WO2016140168A1 - Composite film and method for manufacturing same - Google Patents

Composite film and method for manufacturing same Download PDF

Info

Publication number
WO2016140168A1
WO2016140168A1 PCT/JP2016/055888 JP2016055888W WO2016140168A1 WO 2016140168 A1 WO2016140168 A1 WO 2016140168A1 JP 2016055888 W JP2016055888 W JP 2016055888W WO 2016140168 A1 WO2016140168 A1 WO 2016140168A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
composite film
filamentous carbon
cnt
carbon
Prior art date
Application number
PCT/JP2016/055888
Other languages
French (fr)
Japanese (ja)
Inventor
野田 優
慈喜 青井
裕介 森川
陽一郎 本田
Original Assignee
Jxエネルギー株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社, 学校法人早稲田大学 filed Critical Jxエネルギー株式会社
Publication of WO2016140168A1 publication Critical patent/WO2016140168A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite film, a manufacturing method thereof, and an electrode and an electricity storage device using the composite film.
  • Energy storage devices such as secondary batteries such as lithium-ion batteries and electric double layer capacitors are used as power sources for mobile devices such as personal computers and mobile phones.
  • mobile devices such as personal computers and mobile phones.
  • electric vehicles In recent years, not only mobile devices but also electric vehicles and It is also used as a power source for automobiles that can reduce the environmental load of CO 2 such as hybrid cars.
  • CO 2 such as hybrid cars.
  • it is necessary to increase the weight and capacity per volume of a lithium ion battery and to enable long-distance movement by electric vehicles.
  • the electrode of the lithium ion battery includes an active material that occludes and releases lithium ions during charging and discharging.
  • the active material lithium metal oxide is generally used for the positive electrode, and graphite is used for the negative electrode.
  • an active material powder is generally mixed with a binder made of a non-conductive polymer such as polyvinylidene fluoride and a conductor made of carbon fiber (CF), carbon black, or the like. It is manufactured by applying a paste to an aluminum (Al) foil or a copper (Cu) foil as a current collector and baking it.
  • the binder is used for the purpose of fixing the active material on the current collector, and the conductor is used for the purpose of electrically connecting the current collector and the active material.
  • a layer in which the active material 130, the conductor 140, and the nonconductive binder 150 are mixed is formed on the current collector 180.
  • Patent Document 1 describes an electrode in which a columnar structure 132 made of Si is directly formed on a current collector 180 as shown in FIG.
  • the interface between the active material 130 and the current collector 180 is two-dimensional and the contact area is small, and further, the two-dimensional interface is non-conductive. Therefore, the resistance between the active material 130 and the current collector 180 is large. Therefore, it is impeded to increase the capacity of the lithium ion battery. Further, there is a problem that the active material 130 is peeled off from the current collector 180 due to deterioration of the binder 150 during use of the lithium ion battery.
  • an object of the present invention is to provide a composite film that can be used as an electrode of an electricity storage device having a high capacity and excellent cycle characteristics, and a method and an apparatus for manufacturing the composite film.
  • Another object of the present invention is to provide a self-supporting film having an aggregate of filamentous carbon having a novel structure, and a manufacturing method and manufacturing apparatus therefor. It is a further object of the present invention to provide a functional composite film that can be used for various applications and is self-supporting, as well as a manufacturing method and a manufacturing apparatus thereof.
  • a filamentous carbon layer composed of filamentous carbon It consists only of a metal layer composed of metal, A self-supporting composite film is provided in which a part or all of the metal layer overlaps with a part of the filamentous carbon layer to have a coexistence region where the filamentous carbon and the metal coexist.
  • a part of the metal layer may overlap with a part of the filamentous carbon layer.
  • the filamentous carbon layer has a network structure
  • the metal may enter the mesh of the mesh structure.
  • the filamentous carbon layer has a vertical alignment structure in which the filamentous carbon is aligned in a thickness direction of the filamentous carbon layer, and in the coexistence region, the filamentous carbon layer has a vertical alignment structure.
  • the metal may enter the gap.
  • the filamentous carbon may be bundled to form an upright wall in the thickness direction of the filamentous carbon layer.
  • the second aspect of the present invention consists only of a metal layer composed of metal and an aggregate of filamentous carbon, A part of the aggregate of filamentous carbon is included in the metal layer, A self-supporting composite film is provided in which the other part of the aggregate of filamentous carbon is exposed on the metal layer.
  • the filamentous carbon may include carbon nanotubes.
  • the metal may be Cu, Al, or Ni.
  • the self-supporting composite membrane of the first aspect or the second aspect A functional composite film having an active material attached to the filamentous carbon is provided.
  • a step of producing a filamentous carbon film composed of filamentous carbon Depositing a metal on the filamentous carbon film supported on a support;
  • a method for producing a composite membrane comprising a step of separating the filamentous carbon membrane and the composite membrane of metal from the support.
  • the filamentous carbon film having a network structure may be produced.
  • the step of producing the filamentous carbon film of the method for producing the composite film may include forming the filamentous carbon so that the filamentous carbon is oriented in a thickness direction of the filamentous carbon film. . Further, after the step of separating the filamentous carbon film and the metal composite film from the support, the filamentous carbon film is contracted to reduce the thickness of the filamentous carbon layer comprising the bundle of filamentous carbon. Forming a wall upright in the direction may be included.
  • the method for producing the composite film may include a step of supporting the filamentous carbon film by the support before the step of depositing a metal on the filamentous carbon film.
  • the filament-like carbon membrane is produced on the support on the upstream side in the movement direction while moving the support, and the filament-like carbon on the support on the downstream side in the movement direction.
  • the metal may be deposited on the carbon film.
  • the method for producing the composite film may further include a step of attaching an active material on the surface of the filamentous carbon film opposite to the surface on which the metal is deposited.
  • an electrode having the composite film of the first, second or fifth aspect or the functional composite film of the third aspect.
  • an electricity storage device including the electrode of the sixth aspect is provided.
  • the eighth aspect of the present invention only the metal layer and the filamentous carbon aggregate are included, and a part of the filamentous carbon aggregate is included in the metal layer,
  • An assembly forming portion that is provided on the upstream side in the moving direction and forms an assembly of the filamentous carbon on the support;
  • a composite film manufacturing apparatus provided with a vapor deposition mechanism provided on the downstream side in the moving direction and vapor-depositing metal on the aggregate of filamentous carbon.
  • the composite film manufacturing apparatus may include a roll in which the moving mechanism rotates and moves the support.
  • the composite film manufacturing apparatus by continuously operating the assembly forming unit and the vapor deposition mechanism, a long composite film is formed on the support, and the long composite film is continuously formed from the support.
  • the long composite film may be obtained by peeling off the film.
  • the composite film manufacturing method of the present invention by depositing a metal on the filamentous carbon film, a part of the metal layer enters the filamentous carbon film. Therefore, there is a coexistence layer in which the filamentous carbon and the metal coexist. It is formed. Therefore, the composite film manufactured by the manufacturing method of the present invention has a small electrical resistance between the filamentous carbon film and the metal layer. Furthermore, a functional composite film in which a material that can be used as an active material of a lithium ion battery is attached to the surface of the composite film opposite to the metal-deposited surface of the filamentous carbon film is used as an electrode of a lithium ion battery. Can be used.
  • a composite film to which an active material of an electricity storage device such as various secondary batteries or electric double layer capacitors is attached can be used as an electrode of the electricity storage device.
  • the electrode using the composite film of the present invention has low electrical resistance between the current collector and the active material, and even if the active material occludes and releases lithium ions and changes its volume, it peels off from the current collector. Hateful. Therefore, the composite film and the manufacturing method thereof of the present invention can be suitably used for applications such as electrodes of power storage devices such as lithium ion batteries.
  • FIG. 1A is a schematic cross-sectional view of the composite film of the first embodiment
  • FIGS. 1B and 1C are schematic cross-sectional views of the functional composite film of the second embodiment
  • 2A is a schematic cross-sectional view of the composite film of the third embodiment
  • FIG. 2B is a schematic cross-sectional view of a modified form of the composite film of FIG. 2A
  • FIG. (D) is a schematic sectional drawing of the functional composite film of 4th Embodiment.
  • FIG. 3 is a flowchart showing a method for manufacturing the composite membrane.
  • 4 (a) to 4 (e) are diagrams conceptually showing each process of the manufacturing method of the composite film of the first embodiment and the functional composite film of the second embodiment.
  • FIGS. 7A and 7B show planar SEM photographs of the sample obtained by dividing the CNT-Cu composite film of Example 1 into two
  • FIGS. 7C to 7E show the CNT-Cu of Comparative Example 1.
  • FIG. 8A shows a planar SEM image of the CNT film of Example 2.
  • FIG. 8B shows a planar SEM image of the CNT—Cu composite film of Example 2 as seen from the Cu side.
  • FIG. 8C shows a planar SEM image of the CNT—Cu composite film of Example 3 viewed from the Cu side.
  • FIG. 8D shows a planar SEM image of the CNT—Cu composite film of Example 4 as viewed from the Cu side.
  • FIG. 8E shows a planar SEM image of the CNT—Cu composite film of Example 5 viewed from the Cu side.
  • FIG. 8F shows a planar SEM image of the CNT—Cu composite film of Example 6 viewed from the Cu side.
  • FIG. 8G shows a planar SEM image of the CNT—Cu composite film of Example 7 viewed from the Cu side.
  • FIG. 8H shows a planar SEM image of the CNT—Cu composite film of Example 8 viewed from the Cu side.
  • FIG. 9 shows a cross-sectional SEM image of the Si—CNT—Cu composite film produced in Example 9.
  • FIG. 10 shows the charge / discharge cycle characteristics of the composite films of Example 9 and Comparative Example 2.
  • FIG. 11A is a digital camera photograph showing a state in which the CNT—Cu composite film is peeled from the substrate in Example 10
  • FIGS. 11B to 11D are self-supporting CNT—Cu composites of Example 10. It is a digital camera photograph of the film.
  • FIGS. 12A to 12C are digital camera photographs of the self-supporting CNT—Cu composite film of Example 11.
  • FIG. 13A is a cross-sectional SEM image of the self-supporting CNT—Cu composite film of Example 12.
  • FIG. 13B is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12 taken from the Cu film side.
  • FIG. 13C is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12 taken from the CNT film side.
  • 13D is a cross-sectional SEM image showing a network structure of a CNT-Cu composite film obtained by shrinking a CNT vertical alignment film in Example 12.
  • FIG. FIG. 13E is a planar SEM image showing the network structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12.
  • FIG. 14A is an SEM image of the surface of the Cu substrate used in Example 13.
  • FIG. 14B is a digital camera photograph of the substrate after the CNT-Cu composite film and the CNT-Cu composite film of Example 13 were peeled off, and the CNT-Cu composite film was taken from the CNT film side.
  • FIG. 14C is a cross-sectional SEM image of the self-supporting CNT—Cu composite film of Example 13.
  • FIG. 14D is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13 taken from the CNT film side.
  • FIG. 14E is an oblique SEM image showing the streak structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13.
  • FIG. 14A is an SEM image of the surface of the Cu substrate used in Example 13.
  • FIG. 14B is a digital camera photograph of the substrate after the CNT-Cu composite film and the CNT-Cu composite film of Example 13 were peeled off, and the C
  • FIG. 14F is a planar SEM image showing the streak structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13.
  • FIG. 15A is a digital camera photograph of the self-supporting CNT-Al composite film and the remaining CNT film of Example 14, and the CNT-Al composite film is taken from the Al film side.
  • FIG. 15B is a digital camera photograph of the self-supporting CNT-Al composite film of Example 14 taken from the CNT film side.
  • FIG. 15C is a planar SEM image of the self-supporting CNT—Al composite film of Example 14.
  • FIG. 15D is a cross-sectional SEM image of the self-supported CNT—Al composite film of Example 14.
  • FIG. 16A is a digital camera photograph of the substrate after peeling the self-standing CNT-Al composite film and the CNT-Al composite film of Example 15, and the CNT-Al composite film was taken from the Al film side.
  • FIG. 16B is a digital camera photograph of the self-standing CNT-Al composite film of Example 15 taken from the CNT film side.
  • FIG. 16C is a planar SEM image of the self-supporting CNT—Al composite film of Example 15.
  • FIG. 16D is a cross-sectional SEM image of the self-supporting CNT—Al composite film of Example 15.
  • FIG. 17A is a digital camera photograph of the substrate after peeling the self-supporting CF + CNT-Al composite film and CF + CNT-Al composite film of Example 16, and the CF + CNT-Al composite film is taken from the Al film side.
  • FIG. 17B is a digital camera photograph of the self-supporting CF + CNT-Al composite film of Example 16 taken from the CNT film side.
  • FIG. 17C is a planar SEM image of the self-supported CF + CNT-Al composite film of Example 16.
  • FIG. 17D is a cross-sectional SEM image of the self-supporting CF + CNT-Al composite film of Example 16.
  • 18A is a cross-sectional SEM image of the vertically aligned CNT film of Example 17.
  • FIG. 18B is a digital camera photograph of the substrate after peeling the self-standing CNT-Al composite film and the CNT-Al composite film of Example 17, and the CNT-Al composite film was taken from the CNT film side.
  • FIG. 18C is a digital camera photograph of the self-supported CNT-Al composite film of Example 17 taken from the Al film side.
  • FIG. 18D is a cross-sectional SEM image of the self-supported CNT—Al composite film of Example 17.
  • FIG. 19A is a digital camera photograph of the self-supporting AC + CNT-Al composite film of Example 18 taken from the Al film side.
  • FIG. 19B is a planar SEM image of the self-supporting AC + CNT-Al composite film of Example 18.
  • FIG. 19C is a cross-sectional SEM image of the self-supported AC + CNT—Al composite film of Example 18.
  • FIG. 19D is a graph plotting the sheet resistance of the AC + CNT-Al composite film of Example 18 against the equivalent film thickness of the Al film.
  • FIG. 19E is a graph showing the sweep rate dependence of the specific capacity in cyclic voltammetry using the AC + CNT composite film and the AC + CNT-Al composite film of Example 18.
  • FIG. 20 is a schematic cross-sectional view of an electrode of a prior art lithium ion battery using a binder made of a non-conductive polymer.
  • FIG. 21 is a schematic cross-sectional view of an electrode of a prior art lithium ion battery having a Si columnar structure.
  • the composite film 100 of the first embodiment is composed of only a filamentous carbon layer (film) 20 that is an aggregate of filamentous carbon and a metal layer 10 made of metal.
  • a part of the metal layer 10 overlaps with a part of the filamentous carbon layer 20. Therefore, a coexistence layer (coexistence region) 60 in which filamentous carbon and metal coexist exists in the metal layer 10 or the filamentous carbon layer 20. That is, the filamentous carbon film 20 includes the first layer 40 made of only the filamentous carbon 42 and the coexistence layer 60, and the metal layer 10 includes the second layer 80 made of only the metal and the coexistence layer 60.
  • the composite film 100 does not have another layer (intermediate layer) between the first layer 40 and the coexistence layer 60 and between the coexistence layer 60 and the second layer 80. It forms an interface or boundary between the two layers 80. If attention is paid to the filamentous carbon layer 20, one side of the filamentous carbon film 20 (a part of the aggregate of filamentous carbon) is included in the metal layer 10, and the other side of the filamentous carbon film 20. (The other part of the aggregate 20 of filamentous carbon) is exposed on the metal layer 10.
  • the filamentous carbon film 20 may contain granular carbon such as activated carbon in addition to the filamentous carbon 42. That is, in the present application, the “filamentous carbon layer”, “aggregate of filamentous carbon”, and “first layer made of only filamentous carbon” may contain granular carbon in addition to the filamentous carbon.
  • the composite film according to the present invention only needs to have the first layer 40 made of only filamentous carbon and the coexistence layer 60 in which the filamentous carbon and metal coexist, and is made of only the metal shown in FIG.
  • the second layer 80 is not essential. That is, all of the metal layer 10 may overlap with a part of the filamentous carbon layer 20.
  • the composite film 100 of the first embodiment includes the filamentous carbon film 20 including the first layer 40 and the coexistence layer 60 made of only the filamentous carbon 42, the second layer 80 and the coexistence layer made of only the metal. First, the first layer 40, the second layer 80, and the coexistence layer 60 will be described.
  • the first layer 40 is composed of conductive filamentous carbon 42, in particular, an aggregate of filamentous carbon 42.
  • “Aggregate of filamentous carbon” is an aggregate formed by overlapping or intersecting a large number of filamentous carbons while maintaining voids.
  • the filamentous carbon is arranged in a predetermined direction such as a mesh or vertical arrangement type. Including the structure.
  • the filamentous carbon 42 include carbon nanotubes (hereinafter abbreviated as “CNT” as appropriate), carbon nanofibers represented by vapor-grown carbon fibers (hereinafter abbreviated as “CNF” as appropriate), carbon fibers (hereinafter, as appropriate).
  • the filamentous carbon 42 preferably contains CNT, CNF, or a mixture thereof, and more preferably contains CNT.
  • CNT it is more preferable to use CNT composed of graphene cylinders having an average of 1 to 30 layers.
  • CNTs for example, those synthesized by the method described in Carbon 49 (6), 1972-1979 (2011), Carbon 80, 339-350 (2014), etc. can be used.
  • Commercially available CNT, CNF and / or CF may be used.
  • the filamentous carbon 42 forms a network structure 44.
  • the network structure 44 preferably includes a network (steric void) having a size within a range of 3 nm to 1000 nm.
  • the second layer 80 is made of a metal, and is particularly preferably made of a low resistance metal.
  • the composite film 100 is used for a positive electrode of a lithium ion battery, aluminum or the like may be used as a metal.
  • the composite film 100 is used for the negative electrode of a lithium ion battery, copper, nickel, or the like may be used as the metal.
  • the thickness of the second layer 80 can be set to any thickness depending on the application. For example, when the composite film 100 of the present embodiment is used for the negative electrode of a lithium ion battery, the thickness is in the range of 0.03 ⁇ m to 30 ⁇ m. Is preferably within the range of 1 to 10 ⁇ m. When the thickness of the second layer 80 is 10 ⁇ m or less, the composite film 100 is further reduced in weight. When the thickness of the second layer 80 is 1 ⁇ m or more, the resistance of the composite film 100 can be further reduced.
  • the coexistence layer 60 is a layer or region in which the filamentous carbon 42 and metal coexist.
  • the metal of the coexistence layer 60 is the same metal as the metal constituting the second layer 80. That is, the coexistence layer 60 has a structure in which the filamentous carbon 42 of the first layer 40 and the metal of the second layer 80 are partially mixed. For this reason, as shown in FIG. 1A, the coexistence layer 60 has a network structure 44 of filamentous carbon 42 as in the first layer 40, and the network (three-dimensional voids) of the network structure 44. There is metal inside.
  • the mesh structure 44 may include a mesh having a size in the range of 3 nm to 1000 nm. Since the metal has entered the mesh with the filamentous carbon 42, the filamentous carbon 42 and the metal are mechanically and electrically connected.
  • the thickness of the coexistence layer 60 can be set within the range of 0.01 ⁇ m to 10 ⁇ m by manufacturing the composite film 100 by the manufacturing method described later. When the thickness of the coexistence layer 60 is within the above range, the first layer 40 and the second layer 80 are sufficiently mechanically and electrically connected.
  • the metal enters the mesh of the filamentous carbon 42 as described above, so that the filamentous carbon and the metal are mechanically connected without using a binder made of a nonconductive material. Is done. Further, since the metal enters the mesh of the filamentous carbon 42, the filamentous carbon and the metal are also electrically connected, and the composite film 100 includes a binder made of a non-conductive material as described above. Therefore, the composite film 100 of this embodiment has a low resistance. Furthermore, since the filamentous carbon 42 is exposed from the metal, the composite film 100 of this embodiment has a large surface area. Therefore, the composite film 100 of the present embodiment can be suitably used as a current collector foil for an electrode of a lithium ion battery.
  • [Second Embodiment] 1B and 1C show a functional composite film in which an active material is attached to the self-supporting composite film of the first embodiment.
  • the functional composite films 300 and 400 of the second embodiment are the same as the composite film 100 of the first embodiment shown in FIG. 1A, and the first layer 40 made of filamentous carbon 42 and the second made of metal.
  • the composite film has a layer 80, a filamentary carbon 42 formed between the first layer 40 and the second layer 80, and a coexistence layer 60 in which a metal coexists.
  • the functional composite films 300 and 400 adhere to the filamentous carbon 42 on the surface opposite to the surface on which the coexisting layer 60 of the first layer 40 is formed and the self-supporting composite film of the first embodiment.
  • Electrode active material 34 Electrode active material 34. That is, the functional composite films 300 and 400 have a configuration in which the active material 34 is attached to the filamentous carbon 42 that forms the first layer 40 of the composite film 100 of the first embodiment.
  • the first layer 40, the second layer 80, and the coexistence layer 60 of the functional composite films 300, 400 are configured in the same manner as the first layer 40, the second layer 80, and the coexistence layer 60 of the composite film 100 of the first embodiment. Therefore, the description is omitted.
  • active material 34 materials having various functions can be used.
  • a material capable of inserting and extracting lithium ions as the active material 34 for example, Si, Si oxide, other metal elements other than Si and Si Si composite oxides containing, carbon materials such as graphite, hard carbon, graphite, and amorphous carbon, materials that form alloys with Li, such as Li, Sn, Al, Sn oxides such as SnO, other than Sn and Sn Sn composite oxides containing other metal elements, lithium titanate, Li, or the like can be used.
  • LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni—Mn—Co) O 2 , S, or the like can be used as the active material 34. These may be used alone or in combination of two or more.
  • the active material 34 is attached to the filamentous carbon means that the active material 34 is inside the network structure 44 of the first layer 40 from the surface opposite to the surface on which the coexisting layer 60 of the first layer 40 is formed. It includes a form in which the active material 34 has entered (see FIG. 1B) and a form in which the active material 34 is attached so as to cover the surface of the filamentous carbon 42 (see FIG. 1C). Further, a part of the active material 34 included in the functional composite films 300 and 400 may enter the network structure 44 of the filamentous carbon 42, or all of the active material 34 included in the functional composite films 300 and 400 may be filaments. It may enter the network structure 44 of the carbon-like carbon 42.
  • the active material 34 included in the functional composite films 300 and 400 may enter the entire network structure 44 of the filamentous carbon 42 and may be in direct contact with the coexisting layer 60, or the functional composite films 300 and 400 may include the active material 34.
  • the active material 34 does not need to be in direct contact with the coexistence layer 60 by entering a part of the network structure 44 of the filamentous carbon 42.
  • the active material 34 greatly changes in volume with the insertion and extraction of lithium ions during charge and discharge. 34 has entered the network structure 44 of the filamentous carbon 42, or the active material 34 is attached so as to cover the surface of the filamentous carbon 42, so that the volume of the active material 34 is deformed by the deflection of the filamentous carbon 42. The change can be absorbed (relaxed), and the active material 34 is prevented from peeling from the first layer 40.
  • the composite film 100 of the first embodiment has a large surface area because the filamentous carbon 42 is exposed from the metal. Therefore, the functional composite films 300 and 400 of this embodiment having a configuration in which the active material 34 is attached to the filamentous carbon 42 constituting the first layer 40 of the composite film 100 of the first embodiment include the active material 34 and the first active material 34.
  • the contact area of one layer 40 is large (many contact points). Therefore, in the functional composite films 300 and 400, the first layer 40 composed of the active material 34 and the filamentous carbon 42 is mechanically well connected.
  • the active material 34 is unlikely to peel from the first layer 40 even if the volume of the active material 34 changes greatly during charging and discharging. Therefore, a long-life secondary battery can be manufactured by using the functional composite films 300 and 400 as electrodes of a secondary battery represented by a lithium ion battery.
  • the contact area between the active material 34 and the first layer 40 is large, the first layer 40 composed of the active material 34 and the filamentous carbon 42 is electrically connected well (the contact resistance is small).
  • the functional composite films 300 and 400 of the present embodiment as in the composite film 100 of the first embodiment, since the metal enters the mesh of the filamentous carbon 42, the filamentous carbon 42 and the metal are separated from each other. The connection is made without using a binder made of a non-conductive material. Therefore, the first layer 40 made of filamentary carbon 42 and the metal are connected with low resistance. Therefore, in the functional composite films 300 and 400 of the present embodiment, the active material 34 and the metal are connected with low resistance. Therefore, by using the functional composite films 300 and 400 as electrodes of a secondary battery such as a lithium ion battery, a secondary battery such as a high capacity lithium ion battery can be manufactured.
  • a secondary battery such as a high capacity lithium ion battery can be manufactured.
  • the active material 34 can be fixed on the first layer 40 without using a binder.
  • a binder (not shown) made of a non-conductive polymer for fixing the active material 34 to the first layer 40 may be included.
  • the functional composite film 300 may further include a conductive material (not shown) made of carbon nanofiber (CNF), carbon black, or the like.
  • the first layer 40 is composed of the conductive filamentous carbon 42 and has a high surface area. Therefore, the contact area between the active material 34 and the filamentous carbon 42 is large, and sufficient conductivity is obtained even when a binder is added.
  • the conductivity in the vertical direction of the layer made of the active material 34 can be sufficiently secured even when the layer made of the active material 34 is thicker than the first layer 40.
  • the conductive material enters the network of the first layer 40, sufficient conductivity between the active material 34 and the first layer 40 can be ensured.
  • the composite film 100a of the third embodiment is a filamentous carbon (film) 20a that is an aggregate of filamentous carbon, It is a self-supporting film comprised only from the metal layer 10a comprised from the metal, and a part of metal layer 10 has overlapped with a part of filamentous carbon layer 20a.
  • region) 60a in which filamentous carbon and a metal coexist exists in the metal layer 10a or the filamentous carbon layer 20a.
  • the filamentous carbon film 20a has a first layer 40a made only of the filamentous carbon 42 and a coexistence layer 60a
  • the metal layer 10 has a second layer 80a made only of a metal and a coexistence layer 60a.
  • the composite film 100a does not have another layer (intermediate layer) between the first layer 40a and the coexistence layer 60a, and between the coexistence layer 60a and the second layer 80a. It forms an interface or boundary between the two layers 80a.
  • one surface of the filamentous carbon film 20 (part of the aggregate of filamentous carbon) is included in the metal layer 10a, and the other surface of the filamentous carbon film 20a. (The other part of the filament-like carbon aggregate 20) is exposed on the metal layer 10a.
  • the filamentous carbon 42a is oriented (perpendicular in the thickness direction of the first layer 40a and the coexistence layer 60a.
  • the vertical alignment structure 46 of the filamentous carbon 42a is formed.
  • a plurality of filamentous carbons 42a extending in a direction perpendicular to the surface of the second layer 80a are adjacent to each other with a gap, and in the coexistence layer 60a, metal enters the gap. It is out.
  • the vertical alignment structure 46 of the filamentous carbon 42a may include voids having a size in the range of 3 nm to 1000 nm.
  • the first layer 40a, the second layer 80a, and the coexistence layer 60a of the composite film 100a are made of the same material as the first layer 40, the second layer 80, and the coexistence layer 60 of the composite film 100 of the first embodiment. ing.
  • the filament-like carbon and the metal can be used without using a binder made of a non-conductive material. Are mechanically connected. Further, since the metal enters the mesh of the filamentous carbon 42a, the filamentous carbon and the metal are also electrically connected, and the composite film 100a includes a binder made of a nonconductive material as described above. Therefore, the composite film 100a of this embodiment has a low resistance. Furthermore, since the filamentous carbon 42a is exposed from the metal, the composite film 100a of this embodiment has a large surface area. Therefore, like the composite film 100 of the first embodiment, the composite film 100a of the third embodiment can be suitably used as a current collector foil or the like used for an electrode of an electricity storage device such as a lithium ion battery.
  • FIG. 2B shows a modification of the composite film 100a of the third embodiment.
  • the vertically oriented filamentous carbon 42b is bundled to form a wall 41b that stands upright in the thickness direction of the first layer 40b and the coexistence layer 60b.
  • the wall 41b forms a random network structure 46b when viewed from the thickness direction of the first layer 40b and the coexistence layer 60b (see FIG. 13E).
  • the network structure 46b may include a network (void) of 1 to 200 ⁇ m. With such a structure, various active materials can be introduced into the mesh, the filamentous carbon is less likely to collapse, and an upright structure can be easily maintained, and an electrode of an electricity storage device with excellent performance can be manufactured. Further, the upright wall made of a bundle of filamentous carbon may form an arbitrary structure different from a network structure such as a streak structure regularly arranged in one direction.
  • the functional composite films 300a and 400a shown in FIGS. 2C and 2D are functional composite films in which an active material is attached to the self-supporting composite film 100a of the third embodiment. Similar to the composite film 100a shown in FIG. 2A, a first layer 40a made of filamentary carbon 42a, a second layer 80a made of metal, and a filament formed between the first layer 40a and the second layer 80a. A coexistence layer 60a in which the carbon-like carbon 42a and the metal coexist.
  • the functional composite films 300a and 400a further have an active material 34a attached to the filamentous carbon 42a on the surface of the first layer 40a opposite to the surface on which the coexistence layer 60a is formed.
  • the functional composite films 300a and 400a of the fourth embodiment have a configuration in which the active material 34a is attached to the filamentous carbon 42a that constitutes the first layer 40a of the composite film 100a of the third embodiment.
  • the first layer 40a, the second layer 80a and the coexistence layer 60a of the functional composite films 300a and 400a are the same as the first layer 40a, the second layer 80a and the coexistence layer 60a of the functional composite film 300 of the third embodiment. Since the active material 34a of the functional composite films 300a and 400a is configured similarly to the active material 34 of the functional composite films 300 and 400 of the second embodiment, detailed description thereof will be omitted.
  • the active material 34a is attached to the filamentous carbon means that the active material 34a is inside the vertical alignment structure 46 of the first layer 40a from the surface opposite to the surface on which the coexisting layer 60a of the first layer 40a is formed. In which the active material 34a enters (see FIG. 2 (c)), or the surface of the filamentous carbon 42a is attached so as to cover the active material 34a (see FIG. 2 (d)). Further, a part of the active material 34a included in the functional composite films 300a and 400a may enter the vertical alignment structure 46 of the filamentous carbon 42a, or the entire active material 34a included in the functional composite films 300a and 400a may be included. It may enter the vertical alignment structure 46 by the filamentous carbon 42a.
  • the active material 34a included in the functional composite films 300a and 400a may enter the entire network structure 44a of the filamentous carbon 42a and may be in direct contact with the coexistence layer 60a, or the functional composite films 300a and 400a may include the active material 34a.
  • the active material 34a may enter a part of the network structure 44a of the filamentous carbon 42a and may not be in direct contact with the coexistence layer 60a.
  • the active material 34a changes greatly in volume with the insertion and extraction of lithium ions during charging and discharging, but the active material 34a is made of filamentous carbon 42a. Since the vertical alignment structure 46 enters or the active material 34a adheres so as to cover the surface of the filamentous carbon 42a, the filamentous carbon 42a bends to absorb (relax) the volume change of the active material 34a. It is possible to prevent the active material 34a from peeling from the first layer 40a.
  • the composite film 100a of the third embodiment has a large surface area because the filamentous carbon 42a is exposed from the metal. Therefore, the functional composite films 300a and 400a of the present embodiment having a configuration in which the active material 34a is attached to the filamentous carbon 42a constituting the first layer 40a of the composite film 100a of the third embodiment includes the active material 34a and the first active material 34a.
  • the contact area of one layer 40a is large (many contact points). Therefore, in the functional composite films 300a and 400a, the first layer 40a composed of the active material 34a and the filamentous carbon 42a is mechanically well connected.
  • the functional composite films 300a and 400a are used as electrodes typified by a lithium ion battery, even if the volume of the active material 34a changes greatly during charging and discharging, the active material 34a is difficult to peel from the first layer 40a. . Therefore, by using the functional composite films 300a and 400a as electrodes of an electricity storage device such as a lithium ion battery, a long-life electricity storage device can be manufactured.
  • the contact area between the active material 34a and the first layer 40a is large, the first layer 40a composed of the active material 34a and the filamentous carbon 42a is electrically connected well (the contact resistance is small).
  • the metal enters the vertical alignment structure 46 of the filamentous carbon 42a, whereby the filamentous carbon 42a. And the metal are connected without a binder made of a non-conductive material. Therefore, the first layer 40a made of filamentary carbon 42a and the metal are connected to a low resistance. Therefore, in the functional composite films 300a and 400a of the present embodiment, the active material 34a and the metal are connected with low resistance.
  • the filamentous carbon 42a is oriented perpendicular to the second layer 80a made of metal, the filamentous carbon 42a has the shortest distance and the active material 34a is made of metal. It can be connected to the two layers 80a. Therefore, even when the layer of the active material 34a is thick, the active material 34a and the second layer 80a can be connected with low resistance. Therefore, a secondary battery such as a high-capacity lithium ion battery can be manufactured by using the functional composite films 300a and 400a as electrodes of a secondary battery represented by a lithium ion battery.
  • the active material 34a can be fixed on the first layer 40a without using a binder.
  • a binder made of a nonconductive polymer for fixing the active material 34a to the first layer 40a may be included.
  • the functional composite film 300a may further include a conductive material made of carbon nanofiber (CNF), carbon black, or the like.
  • the first layer 40a is made of the conductive filament carbon 42a and has a high surface area.
  • the contact area between the active material 34a and the filament carbon 42a is large, and sufficient conductivity can be obtained even if a binder is added. Can be secured. Further, by adding a conductive material, it is possible to sufficiently ensure the conductivity in the vertical direction of the layer made of the active material 34a even when the layer made of the active material 34a is thicker than the first layer 40a. In addition, since the conductive material enters the gap between the first layers 40a, the conductivity between the active material 34a and the first layer 40a can be sufficiently ensured.
  • the functional composite film can be obtained by attaching the active material to the composite film 100b in a modified form.
  • the manufacturing method of the present embodiment includes a step S1 for mainly producing a film made of filamentous carbon (hereinafter referred to as “filamentous carbon film” as appropriate), and the produced filamentous carbon film.
  • filamentous carbon film a film made of filamentous carbon
  • the manufacturing method of the composite film according to this invention does not need to have filamentous carbon film support process S2 and active material adhesion process S5. That is, in the method for manufacturing a composite film according to the present embodiment, the filamentous carbon film supporting step S2 and the active material attaching step S5 are optional steps.
  • Filamentous carbon films are, for example, a method of applying and drying a dispersion of filamentous carbon on a substrate by spray coating or blade coating, a dispersion of filamentous carbon using a membrane filter It can form by the method of filtering.
  • the dispersion of filamentous carbon can be adjusted by adding filamentous carbon such as CNT or CNF to an aqueous solution of a surfactant and ultrasonically dispersing it.
  • a surfactant for example, sodium dodecylbenzenesulfonate (SDBS) can be used.
  • SDBS sodium dodecylbenzenesulfonate
  • a commercially available CNT dispersion or CNF dispersion may be used.
