first input end 201. According to the above configuration, even when the switching elements of each of the first switch 21 to the fourth switch 24 are in the OFF state, the current flows in the forward direction of the diode of each of the first switch 21 to the fourth switch 24. Each of the first switch 21 to the fourth switch 24 is turned on.
  • the clamp switch in the power conversion circuit 1 of the present embodiment may include a series circuit of a first clamp switch (fifth switch 45) and a second clamp switch (sixth switch 46).
  • the first clamp switch (fifth switch 45) includes a clamp switching element (switching element 451 in the present embodiment) and a clamp diode (diode 452 in the present embodiment).
  • the second clamp switch (sixth switch 46) includes a clamp switching element (switching element 461 in the present embodiment) and a clamp diode (diode 462 in the present embodiment).
  • the clamp switching elements (switching elements 451 and 461) are clamp switching elements whose conduction direction is one-way.
  • the clamping diodes (diodes 452 and 462) are connected in antiparallel with the clamping switching elements (switching elements 451 and 461).
  • the clamp diodes (diodes 452 and 462) of the first clamp switch (fifth switch 45) and the second clamp switch (sixth switch 46) are provided so that the conducting directions are opposite to each other. Is also preferable.
  • the control unit 3 may turn on one of the clamp switching elements of the first clamp switch and the second clamp switch. Moreover, the control part 3 can short-circuit or open
  • the power conversion circuit 1 of the present embodiment is electrically connected between the first reactor 51 electrically connected between the first output end 203 and the load 103, and between the second output end 204 and the load 103. It is also preferable to further include a second reactor 52 to be provided.
  • the first capacitor 61 is electrically connected between the connection point 511 of the first reactor 51 and the load 103 and the first input terminal 201.
  • the second capacitor 62 is also preferably electrically connected between the connection point 521 of the second reactor 52 and the load 103 and the second input end 202.
  • one end of each of the capacitors 61 and 62 is electrically connected to the reactors 51 and 52, and the other end of each of the capacitors 61 and 62 is connected to the power source 107.
  • the power conversion device 100 includes the above-described power conversion circuit 1 and a casing 110 that houses the power conversion circuit 1. According to the said structure, the power converter device 100 which can suppress common mode noise is realizable.
  • the capacitors 61 and 62 are directly electrically connected to the connection points 511 and 521, respectively, but the present invention is not limited to this configuration. As shown in FIG.
  • the capacitor 61 may be directly connected between a connection point 501 between the output end 203 and the reactor 51 and a connection point 502 between the output end 204 and the reactor 52.
  • the power conversion circuit 1 in which the capacitors 61 and 62 are directly connected between the connection points 501 and 502 will be described as a modification of the present embodiment.
  • the connection points 501 and 502 are connection points provided for convenience, and the connection points 501 and 502 are not limited to being provided.
  • the capacitor 61 is electrically connected directly between the output end 203 and the connection point 501 of the reactor 51 and the input end 201.
  • the capacitor 62 is electrically connected directly between the connection end 502 of the output end 204 and the reactor 52 and the input end 202.
  • one ends of the capacitors 61 and 62 are electrically directly connected to the load 103 side of the reactors 51 and 52.
  • the power conversion circuit 1A according to the modified example is different in that one end of the capacitors 61 and 62 is electrically directly connected to the clamp circuit 4 side of the reactors 51 and 52.
  • a capacitor 61 and a reactor 51 are connected in series between the input terminal 201 and one end of the load 103.
  • a capacitor 62 and a reactor 52 are connected in series between the input end 202 and the other end of the load 103.
  • the reactors 51 and 52 suppress output of the high voltage to the load 103 side.
  • the capacitances of the capacitors 61 and 62 and the types of the capacitors are all the same, but are not limited to this configuration.
  • common mode noise can be reduced by appropriately combining capacitors having different capacitances or different types of capacitors.
  • Each of the first switch 21 to the fourth switch 24 may not include a switching element having a unidirectional conduction direction and a diode connected in reverse parallel to the switching element.
  • a switching element having a parasitic diode such as a MOSFET may be used.
  • the control unit 3 controls the on / off states of the first switch 21 to the fourth switch 24 so that a desired electric circuit is formed between the input terminals 201 and 202 and the output terminals 203 and 204.
  • the clamp switch may not include a series circuit of the first clamp switch (fifth switch 45) and the second clamp switch (sixth switch 46). In that case, the clamp switch only needs to have a function of turning on and off a bidirectional current by short-circuiting or opening both ends.
  • switching elements having parasitic diodes such as MOSFETs may be connected in parallel so that the conduction directions of the parasitic diodes are opposite to each other.
  • Each of the first clamping switch (fifth switch 45) and the second clamping switch (sixth switch 46) is connected in reverse parallel to the clamping switching element and the clamping switching element whose conduction direction is unidirectional. It does not have to have a diode for use. In that case, each of the first clamp switch and the second clamp switch may have a function of turning on and off a bidirectional current by short-circuiting or opening both ends of the clamp switch.
  • Embodiment 2 A power conversion circuit 1B according to the present embodiment will be described with reference to FIG. In addition, about the structure similar to Embodiment 1, the same code
  • the power conversion circuit 1B of the present embodiment further includes current limiting units 81 to 84 having a desired impedance.
  • the current limiters 81 to 84 have two terminals.
  • Each of the current limiters 81 to 84 has at least one of a resistance component and a reactance component between two terminals, and is configured to have a desired impedance at a desired frequency.
  • the current limiting units 81 and 82 are configured to have the same impedance.
  • the current limiting units 83 and 84 are configured to have the same impedance.
  • Each of the current limiters 81 and 82 is configured such that a predetermined primary side impedance is provided between the two terminals.
  • the current limiting unit 81 (first input side current limiting unit) is electrically connected between the input terminal 201 and the capacitor 61.
  • the current limiting unit 82 (second input side current limiting unit) is electrically connected between the input terminal 202 and the capacitor 62.
  • Each of the current limiting units 83 and 84 is configured such that a predetermined secondary side impedance is provided between the two terminals.
  • the current limiting unit 83 (first output side current limiting unit) is electrically connected between the connection point 511 and the capacitor 61.
  • the current limiting unit 84 (second output side current limiting unit) is electrically connected between the connection point 521 and the capacitor 62.
  • the current limiters 81 to 84 have at least one of a resistance component and a reactance component, and are configured to have a desired impedance at a desired frequency.
  • the current limiting units 81 and 82 are configured to have the same impedance.
  • the current limiting units 83 and 84 are configured to have the same impedance. Radiation noise output to the load 103 side can be suppressed by reducing the current value of the current flowing through the capacitors 61 and 62 by the current limiters 81 to 84, respectively. Further, by adjusting the impedance of each of the current limiting portions 81 to 84, the effect of the capacitors 61 and 62 suppressing common mode noise can be changed.
  • each of the current limiters 81 to 84 by adjusting the impedance of each of the current limiters 81 to 84 so that the impedance is reduced at a desired frequency, it is possible to suppress the noise component of the desired frequency among the common mode noise.
  • the impedance of each of the current limiting units 81 to 84 by adjusting the impedance of each of the current limiting units 81 to 84, the frequency band of radiation noise when current flows from the output terminals 203 and 204 to the input terminals 201 and 202 via the capacitors 61 and 62 is adjusted. Can be changed. Therefore, it is possible to suppress radiation noise of a desired frequency among radiation noises from currents flowing through the capacitors 61 and 62 while suppressing noise components of a desired frequency of common mode noise using the current limiting units 81 to 84.
  • the power conversion circuit 1B of the present embodiment includes the current limiter 81 (first input side current limiter) and the current limiter 82 (second input side current limit) each having a predetermined primary impedance. It is also preferable that the apparatus is further configured as follows.
  • the current limiting unit 81 (first input side current limiting unit) is electrically connected between the first input terminal 201 and the first capacitor 61.
  • the current limiting unit 82 (second input side current limiting unit) is electrically connected between the second input terminal 202 and the second capacitor 62. According to the above configuration, the current limiting units 81 and 82 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively.
  • the power conversion circuit 1B of the present embodiment further includes a current limiting unit 83 (first output side current limiting unit) and a current limiting unit 84 (second output side current limiting unit) each having a predetermined secondary impedance, It is also preferable to be configured as follows.
  • Current limiting unit 83 first output-side current limiting unit
  • Current limiting unit 84 second output side current limiting unit
  • the current limiting unit 84 (second output side current limiting unit) is electrically connected between the second reactor 52 and the connection point 521 of the load 103 and the second capacitor 62. According to the above configuration, the current limiting units 83 and 84 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively. Further, by adjusting the impedances of the current limiting units 83 and 84 so that the impedance is reduced at a desired frequency, it is possible to suppress a noise component having a desired frequency in the common mode noise.
  • a power conversion circuit 1C in which capacitors 61 and 62 are electrically connected between the input and output terminals of the inverter circuit 2 and further includes current limiting units 81 to 84 is provided. This will be described as a modification. Note that the configuration of the current limiting units 81 and 82 is the same as that of the present embodiment, and a description thereof will be omitted.
  • the capacitor 61 is electrically connected between the output end 203 and the input end 201 as shown in FIG.
  • the capacitor 62 is electrically connected between the output end 204 and the input end 202.
  • the current limiting unit 83 is electrically connected between the output end 203 and the capacitor 61.
  • the current limiting unit 84 is electrically connected between the output end 204 and the capacitor 62.
  • the power conversion circuit 1C includes the current limiting unit 83 (first output side current limiting unit) and the current limiting unit 84 (second output side current limiting unit) each having a predetermined secondary side impedance. It is also preferable to be configured as follows.
  • the current limiting unit 83 (first output side current limiting unit) is electrically connected between the first output terminal 203 and the first capacitor 61.
  • the current limiting unit 84 (second output side current limiting unit) is electrically connected between the second output end 204 and the second capacitor 62.
  • the current limiting units 83 and 84 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively. Further, by adjusting the impedance of each of the current limiting units 83 and 84, radiation noise from the current flowing through the capacitors 61 and 62 can be suppressed.
  • the current limiting units 81 and 82 are determined to have the same impedance, and the current limiting units 83 and 84 are determined to have the same impedance. It is not limited.
  • the impedances of the current limiters 81 to 84 may be set to appropriate values individually. Further, each of the current limiting units 81 to 84 may be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

This power conversion circuit 1 is provided with an inverter circuit 2, a control unit 3, a clamp circuit 4 and capacitors 61, 62. The inverter circuit 2 comprises input terminals 201, 202 and output terminals 203, 204. The control unit 3 controls operation of the inverter circuit 2 and the clamp circuit 4. The clamp circuit 4 forms a short circuit or open circuit between the output terminals 203, 204. The capacitor 61 is electrically connected between the output terminal 203 and the input terminal 201. The capacitor 62 is electrically connected between the output terminal 204 and the input terminal 202.

Description

電力変換回路およびそれを用いた電力変換装置Power conversion circuit and power conversion apparatus using the same
 本発明は一般に、電力変換回路およびそれを用いた電力変換装置、より詳細には、直流電力を交流電力に変換する電力変換回路およびそれを用いた電力変換装置に関する。 The present invention generally relates to a power conversion circuit and a power conversion device using the same, and more particularly to a power conversion circuit that converts DC power into AC power and a power conversion device using the same.
 従来、入力端子とトランスとの間に設けられるフルブリッジ型のスイッチング回路(ブリッジ部)を用いて、直流電圧を交流電圧に変換する変換回路が知られている(例えば特許文献1(日本国特開2004−140913号公報参照)。特許文献1の制御回路(制御部)は、位相シフト制御方式を用いてスイッチング回路(ブリッジ部)のスイッチ素子のオンオフを制御している。 Conventionally, there is known a conversion circuit that converts a DC voltage into an AC voltage using a full bridge type switching circuit (bridge portion) provided between an input terminal and a transformer (for example, Patent Document 1 (Japanese Patent) (See JP 2004-140913 A.) The control circuit (control unit) of Patent Document 1 controls on / off of the switch element of the switching circuit (bridge unit) using a phase shift control method.
 特許文献1では、スイッチング回路(ブリッジ部)のスイッチ素子のオンオフを位相シフト制御方式で制御しているので、コモンモード・ノイズが変換回路に発生する。そしてこのコモンモード・ノイズがスイッチング回路の出力電圧に加わるという問題があった。
 本発明は、コモンモード・ノイズを抑制する電力変換回路およびそれを用いた電力変換装置を提供することを目的とする。
課題を解決するための手段
 本発明の一態様による電力変換回路は、それぞれ直流電源に電気的に接続される第1入力端と第2入力端、および、それぞれ負荷に電気的に接続される第1出力端と第2出力端を有するインバータ回路と、前記インバータ回路を制御する第1制御部と、前記第1出力端と前記第2出力端との間に電気的に接続されるクランプ用スイッチを有するクランプ回路と、前記クランプ回路を制御する第2制御部とを備え、前記インバータ回路は、第1スイッチおよび第2スイッチの直列回路からなる第1アームと、第3スイッチおよび第4スイッチの直列回路からなる第2アームとをさらに有し、前記第1アームと前記第2アームとは前記第1入力端と前記第2入力端との間に電気的に並列に接続され、前記第1スイッチおよび前記第2スイッチの接続点が前記第1出力端に電気的に接続され、前記第3スイッチおよび前記第4スイッチの接続点が前記第2出力端に電気的に接続されるように構成され、前記第1出力端と前記第1入力端との間に電気的に接続される第1コンデンサと、前記第2出力端と前記第2入力端との間に電気的に接続される第2コンデンサとをさらに備えることを特徴とする。
 本発明の他の態様による電力変換装置は、上記した電力変換回路と、前記電力変換回路を収納する筐体とを備えることを特徴とする。
発明の効果
 本発明によれば、コモンモード・ノイズを抑制する電力変換回路およびそれを用いた電力変換装置を提供することができる。
In Patent Document 1, since on / off of the switching element of the switching circuit (bridge portion) is controlled by the phase shift control method, common mode noise is generated in the conversion circuit. This common mode noise is added to the output voltage of the switching circuit.
An object of this invention is to provide the power converter circuit which suppresses common mode noise, and a power converter device using the same.
Means for Solving the Problems A power conversion circuit according to an aspect of the present invention includes a first input terminal and a second input terminal that are electrically connected to a DC power source, respectively, and a first input terminal that is electrically connected to a load. An inverter circuit having one output end and a second output end, a first control unit for controlling the inverter circuit, and a clamp switch electrically connected between the first output end and the second output end And a second control unit that controls the clamp circuit. The inverter circuit includes a first arm including a series circuit of a first switch and a second switch, a third switch, and a fourth switch. A second arm composed of a series circuit, wherein the first arm and the second arm are electrically connected in parallel between the first input end and the second input end, and Switch And a connection point of the second switch is electrically connected to the first output terminal, and a connection point of the third switch and the fourth switch is electrically connected to the second output terminal. A first capacitor electrically connected between the first output terminal and the first input terminal, and a second capacitor electrically connected between the second output terminal and the second input terminal. And a capacitor.
A power conversion device according to another aspect of the present invention includes the above-described power conversion circuit and a housing that houses the power conversion circuit.
Advantageous Effects of Invention According to the present invention, it is possible to provide a power conversion circuit that suppresses common mode noise and a power conversion device using the same.
 本発明の目的及び特徴は、以下のような添付図面と共に与えられる以降の好ましい実施例の説明により明確になる。
 図1は実施形態1に係る電力変換回路を示す回路図である。
 図2は実施形態1に係る電力変換回路のスイッチング素子の動作状態と出力電圧との関係を説明する図である。
 図3A~図3Cは、それぞれ実施形態1に係る電力変換回路における動作を説明する図である。
 図4A~図4Cは、それぞれ実施形態1に係る電力変換回路における別の動作を説明する図である。
 図5は実施形態1に係る電力変換回路におけるさらに別の動作を説明する図である。
 図6は実施形態1の比較例の電力変換回路の出力電圧を説明する図である。
 図7は実施形態1に係る電力変換回路の出力電圧を説明する図である。
 図8は実施形態1に係る電力変換回路の出力電圧と比較例の出力電圧との違いを説明する図である。
 図9は実施形態1の変形例に係る電力変換回路を示す回路図である。
 図10は実施形態2に係る電力変換回路を示す回路図である。
 図11は実施形態2の変形例に係る電力変換回路を示す回路図である。
The objects and features of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings.
FIG. 1 is a circuit diagram illustrating a power conversion circuit according to the first embodiment.
FIG. 2 is a diagram illustrating the relationship between the operating state of the switching element and the output voltage of the power conversion circuit according to the first embodiment.
3A to 3C are diagrams for explaining operations in the power conversion circuit according to the first embodiment.
4A to 4C are diagrams for explaining another operation in the power conversion circuit according to the first embodiment.
FIG. 5 is a diagram illustrating still another operation in the power conversion circuit according to the first embodiment.
FIG. 6 is a diagram illustrating the output voltage of the power conversion circuit of the comparative example of the first embodiment.
FIG. 7 is a diagram illustrating the output voltage of the power conversion circuit according to the first embodiment.
FIG. 8 is a diagram illustrating the difference between the output voltage of the power conversion circuit according to the first embodiment and the output voltage of the comparative example.
FIG. 9 is a circuit diagram showing a power conversion circuit according to a modification of the first embodiment.
FIG. 10 is a circuit diagram showing a power conversion circuit according to the second embodiment.
FIG. 11 is a circuit diagram showing a power conversion circuit according to a modification of the second embodiment.
 以下、本発明の実施形態を本明細書の一部を成す添付図面を参照してより詳しく説明する。図面全般に同一又は類似する部分に同じ符号をつけ、それについての重なる説明を省略する。
 以下の説明では、直流電力を交流電力に変換する電力変換回路について説明する。例えば太陽光発電装置や蓄電装置から供給される電力を電源として使用する際に、供給される電力が直流電力である場合、交流電力に変換して使用したいという要望がある。この場合、直流電力を交流電力に変換するために電力変換回路が用いられる。例えば住宅やビルなどの建物に設置された蓄電装置や太陽光発電装置などから供給される直流電力を、電力変換回路を用いて交流電力に変換することで、交流電力で使用される負荷(例えば電気機器など)に電力を供給することができる。
 (実施形態1)
 本実施形態の電力変換回路1、およびそれを用いた電力変換装置100について図を参照して説明する。
 電力変換回路1は、図1に示すように、インバータ回路2と、クランプ回路4と、(第1)コンデンサ61と、(第2)コンデンサ62とを備える。また電力変換回路1は、第1制御部(制御部3)と、第2制御部(制御部3)とを備える。本実施形態の電力変換回路1はさらに、第1リアクトル51と、第2リアクトル52と、フィルタ回路104と、フィルタ回路105とを備える。
 本実施形態の電力変換装置100は、上記した電力変換回路1と、電力変換回路1を収納する筐体110とを備える。
 インバータ回路2は、電源107(直流電源)に電気的に接続される(第1)入力端201と(第2)入力端202とを有する。インバータ回路2は、電源107から供給される直流電力を交流電力に変換して出力する回路である。本実施形態のインバータ回路2は、入力端201,202間に入力される直流電圧を交流電圧に変換して出力する。
 電源107は、例えば蓄電装置や太陽光発電装置などを含み、直流の電圧V0を出力するように構成されている。電源107の正極は入力端201に電気的に接続され、電源107の負極は入力端202に電気的に接続されている。
 入力端201,202間には、フィルタ回路104が電気的に接続される。フィルタ回路104は、入力端201,202間に電気的に接続されるコンデンサ101,102の直列回路を有する。フィルタ回路104は、例えば輻射ノイズや電源107からの伝導ノイズなどを抑制するように構成されている。またフィルタ回路104は、インバータ回路2からのスイッチング・ノイズが電源107に伝わるのを抑制する。
 コンデンサ101の一端は入力端201に電気的に接続され、コンデンサ101の他端はコンデンサ102の一端に電気的に接続されている。コンデンサ102の他端は入力端202に電気的に接続されている。コンデンサ101およびコンデンサ102の接続点106は、筐体110と電気的に接続されている。そのため接続点106の電位は、筐体110の電位と等しくなる。
 コンデンサ101,102はそれぞれ、静電容量が等しく、かつ、同じ種類のコンデンサで構成されている。コンデンサ101,102のそれぞれの両端には、電源107から出力される電圧V0の半分の電圧V1が印加される。
 筐体110は金属材料で形成され、電力変換回路1を収納する。筐体110は電力変換回路1に対して十分に大きい静電容量を有するように構成されていて、電力変換回路1に対する基準電位を定めている。なお、電力変換回路1に対する基準電位は、筐体110によって定められることに限定される趣旨ではない。電力変換回路1に対する基準電位を定めることができるほど静電容量が十分に大きい適宜の部材と接続点106とを電気的に接続してもよい。
 つまり接続点106の電位は、基準電位と等しい。以下では、接続点106の電位を基準電位と記載して説明する。
 上述したように、コンデンサ101,102のそれぞれの両端には、電圧V0の半分の電圧V1が印加される。そのため、コンデンサ101の一端が電気的に接続されている入力端201の電位は、基準電位に対して電圧V1だけ高い正電位となる。そしてコンデンサ102の他端が電気的に接続されている入力端202の電位は、基準電位に対して電圧V1だけ低い負電位となる。
 インバータ回路2は、入力端201と入力端202との間に電気的に接続される第1スイッチ21および第2スイッチ22の直列回路(第1アーム)を有する。インバータ回路2は、入力端201と入力端202との間に電気的に接続される第3スイッチ23および第4スイッチ24の直列回路(第2アーム)を有する。
 第1スイッチ21は、導通方向が片方向のスイッチング素子211およびスイッチング素子211と逆並列に接続されるダイオード212を有する。第2スイッチ22は、導通方向が片方向のスイッチング素子221およびスイッチング素子221と逆並列に接続されるダイオード222を有する。第3スイッチ23は、導通方向が片方向のスイッチング素子231およびスイッチング素子231と逆並列に接続されるダイオード232を有する。第4スイッチ24は、導通方向が片方向のスイッチング素子241およびスイッチング素子241と逆並列に接続されるダイオード242を有する。ダイオード212,222,232,242は、導通方向が入力端202から入力端201の方向となるように設けられている。スイッチング素子211,221,231,241は、本実施形態では絶縁ゲートバイポーラトランジスタで構成されている。なお、導通方向が片方向のスイッチング素子は、絶縁ゲートバイポーラトランジスタの他にも、例えばゲートターンオフサイリスタや、ゲート転流型ターンオフサイリスタや、光トリガサイリスタや、双方向サイリスタなどでもよい。また、第1スイッチ21~第4スイッチ24の各々は、寄生ダイオードを有するMOSFET(metal−oxide−semiconductor field−effect transistor)などでもよい。
 インバータ回路2は、それぞれ負荷103に電気的に接続される(第1)出力端203と(第2)出力端204を有する。出力端203は、第1スイッチ21および第2スイッチ22の接続点205に電気的に接続されている。出力端204は、第3スイッチ23および第4スイッチ24の接続点206に電気的に接続されている。なお、接続点205は便宜上設けた接続点であり、第1スイッチ21と第2スイッチ22とが接続される端子が設けられていることに限定されない。また、接続点206は便宜上設けた接続点であり、第3スイッチ23と第4スイッチ24とが接続される端子が設けられていることに限定されない。
 インバータ回路2の第1スイッチ21~第4スイッチ24のオンオフは、後述する制御部3によって制御される。制御部3は、第1スイッチ21および第3スイッチ23と、第2スイッチ22および第4スイッチ24とを周期的に交互にオンオフすることにより直流電圧を矩形の交流電圧に変換する。
 出力端203には、(第1)リアクトル51の一端が電気的に接続されている。リアクトル51の他端には接続点511が設けられている。接続点511には負荷103の一端が電気的に接続されている。出力端204には、(第2)リアクトル52の一端が電気的に接続されている。リアクトル52の他端には接続点521が設けられている。接続点521には負荷103の他端が電気的に接続されている。負荷103の両端間には、フィルタ回路105から出力される正弦波交流電圧が印加される。リアクトル51,52はそれぞれ、出力端203,204間から出力される電圧が周期的にハイレベルからローレベルに切り替えられた際に、負荷103に出力される電流を徐々に変化させる。またリアクトル51,52はそれぞれ、出力端203,204間から出力される電圧が周期的にローレベルからハイレベルに切り替えられた際に、負荷103に出力される電流を徐々に変化させる。
 本実施形態の電力変換回路1は、負荷103と並列に接続されるフィルタ回路105をさらに備えている。フィルタ回路105は、例えば大容量のコンデンサを有し、インバータ回路2から出力される交流の電圧V3の波形を滑らかにして正弦波交流電圧にする。またフィルタ回路105は、輻射ノイズや伝導ノイズや、インバータ回路2およびクランプ回路4からのスイッチング・ノイズなどのノイズが負荷103に伝わることを抑制する。
 出力端203,204間には、クランプ回路4が電気的に接続されている。クランプ回路4は、第5スイッチ45(第1クランプ用スイッチ)と第6スイッチ46(第2クランプ用スイッチ)との直列回路からなるクランプ用スイッチを有し、出力端203,204間を短絡または開放する。
 第5スイッチ45は、導通方向が片方向のスイッチング素子451(クランプ用スイッチング素子)およびスイッチング素子451と逆並列に接続されるダイオード452(クランプ用ダイオード)を有する。第6スイッチ46は、導通方向が片方向のスイッチング素子461(クランプ用スイッチング素子)およびスイッチング素子461と逆並列に接続されるダイオード462(クランプ用ダイオード)を有する。ダイオード452,462は導通方向が互いに逆方向となるように設けられている。この構成により、スイッチング素子461がオンの場合、スイッチング素子461→ダイオード452→リアクトル51→負荷103→リアクトル52の順(図1における時計回り)に電流が流れる電路が形成される。また、スイッチング素子451がオンの場合、スイッチング素子451→ダイオード462→リアクトル52→負荷103→リアクトル51の順(図1における反時計回り)に電流が流れる電路が形成される。すなわちクランプ回路4は、リアクトル51,52を短絡または開放する機能を有する。
 またクランプ回路4は、それぞれのスイッチング素子451,461がオンの場合には、リアクトル51,52間を短絡する。リアクトル51,52間が短絡されると出力端203,204間の電圧がゼロボルトにクランプされ、出力端203,204から負荷103側に電圧が印加されなくなる。つまりクランプ回路4は、インバータ回路2の出力電圧が負荷103に印加されないようにする機能を有する。インバータ回路2の出力電圧がクランプ回路4によりゼロボルトにクランプされると、リアクトル51,52はエネルギーを電流として放出するので、クランプ回路4と負荷103とには回生する電流が流れる。
 スイッチング素子451,461は、本実施形態では絶縁ゲートバイポーラトランジスタで構成されている。なお、導通方向が片方向のスイッチング素子は、絶縁ゲートバイポーラトランジスタの他にも、例えばゲートターンオフサイリスタや、ゲート転流型ターンオフサイリスタや、光トリガサイリスタや、双方向サイリスタなどでもよい。また、第5スイッチおよび第6スイッチは、寄生ダイオードを有するMOSFETなどでもよい。
 第5スイッチ45および第6スイッチ46は第2制御部(制御部3)によってオンオフ制御される。第5スイッチ45と第6スイッチ46とのうち少なくとも一方がオンすることにより、リアクトル51,52間を短絡してリアクトル51,52を流れる電流を負荷103に流す。なお、第2制御部の動作については後述する。
 本実施形態の第1スイッチ21~第4スイッチ24および第5スイッチ45、第6スイッチ46の各々は寄生容量を有しているが、容量成分の図示は省略する。
 出力端203と入力端201との間には、コンデンサ61が電気的に接続されている。本実施形態のコンデンサ61は、リアクトル51および負荷103の接続点511と入力端201との間に電気的に直接接続されている。ここでいう直接接続とは、2つの部品が他の素子や回路を介さずに接続されていることを言う。以下、2つの部品が他の素子や回路を介さずに接続されていることを直接接続すると表記する。
 出力端204と入力端202との間には、コンデンサ62が電気的に接続されている。本実施形態の第2コンデンサ62は、リアクトル52および負荷103の接続点521と入力端202との間に電気的に直接接続されている。
 コンデンサ61,62はそれぞれ静電容量が等しく、かつ、同じ種類のコンデンサで構成されている。コンデンサ61,62はそれぞれ、負荷103よりもインピーダンスが低いコンデンサで構成される。そのため接続点511,521間を流れる電流が急激に変化した場合、その電流の多くは負荷103よりもコンデンサ61,62に流れる。
 第1制御部は、インバータ回路2を制御する。第1制御部は、第1スイッチ21~第4スイッチ24の各々のオンオフを制御し、入力端201,202間に入力される直流電圧を矩形の交流電圧に変換して出力端203,204間から出力させる。また第1制御部は、それぞれの第1スイッチ21~第4スイッチ24のオンオフタイミングを制御して、矩形の交流電圧のデューティ比を変化させる。本実施形態の第1制御部は、後述する制御部3によって実現されている。
 第2制御部は、クランプ回路4を制御する。本実施形態のクランプ回路4は、第5スイッチ45(第1クランプ用スイッチ)および第6スイッチ46(第2クランプ用スイッチ)の直列回路からなるクランプ用スイッチを有する。つまり第2制御部は、第5スイッチ45および第6スイッチ46のスイッチング動作を制御する。第2制御部は、第5スイッチ45および第6スイッチ46のオンオフを制御して、リアクトル51,52間を短絡するか、またはリアクトル51,52を流れる電流の方向を制御する。第2制御部は、リアクトル51,52によって回生する電流を制御して、負荷103に供給される交流電流の波形を正弦波に近づける。本実施形態の第2制御部は、制御部3によって実現されている。
 本実施形態では、制御部3によって第1制御部と第2制御部が実現されているが、第1制御部と第2制御部とを別々に設けても良い。
 制御部3は、マイクロコンピュータで構成されている。制御部3は、マイクロコンピュータが有するメモリに記憶されている適宜のプログラムを読み込んで実行することにより、所望の機能を実現する。制御部3は、第1制御部および第2制御部のそれぞれの制御機能を実現するプログラムを有している。なお、制御部3は、マイクロコンピュータで構成されることに限定されず、IC(Integrated Circuit)などで構成されていてもよい。
 制御部3は、スイッチング素子211,221,231,241,451,461をそれぞれオンオフ制御するための信号S31~S36を出力する。制御部3は、スイッチング素子211のゲート端子に信号S31を出力し、スイッチング素子221のゲート端子に信号S32を出力し、スイッチング素子231のゲート端子に信号S33を出力し、スイッチング素子241のゲート端子に信号S34を出力する。また制御部3は、スイッチング素子451のゲート端子に信号S35を出力し、スイッチング素子461のゲート端子に信号S36を出力する。制御部3は、ハイレベルの電圧信号を信号S31~S36として出力し、対応するスイッチング素子をオン状態にする。制御部3は、ローレベルの電圧信号を信号S31~S36として出力し、対応するスイッチング素子をオフ状態にする。なお、制御部3は、ハイレベルの電圧信号を出力して対応するスイッチング素子をオフ状態にし、ローレベルの電圧信号を出力して対応するスイッチング素子をオン状態にするように構成されていてもよい。また、制御部3は、電圧信号でスイッチング素子をオンオフ制御することに限定されず、電流信号などの適宜の信号を用いてよい。
 次に、制御部3がインバータ回路のスイッチ素子(スイッチング素子211,221,231,241,451,461)のオンオフ状態を制御して直流電圧を交流電圧に変換する動作について図2、図3A~図3Cおよび図4A~図4Cを参照して説明する。以下では、制御部3が負荷103に正電圧を印加し、その後、負荷103に負電圧を印加する動作について説明する。なお、図3A~図3Cおよび図4A~図4Cでは、説明を簡単にするために電源107と、インバータ回路2のスイッチング素子およびダイオードと、出力端203,204と、リアクトル51,52と、負荷103とを図示し、他の構成の図示を省略する。また、図3A~図3C、図4A~図4C、および後述する図5では、説明をわかりやすくするために、オン状態のスイッチング素子は点線の円で囲んで図示する。
 制御部3には、それぞれ動作モードの異なる第1モード~第6モードが設定されている。各動作モードでは制御部3によってオンオフ制御されるスイッチング素子が異なる。制御部3は、第1モード~第6モードを周期的に繰り返すことで直流電圧を交流電圧に変換する。
 制御部3は、第1モードではハイレベルの信号S31,S34,S36を出力してスイッチング素子211,241,461をオン状態にする。スイッチング素子211,241,461がオン状態になると、図3Aに示すように、電流I1が流れる。つまり電流I1は、電源107の正極→スイッチング素子211→リアクトル51→負荷103→リアクトル52→スイッチング素子241→電源107の負極の順に流れる。リアクトル51,52は電流I1によりエネルギーを蓄える。出力端203,204間には、電圧値がV0と等しい電圧V4が印加されている。出力端203の電位は正電位となっていて、出力端204の電位は負電位となっている。以下の説明では、図3Aに示す電圧V4の矢印方向(出力端204から出力端203に向かう方向)を、電圧V4の正の電圧と定義する。つまり第1モードとは、電源107から出力端203,204間に正方向の電圧を印加する動作モードである。また、図3Aに示す電流I1の矢印方向(リアクトル51から負荷103に電流が流れる方向)を電流I1の順方向と定義する。つまり第1モードでは順方向の電流I1が流れる。なお、本実施形態の第1モードでは、制御部3はスイッチング素子461をオン状態にしているが、スイッチング素子461の状態をオフ状態に維持してもよい。その場合、制御部3は、スイッチング素子461を第1モードの後でオン状態にするように構成されていればよい。
 制御部3は、所望の期間だけ第1モードで動作した後、第2モードで動作する。第2モードとは、電源107から出力端203,204間に電圧を印加しない動作モードである。制御部3は、第2モードでは、ローレベルの信号S31~S34を出力してスイッチング素子211,221,231,241を全てオフ状態にする。第2モードになると、図3Bに示すように、リアクトル52→スイッチング素子461→ダイオード452→リアクトル51→負荷103の順に電流I1が流れる。リアクトル51,52は、蓄えたエネルギーを電流として放出するので、負荷103には順方向の電流I1が流れる。出力端203,204間は短絡しているので電圧V4はゼロボルトにクランプされる。
 次に、制御部3が出力端203,204間に負の電圧V4(つまり電圧値が−V0)を出力する第3動作モード~第5動作モードについて説明する。
 制御部3は、第1モードおよび第2モードを所定の期間だけ繰り返した後、第3モードで動作する。第3モードとは、電源107から出力端203,204間に逆方向の電圧を印加する動作モードである。制御部3は、第3モードでは、ローレベルの信号S31~S36を出力し、スイッチング素子211,221,231,241,451,461の全てスイッチをオフ状態にする。第3モードになると、順方向に流れる電流I1は、図3Cに示すように、ダイオード232,222を流れる。そのため出力端203と電源107の負極とが電気的に接続され、出力端204と電源107の正極とが電気的に接続される。つまり、出力端203,204間には負の電圧V4(電圧値が−V0)が印加される。電流I1は、リアクトル51,52に蓄えられたエネルギーがゼロになるまで順方向に流れた後、逆方向に流れ始める。
 制御部3は、所望の期間だけ第3モードで動作した後、第4モードで動作する。制御部3は、第4モードでは、ハイレベルの信号S32,S33,S35を出力してスイッチング素子221,231,451をオン状態にする。第4モードになると、図4Aに示すように、電源107の正極→スイッチング素子231→リアクトル52→負荷103→リアクトル51→スイッチング素子221→電源107の負極の順に電流I1が流れる。リアクトル51,52は電流I1によりエネルギーを蓄える。出力端203,204間には、負の電圧V4(電圧値が−V0)が印加されている。出力端203の電位は負電位となっていて、出力端204の電位は正電位となっている。つまり第4モードとは、出力端203,204間に負の電圧V4(電圧値が−V0)を印加し、逆方向の電流I1を流す動作モードである。なお、本実施形態の第4モードでは、制御部3はスイッチング素子451をオン状態にしているが、スイッチング素子451の状態をオフ状態に維持してもよい。その場合、制御部3は、スイッチング素子451を第4モードの後でオン状態にするように構成されていればよい。
 制御部3は、所望の期間だけ第4モードで動作した後、第5モードで動作する。第5モードとは、電源107から出力端203,204間に電圧を印加しない動作モードである。制御部3は、第5モードでは、ローレベルの信号S31~S34を出力してスイッチング素子211,221,231,241を全てオフ状態にする。第5モードになると、図4Bに示すように、リアクトル51→スイッチング素子451→ダイオード462→リアクトル52→負荷103の順に電流I1が流れる。リアクトル51,52は、蓄えたエネルギーを電流として放出するので、負荷103には逆方向の電流I1が流れる。出力端203,204間は短絡しているので電圧V4はゼロボルトにクランプされる。
 制御部3は、第4モードおよび第5モードを所定の期間だけ繰り返した後、第6モードで動作する。第6モードとは、電源107から出力端203,204間に正方向の電圧を印加する動作モードである。制御部3は、第6モードでは、ローレベルの信号S31~S36を出力し、スイッチング素子211,221,231,241,451,461の全てスイッチをオフ状態にする。第6モードになると、逆方向に流れる電流I1は、図4Cに示すように、ダイオード212,242を流れる。そのため出力端203と電源107の正極とが電気的に接続され、出力端204と電源107の負極とが電気的に接続される。つまり、出力端203,204間には正の電圧V4(電圧値がV0)が印加される。電流I1は、リアクトル51,52に蓄えられたエネルギーがゼロになるまで逆方向に流れた後、順方向に流れ始める。
 上記したように、インバータ回路2は、出力端203,204間に正の電圧V4(電圧値がV0)または負の電圧V4(電圧値が−V0)を出力する。制御部3は、第1モードおよび第2モードの各々の動作を所定の期間だけ繰り返し、第2モード、第3モード、第4モードの順に動作モードを切り替える。制御部3は、第4モードおよび第5モードの各々の動作を所定の期間だけ繰り返し、第5モード、第6モード、第1モードの順に動作モードを切り替える。制御部3は第1モード~第6モードの動作を繰り返すことにより、インバータ回路2から正の矩形波電圧および負の矩形波電圧が交互に出力される。制御部3が矩形波電圧のデューティ比をPWM(Pulse Width Modulation)制御し、その矩形波電圧をフィルタ回路105が平滑することで、負荷103に正弦波電圧が印加される。なお、制御部3が出力端203,204間の矩形波電圧のデューティ比をPWM制御することに限定される趣旨ではない。電力変換回路1は、出力端203,204間に出力される交流電圧を適宜の方法で正弦波電圧にするように構成されていればよい。