  • the filamentous carbon dispersion 120 is suction filtered using a membrane filter 140 as shown in FIG.
  • the filamentous carbon film 20 can be obtained on the membrane filter 140 by separating the filamentous carbon from the dispersion medium.
  • a VCWP filter, a PTFE filter, a silica fiber filter, or the like can be used as the membrane filter 140.
  • the filamentous carbon film 20 having the network structure 44 in which filamentous carbon is intertwined can be formed by the above method.
  • the network structure of the filamentous carbon film 20 formed by the above method can include a network (steric void) having a size in the range of 3 nm to 1000 nm.
  • the size of the mesh is generally determined in correlation with the diameter of the filamentous carbon, but further depends on the viscosity of the dispersion, the size of the mesh of the filter, the degree of unevenness of the surface, the presence or absence of compression after drying the filamentous carbon film, etc. Can be adjusted.
  • the size of the mesh can also be adjusted by removing the polymer particles with a solvent after filtration with polymer particles soluble in an organic solvent to form a filamentous carbon film. Since the filamentous carbon film 20 includes a mesh having such a size, metal can enter the filamentous carbon film 20 in a metal vapor deposition step S3 described later.
  • the filamentous carbon film 20 formed on the membrane filter 140 is supported (transferred) on the substrate (support) 160.
  • the substrate 160 a stainless steel substrate, a glass substrate, a ceramic substrate, a silicon substrate, or the like can be used.
  • the filamentous carbon film 20 can be supported on the substrate 160 as follows, for example. A binder is applied onto the substrate 160, the filament carbon film 20 and the binder on the substrate 160 are made to face each other, and the membrane filter 140 on which the filament carbon film 20 is formed is pressed against the substrate 160. After the filamentous carbon film 40 adheres to the substrate 160 via the binder, the membrane filter 140 is peeled off from the filamentous carbon film 20. By these operations, the filamentous carbon film 20 is supported on the substrate 160.
  • the filamentous carbon film 20 can be supported on the substrate 160 by the following method.
  • the membrane filter 140 on which the filamentous carbon film 20 is formed is pressed against the substrate 160 with the filamentous carbon film 20 and the substrate 160 facing each other.
  • the membrane filter 140 is wetted with a mixed solution of ethanol and water and then dried, and the membrane filter 140 is peeled off from the filamentous carbon film 20.
  • the filamentous carbon film 20 can be supported on the substrate 160.
  • the filamentous carbon film 20 can be supported on the substrate 160 by the following method.
  • the membrane filter 140 on which the filamentous carbon film 20 is formed is impregnated with pure water. Then, since only the filamentous carbon film 20 floats on the water surface, it is scooped by the substrate 160. Thereby, the filamentous carbon film 20 can be supported on the substrate 160. Before scrubbing with the substrate 160, the filamentous carbon film 20 may be washed with heated pure water to remove the surfactant attached to the filamentous carbon film 20.
  • the filamentous carbon film 20 supported on the substrate 160 by these methods may be annealed in a reducing atmosphere. Thereby, the surfactant remaining on the filamentous carbon film 20 can be decomposed.
  • the membrane filter is a substrate. It can also serve as a (supporting substrate). That is, after filtering the filamentous carbon in step S1 to form a film on the membrane filter, step S3 can be entered immediately.
  • the filamentous carbon film support step is also used when the filamentous carbon film is produced on the substrate by applying and drying the filamentous carbon dispersion by spray coating or blade coating. A filamentous carbon film supported on the substrate can be obtained without performing S2.
  • a metal is deposited on the filamentous carbon film 20 supported by the substrate 160.
  • the metal layer 10 can be formed on the filamentous carbon film 20.
  • Metal vapor deposition can be performed by any vapor deposition method such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, and CVD.
  • the vapor deposition thickness of the metal can be set to any thickness depending on the application.
  • the composite film produced by the production method of the present embodiment is used as the negative electrode of the lithium ion battery. When it is used in the above, it is preferably in the range of 0.03 to 30 ⁇ m, more preferably in the range of 1 to 10 ⁇ m.
  • the composite film 100 composed of the filamentous carbon film 20 and the metal layer 10 is peeled from the substrate 160 (see FIG. 4D).
  • the filamentous carbon film 20 and the metal layer 10 can be mechanically separated from the substrate 160 by, for example, a method of picking the outer periphery of the filamentous carbon film 20 with tweezers and pulling it up from the substrate 160. That is, a self-supporting filamentous carbon and metal composite film 100 is obtained.
  • the composite film 100 obtained in this way has a structure in which a part of the metal layer 10 has entered (sunk into) the mesh of the filamentous carbon film 20 as shown in FIG.
  • the obtained composite film 100 includes a filamentous carbon formed between the first layer 40 made of filamentous carbon, the second layer 80 made of metal, and the first layer 40 and the second layer 80. And a coexistence layer 60 in which a metal coexists.
  • the metal By depositing a metal on the filamentous carbon film by the method as described above, the metal can be penetrated from the surface layer of the filamentous carbon film 20 to a depth in the range of 0.01 ⁇ m to 10 ⁇ m. That is, the coexistence layer 60 having a thickness in the range of 0.01 ⁇ m to 10 ⁇ m can be formed.
  • Step S5 for attaching an active material The process of making the self-supporting composite film obtained from the above process into a functional composite film having a predetermined function will be described.
  • An active material (a material capable of inserting and extracting lithium ions) 34 is attached to the self-supporting composite film 100 obtained as described above. As shown in FIG. 4E, the active material 34 is attached so that the active material 34 enters the inside of the network structure 44 of the filamentous carbon film 20 from the surface opposite to the surface on which the metal of the filamentous carbon film 20 is deposited.
  • the active material 34 may be attached so that the active material 34 covers the surface of the filamentous carbon film 20.
  • a paste in which a binder, a conductive material, and the like are mixed with a particulate active material is prepared, applied to the filamentous carbon film 20, and then dried, as shown in FIG.
  • the active material 34 can be attached so that the gas enters the inside of the network structure 44 of the filamentous carbon film 20.
  • the active material 34 can be deposited by depositing the active material 34 on the filamentous carbon film 20 so that the active material 34 covers the surface of the filamentous carbon film 20 (see FIG. 1C). ).
  • a deposition source Si, Sn, SnO, a mixture of Si or Sn and other metals, S, or the like can be used.
  • the evaporation source may be doped with impurities. Examples of such impurities include elements such as nitrogen, phosphorus, aluminum, arsenic, boron, gallium, indium, oxygen, and carbon.
  • the active material 34 adheres to the filamentous carbon film 20, and the function composed of filamentous carbon, metal, and active material.
  • Conductive composite films 300 and 400 are obtained.
  • the obtained functional composite films 300 and 400 are filaments formed between the first layer 40 made of filamentary carbon, the second layer 80 made of metal, and the first layer 40 and the second layer 80.
  • the active material 34 is attached to the filamentous carbon 42 constituting the first layer 40.
  • the functional composite films 300 and 400 manufactured by the above method have a structure in which part or all of the active material 34 enters the network structure 44 of the filamentous carbon film 20, or the active material 34 has a surface of the filamentous carbon 42. It can have a structure attached so that it may cover.
  • the apparatus 150 shown in FIG. 6A mainly includes a roller pair 52 including a driving roller 52a and a driven roller 52b, an endless conveying belt 54 that moves across the roller pair 52, and an upper portion of the conveying belt 54.
  • a suction filter 63 installed below the feeder 56 via the conveyor belt 54, and downstream of the feeder 56 in the conveyance direction and below the conveyor belt 54.
  • the vapor deposition device 58 is provided.
  • the conveyor belt 54 is a mesh belt having heat resistance and a membrane filter function.
  • the supply unit 56 supplies the filamentous carbon dispersion 51 prepared in the above-described step S ⁇ b> 1 to the conveyor belt 54, sucks the dispersion on the conveyor belt 54 by the suction filter 63, and collects the aggregate of filamentous carbon. It remains on the conveyor belt 54.
  • the vapor deposition device 58 includes a boat that accommodates metal pieces therein as a vapor deposition source, and deposits metal on an aggregate of filamentous carbon.
  • the driving roller 52a rotates in the direction indicated by the arrow and the conveyor belt 54 starts to move
  • the filament-like carbon dispersion 51 is continuously supplied from the supply device 56 onto the conveyor belt 54 in a predetermined amount.
  • the liquid component of the dispersion liquid is filtered by 63 and the conveyor belt 54 to form a filamentous carbon aggregate 53 as a solid component on the conveyor belt 54.
  • the filamentous carbon aggregate 53 is conveyed to a position facing the downstream vapor deposition unit 58 by the conveyance belt 54, the metal from the vapor deposition source heated and melted by the vapor deposition unit 58 becomes the filamentous carbon aggregate 53. Adhere to the surface.
  • a composite film 59 in which the metal 55 is attached to one surface of the filamentous carbon aggregate 53 is obtained. Since the composite film 59 is a continuous film, when the front end in the conveyance direction of the composite film 59 is wound up by the driven roller 52b, the tensile force in the tangential direction (horizontal direction) of the driven roller at the front end is sequentially applied. Thus, a long and self-supporting composite film 59 (composite continuous film) is obtained by removing from the conveyor belt 54. The long self-supporting composite film 59 can be appropriately wound around a roller and collected and managed.
  • the feeder 56, the suction filter 63, and the conveyor belt 54 functioned as the filament-like carbon aggregate forming unit, but a coater such as a spray coater or a blade coater and a dryer may be used.
  • the dispersion liquid can be applied onto the conveyor belt with a coater, and the applied dispersion liquid can be dried with a dryer, and the conveyor belt need not have a filter function.
  • a mechanism such as a peeling roller for separating (separating) from the conveying belt 54 by applying a tensile force in the tangential direction (horizontal direction) of the driven roller 52b of the front end of the composite film 59 may be provided.
  • the conveyance belt 54 can also serve as the driving roller 52.
  • a cylinder is used instead of the conveyor belt, and while rotating the cylinder, filamentary carbon is continuously deposited on the upper part, and metal is deposited on the filamentous carbon deposited on the lower part. can do.
  • an aggregate of filamentous carbon can be formed from a dispersion of filamentous carbon by suction filtration.
  • an aggregate of filamentous carbon can be formed from a dispersion of filamentous carbon using a spray coater or a blade coater.
  • One cylinder serves as both the conveyor belt 54 and the driving rollers 52a and 52b.
  • the manufacturing method of the composite film 100a and the functional composite films 300a and 400a mainly includes a step S1 for producing a film made of filamentous carbon (filamentous carbon film), and a filament shape supported by a support (substrate). Step S3 for depositing metal on the carbon film, Step S4 for separating the filamentary carbon film and the metal composite film from the support, and an active material on the surface of the filamentous carbon film opposite to the surface on which the metal is deposited. And attaching step S5.
  • the manufacturing method of the composite film according to this embodiment does not need to have active material adhesion process S5.
  • Step S1 for producing filamentary carbon film> In the embodiment of the manufacturing method of the composite film 100 of the first embodiment and the functional composite films 300 and 400 of the second embodiment, the filamentous carbon film having a network structure is formed in the filamentous carbon film manufacturing step S1. However, in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment, the filamentous carbon film in which filamentous carbon is oriented (vertically oriented) in the thickness direction of the filamentous carbon film. Form.
  • a substrate (support) 160a on which particles 48 as a catalyst for synthesizing filamentary carbon are formed is disposed in a reactor. Then, the substrate 160a can be produced by circulating the source gas in the reactor while heating. Fe, Co, Ni, etc. can be used as the catalyst, and Si, Al, Mg oxides, etc. can be used as the catalyst carrier. As the source gas, acetylene, ethylene, ethanol, methane or the like can be used. In this manner, as shown in FIG. 5B, the filamentous carbon film 20a having the structure 46 in which the filamentous carbon 42a is vertically oriented can be formed on the substrate 160a. Since the filamentous carbon film 20a produced by the step S1 for producing the filamentous carbon film is supported by the substrate 160a, the manufacturing method includes the step S2 for supporting the produced filamentary carbon film on the substrate. You don't have to.
  • Step S3 for depositing metal in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment is a process of the method of manufacturing the composite film 100 and the functional composite films 300 and 400. Since it can be performed in the same manner as S3, detailed description is omitted.
  • the metal layer 10a can be formed on the filamentous carbon film 20a.
  • a part of the metal layer 10a has entered (submitted) into the gaps between the filamentous carbons 42a of the filamentous carbon film 20a.
  • Step S4 of separating the composite film from the substrate in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment includes the composite film 100 and the functional composite films 300 and 400. Since it can carry out similarly to process S4 of this manufacturing method, detailed description is abbreviate
  • the composite film 100a composed of the filamentous carbon film 20a and the metal layer 10a is peeled from the substrate 160a, as shown in FIG. 5D, the metal layer 10a is formed in the gap between the filamentous carbons 42a of the filamentous carbon film 20a.
  • a composite film 100a having a structure in which a part of the film has entered (submerged) is obtained. That is, the obtained composite film 100a has a filament-like shape formed between the first layer 40a made of filamentous carbon 42a, the second layer 80a made of metal, and the first layer 40a and the second layer 80a. It has a coexistence layer 60a in which carbon 42a and metal coexist.
  • Step S5 for attaching an active material The step S5 of attaching the active material in the manufacturing method of the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment is the method of manufacturing the composite film 100 and the functional composite films 300 and 400. Since it can carry out similarly to process S5, detailed description is abbreviate
  • a paste is prepared by mixing a particulate active material with a binder, a conductive material, etc., and this is applied onto the filamentous carbon film 20a and then dried, as shown in FIG. 5 (e).
  • the active material 34a can be attached so that the active material 34a enters the inside of the vertical alignment structure 46 of the filamentous carbon film 20a.
  • the active material 34a can be attached so that the active material 34a covers the surface of the filamentous carbon film 20a (see FIG. 2D).
  • the active material 34a is attached to the filamentous carbon film 20a, and the function is composed of filamentous carbon, metal, and active material.
  • Composite films 300a and 400a are obtained.
  • the obtained functional composite films 300a and 400a are filaments formed between the first layer 40a made of filamentary carbon, the second layer 80a made of metal, and the first layer 40a and the second layer 80a.
  • the active carbon 34a is attached to the filamentous carbon 42a constituting the first layer 40a.
  • the functional composite films 300a and 400a manufactured by the above method have a structure in which part or all of the active material 34a enters the vertical alignment structure 46 of the filamentous carbon film 20a, or the active material 34a is made of the filamentous carbon 42a. It can have a structure attached to cover the surface.
  • the filamentary carbon vertical alignment film is contracted to form a filamentous carbon film 20b having a random network structure 46b composed of the walls 41b of the filamentous carbon 42b.
  • the network structure 46b composed of the walls 41b of the filamentous carbon 42b can be formed as follows. For example, by exposing the filamentary carbon vertical alignment film to a solvent vapor such as ethanol to condense the solvent on the filament carbon film, and then drying the condensed solvent, the filamentous carbon film 20a is formed by the surface tension of the solvent.
  • the network structure 46b which consists of the wall 41b of the filament-like carbon 42b is shrunk and formed.
  • the mesh size of the mesh structure 46b can be controlled, for example, by changing the height of the vertical alignment film of the filamentous carbon 42b.
  • the height of the filamentary carbon vertical alignment film can be controlled, for example, by changing the time for synthesizing the filamentous carbon in the filamentous carbon film manufacturing step S1.
  • the structure formed by the filamentous carbon walls can be controlled by the texture (unevenness) of the surface of the substrate 160a used for synthesizing the filamentous carbon in step S1. Therefore, it is possible to form an arbitrary structure different from the network structure.
  • a vertical alignment film of filamentous carbon is formed using a substrate having a streaky (line-like) texture extending in one direction on the surface as the substrate 160a in step S1, and the composite film 100a is formed in step S4.
  • the filamentary carbon vertical alignment film is contracted to form a streak structure in which filamentary carbon walls are regularly arranged in one direction.
  • the apparatus 170 shown in FIG. 6 (b) mainly includes a roller pair 52 composed of a driving roller 52a and a driven roller 52b, an endless conveying belt 54a that moves across the roller pair 52, and an upper portion of the conveying belt 54a. , A CVD device 73 installed on the downstream side in the transport direction, and a vapor deposition device 58 installed on the downstream side in the transport direction of the CVD device 73 and below the transport belt 54a. .
  • the sputtering apparatus 71 attaches a catalyst 74 such as Fe for synthesizing filamentary carbon to a conveyor belt 54 as a support. It is more preferable that a catalyst carrier such as Al 2 O 3 is attached to the transport belt and then a catalyst 74 such as Fe is attached.
  • the CVD apparatus 73 supplies a synthesis gas such as acetylene to the catalyst in order to synthesize and grow filamentous carbon on the catalyst 74.
  • a CVD apparatus provided with a nozzle having a shower head structure is suitable. Note that the transport belt 54a in this example does not need to have a filter function, unlike the transport belt 54 used in the apparatus shown in FIG.
  • a composite film 79 in which the metal 55 is adhered to one surface of the filamentous carbon aggregate is obtained. Since the composite film 79 is a continuous film, when the front end in the transport direction of the composite film 59 is wound up by the driven roller 52b, a tensile force in the tangential direction (horizontal direction) of the driven roller at the front end is sequentially applied. Then, a long and self-supporting composite film 79 (composite continuous film) is obtained by separating from the transport belt 54a.
  • the conveyance belt 54 a can also serve as the driving roller 52. That is, a cylinder is used instead of the conveyor belt, and while rotating the cylinder, the catalyst is attached to the surface of the cylinder, the filamentous carbon is synthesized, the metal is vapor-deposited, and continuously peeled and recovered.
  • the single cylinder serves as both the conveying belt 54a and the driving rollers 52a and 52b.
  • a mechanism such as a peeling roller for separating (separating) from the conveying belt 54a by applying a tensile force in the tangential direction (horizontal direction) of the driven roller 52b at the front end of the composite film 79 may be provided.
  • the composite membranes 100, 100a, 100b and the functional composite membranes 300, 400, 300a, 400a of the above-described embodiments and modifications are suitable as electrodes in an electrochemical storage device such as a secondary battery typified by a lithium ion battery. Can be used.
  • a lithium ion battery having the functional composite film 300 of the above embodiment as an electrode will be described as an example.
  • an electrode group obtained by laminating or laminating and winding a separator, a negative electrode, a separator, and a positive electrode is housed in a battery case such as a battery can, and then an electrolyte is injected into the battery case.
  • a battery case such as a battery can, and then an electrolyte is injected into the battery case.
  • Can be manufactured.
  • the composite film 300 having the second layer 80 made of aluminum can be used as the positive electrode.
  • the first layer 40 made of filamentous carbon 42, the second layer 80 made of aluminum, and the coexisting layer 60 of filamentous carbon 42 and aluminum are current collectors. Work as.
  • the composite film 300 having the second layer 80 made of copper or nickel can be used as the negative electrode.
  • the first layer 40 made of filamentous carbon 42, the second layer 80 made of copper or nickel, and the coexisting layer 60 of the filamentous carbon 42 and copper or nickel (that is, the filamentous carbon film 20 and the metal layer 10). Works as a current collector.
  • the metal layers 10 it is more preferable to use two electrodes formed as described above and overlap the metal layers 10 so as to face each other because the capacity of the lithium ion battery can be increased. Furthermore, when two electrodes are overlapped, it is more preferable to apply a binder on the surface of at least one metal layer 10 and then bond them together to improve the strength of the electrodes. In addition, since the binder is sandwiched on both sides by the metal layer, the binder is not easily deteriorated and does not inhibit the in-plane conductivity of the metal layer.
  • Examples of the shape of the electrode group include a shape in which the cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, or the like. Can do.
  • examples of the shape of the battery case include a paper shape, a coin shape, a cylindrical shape, and a square shape.
  • the separator may be of any type, and may be, for example, a film having a form of a porous film made of a material such as a polyolefin resin such as polyethylene or polypropylene, or a fluororesin, a nonwoven fabric, or a woven fabric.
  • the electrolyte usually contains an electrolyte and an organic solvent.
  • an electrolyte made of a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is converted into propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), It is obtained by dissolving in an organic solvent such as ethyl methyl carbonate (EMC).
  • LiPF 6 lithium hexafluorophosphate
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the composite film 300 used as the electrode of the lithium ion battery of the present embodiment is that the active material 34 is difficult to peel from the first layer 40 even if the volume of the active material 34 changes greatly during charging and discharging. There is an advantage that the electric resistance between the active material 34 and the metal is small. Therefore, the lithium ion battery of this embodiment using the composite film 300 as an electrode has a long life and a high capacity.
  • the composite film 300 of the second embodiment is used as an electrode.
  • the electrode of the lithium ion battery uses the composite film 100, 100a, 100b or the functional composite film 300a of the above-described embodiment and the modified embodiment. It can also be manufactured.
  • the lithium ion battery produced thereby also has a high capacity and a long life.
  • the composite film and the functional composite film according to the present invention are not limited to the electrode of an electricity storage device such as a lithium ion battery, but can also be applied as an electrode of an electricity storage device in various forms, depending on the combination of materials. It is applicable as both a positive electrode and a negative electrode.
  • an electrode active material such as activated carbon is attached on the layer made of filamentous carbon of the composite film, and can be applied as an electrode of an electric double layer capacitor (whether positive electrode or negative electrode).
  • an electrode active material such as graphite is attached on the layer made of filamentous carbon, and can be applied as an electrode (a positive electrode or a negative electrode) of a lithium ion capacitor.
  • the “storage device” means a device that can be repeatedly charged and discharged, and includes a secondary battery such as a lithium ion battery, a capacitor such as an electric double layer capacitor and a lithium ion capacitor.
  • Example 1 4 mg of CNT (eDIPS made by Meijo Nanocarbon) is added to 40 mL of 0.5 wt% SDBS aqueous solution as filamentous carbon, and dispersed for 2 hours at an output of 30 W and a frequency of 45 kHz using an ultrasonic dispersion device (CLEAR VS-50R made by VELVO). To obtain a CNT dispersion. 10 mL of the CNT dispersion was filtered under reduced pressure using a membrane filter having a pore size of 0.1 ⁇ m (VCWP manufactured by Millipore) to produce a CNT film having a thickness of about 20 ⁇ m on the membrane filter.
  • VMWP membrane filter having a pore size of 0.1 ⁇ m
  • the membrane filter with the CNT film formed was impregnated with pure water in a beaker to separate the CNT film and the membrane filter.
  • pure water in the beaker was heated to 100 ° C. with a heater.
  • the CNT film floating on the water surface was scraped off with a Si substrate with a thermal oxide film (hereinafter simply referred to as “substrate”). By these operations, the CNT film was supported on the substrate.
  • Cu was deposited on the CNT film on the substrate as follows.
  • An 80 mm ⁇ 6 mm tungsten boat was installed in the vapor deposition chamber, and a Cu piece (Nilaco Corp. Cu111487, purity 99.9%) was placed thereon, which was used as a vapor deposition source. Since the Cu piece is melted by heating and spreads on the boat, the size of the vapor deposition source is about 30 mm ⁇ 6 mm.
  • the substrate was placed so that the CNT film faced the tungsten boat in parallel. At this time, the distance between the evaporation source and the CNT film was set to 35 mm.
  • the substrate was placed on a quartz glass plate stage having an 18 mm square opening at the center with the CNT film surface facing down, and heated to about 400 ° C. with a PG / PBN heater from the top.
  • the inside of the chamber was depressurized to a level of 10 ⁇ 4 Pa with a turbo pump.
  • a turbo pump By energizing the tungsten boat at 588 W and heating the tungsten boat to about 1790 ° C., the Cu piece was melted and Cu was deposited for 80 seconds.
  • the substrate temperature during vapor deposition was 400 ° C. By the above operation, a Cu film was formed on the CNT film on the substrate.
  • substrate area and the density of copper be a conversion film thickness.
  • CNT-Cu composite film a composite film in which Cu was deposited on the CNT film on the substrate was obtained. Thereafter, the CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film.
  • the obtained CNT-Cu composite film was torn into two and observed with a scanning electron microscope (SEM, Hitachi S-4800). At low magnification, the CNT film appeared to peel off from the Cu film near the tear. However, when observed at a higher magnification, countless fluffy CNTs adhered to the Cu film (see FIG. 7B). From this, it was found that CNT and Cu were mechanically well connected.
  • Comparative Example 1 CNT was added to 4 mg and 10 mL of N-methylpyrrolidone, and after dispersion treatment for 1 hour at an output of 40 W and a frequency of 45 kHz using an ultrasonic dispersion device (CLEAR VS-50R manufactured by VELVO), 0.4 mg of PVDF was added.
  • a paste was prepared by stirring. 1 mL of this paste was applied onto a 10 ⁇ m thick electrodeposited copper foil (Niraco Cu113173, purity 99.9%) and dried at 200 ° C. and 0.01 Torr for 1 hour. The resulting composite film was mechanically peeled from the substrate and torn into two.
  • Example 2 A CNT film supported on a substrate was produced in the same manner as in Example 1 except that the filtration amount of the CNT dispersion was 0.3 mL. When the planar structure of the obtained CNT film was observed with an SEM, a network structure in which CNTs were intertwined was formed (see FIG. 8A).
  • a Cu film was formed on the CNT film on the substrate in the same manner as in Example 1 except that the tungsten boat was heated to about 1640 ° C. at 462 W during Cu deposition and the deposition time was 1 second.
  • the Cu film thickness (converted film thickness) obtained in the same manner as in Example 1 was 0.033 ⁇ m.
  • FIG. 8B shows a planar SEM image of the CNT-Cu composite film obtained as described above. Note that the planar SEM image in FIG. 8B has a higher magnification than the planar SEM image in FIG. 8A. From the planar SEM image of FIG. 8B, it was observed that particulate Cu was embedded in the CNT network structure. From this, it was found that a coexistence layer in which CNT and Cu coexist was formed.
  • Example 3 A CNT—Cu composite film was produced in the same manner as in Example 2 except that the tungsten boat was heated to about 1780 ° C. at 576 W during Cu deposition and the deposition time was 3 seconds. The converted film thickness of the Cu film formed by vapor deposition was 0.14 ⁇ m.
  • a planar SEM image of the CNT—Cu composite film produced in this example is shown in FIG. 8C. Note that the planar SEM image in FIG. 8C has a higher magnification than the planar SEM image in FIG. 8A. From the planar SEM image of FIG. 8C, it was observed that the particulate Cu was embedded in the CNT network structure. From this, it was found that a coexistence layer in which CNT and Cu coexist was formed.
  • Example 4 A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1750 ° C. at 550 W during Cu deposition and the deposition time was 4 seconds. The converted film thickness of the Cu film formed by vapor deposition was 0.38 ⁇ m.
  • FIG. 8D shows a planar SEM image of the CNT—Cu composite film produced in this example. From the planar SEM image, Cu was close to a continuous film, and a small amount of CNT was seen on Cu, indicating that Cu was deposited to the vicinity of the outermost surface of the network structure.
  • Example 5 A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 528 W during Cu deposition and the deposition time was 8 seconds. The converted film thickness of the Cu film formed by vapor deposition was 1.36 ⁇ m.
  • FIG. 8E shows a planar SEM image of the CNT—Cu composite film produced in this example. It was found that a continuous film of Cu was formed on the CNT film.
  • Example 6 A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 525 W during Cu deposition and the deposition time was 24 seconds. The converted film thickness of the Cu film formed by vapor deposition was 4.97 ⁇ m. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8F. It was found that a continuous film of Cu was formed on the CNT film.
  • Example 7 A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1810 ° C. at 600 W during Cu deposition and the deposition time was 60 seconds. The converted film thickness of the Cu film formed by vapor deposition was 6.08 ⁇ m. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8G. It was found that a continuous film of Cu was formed on the CNT film.
  • Example 8 A CNT—Cu composite film was produced in the same manner as in Example 2 except that the tungsten boat was heated to about 1740 ° C. at 538 W during the deposition of Cu and the deposition time was set to 80 seconds. The converted film thickness of the Cu film formed by vapor deposition was 17.97 ⁇ m. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8H. It was found that a continuous film of Cu was formed on the CNT film.
  • Example 9 A CNT-Cu composite film was obtained in the same manner as in Example 1 except that the filtration amount of the CNT dispersion was 3 mL, and the tungsten boat was heated to about 1720 ° C. at 528 W during Cu deposition, and the deposition time was 80 seconds. . Next, the CNT-Cu composite film was mechanically peeled from the substrate, and Si was deposited on the CNT film of the CNT-Cu composite film as follows. A carbon boat having eight evaporation sections of 2 mm ⁇ 4 mm is installed in the vapor deposition chamber, and an organic substance and oxide adhering to the surface are removed on this using a 5 to 10% HF solution (purity) 99.9999% or more) was placed and used as a deposition source.
  • a 5 to 10% HF solution purity
  • the size of the deposition source is about 50 mm 2 .
  • the CNT-Cu composite film was disposed so that the CNT film faced the tungsten boat in parallel. At this time, the distance between the deposition source and the CNT film was 45 mm.
  • the CNT-Cu composite film was fixed in close contact with the surface of a copper block whose temperature can be controlled with a ceramic heater and an air-cooled tube.
  • the pressure in the chamber was reduced to 1 Pa with a rotary pump, and then argon gas was introduced at 10 sccm, and the pressure in the chamber was set to 13.3 Pa (0.1 Torr). After the pressure became constant, the CNT-Cu composite film was heated to 300 ° C.
  • Comparative Example 2 On the electrodeposited copper foil having a thickness of 10 ⁇ m (Niraco Cu113173, purity 99.9%), Si was deposited under the same conditions as in Example 9 to prepare a Cu—Si composite film.
  • a coin cell was prepared using the composite film of Comparative Example 2 as a negative electrode, a charge / discharge cycle test was performed, and changes in the discharge capacity were examined.
  • Example 10 CNT dispersion was adjusted by adding 2.5 mg of CNT to 20 mL of isopropanol and dispersing with ultrasonic waves, except that 20 mL of the dispersion was filtered using PTFE manufactured by Millipore with a pore size of 0.5 ⁇ m as a membrane filter.
  • PTFE manufactured by Millipore with a pore size of 0.5 ⁇ m as a membrane filter.
  • a CNT film supported on a substrate was produced.
  • a Cu film was formed on the CNT film on the substrate in the same manner as in Example 1 except that the tungsten boat was heated to about 1610 ° C. at 440 W during the deposition of Cu and the deposition time was set to 3 seconds.
  • the obtained CNT—Cu composite film had a CNT film thickness of 37 ⁇ m and a Cu film thickness of 0.031 ⁇ m.
  • FIGS. 11B to 11D show digital camera photographs of the CNT-Cu composite film after peeling from the substrate.
  • Cu itself is 0.031 ⁇ m, which is only one hundredth of the thickness of a general copper foil, and is not self-supporting, but the CNT film is self-supporting.
  • Cu foil is generally used for the negative electrode of a lithium ion battery, it is problematic that the Cu foil is heavy.
  • the weight per unit area was reduced to about 1/10 for the CNT film of this example and about 1/500 for the Cu vapor deposition film, compared to the commercially available Cu foil.
  • Example 11 A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 525 W during Cu deposition and the deposition time was 24 seconds. The thickness of the CNT film was about 1.5 ⁇ m. The converted film thickness of the Cu film formed by vapor deposition was 4.97 ⁇ m.
  • the obtained CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film.
  • Digital camera photographs of the obtained CNT-Cu composite film are shown in FIGS. 12 (a) to 12 (c).
  • a CNT-Cu composite film could be obtained as a self-supporting film.
  • Cu foil is generally used for the negative electrode of a lithium ion battery, it is problematic that the Cu foil is heavy. The weight per unit area was reduced to about 1/50 for the CNT film of this example and about 1/3 for the Cu vapor deposition film, compared to the commercially available Cu foil.
  • Example 12 Al was deposited with an average film thickness of 15 nm by RF magnetron sputtering on a Si substrate with a thermal oxide film (hereinafter simply referred to as “substrate”), and Al was oxidized by exposure to the atmosphere to form an Al 2 O 3 film. Furthermore, Fe was laminated with an average film thickness of 1 nm by RF magnetron sputtering to prepare a substrate with a catalyst. After the substrate was placed in a quartz glass circular tubular reactor and reduced for 10 minutes at 800 ° C.
  • a CNT-Cu composite film was obtained. Thereafter, the CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film.
  • a cross-sectional SEM image of the obtained CNT-Cu composite film is shown in FIG. 13A. It was found that a continuous film of Cu was formed on the vertically aligned CNT film.
  • FIGS. 13B and 13C A digital camera photograph of the CNT-Cu composite film in which the CNT vertical alignment film is contracted is shown in FIGS. 13B and 13C, a cross-sectional SEM image is shown in FIG. 13D, and a planar SEM image is shown in FIG. 13E.
  • FIG. 13B shows a CNT-Cu composite film viewed from the Cu film side
  • FIG. 13C shows a CNT-Cu composite film viewed from the CNT film side.
  • a network structure was obtained in which the CNT walls were standing upright at intervals of 10 to 20 ⁇ m on the Cu thin film. The interval between CNT walls can be changed over a wide range from 6 to 42 ⁇ m by performing the same operation except that the height of the CNT vertical alignment film is changed to 10 to 120 ⁇ m by changing the CNT synthesis time. It was.
  • Example 13 A Cu plate (Niraco Cu113321, purity 99.96%) (hereinafter simply referred to as “Cu substrate”) was prepared. An SEM image of the surface of the Cu substrate is shown in FIG. 14A. The Cu substrate had a streak texture (unevenness) extending in one direction on the surface. The average pitch of the irregularities was about 9 ⁇ m.
  • a Cu substrate with a catalyst was prepared by depositing Ta with an average film thickness of 30 nm, Al 2 O 3 with an average film thickness of 50 nm, and Fe with an average film thickness of 1 nm on a Cu substrate by RF magnetron sputtering. After the substrate was placed in a quartz glass circular tubular reactor and reduced for 10 minutes at 800 ° C.
  • Cu was deposited on the CNT film in the same manner as the Cu deposition in Example 12. Thereby, a Cu film was formed on the single-walled CNT vertical alignment film on the Cu substrate.
  • the converted film thickness of the Cu film formed by vapor deposition was 11 ⁇ m.
  • FIG. 14B A digital camera photograph of the obtained CNT-Cu composite film is shown in FIG. 14B, and a cross-sectional SEM image is shown in FIG. 14C.
  • the left side of FIG. 14B shows the Cu substrate after the CNT-Cu composite film is peeled off, and the right side shows the CNT-Cu composite film as viewed from the CNT film side. From these figures, it was found that a continuous film of Cu was formed on the vertically aligned CNT film.
  • the CNT vertical alignment film was shrunk by surface tension by exposing it to ethanol vapor with the CNT side facing down, condensing ethanol on the CNT, and then drying.
  • a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film is shown in FIG. 14D
  • an oblique SEM image is shown in FIG. 14E
  • a planar SEM image is shown in FIG. 14F.