 ところで、制御部3が第1モードから第2モードに切り替わる際に、スイッチング素子211がオフ状態になるタイミングと、スイッチング素子241がオフ状態になるタイミングがわずかに異なる場合がある。例えば第2モードにおいてスイッチング素子241がオフ状態であってスイッチング素子211がオン状態となっている場合、図5に示すように、リアクトル52→ダイオード232→スイッチング素子211→リアクトル51→負荷103の順に電流I2が流れる。電流I2が流れる場合、出力端203,204は電源107の正極に短絡している。つまり、電流I2が流れている期間において、出力端203,204の各々の電位は、基準電位(図5の接続点106の電位)よりも高い電位となる。以下では、スイッチング素子211がオン状態であり、スイッチング素子241がオフ状態となっている場合の出力端203,204間の各々の電位について図5、図6、図7および図8を参照して説明する。なお、以下の説明では、基準電位に対する出力端203の電位を電圧V203と表記し、基準電位に対する出力端204の電位を電圧V204と表記する。また、図6および図7では、電圧V203を実線で示し、電圧V204を一点鎖線で示す。
 まず、本実施形態の電力変換回路1の比較例として、コンデンサ61,62を備えていない電力変換回路1について説明する。
 比較例の電力変換回路1において、それぞれオン状態のスイッチング素子211,241が同時にオフ状態になった場合、出力端203,204の電位は同時に基準電位に近づくように変化する。つまり、電圧V203,V204はゼロに近づくように変化する。そして電圧V203,V204はほぼ同時にゼロとなる。この場合、出力端203,204間にコモンモード・ノイズは発生しない。
 しかしながら、スイッチング素子241のオフタイミングに対してスイッチング素子211のオフタイミングが遅れる可能性がある。例えば図6に示すように、オン状態のスイッチング素子241が時間t1でオフ状態になり、オン状態のスイッチング素子211が時間t1から遅れて時間t2でオフ状態になった場合、時間t1~時間t2の期間はスイッチング素子211がオン状態になっている。スイッチング素子241のオフタイミングに対してスイッチング素子211のオフタイミングが遅れると、図5に示すように、リアクトル52→ダイオード232→スイッチング素子211→リアクトル51→負荷103の順に流れる電流I2の電路が形成される。電流I2の電路では、出力端203はオン状態のスイッチング素子211を介して電源107の正極と短絡している。電流I2の電路では、出力端204はダイオード232を介して電源107の正極と短絡している。そのためそれぞれの出力端203,204の電位は基準電位よりも高い電位(正電位)になる。そのため、時間t4においてそれぞれの出力端203,204の電位は、基準電位よりも高い正電位となった状態で、互いに等しい電位となる。この場合、電圧V203,V204はともに電圧V205となる。つまり、出力端203,204の電位が、基準電位に対して電圧V205だけ高くなるようなコモンモード・ノイズが発生する。
 出力端203,204間にコモンモード・ノイズが発生すると、出力端203,204の各々の電位が基準電位に対して同相で変動する。以下、このコモンモード・ノイズが発生した際の基準電位に対する出力端203の電位を電圧V206と表記する。
 電圧V206の波形を図8に点線で示す。図8では、電圧V206についてハイレベルの電圧とローレベルの電圧とが交互に出力されている波形を示している。電圧V206は、矩形波電圧のハイレベルの部分にさらにコモンモード・ノイズによる交流成分が加わった波形となる。
 なお、コモンモード・ノイズは、スイッチング素子211,241のオンタイミングがずれた場合にも発生する可能性がある。同様に、スイッチング素子221,231のオンタイミングおよびオフタイミングの何れか一方がずれた場合にも発生する可能性がある。加えて、入力端201,202間に輻射ノイズが加わった場合にも出力端203,204間にコモンモード・ノイズが発生する可能性がある。
 ここで、本実施形態の電力変換回路1がコンデンサ61,62によりコモンモード・ノイズを抑制する動作について説明する。以下では、スイッチング素子211がスイッチング素子241のオフタイミングに対して遅れてオフ状態になる場合について説明する。
 オン状態のスイッチング素子241が時間t1でオフ状態になり、オン状態のスイッチング素子211が時間t1よりも遅れた時間t2でオフ状態になった場合、出力端203,204間の電位が正電位となる。この場合の出力端203,204の電圧V203,V204は電圧V205となる。つまり出力端203,204間にコモンモード・ノイズ(同相の電圧ノイズ)が発生する。
 出力端203,204間にコモンモード・ノイズが発生すると、コモンモード・ノイズによって変化する同相の電圧に応じて同相の電流ノイズが発生する。出力端203の電路に発生した電流ノイズは、負荷103のインピーダンスよりも低いインピーダンスを有するコンデンサ61に流れる。出力端204の電路に発生した電流ノイズは、負荷103のインピーダンスよりも低いインピーダンスを有するコンデンサ62に流れる。
 コンデンサ61の一端は、入力端201に電気的に接続されている。入力端201は電源107の正極に電気的に接続されているので、コンデンサ61の他端から電流が流れても入力端201の電位は変動しにくくなっている。コンデンサ62の一端は、入力端202に電気的に接続されている。入力端202は電源107の負極に電気的に接続されているので、コンデンサ62の他端から電流が流れても入力端202の電位は変動しにくくなっている。そのため、コンデンサ61,62に瞬間的に電流が流れても接続点511,521のそれぞれの電位は変動しにくくなっている。そしてコモンモード・ノイズによって発生した電流は、コンデンサ61,62を介してフィルタ回路104に流れる。そのため、コモンモード・ノイズは、時間t4以降は急激に抑制され、電圧V203,V204はゼロに近づく。つまりコモンモード・ノイズは、コンデンサ61,62により抑制される。図8では、図7の時間の縮尺を変えて電圧V203の電圧波形を示している。図8では、電圧V203がハイレベルの電圧とローレベルの電圧とが交互に出力されている電圧波形を示している。図8において実線で示す電圧V203は、ハイレベルの電圧の区間において、点線で示す電圧V206よりも電圧変動が抑制されている。
 以上説明したように本実施形態の電力変換回路1は、インバータ回路2と、第1制御部(本実施形態では制御部3)と、クランプ回路4と、第2制御部(本実施形態では制御部3)と、第1コンデンサ61と、第2コンデンサ62とを備え、以下のように構成される。インバータ回路2は、それぞれ直流電源(本実施形態では電源107)に電気的に接続される第1入力端201と第2入力端202、および、それぞれ負荷103に電気的に接続される第1出力端203と第2出力端204を有する。第1制御部(制御部3)は、インバータ回路2を制御する。クランプ回路4は、第1出力瑞203と第2出力端204との間に電気的に接続されるクランプ用スイッチ(本実施形態では第5スイッチ45、第6スイッチ46の直列回路)を有する。第2制御部(制御部3)は、クランプ回路4を制御する。インバータ回路2は、第1スイッチ21および第2スイッチ22の直列回路からなる第1アームと、第3スイッチ23および第4スイッチ24の直列回路からなる第2アームとをさらに有する。第1アームと第2アームとは第1入力端201と第2入力端202との間に電気的に並列に接続される。第1スイッチ21および第2スイッチ22の接続点205が第1出力端203に電気的に接続される。第3スイッチ23および第4スイッチ24の接続点206が第2出力端204に電気的に接続される。第1コンデンサ61は、第1出力端203と第1入力端201との間に電気的に接続される。第2コンデンサ62は、第2出力端204と第2入力端202との間に電気的に接続される。
 上記構成によれば、コンデンサ61は、入力端201と出力端203との間に電気的に接続される。入力端201の電位は、電源107によって安定した電位(本実施形態では正の電位)となる。コンデンサ62は、入力端202と出力端204との間に電気的に接続される。入力端202の電位は、電源107によって安定した電位(本実施形態では負の電位)となる。出力端203,204間にコモンモード・ノイズによって発生する同相の電流ノイズが発生しても、その電流ノイズがコンデンサ61,62に流れることにより、負荷103には電流ノイズが流れにくくなる。さらに、コンデンサ61,62のそれぞれの一端が安定した電位となっているので、それぞれの出力端203,204からコンデンサ61,62に電流が瞬間的に流れても、コンデンサ61,62のそれぞれの他惴の電位は変動しにくくなっている。言い換えると、電力変換回路1は、コモンモード・ノイズを抑制することができる。
 本実施形態の電力変換回路1における第1スイッチ21~第4スイッチ24の各々は、スイッチング素子211,221,231,241およびダイオード212,222,232,242を有してもよい。スイッチング素子211,221,231,241は、導通方向が片方向のスイッチング素子である。ダイオード212,222,232,242は、スイッチング素子211,221,231,241と逆並列に接続される。第1スイッチ21~第4スイッチ24の各々のダイオード212,222,232,242は、導通方向が第2入力端202から第1入力端201の方向となるように設けられていることも好ましい。
 上記構成によれば、第1スイッチ21~第4スイッチ24の各々のスイッチング素子がオフ状態でも、第1スイッチ21~第4スイッチ24の各々のダイオードの順方向に電流が流れる場合には、第1スイッチ21~第4スイッチ24の各々がオン状態になる。そのため、第1スイッチ21~第4スイッチ24の各々につながる電路に所望の方向の電流が流れる場合、制御部3は第1スイッチ21~第4スイッチ24をオン状態にする制御を省略することができる。
 本実施形態の電力変換回路1におけるクランプ用スイッチは、第1クランプ用スイッチ(第5スイッチ45)および第2クランプ用スイッチ(第6スイッチ46)の直列回路を有してもよい。第1クランプ用スイッチ(第5スイッチ45)は、クランプ用スイッチング素子(本実施形態ではスイッチング素子451)およびクランプ用ダイオード(本実施形態ではダイオード452)を有する。第2クランプ用スイッチ(第6スイッチ46)は、クランプ用スイッチング素子(本実施形態ではスイッチング素子461)およびクランプ用ダイオード(本実施形態ではダイオード462)を有する。クランプ用スイッチング素子(スイッチング素子451,461)は、導通方向が片方向のクランプ用スイッチング素子である。クランプ用ダイオード(ダイオード452,462)は、クランプ用スイッチング素子(スイッチング素子451,461)と逆並列に接続される。第1クランプ用スイッチ(第5スイッチ45)および第2クランプ用スイッチ(第6スイッチ46)の各々のクランプ用ダイオード(ダイオード452,462)は、導通方向が互いに逆方向となるように設けられることも好ましい。
 上記構成によれば、クランプ用スイッチに流れる電流を制御する場合は、制御部3は、第1クランプ用スイッチおよび第2クランプ用スイッチのうち一方のクランプ用スイッチング素子をオン状態にすればよい。また、制御部3は、第1クランプ用スイッチおよび第2クランプ用スイッチの両方をオンオフ制御することにより、クランプ用スイッチの両端を短絡または開放することができる。つまり、上記構成によりクランプ用スイッチは、両端間の短絡または開放することにより、双方向の電流をオンオフする機能を有する。
 本実施形態の電力変換回路1は、第1出力端203と負荷103との間に電気的に接続される第1リアクトル51と、第2出力端204と負荷103との間に電気的に接続される第2リアクトル52とをさらに備えることも好ましい。
 上記構成によれば、クランプ回路4がリアクトル51,52間を導通させた際に、リアクトル51,52が負荷103に流れる電流を回生させることができる。
 本実施形態の電力変換回路1において、第1コンデンサ61は、第1リアクトル51および負荷103の接続点511と第1入力端201との間に電気的に接続される。第2コンデンサ62は、第2リアクトル52および負荷103の接続点521と第2入力端202との間に電気的に接続されることも好ましい。
 上記構成によれば、コンデンサ61,62の一端はそれぞれリアクトル51,52に電気的に接続されていて、コンデンサ61,62の他端はそれぞれ電源107に接続されている。コンデンサ61,62のうち電源107に接続されている他端の電位は基準電位に対して安定した電位となっているので、コンデンサ61,62は接続点511,521間に発生したコモンモード・ノイズを抑制することができる。
 本実施形態の電力変換装置100は、上記した電力変換回路1と、電力変換回路1を収納する筐体110とを備える。
 上記構成によれば、コモンモード・ノイズを抑制することができる電力変換装置100を実現することができる。
 なお、本実施形態では、コンデンサ61,62がそれぞれ接続点511,521に直接電気的に接続されているが、この構成に限定されない。コンデンサ61は、図9に示すように、出力端203およびリアクトル51の接続点501と、出力端204およびリアクトル52の接続点502との間に直接接続されてもよい。以下では、コンデンサ61,62が接続点501,502間に直接接続された電力変換回路1を本実施形態の変形例として説明する。なお、接続点501,502は便宜上設けた接続点であり、接続点501,502が設けられていることに限定される趣旨ではない。
 変形例の電力変換回路1Aでは、コンデンサ61は、出力端203およびリアクトル51の接続点501と入力端201との間に電気的に直接接続されている。コンデンサ62は、出力端204およびリアクトル52の接続点502と入力端202との間に電気的に直接接続されている。本実施形態の電力変換回路1Aではコンデンサ61,62の一端がリアクトル51,52の負荷103側に電気的に直接接続されている。一方、変形例の電力変換回路1Aでは、コンデンサ61,62の一端がリアクトル51,52のクランプ回路4側に電気的に直接接続されている点が相違する。
 入力端201と負荷103の一端との間にはコンデンサ61とリアクトル51とが直列に接続される。入力端202と負荷103の他端との間にはコンデンサ62とリアクトル52とが直列に接続される。この構成により、例えば雷サージなどの高電圧が入力端201,202側に印加されても、リアクトル51,52が負荷103側への高電圧の出力を抑制する。
 以上説明したように、本実施形態の変形例における電力変換回路1Aでは、第1コンデンサ61は、第1出力端203および第1リアクトル51の接続点501と第1入力端201との間に電気的に接続される。第2コンデンサ62は、第2出力端204および第2リアクトル52の接続点502と第2入力端202との間に電気的に接続される。
 上記構成によれば、例えば雷サージなどの高電圧が入力端201,202側に印加されても、リアクトル51,52が負荷103側への高電圧の出力を抑制する。
 なお、変形例を含む本実施形態では、コンデンサ61,62の静電容量およびコンデンサの種類はすべて等しいが、この構成に限定されない。例えば静電容量の異なるコンデンサや種類の異なるコンデンサを適宜組み合わせてもコモンモード・ノイズを低減することは可能である。
 第1スイッチ21~第4スイッチ24の各々は、導通方向が片方向のスイッチング素子およびそのスイッチング素子と逆並列に接続されるダイオードを有していなくてもよい。例えば、MOSFETのように寄生ダイオードを有するスイッチング素子などであればよい。その場合、制御部3は、入力端201,202と、出力端203,204との間に所望の電路が形成されるように第1スイッチ21~第4スイッチ24のオンオフ状態を制御するように構成されていればよい。
 クランプ用スイッチは、第1クランプ用スイッチ(第5スイッチ45)および第2クランプ用スイッチ(第6スイッチ46)の直列回路を有していなくてもよい。その場合、クランプ用スイッチは、両端間を短絡または開放することにより、双方向の電流をオンオフする機能を有していればよい。例えば、MOSFETのように寄生ダイオードを有するスイッチング素子を、互いの寄生ダイオードの導通方向が逆方向となるように並列に接続してもよい。
 第1クランプ用スイッチ(第5スイッチ45)および第2クランプ用スイッチ(第6スイッチ46)の各々は、導通方向が片方向のクランプ用スイッチング素子およびクランプ用スイッチング素子と逆並列に接続されるクランプ用ダイオードを有していなくてもよい。その場合、第1クランプ用スイッチおよび第2クランプ用スイッチの各々は、クランプ用スイッチの両端間を短絡または開放することにより、双方向の電流をオンオフする機能を有していればよい。
 (実施形態2)
 本実施形態に係る電力変換回路1Bについて図10を参照して説明する。なお、実施形態1と同様の構成については同一の符号を付して説明を省略する。
 本実施形態の電力変換回路1Bは、図10に示すように、所望のインピーダンスを有する電流制限部81~84をさらに備える。電流制限部81~84は、2つの端子を有する。電流制限部81~84はそれぞれ、2つの端子間に抵抗成分およびリアクタンス成分のうち少なくとも一方を有し、所望の周波数において所望のインピーダンスとなるように構成されている。電流制限部81,82とは同じインピーダンスとなるよう構成されている。電流制限部83,84とは同じインピーダンスとなるように構成されている。
 電流制限部81,82はそれぞれ、2つの端子間が所定の1次側インピーダンスとなるように構成されている。電流制限部81(第1入力側電流制限部)は、入力端201とコンデンサ61との間に電気的に接続される。電流制限部82(第2入力側電流制限部)は、入力端202とコンデンサ62との間に電気的に接続される。
 電流制限部83,84はそれぞれ、2つの端子間が所定の2次側インピーダンスとなるように構成されている。電流制限部83(第1出力側電流制限部)は、接続点511とコンデンサ61との間に電気的に接続される。電流制限部84(第2出力側電流制限部)は、接続点521とコンデンサ62との間に電気的に接続される。
 電流制限部81~84は、抵抗成分およびリアクタンス成分のうち少なくとも一方を有し、所望の周波数において所望のインピーダンスとなるように構成されている。電流制限部81,82とは同じインピーダンスとなるよう構成されている。電流制限部83,84とは同じインピーダンスとなるように構成されている。
 電流制限部81~84がそれぞれ、コンデンサ61,62に流れる電流の電流値を小さくすることにより、負荷103側に出力される輻射ノイズを抑制することができる。
 また、電流制限部81~84の各々のインピーダンスを調整することにより、コンデンサ61,62がコモンモード・ノイズを抑制する効果を変化させることができる。例えば、所望の周波数でインピーダンスが小さくなるように電流制限部81~84の各々のインピーダンスを調整すると、コモンモード・ノイズのうち所望の周波数のノイズ成分を抑制することができる。
 さらに、電流制限部81~84の各々のインピーダンスを調整することにより、出力端203,204側から入力端201,202側へコンデンサ61,62を介して電流が流れる際の輻射ノイズの周波数帯を変化させることができる。そのため、電流制限部81~84を用いてコモンモード・ノイズの所望の周波数のノイズ成分を抑制しつつ、コンデンサ61,62を流れる電流からの輻射ノイズのうち所望の周波数の輻射ノイズを抑制できる。
 以上説明したように、本実施形態の電力変換回路1Bは、それぞれ所定の1次側インピーダンスを有する電流制限部81(第1入力側電流制限部)および電流制限部82(第2入力側電流制限部)をさらに備え、以下のように構成されることも好ましい。電流制限部81(第1入力側電流制限部)は、第1入力端201と第1コンデンサ61との間に電気的に接続される。電流制限部82(第2入力側電流制限部)は、第2入力端202と第2コンデンサ62との間に電気的に接続される。
 上記構成によれば、電流制限部81,82がそれぞれ、コンデンサ61,62に流れる電流の電流値を小さくすることにより、負荷103側に出力される輻射ノイズを抑制することができる。また、所望の周波数でインピーダンスが小さくなるように電流制限部81,82のインピーダンスを調整することにより、コモンモード・ノイズのうち所望の周波数のノイズ成分を抑制することができる。
 本実施形態の電力変換回路1Bは、それぞれ所定の2次側インピーダンスを有する電流制限部83(第1出力側電流制限部)および電流制限部84(第2出力側電流制限部)をさらに備え、以下のように構成されることも好ましい。電流制限部83(第1出力側電流制限部)は、第1リアクトル51および負荷103の接続点511と第1コンデンサ61との間に電気的に接続される。電流制限部84(第2出力側電流制限部)は、第2リアクトル52および負荷103の接続点521と第2コンデンサ62との間に電気的に接続される。
 上記構成によれば、電流制限部83,84がそれぞれ、コンデンサ61,62に流れる電流の電流値を小さくすることにより、負荷103側に出力される輻射ノイズを抑制することができる。また、所望の周波数でインピーダンスが小さくなるように電流制限部83,84のインピーダンスを調整することにより、コモンモード・ノイズのうち所望の周波数のノイズ成分を抑制することができる。
 さらに、電流制限部81~84の各々のインピーダンスを調整することにより、コンデンサ61,62を介して流れる電流からの輻射ノイズのうち所望の周波数の輻射ノイズを抑制することもできる。
 ここで、本実施形態の変形例として、インバータ回路2の入出力端間にコンデンサ61,62がそれぞれ電気的に接続されていて、さらに電流制限部81~84を備えている電力変換回路1Cを変形例として説明する。なお、電流制限部81,82の構成については本実施形態と同様であるため説明を省略する。
 変形例の電力変換回路1Cでは、コンデンサ61は、図11に示すように、出力端203と入力端201との間に電気的に接続されている。コンデンサ62は、出力端204と入力端202との間に電気的に接続されている。
 電流制限部83は、出力端203とコンデンサ61との間に電気的に接続される。電流制限部84は、出力端204とコンデンサ62との間に電気的に接続される。
 この構成により、電流制限部83,84がそれぞれ、コンデンサ61,62に流れる電流の電流値を小さくすることにより、負荷103側に出力される輻射ノイズを抑制することができる。また、電流制限部81~84の各々のインピーダンスを調整することにより、コンデンサ61,62を介して流れる電流からの輻射ノイズのうち所望の周波数の輻射ノイズを抑制することもできる。さらに、例えば雷サージなどの高電圧が入力端201,202側に印加されても、リアクトル51,52が負荷103側への高電圧の出力を抑制する。
 以上説明したように、変形例の電力変換回路1Cは、それぞれ所定の2次側インピーダンスを有する電流制限部83(第1出力側電流制限部)および電流制限部84(第2出力側電流制限部)をさらに備え、以下のように構成されることも好ましい。電流制限部83(第1出力側電流制限部)は、第1出力端203と第1コンデンサ61との間に電気的に接続される。電流制限部84(第2出力側電流制限部)は、第2出力端204と第2コンデンサ62との間に電気的に接続される。
 上記構成によれば、電流制限部83,84がそれぞれ、コンデンサ61,62に流れる電流の電流値を小さくすることにより、負荷103側に出力される輻射ノイズを抑制することができる。また、電流制限部83,84の各々のインピーダンスを調整することにより、コンデンサ61,62を介して流れる電流からの輻射ノイズを抑制することができる。
 なお、本実施形態および変形例では、電流制限部81,82とは同じインピーダンスを有するように定められ、電流制限部83,84とは同じインピーダンスを有するように定められているが、この構成に限定されない。電流制限部81~84のインピーダンスは個別に適宜の値に定められてもよい。
 また、電流制限部81~84はそれぞれ、適宜省略されてもよい。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings, which form a part of this specification. The same reference numerals are given to the same or similar parts throughout the drawings, and overlapping description thereof will be omitted.
In the following description, a power conversion circuit that converts DC power into AC power will be described. For example, when electric power supplied from a solar power generation device or a power storage device is used as a power source, when the supplied electric power is DC power, there is a desire to convert it into AC power. In this case, a power conversion circuit is used to convert DC power into AC power. For example, by converting DC power supplied from a power storage device or a solar power generation device installed in a building such as a house or a building into AC power using a power conversion circuit, a load used for AC power (for example, Electric power can be supplied to electrical equipment).
(Embodiment 1)
The power conversion circuit 1 of this embodiment and the power converter device 100 using the same are demonstrated with reference to figures.
As shown in FIG. 1, the power conversion circuit 1 includes an inverter circuit 2, a clamp circuit 4, a (first) capacitor 61, and a (second) capacitor 62. The power conversion circuit 1 includes a first control unit (control unit 3) and a second control unit (control unit 3). The power conversion circuit 1 of the present embodiment further includes a first reactor 51, a second reactor 52, a filter circuit 104, and a filter circuit 105.
The power conversion device 100 according to the present embodiment includes the above-described power conversion circuit 1 and a casing 110 that houses the power conversion circuit 1.
The inverter circuit 2 has a (first) input terminal 201 and a (second) input terminal 202 that are electrically connected to a power source 107 (DC power source). The inverter circuit 2 is a circuit that converts DC power supplied from the power source 107 into AC power and outputs the AC power. The inverter circuit 2 of the present embodiment converts a DC voltage input between the input terminals 201 and 202 into an AC voltage and outputs the AC voltage.
The power source 107 includes, for example, a power storage device or a solar power generation device, and is configured to output a DC voltage V0. The positive electrode of the power source 107 is electrically connected to the input end 201, and the negative electrode of the power source 107 is electrically connected to the input end 202.
The filter circuit 104 is electrically connected between the input terminals 201 and 202. The filter circuit 104 includes a series circuit of capacitors 101 and 102 that are electrically connected between the input terminals 201 and 202. The filter circuit 104 is configured to suppress, for example, radiation noise or conduction noise from the power source 107. Further, the filter circuit 104 suppresses switching noise from the inverter circuit 2 from being transmitted to the power source 107.
One end of the capacitor 101 is electrically connected to the input end 201, and the other end of the capacitor 101 is electrically connected to one end of the capacitor 102. The other end of the capacitor 102 is electrically connected to the input end 202. A connection point 106 between the capacitor 101 and the capacitor 102 is electrically connected to the housing 110. Therefore, the potential of the connection point 106 is equal to the potential of the housing 110.
Capacitors 101 and 102 have the same capacitance and are composed of the same type of capacitors. A voltage V1 that is half the voltage V0 output from the power supply 107 is applied to both ends of each of the capacitors 101 and 102.
The housing 110 is made of a metal material and houses the power conversion circuit 1. The housing 110 is configured to have a sufficiently large capacitance with respect to the power conversion circuit 1, and defines a reference potential for the power conversion circuit 1. Note that the reference potential for the power conversion circuit 1 is not limited to being determined by the housing 110. An appropriate member having a sufficiently large capacitance so that the reference potential for the power conversion circuit 1 can be determined may be electrically connected to the connection point 106.
That is, the potential at the connection point 106 is equal to the reference potential. Hereinafter, the potential at the connection point 106 is described as a reference potential.
As described above, the voltage V1 that is half of the voltage V0 is applied to both ends of the capacitors 101 and 102. Therefore, the potential of the input end 201 to which one end of the capacitor 101 is electrically connected is a positive potential that is higher than the reference potential by the voltage V1. The potential of the input terminal 202 to which the other end of the capacitor 102 is electrically connected is a negative potential that is lower than the reference potential by the voltage V1.
The inverter circuit 2 includes a series circuit (first arm) of a first switch 21 and a second switch 22 that are electrically connected between the input terminal 201 and the input terminal 202. The inverter circuit 2 includes a series circuit (second arm) of a third switch 23 and a fourth switch 24 that are electrically connected between the input terminal 201 and the input terminal 202.