  • a streak structure in which the CNT walls were regularly arranged in one direction on the Cu thin film was obtained.
  • the wall height was 5-7 ⁇ m.
  • the interval between CNT walls can be changed over a wide range from 10 to 64 ⁇ m by performing the same operation except that the height of the CNT vertical alignment film is changed to 9 to 64 ⁇ m by changing the CNT synthesis time. It was.
  • Example 14 Add 2 mg of several CNTs produced by the fluidized bed method described in Carbon 80, 339-350 (2014) as filamentous carbon to 30 mL of ethanol, and disperse for 40 minutes at an output of 90 W and a frequency of 45 kHz using an ultrasonic dispersing device. To obtain a CNT dispersion. 30 mL of the CNT dispersion liquid was filtered under reduced pressure using a membrane filter having a pore size of 0.1 ⁇ m to produce a CNT film having a thickness of about 30 ⁇ m on the membrane filter.
  • the CNT film and the membrane filter were separated from the membrane filter on which the CNT film was formed using tweezers to obtain a CNT self-supporting film.
  • the CNT film was supported on the substrate by placing the CNT film on the substrate while being wetted with ethanol and drying.
  • the sheet resistance of the CNT film was 5 ⁇ / sq.
  • an Al piece (Nilaco Al011487, purity 99.99%) was used as the deposition source, the substrate heating temperature was about 150 ° C., the tungsten boat was heated to about 1700 ° C. at 550 W, and the deposition time was 10 seconds. Except for the above, an Al film was deposited on the CNT film on the substrate in the same manner as Cu deposition in Example 12. The converted film thickness of the Al film formed by vapor deposition was 6.3 ⁇ m.
  • FIGS. 15A and 15B A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 15A and 15B, a planar SEM image is shown in FIG. 15C, and a cross-sectional SEM image is shown in FIG. 15D. The left side of FIG.
  • FIG. 15A shows the CNT-Al composite film seen from the Al film side, and the right side shows the remaining CNT film removed from the substrate after the CNT-Al composite film is peeled off.
  • FIG. 15B shows the CNT-Al composite film viewed from the CNT film side.
  • a composite film was obtained in which both were composed of CNT and Al but were well connected.
  • the sheet resistance of the CNT-Al composite film was 0.011 ⁇ / sq, which was lower than that of the CNT film alone.
  • the remaining CNTs after peeling the CNT-Al composite film maintained the film structure.
  • Another CNT-Al composite film can be newly obtained by holding the CNT film on the substrate again and forming a metal such as Al and peeling it off. That is, a CNT-Al composite film can be repeatedly obtained from the CNT film supported on the substrate.
  • Example 15 A CNT dispersion was obtained in the same manner as in Example 14 except that 0.5 wt% SDBS aqueous solution was used instead of ethanol. The CNT dispersion was centrifuged at 3000 rpm for 60 minutes, and the supernatant was collected. 20 mL of pure water was added to 0.5 mL of the supernatant and filtered under reduced pressure using a membrane filter having a pore size of 0.1 ⁇ m to produce a CNT film having a thickness of about 0.1 to 0.15 ⁇ m on the membrane filter.
  • the membrane filter on which the CNT film was formed was impregnated with pure water in a beaker to separate the CNT film and the membrane filter.
  • the CNT film floating on the water surface was scraped off with a substrate.
  • the CNT film was supported on the substrate.
  • a substrate with a CNT film was placed in a quartz glass tube, and kept at 800 ° C. for 20 minutes under a flow of 4 vol% H 2 diluted with Ar to decompose and remove SDBS adhering to the CNT film.
  • the substrate was heated to about 350 ° C. with a PG / PBN heater, the tungsten boat was heated to about 1700 ° C. with 500 W, and the deposition time was 30 seconds.
  • An Al film was deposited on the CNT film.
  • the converted film thickness of the Al film formed by vapor deposition was 5.2 ⁇ m.
  • FIGS. 16A and 16B A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 16A and 16B, a planar SEM image is shown in FIG. 16C, and a cross-sectional SEM image is shown in FIG. 16D.
  • the left side of FIG. 16A shows the substrate after the CNT-Al composite film is peeled off, and the right side shows the CNT-Al composite film as viewed from the Al film side.
  • FIG. 16B shows a CNT-Al composite film viewed from the CNT film side.
  • a composite film was obtained in which both were composed of CNT and Al but were well connected.
  • a single CNT film having a thickness of 0.1 to 0.15 ⁇ m is too thin to be self-supporting, but it can be made self-supporting by being combined with Al, and a low resistance of 0.011 ⁇ / sq has been realized.
  • Example 16 Filamentous carbon dispersion was filtered under reduced pressure in the same manner as in Example 14 except that 0.1 mg of several layers of CNT and 0.9 mg of vapor grown carbon fiber (CF) (VGCF manufactured by Showa Denko KK) were used as the filamentous carbon. On the membrane filter, a composite film (CF + CNT composite film) made of a mixture of CF and CNT having a thickness of about 13 ⁇ m was produced.
  • CF vapor grown carbon fiber
  • the CF + CNT composite membrane was separated from the membrane filter using tweezers and supported on the substrate.
  • FIGS. 17A and 17B A digital camera photograph of the obtained CF + CNT-Al composite film is shown in FIGS. 17A and 17B, a planar SEM image is shown in FIG. 17C, and a cross-sectional SEM image is shown in FIG. 17D.
  • FIGS. 17A and 17B A digital camera photograph of the obtained CF + CNT-Al composite film is shown in FIGS. 17A and 17B, a planar SEM image is shown in FIG. 17C, and a cross-sectional SEM image is shown in FIG. 17D. The left side of FIG.
  • FIG. 17A shows the substrate after the CF + CNT-Al composite film is peeled off, and the right side shows the CF + CNT-Al composite film as viewed from the Al film side.
  • FIG. 17B shows a CF + CNT-Al composite film viewed from the CF + CNT composite film side.
  • Example 17 CNT was synthesized in the same manner as in Example 12, and a single-walled CNT vertical alignment film having a thickness of 6 ⁇ m was formed on the substrate.
  • a cross-sectional SEM image of the single-walled CNT vertical alignment film is shown in FIG. 18A.
  • an Al film was deposited on the CNT film on the substrate in the same manner as in Example 15 except that the tungsten boat was heated to about 1700 ° C. at 520 W.
  • the converted film thickness of the Al film formed by vapor deposition was 5.0 ⁇ m.
  • FIGS. 18B and 18C A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 18B and 18C, and a cross-sectional SEM image is shown in FIG. 18D.
  • the substrate after the CNT-Al composite film is peeled off is shown on the left side of FIG. 18B, and the CNT-Al composite film viewed from the CNT film side is shown on the right side.
  • FIG. 18C shows a CNT-Al composite film viewed from the Al film side.
  • a composite film was obtained in which both were composed of CNT and Al but were well connected.
  • a single CNT vertical alignment film having a thickness of 6 ⁇ m is not self-supporting because of its vertical alignment and thinness, but it can be made self-supporting by compounding with Al, and a low resistance of 0.013 ⁇ / sq has been realized.
  • Example 18 A CNT dispersion was obtained in the same manner as in Example 14 except that 0.5 mg of several-layer CNT was used as the filamentous carbon. Moreover, activated carbon particles (AC) (YP-80F manufactured by Kuraray Chemical Co., Ltd.) (4.5 mg) was added to ethanol (30 mL), and the dispersion liquid was subjected to dispersion treatment at an output of 90 W and a frequency of 45 kHz for 40 minutes using an ultrasonic dispersion device. Obtained. By mixing these two dispersions, 60 mL of a dispersion (AC + CNT mixed dispersion) containing AC and CNT at a mass ratio of 9: 1 was obtained.
  • AC activated carbon particles
  • the AC + CNT mixed dispersion was filtered under reduced pressure using a membrane filter (JMWP manufactured by Millipore) having a pore size of 5 ⁇ m, and a composite film (AC + CNT composite film) made of a mixture of AC and CNT having a thickness of about 70 ⁇ m was formed on the membrane filter.
  • a membrane filter JMWP manufactured by Millipore
  • AC + CNT composite film made of a mixture of AC and CNT having a thickness of about 70 ⁇ m was formed on the membrane filter.
  • the AC + CNT composite membrane was separated from the membrane filter using tweezers, dried at 150 ° C. for 2 hours, and then supported on the substrate.
  • Al piece (Niraco Al011487, purity 99.99%) was used as a deposition source, the substrate heating temperature was about 150 ° C., the pressure in the chamber was 1 ⁇ 10 ⁇ 3 Pa, and the tungsten boat was about 110 W.
  • Al was vapor-deposited on the AC + CNT composite film in the same manner as the Cu vapor deposition in Example 1 except that the temperature was raised to 1700 ° C. and the vapor deposition time was 10 seconds.
  • the amount of Al source material during vapor deposition was changed to four types of 10, 20, 30, 40 mg, so that the equivalent film thickness was 0.3, 0.5, 0.8, 1.7 ⁇ m and 4 A street Al film was obtained.
  • FIG. 19A shows an AC + CNT-Al composite film viewed from the Al film side. As shown in these figures, a composite film composed of only AC, CNT, and Al and well connected to each other was obtained.
  • AC alone does not stand by itself because the adhesion between ACs is too low, but it can be made independent by combining CNT and Al.
  • the sheet resistance of the AC + CNT-Al composite film is 0.24, 0.14, 0.073, 0.003 when the equivalent film thickness of the Al film is 0.3, 0.5, 0.8, and 1.7 ⁇ m, respectively. It was 036 ⁇ / sq (see FIG. 19D).
  • the AC + CNT-Al composite film and the AC + CNT-Al composite film having an equivalent film thickness of 0.3, 0.5, 0.8, 1.7 ⁇ m are used as the working electrode, the AC-CNT film as the counter electrode, and Ag / AgCl.
  • the electrode as a reference electrode, cyclic voltammetry was performed in a 1M Na 2 SO 4 aqueous solution. The sweep potential range was ⁇ 1.0 to 0.6 V, and the sweep rate was 5 to 1000 mV / s.
  • FIG. 19E shows the sweep rate dependence of the specific capacity.
  • the AC + CNT film showed a high capacity of 108 F / g (based on the total electrode mass AC + CNT) at a low scanning speed of 5 mV / s, but the capacity greatly decreased to 15 F / g at a high scanning speed of 200 mV / s.
  • the AC + CNT-Al composite film on which Al with a converted film thickness of 0.8 ⁇ m is deposited exhibits a high capacity of 116 F / g (total electrode mass AC + CNT + Al standard) at a low scanning speed of 5 mV / s, and a high scanning speed of 200 mV / s. Even in s, the high capacity of 86 F / g was maintained.
  • the rate characteristics of the AC + CNT composite film were dramatically improved.
  • the composite film of this invention and its manufacturing method are not limited to the said embodiment, It can change suitably within the range of the technical idea described in the claim. it can.
  • the apparatuses for continuously producing the composite membranes of the first embodiment and the third embodiment have been described by taking the apparatus shown in FIGS. 6A and 6B as an example. It is only a specific example, and various changes and improvements can be made.
  • the conveyance belt is circulated using a pair of rolls around which the conveyance belt is stretched as the conveyance apparatus.
  • the conveyance belt is linear or curved or You may arrange
  • a drum (single roll) can be used instead of using a conveyor belt or a roll pair as the conveyor.
  • the surface of the drum can be a support on which an aggregate of filamentous carbon is formed, and a mechanism for forming an aggregate of filamentous carbon or a mechanism for depositing metal can be installed around the drum. it can.
  • a vapor deposition apparatus and a supply device for applying an active material on the downstream side in the transport direction of the apparatus shown in FIGS. 6A and 6B, the composite of the second embodiment and the fourth embodiment is provided. It can be retrofitted into a device that continuously produces membranes.
  • the composite film of the present invention has an advantage that it has low resistance and is difficult to peel from the current collector even if the volume of the active material changes. Therefore, by applying the composite film of the present invention to an electrode of a lithium ion battery, it is possible to increase the capacity and life of the lithium ion battery.

Abstract

A composite film 100 consisting exclusively of a filamentous carbon layer 20 formed of filamentous carbon 42 and a metal layer 10 formed of a metal, wherein a part or the whole of the metal layer 10 overlaps a part of the filamentous carbon layer 20 so as to give a coexisting area 60 where the filamentous carbon 42 and the metal coexist. Provided are the composite film 100 that has a novel structure and is self-supporting and a method for manufacturing the same.

Description

複合膜及びその製造方法Composite membrane and manufacturing method thereof
 本発明は、複合膜及びその製造方法、並びに、その複合膜を用いた電極及び蓄電デバイスに関する。 The present invention relates to a composite film, a manufacturing method thereof, and an electrode and an electricity storage device using the composite film.
 リチウムイオン電池のような二次電池や電気二重層キャパシタなどの蓄電デバイスは、パソコン、携帯電話などのモバイル機器の電源として使用されており、近年はこれらのモバイル機器用途のみならず、電気自動車やハイブリッド車などCOの環境負荷を小さくすることができる自動車の電源としても使用されている。しかし、電気自動車の普及のためには、リチウムイオン電池の重さ及び体積あたりの容量を増加させ、電気自動車による長距離の移動を可能にすることが必要である。 Energy storage devices such as secondary batteries such as lithium-ion batteries and electric double layer capacitors are used as power sources for mobile devices such as personal computers and mobile phones. In recent years, not only mobile devices but also electric vehicles and It is also used as a power source for automobiles that can reduce the environmental load of CO 2 such as hybrid cars. However, for the popularization of electric vehicles, it is necessary to increase the weight and capacity per volume of a lithium ion battery and to enable long-distance movement by electric vehicles.
 リチウムイオン電池の電極は、充放電時にリチウムイオンの吸蔵及び放出を行う活物質を備えている。活物質としては、一般的に、正極ではリチウム金属酸化物が使用され、負極では黒鉛が使用される。このような活物質を用いた電極は一般的に、活物質の粉末を、ポリフッ化ビニリデン等の非導電性ポリマーからなるバインダー、及び炭素繊維(CF)、カーボンブラック等からなる導電体と混合してペースト状にし、これを集電体であるアルミニウム(Al)箔や銅(Cu)箔に塗布して焼成することによって製造される。なお、バインダーは活物質を集電体上に固定する目的で使用され、導電体は集電体と活物質を電気的に接続する目的で使用されている。図20に示すように、このようにして製造された電極500では、集電体180上に、活物質130、導電体140及び非導電性のバインダー150が混在する層が形成されている。 The electrode of the lithium ion battery includes an active material that occludes and releases lithium ions during charging and discharging. As the active material, lithium metal oxide is generally used for the positive electrode, and graphite is used for the negative electrode. In an electrode using such an active material, an active material powder is generally mixed with a binder made of a non-conductive polymer such as polyvinylidene fluoride and a conductor made of carbon fiber (CF), carbon black, or the like. It is manufactured by applying a paste to an aluminum (Al) foil or a copper (Cu) foil as a current collector and baking it. The binder is used for the purpose of fixing the active material on the current collector, and the conductor is used for the purpose of electrically connecting the current collector and the active material. As shown in FIG. 20, in the electrode 500 manufactured in this way, a layer in which the active material 130, the conductor 140, and the nonconductive binder 150 are mixed is formed on the current collector 180.
 現在、リチウムイオン電池を高容量化するために、負極の活物質として黒鉛に代えてシリコン(Si)を使用することが検討されている。Siを負極の活物質として用いた負極の理論放電容量は約4200mAh/gと大きく、黒鉛を用いた負極の理論放電容量の10倍以上になり得るとされている。特許文献1において、図21に示すように集電体180上に直接Siからなる柱状構造体132を形成した電極が記載されている。 Currently, in order to increase the capacity of lithium ion batteries, the use of silicon (Si) instead of graphite as an active material for the negative electrode is being studied. The theoretical discharge capacity of the negative electrode using Si as the active material of the negative electrode is as large as about 4200 mAh / g, and is said to be 10 times or more the theoretical discharge capacity of the negative electrode using graphite. Patent Document 1 describes an electrode in which a columnar structure 132 made of Si is directly formed on a current collector 180 as shown in FIG.
WO2011/071154WO2011 / 071154
 図20に示されるような従来の電極500では、活物質130と集電体180の間の界面が二次元的であり接触面積が小さいことに加え、更にその二次元的な界面に非導電性のバインダー150が存在するため、活物質130と集電体180の間の抵抗が大きい。それゆえ、リチウムイオン電池の高容量化が妨げられる。また、リチウムイオン電池の使用中にバインダー150が劣化して活物質130が集電体180から剥離するという問題もある。 In the conventional electrode 500 as shown in FIG. 20, the interface between the active material 130 and the current collector 180 is two-dimensional and the contact area is small, and further, the two-dimensional interface is non-conductive. Therefore, the resistance between the active material 130 and the current collector 180 is large. Therefore, it is impeded to increase the capacity of the lithium ion battery. Further, there is a problem that the active material 130 is peeled off from the current collector 180 due to deterioration of the binder 150 during use of the lithium ion battery.
 また、図21に示されるような、集電体180上に直接Siの柱状構造体を形成して構成される電極をリチウムイオン電池の負極に用いた場合、充放電時のリチウムイオンの吸蔵及び放出に伴うSi活物質の体積変化が大きいために、充放電サイクル中にSiが集電体から剥離することがある。それゆえ、このような負極を用いたリチウムイオン電池は、サイクル特性などの蓄電特性が低いという問題がある。このため、サイクル特性に優れた蓄電デバイスが要望されている。 In addition, when an electrode configured by directly forming a Si columnar structure on a current collector 180 as shown in FIG. 21 is used for a negative electrode of a lithium ion battery, occlusion of lithium ions during charge / discharge and Since the volume change of the Si active material accompanying the release is large, Si may peel from the current collector during the charge / discharge cycle. Therefore, a lithium ion battery using such a negative electrode has a problem of low storage characteristics such as cycle characteristics. For this reason, the electrical storage device excellent in cycling characteristics is desired.
 そこで本発明の目的は、高容量で且つサイクル特性の優れた蓄電デバイスの電極として用いることができる複合膜、並びにその製造方法及び製造装置を提供することにある。また、本発明の別の目的は、新規な構造を有するフィラメント状炭素の集合体を有する自立膜、並びにその製造方法及び製造装置を提供することにある。本発明のさらなる目的は、種々の用途に使用可能で且つ自立性のある機能性複合膜、並びにその製造方法及び製造装置を提供することにある。 Accordingly, an object of the present invention is to provide a composite film that can be used as an electrode of an electricity storage device having a high capacity and excellent cycle characteristics, and a method and an apparatus for manufacturing the composite film. Another object of the present invention is to provide a self-supporting film having an aggregate of filamentous carbon having a novel structure, and a manufacturing method and manufacturing apparatus therefor. It is a further object of the present invention to provide a functional composite film that can be used for various applications and is self-supporting, as well as a manufacturing method and a manufacturing apparatus thereof.
 本発明の第1の態様に従えば、フィラメント状炭素から構成されたフィラメント状炭素層と、
 金属から構成された金属層とだけからなり、
 前記金属層の一部または全部が前記フィラメント状炭素層の一部と重複して、前記フィラメント状炭素と前記金属が共存する共存領域を有することを特徴とする自立した複合膜が提供される。
According to the first aspect of the present invention, a filamentous carbon layer composed of filamentous carbon;
It consists only of a metal layer composed of metal,
A self-supporting composite film is provided in which a part or all of the metal layer overlaps with a part of the filamentous carbon layer to have a coexistence region where the filamentous carbon and the metal coexist.
 前記複合膜において、前記金属層の一部が前記フィラメント状炭素層の一部と重複していてよい。 In the composite film, a part of the metal layer may overlap with a part of the filamentous carbon layer.
 前記複合膜において、前記フィラメント状炭素層が網目構造を有し、
 前記共存領域において、前記網目構造の網目内に前記金属が入り込んでいてよい。
In the composite film, the filamentous carbon layer has a network structure,
In the coexistence region, the metal may enter the mesh of the mesh structure.
 前記複合膜において、前記フィラメント状炭素層が前記フィラメント状炭素層の厚み方向に前記フィラメント状炭素が配向した垂直配向構造を有し、前記共存領域において、前記垂直配向構造の前記フィラメント状炭素間の空隙に前記金属が入り込んでいてよい。前記フィラメント状炭素が束となって、前記フィラメント状炭素層の厚み方向に直立した壁を形成してもよい。 In the composite film, the filamentous carbon layer has a vertical alignment structure in which the filamentous carbon is aligned in a thickness direction of the filamentous carbon layer, and in the coexistence region, the filamentous carbon layer has a vertical alignment structure. The metal may enter the gap. The filamentous carbon may be bundled to form an upright wall in the thickness direction of the filamentous carbon layer.
 本発明の第2の態様に従えば、金属から構成される金属層と
 フィラメント状炭素の集合体とだけからなり、
 前記フィラメント状炭素の集合体の一部が前記金属層中に含まれており、
 前記フィラメント状炭素の集合体の他部が前記金属層上で露出していることを特徴とする自立した複合膜が提供される。
According to the second aspect of the present invention, it consists only of a metal layer composed of metal and an aggregate of filamentous carbon,
A part of the aggregate of filamentous carbon is included in the metal layer,
A self-supporting composite film is provided in which the other part of the aggregate of filamentous carbon is exposed on the metal layer.
 第1の態様及び第2の態様の複合膜において、前記フィラメント状炭素がカーボンナノチューブを含んでよい。 In the composite film of the first aspect and the second aspect, the filamentous carbon may include carbon nanotubes.
 前記複合膜において、前記金属がCu、Al又はNiであってよい。 In the composite film, the metal may be Cu, Al, or Ni.
 本発明の第3の態様に従えば、第1の態様又は第2の態様の自立した複合膜と、
 前記フィラメント状炭素に付着した活物質とを有する機能性複合膜が提供される。
According to a third aspect of the present invention, the self-supporting composite membrane of the first aspect or the second aspect;
A functional composite film having an active material attached to the filamentous carbon is provided.
 本発明の第4の態様に従えば、フィラメント状炭素から構成されたフィラメント状炭素膜を作製する工程と、
 支持体上に支持された前記フィラメント状炭素膜上に金属を蒸着する工程と、
 前記フィラメント状炭素膜及び前記金属の複合膜を前記支持体から分離する工程とを有する複合膜の製造方法が提供される。
According to the fourth aspect of the present invention, a step of producing a filamentous carbon film composed of filamentous carbon;
Depositing a metal on the filamentous carbon film supported on a support;
There is provided a method for producing a composite membrane comprising a step of separating the filamentous carbon membrane and the composite membrane of metal from the support.
 前記複合膜の製造方法の前記フィラメント状炭素膜を作製する工程において、網目構造を有する前記フィラメント状炭素膜を作製してよい。 In the step of producing the filamentous carbon film in the method for producing the composite film, the filamentous carbon film having a network structure may be produced.
 前記複合膜の製造方法の前記フィラメント状炭素膜を作製する工程が、前記フィラメント状炭素膜の厚さ方向に前記フィラメント状炭素が配向するように、前記フィラメント状炭素を形成することを含んでよい。さらに、前記フィラメント状炭素膜及び前記金属の複合膜を前記支持体から分離する工程の後に、前記フィラメント状炭素膜を収縮させて、前記フィラメント状炭素の束からなる前記フィラメント状炭素層の厚さ方向に直立した壁を形成する工程を含んでよい。 The step of producing the filamentous carbon film of the method for producing the composite film may include forming the filamentous carbon so that the filamentous carbon is oriented in a thickness direction of the filamentous carbon film. . Further, after the step of separating the filamentous carbon film and the metal composite film from the support, the filamentous carbon film is contracted to reduce the thickness of the filamentous carbon layer comprising the bundle of filamentous carbon. Forming a wall upright in the direction may be included.
 前記複合膜の製造方法は、前記フィラメント状炭素膜上に金属を蒸着する工程の前に、前記フィラメント状炭素膜を前記支持体により支持する工程を含んでよい。 The method for producing the composite film may include a step of supporting the filamentous carbon film by the support before the step of depositing a metal on the filamentous carbon film.
 前記複合膜の製造方法において、前記支持体を移動させながら、移動方向上流側で前記支持体上に前記フィラメント状炭素膜を作製し、前記移動方向の下流側で前記支持体上の前記フィラメント状炭素膜に前記金属を蒸着してもよい。 In the method for producing the composite membrane, the filament-like carbon membrane is produced on the support on the upstream side in the movement direction while moving the support, and the filament-like carbon on the support on the downstream side in the movement direction. The metal may be deposited on the carbon film.
 前記複合膜の製造方法は、前記フィラメント状炭素膜の前記金属を蒸着した面と反対の面上に活物質を付着させる工程をさらに有してもよい。 The method for producing the composite film may further include a step of attaching an active material on the surface of the filamentous carbon film opposite to the surface on which the metal is deposited.
 本発明の第5の態様に従えば、第4の態様の製造方法によって形成された複合膜が提供される。 According to the fifth aspect of the present invention, there is provided a composite film formed by the manufacturing method of the fourth aspect.
 本発明の第6の態様に従えば、第1、第2又は第5の態様の複合膜または第3の態様の機能性複合膜を有する電極が提供される。 According to the sixth aspect of the present invention, there is provided an electrode having the composite film of the first, second or fifth aspect or the functional composite film of the third aspect.
 本発明の第7の態様に従えば、第6の態様の電極を備える蓄電デバイスが提供される。 According to the seventh aspect of the present invention, an electricity storage device including the electrode of the sixth aspect is provided.
 本発明の第8の態様に従えば、金属層と、フィラメント状炭素の集合体だけを有し、前記フィラメント状炭素の集合体の一部が前記金属層中に含まれており、前記フィラメント状炭素の集合体の他部が前記金属層上で露出している自立した複合膜を製造するための装置であって、
 支持体を連続的に移動する移動機構と、
 前記移動方向上流側に設けられて前記支持体上に前記フィラメント状炭素の集合体を形成する集合体形成部と、
 前記移動方向下流側に設けられて前記フィラメント状炭素の集合体上に金属を蒸着する蒸着機構とを備える複合膜製造装置が提供される。
According to the eighth aspect of the present invention, only the metal layer and the filamentous carbon aggregate are included, and a part of the filamentous carbon aggregate is included in the metal layer, An apparatus for producing a self-supporting composite film in which the other part of the carbon aggregate is exposed on the metal layer,
A moving mechanism for continuously moving the support;
An assembly forming portion that is provided on the upstream side in the moving direction and forms an assembly of the filamentous carbon on the support;
There is provided a composite film manufacturing apparatus provided with a vapor deposition mechanism provided on the downstream side in the moving direction and vapor-depositing metal on the aggregate of filamentous carbon.
 前記複合膜製造装置は、前記移動機構が前記支持体を回転移動するロールを備えてもよい。 The composite film manufacturing apparatus may include a roll in which the moving mechanism rotates and moves the support.
 複合膜製造装置において、前記集合体形成部と前記蒸着機構を連続的に動作させることにより、長尺の複合膜を前記支持体上に形成し、該長尺の複合膜を前記支持体から連続的に剥離することによって前記長尺の複合膜を得てもよい。 In the composite film manufacturing apparatus, by continuously operating the assembly forming unit and the vapor deposition mechanism, a long composite film is formed on the support, and the long composite film is continuously formed from the support. Alternatively, the long composite film may be obtained by peeling off the film.
 本発明の複合膜の製造方法において、フィラメント状炭素膜上に金属を蒸着することにより、フィラメント状炭素膜に金属層の一部が入り込むため、フィラメント状炭素と前記金属とが共存する共存層が形成される。そのため、本発明の製造方法によって製造された複合膜は、フィラメント状炭素膜と金属層の間の電気抵抗が小さい。さらに、この複合膜のフィラメント状炭素膜の金属を蒸着した面と反対の面上にリチウムイオン電池の活物質として用いることができる材料を付着させた機能性複合膜は、リチウムイオン電池の電極として使用することができる。更に、各種二次電池や電気二重層キャパシタなどの蓄電デバイスの活物質を付着した複合膜は、蓄電デバイスの電極として使用することができる。本発明の複合膜を用いた電極は、集電体と活物質の間の電気抵抗が小さく、また、活物質がリチウムイオンを吸蔵及び放出して体積変化しても、集電体から剥離しにくい。そのため、本発明の複合膜及びその製造方法は、リチウムイオン電池等の蓄電デバイスの電極等の用途に好適に用いることができる。 In the composite film manufacturing method of the present invention, by depositing a metal on the filamentous carbon film, a part of the metal layer enters the filamentous carbon film. Therefore, there is a coexistence layer in which the filamentous carbon and the metal coexist. It is formed. Therefore, the composite film manufactured by the manufacturing method of the present invention has a small electrical resistance between the filamentous carbon film and the metal layer. Furthermore, a functional composite film in which a material that can be used as an active material of a lithium ion battery is attached to the surface of the composite film opposite to the metal-deposited surface of the filamentous carbon film is used as an electrode of a lithium ion battery. Can be used. Furthermore, a composite film to which an active material of an electricity storage device such as various secondary batteries or electric double layer capacitors is attached can be used as an electrode of the electricity storage device. The electrode using the composite film of the present invention has low electrical resistance between the current collector and the active material, and even if the active material occludes and releases lithium ions and changes its volume, it peels off from the current collector. Hateful. Therefore, the composite film and the manufacturing method thereof of the present invention can be suitably used for applications such as electrodes of power storage devices such as lithium ion batteries.