The first switch 21 includes a switching element 211 having a unidirectional conduction direction and a diode 212 connected in reverse parallel to the switching element 211. The second switch 22 includes a switching element 221 having a unidirectional conduction direction and a diode 222 connected in reverse parallel to the switching element 221. The third switch 23 includes a switching element 231 having a one-way conduction direction and a diode 232 connected in reverse parallel to the switching element 231. The fourth switch 24 includes a switching element 241 having a unidirectional conduction direction and a diode 242 connected in reverse parallel to the switching element 241. The diodes 212, 222, 232, and 242 are provided such that the conduction direction is from the input end 202 to the input end 201. In the present embodiment, the switching elements 211, 221, 231, 241 are constituted by insulated gate bipolar transistors. In addition to the insulated gate bipolar transistor, the switching element having a unidirectional conduction direction may be, for example, a gate turn-off thyristor, a gate commutation type turn-off thyristor, an optical trigger thyristor, or a bidirectional thyristor. Further, each of the first switch 21 to the fourth switch 24 may be a MOSFET (metal-oxide-field-effect transistor) having a parasitic diode.
The inverter circuit 2 includes a (first) output terminal 203 and a (second) output terminal 204 that are electrically connected to the load 103. The output terminal 203 is electrically connected to a connection point 205 between the first switch 21 and the second switch 22. The output end 204 is electrically connected to a connection point 206 between the third switch 23 and the fourth switch 24. The connection point 205 is a connection point provided for convenience, and is not limited to the provision of a terminal to which the first switch 21 and the second switch 22 are connected. Further, the connection point 206 is a connection point provided for convenience, and is not limited to the provision of a terminal to which the third switch 23 and the fourth switch 24 are connected.
On / off of the first switch 21 to the fourth switch 24 of the inverter circuit 2 is controlled by the control unit 3 described later. The control unit 3 converts the DC voltage into a rectangular AC voltage by periodically turning on and off the first switch 21 and the third switch 23 and the second switch 22 and the fourth switch 24 periodically.
One end of the (first) reactor 51 is electrically connected to the output end 203. A connection point 511 is provided at the other end of the reactor 51. One end of the load 103 is electrically connected to the connection point 511. One end of the (second) reactor 52 is electrically connected to the output end 204. A connection point 521 is provided at the other end of the reactor 52. The other end of the load 103 is electrically connected to the connection point 521. A sine wave AC voltage output from the filter circuit 105 is applied between both ends of the load 103. Reactors 51 and 52 gradually change the current output to load 103 when the voltage output between output terminals 203 and 204 is periodically switched from a high level to a low level. The reactors 51 and 52 gradually change the current output to the load 103 when the voltage output between the output terminals 203 and 204 is periodically switched from the low level to the high level.
The power conversion circuit 1 of this embodiment further includes a filter circuit 105 connected in parallel with the load 103. The filter circuit 105 includes, for example, a large-capacity capacitor, and smoothes the waveform of the AC voltage V3 output from the inverter circuit 2 to a sine wave AC voltage. Further, the filter circuit 105 suppresses transmission of noise such as radiation noise, conduction noise, and switching noise from the inverter circuit 2 and the clamp circuit 4 to the load 103.
The clamp circuit 4 is electrically connected between the output terminals 203 and 204. The clamp circuit 4 has a clamp switch composed of a series circuit of a fifth switch 45 (first clamp switch) and a sixth switch 46 (second clamp switch), and the output terminals 203 and 204 are short-circuited or Open.
The fifth switch 45 includes a switching element 451 having a one-way conduction direction (clamping switching element) and a diode 452 (clamping diode) connected in reverse parallel to the switching element 451. The sixth switch 46 includes a switching element 461 (clamping switching element) whose conduction direction is one-way and a diode 462 (clamping diode) connected in reverse parallel to the switching element 461. The diodes 452 and 462 are provided so that the conduction directions are opposite to each other. With this configuration, when the switching element 461 is turned on, an electric path through which current flows is formed in the order of the switching element 461 → the diode 452 → the reactor 51 → the load 103 → the reactor 52 (clockwise in FIG. 1). Further, when the switching element 451 is on, an electric path through which a current flows is formed in the order of the switching element 451 → the diode 462 → the reactor 52 → the load 103 → the reactor 51 (counterclockwise in FIG. 1). That is, the clamp circuit 4 has a function of short-circuiting or opening the reactors 51 and 52.
Clamp circuit 4 short- circuits reactors 51 and 52 when switching elements 451 and 461 are on. When the reactors 51 and 52 are short-circuited, the voltage between the output terminals 203 and 204 is clamped to zero volts, and no voltage is applied from the output terminals 203 and 204 to the load 103 side. That is, the clamp circuit 4 has a function of preventing the output voltage of the inverter circuit 2 from being applied to the load 103. When the output voltage of the inverter circuit 2 is clamped to zero volts by the clamp circuit 4, the reactors 51 and 52 release energy as a current, so that a regenerative current flows through the clamp circuit 4 and the load 103.
The switching elements 451 and 461 are constituted by insulated gate bipolar transistors in the present embodiment. In addition to the insulated gate bipolar transistor, the switching element having a unidirectional conduction direction may be, for example, a gate turn-off thyristor, a gate commutation type turn-off thyristor, an optical trigger thyristor, or a bidirectional thyristor. Further, the fifth switch and the sixth switch may be MOSFETs having parasitic diodes.
The fifth switch 45 and the sixth switch 46 are ON / OFF controlled by the second control unit (control unit 3). When at least one of the fifth switch 45 and the sixth switch 46 is turned on, the reactors 51 and 52 are short-circuited, and a current flowing through the reactors 51 and 52 is caused to flow to the load 103. The operation of the second control unit will be described later.
Each of the first switch 21 to the fourth switch 24, the fifth switch 45, and the sixth switch 46 of the present embodiment has a parasitic capacitance, but the illustration of the capacitance component is omitted.
A capacitor 61 is electrically connected between the output end 203 and the input end 201. The capacitor 61 of this embodiment is electrically connected directly between the connection point 511 of the reactor 51 and the load 103 and the input terminal 201. The direct connection here means that two components are connected without passing through other elements or circuits. Hereinafter, the fact that two components are connected without passing through other elements or circuits is referred to as direct connection.
A capacitor 62 is electrically connected between the output end 204 and the input end 202. The second capacitor 62 of the present embodiment is electrically directly connected between the connection point 521 of the reactor 52 and the load 103 and the input end 202.
Capacitors 61 and 62 have the same capacitance and are composed of the same type of capacitors. Capacitors 61 and 62 are each composed of a capacitor having an impedance lower than that of load 103. Therefore, when the current flowing between the connection points 511 and 521 changes rapidly, most of the current flows to the capacitors 61 and 62 rather than the load 103.
The first control unit controls the inverter circuit 2. The first control unit controls on / off of each of the first switch 21 to the fourth switch 24, converts a DC voltage input between the input terminals 201 and 202 into a rectangular AC voltage, and outputs between the output terminals 203 and 204. Output from. The first control unit controls the on / off timing of each of the first switch 21 to the fourth switch 24 to change the duty ratio of the rectangular AC voltage. The 1st control part of this embodiment is realized by control part 3 mentioned below.
The second control unit controls the clamp circuit 4. The clamp circuit 4 of the present embodiment has a clamp switch composed of a series circuit of a fifth switch 45 (first clamp switch) and a sixth switch 46 (second clamp switch). That is, the second control unit controls the switching operation of the fifth switch 45 and the sixth switch 46. The second control unit controls ON / OFF of the fifth switch 45 and the sixth switch 46 to short-circuit the reactors 51 and 52 or to control the direction of current flowing through the reactors 51 and 52. The second control unit controls the current regenerated by the reactors 51 and 52 to bring the waveform of the alternating current supplied to the load 103 closer to a sine wave. The second control unit of the present embodiment is realized by the control unit 3.
In the present embodiment, the first control unit and the second control unit are realized by the control unit 3, but the first control unit and the second control unit may be provided separately.
The control unit 3 is composed of a microcomputer. The control unit 3 implements a desired function by reading and executing an appropriate program stored in a memory included in the microcomputer. The control unit 3 has a program that realizes the control functions of the first control unit and the second control unit. The control unit 3 is not limited to being configured by a microcomputer, and may be configured by an IC (Integrated Circuit) or the like.
The control unit 3 outputs signals S31 to S36 for ON / OFF control of the switching elements 211, 221, 231, 241, 451, and 461, respectively. The control unit 3 outputs the signal S31 to the gate terminal of the switching element 211, outputs the signal S32 to the gate terminal of the switching element 221, outputs the signal S33 to the gate terminal of the switching element 231, and outputs the signal S33 to the gate terminal of the switching element 241. To output a signal S34. The control unit 3 outputs a signal S35 to the gate terminal of the switching element 451 and outputs a signal S36 to the gate terminal of the switching element 461. The control unit 3 outputs high level voltage signals as signals S31 to S36, and turns on the corresponding switching elements. The control unit 3 outputs low level voltage signals as signals S31 to S36, and turns off the corresponding switching elements. Note that the control unit 3 may be configured to output a high level voltage signal to turn off the corresponding switching element and output a low level voltage signal to turn on the corresponding switching element. Good. Further, the control unit 3 is not limited to the on / off control of the switching element with the voltage signal, and an appropriate signal such as a current signal may be used.
Next, the operation in which the control unit 3 controls the on / off state of the switching elements (switching elements 211, 221, 231, 241, 451, 461) of the inverter circuit to convert the DC voltage into the AC voltage will be described with reference to FIGS. This will be described with reference to FIG. 3C and FIGS. 4A to 4C. Hereinafter, an operation in which the control unit 3 applies a positive voltage to the load 103 and then applies a negative voltage to the load 103 will be described. 3A to FIG. 3C and FIG. 4A to FIG. 4C, for simplicity of explanation, the power source 107, the switching elements and diodes of the inverter circuit 2, the output terminals 203 and 204, the reactors 51 and 52, the load 103 is shown, and the other components are not shown. 3A to 3C, 4A to 4C, and FIG. 5 to be described later, the switching elements in the on state are illustrated surrounded by dotted circles for easy understanding.
The control unit 3 is set with first to sixth modes having different operation modes. In each operation mode, the switching elements that are on / off controlled by the control unit 3 are different. The control unit 3 converts the DC voltage into the AC voltage by periodically repeating the first mode to the sixth mode.
In the first mode, the control unit 3 outputs high level signals S31, S34, and S36 to turn on the switching elements 211, 241, and 461. When the switching elements 211, 241, and 461 are turned on, a current I1 flows as shown in FIG. 3A. That is, the current I1 flows in the order of the positive electrode of the power source 107 → the switching element 211 → the reactor 51 → the load 103 → the reactor 52 → the switching element 241 → the negative electrode of the power source 107. Reactors 51 and 52 store energy by current I1. A voltage V4 having a voltage value equal to V0 is applied between the output terminals 203 and 204. The potential at the output end 203 is a positive potential, and the potential at the output end 204 is a negative potential. In the following description, the arrow direction of the voltage V4 shown in FIG. 3A (the direction from the output end 204 toward the output end 203) is defined as the positive voltage V4. That is, the first mode is an operation mode in which a positive voltage is applied between the power source 107 and the output terminals 203 and 204. 3A is defined as the forward direction of the current I1 (the direction in which the current flows from the reactor 51 to the load 103). That is, in the first mode, a forward current I1 flows. In the first mode of the present embodiment, the control unit 3 turns on the switching element 461. However, the state of the switching element 461 may be maintained in the off state. In that case, the control part 3 should just be comprised so that the switching element 461 may be turned on after 1st mode.
The controller 3 operates in the second mode after operating in the first mode for a desired period. The second mode is an operation mode in which no voltage is applied between the power supply 107 and the output terminals 203 and 204. In the second mode, the control unit 3 outputs low level signals S31 to S34 to turn off all the switching elements 211, 221, 231, and 241. In the second mode, as shown in FIG. 3B, current I1 flows in the order of reactor 52 → switching element 461 → diode 452 → reactor 51 → load 103. Since the reactors 51 and 52 release the stored energy as a current, a forward current I1 flows through the load 103. Since the output terminals 203 and 204 are short-circuited, the voltage V4 is clamped to zero volts.
Next, the third to fifth operation modes in which the control unit 3 outputs a negative voltage V4 (that is, the voltage value is −V0) between the output terminals 203 and 204 will be described.
The controller 3 operates in the third mode after repeating the first mode and the second mode for a predetermined period. The third mode is an operation mode in which a reverse voltage is applied between the power source 107 and the output terminals 203 and 204. In the third mode, the control unit 3 outputs low level signals S31 to S36 and turns off all the switching elements 211, 221, 231, 241, 451, and 461. In the third mode, the current I1 flowing in the forward direction flows through the diodes 232 and 222 as shown in FIG. 3C. Therefore, the output terminal 203 and the negative electrode of the power source 107 are electrically connected, and the output terminal 204 and the positive electrode of the power source 107 are electrically connected. That is, a negative voltage V4 (voltage value is −V0) is applied between the output terminals 203 and 204. The current I1 starts flowing in the reverse direction after flowing in the forward direction until the energy stored in the reactors 51 and 52 becomes zero.
The controller 3 operates in the fourth mode after operating in the third mode for a desired period. In the fourth mode, the control unit 3 outputs high level signals S32, S33, and S35 to turn on the switching elements 221, 231, and 451. In the fourth mode, as shown in FIG. 4A, a current I1 flows in the order of positive electrode of the power source 107 → switching element 231 → reactor 52 → load 103 → reactor 51 → switching element 221 → negative electrode of the power source 107. Reactors 51 and 52 store energy by current I1. A negative voltage V4 (voltage value is −V0) is applied between the output terminals 203 and 204. The potential at the output end 203 is a negative potential, and the potential at the output end 204 is a positive potential. That is, the fourth mode is an operation mode in which a negative voltage V4 (voltage value is −V0) is applied between the output terminals 203 and 204, and a current I1 in the reverse direction flows. In the fourth mode of the present embodiment, the control unit 3 turns on the switching element 451. However, the state of the switching element 451 may be maintained in the off state. In that case, the control part 3 should just be comprised so that the switching element 451 may be turned on after a 4th mode.
The controller 3 operates in the fifth mode after operating in the fourth mode for a desired period. The fifth mode is an operation mode in which no voltage is applied between the power supply 107 and the output terminals 203 and 204. In the fifth mode, the control unit 3 outputs low level signals S31 to S34 to turn off all the switching elements 211, 221, 231, and 241. In the fifth mode, as shown in FIG. 4B, the current I1 flows in the order of the reactor 51 → the switching element 451 → the diode 462 → the reactor 52 → the load 103. Since the reactors 51 and 52 release the stored energy as a current, a current I1 in the reverse direction flows through the load 103. Since the output terminals 203 and 204 are short-circuited, the voltage V4 is clamped to zero volts.
The controller 3 operates in the sixth mode after repeating the fourth mode and the fifth mode for a predetermined period. The sixth mode is an operation mode in which a positive voltage is applied between the power source 107 and the output terminals 203 and 204. In the sixth mode, the control unit 3 outputs low level signals S31 to S36 and turns off all the switching elements 211, 221, 231, 241, 451, and 461. In the sixth mode, the current I1 flowing in the reverse direction flows through the diodes 212 and 242 as shown in FIG. 4C. Therefore, the output terminal 203 and the positive electrode of the power source 107 are electrically connected, and the output terminal 204 and the negative electrode of the power source 107 are electrically connected. That is, a positive voltage V4 (voltage value is V0) is applied between the output terminals 203 and 204. The current I1 starts flowing in the forward direction after flowing in the reverse direction until the energy stored in the reactors 51 and 52 becomes zero.
As described above, the inverter circuit 2 outputs the positive voltage V4 (voltage value is V0) or the negative voltage V4 (voltage value is −V0) between the output terminals 203 and 204. The controller 3 repeats the operations of the first mode and the second mode for a predetermined period, and switches the operation mode in the order of the second mode, the third mode, and the fourth mode. The control unit 3 repeats the operations of the fourth mode and the fifth mode for a predetermined period, and switches the operation mode in the order of the fifth mode, the sixth mode, and the first mode. The control unit 3 repeats the operations of the first mode to the sixth mode, so that a positive rectangular wave voltage and a negative rectangular wave voltage are alternately output from the inverter circuit 2. The control unit 3 performs PWM (Pulse Width Modulation) control on the duty ratio of the rectangular wave voltage, and the rectangular wave voltage is smoothed by the filter circuit 105, whereby the sine wave voltage is applied to the load 103. The control unit 3 is not limited to PWM control of the duty ratio of the rectangular wave voltage between the output terminals 203 and 204. The power conversion circuit 1 should just be comprised so that the alternating voltage output between the output terminals 203 and 204 may be made into a sine wave voltage by an appropriate method.
By the way, when the control unit 3 switches from the first mode to the second mode, the timing when the switching element 211 is turned off and the timing when the switching element 241 is turned off may be slightly different. For example, in the second mode, when the switching element 241 is off and the switching element 211 is on, as shown in FIG. 5, the reactor 52 → the diode 232 → the switching element 211 → the reactor 51 → the load 103. A current I2 flows. When the current I2 flows, the output terminals 203 and 204 are short-circuited to the positive electrode of the power source 107. That is, during the period in which the current I2 flows, the potentials of the output terminals 203 and 204 are higher than the reference potential (the potential at the connection point 106 in FIG. 5). Hereinafter, the potential between the output terminals 203 and 204 when the switching element 211 is in the on state and the switching element 241 is in the off state will be described with reference to FIGS. 5, 6, 7, and 8. explain. In the following description, the potential of the output terminal 203 with respect to the reference potential is denoted as voltage V203, and the potential of the output terminal 204 with respect to the reference potential is denoted as voltage V204. 6 and 7, the voltage V203 is indicated by a solid line, and the voltage V204 is indicated by a one-dot chain line.
First, as a comparative example of the power conversion circuit 1 of the present embodiment, a power conversion circuit 1 that does not include the capacitors 61 and 62 will be described.
In the power conversion circuit 1 of the comparative example, when the switching elements 211 and 241 in the on state are simultaneously turned off, the potentials of the output terminals 203 and 204 change so as to approach the reference potential at the same time. That is, the voltages V203 and V204 change so as to approach zero. The voltages V203 and V204 become zero almost simultaneously. In this case, no common mode noise is generated between the output terminals 203 and 204.
However, the off timing of the switching element 211 may be delayed with respect to the off timing of the switching element 241. For example, as shown in FIG. 6, when the on-state switching element 241 is turned off at time t1, and the on-state switching element 211 is turned off at time t2 with a delay from time t1, time t1 to time t2 During this period, the switching element 211 is on. When the OFF timing of the switching element 211 is delayed with respect to the OFF timing of the switching element 241, an electric circuit of the current I2 that flows in the order of the reactor 52 → the diode 232 → the switching element 211 → the reactor 51 → the load 103 is formed as shown in FIG. Is done. In the electric path of the current I2, the output terminal 203 is short-circuited with the positive electrode of the power source 107 via the switching element 211 in the on state. In the electric path of the current I 2, the output end 204 is short-circuited with the positive electrode of the power source 107 via the diode 232. Therefore, the potentials of the output terminals 203 and 204 are higher than the reference potential (positive potential). Therefore, at time t4, the potentials of the output terminals 203 and 204 are equal to each other in a state of being a positive potential higher than the reference potential. In this case, the voltages V203 and V204 are both the voltage V205. That is, common mode noise is generated such that the potentials of the output terminals 203 and 204 are higher than the reference potential by the voltage V205.
When common mode noise occurs between the output terminals 203 and 204, the potentials of the output terminals 203 and 204 change in phase with respect to the reference potential. Hereinafter, the potential of the output terminal 203 with respect to the reference potential when the common mode noise is generated is expressed as a voltage V206.
A waveform of the voltage V206 is shown by a dotted line in FIG. FIG. 8 shows a waveform in which a high level voltage and a low level voltage are alternately output for the voltage V206. The voltage V206 has a waveform in which an AC component due to common mode noise is further added to the high level portion of the rectangular wave voltage.
Note that common mode noise may also occur when the on-timing of the switching elements 211 and 241 is shifted. Similarly, it may also occur when either the on timing or the off timing of the switching elements 221 and 231 is shifted. In addition, even when radiation noise is applied between the input terminals 201 and 202, common mode noise may be generated between the output terminals 203 and 204.
Here, the operation of the power conversion circuit 1 of the present embodiment for suppressing common mode noise by the capacitors 61 and 62 will be described. Below, the case where the switching element 211 will be in an OFF state with a delay with respect to the OFF timing of the switching element 241 is demonstrated.
When the switching element 241 in the on state is turned off at the time t1, and the switching element 211 in the on state is turned off at the time t2 delayed from the time t1, the potential between the output terminals 203 and 204 becomes a positive potential. Become. In this case, the voltages V203 and V204 at the output terminals 203 and 204 become the voltage V205. That is, common mode noise (in-phase voltage noise) is generated between the output terminals 203 and 204.
When common mode noise is generated between the output terminals 203 and 204, in-phase current noise is generated according to the common-mode voltage changed by the common mode noise. Current noise generated in the electric circuit of the output terminal 203 flows to the capacitor 61 having an impedance lower than that of the load 103. Current noise generated in the electric circuit of the output terminal 204 flows to the capacitor 62 having an impedance lower than that of the load 103.
One end of the capacitor 61 is electrically connected to the input end 201. Since the input terminal 201 is electrically connected to the positive electrode of the power source 107, the potential at the input terminal 201 is less likely to fluctuate even when a current flows from the other end of the capacitor 61. One end of the capacitor 62 is electrically connected to the input end 202. Since the input terminal 202 is electrically connected to the negative electrode of the power source 107, the potential at the input terminal 202 is less likely to fluctuate even when a current flows from the other end of the capacitor 62. For this reason, even if a current flows instantaneously through the capacitors 61 and 62, the potentials of the connection points 511 and 521 are less likely to fluctuate. The current generated by the common mode noise flows to the filter circuit 104 via the capacitors 61 and 62. Therefore, the common mode noise is rapidly suppressed after time t4, and the voltages V203 and V204 approach zero. That is, common mode noise is suppressed by the capacitors 61 and 62. In FIG. 8, the voltage waveform of the voltage V203 is shown by changing the time scale of FIG. FIG. 8 shows a voltage waveform in which a high level voltage and a low level voltage are alternately output as the voltage V203. In the voltage V203 indicated by the solid line in FIG. 8, the voltage fluctuation is suppressed more than the voltage V206 indicated by the dotted line in the high-level voltage section.
As described above, the power conversion circuit 1 of the present embodiment includes the inverter circuit 2, the first control unit (control unit 3 in the present embodiment), the clamp circuit 4, and the second control unit (control in the present embodiment). Unit 3), a first capacitor 61, and a second capacitor 62, which are configured as follows. The inverter circuit 2 includes a first input terminal 201 and a second input terminal 202 that are electrically connected to a DC power supply (power supply 107 in this embodiment), respectively, and a first output that is electrically connected to the load 103. It has an end 203 and a second output end 204. The first control unit (control unit 3) controls the inverter circuit 2. The clamp circuit 4 has a clamp switch (in this embodiment, a series circuit of a fifth switch 45 and a sixth switch 46) electrically connected between the first output terminal 203 and the second output terminal 204. The second control unit (control unit 3) controls the clamp circuit 4. Inverter circuit 2 further includes a first arm composed of a series circuit of first switch 21 and second switch 22, and a second arm composed of a series circuit of third switch 23 and fourth switch 24. The first arm and the second arm are electrically connected in parallel between the first input end 201 and the second input end 202. A connection point 205 between the first switch 21 and the second switch 22 is electrically connected to the first output terminal 203. A connection point 206 between the third switch 23 and the fourth switch 24 is electrically connected to the second output end 204. The first capacitor 61 is electrically connected between the first output end 203 and the first input end 201. The second capacitor 62 is electrically connected between the second output end 204 and the second input end 202.
According to the above configuration, the capacitor 61 is electrically connected between the input end 201 and the output end 203. The potential of the input terminal 201 becomes a stable potential (positive potential in this embodiment) by the power source 107. The capacitor 62 is electrically connected between the input end 202 and the output end 204. The potential of the input terminal 202 becomes a stable potential (negative potential in this embodiment) by the power source 107. Even if in-phase current noise generated due to common mode noise occurs between the output terminals 203 and 204, the current noise flows through the capacitors 61 and 62, thereby making it difficult for the current noise to flow through the load 103. Furthermore, since one end of each of the capacitors 61 and 62 has a stable potential, even if a current instantaneously flows from the respective output ends 203 and 204 to the capacitors 61 and 62, The heel potential is less likely to fluctuate. In other words, the power conversion circuit 1 can suppress common mode noise.
Each of the first switch 21 to the fourth switch 24 in the power conversion circuit 1 of the present embodiment may include switching elements 211, 221, 231, 241 and diodes 212, 222, 232, 242. The switching elements 211, 221, 231, and 241 are unidirectional switching elements. The diodes 212, 222, 232, and 242 are connected in antiparallel with the switching elements 211, 221, 231, 241. The diodes 212, 222, 232, and 242 of each of the first switch 21 to the fourth switch 24 are preferably provided so that the conduction direction is the direction from the second input end 202 to the first input end 201.
According to the above configuration, even when the switching elements of each of the first switch 21 to the fourth switch 24 are in the OFF state, the current flows in the forward direction of the diode of each of the first switch 21 to the fourth switch 24. Each of the first switch 21 to the fourth switch 24 is turned on. Therefore, when a current in a desired direction flows through the electric circuit connected to each of the first switch 21 to the fourth switch 24, the control unit 3 may omit the control to turn on the first switch 21 to the fourth switch 24. it can.