図1(a)は、第1実施形態の複合膜の概略断面図であり、図1(b)、(c)は第2実施形態の機能性複合膜の概略断面図である。FIG. 1A is a schematic cross-sectional view of the composite film of the first embodiment, and FIGS. 1B and 1C are schematic cross-sectional views of the functional composite film of the second embodiment. 図2(a)は、第3実施形態の複合膜の概略断面図であり、図2(b)は図2(a)の複合膜の変形形態の概略断面図であり、図2(c)、(d)は第4実施形態の機能性複合膜の概略断面図である。2A is a schematic cross-sectional view of the composite film of the third embodiment, and FIG. 2B is a schematic cross-sectional view of a modified form of the composite film of FIG. 2A. FIG. (D) is a schematic sectional drawing of the functional composite film of 4th Embodiment. 図3は、複合膜の製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method for manufacturing the composite membrane. 図4(a)~(e)は第1実施形態の複合膜及び第2実施形態の機能性複合膜の製造方法の各工程を概念的に示す図である。4 (a) to 4 (e) are diagrams conceptually showing each process of the manufacturing method of the composite film of the first embodiment and the functional composite film of the second embodiment. 図5(a)~(e)は第3実施形態の複合膜及び第4実施形態の機能性複合膜の製造方法の各工程を概念的に示す図である。FIGS. 5A to 5E are diagrams conceptually showing each process of the method for producing the composite film of the third embodiment and the functional composite film of the fourth embodiment. 図6(a)は第1実施形態の複合膜を連続プロセスで製造するための装置の概略図であり、図6(b)は第3実施形態の複合膜を連続プロセスで製造するための装置の概略図である。FIG. 6A is a schematic view of an apparatus for manufacturing the composite film of the first embodiment in a continuous process, and FIG. 6B is an apparatus for manufacturing the composite film of the third embodiment in a continuous process. FIG. 図7(a)、(b)は実施例1のCNT-Cu複合膜を2つに分割した試料の平面SEM写真を示し、図7(c)~(e)は比較例1のCNT-Cu複合膜を2つに分割した試料の平面SEM写真を示す。FIGS. 7A and 7B show planar SEM photographs of the sample obtained by dividing the CNT-Cu composite film of Example 1 into two, and FIGS. 7C to 7E show the CNT-Cu of Comparative Example 1. FIG. The plane SEM photograph of the sample which divided the composite film into two is shown. 図8Aは、実施例2のCNT膜の平面SEM像を示す。FIG. 8A shows a planar SEM image of the CNT film of Example 2. FIG. 図8Bは、実施例2のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8B shows a planar SEM image of the CNT—Cu composite film of Example 2 as seen from the Cu side. 図8Cは、実施例3のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8C shows a planar SEM image of the CNT—Cu composite film of Example 3 viewed from the Cu side. 図8Dは、実施例4のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8D shows a planar SEM image of the CNT—Cu composite film of Example 4 as viewed from the Cu side. 図8Eは、実施例5のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8E shows a planar SEM image of the CNT—Cu composite film of Example 5 viewed from the Cu side. 図8Fは、実施例6のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8F shows a planar SEM image of the CNT—Cu composite film of Example 6 viewed from the Cu side. 図8Gは、実施例7のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8G shows a planar SEM image of the CNT—Cu composite film of Example 7 viewed from the Cu side. 図8Hは、実施例8のCNT-Cu複合膜のCu側から見た平面SEM像を示す。FIG. 8H shows a planar SEM image of the CNT—Cu composite film of Example 8 viewed from the Cu side. 図9は、実施例9で作製したSi-CNT-Cu複合膜の断面SEM像を示す。FIG. 9 shows a cross-sectional SEM image of the Si—CNT—Cu composite film produced in Example 9. 図10は実施例9及び比較例2の複合膜の充放電サイクル特性を示す。FIG. 10 shows the charge / discharge cycle characteristics of the composite films of Example 9 and Comparative Example 2. 図11(a)は、実施例10でCNT-Cu複合膜を基板から剥離する様子を示すデジタルカメラ写真であり、図11(b)~(d)は実施例10の自立したCNT-Cu複合膜のデジタルカメラ写真である。FIG. 11A is a digital camera photograph showing a state in which the CNT—Cu composite film is peeled from the substrate in Example 10, and FIGS. 11B to 11D are self-supporting CNT—Cu composites of Example 10. It is a digital camera photograph of the film. 図12(a)~(c)は実施例11の自立したCNT-Cu複合膜のデジタルカメラ写真である。FIGS. 12A to 12C are digital camera photographs of the self-supporting CNT—Cu composite film of Example 11. FIG. 図13Aは実施例12の自立したCNT-Cu複合膜の断面SEM像である。FIG. 13A is a cross-sectional SEM image of the self-supporting CNT—Cu composite film of Example 12. 図13Bは実施例12でCNT垂直配向膜を収縮させたCNT-Cu複合膜をCu膜側から撮影したデジタルカメラ写真である。FIG. 13B is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12 taken from the Cu film side. 図13Cは実施例12でCNT垂直配向膜を収縮させたCNT-Cu複合膜をCNT膜側から撮影したデジタルカメラ写真である。FIG. 13C is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12 taken from the CNT film side. 図13Dは実施例12でCNT垂直配向膜を収縮させたCNT-Cu複合膜の網目構造を示す断面SEM像である。13D is a cross-sectional SEM image showing a network structure of a CNT-Cu composite film obtained by shrinking a CNT vertical alignment film in Example 12. FIG. 図13Eは実施例12でCNT垂直配向膜を収縮させたCNT-Cu複合膜の網目構造を示す平面SEM像である。FIG. 13E is a planar SEM image showing the network structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 12. 図14Aは実施例13で用いたCu基板の表面のSEM像である。14A is an SEM image of the surface of the Cu substrate used in Example 13. FIG. 図14Bは実施例13の自立したCNT-Cu複合膜及びCNT-Cu複合膜を剥離した後の基板のデジタルカメラ写真であり、CNT-Cu複合膜はCNT膜側から撮影されている。FIG. 14B is a digital camera photograph of the substrate after the CNT-Cu composite film and the CNT-Cu composite film of Example 13 were peeled off, and the CNT-Cu composite film was taken from the CNT film side. 図14Cは実施例13の自立したCNT-Cu複合膜の断面SEM像である。FIG. 14C is a cross-sectional SEM image of the self-supporting CNT—Cu composite film of Example 13. 図14Dは実施例13でCNT垂直配向膜を収縮させたCNT-Cu複合膜をCNT膜側から撮影したデジタルカメラ写真である。FIG. 14D is a digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13 taken from the CNT film side. 図14Eは実施例13でCNT垂直配向膜を収縮させたCNT-Cu複合膜の筋状構造を示す斜めSEM像である。FIG. 14E is an oblique SEM image showing the streak structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13. 図14Fは実施例13でCNT垂直配向膜を収縮させたCNT-Cu複合膜の筋状構造を示す平面SEM像である。FIG. 14F is a planar SEM image showing the streak structure of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film in Example 13. 図15Aは実施例14の自立したCNT-Al複合膜及び残余のCNT膜のデジタルカメラ写真であり、CNT-Al複合膜はAl膜側から撮影されている。FIG. 15A is a digital camera photograph of the self-supporting CNT-Al composite film and the remaining CNT film of Example 14, and the CNT-Al composite film is taken from the Al film side. 図15Bは実施例14の自立したCNT-Al複合膜をCNT膜側から撮影したデジタルカメラ写真である。FIG. 15B is a digital camera photograph of the self-supporting CNT-Al composite film of Example 14 taken from the CNT film side. 図15Cは実施例14の自立したCNT-Al複合膜の平面SEM像である。FIG. 15C is a planar SEM image of the self-supporting CNT—Al composite film of Example 14. 図15Dは実施例14の自立したCNT-Al複合膜の断面SEM像である。FIG. 15D is a cross-sectional SEM image of the self-supported CNT—Al composite film of Example 14. 図16Aは実施例15の自立したCNT-Al複合膜及びCNT-Al複合膜を剥離した後の基板のデジタルカメラ写真であり、CNT-Al複合膜はAl膜側から撮影されている。FIG. 16A is a digital camera photograph of the substrate after peeling the self-standing CNT-Al composite film and the CNT-Al composite film of Example 15, and the CNT-Al composite film was taken from the Al film side. 図16Bは実施例15の自立したCNT-Al複合膜をCNT膜側から撮影したデジタルカメラ写真であるFIG. 16B is a digital camera photograph of the self-standing CNT-Al composite film of Example 15 taken from the CNT film side. 図16Cは実施例15の自立したCNT-Al複合膜の平面SEM像である。FIG. 16C is a planar SEM image of the self-supporting CNT—Al composite film of Example 15. 図16Dは実施例15の自立したCNT-Al複合膜の断面SEM像である。FIG. 16D is a cross-sectional SEM image of the self-supporting CNT—Al composite film of Example 15. 図17Aは実施例16の自立したCF+CNT-Al複合膜及びCF+CNT-Al複合膜を剥離した後の基板のデジタルカメラ写真であり、CF+CNT-Al複合膜はAl膜側から撮影されている。FIG. 17A is a digital camera photograph of the substrate after peeling the self-supporting CF + CNT-Al composite film and CF + CNT-Al composite film of Example 16, and the CF + CNT-Al composite film is taken from the Al film side. 図17Bは実施例16の自立したCF+CNT-Al複合膜をCNT膜側から撮影したデジタルカメラ写真であるFIG. 17B is a digital camera photograph of the self-supporting CF + CNT-Al composite film of Example 16 taken from the CNT film side. 図17Cは実施例16の自立したCF+CNT-Al複合膜の平面SEM像である。FIG. 17C is a planar SEM image of the self-supported CF + CNT-Al composite film of Example 16. 図17Dは実施例16の自立したCF+CNT-Al複合膜の断面SEM像である。FIG. 17D is a cross-sectional SEM image of the self-supporting CF + CNT-Al composite film of Example 16. 図18Aは実施例17の垂直配向CNT膜の断面SEM像である。18A is a cross-sectional SEM image of the vertically aligned CNT film of Example 17. FIG. 図18Bは実施例17の自立したCNT-Al複合膜及びCNT-Al複合膜を剥離した後の基板のデジタルカメラ写真であり、CNT-Al複合膜はCNT膜側から撮影されている。FIG. 18B is a digital camera photograph of the substrate after peeling the self-standing CNT-Al composite film and the CNT-Al composite film of Example 17, and the CNT-Al composite film was taken from the CNT film side. 図18Cは実施例17の自立したCNT-Al複合膜をAl膜側から撮影したデジタルカメラ写真であるFIG. 18C is a digital camera photograph of the self-supported CNT-Al composite film of Example 17 taken from the Al film side. 図18Dは実施例17の自立したCNT-Al複合膜の断面SEM像である。FIG. 18D is a cross-sectional SEM image of the self-supported CNT—Al composite film of Example 17. 図19Aは実施例18の自立したAC+CNT-Al複合膜をAl膜側から撮影したデジタルカメラ写真であるFIG. 19A is a digital camera photograph of the self-supporting AC + CNT-Al composite film of Example 18 taken from the Al film side. 図19Bは実施例18の自立したAC+CNT-Al複合膜の平面SEM像である。FIG. 19B is a planar SEM image of the self-supporting AC + CNT-Al composite film of Example 18. 図19Cは実施例18の自立したAC+CNT-Al複合膜の断面SEM像である。FIG. 19C is a cross-sectional SEM image of the self-supported AC + CNT—Al composite film of Example 18. 図19Dは実施例18のAC+CNT-Al複合膜のシート抵抗をAl膜の換算膜厚に対してプロットしたグラフである。FIG. 19D is a graph plotting the sheet resistance of the AC + CNT-Al composite film of Example 18 against the equivalent film thickness of the Al film. 図19Eは実施例18のAC+CNT複合膜及びAC+CNT-Al複合膜を用いたサイクリックボルタンメトリにおける比容量の掃引レート依存性を示すグラフである。FIG. 19E is a graph showing the sweep rate dependence of the specific capacity in cyclic voltammetry using the AC + CNT composite film and the AC + CNT-Al composite film of Example 18. 図20は、非導電性ポリマーからなるバインダーを使用した従来技術のリチウムイオン電池の電極の概略断面図である。FIG. 20 is a schematic cross-sectional view of an electrode of a prior art lithium ion battery using a binder made of a non-conductive polymer. 図21は、Siの柱状構造体を有する従来技術のリチウムイオン電池の電極の概略断面図である。FIG. 21 is a schematic cross-sectional view of an electrode of a prior art lithium ion battery having a Si columnar structure.
 以下、本発明の複合膜及び複合膜の製造方法、及びその複合膜を用いた蓄電デバイスの実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of a composite film, a method for manufacturing the composite film, and a power storage device using the composite film of the present invention will be described with reference to the drawings.
[第1実施形態]
 第1実施形態の複合膜100は、図1(a)に示すように、フィラメント状炭素の集合体であるフィラメント状炭素層(膜)20と、金属から構成された金属層10とだけから構成された自立膜であり、金属層10の一部がフィラメント状炭素層20の一部と重複している。このため、フィラメント状炭素と金属が共存する共存層(共存領域)60が、金属層10中またはフィラメント状炭素層20中に存在している。すなわち、フィラメント状炭素膜20は、フィラメント状炭素42だけからなる第1層40と、共存層60とを有しており、金属層10は、金属だけからなる第2層80と共存層60とを有する。複合膜100は、第1層40と共存層60の間、及び共存層60と第2層80の間に別の層(中間層)を有さず、共存層60が第1層40と第2層80の間の界面又は境界をなしている。フィラメント状炭素層20に注目すれば、フィラメント状炭素膜20の一方の面(フィラメント状炭素の集合体の一部)が金属層10中に含まれており、フィラメント状炭素膜20の他方の面(フィラメント状炭素の集合体20の他部)が前記金属層10上で露出している。なお、フィラメント状炭素膜20は、フィラメント状炭素42に加えて、活性炭等の粒状炭素を含んでいてもよい。すなわち、本願において「フィラメント状炭素層」、「フィラメント状炭素の集合体」、「フィラメント状炭素だけからなる第1層」は、フィラメント状炭素に加えて粒状の炭素を含んでよい。
[First Embodiment]
As shown in FIG. 1A, the composite film 100 of the first embodiment is composed of only a filamentous carbon layer (film) 20 that is an aggregate of filamentous carbon and a metal layer 10 made of metal. A part of the metal layer 10 overlaps with a part of the filamentous carbon layer 20. Therefore, a coexistence layer (coexistence region) 60 in which filamentous carbon and metal coexist exists in the metal layer 10 or the filamentous carbon layer 20. That is, the filamentous carbon film 20 includes the first layer 40 made of only the filamentous carbon 42 and the coexistence layer 60, and the metal layer 10 includes the second layer 80 made of only the metal and the coexistence layer 60. Have The composite film 100 does not have another layer (intermediate layer) between the first layer 40 and the coexistence layer 60 and between the coexistence layer 60 and the second layer 80. It forms an interface or boundary between the two layers 80. If attention is paid to the filamentous carbon layer 20, one side of the filamentous carbon film 20 (a part of the aggregate of filamentous carbon) is included in the metal layer 10, and the other side of the filamentous carbon film 20. (The other part of the aggregate 20 of filamentous carbon) is exposed on the metal layer 10. The filamentous carbon film 20 may contain granular carbon such as activated carbon in addition to the filamentous carbon 42. That is, in the present application, the “filamentous carbon layer”, “aggregate of filamentous carbon”, and “first layer made of only filamentous carbon” may contain granular carbon in addition to the filamentous carbon.
 なお、本発明に従う複合膜は、フィラメント状炭素だけからなる第1層40と、フィラメント状炭素と金属が共存する共存層60を有すればよく、図1(a)に示した金属だけからなる第2層80は必須ではない。すなわち、金属層10の全部がフィラメント状炭素層20の一部と重複していてもよい。前述のように、第1実施形態の複合膜100は、フィラメント状炭素42だけからなる第1層40及び共存層60を含むフィラメント状炭素膜20と、金属だけからなる第2層80及び共存層60とを含む金属層10と有するので、最初に、第1層40、第2層80及び共存層60について説明する。 The composite film according to the present invention only needs to have the first layer 40 made of only filamentous carbon and the coexistence layer 60 in which the filamentous carbon and metal coexist, and is made of only the metal shown in FIG. The second layer 80 is not essential. That is, all of the metal layer 10 may overlap with a part of the filamentous carbon layer 20. As described above, the composite film 100 of the first embodiment includes the filamentous carbon film 20 including the first layer 40 and the coexistence layer 60 made of only the filamentous carbon 42, the second layer 80 and the coexistence layer made of only the metal. First, the first layer 40, the second layer 80, and the coexistence layer 60 will be described.
<第1層>
 本実施形態の複合膜100において、第1層40は、導電性のフィラメント状炭素42から、特にフィラメント状炭素42の集合体から構成される。「フィラメント状炭素の集合体」とは、多数のフィラメント状炭素が空隙を保ちつつ重なり又は交差し合ってできている集合体であり、例えば、網目状や垂直配列型のような所定方向に配列した構造を含む。フィラメント状炭素42として、カーボンナノチューブ(以下、適宜「CNT」と略する)、気相成長炭素繊維に代表されるカーボンナノファイバー(以下、適宜「CNF」と略する)、カーボンファイバー(以下、適宜「CF」と略する)等を用いることができるが、フィラメント状炭素42は、CNT、CNF、またはこれらの混合物を含むことが好ましく、CNTを含むことがより好ましい。CNTとしては平均で1層以上30層以下のグラフェン円筒から構成されるCNTを用いることがより好ましい。CNTとしては、例えば、Carbon 49(6),1972-1979(2011)、Carbon 80,339-350(2014)等に記載の方法で合成したものを用いることができる。市販のCNT、CNF及び/又はCFを用いてもよい。
<First layer>
In the composite film 100 of the present embodiment, the first layer 40 is composed of conductive filamentous carbon 42, in particular, an aggregate of filamentous carbon 42. “Aggregate of filamentous carbon” is an aggregate formed by overlapping or intersecting a large number of filamentous carbons while maintaining voids. For example, the filamentous carbon is arranged in a predetermined direction such as a mesh or vertical arrangement type. Including the structure. Examples of the filamentous carbon 42 include carbon nanotubes (hereinafter abbreviated as “CNT” as appropriate), carbon nanofibers represented by vapor-grown carbon fibers (hereinafter abbreviated as “CNF” as appropriate), carbon fibers (hereinafter, as appropriate). The filamentous carbon 42 preferably contains CNT, CNF, or a mixture thereof, and more preferably contains CNT. As the CNT, it is more preferable to use CNT composed of graphene cylinders having an average of 1 to 30 layers. As CNTs, for example, those synthesized by the method described in Carbon 49 (6), 1972-1979 (2011), Carbon 80, 339-350 (2014), etc. can be used. Commercially available CNT, CNF and / or CF may be used.
 図1(a)に示すように、フィラメント状炭素42は、網目状の構造44を形成している。網目構造44は、3nm~1000nmの範囲内の大きさの網目(立体的な空隙)を含むことが好ましい。 As shown in FIG. 1A, the filamentous carbon 42 forms a network structure 44. The network structure 44 preferably includes a network (steric void) having a size within a range of 3 nm to 1000 nm.
<第2層>
 第2層80は、金属から構成され、特に低抵抗な金属から構成されることが好ましい。複合膜100をリチウムイオン電池の正極に用いる場合には、金属としてアルミニウム等を用いてよい。複合膜100をリチウムイオン電池の負極に用いる場合には、金属として銅、ニッケル等を用いてよい。第2層80の厚みは、用途に応じて任意の厚さにすることができるが、例えば本実施形態の複合膜100をリチウムイオン電池の負極に用いる場合には、0.03μm~30μmの範囲内であることが好ましく、1~10μmの範囲内にあるとより好ましい。第2層80の厚みが10μm以下であることにより、複合膜100がより軽量化される。第2層80の厚みが1μm以上であることにより、複合膜100の抵抗をより小さくできる。
<Second layer>
The second layer 80 is made of a metal, and is particularly preferably made of a low resistance metal. When the composite film 100 is used for a positive electrode of a lithium ion battery, aluminum or the like may be used as a metal. When the composite film 100 is used for the negative electrode of a lithium ion battery, copper, nickel, or the like may be used as the metal. The thickness of the second layer 80 can be set to any thickness depending on the application. For example, when the composite film 100 of the present embodiment is used for the negative electrode of a lithium ion battery, the thickness is in the range of 0.03 μm to 30 μm. Is preferably within the range of 1 to 10 μm. When the thickness of the second layer 80 is 10 μm or less, the composite film 100 is further reduced in weight. When the thickness of the second layer 80 is 1 μm or more, the resistance of the composite film 100 can be further reduced.
<共存層>
 共存層60は、フィラメント状炭素42と金属が共存している層又は領域である。共存層60の金属は、第2層80を構成する金属と同様の金属である。すなわち、共存層60は、第1層40のフィラメント状炭素42と第2層80の金属が部分的に入り交じった構造を有している。このため、図1(a)に示すように、共存層60は、第1層40と同様に、フィラメント状炭素42による網目構造44を有し、該網目構造44の網目(立体的な空隙)内に金属が入り込んでいる。網目構造44は、3nm~1000nmの範囲内の大きさの網目を含んでよい。フィラメント状炭素42との網目内に金属が入り込んでいることにより、フィラメント状炭素42と金属が機械的及び電気的に接続される。
<Coexistence layer>
The coexistence layer 60 is a layer or region in which the filamentous carbon 42 and metal coexist. The metal of the coexistence layer 60 is the same metal as the metal constituting the second layer 80. That is, the coexistence layer 60 has a structure in which the filamentous carbon 42 of the first layer 40 and the metal of the second layer 80 are partially mixed. For this reason, as shown in FIG. 1A, the coexistence layer 60 has a network structure 44 of filamentous carbon 42 as in the first layer 40, and the network (three-dimensional voids) of the network structure 44. There is metal inside. The mesh structure 44 may include a mesh having a size in the range of 3 nm to 1000 nm. Since the metal has entered the mesh with the filamentous carbon 42, the filamentous carbon 42 and the metal are mechanically and electrically connected.
 後述する製造方法により複合膜100を製造することにより、共存層60の厚みを0.01μm~10μmの範囲内とすることができる。共存層60の厚みが前記範囲内である場合、第1層40と第2層80が十分に機械的及び電気的に接続される。 The thickness of the coexistence layer 60 can be set within the range of 0.01 μm to 10 μm by manufacturing the composite film 100 by the manufacturing method described later. When the thickness of the coexistence layer 60 is within the above range, the first layer 40 and the second layer 80 are sufficiently mechanically and electrically connected.
 本実施形態の複合膜100において、上述の様にフィラメント状炭素42の網目内に金属が入り込んでいることにより、非導電性材料からなるバインダーを用いることなくフィラメント状炭素と金属が機械的に接続される。また、フィラメント状炭素42の網目内に金属が入り込んでいることによりフィラメント状炭素と金属が電気的にも接続されること、及び上述のように複合膜100が非導電性材料からなるバインダーを含まないことから、本実施形態の複合膜100は低抵抗である。さらに、フィラメント状炭素42が金属から露出しているため、本実施形態の複合膜100は表面積が大きい。それゆえ、本実施形態の複合膜100は、リチウムイオン電池の電極の集電箔等として好適に用いることができる。 In the composite film 100 of the present embodiment, the metal enters the mesh of the filamentous carbon 42 as described above, so that the filamentous carbon and the metal are mechanically connected without using a binder made of a nonconductive material. Is done. Further, since the metal enters the mesh of the filamentous carbon 42, the filamentous carbon and the metal are also electrically connected, and the composite film 100 includes a binder made of a non-conductive material as described above. Therefore, the composite film 100 of this embodiment has a low resistance. Furthermore, since the filamentous carbon 42 is exposed from the metal, the composite film 100 of this embodiment has a large surface area. Therefore, the composite film 100 of the present embodiment can be suitably used as a current collector foil for an electrode of a lithium ion battery.
[第2実施形態]
 図1(b)、(c)に第1実施形態の自立した複合膜に活物質を付着させた機能性複合膜を示す。第2実施形態の機能性複合膜300、400は、図1(a)に示す第1実施形態の複合膜100と同様の、フィラメント状炭素42からなる第1層40と、金属からなる第2層80と、第1層40と第2層80の間に形成されたフィラメント状炭素42と金属が共存する共存層60とを有する複合膜を有する。機能性複合膜300、400は、第1実施形態の自立した複合膜と、さらに、第1層40の共存層60が形成された面と反対の面上において、フィラメント状炭素42に付着している電極活物質(以下、適宜「活物質」という)34を有する。すなわち、機能性複合膜300、400は、第1実施形態の複合膜100の第1層40を構成するフィラメント状炭素42に活物質34が付着した構成を有する。機能性複合膜300、400の第1層40、第2層80及び共存層60は、第1実施形態の複合膜100の第1層40、第2層80及び共存層60と同様に構成されるので、その説明は省略する。
[Second Embodiment]
1B and 1C show a functional composite film in which an active material is attached to the self-supporting composite film of the first embodiment. The functional composite films 300 and 400 of the second embodiment are the same as the composite film 100 of the first embodiment shown in FIG. 1A, and the first layer 40 made of filamentous carbon 42 and the second made of metal. The composite film has a layer 80, a filamentary carbon 42 formed between the first layer 40 and the second layer 80, and a coexistence layer 60 in which a metal coexists. The functional composite films 300 and 400 adhere to the filamentous carbon 42 on the surface opposite to the surface on which the coexisting layer 60 of the first layer 40 is formed and the self-supporting composite film of the first embodiment. Electrode active material (hereinafter referred to as “active material” as appropriate) 34. That is, the functional composite films 300 and 400 have a configuration in which the active material 34 is attached to the filamentous carbon 42 that forms the first layer 40 of the composite film 100 of the first embodiment. The first layer 40, the second layer 80, and the coexistence layer 60 of the functional composite films 300, 400 are configured in the same manner as the first layer 40, the second layer 80, and the coexistence layer 60 of the composite film 100 of the first embodiment. Therefore, the description is omitted.
<活物質>
 活物質34としては、種々の機能を有する物質を使用することができる。例えば機能性複合膜300、400をリチウムイオン電池の負極として用いる場合には、活物質34としてリチウムイオンを吸蔵及び脱離できる材料、例えば、Si、Si酸化物、SiとSi以外の他金属元素を含むSi複合酸化物、グラファイト、ハードカーボン、黒鉛、非晶質炭素などの炭素材料、Li、Sn、AlなどのLiと合金を形成する材料、SnOのようなSn酸化物、SnとSn以外の他金属元素を含むSn複合酸化物、チタン酸リチウム、Li等を用いることができる。リチウムイオン電池の正極として用いる場合には、活物質34としてLiCoO、LiMn、LiFePO、Li(Ni-Mn-Co)O、Sなどを用いることができる。これらは単独で用いても複数種を混合して用いることもできる。
<Active material>
As the active material 34, materials having various functions can be used. For example, when the functional composite films 300 and 400 are used as a negative electrode of a lithium ion battery, a material capable of inserting and extracting lithium ions as the active material 34, for example, Si, Si oxide, other metal elements other than Si and Si Si composite oxides containing, carbon materials such as graphite, hard carbon, graphite, and amorphous carbon, materials that form alloys with Li, such as Li, Sn, Al, Sn oxides such as SnO, other than Sn and Sn Sn composite oxides containing other metal elements, lithium titanate, Li, or the like can be used. When used as a positive electrode of a lithium ion battery, LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni—Mn—Co) O 2 , S, or the like can be used as the active material 34. These may be used alone or in combination of two or more.
 「活物質34がフィラメント状炭素に付着している」とは、活物質34が第1層40の共存層60が形成された面と反対の面から第1層40の網目構造44の内部に活物質34が入り込んでいる形態(図1(b)参照)、及びフィラメント状炭素42の表面を活物質34が覆うように付着している形態(図1(c)参照)を含む。また、機能性複合膜300、400が有する活物質34の一部がフィラメント状炭素42による網目構造44に入り込んでいてもよいし、機能性複合膜300、400が有する活物質34の全部がフィラメント状炭素42による網目構造44に入り込んでいてもよい。また、機能性複合膜300、400が有する活物質34がフィラメント状炭素42による網目構造44の全体に入り込んでいて共存層60と直接接していてもよいし、機能性複合膜300、400が有する活物質34がフィラメント状炭素42による網目構造44の一部に入り込んでいて共存層60と直接接していなくてもよい。 “The active material 34 is attached to the filamentous carbon” means that the active material 34 is inside the network structure 44 of the first layer 40 from the surface opposite to the surface on which the coexisting layer 60 of the first layer 40 is formed. It includes a form in which the active material 34 has entered (see FIG. 1B) and a form in which the active material 34 is attached so as to cover the surface of the filamentous carbon 42 (see FIG. 1C). Further, a part of the active material 34 included in the functional composite films 300 and 400 may enter the network structure 44 of the filamentous carbon 42, or all of the active material 34 included in the functional composite films 300 and 400 may be filaments. It may enter the network structure 44 of the carbon-like carbon 42. Further, the active material 34 included in the functional composite films 300 and 400 may enter the entire network structure 44 of the filamentous carbon 42 and may be in direct contact with the coexisting layer 60, or the functional composite films 300 and 400 may include the active material 34. The active material 34 does not need to be in direct contact with the coexistence layer 60 by entering a part of the network structure 44 of the filamentous carbon 42.
 機能性複合膜300、400をリチウムイオン電池に代表される二次電池の電極として用いた場合、活物質34は充放電時のリチウムイオンの吸蔵及び放出に伴って大きく体積変化するが、活物質34がフィラメント状炭素42による網目構造44に入り込んでいる、又は活物質34がフィラメント状炭素42の表面を覆うように付着しているため、フィラメント状炭素42が撓むことにより活物質34の体積変化を吸収(緩和)することができ、活物質34が第1層40から剥離することが防止される。 When the functional composite films 300 and 400 are used as electrodes of a secondary battery typified by a lithium ion battery, the active material 34 greatly changes in volume with the insertion and extraction of lithium ions during charge and discharge. 34 has entered the network structure 44 of the filamentous carbon 42, or the active material 34 is attached so as to cover the surface of the filamentous carbon 42, so that the volume of the active material 34 is deformed by the deflection of the filamentous carbon 42. The change can be absorbed (relaxed), and the active material 34 is prevented from peeling from the first layer 40.
 また、上述の様に、第1実施形態の複合膜100は、フィラメント状炭素42が金属から露出しているため、表面積が大きい。したがって、第1実施形態の複合膜100の第1層40を構成するフィラメント状炭素42に活物質34が付着した構成を有する本実施形態の機能性複合膜300、400は、活物質34と第1層40の接触面積が大きい(接触点が多い)。それゆえ、機能性複合膜300、400において、活物質34とフィラメント状炭素42から構成される第1層40が機械的に良好に接続される。そのため、機能性複合膜300、400をリチウムイオン電池の電極として用いた場合、充放電時に活物質34の体積が大きく変化しても、活物質34が第1層40から剥離しにくい。したがって、機能性複合膜300、400をリチウムイオン電池に代表される二次電池の電極として用いることにより、長寿命の二次電池を製造することができる。 Further, as described above, the composite film 100 of the first embodiment has a large surface area because the filamentous carbon 42 is exposed from the metal. Therefore, the functional composite films 300 and 400 of this embodiment having a configuration in which the active material 34 is attached to the filamentous carbon 42 constituting the first layer 40 of the composite film 100 of the first embodiment include the active material 34 and the first active material 34. The contact area of one layer 40 is large (many contact points). Therefore, in the functional composite films 300 and 400, the first layer 40 composed of the active material 34 and the filamentous carbon 42 is mechanically well connected. Therefore, when the functional composite films 300 and 400 are used as electrodes of a lithium ion battery, the active material 34 is unlikely to peel from the first layer 40 even if the volume of the active material 34 changes greatly during charging and discharging. Therefore, a long-life secondary battery can be manufactured by using the functional composite films 300 and 400 as electrodes of a secondary battery represented by a lithium ion battery.
 また、活物質34と第1層40の接触面積が大きいことにより、活物質34とフィラメント状炭素42から構成される第1層40は電気的にも良好に接続される(接触抵抗が小さい)。さらに、本実施形態の機能性複合膜300、400において、第1実施形態の複合膜100と同様に、フィラメント状炭素42の網目内に金属が入り込んでいることにより、フィラメント状炭素42と金属が、非導電性材料からなるバインダーを介することなく接続されている。そのため、フィラメント状炭素42からなる第1層40と金属は、低抵抗に接続される。それゆえ、本実施形態の機能性複合膜300、400において、活物質34と金属は低抵抗に接続される。したがって、機能性複合膜300、400をリチウムイオン電池などの二次電池の電極として用いることにより、高容量のリチウムイオン電池のような二次電池を製造することができる。 Further, since the contact area between the active material 34 and the first layer 40 is large, the first layer 40 composed of the active material 34 and the filamentous carbon 42 is electrically connected well (the contact resistance is small). . Furthermore, in the functional composite films 300 and 400 of the present embodiment, as in the composite film 100 of the first embodiment, since the metal enters the mesh of the filamentous carbon 42, the filamentous carbon 42 and the metal are separated from each other. The connection is made without using a binder made of a non-conductive material. Therefore, the first layer 40 made of filamentary carbon 42 and the metal are connected with low resistance. Therefore, in the functional composite films 300 and 400 of the present embodiment, the active material 34 and the metal are connected with low resistance. Therefore, by using the functional composite films 300 and 400 as electrodes of a secondary battery such as a lithium ion battery, a secondary battery such as a high capacity lithium ion battery can be manufactured.
 機能性複合膜300、400は、上述のように活物質34と第1層40の接触面積が大きいため、バインダーを用いなくても活物質34を第1層40上に固定することができるが、図1(b)に示す機能性複合膜300において、活物質34を第1層40に固定するための非導電性ポリマーからなるバインダー(不図示)を含んでいてもよい。この場合、機能性複合膜300はさらに、カーボンナノファイバー(CNF)、カーボンブラック等からなる導電材(不図示)を含んでも良い。上述の様に第1層40は導電性のフィラメント状炭素42からなり、高い表面積を持っているため、活物質34とフィラメント状炭素42の接触面積が大きく、バインダーを添加しても十分な導電性を確保できる。また、導電材を添加することで、活物質34からなる層が第1層40よりも厚い場合にも活物質34からなる層の垂直方向の導電性を十分に確保できる。また、導電材が第1層40の網目に入り込むため活物質34と第一層40の間の導電性を十分に確保できる。 Since the functional composite films 300 and 400 have a large contact area between the active material 34 and the first layer 40 as described above, the active material 34 can be fixed on the first layer 40 without using a binder. In the functional composite film 300 shown in FIG. 1B, a binder (not shown) made of a non-conductive polymer for fixing the active material 34 to the first layer 40 may be included. In this case, the functional composite film 300 may further include a conductive material (not shown) made of carbon nanofiber (CNF), carbon black, or the like. As described above, the first layer 40 is composed of the conductive filamentous carbon 42 and has a high surface area. Therefore, the contact area between the active material 34 and the filamentous carbon 42 is large, and sufficient conductivity is obtained even when a binder is added. Can be secured. Further, by adding a conductive material, the conductivity in the vertical direction of the layer made of the active material 34 can be sufficiently secured even when the layer made of the active material 34 is thicker than the first layer 40. In addition, since the conductive material enters the network of the first layer 40, sufficient conductivity between the active material 34 and the first layer 40 can be ensured.
[第3実施形態]
 図2(a)に示すように、第3実施形態の複合膜100aは、上記第1実施形態の複合膜100と同様に、フィラメント状炭素の集合体であるフィラメント状炭素(膜)20aと、金属から構成された金属層10aとだけから構成された自立膜であり、金属層10の一部がフィラメント状炭素層20aの一部と重複している。このため、フィラメント状炭素と金属が共存する共存層(共存領域)60aが、金属層10a中またはフィラメント状炭素層20a中に存在している。すなわち、フィラメント状炭素膜20aは、フィラメント状炭素42だけからなる第1層40aと、共存層60aとを有しており、金属層10は、金属だけからなる第2層80aと共存層60aとを有する。複合膜100aは、第1層40aと共存層60aの間、及び共存層60aと第2層80aの間に別の層(中間層)を有さず、共存層60aが第1層40aと第2層80aの間の界面又は境界をなしている。フィラメント状炭素層20aに注目すれば、フィラメント状炭素膜20の一方の面(フィラメント状炭素の集合体の一部)が金属層10a中に含まれており、フィラメント状炭素膜20aの他方の面(フィラメント状炭素の集合体20の他部)が前記金属層10a上で露出している。
[Third Embodiment]
As shown in FIG. 2A, the composite film 100a of the third embodiment, like the composite film 100 of the first embodiment, is a filamentous carbon (film) 20a that is an aggregate of filamentous carbon, It is a self-supporting film comprised only from the metal layer 10a comprised from the metal, and a part of metal layer 10 has overlapped with a part of filamentous carbon layer 20a. For this reason, the coexistence layer (coexistence area | region) 60a in which filamentous carbon and a metal coexist exists in the metal layer 10a or the filamentous carbon layer 20a. That is, the filamentous carbon film 20a has a first layer 40a made only of the filamentous carbon 42 and a coexistence layer 60a, and the metal layer 10 has a second layer 80a made only of a metal and a coexistence layer 60a. Have The composite film 100a does not have another layer (intermediate layer) between the first layer 40a and the coexistence layer 60a, and between the coexistence layer 60a and the second layer 80a. It forms an interface or boundary between the two layers 80a. Paying attention to the filamentous carbon layer 20a, one surface of the filamentous carbon film 20 (part of the aggregate of filamentous carbon) is included in the metal layer 10a, and the other surface of the filamentous carbon film 20a. (The other part of the filament-like carbon aggregate 20) is exposed on the metal layer 10a.
 第3実施形態の複合膜100aは、図2(a)に示すように、第1層40a及び共存層60aにおいて、フィラメント状炭素42aが第1層40a及び共存層60aの厚み方向に配向(垂直配向)して、フィラメント状炭素42aの垂直配向構造46が形成されている。垂直配向構造46において、第2層80aの表面に垂直な方向に延在した複数のフィラメント状炭素42aが互いに空隙を有して隣接しており、共存層60aにおいて、該空隙内に金属が入り込んでいる。フィラメント状炭素42aの垂直配向構造46は3nm~1000nmの範囲内の大きさの空隙を含んでよい。なお、複合膜100aの第1層40a、第2層80a及び共存層60aは、第1実施形態の複合膜100の第1層40、第2層80及び共存層60と同様の材料により構成されている。 In the composite film 100a of the third embodiment, as shown in FIG. 2A, in the first layer 40a and the coexistence layer 60a, the filamentous carbon 42a is oriented (perpendicular in the thickness direction of the first layer 40a and the coexistence layer 60a. The vertical alignment structure 46 of the filamentous carbon 42a is formed. In the vertical alignment structure 46, a plurality of filamentous carbons 42a extending in a direction perpendicular to the surface of the second layer 80a are adjacent to each other with a gap, and in the coexistence layer 60a, metal enters the gap. It is out. The vertical alignment structure 46 of the filamentous carbon 42a may include voids having a size in the range of 3 nm to 1000 nm. The first layer 40a, the second layer 80a, and the coexistence layer 60a of the composite film 100a are made of the same material as the first layer 40, the second layer 80, and the coexistence layer 60 of the composite film 100 of the first embodiment. ing.
 本実施形態の複合膜100aにおいて、上述の様に垂直配向したフィラメント状炭素42aの縦穴状の隙間に金属が入り込んでいることにより、非導電性材料からなるバインダーを用いることなくフィラメント状炭素と金属が機械的に接続される。また、フィラメント状炭素42aの網目内に金属が入り込んでいることによりフィラメント状炭素と金属が電気的にも接続されること、及び上述のように複合膜100aが非導電性材料からなるバインダーを含まないことから、本実施形態の複合膜100aは低抵抗である。さらに、フィラメント状炭素42aが金属から露出しているため、本実施形態の複合膜100aは表面積が大きい。それゆえ、第3実施形態の複合膜100aは、第1実施形態の複合膜100と同様に、リチウムイオン電池等の蓄電デバイスの電極に使用される集電箔等として好適に用いることができる。 In the composite film 100a of the present embodiment, since the metal enters the vertical hole-like gaps of the filament-like carbon 42a vertically oriented as described above, the filament-like carbon and the metal can be used without using a binder made of a non-conductive material. Are mechanically connected. Further, since the metal enters the mesh of the filamentous carbon 42a, the filamentous carbon and the metal are also electrically connected, and the composite film 100a includes a binder made of a nonconductive material as described above. Therefore, the composite film 100a of this embodiment has a low resistance. Furthermore, since the filamentous carbon 42a is exposed from the metal, the composite film 100a of this embodiment has a large surface area. Therefore, like the composite film 100 of the first embodiment, the composite film 100a of the third embodiment can be suitably used as a current collector foil or the like used for an electrode of an electricity storage device such as a lithium ion battery.