The clamp switch in the power conversion circuit 1 of the present embodiment may include a series circuit of a first clamp switch (fifth switch 45) and a second clamp switch (sixth switch 46). The first clamp switch (fifth switch 45) includes a clamp switching element (switching element 451 in the present embodiment) and a clamp diode (diode 452 in the present embodiment). The second clamp switch (sixth switch 46) includes a clamp switching element (switching element 461 in the present embodiment) and a clamp diode (diode 462 in the present embodiment). The clamp switching elements (switching elements 451 and 461) are clamp switching elements whose conduction direction is one-way. The clamping diodes (diodes 452 and 462) are connected in antiparallel with the clamping switching elements (switching elements 451 and 461). The clamp diodes (diodes 452 and 462) of the first clamp switch (fifth switch 45) and the second clamp switch (sixth switch 46) are provided so that the conducting directions are opposite to each other. Is also preferable.
According to the above configuration, when the current flowing through the clamp switch is controlled, the control unit 3 may turn on one of the clamp switching elements of the first clamp switch and the second clamp switch. Moreover, the control part 3 can short-circuit or open | release both ends of the switch for clamp by carrying out on-off control of both the switch for 1st clamps, and the switch for 2nd clamps. That is, with the above configuration, the clamp switch has a function of turning on and off a bidirectional current by short-circuiting or opening both ends.
The power conversion circuit 1 of the present embodiment is electrically connected between the first reactor 51 electrically connected between the first output end 203 and the load 103, and between the second output end 204 and the load 103. It is also preferable to further include a second reactor 52 to be provided.
According to the above configuration, when the clamp circuit 4 conducts between the reactors 51 and 52, the current flowing through the load 103 by the reactors 51 and 52 can be regenerated.
In the power conversion circuit 1 of the present embodiment, the first capacitor 61 is electrically connected between the connection point 511 of the first reactor 51 and the load 103 and the first input terminal 201. The second capacitor 62 is also preferably electrically connected between the connection point 521 of the second reactor 52 and the load 103 and the second input end 202.
According to the above configuration, one end of each of the capacitors 61 and 62 is electrically connected to the reactors 51 and 52, and the other end of each of the capacitors 61 and 62 is connected to the power source 107. Since the potential of the other end of the capacitors 61 and 62 connected to the power source 107 is a stable potential with respect to the reference potential, the capacitors 61 and 62 are common mode noise generated between the connection points 511 and 521. Can be suppressed.
The power conversion device 100 according to the present embodiment includes the above-described power conversion circuit 1 and a casing 110 that houses the power conversion circuit 1.
According to the said structure, the power converter device 100 which can suppress common mode noise is realizable.
In the present embodiment, the capacitors 61 and 62 are directly electrically connected to the connection points 511 and 521, respectively, but the present invention is not limited to this configuration. As shown in FIG. 9, the capacitor 61 may be directly connected between a connection point 501 between the output end 203 and the reactor 51 and a connection point 502 between the output end 204 and the reactor 52. Hereinafter, the power conversion circuit 1 in which the capacitors 61 and 62 are directly connected between the connection points 501 and 502 will be described as a modification of the present embodiment. Note that the connection points 501 and 502 are connection points provided for convenience, and the connection points 501 and 502 are not limited to being provided.
In the power conversion circuit 1 </ b> A of the modification, the capacitor 61 is electrically connected directly between the output end 203 and the connection point 501 of the reactor 51 and the input end 201. The capacitor 62 is electrically connected directly between the connection end 502 of the output end 204 and the reactor 52 and the input end 202. In the power conversion circuit 1A of the present embodiment, one ends of the capacitors 61 and 62 are electrically directly connected to the load 103 side of the reactors 51 and 52. On the other hand, the power conversion circuit 1A according to the modified example is different in that one end of the capacitors 61 and 62 is electrically directly connected to the clamp circuit 4 side of the reactors 51 and 52.
A capacitor 61 and a reactor 51 are connected in series between the input terminal 201 and one end of the load 103. A capacitor 62 and a reactor 52 are connected in series between the input end 202 and the other end of the load 103. With this configuration, even when a high voltage such as a lightning surge is applied to the input ends 201 and 202, the reactors 51 and 52 suppress output of the high voltage to the load 103 side.
As described above, in the power conversion circuit 1 </ b> A according to the modification of the present embodiment, the first capacitor 61 is electrically connected between the first output end 203 and the connection point 501 of the first reactor 51 and the first input end 201. Connected. The second capacitor 62 is electrically connected between the second output end 204 and the connection point 502 of the second reactor 52 and the second input end 202.
According to the above configuration, even when a high voltage such as a lightning surge is applied to the input ends 201 and 202, the reactors 51 and 52 suppress output of the high voltage to the load 103 side.
In the present embodiment including the modification, the capacitances of the capacitors 61 and 62 and the types of the capacitors are all the same, but are not limited to this configuration. For example, common mode noise can be reduced by appropriately combining capacitors having different capacitances or different types of capacitors.
Each of the first switch 21 to the fourth switch 24 may not include a switching element having a unidirectional conduction direction and a diode connected in reverse parallel to the switching element. For example, a switching element having a parasitic diode such as a MOSFET may be used. In that case, the control unit 3 controls the on / off states of the first switch 21 to the fourth switch 24 so that a desired electric circuit is formed between the input terminals 201 and 202 and the output terminals 203 and 204. It only has to be configured.
The clamp switch may not include a series circuit of the first clamp switch (fifth switch 45) and the second clamp switch (sixth switch 46). In that case, the clamp switch only needs to have a function of turning on and off a bidirectional current by short-circuiting or opening both ends. For example, switching elements having parasitic diodes such as MOSFETs may be connected in parallel so that the conduction directions of the parasitic diodes are opposite to each other.
Each of the first clamping switch (fifth switch 45) and the second clamping switch (sixth switch 46) is connected in reverse parallel to the clamping switching element and the clamping switching element whose conduction direction is unidirectional. It does not have to have a diode for use. In that case, each of the first clamp switch and the second clamp switch may have a function of turning on and off a bidirectional current by short-circuiting or opening both ends of the clamp switch.
(Embodiment 2)
A power conversion circuit 1B according to the present embodiment will be described with reference to FIG. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
As shown in FIG. 10, the power conversion circuit 1B of the present embodiment further includes current limiting units 81 to 84 having a desired impedance. The current limiters 81 to 84 have two terminals. Each of the current limiters 81 to 84 has at least one of a resistance component and a reactance component between two terminals, and is configured to have a desired impedance at a desired frequency. The current limiting units 81 and 82 are configured to have the same impedance. The current limiting units 83 and 84 are configured to have the same impedance.
Each of the current limiters 81 and 82 is configured such that a predetermined primary side impedance is provided between the two terminals. The current limiting unit 81 (first input side current limiting unit) is electrically connected between the input terminal 201 and the capacitor 61. The current limiting unit 82 (second input side current limiting unit) is electrically connected between the input terminal 202 and the capacitor 62.
Each of the current limiting units 83 and 84 is configured such that a predetermined secondary side impedance is provided between the two terminals. The current limiting unit 83 (first output side current limiting unit) is electrically connected between the connection point 511 and the capacitor 61. The current limiting unit 84 (second output side current limiting unit) is electrically connected between the connection point 521 and the capacitor 62.
The current limiters 81 to 84 have at least one of a resistance component and a reactance component, and are configured to have a desired impedance at a desired frequency. The current limiting units 81 and 82 are configured to have the same impedance. The current limiting units 83 and 84 are configured to have the same impedance.
Radiation noise output to the load 103 side can be suppressed by reducing the current value of the current flowing through the capacitors 61 and 62 by the current limiters 81 to 84, respectively.
Further, by adjusting the impedance of each of the current limiting portions 81 to 84, the effect of the capacitors 61 and 62 suppressing common mode noise can be changed. For example, by adjusting the impedance of each of the current limiters 81 to 84 so that the impedance is reduced at a desired frequency, it is possible to suppress the noise component of the desired frequency among the common mode noise.
Further, by adjusting the impedance of each of the current limiting units 81 to 84, the frequency band of radiation noise when current flows from the output terminals 203 and 204 to the input terminals 201 and 202 via the capacitors 61 and 62 is adjusted. Can be changed. Therefore, it is possible to suppress radiation noise of a desired frequency among radiation noises from currents flowing through the capacitors 61 and 62 while suppressing noise components of a desired frequency of common mode noise using the current limiting units 81 to 84.
As described above, the power conversion circuit 1B of the present embodiment includes the current limiter 81 (first input side current limiter) and the current limiter 82 (second input side current limit) each having a predetermined primary impedance. It is also preferable that the apparatus is further configured as follows. The current limiting unit 81 (first input side current limiting unit) is electrically connected between the first input terminal 201 and the first capacitor 61. The current limiting unit 82 (second input side current limiting unit) is electrically connected between the second input terminal 202 and the second capacitor 62.
According to the above configuration, the current limiting units 81 and 82 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively. Further, by adjusting the impedances of the current limiting units 81 and 82 so that the impedance becomes small at a desired frequency, it is possible to suppress a noise component having a desired frequency among the common mode noise.
The power conversion circuit 1B of the present embodiment further includes a current limiting unit 83 (first output side current limiting unit) and a current limiting unit 84 (second output side current limiting unit) each having a predetermined secondary impedance, It is also preferable to be configured as follows. Current limiting unit 83 (first output-side current limiting unit) is electrically connected between first reactor 51 and connection point 511 of load 103 and first capacitor 61. The current limiting unit 84 (second output side current limiting unit) is electrically connected between the second reactor 52 and the connection point 521 of the load 103 and the second capacitor 62.
According to the above configuration, the current limiting units 83 and 84 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively. Further, by adjusting the impedances of the current limiting units 83 and 84 so that the impedance is reduced at a desired frequency, it is possible to suppress a noise component having a desired frequency in the common mode noise.
Furthermore, by adjusting the impedance of each of the current limiting units 81 to 84, radiation noise of a desired frequency can be suppressed among radiation noises from currents flowing through the capacitors 61 and 62.
Here, as a modified example of the present embodiment, a power conversion circuit 1C in which capacitors 61 and 62 are electrically connected between the input and output terminals of the inverter circuit 2 and further includes current limiting units 81 to 84 is provided. This will be described as a modification. Note that the configuration of the current limiting units 81 and 82 is the same as that of the present embodiment, and a description thereof will be omitted.
In the power conversion circuit 1C according to the modification, the capacitor 61 is electrically connected between the output end 203 and the input end 201 as shown in FIG. The capacitor 62 is electrically connected between the output end 204 and the input end 202.
The current limiting unit 83 is electrically connected between the output end 203 and the capacitor 61. The current limiting unit 84 is electrically connected between the output end 204 and the capacitor 62.
With this configuration, the current limiting units 83 and 84 reduce the current value of the current flowing through the capacitors 61 and 62, respectively, thereby suppressing radiation noise output to the load 103 side. Further, by adjusting the impedance of each of the current limiting units 81 to 84, it is possible to suppress radiation noise of a desired frequency among radiation noises from the current flowing through the capacitors 61 and 62. Furthermore, even if a high voltage such as a lightning surge is applied to the input ends 201 and 202, the reactors 51 and 52 suppress the output of the high voltage to the load 103 side.
As described above, the power conversion circuit 1C according to the modification includes the current limiting unit 83 (first output side current limiting unit) and the current limiting unit 84 (second output side current limiting unit) each having a predetermined secondary side impedance. It is also preferable to be configured as follows. The current limiting unit 83 (first output side current limiting unit) is electrically connected between the first output terminal 203 and the first capacitor 61. The current limiting unit 84 (second output side current limiting unit) is electrically connected between the second output end 204 and the second capacitor 62.
According to the above configuration, the current limiting units 83 and 84 can suppress the radiation noise output to the load 103 side by reducing the current value of the current flowing through the capacitors 61 and 62, respectively. Further, by adjusting the impedance of each of the current limiting units 83 and 84, radiation noise from the current flowing through the capacitors 61 and 62 can be suppressed.
In the present embodiment and the modification, the current limiting units 81 and 82 are determined to have the same impedance, and the current limiting units 83 and 84 are determined to have the same impedance. It is not limited. The impedances of the current limiters 81 to 84 may be set to appropriate values individually.
Further, each of the current limiting units 81 to 84 may be omitted as appropriate.
Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein unless they depart from the scope of the invention as defined by the appended claims.