 図2(b)に、第3実施形態の複合膜100aの変形形態を示す。変形形態の複合膜100bにおいて、垂直配向したフィラメント状炭素42bは束となって第1層40b及び共存層60bの厚み方向に直立した壁41bを形成している。壁41bは、第1層40b及び共存層60bの厚み方向から見たときにランダムな網目構造46bを形成している(図13E参照)。網目構造46bは、1~200μmの網目(空隙)を含んでよい。このような構造により、網目に種々の活物質を導入することができ、フィラメント状炭素が倒れにくく直立構造を維持し易くなり、性能に優れた蓄電デバイスの電極を作製できる。また、フィラメント状炭素の束からなる直立した壁は、一方向に規則的に並んだ筋状構造等の網目構造とは異なる任意の構造を形成してよい。 FIG. 2B shows a modification of the composite film 100a of the third embodiment. In the deformed composite film 100b, the vertically oriented filamentous carbon 42b is bundled to form a wall 41b that stands upright in the thickness direction of the first layer 40b and the coexistence layer 60b. The wall 41b forms a random network structure 46b when viewed from the thickness direction of the first layer 40b and the coexistence layer 60b (see FIG. 13E). The network structure 46b may include a network (void) of 1 to 200 μm. With such a structure, various active materials can be introduced into the mesh, the filamentous carbon is less likely to collapse, and an upright structure can be easily maintained, and an electrode of an electricity storage device with excellent performance can be manufactured. Further, the upright wall made of a bundle of filamentous carbon may form an arbitrary structure different from a network structure such as a streak structure regularly arranged in one direction.
[第4実施形態]
 図2(c)、(d)に示す機能性複合膜300a、400aは、第3実施形態の自立した複合膜100aに活物質を付着させた機能性複合膜を示す。図2(a)に示す複合膜100aと同様に、フィラメント状炭素42aからなる第1層40a、金属からなる第2層80a、及び第1層40aと第2層80aの間に形成されたフィラメント状炭素42aと金属が共存する共存層60aを有する。機能性複合膜300a、400aはさらに、第1層40aの共存層60aが形成された面と反対の面上において、フィラメント状炭素42aに付着している活物質34aを有する。すなわち、第4実施形態の機能性複合膜300a、400aは、第3実施形態の複合膜100aの第1層40aを構成するフィラメント状炭素42aに活物質34aが付着した構成を有する。機能性複合膜300a、400aの第1層40a、第2層80a及び共存層60aは、上記第3実施形態の機能性複合膜300の第1層40a、第2層80a及び共存層60aと同様に構成され、機能性複合膜300a、400aの活物質34aは上記第2実施形態の機能性複合膜300、400の活物質34と同様に構成されるので、それらの詳細な説明は省略する。
[Fourth Embodiment]
The functional composite films 300a and 400a shown in FIGS. 2C and 2D are functional composite films in which an active material is attached to the self-supporting composite film 100a of the third embodiment. Similar to the composite film 100a shown in FIG. 2A, a first layer 40a made of filamentary carbon 42a, a second layer 80a made of metal, and a filament formed between the first layer 40a and the second layer 80a. A coexistence layer 60a in which the carbon-like carbon 42a and the metal coexist. The functional composite films 300a and 400a further have an active material 34a attached to the filamentous carbon 42a on the surface of the first layer 40a opposite to the surface on which the coexistence layer 60a is formed. That is, the functional composite films 300a and 400a of the fourth embodiment have a configuration in which the active material 34a is attached to the filamentous carbon 42a that constitutes the first layer 40a of the composite film 100a of the third embodiment. The first layer 40a, the second layer 80a and the coexistence layer 60a of the functional composite films 300a and 400a are the same as the first layer 40a, the second layer 80a and the coexistence layer 60a of the functional composite film 300 of the third embodiment. Since the active material 34a of the functional composite films 300a and 400a is configured similarly to the active material 34 of the functional composite films 300 and 400 of the second embodiment, detailed description thereof will be omitted.
 「活物質34aがフィラメント状炭素に付着している」とは、活物質34aが第1層40aの共存層60aが形成された面と反対の面から第1層40aの垂直配向構造46の内部に活物質34aが入り込んだ形態(図2(c)参照)、又はフィラメント状炭素42aの表面を活物質34aが覆うように付着している形態(図2(d)参照)を含む。また、機能性複合膜300a、400aが有する活物質34aの一部がフィラメント状炭素42aによる垂直配向構造46に入り込んでいてもよいし、機能性複合膜300a、400aが有する活物質34aの全部がフィラメント状炭素42aによる垂直配向構造46に入り込んでいてもよい。また、機能性複合膜300a、400aが有する活物質34aがフィラメント状炭素42aによる網目構造44aの全体に入り込んでいて共存層60aと直接接していてもよいし、機能性複合膜300a、400aが有する活物質34aがフィラメント状炭素42aによる網目構造44aの一部に入り込んでいて共存層60aと直接接していなくてもよい。 “The active material 34a is attached to the filamentous carbon” means that the active material 34a is inside the vertical alignment structure 46 of the first layer 40a from the surface opposite to the surface on which the coexisting layer 60a of the first layer 40a is formed. In which the active material 34a enters (see FIG. 2 (c)), or the surface of the filamentous carbon 42a is attached so as to cover the active material 34a (see FIG. 2 (d)). Further, a part of the active material 34a included in the functional composite films 300a and 400a may enter the vertical alignment structure 46 of the filamentous carbon 42a, or the entire active material 34a included in the functional composite films 300a and 400a may be included. It may enter the vertical alignment structure 46 by the filamentous carbon 42a. Further, the active material 34a included in the functional composite films 300a and 400a may enter the entire network structure 44a of the filamentous carbon 42a and may be in direct contact with the coexistence layer 60a, or the functional composite films 300a and 400a may include the active material 34a. The active material 34a may enter a part of the network structure 44a of the filamentous carbon 42a and may not be in direct contact with the coexistence layer 60a.
 機能性複合膜300a、400aをリチウムイオン電池の電極として用いた場合、活物質34aは充放電時のリチウムイオンの吸蔵及び放出に伴って大きく体積変化するが、活物質34aがフィラメント状炭素42aによる垂直配向構造46に入り込んでいる、又は活物質34aがフィラメント状炭素42aの表面を覆うように付着しているため、フィラメント状炭素42aが撓むことで活物質34aの体積変化を吸収(緩和)することができ、活物質34aが第1層40aから剥離することが防止される。 When the functional composite films 300a and 400a are used as electrodes of a lithium ion battery, the active material 34a changes greatly in volume with the insertion and extraction of lithium ions during charging and discharging, but the active material 34a is made of filamentous carbon 42a. Since the vertical alignment structure 46 enters or the active material 34a adheres so as to cover the surface of the filamentous carbon 42a, the filamentous carbon 42a bends to absorb (relax) the volume change of the active material 34a. It is possible to prevent the active material 34a from peeling from the first layer 40a.
 また、上述の様に、第3実施形態の複合膜100aは、フィラメント状炭素42aが金属から露出しているため、表面積が大きい。したがって、第3実施形態の複合膜100aの第1層40aを構成するフィラメント状炭素42aに活物質34aが付着した構成を有する本実施形態の機能性複合膜300a、400aは、活物質34aと第1層40aの接触面積が大きい(接触点が多い)。それゆえ、機能性複合膜300a、400aにおいて、活物質34aとフィラメント状炭素42aから構成される第1層40aが機械的に良好に接続される。そのため、機能性複合膜300a、400aをリチウムイオン電池に代表される電極として用いた場合、充放電時に活物質34aの体積が大きく変化しても、活物質34aが第1層40aから剥離しにくい。したがって、機能性複合膜300a、400aをリチウムイオン電池などの蓄電デバイスの電極として用いることにより、長寿命の蓄電デバイスを製造することができる。 Also, as described above, the composite film 100a of the third embodiment has a large surface area because the filamentous carbon 42a is exposed from the metal. Therefore, the functional composite films 300a and 400a of the present embodiment having a configuration in which the active material 34a is attached to the filamentous carbon 42a constituting the first layer 40a of the composite film 100a of the third embodiment includes the active material 34a and the first active material 34a. The contact area of one layer 40a is large (many contact points). Therefore, in the functional composite films 300a and 400a, the first layer 40a composed of the active material 34a and the filamentous carbon 42a is mechanically well connected. Therefore, when the functional composite films 300a and 400a are used as electrodes typified by a lithium ion battery, even if the volume of the active material 34a changes greatly during charging and discharging, the active material 34a is difficult to peel from the first layer 40a. . Therefore, by using the functional composite films 300a and 400a as electrodes of an electricity storage device such as a lithium ion battery, a long-life electricity storage device can be manufactured.
 また、活物質34aと第1層40aの接触面積が大きいことにより、活物質34aとフィラメント状炭素42aから構成される第1層40aは電気的にも良好に接続される(接触抵抗が小さい)。さらに、本実施形態の機能性複合膜300a、400aにおいて、第3実施形態の複合膜100aと同様に、フィラメント状炭素42aの垂直配向構造46内に金属が入り込んでいることにより、フィラメント状炭素42aと金属が、非導電性材料からなるバインダーを介することなく接続されている。そのため、フィラメント状炭素42aからなる第1層40aと金属は、低抵抗に接続される。それゆえ、本実施形態の機能性複合膜300a、400aにおいて、活物質34aと金属は低抵抗に接続される。更に、機能性複合膜300a、400aにおいて、フィラメント状炭素42aが金属からなる第2層80aに対して垂直に配向しているため、フィラメント状炭素42aが最短距離で活物質34aを金属からなる第2層80aと繋げることができる。そのため、活物質34aの層が厚い場合も、活物質34aと第2層80aを低抵抗に接続できる。したがって、機能性複合膜300a、400aをリチウムイオン電池で代表される二次電池の電極として用いることにより、高容量のリチウムイオン電池などの二次電池を製造することができる。 Further, since the contact area between the active material 34a and the first layer 40a is large, the first layer 40a composed of the active material 34a and the filamentous carbon 42a is electrically connected well (the contact resistance is small). . Furthermore, in the functional composite films 300a and 400a of the present embodiment, as in the composite film 100a of the third embodiment, the metal enters the vertical alignment structure 46 of the filamentous carbon 42a, whereby the filamentous carbon 42a. And the metal are connected without a binder made of a non-conductive material. Therefore, the first layer 40a made of filamentary carbon 42a and the metal are connected to a low resistance. Therefore, in the functional composite films 300a and 400a of the present embodiment, the active material 34a and the metal are connected with low resistance. Furthermore, in the functional composite films 300a and 400a, since the filamentous carbon 42a is oriented perpendicular to the second layer 80a made of metal, the filamentous carbon 42a has the shortest distance and the active material 34a is made of metal. It can be connected to the two layers 80a. Therefore, even when the layer of the active material 34a is thick, the active material 34a and the second layer 80a can be connected with low resistance. Therefore, a secondary battery such as a high-capacity lithium ion battery can be manufactured by using the functional composite films 300a and 400a as electrodes of a secondary battery represented by a lithium ion battery.
 機能性複合膜300a、400aは、上述の様に活物質34aと第1層40aの接触面積が大きいため、バインダーを用いなくても活物質34aを第1層40a上に固定することができるが、図2(c)に示す機能性複合膜300aにおいて、活物質34aを第1層40aに固定するための非導電性ポリマーからなるバインダーを含んでいてもよい。この場合、機能性複合膜300aはさらに、カーボンナノファイバー(CNF)、カーボンブラック等からなる導電材を含んでいても良い。上述の様に第1層40aは導電性のフィラメント状炭素42aからなり、高い表面積を持っているため、活物質34aとフィラメント状炭素42aの接触面積が大きく、バインダーを添加しても十分な導電性を確保できる。また、導電材を添加することで、活物質34aからなる層が第1層40aよりも厚い場合にも活物質34aからなる層の垂直方向の導電性を十分に確保できる。また、導電材が第1層40aの隙間に入り込むため活物質34aと第1層40aの間の導電性を十分に確保できる。 Since the functional composite films 300a and 400a have a large contact area between the active material 34a and the first layer 40a as described above, the active material 34a can be fixed on the first layer 40a without using a binder. In the functional composite film 300a shown in FIG. 2 (c), a binder made of a nonconductive polymer for fixing the active material 34a to the first layer 40a may be included. In this case, the functional composite film 300a may further include a conductive material made of carbon nanofiber (CNF), carbon black, or the like. As described above, the first layer 40a is made of the conductive filament carbon 42a and has a high surface area. Therefore, the contact area between the active material 34a and the filament carbon 42a is large, and sufficient conductivity can be obtained even if a binder is added. Can be secured. Further, by adding a conductive material, it is possible to sufficiently ensure the conductivity in the vertical direction of the layer made of the active material 34a even when the layer made of the active material 34a is thicker than the first layer 40a. In addition, since the conductive material enters the gap between the first layers 40a, the conductivity between the active material 34a and the first layer 40a can be sufficiently ensured.
 なお、第3実施形態の自立した複合膜100aに活物質を付着させる代わりに、変形形態の複合膜100bに活物質を付着させて機能性複合膜を得ることもできる。 In addition, instead of attaching the active material to the self-supporting composite film 100a of the third embodiment, the functional composite film can be obtained by attaching the active material to the composite film 100b in a modified form.
[第1実施形態の複合膜及び第2実施形態の機能性複合膜の製造方法]
 上記第1実施形態の複合膜100、及び第2実施形態の機能性複合膜300、400を製造する方法について説明する。本実施形態の製造方法は、図3に示すように、主に、フィラメント状炭素からなる膜(以下、適宜「フィラメント状炭素膜」という)を作製する工程S1と、作製したフィラメント状炭素膜を支持体(基板)により支持するフィラメント状炭素膜支持工程S2と、支持体に支持されたフィラメント状炭素膜上に金属を蒸着する金属蒸着工程S3と、フィラメント状炭素膜及び金属の複合膜を支持体から分離(剥離)する複合膜分離工程S4と、フィラメント状炭素膜の金属を蒸着した面と反対の面上に活物質を付着させる活物質付着工程S5とを有する。なお、本発明に従う複合膜の製造方法は、フィラメント状炭素膜支持工程S2及び活物質付着工程S5を有さなくてもよい。すなわち、本実施形態に従う複合膜の製造方法において、フィラメント状炭素膜支持工程S2及び活物質付着工程S5は随意の工程である。
[Method of Manufacturing Composite Film of First Embodiment and Functional Composite Film of Second Embodiment]
A method for manufacturing the composite film 100 of the first embodiment and the functional composite films 300 and 400 of the second embodiment will be described. As shown in FIG. 3, the manufacturing method of the present embodiment includes a step S1 for mainly producing a film made of filamentous carbon (hereinafter referred to as “filamentous carbon film” as appropriate), and the produced filamentous carbon film. Supporting a filamentous carbon film supporting step S2 supported by a support (substrate), a metal deposition step S3 for depositing metal on the filamentary carbon film supported by the support, and supporting a composite film of the filamentous carbon film and the metal A composite membrane separation step S4 for separating (separating) from the body, and an active material attaching step S5 for attaching an active material on the surface of the filamentous carbon film opposite to the surface on which the metal is deposited. In addition, the manufacturing method of the composite film according to this invention does not need to have filamentous carbon film support process S2 and active material adhesion process S5. That is, in the method for manufacturing a composite film according to the present embodiment, the filamentous carbon film supporting step S2 and the active material attaching step S5 are optional steps.
<フィラメント状炭素膜作製工程S1>
 フィラメント状炭素膜(フィラメント状炭素の集合体)は、例えば、スプレーコートやブレードコートにより、基板上にフィラメント状炭素の分散液を塗布・乾燥する方法、メンブレンフィルタを用いてフィラメント状炭素の分散液を濾過する方法等により形成することができる。
<Filamentary carbon film production step S1>
Filamentous carbon films (aggregates of filamentous carbon) are, for example, a method of applying and drying a dispersion of filamentous carbon on a substrate by spray coating or blade coating, a dispersion of filamentous carbon using a membrane filter It can form by the method of filtering.
 フィラメント状炭素の分散液は、界面活性剤の水溶液にCNT、CNF等のフィラメント状炭素を加え、超音波分散させることにより調整することができる。界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム(SDBS)等を用いることができる。なお、市販のCNT分散液又はCNF分散液を用いてもよい。 The dispersion of filamentous carbon can be adjusted by adding filamentous carbon such as CNT or CNF to an aqueous solution of a surfactant and ultrasonically dispersing it. As the surfactant, for example, sodium dodecylbenzenesulfonate (SDBS) can be used. A commercially available CNT dispersion or CNF dispersion may be used.
 メンブレンフィルタを用いてフィラメント状炭素の分散液を濾過する方法によりフィラメント状炭素膜を形成する場合、図4(a)に示すように、メンブレンフィルタ140を用いてフィラメント状炭素分散液120を吸引濾過し、フィラメント状炭素を分散媒から分離することにより、メンブレンフィルタ140上にフィラメント状炭素膜20を得ることができる。メンブレンフィルタ140としては、VCWPフィルタ、PTFEフィルタ、シリカ繊維フィルタ等を用いることができる。 When forming a filamentous carbon film by a method of filtering a filamentous carbon dispersion using a membrane filter, the filamentous carbon dispersion 120 is suction filtered using a membrane filter 140 as shown in FIG. The filamentous carbon film 20 can be obtained on the membrane filter 140 by separating the filamentous carbon from the dispersion medium. As the membrane filter 140, a VCWP filter, a PTFE filter, a silica fiber filter, or the like can be used.
 上記の方法によりフィラメント状炭素が絡み合った網目構造44を有するフィラメント状炭素膜20を形成することができる。上記の方法により形成したフィラメント状炭素膜20の網目構造は、3nm~1000nmの範囲内の大きさの網目(立体的な空隙)を含むことができる。上記網目の大きさは概ねフィラメント状炭素の直径に相関して決まるが、更に分散液の粘度、フィルタの網目の大きさや表面の凹凸の程度、フィラメント状炭素膜の乾燥後の圧縮の有無などによって調整することができる。更に、有機溶媒に可溶なポリマー粒子とともにろ過してフィラメント状炭素膜を形成した後に、ポリマー粒子を溶媒で除去することによっても、網目の大きさを調整することができる。フィラメント状炭素膜20がこのような大きさの網目を含むことにより、後述の金属蒸着工程S3において、金属がフィラメント状炭素膜20内に入り込むことができる。 The filamentous carbon film 20 having the network structure 44 in which filamentous carbon is intertwined can be formed by the above method. The network structure of the filamentous carbon film 20 formed by the above method can include a network (steric void) having a size in the range of 3 nm to 1000 nm. The size of the mesh is generally determined in correlation with the diameter of the filamentous carbon, but further depends on the viscosity of the dispersion, the size of the mesh of the filter, the degree of unevenness of the surface, the presence or absence of compression after drying the filamentous carbon film, etc. Can be adjusted. Furthermore, the size of the mesh can also be adjusted by removing the polymer particles with a solvent after filtration with polymer particles soluble in an organic solvent to form a filamentous carbon film. Since the filamentous carbon film 20 includes a mesh having such a size, metal can enter the filamentous carbon film 20 in a metal vapor deposition step S3 described later.
<フィラメント状炭素膜支持工程S2>
 次いで、図4(b)に示すように、メンブレンフィルタ140上に形成したフィラメント状炭素膜20を基板(支持体)160上に支持させる(転写する)。基板160としては、ステンレス基板、ガラス基板、セラミックス基板、シリコン基板等を用いることができる。フィラメント状炭素膜20は、例えば次のようにして基板160上に支持させることができる。基板160上にバインダーを塗布し、フィラメント状炭素膜20と基板160上のバインダーを対向させて、フィラメント状炭素膜20が形成されたメンブレンフィルタ140を基板160に押し付ける。バインダーを介してフィラメント状炭素膜40が基板160に接着した後にメンブレンフィルタ140をフィラメント状炭素膜20から剥がす。これらの操作により、フィラメント状炭素膜20が基板160上に支持される。
<Filamentary carbon film support step S2>
Next, as shown in FIG. 4B, the filamentous carbon film 20 formed on the membrane filter 140 is supported (transferred) on the substrate (support) 160. As the substrate 160, a stainless steel substrate, a glass substrate, a ceramic substrate, a silicon substrate, or the like can be used. The filamentous carbon film 20 can be supported on the substrate 160 as follows, for example. A binder is applied onto the substrate 160, the filament carbon film 20 and the binder on the substrate 160 are made to face each other, and the membrane filter 140 on which the filament carbon film 20 is formed is pressed against the substrate 160. After the filamentous carbon film 40 adheres to the substrate 160 via the binder, the membrane filter 140 is peeled off from the filamentous carbon film 20. By these operations, the filamentous carbon film 20 is supported on the substrate 160.
 また、次の方法によりフィラメント状炭素膜20を基板160上に支持させることもできる。フィラメント状炭素膜20と基板160を対向させて、フィラメント状炭素膜20が形成されたメンブレンフィルタ140を基板160に押し付ける。次いで、メンブレンフィルタ140をエタノールと水の混合溶液で濡らした後に乾燥させ、メンブレンフィルタ140をフィラメント状炭素膜20から剥離する。これによりフィラメント状炭素膜20を基板160上に支持させることができる。 Also, the filamentous carbon film 20 can be supported on the substrate 160 by the following method. The membrane filter 140 on which the filamentous carbon film 20 is formed is pressed against the substrate 160 with the filamentous carbon film 20 and the substrate 160 facing each other. Next, the membrane filter 140 is wetted with a mixed solution of ethanol and water and then dried, and the membrane filter 140 is peeled off from the filamentous carbon film 20. Thereby, the filamentous carbon film 20 can be supported on the substrate 160.
 更に、次の方法によりフィラメント状炭素膜20を基板160上に支持させることもできる。フィラメント状炭素膜20が形成されたメンブレンフィルタ140を純水に含浸する。すると、フィラメント状炭素膜20のみが水面に浮かぶので、これを基板160で掬い取る。これによりフィラメント状炭素膜20を基板160上に支持させることができる。基板160で掬い取る前に、加熱した純水でフィラメント状炭素膜20を洗浄して、フィラメント状炭素膜20に付着した界面活性剤を取り除いてもよい。 Furthermore, the filamentous carbon film 20 can be supported on the substrate 160 by the following method. The membrane filter 140 on which the filamentous carbon film 20 is formed is impregnated with pure water. Then, since only the filamentous carbon film 20 floats on the water surface, it is scooped by the substrate 160. Thereby, the filamentous carbon film 20 can be supported on the substrate 160. Before scrubbing with the substrate 160, the filamentous carbon film 20 may be washed with heated pure water to remove the surfactant attached to the filamentous carbon film 20.
 これらの方法により基板160上に支持したフィラメント状炭素膜20を還元雰囲気下でアニールしてもよい。それにより、フィラメント状炭素膜20に残留した界面活性剤を分解することができる。 The filamentous carbon film 20 supported on the substrate 160 by these methods may be annealed in a reducing atmosphere. Thereby, the surfactant remaining on the filamentous carbon film 20 can be decomposed.
 なお、上述したフィラメント状炭素膜作製工程S1において、ガラス繊維などの耐熱性をもつメンブレンフィルタを用いてフィラメント状炭素の分散液を濾過する方法によりフィラメント状炭素膜を作製する場合、メンブレンフィルタが基板(支持基板)を兼ねることができる。即ち、工程S1にてフィラメント状炭素をろ過してメンブレンフィルタ上に膜状にした後に、直ちに工程S3に入ることができる。また、フィラメント状炭素膜作製工程S1において、基板上に、スプレーコートやブレードコートでフィラメント状炭素の分散液を塗布・乾燥する方法によりフィラメント状炭素膜を作製する場合も、フィラメント状炭素膜支持工程S2を行うことなく、基板上に支持されたフィラメント状炭素膜を得ることができる。 In the above-described filamentous carbon film production step S1, when the filamentous carbon film is produced by a method of filtering a filamentous carbon dispersion using a heat resistant membrane filter such as glass fiber, the membrane filter is a substrate. It can also serve as a (supporting substrate). That is, after filtering the filamentous carbon in step S1 to form a film on the membrane filter, step S3 can be entered immediately. In the filamentous carbon film production step S1, the filamentous carbon film support step is also used when the filamentous carbon film is produced on the substrate by applying and drying the filamentous carbon dispersion by spray coating or blade coating. A filamentous carbon film supported on the substrate can be obtained without performing S2.
<金属を蒸着する工程S3>
 次いで、図4(c)に示すように、基板160に支持されたフィラメント状炭素膜20上に金属を蒸着する。それにより、図4(c)に示すように、フィラメント状炭素膜20上に金属層10を形成することができる。
<Step S3 for depositing metal>
Next, as shown in FIG. 4C, a metal is deposited on the filamentous carbon film 20 supported by the substrate 160. Thereby, as shown in FIG. 4C, the metal layer 10 can be formed on the filamentous carbon film 20.
 金属の蒸着は、抵抗加熱蒸着、電子線蒸着、スパッタ、CVD等の任意の蒸着法で行うことができる。金属の蒸着膜厚(形成される金属層の厚さ)は、用途に応じて任意の厚さにすることができるが、例えば本実施形態の製造方法により製造した複合膜をリチウムイオン電池の負極に用いる場合には、0.03μm~30μmの範囲内であることが好ましく、1~10μmの範囲内にあるとより好ましい。 Metal vapor deposition can be performed by any vapor deposition method such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, and CVD. The vapor deposition thickness of the metal (thickness of the metal layer to be formed) can be set to any thickness depending on the application. For example, the composite film produced by the production method of the present embodiment is used as the negative electrode of the lithium ion battery. When it is used in the above, it is preferably in the range of 0.03 to 30 μm, more preferably in the range of 1 to 10 μm.
<複合膜を基板から分離する工程S4>
 次に、フィラメント状炭素膜20及び金属層10からなる複合膜100を基板160から剥離する(図4(d)参照)。フィラメント状炭素膜20及び金属層10は、例えばピンセットでフィラメント状炭素膜20の外周部をつまみ、基板160から引き上げる方法等により、機械的に基板160から剥離することができる。すなわち、自立したフィラメント状炭素と金属の複合膜100が得られる。こうして得られた複合膜100は、図4(d)に示すように、フィラメント状炭素膜20の網目内に金属層10の一部が入り込んだ(潜り込んだ)構造を有する。すなわち、得られた複合膜100は、フィラメント状炭素からなる第1層40と、金属からなる第2層80と、第1層40と第2層80との間に形成された、フィラメント状炭素と金属とが共存する共存層60とを有する。上記のような方法でフィラメント状炭素膜上に金属を蒸着することにより、フィラメント状炭素膜20の表層から0.01μm~10μmの範囲の深さまで金属を入り込ませることができる。すなわち、0.01μm~10μmの範囲の厚さを有する共存層60を形成することができる。
<Step S4 of separating the composite film from the substrate>
Next, the composite film 100 composed of the filamentous carbon film 20 and the metal layer 10 is peeled from the substrate 160 (see FIG. 4D). The filamentous carbon film 20 and the metal layer 10 can be mechanically separated from the substrate 160 by, for example, a method of picking the outer periphery of the filamentous carbon film 20 with tweezers and pulling it up from the substrate 160. That is, a self-supporting filamentous carbon and metal composite film 100 is obtained. The composite film 100 obtained in this way has a structure in which a part of the metal layer 10 has entered (sunk into) the mesh of the filamentous carbon film 20 as shown in FIG. That is, the obtained composite film 100 includes a filamentous carbon formed between the first layer 40 made of filamentous carbon, the second layer 80 made of metal, and the first layer 40 and the second layer 80. And a coexistence layer 60 in which a metal coexists. By depositing a metal on the filamentous carbon film by the method as described above, the metal can be penetrated from the surface layer of the filamentous carbon film 20 to a depth in the range of 0.01 μm to 10 μm. That is, the coexistence layer 60 having a thickness in the range of 0.01 μm to 10 μm can be formed.
<活物質を付着させる工程S5>
 上記工程から得られた自立した複合膜を所定の機能を持たせた機能性複合膜にする工程を説明する。上記のようにして得られた自立した複合膜100に活物質(リチウムイオンを吸蔵及び脱離できる材料)34を付着させる。図4(e)に示すように、活物質34がフィラメント状炭素膜20の金属を蒸着した面と反対の面からフィラメント状炭素膜20の網目構造44の内部に入り込むように活物質34を付着させてもよいし、フィラメント状炭素膜20の表面を活物質34が覆うように活物質34を付着させてもよい。
<Step S5 for attaching an active material>
The process of making the self-supporting composite film obtained from the above process into a functional composite film having a predetermined function will be described. An active material (a material capable of inserting and extracting lithium ions) 34 is attached to the self-supporting composite film 100 obtained as described above. As shown in FIG. 4E, the active material 34 is attached so that the active material 34 enters the inside of the network structure 44 of the filamentous carbon film 20 from the surface opposite to the surface on which the metal of the filamentous carbon film 20 is deposited. The active material 34 may be attached so that the active material 34 covers the surface of the filamentous carbon film 20.
 例えば、粒子状の活物質にバインダー、導電材等を混ぜたペーストを作製し、これをフィラメント状炭素膜20上に塗布した後乾燥させる方法により、図4(e)に示すように活物質34がフィラメント状炭素膜20の網目構造44の内部に入り込むように、活物質34を付着させることができる。 For example, a paste in which a binder, a conductive material, and the like are mixed with a particulate active material is prepared, applied to the filamentous carbon film 20, and then dried, as shown in FIG. The active material 34 can be attached so that the gas enters the inside of the network structure 44 of the filamentous carbon film 20.
 また、活物質34をフィラメント状炭素膜20上に蒸着することにより、フィラメント状炭素膜20の表面を活物質34が覆うように、活物質34を付着させることができる(図1(c)参照)。蒸着源としては、Si、Sn、SnOや、SiないしSnと他の金属との混合物、S等を用いることができる。蒸着源には、不純物がドープされていてもよい。このような不純物としては、窒素、リン、アルミニウム、砒素、ホウ素、ガリウム、インジウム、酸素、炭素等の元素を挙げることができる。 Further, the active material 34 can be deposited by depositing the active material 34 on the filamentous carbon film 20 so that the active material 34 covers the surface of the filamentous carbon film 20 (see FIG. 1C). ). As a deposition source, Si, Sn, SnO, a mixture of Si or Sn and other metals, S, or the like can be used. The evaporation source may be doped with impurities. Examples of such impurities include elements such as nitrogen, phosphorus, aluminum, arsenic, boron, gallium, indium, oxygen, and carbon.
 以上のようにして、図1(b)、(c)、図4(e)に示すように、フィラメント状炭素膜20に活物質34が付着した、フィラメント状炭素と金属と活物質からなる機能性複合膜300、400が得られる。得られた機能性複合膜300、400は、フィラメント状炭素からなる第1層40と、金属からなる第2層80と、第1層40と第2層80との間に形成された、フィラメント状炭素と金属とが共存する共存層60を有し、さらに、第1層40を構成するフィラメント状炭素42に活物質34が付着している。上記の方法で製造された機能性複合膜300、400は、活物質34の一部又は全部がフィラメント状炭素膜20の網目構造44に入り込んだ構造、又は活物質34がフィラメント状炭素42の表面を覆うように付着している構造を有することができる。 As described above, as shown in FIGS. 1B, 1C, and 4E, the active material 34 adheres to the filamentous carbon film 20, and the function composed of filamentous carbon, metal, and active material. Conductive composite films 300 and 400 are obtained. The obtained functional composite films 300 and 400 are filaments formed between the first layer 40 made of filamentary carbon, the second layer 80 made of metal, and the first layer 40 and the second layer 80. The active material 34 is attached to the filamentous carbon 42 constituting the first layer 40. The functional composite films 300 and 400 manufactured by the above method have a structure in which part or all of the active material 34 enters the network structure 44 of the filamentous carbon film 20, or the active material 34 has a surface of the filamentous carbon 42. It can have a structure attached so that it may cover.
 上記では、複合膜の製造方法をバッチ式のプロセスを例に挙げて説明したが、生産効率を考慮した連続式のプロセスを用いていてもよい。例えば、上記工程S1~S4を図6(a)に示した複合膜の製造装置150を用いて連続的に行うことができる。以下に、製造装置150を用いて第1実施形態の複合膜100を製造する方法を説明する。図6(a)に示す装置150は、主に、駆動ローラ52aと従動ローラ52bからなるローラ対52と、ローラ対52に掛け渡されて移動する無端の搬送ベルト54と、搬送ベルト54の上方に設置された供給器56と、搬送ベルト54を介して供給器56の下方に設置された吸引濾過機63と、供給器56の搬送方向下流側であって且つ搬送ベルト54の下方に設置された蒸着器58とを備える。搬送ベルト54は、耐熱性とメンブレンフィルタ機能を有する網目状のベルトである。供給器56は前述の工程S1で調製されたフィラメント状炭素の分散液51を搬送ベルト54に供給し、吸引濾過機63により搬送ベルト54上の分散体を吸引するとともにフィラメント状炭素の集合体を搬送ベルト54上に残留させる。蒸着器58は、蒸着源として金属片を内部に収容するボートを備え、フィラメント状炭素の集合体に金属を蒸着させる。 In the above, the manufacturing method of the composite film has been described by taking a batch process as an example, but a continuous process in consideration of production efficiency may be used. For example, the above steps S1 to S4 can be continuously performed using the composite film manufacturing apparatus 150 shown in FIG. Below, the method to manufacture the composite film 100 of 1st Embodiment using the manufacturing apparatus 150 is demonstrated. The apparatus 150 shown in FIG. 6A mainly includes a roller pair 52 including a driving roller 52a and a driven roller 52b, an endless conveying belt 54 that moves across the roller pair 52, and an upper portion of the conveying belt 54. A suction filter 63 installed below the feeder 56 via the conveyor belt 54, and downstream of the feeder 56 in the conveyance direction and below the conveyor belt 54. The vapor deposition device 58 is provided. The conveyor belt 54 is a mesh belt having heat resistance and a membrane filter function. The supply unit 56 supplies the filamentous carbon dispersion 51 prepared in the above-described step S <b> 1 to the conveyor belt 54, sucks the dispersion on the conveyor belt 54 by the suction filter 63, and collects the aggregate of filamentous carbon. It remains on the conveyor belt 54. The vapor deposition device 58 includes a boat that accommodates metal pieces therein as a vapor deposition source, and deposits metal on an aggregate of filamentous carbon.