Claims (10)

  1.  それぞれ直流電源に電気的に接続される第1入力端と第2入力端、および、それぞれ負荷に電気的に接続される第1出力端と第2出力端を有するインバータ回路と、
     前記インバータ回路を制御する第1制御部と、
     前記第1出力端と前記第2出力端との間に電気的に接続されるクランプ用スイッチを有するクランプ回路と、
     前記クランプ回路を制御する第2制御部と
     を備え、
     前記インバータ回路は、第1スイッチおよび第2スイッチの直列回路からなる第1アームと、第3スイッチおよび第4スイッチの直列回路からなる第2アームとをさらに有し、前記第1アームと前記第2アームとは前記第1入力端と前記第2入力端との間に電気的に並列に接続され、前記第1スイッチおよび前記第2スイッチの接続点が前記第1出力端に電気的に接続され、前記第3スイッチおよび前記第4スイッチの接続点が前記第2出力端に電気的に接続されるように構成され、
     前記第1出力端と前記第1入力端との間に電気的に接続される第1コンデンサと、
     前記第2出力端と前記第2入力端との間に電気的に接続される第2コンデンサと
     をさらに備える
     ことを特徴とする電力変換回路。
    An inverter circuit having a first input terminal and a second input terminal electrically connected to a DC power source, respectively, and a first output terminal and a second output terminal electrically connected to a load;
    A first control unit for controlling the inverter circuit;
    A clamp circuit having a clamp switch electrically connected between the first output terminal and the second output terminal;
    A second control unit for controlling the clamp circuit,
    The inverter circuit further includes a first arm composed of a series circuit of a first switch and a second switch, and a second arm composed of a series circuit of a third switch and a fourth switch, and the first arm and the first switch Two arms are electrically connected in parallel between the first input terminal and the second input terminal, and a connection point of the first switch and the second switch is electrically connected to the first output terminal. A connection point of the third switch and the fourth switch is electrically connected to the second output terminal,
    A first capacitor electrically connected between the first output terminal and the first input terminal;
    A power conversion circuit, further comprising: a second capacitor electrically connected between the second output terminal and the second input terminal.
  2.  前記第1スイッチ~前記第4スイッチの各々は、導通方向が片方向のスイッチング素子および前記スイッチング素子と逆並列に接続されるダイオードを有し、
     前記第1スイッチ~前記第4スイッチの各々の前記ダイオードは、導通方向が前記第2入力端から前記第1入力端の方向となるように設けられる
     ことを特徴とする請求項1に記載の電力変換回路。
    Each of the first switch to the fourth switch has a unidirectional switching element and a diode connected in antiparallel with the switching element,
    2. The electric power according to claim 1, wherein the diode of each of the first switch to the fourth switch is provided such that a conduction direction is a direction from the second input end to the first input end. Conversion circuit.
  3.  前記クランプ用スイッチは、第1クランプ用スイッチおよび第2クランプ用スイッチの直列回路を有し、前記第1クランプ用スイッチおよび前記第2クランプ用スイッチの各々は、導通方向が片方向のクランプ用スイッチング素子および前記クランプ用スイッチング素子と逆並列に接続されるクランプ用ダイオードを有し、
     前記第1クランプ用スイッチおよび前記第2クランプ用スイッチの各々の前記クランプ用ダイオードは、導通方向が互いに逆方向となるように設けられる
     ことを特徴とする請求項1または2に記載の電力変換回路。
    The clamp switch includes a series circuit of a first clamp switch and a second clamp switch, and each of the first clamp switch and the second clamp switch has a unidirectional conduction switch. A clamping diode connected in reverse parallel to the element and the clamping switching element;
    3. The power conversion circuit according to claim 1, wherein the clamping diodes of each of the first clamping switch and the second clamping switch are provided so that conduction directions are opposite to each other. .
  4.  前記第1出力端と前記負荷との間に電気的に接続される第1リアクトルと、
     前記第2出力端と前記負荷との間に電気的に接続される第2リアクトルと
     をさらに備えることを特徴とする請求項1~3の何れか1項に記載の電力変換回路。
    A first reactor electrically connected between the first output end and the load;
    The power conversion circuit according to any one of claims 1 to 3, further comprising: a second reactor electrically connected between the second output terminal and the load.
  5.  前記第1コンデンサは、前記第1リアクトルおよび前記負荷の接続点と前記第1入力端との間に接続され、
     前記第2コンデンサは、前記第2リアクトルおよび前記負荷の接続点と前記第2入力端との間に接続されるように構成される
     ことを特徴とする請求項4に記載の電力変換回路。
    The first capacitor is connected between a connection point of the first reactor and the load and the first input terminal,
    The power conversion circuit according to claim 4, wherein the second capacitor is configured to be connected between a connection point of the second reactor and the load and the second input terminal.
  6.  前記第1コンデンサは、前記第1出力端および前記第1リアクトルの接続点と前記第1入力端との間に接続され、
     前記第2コンデンサは、前記第2出力端および前記第2リアクトルの接続点と前記第2入力端との間に接続されるように構成される
     ことを特徴とする請求項4に記載の電力変換回路。
    The first capacitor is connected between the first output terminal and a connection point of the first reactor and the first input terminal,
    5. The power conversion according to claim 4, wherein the second capacitor is configured to be connected between a connection point between the second output terminal and the second reactor and the second input terminal. circuit.
  7.  それぞれ所定の2次側インピーダンスを有する第1出力側電流制限部および第2出力側電流制限部をさらに備え、
     前記第1出力側電流制限部は、前記第1リアクトルおよび前記負荷の接続点と前記第1コンデンサとの間に電気的に接続され、
     前記第2出力側電流制限部は、前記第2リアクトルおよび前記負荷の接続点と前記第2コンデンサとの間に電気的に接続されるように構成される
     ことを特徴とする請求項5に記載の電力変換回路。
    A first output side current limiting unit and a second output side current limiting unit each having a predetermined secondary impedance;
    The first output side current limiting unit is electrically connected between a connection point of the first reactor and the load and the first capacitor,
    The said 2nd output side current limiting part is comprised so that it may electrically connect between the connection point of the said 2nd reactor and the said load, and the said 2nd capacitor | condenser. Power conversion circuit.
  8.  それぞれ所定の2次側インピーダンスを有する第1出力側電流制限部および第2出力側電流制限部をさらに備え、
     前記第1出力側電流制限部は、前記第1出力端と前記第1コンデンサとの間に電気的に接続され、
     前記第2出力側電流制限部は、前記第2出力端と前記第2コンデンサとの間に電気的に接続されるように構成される
     ことを特徴とする請求項6に記載の電力変換回路。
    A first output side current limiting unit and a second output side current limiting unit each having a predetermined secondary impedance;
    The first output side current limiting unit is electrically connected between the first output terminal and the first capacitor,
    The power conversion circuit according to claim 6, wherein the second output-side current limiting unit is configured to be electrically connected between the second output terminal and the second capacitor.
  9.  それぞれ所定の1次側インピーダンスを有する第1入力側電流制限部および第2入力側電流制限部をさらに備え、
     前記第1入力側電流制限部は、前記第1入力端と前記第1コンデンサとの間に電気的に接続され、
     前記第2入力側電流制限部は、前記第2入力端と前記第2コンデンサとの間に電気的に接続されるように構成される
     ことを特徴とする請求項1~8の何れか1項に記載の電力変換回路。
    A first input side current limiting unit and a second input side current limiting unit each having a predetermined primary impedance;
    The first input side current limiting unit is electrically connected between the first input terminal and the first capacitor,
    9. The second input side current limiting unit is configured to be electrically connected between the second input terminal and the second capacitor. The power conversion circuit described in 1.
  10.  請求項1~9の何れか1項に記載の電力変換回路と、
     前記電力変換回路を収納する筐体と
     を備えることを特徴とする電力変換装置。
    A power conversion circuit according to any one of claims 1 to 9,
    A power conversion device comprising: a housing that houses the power conversion circuit.
PCT/IB2016/000220 2015-03-11 2016-03-02 Power conversion circuit and power conversion device using same WO2016142763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-048565 2015-03-11
JP2015048565A JP6516182B2 (en) 2015-03-11 2015-03-11 Power converter circuit and power converter using the same