 この装置150を用いた連続式製造プロセスを説明する。駆動ローラ52aが矢印の回転方向に回転して搬送ベルト54が移動し始めると、供給器56からフィラメント状炭素の分散液51が搬送ベルト54上に所定量で連続的に供給され、吸引濾過機63と搬送ベルト54により分散液の液体分が濾過されて搬送ベルト54上に固形分としてのフィラメント状炭素の集合体53が形成される。次いで、フィラメント状炭素の集合体53が搬送ベルト54により下流の蒸着器58と対向する位置まで搬送されると、蒸着器58によって加熱溶融された蒸着源からの金属がフィラメント状炭素の集合体53の表面に付着する。こうしてフィラメント状炭素の集合体53の一面に金属55が付着した複合膜59が得られる。この複合膜59は、連続膜であるため、複合膜59の搬送方向前端が従動ローラ52bで巻き上げられるときに、その前端に従動ローラの接線方向(水平方向)の引張力を与えることにより、順次、搬送ベルト54から外れて長尺の自立した複合膜59(複合連続膜)が得られる。この長尺の自立した複合膜59を適宜ローラなどに巻き取って回収し、管理することができる。 A continuous manufacturing process using this apparatus 150 will be described. When the driving roller 52a rotates in the direction indicated by the arrow and the conveyor belt 54 starts to move, the filament-like carbon dispersion 51 is continuously supplied from the supply device 56 onto the conveyor belt 54 in a predetermined amount. The liquid component of the dispersion liquid is filtered by 63 and the conveyor belt 54 to form a filamentous carbon aggregate 53 as a solid component on the conveyor belt 54. Next, when the filamentous carbon aggregate 53 is conveyed to a position facing the downstream vapor deposition unit 58 by the conveyance belt 54, the metal from the vapor deposition source heated and melted by the vapor deposition unit 58 becomes the filamentous carbon aggregate 53. Adhere to the surface. Thus, a composite film 59 in which the metal 55 is attached to one surface of the filamentous carbon aggregate 53 is obtained. Since the composite film 59 is a continuous film, when the front end in the conveyance direction of the composite film 59 is wound up by the driven roller 52b, the tensile force in the tangential direction (horizontal direction) of the driven roller at the front end is sequentially applied. Thus, a long and self-supporting composite film 59 (composite continuous film) is obtained by removing from the conveyor belt 54. The long self-supporting composite film 59 can be appropriately wound around a roller and collected and managed.
 この具体例では、供給器56、吸引濾過機63及び搬送ベルト54がフィラメント状炭素の集合体形成部として機能したが、スプレーコータやブレードコータのようなコータと乾燥器を用いてもよい。この場合、分散液をコータで搬送ベルト上に塗布して、塗布した分散液を乾燥器で乾燥することができ、搬送ベルトはフィルタ機能を有する必要はない。また、複合膜59の前端に従動ローラ52bの接線方向(水平方向)の引張力を与えて搬送ベルト54から剥離(分離)するための剥離ローラのような機構を設けてもよい。 In this specific example, the feeder 56, the suction filter 63, and the conveyor belt 54 functioned as the filament-like carbon aggregate forming unit, but a coater such as a spray coater or a blade coater and a dryer may be used. In this case, the dispersion liquid can be applied onto the conveyor belt with a coater, and the applied dispersion liquid can be dried with a dryer, and the conveyor belt need not have a filter function. Further, a mechanism such as a peeling roller for separating (separating) from the conveying belt 54 by applying a tensile force in the tangential direction (horizontal direction) of the driven roller 52b of the front end of the composite film 59 may be provided.
 更に、搬送ベルト54が駆動ローラ52を兼ねることもできる。即ち搬送ベルトの代わりに円筒を用い、円筒を回転させながら、その上部にてフィラメント状炭素を連続的に付着し、下部にて付着したフィラメント状炭素に金属を蒸着すると、連続的に剥がして回収することができる。網目状のシートで構成した円筒を用いた際は、吸引ろ過によりフィラメント状炭素の分散液からフィラメント状炭素の集合体を形成することができる。穴の無いシートで構成した円筒を用いた際はスプレーコータやブレードコータを用いて、フィラメント状炭素の分散液からフィラメント状炭素の集合体を形成することができる。この円筒1つにて、搬送ベルト54と駆動ローラ52a、52bを兼ねることとなる。 Furthermore, the conveyance belt 54 can also serve as the driving roller 52. In other words, a cylinder is used instead of the conveyor belt, and while rotating the cylinder, filamentary carbon is continuously deposited on the upper part, and metal is deposited on the filamentous carbon deposited on the lower part. can do. When a cylinder composed of a mesh-like sheet is used, an aggregate of filamentous carbon can be formed from a dispersion of filamentous carbon by suction filtration. When a cylinder composed of a sheet without holes is used, an aggregate of filamentous carbon can be formed from a dispersion of filamentous carbon using a spray coater or a blade coater. One cylinder serves as both the conveyor belt 54 and the driving rollers 52a and 52b.
[第3実施形態及び第4実施形態の複合膜の製造方法]
 上記第3実施形態の複合膜100a及び第4実施形態の機能性複合膜300a、400aを製造する方法について説明する。複合膜100a、及び機能性複合膜300a、400aの製造方法は、主に、フィラメント状炭素からなる膜(フィラメント状炭素膜)を作製する工程S1と、支持体(基板)に支持されたフィラメント状炭素膜上に金属を蒸着する工程S3と、フィラメント状炭素膜及び金属の複合膜を支持体から分離する工程S4と、フィラメント状炭素膜の金属を蒸着した面と反対の面上に活物質を付着させる工程S5とを有する。なお、本実施形態に従う複合膜の製造方法は、活物質付着工程S5を有さなくてもよい。
[Method for Producing Composite Film of Third Embodiment and Fourth Embodiment]
A method for manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment will be described. The manufacturing method of the composite film 100a and the functional composite films 300a and 400a mainly includes a step S1 for producing a film made of filamentous carbon (filamentous carbon film), and a filament shape supported by a support (substrate). Step S3 for depositing metal on the carbon film, Step S4 for separating the filamentary carbon film and the metal composite film from the support, and an active material on the surface of the filamentous carbon film opposite to the surface on which the metal is deposited. And attaching step S5. In addition, the manufacturing method of the composite film according to this embodiment does not need to have active material adhesion process S5.
<フィラメント状炭素膜を作製する工程S1>
 上記第1実施形態の複合膜100及び第2実施形態の機能性複合膜300、400の製造方法の実施形態では、フィラメント状炭素膜作製工程S1において、網目構造を有するフィラメント状炭素膜を形成したが、第3実施形態の複合膜100a及び第4実施形態の機能性複合膜300a、400aの製造方法では、フィラメント状炭素がフィラメント状炭素膜の厚み方向に配向(垂直配向)したフィラメント状炭素膜を形成する。
<Step S1 for producing filamentary carbon film>
In the embodiment of the manufacturing method of the composite film 100 of the first embodiment and the functional composite films 300 and 400 of the second embodiment, the filamentous carbon film having a network structure is formed in the filamentous carbon film manufacturing step S1. However, in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment, the filamentous carbon film in which filamentous carbon is oriented (vertically oriented) in the thickness direction of the filamentous carbon film. Form.
 フィラメント状炭素の垂直配向膜は、例えば、図5(a)に示すようにフィラメント状炭素を合成するための触媒となる粒子48を表面に形成した基板(支持体)160aを、反応器に配置し、基板160aを加熱しながら反応器内に原料ガスを流通させることによって作製することができる。触媒としてはFe、Co、Ni等が、触媒担体としてはSi、Al、Mgの酸化物等を用いることができる。原料ガスとしてはアセチレン、エチレン、エタノール、メタン等を用いることができる。このようにして、図5(b)に示すように、フィラメント状炭素42aが垂直に配向した構造46を有するフィラメント状炭素膜20aを基板160a上に形成することができる。本フィラメント状炭素膜を作製する工程S1によって作製されたフィラメント状炭素膜20aは基板160aに支持されているため、本製造方法は、作製したフィラメント状炭素膜を基板上に支持する工程S2を有さなくてよい。 In the vertical alignment film of filamentous carbon, for example, as shown in FIG. 5 (a), a substrate (support) 160a on which particles 48 as a catalyst for synthesizing filamentary carbon are formed is disposed in a reactor. Then, the substrate 160a can be produced by circulating the source gas in the reactor while heating. Fe, Co, Ni, etc. can be used as the catalyst, and Si, Al, Mg oxides, etc. can be used as the catalyst carrier. As the source gas, acetylene, ethylene, ethanol, methane or the like can be used. In this manner, as shown in FIG. 5B, the filamentous carbon film 20a having the structure 46 in which the filamentous carbon 42a is vertically oriented can be formed on the substrate 160a. Since the filamentous carbon film 20a produced by the step S1 for producing the filamentous carbon film is supported by the substrate 160a, the manufacturing method includes the step S2 for supporting the produced filamentary carbon film on the substrate. You don't have to.
<金属を蒸着する工程S3>
 第3実施形態の複合膜100a及び第4実施形態の機能性複合膜300a、400aの製造方法における金属を蒸着する工程S3は、上記複合膜100及び機能性複合膜300、400の製造方法の工程S3と同様にして行うことができるため、詳細な説明は省略する。本工程S3によりフィラメント状炭素膜20a上に金属層10aを形成することができる。このとき、図5(c)に示すように、フィラメント状炭素膜20aの各フィラメント状炭素42aの間の空隙に金属層10aの一部が入り込んでいる(潜り込んでいる)。
<Step S3 for depositing metal>
Step S3 for depositing metal in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment is a process of the method of manufacturing the composite film 100 and the functional composite films 300 and 400. Since it can be performed in the same manner as S3, detailed description is omitted. By this step S3, the metal layer 10a can be formed on the filamentous carbon film 20a. At this time, as shown in FIG. 5 (c), a part of the metal layer 10a has entered (submitted) into the gaps between the filamentous carbons 42a of the filamentous carbon film 20a.
<複合膜を基板から分離する工程S4>
 第3実施形態の複合膜100a、及び第4実施形態の機能性複合膜300a、400aの製造方法における複合膜を基板から分離する工程S4は、上記複合膜100、及び機能性複合膜300、400の製造方法の工程S4と同様にして行うことができるため、詳細な説明は省略する。フィラメント状炭素膜20a及び金属層10aからなる複合膜100aを基板160aから剥離すると、図5(d)に示すように、フィラメント状炭素膜20aの各フィラメント状炭素42aの間の空隙に金属層10aの一部が入り込んだ(潜り込んだ)構造を有する複合膜100aが得られる。すなわち、得られた複合膜100aは、フィラメント状炭素42aからなる第1層40aと、金属からなる第2層80aと、第1層40aと第2層80aとの間に形成された、フィラメント状炭素42aと金属とが共存する共存層60aとを有する。
<Step S4 of separating the composite film from the substrate>
Step S4 of separating the composite film from the substrate in the method of manufacturing the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment includes the composite film 100 and the functional composite films 300 and 400. Since it can carry out similarly to process S4 of this manufacturing method, detailed description is abbreviate | omitted. When the composite film 100a composed of the filamentous carbon film 20a and the metal layer 10a is peeled from the substrate 160a, as shown in FIG. 5D, the metal layer 10a is formed in the gap between the filamentous carbons 42a of the filamentous carbon film 20a. As a result, a composite film 100a having a structure in which a part of the film has entered (submerged) is obtained. That is, the obtained composite film 100a has a filament-like shape formed between the first layer 40a made of filamentous carbon 42a, the second layer 80a made of metal, and the first layer 40a and the second layer 80a. It has a coexistence layer 60a in which carbon 42a and metal coexist.
<活物質を付着させる工程S5>
 第3実施形態の複合膜100a及び第4実施形態の機能性複合膜300a、400aの製造方法における活物質を付着させる工程S5は、上記複合膜100、機能性複合膜300、400の製造方法の工程S5と同様にして行うことができるため、詳細な説明は省略する。
<Step S5 for attaching an active material>
The step S5 of attaching the active material in the manufacturing method of the composite film 100a of the third embodiment and the functional composite films 300a and 400a of the fourth embodiment is the method of manufacturing the composite film 100 and the functional composite films 300 and 400. Since it can carry out similarly to process S5, detailed description is abbreviate | omitted.
 本工程S5において、例えば、粒子状の活物質にバインダー、導電材等を混ぜたペーストを作製し、これをフィラメント状炭素膜20a上に塗布した後乾燥させる方法により、図5(e)に示すように、活物質34aがフィラメント状炭素膜20aの垂直配向構造46の内部に入り込むように、活物質34aを付着させることができる。 In this step S5, for example, a paste is prepared by mixing a particulate active material with a binder, a conductive material, etc., and this is applied onto the filamentous carbon film 20a and then dried, as shown in FIG. 5 (e). Thus, the active material 34a can be attached so that the active material 34a enters the inside of the vertical alignment structure 46 of the filamentous carbon film 20a.
 また、活物質34aをフィラメント状炭素膜20a上に蒸着することにより、フィラメント状炭素膜20aの表面を活物質34aが覆うように、活物質34aを付着させることができる(図2(d)参照)。 Further, by depositing the active material 34a on the filamentous carbon film 20a, the active material 34a can be attached so that the active material 34a covers the surface of the filamentous carbon film 20a (see FIG. 2D). ).
 以上のようにして、図2(c)、(d)、図5(e)に示すように、フィラメント状炭素膜20aに活物質34aが付着した、フィラメント状炭素と金属と活物質からなる機能性複合膜300a、400aが得られる。得られた機能性複合膜300a、400aは、フィラメント状炭素からなる第1層40aと、金属からなる第2層80aと、第1層40aと第2層80aとの間に形成された、フィラメント状炭素42aと金属とが共存する共存層60aとを有し、さらに、さらに、第1層40aを構成するフィラメント状炭素42aに活物質34aが付着している。上記の方法で製造された機能性複合膜300a、400aは、活物質34aの一部又は全部がフィラメント状炭素膜20aの垂直配向構造46に入り込んだ構造、又は活物質34aがフィラメント状炭素42aの表面を覆うように付着している構造を有することができる。 As described above, as shown in FIGS. 2C, 2D, and 5E, the active material 34a is attached to the filamentous carbon film 20a, and the function is composed of filamentous carbon, metal, and active material. Composite films 300a and 400a are obtained. The obtained functional composite films 300a and 400a are filaments formed between the first layer 40a made of filamentary carbon, the second layer 80a made of metal, and the first layer 40a and the second layer 80a. The active carbon 34a is attached to the filamentous carbon 42a constituting the first layer 40a. The functional composite films 300a and 400a manufactured by the above method have a structure in which part or all of the active material 34a enters the vertical alignment structure 46 of the filamentous carbon film 20a, or the active material 34a is made of the filamentous carbon 42a. It can have a structure attached to cover the surface.
 なお、工程S4において複合膜100aを基板160aから分離した後に、フィラメント状炭素の垂直配向膜を収縮させて、フィラメント状炭素42bの壁41bからなるランダムな網目構造46bを有するフィラメント状炭素膜20bを形成してもよい(図2(b)参照)。フィラメント状炭素42bの壁41bからなる網目構造46bは、次のようにして形成することができる。例えば、フィラメント状炭素の垂直配向膜をエタノール等の溶媒蒸気に曝してフィラメント炭素膜上に溶媒を凝縮させた後に、凝縮した溶媒を乾燥させることによって、溶媒の表面張力でフィラメント状炭素膜20aが収縮してフィラメント状炭素42bの壁41bからなる網目構造46bが形成される。網目構造46bの網目の大きさは、例えばフィラメント状炭素42bの垂直配向膜の高さを変えることによって制御することができる。フィラメント状炭素の垂直配向膜の高さは、例えば、フィラメント状炭素膜作製工程S1においてフィラメント状炭素を合成する時間を変えることによって制御することができる。また、工程S1においてフィラメント状炭素の合成に用いる基板160aの表面のテクスチャ(凹凸)によりフィラメント状炭素の壁が形成する構造を制御することができる。ゆえに、上記網目構造とは異なる任意の構造の形成も可能である。例えば、工程S1において基板160aとして一方向に延在する筋状(ライン状)のテクスチャが表面に形成された基板を用いてフィラメント状炭素の垂直配向膜を形成し、工程S4において複合膜100aを基板160aから分離した後に、フィラメント状炭素の垂直配向膜を収縮させることにより、フィラメント状炭素の壁が一方向に規則的に並んだ筋状構造を形成することができる。 In addition, after separating the composite film 100a from the substrate 160a in step S4, the filamentary carbon vertical alignment film is contracted to form a filamentous carbon film 20b having a random network structure 46b composed of the walls 41b of the filamentous carbon 42b. You may form (refer FIG.2 (b)). The network structure 46b composed of the walls 41b of the filamentous carbon 42b can be formed as follows. For example, by exposing the filamentary carbon vertical alignment film to a solvent vapor such as ethanol to condense the solvent on the filament carbon film, and then drying the condensed solvent, the filamentous carbon film 20a is formed by the surface tension of the solvent. The network structure 46b which consists of the wall 41b of the filament-like carbon 42b is shrunk and formed. The mesh size of the mesh structure 46b can be controlled, for example, by changing the height of the vertical alignment film of the filamentous carbon 42b. The height of the filamentary carbon vertical alignment film can be controlled, for example, by changing the time for synthesizing the filamentous carbon in the filamentous carbon film manufacturing step S1. In addition, the structure formed by the filamentous carbon walls can be controlled by the texture (unevenness) of the surface of the substrate 160a used for synthesizing the filamentous carbon in step S1. Therefore, it is possible to form an arbitrary structure different from the network structure. For example, a vertical alignment film of filamentous carbon is formed using a substrate having a streaky (line-like) texture extending in one direction on the surface as the substrate 160a in step S1, and the composite film 100a is formed in step S4. After separating from the substrate 160a, the filamentary carbon vertical alignment film is contracted to form a streak structure in which filamentary carbon walls are regularly arranged in one direction.
 次に、本実施形態における工程S1~S4を、図6(b)に示した複合膜の製造装置170を用いて連続的に行い、第3実施形態の複合膜100aを製造する方法を説明する。図6(b)に示す装置170は、主に、駆動ローラ52aと従動ローラ52bからなるローラ対52と、ローラ対52に掛け渡されて移動する無端の搬送ベルト54aと、搬送ベルト54aの上方に設置されたスパッタ装置71と、その搬送方向下流側に設置されたCVD装置73と、CVD装置73の搬送方向下流側であって且つ搬送ベルト54aの下方に設置された蒸着器58とを備える。スパッタ装置71は、フィラメント状炭素を合成するためのFeなどの触媒74を支持体としての搬送ベルト54に付着させる。搬送ベルトにAlなどの触媒担体を付着した上でFeなどの触媒74を付着させるとなお良い。CVD装置73は、触媒74上でフィラメント状炭素を合成して成長させるためにアセチレンなどの合成用ガスを触媒に供給する。CVD装置73としてはシャワーヘッド構造のノズルを備えたCVD装置が好適である。なお、この例の搬送ベルト54aは、図6(a)に示した装置で用いた搬送ベルト54と異なり、フィルタ機能を備える必要はない。 Next, a method of manufacturing the composite film 100a of the third embodiment by performing the steps S1 to S4 in the present embodiment continuously using the composite film manufacturing apparatus 170 shown in FIG. 6B will be described. . The apparatus 170 shown in FIG. 6 (b) mainly includes a roller pair 52 composed of a driving roller 52a and a driven roller 52b, an endless conveying belt 54a that moves across the roller pair 52, and an upper portion of the conveying belt 54a. , A CVD device 73 installed on the downstream side in the transport direction, and a vapor deposition device 58 installed on the downstream side in the transport direction of the CVD device 73 and below the transport belt 54a. . The sputtering apparatus 71 attaches a catalyst 74 such as Fe for synthesizing filamentary carbon to a conveyor belt 54 as a support. It is more preferable that a catalyst carrier such as Al 2 O 3 is attached to the transport belt and then a catalyst 74 such as Fe is attached. The CVD apparatus 73 supplies a synthesis gas such as acetylene to the catalyst in order to synthesize and grow filamentous carbon on the catalyst 74. As the CVD apparatus 73, a CVD apparatus provided with a nozzle having a shower head structure is suitable. Note that the transport belt 54a in this example does not need to have a filter function, unlike the transport belt 54 used in the apparatus shown in FIG.
 この装置170を用いた連続式製造プロセスを説明する。駆動ローラ52aが矢印の回転方向に回転して搬送ベルト54が移動し始めると、スパッタ装置71から触媒74が搬送ベルト54a上に連続的に付着される。次いで、付着された触媒74に、CVD装置73によりフィラメント状炭素合成用ガスが吹き付けられるとフィラメント状炭素が合成されて垂直方向に配列したフィラメント状炭素の集合体75が形成される。この集合体75が搬送ベルト54aにより下流の蒸着器58と対向する位置まで搬送されると、蒸着器58によって加熱溶融された蒸着源の金属55が集合体75に付着する。こうしてフィラメント状炭素の集合体の一面に金属55が付着した複合膜79が得られる。この複合膜79は、連続膜であるため、複合膜59の搬送方向前端が従動ローラ52bで巻き上げられるときに、その前端に従動ローラの接線方向(水平方向)の引張力を与えることにより、順次、搬送ベルト54aから外れて長尺の自立した複合膜79(複合連続膜)が得られる。 A continuous manufacturing process using this apparatus 170 will be described. When the driving roller 52a rotates in the direction of the arrow and the conveying belt 54 starts to move, the catalyst 74 is continuously attached from the sputtering device 71 onto the conveying belt 54a. Next, when a filamentous carbon synthesis gas is blown onto the attached catalyst 74 by the CVD device 73, the filamentous carbon is synthesized and a filamentous carbon aggregate 75 arranged in the vertical direction is formed. When the aggregate 75 is conveyed to a position facing the downstream vapor deposition device 58 by the conveyance belt 54 a, the deposition source metal 55 heated and melted by the vapor deposition device 58 adheres to the aggregate 75. In this way, a composite film 79 in which the metal 55 is adhered to one surface of the filamentous carbon aggregate is obtained. Since the composite film 79 is a continuous film, when the front end in the transport direction of the composite film 59 is wound up by the driven roller 52b, a tensile force in the tangential direction (horizontal direction) of the driven roller at the front end is sequentially applied. Then, a long and self-supporting composite film 79 (composite continuous film) is obtained by separating from the transport belt 54a.
 更に、搬送ベルト54aが駆動ローラ52を兼ねることもできる。即ち搬送ベルトの代わりに円筒を用い、円筒を回転させながら、円筒表面に触媒を付着し、フィラメント状炭素を合成し、金属を蒸着し、連続的に剥がして回収することができる。この円筒1つにて、搬送ベルト54aと駆動ローラ52a、52bを兼ねることとなる。また、複合膜79の前端に従動ローラ52bの接線方向(水平方向)の引張力を与えて搬送ベルト54aから剥離(分離)するための剥離ローラのような機構を設けてもよい。 Furthermore, the conveyance belt 54 a can also serve as the driving roller 52. That is, a cylinder is used instead of the conveyor belt, and while rotating the cylinder, the catalyst is attached to the surface of the cylinder, the filamentous carbon is synthesized, the metal is vapor-deposited, and continuously peeled and recovered. The single cylinder serves as both the conveying belt 54a and the driving rollers 52a and 52b. Further, a mechanism such as a peeling roller for separating (separating) from the conveying belt 54a by applying a tensile force in the tangential direction (horizontal direction) of the driven roller 52b at the front end of the composite film 79 may be provided.
[蓄電デバイス]
 上記実施形態及び変形形態の複合膜100、100a、100b、及び機能性複合膜300、400、300a、400aは、リチウムイオン電池に代表される二次電池などの電気化学蓄電デバイスにおける電極として好適に使用できる。以下、上記実施形態の機能性複合膜300を電極として有するリチウムイオン電池を例に挙げて説明する。
[Power storage device]
The composite membranes 100, 100a, 100b and the functional composite membranes 300, 400, 300a, 400a of the above-described embodiments and modifications are suitable as electrodes in an electrochemical storage device such as a secondary battery typified by a lithium ion battery. Can be used. Hereinafter, a lithium ion battery having the functional composite film 300 of the above embodiment as an electrode will be described as an example.
 リチウムイオン電池は、セパレータ、負極、セパレータ及び正極を積層又は積層・巻回することにより得られる電極群を、電池缶などの電池ケース内に収納した後、電解液を電池ケース内に注入して製造することができる。 In a lithium ion battery, an electrode group obtained by laminating or laminating and winding a separator, a negative electrode, a separator, and a positive electrode is housed in a battery case such as a battery can, and then an electrolyte is injected into the battery case. Can be manufactured.
 正極として、アルミニウムからなる第2層80を有する複合膜300を用いることができる。この場合、フィラメント状炭素42からなる第1層40、アルミニウムからなる第2層80、及びフィラメント状炭素42とアルミニウムの共存層60(すなわち、フィラメント状炭素膜20及び金属層10)が集電体として働く。 As the positive electrode, the composite film 300 having the second layer 80 made of aluminum can be used. In this case, the first layer 40 made of filamentous carbon 42, the second layer 80 made of aluminum, and the coexisting layer 60 of filamentous carbon 42 and aluminum (that is, the filamentous carbon film 20 and the metal layer 10) are current collectors. Work as.
 負極として、銅又はニッケルからなる第2層80を有する複合膜300を用いることができる。この場合、フィラメント状炭素42からなる第1層40、銅又はニッケルからなる第2層80、及びフィラメント状炭素42と銅又はニッケルの共存層60(すなわち、フィラメント状炭素膜20及び金属層10)が集電体として働く。 As the negative electrode, the composite film 300 having the second layer 80 made of copper or nickel can be used. In this case, the first layer 40 made of filamentous carbon 42, the second layer 80 made of copper or nickel, and the coexisting layer 60 of the filamentous carbon 42 and copper or nickel (that is, the filamentous carbon film 20 and the metal layer 10). Works as a current collector.
 上記のように形成した電極を2枚用い、金属層10同士を対向させて重ね合わせると、リチウムイオン電池を高容量化できてより好適である。更に、電極2枚を重ね合わせる際に、少なくとも一方の金属層10の表面にバインダーを塗布した上で重ね合わせて接着すると、電極の強度が向上するため、より好適である。なお、バインダーは金属層に両側を挟まれているため劣化しにくく、また金属層の面内方向の導電も阻害しない。 It is more preferable to use two electrodes formed as described above and overlap the metal layers 10 so as to face each other because the capacity of the lithium ion battery can be increased. Furthermore, when two electrodes are overlapped, it is more preferable to apply a binder on the surface of at least one metal layer 10 and then bond them together to improve the strength of the electrodes. In addition, since the binder is sandwiched on both sides by the metal layer, the binder is not easily deteriorated and does not inhibit the in-plane conductivity of the metal layer.
 電極群の形状としては、例えば、該電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、電池ケースの形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。 Examples of the shape of the electrode group include a shape in which the cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, or the like. Can do. In addition, examples of the shape of the battery case include a paper shape, a coin shape, a cylindrical shape, and a square shape.
 セパレータは、任意のものでよく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂などの材質からなる多孔質膜、不織布、織布などの形態を有する膜にし得る。 The separator may be of any type, and may be, for example, a film having a form of a porous film made of a material such as a polyolefin resin such as polyethylene or polypropylene, or a fluororesin, a nonwoven fabric, or a woven fabric.
 電解液は、任意のものでよく、市場で入手できるものを使用してよい。電解液は、通常、電解質および有機溶媒を含有し、例えばヘキサフルオロリン酸リチウム(LiPF)などのリチウム塩からなる電解質をプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)などの有機溶媒に溶解させて得られる。 Any electrolytic solution may be used, and commercially available one may be used. The electrolyte usually contains an electrolyte and an organic solvent. For example, an electrolyte made of a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is converted into propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), It is obtained by dissolving in an organic solvent such as ethyl methyl carbonate (EMC).
 本実施形態のリチウムイオン電池の電極として用いられる複合膜300は、上述の様に、充放電時に活物質34の体積が大きく変化しても、活物質34が第1層40から剥離しにくいという利点と、活物質34と金属の間の電気抵抗が小さいという利点がある。したがって、複合膜300を電極として用いた本実施形態のリチウムイオン電池は、長寿命であり、高容量である。 As described above, the composite film 300 used as the electrode of the lithium ion battery of the present embodiment is that the active material 34 is difficult to peel from the first layer 40 even if the volume of the active material 34 changes greatly during charging and discharging. There is an advantage that the electric resistance between the active material 34 and the metal is small. Therefore, the lithium ion battery of this embodiment using the composite film 300 as an electrode has a long life and a high capacity.
 本実施形態では電極として上記第2実施形態の複合膜300を用いたが、リチウムイオン電池の電極は、上記実施形態及び変形形態の複合膜100、100a、100b又は機能性複合膜300aを用いて製造することもできる。それにより製造されるリチウムイオン電池も、高容量で長寿命となる。 In this embodiment, the composite film 300 of the second embodiment is used as an electrode. However, the electrode of the lithium ion battery uses the composite film 100, 100a, 100b or the functional composite film 300a of the above-described embodiment and the modified embodiment. It can also be manufactured. The lithium ion battery produced thereby also has a high capacity and a long life.
 なお、本発明に係る複合膜及び機能性複合膜は、リチウムイオン電池のような蓄電デバイスの電極に限らず、様々な形態の蓄電デバイスの電極としても適用可能であり、材料の組み合わせに応じて正極としても負極としても適用可能である。例えば、複合膜のフィラメント状炭素からなる層の上に活性炭などの電極活物質を付着して、電気二重層キャパシタの電極(正極、負極を問わない)としても適用可能である。あるいは、フィラメント状炭素からなる層の上に、黒鉛などの電極活物質を付着して、リチウムイオンキャパシタの電極(正極、負極を問わない)としても適用可能である。本出願において、「蓄電デバイス」とは、繰り返し充放電可能なデバイスを意図し、リチウムイオン電池等の二次電池、電気二重層キャパシタやリチウムイオンキャパシタ等のキャパシタを含む意である。 Note that the composite film and the functional composite film according to the present invention are not limited to the electrode of an electricity storage device such as a lithium ion battery, but can also be applied as an electrode of an electricity storage device in various forms, depending on the combination of materials. It is applicable as both a positive electrode and a negative electrode. For example, an electrode active material such as activated carbon is attached on the layer made of filamentous carbon of the composite film, and can be applied as an electrode of an electric double layer capacitor (whether positive electrode or negative electrode). Alternatively, an electrode active material such as graphite is attached on the layer made of filamentous carbon, and can be applied as an electrode (a positive electrode or a negative electrode) of a lithium ion capacitor. In this application, the “storage device” means a device that can be repeatedly charged and discharged, and includes a secondary battery such as a lithium ion battery, a capacitor such as an electric double layer capacitor and a lithium ion capacitor.
 以下、本発明の複合膜及びその製造方法を実施例及び比較例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the composite membrane of the present invention and the production method thereof will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 実施例1
 0.5wt%SDBS水溶液40mLにフィラメント状炭素としてCNT(名城ナノカーボン製eDIPS)4mgを加え、超音波分散装置(VELVO社製CLEAR VS-50R)を用いて出力30W、周波数45khzで2時間分散処理を行うことによりCNT分散液を得た。CNT分散液10mLを孔径0.1μmのメンブレンフィルタ(ミリポア社製VCWP)を用いて減圧ろ過し、メンブレンフィルタ上に厚さ約20μmのCNT膜を作製した。
Example 1
4 mg of CNT (eDIPS made by Meijo Nanocarbon) is added to 40 mL of 0.5 wt% SDBS aqueous solution as filamentous carbon, and dispersed for 2 hours at an output of 30 W and a frequency of 45 kHz using an ultrasonic dispersion device (CLEAR VS-50R made by VELVO). To obtain a CNT dispersion. 10 mL of the CNT dispersion was filtered under reduced pressure using a membrane filter having a pore size of 0.1 μm (VCWP manufactured by Millipore) to produce a CNT film having a thickness of about 20 μm on the membrane filter.
 CNT膜が形成されたメンブレンフィルタをビーカー内で純水に含浸することにより、CNT膜とメンブレンフィルタを分離させた。CNT膜に付着しているSDBSをすすぐために、ビーカー内の純水をヒーターで100℃に加熱した。次いで、水面に浮かんだCNT膜を熱酸化膜付きSi基板(以降、単に「基板」と称する)で掬い取った。これらの操作により、CNT膜を基板上に支持した。 The membrane filter with the CNT film formed was impregnated with pure water in a beaker to separate the CNT film and the membrane filter. In order to rinse the SDBS adhering to the CNT film, pure water in the beaker was heated to 100 ° C. with a heater. Next, the CNT film floating on the water surface was scraped off with a Si substrate with a thermal oxide film (hereinafter simply referred to as “substrate”). By these operations, the CNT film was supported on the substrate.
 次いで、基板上のCNT膜に、以下のようにしてCuを蒸着した。蒸着チャンバー内に、80mm×6mmのタングステンボートを設置し、この上に、Cu片(ニラコ社Cu111487、純度99.9%)を載置し、これを蒸着源とした。なお、Cu片は加熱することにより融解してボート上に広がるため、蒸着源のサイズは、30mm×6mm程度となる。タングステンボートにCNT膜が平行に対向するように基板を配置した。このとき、蒸着源-CNT膜間距離は、35mmとした。基板はCNT膜面を下に向け、中央に18mm角の開口部を有する石英ガラス板製のステージにのせ、上面からPG/PBNヒーターで約400℃に加熱した。チャンバー内をターボポンプで10-4Pa台まで減圧した。588Wでタングステンボートに通電しタングステンボートを約1790℃まで加熱することによりCu片を融解させ、80秒間Cuの蒸着を行った。蒸着中の基板温度は、400℃であった。以上の操作により、基板上のCNT膜上にCu膜が形成された。蒸着前後の試料の重量変化の値を基板面積と銅の密度で除することによって求めたCu膜厚を換算膜厚とする。本実施例では、換算膜厚が約10μmとなるよう実験を行った。 Next, Cu was deposited on the CNT film on the substrate as follows. An 80 mm × 6 mm tungsten boat was installed in the vapor deposition chamber, and a Cu piece (Nilaco Corp. Cu111487, purity 99.9%) was placed thereon, which was used as a vapor deposition source. Since the Cu piece is melted by heating and spreads on the boat, the size of the vapor deposition source is about 30 mm × 6 mm. The substrate was placed so that the CNT film faced the tungsten boat in parallel. At this time, the distance between the evaporation source and the CNT film was set to 35 mm. The substrate was placed on a quartz glass plate stage having an 18 mm square opening at the center with the CNT film surface facing down, and heated to about 400 ° C. with a PG / PBN heater from the top. The inside of the chamber was depressurized to a level of 10 −4 Pa with a turbo pump. By energizing the tungsten boat at 588 W and heating the tungsten boat to about 1790 ° C., the Cu piece was melted and Cu was deposited for 80 seconds. The substrate temperature during vapor deposition was 400 ° C. By the above operation, a Cu film was formed on the CNT film on the substrate. Let Cu film thickness calculated | required by remove | dividing the value of the weight change of the sample before and behind vapor deposition by the board | substrate area and the density of copper be a conversion film thickness. In this example, an experiment was performed so that the equivalent film thickness was about 10 μm.
 以上のようにして、基板上のCNT膜にCuが蒸着された複合膜(CNT-Cu複合膜)を得た。その後、ピンセットにてCNT-Cu複合膜を基板から剥離し、自立したCNT-Cu複合膜を得た。 As described above, a composite film (CNT-Cu composite film) in which Cu was deposited on the CNT film on the substrate was obtained. Thereafter, the CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film.
 得られたCNT-Cu複合膜を二つに引き裂き、走査型電子顕微鏡(SEM、Hitachi製S-4800)で観察したところ、低倍率では裂け目近くではCNT膜がCu膜から剥がれているように見えた(図7(a)参照)が、より高倍率で観察すると、毛羽立ったCNTが無数にCu膜上に付着していた(図7(b)参照)。このことから、CNTとCuが機械的に良好に接続されていることがわかった。 The obtained CNT-Cu composite film was torn into two and observed with a scanning electron microscope (SEM, Hitachi S-4800). At low magnification, the CNT film appeared to peel off from the Cu film near the tear. However, when observed at a higher magnification, countless fluffy CNTs adhered to the Cu film (see FIG. 7B). From this, it was found that CNT and Cu were mechanically well connected.
 比較例1
 CNTを4mg、10mLのN-メチルピロリドンに加えて、超音波分散装置(VELVO社製CLEAR VS-50R)を用いて出力40W、周波数45khzで1時間分散処理した後、PVDFを0.4mg加えて撹拌しペーストを作製した。このペースト1mLを厚さ10μmの電着銅箔(ニラコ社Cu113173、純度99.9%)上に塗布し、200℃、0.01Torrにて1時間乾燥させた。得られた複合膜を基板から機械的に剥離し、二つに引き裂いた。裂け目付近をSEM観察したところ、低倍率では裂け目近くでCNT膜が剥がれているように見えた(図7(c)参照)。中倍率で観察すると、リボン状に結着したCNTがCuに付着している部分と、CNTが見られない部分があった(図7(d)参照)。更に高倍率で観察するとCNTがCuから完全に除去されている部分があることが分かった(図7(e)参照)。このことから、バインダーでCNTとCuを接着できるものの、強度が弱いため、CNTがCuから完全に剥がれることがあり、更にバインダーによりCNTが束状に結着して表面積を減らすことも分かった。
Comparative Example 1
CNT was added to 4 mg and 10 mL of N-methylpyrrolidone, and after dispersion treatment for 1 hour at an output of 40 W and a frequency of 45 kHz using an ultrasonic dispersion device (CLEAR VS-50R manufactured by VELVO), 0.4 mg of PVDF was added. A paste was prepared by stirring. 1 mL of this paste was applied onto a 10 μm thick electrodeposited copper foil (Niraco Cu113173, purity 99.9%) and dried at 200 ° C. and 0.01 Torr for 1 hour. The resulting composite film was mechanically peeled from the substrate and torn into two. SEM observation of the vicinity of the fissure revealed that the CNT film was peeled off near the fissure at low magnification (see FIG. 7C). When observed at a medium magnification, there were a portion where CNTs bound in a ribbon shape adhered to Cu and a portion where CNTs were not seen (see FIG. 7D). When observed at a higher magnification, it was found that there was a part where CNT was completely removed from Cu (see FIG. 7 (e)). From this, it was found that although CNT and Cu can be bonded with a binder, the strength is weak, so that CNT may be completely peeled off from Cu, and the binder binds CNTs in a bundle shape to reduce the surface area.
 実施例2
 CNT分散液のろ過量を0.3mLとした以外は実施例1と同様にして、基板上に支持されたCNT膜を作製した。得られたCNT膜の平面構造をSEMにて観察したところ、CNTが絡み合った網目構造が形成されていた(図8A参照)。
Example 2
A CNT film supported on a substrate was produced in the same manner as in Example 1 except that the filtration amount of the CNT dispersion was 0.3 mL. When the planar structure of the obtained CNT film was observed with an SEM, a network structure in which CNTs were intertwined was formed (see FIG. 8A).
 次いで、Cuの蒸着時にタングステンボートを462Wで約1640℃まで加熱し蒸着時間を1秒とした以外は実施例1と同様にして、基板上のCNT膜上にCu膜を形成した。実施例1と同様にして求めたCu膜厚(換算膜厚)は0.033μmであった。 Next, a Cu film was formed on the CNT film on the substrate in the same manner as in Example 1 except that the tungsten boat was heated to about 1640 ° C. at 462 W during Cu deposition and the deposition time was 1 second. The Cu film thickness (converted film thickness) obtained in the same manner as in Example 1 was 0.033 μm.
 以上のようにして得られたCNT-Cu複合膜の平面SEM像を図8Bに示す。なお、図8Bの平面SEM像は、図8Aの平面SEM像よりも高倍率である。図8Bの平面SEM像から、CNTの網目構造の中に粒子状のCuが潜り込んでいる様子が観察された。このことから、CNTとCuが共存する共存層が形成されたことがわかった。 FIG. 8B shows a planar SEM image of the CNT-Cu composite film obtained as described above. Note that the planar SEM image in FIG. 8B has a higher magnification than the planar SEM image in FIG. 8A. From the planar SEM image of FIG. 8B, it was observed that particulate Cu was embedded in the CNT network structure. From this, it was found that a coexistence layer in which CNT and Cu coexist was formed.
 実施例3
 Cuの蒸着時にタングステンボートを576Wで約1780℃まで加熱し蒸着時間を3秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は0.14μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Cに示す。なお、図8Cの平面SEM像は、図8Aの平面SEM像よりも高倍率である。図8Cの平面SEM像から、CNTの網目構造の中に粒子状のCuが潜り込んでいる様子が観察された。このことから、CNTとCuが共存する共存層が形成されたことがわかった。
Example 3
A CNT—Cu composite film was produced in the same manner as in Example 2 except that the tungsten boat was heated to about 1780 ° C. at 576 W during Cu deposition and the deposition time was 3 seconds. The converted film thickness of the Cu film formed by vapor deposition was 0.14 μm. A planar SEM image of the CNT—Cu composite film produced in this example is shown in FIG. 8C. Note that the planar SEM image in FIG. 8C has a higher magnification than the planar SEM image in FIG. 8A. From the planar SEM image of FIG. 8C, it was observed that the particulate Cu was embedded in the CNT network structure. From this, it was found that a coexistence layer in which CNT and Cu coexist was formed.
 実施例4
 Cuの蒸着時にタングステンボートを550Wで約1750℃まで加熱し蒸着時間を4秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は0.38μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Dに示す。平面SEM像から、Cuが連続膜に近くなっており、Cu上に少量のCNTが見られたことから、網目構造の最表面近くまでCuが堆積されていることがわかった。
Example 4
A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1750 ° C. at 550 W during Cu deposition and the deposition time was 4 seconds. The converted film thickness of the Cu film formed by vapor deposition was 0.38 μm. FIG. 8D shows a planar SEM image of the CNT—Cu composite film produced in this example. From the planar SEM image, Cu was close to a continuous film, and a small amount of CNT was seen on Cu, indicating that Cu was deposited to the vicinity of the outermost surface of the network structure.
 実施例5
 Cuの蒸着時にタングステンボートを528Wで約1720℃まで加熱し蒸着時間を8秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は1.36μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Eに示す。CNT膜上にCuの連続膜が形成されていることがわかった。
Example 5
A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 528 W during Cu deposition and the deposition time was 8 seconds. The converted film thickness of the Cu film formed by vapor deposition was 1.36 μm. FIG. 8E shows a planar SEM image of the CNT—Cu composite film produced in this example. It was found that a continuous film of Cu was formed on the CNT film.
 実施例6
 Cuの蒸着時にタングステンボートを525Wで約1720℃まで加熱し蒸着時間を24秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は4.97μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Fに示す。CNT膜上にCuの連続膜が形成されていることがわかった。
Example 6
A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 525 W during Cu deposition and the deposition time was 24 seconds. The converted film thickness of the Cu film formed by vapor deposition was 4.97 μm. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8F. It was found that a continuous film of Cu was formed on the CNT film.
 実施例7
 Cuの蒸着時にタングステンボートを600Wで約1810℃まで加熱し蒸着時間を60秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は6.08μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Gに示す。CNT膜上にCuの連続膜が形成されていることがわかった。
Example 7
A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1810 ° C. at 600 W during Cu deposition and the deposition time was 60 seconds. The converted film thickness of the Cu film formed by vapor deposition was 6.08 μm. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8G. It was found that a continuous film of Cu was formed on the CNT film.
 実施例8
 Cuの蒸着時にタングステンボートを538Wで約1740℃まで加熱し蒸着時間を80秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。蒸着により形成したCu膜の換算膜厚は17.97μmであった。本実施例で作製したCNT-Cu複合膜の平面SEM像を図8Hに示す。CNT膜上にCuの連続膜が形成されていることがわかった。
Example 8
A CNT—Cu composite film was produced in the same manner as in Example 2 except that the tungsten boat was heated to about 1740 ° C. at 538 W during the deposition of Cu and the deposition time was set to 80 seconds. The converted film thickness of the Cu film formed by vapor deposition was 17.97 μm. A planar SEM image of the CNT-Cu composite film produced in this example is shown in FIG. 8H. It was found that a continuous film of Cu was formed on the CNT film.
 実施例2~8の平面SEM観察結果から、CNT膜上にCuを成膜すると、Cu堆積量が少ない初期の間はCNT膜内にCuが入り込んで共存層が形成され、さらに成膜を続けると、CuがCNT膜の表面まで堆積された後、CNTとCuの共存層上にCuの連続膜が形成されることがわかった。 From the planar SEM observation results of Examples 2 to 8, when Cu was formed on the CNT film, Cu entered the CNT film during the initial period when the amount of deposited Cu was small, and a coexistence layer was formed. After Cu was deposited to the surface of the CNT film, it was found that a continuous film of Cu was formed on the coexisting layer of CNT and Cu.
 実施例9
 CNT分散液のろ過量を3mLとし、Cuの蒸着時にタングステンボートを528Wで約1720℃まで加熱し蒸着時間を80秒とした以外は実施例1と同様にして、CNT-Cu複合膜を得た。次いで、CNT-Cu複合膜を基板から機械的に剥離し、CNT-Cu複合膜のCNT膜上に以下のようにしてSiを蒸着した。蒸着チャンバー内に、2mm×4mmの蒸発部を8個有するカーボンボートを設置し、この上に、表面に付着した有機物及び酸化物を5~10%のHF溶液を用いて除去したSi片(純度99.9999%以上)を載置し、これを蒸着源とした。Si片は、加熱することにより融解してボート上に広がるため、蒸着源のサイズは、約50mmとなる。タングステンボートにCNT膜が平行に対向するようにCNT-Cu複合膜を配置した。このとき、蒸着源-CNT膜間距離は、45mmとした。CNT-Cu複合膜はセラミックヒーターと空冷管で温度制御可能な銅性ブロックの表面に密着させて固定した。チャンバー内をロータリーポンプで1Paまで減圧し、その後アルゴンガスを10sccmで導入し、チャンバー内の圧力を13.3Pa(0.1Torr)にした。圧力が一定になった後、温度制御機構を用いてCNT-Cu複合膜を300℃に加熱した。カーボンボートに通電して1300Wでカーボンボートを2000℃以上まで加熱することによりSi片を融解させ、20秒間Siの蒸着を行った。蒸着中のCNT-Cu複合膜の温度は、300℃であった。
Example 9
A CNT-Cu composite film was obtained in the same manner as in Example 1 except that the filtration amount of the CNT dispersion was 3 mL, and the tungsten boat was heated to about 1720 ° C. at 528 W during Cu deposition, and the deposition time was 80 seconds. . Next, the CNT-Cu composite film was mechanically peeled from the substrate, and Si was deposited on the CNT film of the CNT-Cu composite film as follows. A carbon boat having eight evaporation sections of 2 mm × 4 mm is installed in the vapor deposition chamber, and an organic substance and oxide adhering to the surface are removed on this using a 5 to 10% HF solution (purity) 99.9999% or more) was placed and used as a deposition source. Since the Si piece is melted by heating and spreads on the boat, the size of the deposition source is about 50 mm 2 . The CNT-Cu composite film was disposed so that the CNT film faced the tungsten boat in parallel. At this time, the distance between the deposition source and the CNT film was 45 mm. The CNT-Cu composite film was fixed in close contact with the surface of a copper block whose temperature can be controlled with a ceramic heater and an air-cooled tube. The pressure in the chamber was reduced to 1 Pa with a rotary pump, and then argon gas was introduced at 10 sccm, and the pressure in the chamber was set to 13.3 Pa (0.1 Torr). After the pressure became constant, the CNT-Cu composite film was heated to 300 ° C. using a temperature control mechanism. By energizing the carbon boat and heating the carbon boat at 1300 W to 2000 ° C. or higher, the Si piece was melted and Si was deposited for 20 seconds. The temperature of the CNT—Cu composite film during vapor deposition was 300 ° C.
 以上のようにして、CNT膜の一方の面にCuが堆積され、もう一方の面にSiが堆積された複合膜(Si-CNT-Cu複合膜)を得た。 As described above, a composite film (Si-CNT-Cu composite film) in which Cu was deposited on one surface of the CNT film and Si was deposited on the other surface was obtained.
 得られたSi-CNT-Cu複合膜の断面構造をSEMにて観察したところ、毛羽立ったCNTを覆うようにSiが形成されていることが確認された(図9参照)。 When the cross-sectional structure of the obtained Si—CNT—Cu composite film was observed with an SEM, it was confirmed that Si was formed so as to cover the fluffy CNT (see FIG. 9).
 比較例2
 厚さ10μmの電着銅箔(ニラコ社Cu113173、純度99.9%)上に、実施例9と同様の条件でSiを蒸着し、Cu-Si複合膜を作製した。
Comparative Example 2
On the electrodeposited copper foil having a thickness of 10 μm (Niraco Cu113173, purity 99.9%), Si was deposited under the same conditions as in Example 9 to prepare a Cu—Si composite film.
<充放電特性評価>
 2032型コインセル内の両端に、実施例9のSi-CNT-Cu複合膜を負極として、Li金属を正極として配置した。電極間にセパレータ(ポリプロピレンメンブレン)を挿入し、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)にビニレンカーボネートを1wt%、LiClOを1mol/Lの割合で溶解させた電解液を注液した上で、3MPaでプレスして密封しコインセルを作製した。
<Charge / discharge characteristics evaluation>
On both ends of the 2032 type coin cell, the Si—CNT—Cu composite film of Example 9 was used as a negative electrode, and Li metal was used as a positive electrode. A separator (polypropylene membrane) is inserted between the electrodes, and 1 wt% of vinylene carbonate and 1 mol / L of LiClO 4 are dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1). After pouring the electrolyte solution made, it was pressed and sealed at 3 MPa to produce a coin cell.
 作製したコインセルを、走査電位0.005~1.2V(vs.Li/Li+)、放電レート0.1C~10C(1C=4A/gSi)で充放電サイクルを繰り返し、放電容量の変化を調べた。 The manufactured coin cell was repeatedly charged and discharged at a scanning potential of 0.005 to 1.2 V (vs. Li / Li +) and a discharge rate of 0.1 C to 10 C (1 C = 4 A / g Si ) to examine changes in the discharge capacity. It was.
 同様に、比較例2の複合膜を負極として用いて、コインセルを作製し、充放電サイクル試験を行い、放電容量の変化を調べた。 Similarly, a coin cell was prepared using the composite film of Comparative Example 2 as a negative electrode, a charge / discharge cycle test was performed, and changes in the discharge capacity were examined.
 実施例9と比較例2の複合膜の、充放電サイクル試験の結果を図10に示す。実施例9のSi-CNTーCu複合膜を負極として用いた場合では、初回の放電容量が3360mAh/gSi、70サイクル後の放電容量が2140mAh/gSiであったのに対し、比較例2のCu-Si複合膜を負極として用いた場合は、初回の放電容量が2000mAh/gSiと低く、20-40サイクルで放電容量が急速に劣化し、70サイクル後の放電容量が520mAh/gSiとなった。この結果から、実施例9のSi-CNTーCu複合膜においては、立毛したCNTを覆うようにSiが付着しているために、SiとCNTの接触面積が大きく、それにより、Siが複合膜から剥離することが抑止されていると考えられる。 The result of the charge / discharge cycle test of the composite film of Example 9 and Comparative Example 2 is shown in FIG. When the Si—CNT—Cu composite film of Example 9 was used as the negative electrode, the initial discharge capacity was 3360 mAh / g Si and the discharge capacity after 70 cycles was 2140 mAh / g Si , whereas Comparative Example 2 When the Cu—Si composite film is used as the negative electrode, the initial discharge capacity is as low as 2000 mAh / g Si , the discharge capacity rapidly deteriorates in 20-40 cycles, and the discharge capacity after 70 cycles is 520 mAh / g Si. It became. From this result, in the Si—CNT—Cu composite film of Example 9, since Si adheres so as to cover the raised CNTs, the contact area between Si and CNT is large, and thus Si is composite film. It is thought that peeling from the surface is suppressed.
 実施例10
 イソプロパノール20mLにCNTを2.5mg添加して超音波にて分散することによりCNT分散液の調整を行い、孔径0.5μmのミリポア社製PTFEをメンブレンフィルタとして用いて分散液を20mLろ過した以外は、実施例1と同様にして基板上に支持されたCNT膜を作製した。次いで、Cuの蒸着時にタングステンボートを440Wで約1610℃まで加熱し蒸着時間を3秒とした以外は実施例1と同様にして、基板上のCNT膜上にCu膜を形成した。得られたCNT-Cu複合膜のCNT膜厚は37μm、Cu膜厚は0.031μmであった。
Example 10
CNT dispersion was adjusted by adding 2.5 mg of CNT to 20 mL of isopropanol and dispersing with ultrasonic waves, except that 20 mL of the dispersion was filtered using PTFE manufactured by Millipore with a pore size of 0.5 μm as a membrane filter. In the same manner as in Example 1, a CNT film supported on a substrate was produced. Next, a Cu film was formed on the CNT film on the substrate in the same manner as in Example 1 except that the tungsten boat was heated to about 1610 ° C. at 440 W during the deposition of Cu and the deposition time was set to 3 seconds. The obtained CNT—Cu composite film had a CNT film thickness of 37 μm and a Cu film thickness of 0.031 μm.
 得られたCNT-Cu複合膜をピンセットにて基板から剥離し、自立したCNT-Cu複合膜を得た。CNT-Cu複合膜の基板からの剥離は、ピンセットを用いて容易に行うことができた(図11(a)参照)。基板から剥離した後のCNT-Cu複合膜のデジタルカメラ写真を図11(b)~(d)に示す。本実施例で作製したCNT-Cu複合膜において、Cu自体は0.031μmと一般の銅箔の数百分の1の厚さしかなく、自立性がないが、CNT膜に自立性があるため、複合膜としては自立膜させることができた。リチウムイオン電池の負極にはCu箔が一般的に用いられるが、Cu箔が重いことが問題となっている。単位面積あたりの重さは市販Cu箔と比べ、本実施例のCNT膜で1/10程度、Cu蒸着膜で1/500程度まで軽量化できた。 The obtained CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film. Peeling of the CNT-Cu composite film from the substrate could be easily performed using tweezers (see FIG. 11A). FIGS. 11B to 11D show digital camera photographs of the CNT-Cu composite film after peeling from the substrate. In the CNT-Cu composite film produced in this example, Cu itself is 0.031 μm, which is only one hundredth of the thickness of a general copper foil, and is not self-supporting, but the CNT film is self-supporting. As a composite membrane, it was possible to make it a self-supporting membrane. Although Cu foil is generally used for the negative electrode of a lithium ion battery, it is problematic that the Cu foil is heavy. The weight per unit area was reduced to about 1/10 for the CNT film of this example and about 1/500 for the Cu vapor deposition film, compared to the commercially available Cu foil.
 実施例11
 Cuの蒸着時にタングステンボートを525Wで約1720℃まで加熱し蒸着時間を24秒とした以外は実施例2と同様にして、CNT-Cu複合膜を作製した。CNT膜の厚さは約1.5μmであった。蒸着により形成したCu膜の換算膜厚は4.97μmであった。
Example 11
A CNT—Cu composite film was prepared in the same manner as in Example 2 except that the tungsten boat was heated to about 1720 ° C. at 525 W during Cu deposition and the deposition time was 24 seconds. The thickness of the CNT film was about 1.5 μm. The converted film thickness of the Cu film formed by vapor deposition was 4.97 μm.
 得られたCNT-Cu複合膜をピンセットにて基板から剥離し、自立したCNT-Cu複合膜を得た。得られたCNT-Cu複合膜のデジタルカメラ写真を図12(a)~(c)に示す。CNT膜が約1.5μmと薄くても、Cu膜自体が自立性を有しているため、CNT-Cu複合膜を自立膜として得ることができた。リチウムイオン電池の負極にはCu箔が一般的に用いられるが、Cu箔が重いことが問題となっている。単位面積あたりの重さは市販Cu箔と比べ、本実施例のCNT膜で1/50程度、Cu蒸着膜で1/3程度まで軽量化できた。 The obtained CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film. Digital camera photographs of the obtained CNT-Cu composite film are shown in FIGS. 12 (a) to 12 (c). Even when the CNT film was as thin as about 1.5 μm, since the Cu film itself was self-supporting, a CNT-Cu composite film could be obtained as a self-supporting film. Although Cu foil is generally used for the negative electrode of a lithium ion battery, it is problematic that the Cu foil is heavy. The weight per unit area was reduced to about 1/50 for the CNT film of this example and about 1/3 for the Cu vapor deposition film, compared to the commercially available Cu foil.
 実施例12
 熱酸化膜付きSi基板(以降、単に「基板」と称する)に、RFマグネトロンスパッタリングでAlを平均膜厚15nm堆積し、大気暴露によりAlを酸化してAl膜を形成した。更にその上にRFマグネトロンスパッタリングでFeを平均膜厚1nmで積層し、触媒付基板を準備した。この基板を石英ガラス製円管型反応器に設置し、10.6vol%H/53ppmvHO/Arの混合ガスの流通下で800℃にて10分間還元した後、0.15vol%C/10%H/50ppmvHO/Arの混合ガスを5分間流通し、厚さ10μmの単層CNT垂直配向膜を得た。
Example 12
Al was deposited with an average film thickness of 15 nm by RF magnetron sputtering on a Si substrate with a thermal oxide film (hereinafter simply referred to as “substrate”), and Al was oxidized by exposure to the atmosphere to form an Al 2 O 3 film. Furthermore, Fe was laminated with an average film thickness of 1 nm by RF magnetron sputtering to prepare a substrate with a catalyst. After the substrate was placed in a quartz glass circular tubular reactor and reduced for 10 minutes at 800 ° C. in flowing under a mixed gas of 10.6vol% H 2 / 53ppmvH 2 O / Ar, 0.15vol% C 2 a mixed gas of H 2/10% H 2 / 50ppmvH 2 O / Ar circulated 5 minutes to obtain a single-layer CNT vertical alignment film with a thickness of 10 [mu] m.
 次いで、100mm×15mmのタングステンボートを用い、蒸着源としてCu片(ニラコ社Cu113173、純度99.9%)を用い、タングステンボートを500Wで約1710℃まで加熱し、蒸着時間を60秒とした以外は実施例1におけるCuの蒸着と同様にして、CNT膜上にCuを蒸着した。それにより、基板上の単層CNT垂直配向膜上にCu膜が形成された。なお、Cu片は加熱することにより融解してボート上に広がるため、蒸着源のサイズは、40mm×10mm程度であった。また、蒸着により形成したCu膜の換算膜厚は11μmであった。 Then, using a 100 mm × 15 mm tungsten boat, using a Cu piece (Nilaco Cu113173, purity 99.9%) as a deposition source, heating the tungsten boat to about 1710 ° C. at 500 W, and setting the deposition time to 60 seconds In the same manner as Cu deposition in Example 1, Cu was deposited on the CNT film. Thereby, a Cu film was formed on the single-walled CNT vertical alignment film on the substrate. In addition, since the Cu piece was melted by heating and spread on the boat, the size of the vapor deposition source was about 40 mm × 10 mm. The equivalent film thickness of the Cu film formed by vapor deposition was 11 μm.
 以上のようにして、CNT-Cu複合膜を得た。その後、ピンセットにてCNT-Cu複合膜を基板から剥離し、自立したCNT-Cu複合膜を得た。得られたCNT-Cu複合膜の断面SEM像を図13Aに示す。垂直配向したCNT膜上にCuの連続膜が形成されていることがわかった。 Thus, a CNT-Cu composite film was obtained. Thereafter, the CNT-Cu composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Cu composite film. A cross-sectional SEM image of the obtained CNT-Cu composite film is shown in FIG. 13A. It was found that a continuous film of Cu was formed on the vertically aligned CNT film.
 更に、CNT側を下側に向けエタノール蒸気に曝し、CNT上にエタノールを凝縮させた後に乾燥させることで、表面張力によりCNT垂直配向膜を収縮させた。CNT垂直配向膜を収縮させたCNT-Cu複合膜のデジタルカメラ写真を図13B、13Cに示し、断面SEM像を図13Dに、平面SEM像を図13Eに示す。図13BにはCu膜側からみたCNT-Cu複合膜が示されており、図13CにはCNT膜側からみたCNT-Cu複合膜が示されている。Cu薄膜上にCNTの壁がランダムに10~20μmの間隔をおいて直立した網目構造が得られた。なお、CNTの合成時間を変えることでCNT垂直配向膜の高さを10~120μmに変化させた以外は同様の操作を行うことで、CNT壁の間隔を6~42μmと広範囲に変えることもできた。 Furthermore, the CNT vertical alignment film was shrunk by surface tension by exposing it to ethanol vapor with the CNT side facing down, condensing ethanol on the CNT, and then drying. A digital camera photograph of the CNT-Cu composite film in which the CNT vertical alignment film is contracted is shown in FIGS. 13B and 13C, a cross-sectional SEM image is shown in FIG. 13D, and a planar SEM image is shown in FIG. 13E. FIG. 13B shows a CNT-Cu composite film viewed from the Cu film side, and FIG. 13C shows a CNT-Cu composite film viewed from the CNT film side. A network structure was obtained in which the CNT walls were standing upright at intervals of 10 to 20 μm on the Cu thin film. The interval between CNT walls can be changed over a wide range from 6 to 42 μm by performing the same operation except that the height of the CNT vertical alignment film is changed to 10 to 120 μm by changing the CNT synthesis time. It was.
 実施例13
 Cu板(ニラコ社Cu113321、純度99.96%)(以降、単に「Cu基板」と称する)を用意した。Cu基板の表面のSEM像を図14Aに示す。Cu基板は表面に一方向に延在する筋状のテクスチャ(凹凸)を有していた。凹凸の平均ピッチは約9μmであった。Cu基板に、RFマグネトロンスパッタリングでTaを平均膜厚30nm、Alを平均膜厚50nm、Feを平均膜厚1nmで堆積し、触媒付Cu基板を準備した。この基板を石英ガラス製円管型反応器に設置し、10.6vol%H/53ppmvHO/Arの混合ガスの流通下で800℃にて10分間還元した後、0.15vol%C/10%H/50ppmvHO/Arの混合ガスを10分間流通し、厚さ8.5μmの単層CNT垂直配向膜を得た。
Example 13
A Cu plate (Niraco Cu113321, purity 99.96%) (hereinafter simply referred to as “Cu substrate”) was prepared. An SEM image of the surface of the Cu substrate is shown in FIG. 14A. The Cu substrate had a streak texture (unevenness) extending in one direction on the surface. The average pitch of the irregularities was about 9 μm. A Cu substrate with a catalyst was prepared by depositing Ta with an average film thickness of 30 nm, Al 2 O 3 with an average film thickness of 50 nm, and Fe with an average film thickness of 1 nm on a Cu substrate by RF magnetron sputtering. After the substrate was placed in a quartz glass circular tubular reactor and reduced for 10 minutes at 800 ° C. in flowing under a mixed gas of 10.6vol% H 2 / 53ppmvH 2 O / Ar, 0.15vol% C 2 a mixed gas of H 2/10% H 2 / 50ppmvH 2 O / Ar circulated for 10 minutes to obtain a single-layer CNT vertical alignment film having a thickness of 8.5 .mu.m.
 次いで、実施例12におけるCuの蒸着と同様にして、CNT膜上にCuを蒸着した。それにより、Cu基板上の単層CNT垂直配向膜上にCu膜が形成された。蒸着により形成したCu膜の換算膜厚は11μmであった。 Next, Cu was deposited on the CNT film in the same manner as the Cu deposition in Example 12. Thereby, a Cu film was formed on the single-walled CNT vertical alignment film on the Cu substrate. The converted film thickness of the Cu film formed by vapor deposition was 11 μm.
 以上のようにして、CNT-Cu複合膜を得た。その後、ピンセットにてCNT-Cu複合膜をCu基板から剥離し、自立したCNT-Cu複合膜を得た。得られたCNT-Cu複合膜のデジタルカメラ写真を図14Bに、断面SEM像を図14Cに示す。図14Bの左側にはCNT-Cu複合膜を剥離した後のCu基板が示されており、右側にはCNT膜側からみたCNT-Cu複合膜が示されている。これらの図から垂直配向したCNT膜上にCuの連続膜が形成されていることがわかった。 Thus, a CNT-Cu composite film was obtained. Thereafter, the CNT-Cu composite film was peeled from the Cu substrate with tweezers to obtain a self-supporting CNT-Cu composite film. A digital camera photograph of the obtained CNT-Cu composite film is shown in FIG. 14B, and a cross-sectional SEM image is shown in FIG. 14C. The left side of FIG. 14B shows the Cu substrate after the CNT-Cu composite film is peeled off, and the right side shows the CNT-Cu composite film as viewed from the CNT film side. From these figures, it was found that a continuous film of Cu was formed on the vertically aligned CNT film.
 更に、CNT側を下側に向けエタノール蒸気に曝し、CNT上にエタノールを凝縮させた後に乾燥させることで、表面張力によりCNT垂直配向膜を収縮させた。CNT垂直配向膜を収縮させたCNT-Cu複合膜のデジタルカメラ写真を図14Dに示し、斜めSEM像を図14Eに、平面SEM像を図14Fに示す。Cu薄膜上にCNTの壁が一方向に規則的に並んだ筋状構造が得られた。壁の高さは5~7μmであった。なお、CNTの合成時間を変えることでCNT垂直配向膜の高さを9~64μmに変化させた以外は同様の操作を行うことで、CNT壁の間隔を10~64μmと広範囲に変えることもできた。 Furthermore, the CNT vertical alignment film was shrunk by surface tension by exposing it to ethanol vapor with the CNT side facing down, condensing ethanol on the CNT, and then drying. A digital camera photograph of the CNT-Cu composite film obtained by shrinking the CNT vertical alignment film is shown in FIG. 14D, an oblique SEM image is shown in FIG. 14E, and a planar SEM image is shown in FIG. 14F. A streak structure in which the CNT walls were regularly arranged in one direction on the Cu thin film was obtained. The wall height was 5-7 μm. The interval between CNT walls can be changed over a wide range from 10 to 64 μm by performing the same operation except that the height of the CNT vertical alignment film is changed to 9 to 64 μm by changing the CNT synthesis time. It was.
 実施例14
 エタノール30mLにフィラメント状炭素として、Carbon 80,339-350(2014)に記載の流動層法にて製造した数層CNT2mgを加え、超音波分散装置を用いて出力90W、周波数45khzで40分間分散処理を行うことによりCNT分散液を得た。CNT分散液30mLを孔径0.1μmのメンブレンフィルタを用いて減圧ろ過し、メンブレンフィルタ上に厚さ約30μmのCNT膜を作製した。
Example 14
Add 2 mg of several CNTs produced by the fluidized bed method described in Carbon 80, 339-350 (2014) as filamentous carbon to 30 mL of ethanol, and disperse for 40 minutes at an output of 90 W and a frequency of 45 kHz using an ultrasonic dispersing device. To obtain a CNT dispersion. 30 mL of the CNT dispersion liquid was filtered under reduced pressure using a membrane filter having a pore size of 0.1 μm to produce a CNT film having a thickness of about 30 μm on the membrane filter.
 CNT膜が形成されたメンブレンフィルタから、ピンセットを用いてCNT膜とメンブレンフィルタを分離させ、CNT自立膜を得た。このCNT膜をエタノールに濡れたまま基板上にのせ、乾燥することで、CNT膜を基板上に支持した。CNT膜のシート抵抗は5Ω/sqであった。 The CNT film and the membrane filter were separated from the membrane filter on which the CNT film was formed using tweezers to obtain a CNT self-supporting film. The CNT film was supported on the substrate by placing the CNT film on the substrate while being wetted with ethanol and drying. The sheet resistance of the CNT film was 5Ω / sq.
 次いで、蒸着源としてAl片(ニラコ社Al011487、純度99.99%)を用い、基板の加熱温度を約150℃とし、タングステンボートを550Wで約1700℃まで加熱し、蒸着時間を10秒とした以外は実施例12におけるCuの蒸着と同様にして、基板上のCNT膜上にAl膜を蒸着した。蒸着により形成されたAl膜の換算膜厚は6.3μmであった。 Next, an Al piece (Nilaco Al011487, purity 99.99%) was used as the deposition source, the substrate heating temperature was about 150 ° C., the tungsten boat was heated to about 1700 ° C. at 550 W, and the deposition time was 10 seconds. Except for the above, an Al film was deposited on the CNT film on the substrate in the same manner as Cu deposition in Example 12. The converted film thickness of the Al film formed by vapor deposition was 6.3 μm.