Publications (1)

Publication Number Publication Date
WO2016142763A1 true WO2016142763A1 (en) 2016-09-15

Family

ID=56880365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/000220 WO2016142763A1 (en) 2015-03-11 2016-03-02 Power conversion circuit and power conversion device using same

Country Status (2)

Country Link
JP (1) JP6516182B2 (en)
WO (1) WO2016142763A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062511A1 (en) * 2016-09-30 2018-04-05 日本電産エレシス株式会社 Motor drive device and electric power steering system
JP6394760B1 (en) * 2017-07-27 2018-09-26 オムロン株式会社 Power converter and control method of power converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065515A (en) * 2010-09-17 2012-03-29 Toshiba Corp Switching method of electric power conversion system
JP2014209841A (en) * 2013-03-28 2014-11-06 パナソニック株式会社 Inverter device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065515A (en) * 2010-09-17 2012-03-29 Toshiba Corp Switching method of electric power conversion system
JP2014209841A (en) * 2013-03-28 2014-11-06 パナソニック株式会社 Inverter device

Also Published As

Publication number Publication date
JP6516182B2 (en) 2019-05-22
JP2016171631A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP5995139B2 (en) Bidirectional DC / DC converter
JP6191965B2 (en) Power converter and power conditioner using the same
JP6454936B2 (en) Power converter and power conditioner using the same
JP4715429B2 (en) AC / DC converter
JP4882266B2 (en) AC-AC converter
WO2018110440A1 (en) Snubber circuit and power conversion system using same
CN110707930B (en) DC/DC converter
US20140369100A1 (en) Rectifier circuit
WO2015118990A1 (en) Power conversion device
US20190280615A1 (en) Modulation method and apparatus based on three-phase neutral point clamped inverter
JP2015033217A (en) Semiconductor device and power converter
JP4913395B2 (en) converter
JP6009003B2 (en) DC / DC converter
WO2016142763A1 (en) Power conversion circuit and power conversion device using same
JP7008222B2 (en) Power conversion system
WO2016142766A1 (en) Power conversion circuit and power conversion device using same
JP5043585B2 (en) Power converter
JP6458235B2 (en) Switching power supply
WO2016128819A1 (en) Power conversion device
CN109995264B (en) Bidirectional DC-AC converter and control method thereof
JP2021168534A (en) Power conversion device
JP2573229B2 (en) Variable voltage and variable frequency power supply
CN106817042B (en) DC-AC converter and control method thereof
CN217428014U (en) Double H-bridge phase-shifting converter
JP4867290B2 (en) 3-level voltage reversible chopper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761151

Country of ref document: EP

Kind code of ref document: A1