 以上のようにして、基板上のCNT膜にAlが蒸着された複合膜(CNT-Al複合膜)を得た。その後、ピンセットにてCNT-Al複合膜を基板から剥離し、自立したCNT-Al複合膜を得た。なお、剥離により基板上に支持したCNT膜の一部がAl側に転写された。残りのCNT膜は、基板との接着力が小さいために基板から剥がれた。得られたCNT-Al複合膜のデジタルカメラ写真を図15A、15Bに、平面SEM像を図15Cに、断面SEM像を図15Dに示す。図15Aの左側にはAl膜側からみたCNT-Al複合膜が示されており、右側にはCNT-Al複合膜を剥離した後の基板から外れた残余のCNT膜が示されている。図15BにはCNT膜側からみたCNT-Al複合膜が示されている。これらの図が示すように、CNTとAlのみからなりながら、両者が良好に接続された複合膜が得られた。また、CNT-Al複合膜のシート抵抗は0.011Ω/sqであり、CNT膜単体と比べて低抵抗化した。また、図15AからわかるようにCNT-Al複合膜を剥離した後の残余のCNTは膜構造を維持していた。このCNT膜を再度、基板に保持してAl等の金属を成膜して剥離することで新たに別のCNT-Al複合膜を得ることができる。すなわち、基板上に支持したCNT膜から繰り返しCNT-Al複合膜を得ることができる。 As described above, a composite film (CNT-Al composite film) in which Al was deposited on the CNT film on the substrate was obtained. Thereafter, the CNT-Al composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Al composite film. Part of the CNT film supported on the substrate by the transfer was transferred to the Al side. The remaining CNT film was peeled off from the substrate because of its low adhesive strength with the substrate. A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 15A and 15B, a planar SEM image is shown in FIG. 15C, and a cross-sectional SEM image is shown in FIG. 15D. The left side of FIG. 15A shows the CNT-Al composite film seen from the Al film side, and the right side shows the remaining CNT film removed from the substrate after the CNT-Al composite film is peeled off. FIG. 15B shows the CNT-Al composite film viewed from the CNT film side. As shown in these figures, a composite film was obtained in which both were composed of CNT and Al but were well connected. The sheet resistance of the CNT-Al composite film was 0.011 Ω / sq, which was lower than that of the CNT film alone. Further, as can be seen from FIG. 15A, the remaining CNTs after peeling the CNT-Al composite film maintained the film structure. Another CNT-Al composite film can be newly obtained by holding the CNT film on the substrate again and forming a metal such as Al and peeling it off. That is, a CNT-Al composite film can be repeatedly obtained from the CNT film supported on the substrate.
 実施例15
 エタノールに代えて0.5wt%SDBS水溶液を用いた以外は実施例14と同様にしてCNT分散液を得た。CNT分散液を3000rpmで60min遠心分離し、上澄み液を分取した。上澄み液0.5mLに純水20mLを加え、孔径0.1μmのメンブレンフィルタを用いて減圧ろ過し、メンブレンフィルタ上に厚さ約0.1~0.15μmのCNT膜を作製した。
Example 15
A CNT dispersion was obtained in the same manner as in Example 14 except that 0.5 wt% SDBS aqueous solution was used instead of ethanol. The CNT dispersion was centrifuged at 3000 rpm for 60 minutes, and the supernatant was collected. 20 mL of pure water was added to 0.5 mL of the supernatant and filtered under reduced pressure using a membrane filter having a pore size of 0.1 μm to produce a CNT film having a thickness of about 0.1 to 0.15 μm on the membrane filter.
 CNT膜が形成されたメンブレンフィルタをビーカー内で純水に含浸することにより、CNT膜とメンブレンフィルタを分離させた。次いで、水面に浮かんだCNT膜を基板で掬い取った。これらの操作により、CNT膜を基板上に支持した。更に、石英ガラス管の中にCNT膜付基板を設置し、Ar希釈の4vol%H流通下、800℃に20分間保持し、CNT膜に付着しているSDBSを分解・除去した。 The membrane filter on which the CNT film was formed was impregnated with pure water in a beaker to separate the CNT film and the membrane filter. Next, the CNT film floating on the water surface was scraped off with a substrate. By these operations, the CNT film was supported on the substrate. Further, a substrate with a CNT film was placed in a quartz glass tube, and kept at 800 ° C. for 20 minutes under a flow of 4 vol% H 2 diluted with Ar to decompose and remove SDBS adhering to the CNT film.
 次いで、基板をPG/PBNヒーターで約350℃に加熱し、タングステンボートを500Wで約1700℃まで加熱し蒸着時間を30秒とした以外は実施例14におけるAlの蒸着と同様にして、基板上のCNT膜上にAl膜を蒸着した。蒸着により形成されたAl膜の換算膜厚は5.2μmであった。 Next, the substrate was heated to about 350 ° C. with a PG / PBN heater, the tungsten boat was heated to about 1700 ° C. with 500 W, and the deposition time was 30 seconds. An Al film was deposited on the CNT film. The converted film thickness of the Al film formed by vapor deposition was 5.2 μm.
 以上のようにして、CNT-Al複合膜を得た。その後、ピンセットにてCNT-Al複合膜を基板から剥離し、自立したCNT-Al複合膜を得た。得られたCNT-Al複合膜のデジタルカメラ写真を図16A、16Bに、平面SEM像を図16Cに、断面SEM像を図16Dに示す。図16Aの左側にはCNT-Al複合膜を剥離した後の基板が示されており、右側にはAl膜側からみたCNT-Al複合膜が示されている。図16BにはCNT膜側からみたCNT-Al複合膜が示されている。これらの図が示すように、CNTとAlのみからなりながら、両者が良好に接続された複合膜が得られた。厚さ0.1~0.15μmのCNT膜単体では薄すぎるため自立しないが、Alと複合化することで自立させることができ、更に0.011Ω/sqの低抵抗化を実現した。 Thus, a CNT-Al composite film was obtained. Thereafter, the CNT-Al composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Al composite film. A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 16A and 16B, a planar SEM image is shown in FIG. 16C, and a cross-sectional SEM image is shown in FIG. 16D. The left side of FIG. 16A shows the substrate after the CNT-Al composite film is peeled off, and the right side shows the CNT-Al composite film as viewed from the Al film side. FIG. 16B shows a CNT-Al composite film viewed from the CNT film side. As shown in these figures, a composite film was obtained in which both were composed of CNT and Al but were well connected. A single CNT film having a thickness of 0.1 to 0.15 μm is too thin to be self-supporting, but it can be made self-supporting by being combined with Al, and a low resistance of 0.011 Ω / sq has been realized.
 実施例16
 フィラメント状炭素として数層CNT0.1mgと気相成長炭素繊維(CF)(昭和電工社製VGCF)0.9mgを用いた以外は実施例14と同様にしてフィラメント状炭素分散液の減圧ろ過を行い、メンブレンフィルタ上に厚さ約13μmのCFとCNTの混合物からなる複合膜(CF+CNT複合膜)を作製した。
Example 16
Filamentous carbon dispersion was filtered under reduced pressure in the same manner as in Example 14 except that 0.1 mg of several layers of CNT and 0.9 mg of vapor grown carbon fiber (CF) (VGCF manufactured by Showa Denko KK) were used as the filamentous carbon. On the membrane filter, a composite film (CF + CNT composite film) made of a mixture of CF and CNT having a thickness of about 13 μm was produced.
 CF+CNT複合膜をピンセットを用いてメンブレンフィルタから分離し、基板上に支持した。 The CF + CNT composite membrane was separated from the membrane filter using tweezers and supported on the substrate.
 次いで、実施例15におけるAlの蒸着と同様にして、基板上のCF+CNT複合膜上にAl膜を蒸着した。蒸着により形成されたAl膜の換算膜厚は5.8μmであった。 Next, an Al film was deposited on the CF + CNT composite film on the substrate in the same manner as the Al deposition in Example 15. The converted film thickness of the Al film formed by vapor deposition was 5.8 μm.
 以上のようにして、基板上のCF+CNT複合膜にAlが蒸着された複合膜(CF+CNT-Al複合膜)を得た。その後、ピンセットにてCF+CNT-Al複合膜を基板から剥離し、自立したCF+CNT-Al複合膜を得た。得られたCF+CNT-Al複合膜のデジタルカメラ写真を図17A、17Bに、平面SEM像を図17Cに、断面SEM像を図17Dに示す。図17Aの左側にはCF+CNT-Al複合膜を剥離した後の基板が示されており、右側にはAl膜側からみたCF+CNT-Al複合膜が示されている。図17BにはCF+CNT複合膜側からみたCF+CNT-Al複合膜が示されている。これらの図が示すように、CF、CNT及びAlのみからなりながら、互いに良好に接続された複合膜が得られた。CF単体ではCF間の付着力が低すぎるため自立しないが、CNTとAlと複合化することで自立させることができ、更に0.010Ω/sqの低抵抗化を実現した。 As described above, a composite film (CF + CNT-Al composite film) in which Al was deposited on the CF + CNT composite film on the substrate was obtained. Thereafter, the CF + CNT-Al composite film was peeled from the substrate with tweezers to obtain a self-supporting CF + CNT-Al composite film. A digital camera photograph of the obtained CF + CNT-Al composite film is shown in FIGS. 17A and 17B, a planar SEM image is shown in FIG. 17C, and a cross-sectional SEM image is shown in FIG. 17D. The left side of FIG. 17A shows the substrate after the CF + CNT-Al composite film is peeled off, and the right side shows the CF + CNT-Al composite film as viewed from the Al film side. FIG. 17B shows a CF + CNT-Al composite film viewed from the CF + CNT composite film side. As shown in these figures, a composite film composed of only CF, CNT, and Al and well connected to each other was obtained. CF alone does not stand by itself because the adhesion force between CFs is too low, but it can be made self-supporting by combining with CNT and Al, and further a low resistance of 0.010 Ω / sq has been realized.
 実施例17
 実施例12と同様にしてCNTの合成を行い、厚さ6μmの単層CNT垂直配向膜を基板上に形成した。単層CNT垂直配向膜の断面SEM像を図18Aに示す。
Example 17
CNT was synthesized in the same manner as in Example 12, and a single-walled CNT vertical alignment film having a thickness of 6 μm was formed on the substrate. A cross-sectional SEM image of the single-walled CNT vertical alignment film is shown in FIG. 18A.
 次いで、タングステンボートを520Wで約1700℃まで加熱した以外は実施例15と同様にして、基板上のCNT膜上にAl膜を蒸着した。蒸着により形成されたAl膜の換算膜厚は5.0μmであった。 Next, an Al film was deposited on the CNT film on the substrate in the same manner as in Example 15 except that the tungsten boat was heated to about 1700 ° C. at 520 W. The converted film thickness of the Al film formed by vapor deposition was 5.0 μm.
 以上のようにして、CNT-Al複合膜を得た。その後、ピンセットにてCNT-Al複合膜を基板から剥離し、自立したCNT-Al複合膜を得た。得られたCNT-Al複合膜のデジタルカメラ写真を図18B、18Cに、断面SEM像を図18Dに示す。図18Bの左側にはCNT-Al複合膜を剥離した後の基板が示されており、右側にはCNT膜側からみたCNT-Al複合膜が示されている。図18CにはAl膜側からみたCNT-Al複合膜が示されている。これらの図が示すように、CNTとAlのみからなりながら、両者が良好に接続された複合膜が得られた。厚さ6μmのCNT垂直配向膜単体では垂直配向性と薄さのため自立しないが、Alと複合化することで自立させることができ、更に0.013Ω/sqの低抵抗化を実現した。 Thus, a CNT-Al composite film was obtained. Thereafter, the CNT-Al composite film was peeled from the substrate with tweezers to obtain a self-supporting CNT-Al composite film. A digital camera photograph of the obtained CNT-Al composite film is shown in FIGS. 18B and 18C, and a cross-sectional SEM image is shown in FIG. 18D. The substrate after the CNT-Al composite film is peeled off is shown on the left side of FIG. 18B, and the CNT-Al composite film viewed from the CNT film side is shown on the right side. FIG. 18C shows a CNT-Al composite film viewed from the Al film side. As shown in these figures, a composite film was obtained in which both were composed of CNT and Al but were well connected. A single CNT vertical alignment film having a thickness of 6 μm is not self-supporting because of its vertical alignment and thinness, but it can be made self-supporting by compounding with Al, and a low resistance of 0.013 Ω / sq has been realized.
 実施例18
 フィラメント状炭素として0.5mgの数層CNTを用いた以外は実施例14と同様にしてCNT分散液を得た。また、エタノール30mLに活性炭粒子(AC)(クラレ化学社製YP-80F)4.5mgを加え、超音波分散装置を用いて出力90W、周波数45khzで40分間分散処理を行うことによりAC分散液を得た。この二つの分散液を混合することで、AC及びCNTを質量比9:1で含有する分散液(AC+CNT混合分散液)60mLを得た。AC+CNT混合分散液を孔径5μmのメンブレンフィルタ(ミリポア社製JMWP)を用いて減圧ろ過し、メンブレンフィルタ上に厚さ約70μmのACとCNTの混合物からなる複合膜(AC+CNT複合膜)を作製した。
Example 18
A CNT dispersion was obtained in the same manner as in Example 14 except that 0.5 mg of several-layer CNT was used as the filamentous carbon. Moreover, activated carbon particles (AC) (YP-80F manufactured by Kuraray Chemical Co., Ltd.) (4.5 mg) was added to ethanol (30 mL), and the dispersion liquid was subjected to dispersion treatment at an output of 90 W and a frequency of 45 kHz for 40 minutes using an ultrasonic dispersion device. Obtained. By mixing these two dispersions, 60 mL of a dispersion (AC + CNT mixed dispersion) containing AC and CNT at a mass ratio of 9: 1 was obtained. The AC + CNT mixed dispersion was filtered under reduced pressure using a membrane filter (JMWP manufactured by Millipore) having a pore size of 5 μm, and a composite film (AC + CNT composite film) made of a mixture of AC and CNT having a thickness of about 70 μm was formed on the membrane filter.
 AC+CNT複合膜をピンセットを用いてメンブレンフィルタから分離し、150℃で2時間乾燥させた後、基板上に支持した。 The AC + CNT composite membrane was separated from the membrane filter using tweezers, dried at 150 ° C. for 2 hours, and then supported on the substrate.
 次いで、蒸着源としてAl片(ニラコ社Al011487、純度99.99%)を用い、基板の加熱温度を約150℃とし、チャンバー内の圧力を1×10-3Paとし、タングステンボートを110Wで約1700℃まで加熱し、蒸着時間を10秒とした以外は実施例1におけるCuの蒸着と同様にしてAC+CNT複合膜上にAlを蒸着した。本実施例では、蒸着時のAl源の原料量を10,20,30,40mgと4通りに変えることで、換算膜厚が0.3,0.5,0.8,1.7μmと4通りのAl膜が得られた。 Then, an Al piece (Niraco Al011487, purity 99.99%) was used as a deposition source, the substrate heating temperature was about 150 ° C., the pressure in the chamber was 1 × 10 −3 Pa, and the tungsten boat was about 110 W. Al was vapor-deposited on the AC + CNT composite film in the same manner as the Cu vapor deposition in Example 1 except that the temperature was raised to 1700 ° C. and the vapor deposition time was 10 seconds. In this example, the amount of Al source material during vapor deposition was changed to four types of 10, 20, 30, 40 mg, so that the equivalent film thickness was 0.3, 0.5, 0.8, 1.7 μm and 4 A street Al film was obtained.
 以上のようにして、基板上のAC+CNT複合膜にAlが蒸着された複合膜(AC+CNT-Al複合膜)を得た。その後、ピンセットにてAC+CNT-Al複合膜を基板から剥離し、自立したCF+CNT-Al複合膜を得た。得られたAC+CNT-Al複合膜のデジタルカメラ写真を図19Aに、平面SEM像を図19Bに、断面SEM像を図19Cに示す。図19AにはAl膜側からみたAC+CNT-Al複合膜が示されている。これらの図が示すように、AC、CNT及びAlのみからなりながら、互いに良好に接続された複合膜が得られた。AC単体ではAC間の付着力が低すぎるため自立しないが、CNTとAlと複合化することで自立させることができた。AC+CNT-Al複合膜のシート抵抗は、Al膜の換算膜厚が0.3,0.5,0.8,1.7μmの場合、それぞれ0.24,0.14,0.073,0.036Ω/sqであった(図19D参照)。 Thus, a composite film (AC + CNT-Al composite film) in which Al was deposited on the AC + CNT composite film on the substrate was obtained. Thereafter, the AC + CNT-Al composite film was peeled from the substrate with tweezers to obtain a self-supporting CF + CNT-Al composite film. A digital camera photograph of the obtained AC + CNT-Al composite film is shown in FIG. 19A, a planar SEM image is shown in FIG. 19B, and a cross-sectional SEM image is shown in FIG. 19C. FIG. 19A shows an AC + CNT-Al composite film viewed from the Al film side. As shown in these figures, a composite film composed of only AC, CNT, and Al and well connected to each other was obtained. AC alone does not stand by itself because the adhesion between ACs is too low, but it can be made independent by combining CNT and Al. The sheet resistance of the AC + CNT-Al composite film is 0.24, 0.14, 0.073, 0.003 when the equivalent film thickness of the Al film is 0.3, 0.5, 0.8, and 1.7 μm, respectively. It was 036Ω / sq (see FIG. 19D).
 更に、AC+CNT複合膜、及びAl膜の換算膜厚が0.3,0.5,0.8,1.7μmであるAC+CNT-Al複合膜を作用極、AC-CNT膜を対極、Ag/AgCl電極を参照極とし、1M NaSO水溶液中で、サイクリックボルタンメトリを行った。掃引電位範囲は-1.0~0.6Vとし、掃引レートは5~1000mV/sとした。図19Eに比容量の掃引レート依存性を示す。AC+CNT膜は、低走査速度5mV/sにて108F/g(電極総質量AC+CNT基準)の高容量を示したが、高走査速度200mV/sでは15F/gと容量が大きく低下した。一方で、換算膜厚0.8μmのAlを蒸着したAC+CNT-Al複合膜は、低走査速度5mV/sにて116F/g(電極総質量AC+CNT+Al基準)の高容量を示し、高走査速度200mV/sでも86F/gと高容量を維持した。Alとの複合化により、AC+CNT複合膜のレート特性が飛躍的に向上した。 Furthermore, the AC + CNT-Al composite film and the AC + CNT-Al composite film having an equivalent film thickness of 0.3, 0.5, 0.8, 1.7 μm are used as the working electrode, the AC-CNT film as the counter electrode, and Ag / AgCl. Using the electrode as a reference electrode, cyclic voltammetry was performed in a 1M Na 2 SO 4 aqueous solution. The sweep potential range was −1.0 to 0.6 V, and the sweep rate was 5 to 1000 mV / s. FIG. 19E shows the sweep rate dependence of the specific capacity. The AC + CNT film showed a high capacity of 108 F / g (based on the total electrode mass AC + CNT) at a low scanning speed of 5 mV / s, but the capacity greatly decreased to 15 F / g at a high scanning speed of 200 mV / s. On the other hand, the AC + CNT-Al composite film on which Al with a converted film thickness of 0.8 μm is deposited exhibits a high capacity of 116 F / g (total electrode mass AC + CNT + Al standard) at a low scanning speed of 5 mV / s, and a high scanning speed of 200 mV / s. Even in s, the high capacity of 86 F / g was maintained. By combining with Al, the rate characteristics of the AC + CNT composite film were dramatically improved.
 以上、本発明を実施形態により説明してきたが、本発明の複合膜及びその製造方法は上記実施形態に限定されず、特許請求の範囲に記載した技術的思想の範囲内で適宜改変することができる。例えば、第1実施形態及び第3実施形態の複合膜を連続的に製造する装置を、それぞれ、図6(a)及び(b)に示した装置を例に挙げて説明したが、それらは一具体例にすぎず、種々の変更および改良を行うことができる。例えば、図6(a)及び(b)に示した装置では、搬送装置として搬送ベルトが掛け渡されたロール対を用いて、搬送ベルトを周回させたが、搬送ベルトを直線状または曲線状あるいは任意の形状の製造ラインで製造現場を通過させるように配置してもよい。また、搬送装置として搬送ベルトやロール対を用いる代わりに、ドラム(単独のロール)を用いることができる。この場合、ドラムの表面をフィラメント状炭素の集合体が形成される支持体とすることができ、ドラムの周囲にフィラメント状炭素の集合体を形成する機構や金属を蒸着させる機構を設置することができる。さらに、図6(a)及び(b)に示した装置の搬送方向下流側に活物質を付与するための蒸着装置や供給器を設置することで、第2実施形態及び第4実施形態の複合膜を連続的に製造する装置に改造することができる。 As mentioned above, although this invention was demonstrated by embodiment, the composite film of this invention and its manufacturing method are not limited to the said embodiment, It can change suitably within the range of the technical idea described in the claim. it can. For example, the apparatuses for continuously producing the composite membranes of the first embodiment and the third embodiment have been described by taking the apparatus shown in FIGS. 6A and 6B as an example. It is only a specific example, and various changes and improvements can be made. For example, in the apparatus shown in FIGS. 6A and 6B, the conveyance belt is circulated using a pair of rolls around which the conveyance belt is stretched as the conveyance apparatus. However, the conveyance belt is linear or curved or You may arrange | position so that a manufacturing site may be passed by the manufacturing line of arbitrary shapes. Moreover, a drum (single roll) can be used instead of using a conveyor belt or a roll pair as the conveyor. In this case, the surface of the drum can be a support on which an aggregate of filamentous carbon is formed, and a mechanism for forming an aggregate of filamentous carbon or a mechanism for depositing metal can be installed around the drum. it can. Furthermore, by installing a vapor deposition apparatus and a supply device for applying an active material on the downstream side in the transport direction of the apparatus shown in FIGS. 6A and 6B, the composite of the second embodiment and the fourth embodiment is provided. It can be retrofitted into a device that continuously produces membranes.
 本発明の複合膜は、低抵抗であり、活物質が体積変化しても集電体から剥離しにくいという利点を有する。そのため、本発明の複合膜を、リチウムイオン電池の電極に適用することにより、リチウムイオン電池の高容量化、高寿命化が実現される。 The composite film of the present invention has an advantage that it has low resistance and is difficult to peel from the current collector even if the volume of the active material changes. Therefore, by applying the composite film of the present invention to an electrode of a lithium ion battery, it is possible to increase the capacity and life of the lithium ion battery.
 10 金属層、 20 フィラメント状炭素膜
 34 活物質、 40 第1層、 42 フィラメント状炭素
 44 網目構造、 46 垂直配向構造、 52 ローラ対
 54、54a 搬送ベルト、 56 供給器、 58 蒸着器
 60 共存層、 63 吸引濾過機、 71 スパッタ装置
 73 CVD装置、 74 触媒、 80 第2層、100 複合膜
 300、400 機能性複合膜、150、170 複合膜の製造装置
DESCRIPTION OF SYMBOLS 10 Metal layer, 20 Filament-like carbon film 34 Active material, 40 1st layer, 42 Filament-like carbon 44 Network structure, 46 Vertical alignment structure, 52 Roller pair 54, 54a Conveyor belt, 56 Feeder, 58 Evaporator 60 Coexistence layer , 63 Suction filter, 71 Sputter device 73 CVD device, 74 Catalyst, 80 Second layer, 100 Composite membrane 300, 400 Functional composite membrane, 150, 170 Composite membrane manufacturing device

Claims (23)

  1.  フィラメント状炭素から構成されたフィラメント状炭素層と、
     金属から構成された金属層とだけからなり、
     前記金属層の一部または全部が前記フィラメント状炭素層の一部と重複して、前記フィラメント状炭素と前記金属が共存する共存領域を有することを特徴とする自立した複合膜。
    A filamentous carbon layer composed of filamentous carbon;
    It consists only of a metal layer composed of metal,
    A self-supporting composite film, wherein a part or all of the metal layer overlaps with a part of the filamentous carbon layer and has a coexistence region where the filamentous carbon and the metal coexist.
  2.  前記金属層の一部が前記フィラメント状炭素層の一部と重複している請求項1に記載の複合膜。 The composite film according to claim 1, wherein a part of the metal layer overlaps a part of the filamentous carbon layer.
  3.  前記フィラメント状炭素層が網目構造を有し、
     前記共存領域において、前記網目構造の網目内に前記金属が入り込んでいる請求項1又は2に記載の複合膜。
    The filamentous carbon layer has a network structure;
    3. The composite film according to claim 1, wherein in the coexistence region, the metal enters the mesh of the mesh structure.
  4.  前記フィラメント状炭素層が前記フィラメント状炭素層の厚み方向に前記フィラメント状炭素が配向した垂直配向構造を有し、
     前記共存領域において、前記垂直配向構造の前記フィラメント状炭素間の空隙に前記金属が入り込んでいる請求項1又は2に記載の複合膜。
    The filamentous carbon layer has a vertical alignment structure in which the filamentous carbon is aligned in the thickness direction of the filamentous carbon layer,
    3. The composite film according to claim 1, wherein in the coexistence region, the metal enters a gap between the filamentous carbons of the vertical alignment structure.
  5.  前記フィラメント状炭素が束となって、前記フィラメント状炭素層の厚み方向に直立した壁を形成する請求項4に記載の複合膜。 The composite film according to claim 4, wherein the filamentous carbon is bundled to form an upright wall in the thickness direction of the filamentous carbon layer.
  6.  金属から構成される金属層と
     フィラメント状炭素の集合体とだけからなり、
     前記フィラメント状炭素の集合体の一部が前記金属層中に含まれており、
     前記フィラメント状炭素の集合体の他部が前記金属層上で露出していることを特徴とする自立した複合膜。
    It consists only of a metal layer composed of metal and an aggregate of filamentous carbon,
    A part of the aggregate of filamentous carbon is included in the metal layer,
    A self-supporting composite film, wherein the other part of the aggregate of filamentous carbon is exposed on the metal layer.
  7.  前記フィラメント状炭素がカーボンナノチューブを含む請求項1~6のいずれか一項に記載の複合膜。 The composite film according to any one of claims 1 to 6, wherein the filamentous carbon includes carbon nanotubes.
  8.  前記金属がCu、Al又はNiである請求項1~7のいずれか一項に記載の複合膜。 The composite film according to any one of claims 1 to 7, wherein the metal is Cu, Al, or Ni.
  9.  請求項1~8のいずれか一項に記載の複合膜と、
     前記フィラメント状炭素に付着した活物質とを有する機能性複合膜。
    A composite membrane according to any one of claims 1 to 8,
    A functional composite film having an active material attached to the filamentous carbon.
  10.  フィラメント状炭素から構成されたフィラメント状炭素膜を作製する工程と、
     支持体に支持された前記フィラメント状炭素膜上に金属を蒸着する工程と、
     前記フィラメント状炭素膜及び前記金属の複合膜を前記支持体から分離する工程とを有する複合膜の製造方法。
    Producing a filamentous carbon film composed of filamentous carbon;
    Depositing a metal on the filamentary carbon film supported by a support;
    Separating the filamentous carbon film and the metal composite film from the support.
  11.  前記フィラメント状炭素膜を作製する工程において、網目構造を有する前記フィラメント状炭素膜を作製する請求項10に記載の複合膜の製造方法。 The method for producing a composite film according to claim 10, wherein in the step of producing the filamentous carbon film, the filamentous carbon film having a network structure is produced.
  12.  前記フィラメント状炭素膜を作製する工程が、前記フィラメント状炭素膜の厚さ方向に前記フィラメント状炭素が配向するように、前記フィラメント状炭素を形成することを含む請求項10に記載の複合膜の製造方法。 11. The composite film according to claim 10, wherein the step of producing the filamentous carbon film includes forming the filamentous carbon so that the filamentous carbon is oriented in a thickness direction of the filamentous carbon film. Production method.
  13.  さらに、前記フィラメント状炭素膜及び前記金属の複合膜を前記支持体から分離する工程の後に、前記フィラメント状炭素膜を収縮させて、前記フィラメント状炭素の束からなる前記フィラメント状炭素層の厚さ方向に直立した壁を形成する工程を含む請求項12に記載の複合膜の製造方法。 Further, after the step of separating the filamentous carbon film and the metal composite film from the support, the filamentous carbon film is contracted to reduce the thickness of the filamentous carbon layer comprising the bundle of filamentous carbon. The manufacturing method of the composite film of Claim 12 including the process of forming the wall upright in the direction.
  14.  前記フィラメント状炭素膜上に金属を蒸着する工程の前に、前記フィラメント状炭素膜を前記支持体により支持する工程を含むことを含む請求項10~13のいずれか一項に記載の複合膜の製造方法。 The composite film according to any one of claims 10 to 13, further comprising a step of supporting the filamentous carbon film by the support before the step of depositing a metal on the filamentous carbon film. Production method.
  15.  前記支持体を移動させながら、移動方向上流側で前記支持体上に前記フィラメント状炭素膜を作製し、前記移動方向の下流側で前記支持体上の前記フィラメント状炭素膜に前記金属を蒸着する請求項10~13のいずれか一項に記載の複合膜の製造方法。 While moving the support, the filamentous carbon film is formed on the support on the upstream side in the movement direction, and the metal is deposited on the filamentous carbon film on the support on the downstream side in the movement direction. The method for producing a composite membrane according to any one of claims 10 to 13.
  16.  前記フィラメント状炭素膜の前記金属を蒸着した面と反対の面上に活物質を付着させる工程をさらに有する請求項10~15のいずれか一項に記載の複合膜の製造方法。 The method of manufacturing a composite film according to any one of claims 10 to 15, further comprising a step of attaching an active material to a surface of the filamentous carbon film opposite to a surface on which the metal is deposited.
  17.  請求項10~16のいずれか一項に記載の製造方法によって形成された複合膜。 A composite film formed by the production method according to any one of claims 10 to 16.
  18.  請求項1~8または17のいずれか一項に記載の複合膜を有する電極。 An electrode having the composite film according to any one of claims 1 to 8 or 17.
  19.  請求項9に記載の機能性複合膜を有する電極。 An electrode having the functional composite film according to claim 9.
  20.  請求項18又は19に記載の電極を備える蓄電デバイス。 An electricity storage device comprising the electrode according to claim 18 or 19.
  21.  金属層と、フィラメント状炭素の集合体だけからなり、前記フィラメント状炭素の集合体の一部が前記金属層中に含まれており、前記フィラメント状炭素の集合体の他部が前記金属層上で露出している自立した複合膜を製造するための装置であって、
     支持体を連続的に移動する移動機構と、
     前記移動方向上流側に設けられて前記支持体上に前記フィラメント状炭素の集合体を形成する集合体形成部と、
     前記移動方向下流側に設けられて前記フィラメント状炭素の集合体上に金属を蒸着する蒸着機構とを備える複合膜製造装置。
    It consists only of a metal layer and an aggregate of filamentous carbon, a part of the aggregate of filamentous carbon is included in the metal layer, and the other part of the aggregate of filamentous carbon is on the metal layer. An apparatus for producing a self-supporting composite membrane exposed at
    A moving mechanism for continuously moving the support;
    An assembly forming portion that is provided on the upstream side in the moving direction and forms an assembly of the filamentous carbon on the support;
    An apparatus for producing a composite film, comprising: a vapor deposition mechanism that is provided on the downstream side in the movement direction and deposits metal on the filamentary carbon aggregate.
  22.  前記移動機構が前記支持体を回転移動するロールを備える請求項21に記載の複合膜製造装置。 The composite film manufacturing apparatus according to claim 21, wherein the moving mechanism includes a roll that rotates and moves the support.
  23.  前記集合体形成部と前記蒸着機構を連続的に動作させることにより、長尺の複合膜を前記支持体上に形成し、該長尺の複合膜を前記支持体から連続的に剥離することによって前記長尺の複合膜を得る請求項21または22に記載の複合膜製造装置。 By continuously operating the assembly forming part and the vapor deposition mechanism, a long composite film is formed on the support, and the long composite film is continuously peeled from the support. The composite film manufacturing apparatus according to claim 21 or 22, wherein the long composite film is obtained.
PCT/JP2016/055888 2015-03-04 2016-02-26 Composite film and method for manufacturing same WO2016140168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043021 2015-03-04
JP2015043021 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140168A1 true WO2016140168A1 (en) 2016-09-09

Family

ID=56848520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055888 WO2016140168A1 (en) 2015-03-04 2016-02-26 Composite film and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016140168A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064477A (en) * 2019-10-11 2021-04-22 株式会社豊田中央研究所 Active material film and power storage device
US20240103357A1 (en) * 2021-08-26 2024-03-28 Mitsui Chemicals, Inc. Pellicle film, pellicle, exposure original plate, exposure device, and method for manufacturing pellicle film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133258A (en) * 1998-10-29 2000-05-12 Matsushita Electric Ind Co Ltd Positive plate for alkaline storage battery and its manufacture
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2014523841A (en) * 2011-06-07 2014-09-18 ファーストキャップ・システムズ・コーポレイション Energy storage medium for ultracapacitors
JP2015015074A (en) * 2013-07-03 2015-01-22 電気化学工業株式会社 Compound current collector, electrode employing the same, and secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133258A (en) * 1998-10-29 2000-05-12 Matsushita Electric Ind Co Ltd Positive plate for alkaline storage battery and its manufacture
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2014523841A (en) * 2011-06-07 2014-09-18 ファーストキャップ・システムズ・コーポレイション Energy storage medium for ultracapacitors
JP2015015074A (en) * 2013-07-03 2015-01-22 電気化学工業株式会社 Compound current collector, electrode employing the same, and secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS SYSTEM ONE POINT 1 CARBON NANOTUBE, GRAPHENE, 2012, pages 21 *
MCGRAW-HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS, 1996, pages 1684 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064477A (en) * 2019-10-11 2021-04-22 株式会社豊田中央研究所 Active material film and power storage device
JP7047826B2 (en) 2019-10-11 2022-04-05 株式会社豊田中央研究所 Active material membrane and power storage device
US20240103357A1 (en) * 2021-08-26 2024-03-28 Mitsui Chemicals, Inc. Pellicle film, pellicle, exposure original plate, exposure device, and method for manufacturing pellicle film

Similar Documents

Publication Publication Date Title
CN104885262B (en) Device and the method for forming device
JP6346290B2 (en) Multilayer battery and manufacturing method thereof
KR101778541B1 (en) Graphene lithium ion capacitor
US8968820B2 (en) Process for producing hybrid nano-filament electrodes for lithium batteries
US20190341650A9 (en) Lithium ion battery and battery materials
EP3292580B1 (en) A device and method of manufacturing high aspect ratio structures
US20100178568A1 (en) Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
JP6361599B2 (en) Power storage device
US11387445B2 (en) Positive electrode for lithium-ion rechargeable battery, lithium-ion rechargeable battery, and method for producing positive electrode for lithium-ion rechargeable battery
Noerochim et al. Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V 2 O 5–polypyrrole cathodes
US20130209881A1 (en) Negative active material and lithium battery including negative active material
JP6759936B2 (en) Non-aqueous electrolyte secondary battery and negative electrode unit
KR20140012100A (en) Lithium ion cell design apparatus and method
TWI600205B (en) Cathode and lithium air battery using the same
JP6093570B2 (en) High performance energy storage and collection device containing exfoliated microtubes and spatially controlled attached nanoscale particles and layers
US20130143087A1 (en) Core/shell structured electrodes for energy storage devices
KR20180124973A (en) Non-aqueous electrolyte secondary battery
CN112913075B (en) Functional separator having catalytic site introduced therein, method of manufacturing the same, and lithium secondary battery comprising the same
JP6534835B2 (en) Power storage device provided with negative electrode active material layer and negative electrode active material layer
JP2012119079A (en) Negative electrode active material, method of manufacturing negative electrode, negative electrode, and secondary battery
Wang et al. Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis
JP6255768B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery including the same
WO2016140168A1 (en) Composite film and method for manufacturing same
US20150287997A1 (en) Nanofiber and use thereof in an electrode
CN115332541A (en) Sandwich-structured flexible negative current collector and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP