WO2016137230A1 - 배터리 장치 - Google Patents

배터리 장치 Download PDF

Info

Publication number
WO2016137230A1
WO2016137230A1 PCT/KR2016/001808 KR2016001808W WO2016137230A1 WO 2016137230 A1 WO2016137230 A1 WO 2016137230A1 KR 2016001808 W KR2016001808 W KR 2016001808W WO 2016137230 A1 WO2016137230 A1 WO 2016137230A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
charge
discharge
load
Prior art date
Application number
PCT/KR2016/001808
Other languages
English (en)
French (fr)
Inventor
성창현
김영환
이상훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/513,307 priority Critical patent/US10348107B2/en
Priority to CN201680003380.1A priority patent/CN107078531B/zh
Priority to EP16755880.8A priority patent/EP3200312B1/en
Priority to PL16755880T priority patent/PL3200312T3/pl
Priority to JP2017531483A priority patent/JP6494762B2/ja
Publication of WO2016137230A1 publication Critical patent/WO2016137230A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery device, and more particularly, to a battery device capable of preventing damage to a load capacitor or a component included in the battery device due to an inrush currnet.
  • the battery device of an electric or hybrid vehicle may include a battery in which a plurality of battery cells are connected in series and / or in parallel to store and provide energy.
  • the battery stand includes a peripheral circuit including a charge and discharge circuit, the peripheral circuit is made of a printed circuit board and then electrically coupled with the battery cell.
  • the charge / discharge circuit controls charge / discharge of the battery cell between the battery, the external power source, and the load.
  • the charge / discharge circuit may include a charge MOSFET (metal oxide silicon field effect transistor) switch and a discharge MOSFET switch in a line through which a charge current or a discharge current flows.
  • MOSFET metal oxide silicon field effect transistor
  • loads of electronic and electrical products for example, an electric control unit (ECU), a motor, a power converter, and the like in a vehicle using a battery as a power source may induce a high frequency current in a conductive line connected to the battery.
  • the high frequency current imposes stress on the battery, and noise is generated in the conductive line that generates the high frequency current.
  • a load capacitor is mounted at the front end of a load such as a motor or a power converter.
  • the load capacitor is a means for ensuring stable power supply using a battery by preventing high frequency switching current from being discharged to the outside of the load.
  • an inrush current may flow momentarily to the load side.
  • the inrush current generated momentarily may damage the charge / discharge switch and the load capacitor, which may reduce the life of each device or cause a driving failure.
  • the present invention provides a battery device capable of preventing damage to the charge / discharge switch due to inrush current.
  • the present invention provides a battery device capable of preventing damage to the load capacitor by reducing the current inflow rate to the load capacitor side.
  • the present invention provides a battery device capable of blocking high frequency current flowing into the battery from the outside during charging.
  • a battery device includes a battery; A charge / discharge switch unit controlling charge / discharge of the battery; A precharge unit installed between the battery and the charge / discharge switch unit and charged when the battery is discharged; And a discharge unit configured to discharge the charge charged in the precharge unit when the charge / discharge switch unit is turned off.
  • the charge / discharge switch includes first and second switches provided between the battery and the load.
  • the battery device according to the present invention further includes a load capacitor connected in parallel with the load.
  • the battery device according to the present invention further includes a driving unit for controlling the first and second switches.
  • the driving unit a state detection unit for detecting the state of the battery; A controller configured to generate a control signal for driving the charge / discharge switch unit by using the detection data of the state detector; And a signal output unit configured to output the control signal to the charge / discharge switch unit.
  • the driver controls the first and second switches by comparing the detection data with the reference data of the state detector.
  • the precharge unit includes at least one capacitor provided between the battery and the first switch.
  • the at least one capacitor is charged when the first and second switches are turned on and the battery is discharged.
  • the precharge unit is charged before the load capacitor to adjust the charging time of the load capacitor.
  • the discharge unit includes a diode provided between the precharge unit and the driving unit.
  • the diode discharges the charge charged in the precharge unit after the first and second switches are turned off.
  • a precharge part and a discharge part may be provided between the battery and the charge / discharge switch part.
  • the discharge switch may be turned on to slow down the charging of the load capacitor when the battery is discharged, thereby preventing damage to the load capacitor and the charge / discharge switch unit due to the inrush current.
  • the discharge unit may accelerate the driving of the charge / discharge switch unit by discharging the charge charged in the precharge unit when the discharge switch is turned off.
  • the precharge unit filters the high frequency current, thereby effectively preventing the battery from being damaged by the high frequency current.
  • FIG. 1 is a block diagram of a battery device according to an embodiment of the present invention.
  • FIG. 2 is a graph comparing a voltage change of a load capacitor when supplying a discharge current to a load using a battery device according to the prior art and the embodiment of the present invention.
  • FIG. 3 is a configuration diagram of a battery device according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of a battery device according to an embodiment of the present invention.
  • a battery device may include a battery 100 that stores and provides electrical energy, a load 200 that receives electrical energy from the battery 100, and a battery 100. And a load 200 between the charge and discharge switch unit 300 to control the charge and discharge of the battery 100, the drive unit 400 for controlling the driving of the charge and discharge switch unit 300, and the battery 100 A precharge unit 500 which is precharged at the time of discharge, and a discharge unit 600 which discharges the charge of the precharge unit 500.
  • the battery device according to the embodiment of the present invention may optionally further include a load capacitor Ci connected in parallel to the load 200 and a protection unit 700 for protecting the charge / discharge switch unit 300. have.
  • the battery 100 stores and provides electrical energy.
  • the battery 100 may include a plurality of battery cells that can be charged and discharged.
  • the battery 100 may include at least one battery module, and each battery module may include a plurality of battery cells.
  • the plurality of battery modules may be connected in series and / or in parallel in various ways so as to conform to specifications of the battery 100 or the load 200, and the plurality of battery cells may also be connected in series and / or in parallel.
  • the type of battery cell is not particularly limited, and for example, it can be constituted by a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery and the like.
  • the load 200 may include a charging unit for charging the battery 100 and may include an electric product driven by electrical energy provided from the battery 100.
  • the charging unit may include a charger and a connector for charging the battery 100.
  • the electrical and electronic product may include, for example, a motor in an electric vehicle that may be driven by receiving electrical energy from the battery 100, and converts power such as an inverter to convert electrical energy provided from the battery 100. It may include a device.
  • the load 200 may include various electric and electronic products driven by the battery 100 that can be charged and discharged, such as a smart phone as well as an electric vehicle.
  • a load capacitor Ci connected in parallel with the load 200 may be provided.
  • the load capacitor Ci may be provided to ensure stable power supply using the battery 100 by preventing high frequency switching current from being discharged to the outside of the load 200.
  • the charge / discharge switch unit 300 is provided between the current path between the battery 100 and the load 200 to control the charging and discharging of the battery 100.
  • the charge / discharge switch unit 300 may include a first switch 310 and a second switch 320.
  • the charge and discharge switch unit 300 is provided between the battery 100 and the load 200, the first switch 310 is provided on the battery 100 side, the second switch 320 is the load 200 ) May be provided on the side.
  • the first and second switches 310 and 320 may be simultaneously driven during charging and discharging of the battery 100, and either one may be selectively driven.
  • the first switch 310 may include a first FET 311 and a first parasitic diode 312.
  • a drain terminal and a source terminal are provided between the current path of the battery 100, that is, between the first node Q1 and the second node Q2.
  • a gate terminal of the first FET 311 is electrically connected to the driver 400.
  • the gate terminal of the first FET 311 may be connected to the driving unit 400 through the first resistor R1 of the protection unit 700. Accordingly, the first FET 311 is driven according to a control signal output from the driver 400 through the first resistor R1, and applies a current to the battery 100 when charging and discharges the battery 100 when discharging. It serves to apply a current to the load 200.
  • the first parasitic diode 312 is connected in parallel to the first FET 311. That is, the first parasitic diode 312 is forwardly connected between the source terminal and the drain terminal of the first FET 311.
  • the first parasitic diode 312 blocks the path of the discharge current when the first FET 311 is turned on to charge and / or discharge the battery 100. Therefore, when the battery 100 is charged, the phenomenon in which charging and discharging of the battery 100 are simultaneously performed by the first parasitic diode 312 may be prevented, thereby improving safety of the battery 100.
  • the second switch 320 may include a second FET 321 and a second parasitic diode 322.
  • the second FET 321 has a source terminal and a drain terminal provided between the current path of the battery 100, that is, between the second node Q2 and the third node Q3.
  • the gate terminal of the second FET 321 is electrically connected to the driver 400.
  • the gate terminal of the second FET 321 may be connected to the driving unit 400 through the second resistor R2 of the protection unit 700. Accordingly, the second FET 321 is driven according to a control signal output from the driver 400 through the second resistor R2, and applies a current to the battery 100 when charging and discharges the battery 100 when discharging. It serves to apply a current to the load 200.
  • the second parasitic diode 322 is connected in parallel to the second FET 321. That is, the second parasitic diode 322 is connected in a forward direction between the source terminal and the drain terminal of the second FET 321.
  • the second parasitic diode 322 blocks the path of the charging current during charging and / or discharging of the battery 100. Therefore, when the battery 100 is discharged, the phenomenon in which charging and discharging of the battery 100 are simultaneously performed by the second parasitic diode 322 may be prevented, thereby improving safety of the battery 100.
  • the driver 400 outputs a control signal for driving the charge / discharge switch unit 300. That is, the driver 400 is connected to the gate terminal of the first FET 311 and the gate terminal of the second FET 321 to drive the first and second FETs 311 and 321, respectively.
  • the driver 400 may turn on the first and second FETs 311 and 321 at the time of charging and discharging the battery 100, respectively.
  • the control signal for turning on the first and second FETs 311 and 321 may be a logic high signal
  • the control signal for turning off the first and second FETs 311 and 321 may be a logic low signal.
  • the driving unit 400 may be provided in a battery management system (BMS).
  • BMS battery management system
  • the precharge unit 500 may be provided between the battery 100 and the first switch 310.
  • the precharge unit 500 may include at least one capacitor Cs connected between the gate terminal and the drain terminal of the first FET 311. That is, at least one capacitor Cs is provided between the first node Q1 and the fourth node Q4. In this case, when a plurality of capacitors Cs are provided, the capacitors Cs may be connected in parallel between the first node Q1 and the fourth node Q4.
  • the precharge unit 500 including the at least one capacitor Cs controls the inclination at which the voltage of the load capacitor Ci rises when the first and second switches 310 and 320 are turned on to thereby load the capacitor. It is possible to prevent the inrush current from flowing to Ci) side.
  • the precharge unit 500 may adjust the slope of the voltage rise of the load capacitor Ci according to the capacity of the capacitor Cs or the number of capacitors Cs. That is, the larger the capacity of the capacitor Cs, the longer the charging time of the load capacitor Ci, and the longer the number of capacitors Cs, the longer the charging time of the load capacitor Ci.
  • the discharge unit 600 is provided to discharge the electric charges charged in the precharge unit 500.
  • the discharge unit 600 may include a diode D1.
  • the discharge part 600 may be provided between the precharge part 500 and the driving part 400. That is, the diode D1 may be provided between the fourth node Q4 and the sixth node Q6.
  • the discharge unit 600 discharges the charge charged in the precharge unit 500, that is, the capacitor Cs when the first and second switches 310 and 320 are turned off, and thus the first and second switches 310, The turn-off of 320 can be performed quickly.
  • the protection part 700 may include a plurality of resistors R1 to R4.
  • the first resistor R1 is connected between the gate terminal of the first FET 311 and the driver 400, that is, between the fourth node Q4 and the sixth node Q6, and the second resistor R2 is formed in the first resistor FET 311. It is connected between the gate terminal of the two FETs 321 and the driver 400, that is, between the fifth node Q5 and the sixth node Q6.
  • the third resistor R3 is connected between the source terminal and the gate terminal of the first FET 311, that is, between the second node Q2 and the fourth node Q4, and the fourth resistor R4 is connected to the third resistor R4. It is connected between a source terminal and a gate terminal of the two FETs 321, that is, between the second node Q2 and the fifth node Q5.
  • the first and second resistors R1 and R2 serve to absorb the impulse components of the signal output from the driver 400 to protect the first and second FETs 311 and 321, respectively. Do it.
  • the third and fourth resistors R3 and R4 form a negative voltage difference between the gate terminal and the source terminal of the first and second FETs 311 and 321, respectively, to flow between the source terminal and the drain terminal. It controls the amount of current.
  • the battery 100 When charging the battery 100, the battery 100 is connected to a power supply device (not shown) by using a connector instead of the load 200, and the driving unit 400 is the first and second of the charge / discharge switch unit 300.
  • a control signal of logic high level is output to the switches 310 and 320. Accordingly, the first FET 311 of the first switch 310 and the second FET 321 of the second switch 320 are turned on. Therefore, power is applied from the charger to the battery 100 to charge the battery 100. At this time, the first parasitic diode 312 of the first switch 310 blocks the path of the discharge current of the battery 100.
  • the driving unit 400 discharges the logic high level to the first and second switches 310 and 320 of the charge / discharge switch unit 300. Output the signal.
  • the first and second FETs 311 and 321 are turned on, respectively. Therefore, electrical energy is supplied from the battery 100 to the load 200, wherein at least one capacitor Cs of the precharge unit 500 is charged and then the load capacitor Ci is charged. That is, before the power of the battery 100 charges the load capacitor Ci, the capacitor Cs is charged. Therefore, the voltage rising speed of the load capacitor Ci, that is, the charging speed can be adjusted.
  • the second parasitic diode 322 of the second switch 320 blocks the path of the charging current of the battery 100.
  • the driving unit 400 When the supply of power to the load 200 is completed, the driving unit 400 outputs a control signal of a logic low level to the first and second switches 310 and 320 to provide the first and second FETs 311 and 321. Turn off.
  • the discharge unit 600 may discharge the charge charged in the precharge unit 500. That is, the discharge unit 600 including the diode D1 is provided between the precharge unit 500 and the driver 400, and the driver 400 turns off the first and second FETs 311 and 321.
  • the discharge unit 600 discharges the charge charged in the precharge unit 500 through the driver 400. Therefore, the first and second switches 310 and 320 can be turned off quickly.
  • the charges charged in the load capacitor Ci are discharged.
  • FIG. 2 is a diagram illustrating a voltage waveform of a load capacitor when a battery is discharged between a conventional battery device and a battery device according to an exemplary embodiment of the present invention.
  • the battery device according to the present invention includes a precharge part and a discharge part.
  • the load capacitor is rapidly charged by the inrush current when the battery is discharged.
  • the battery device according to the present invention can be seen that the load capacitor is slowly charged by the limited current. That is, the battery device according to the present invention may be provided with a precharge unit, and thus, the charge capacitor of the load capacitor may be slower than the prior art since the precharge unit is charged first and then the charge capacitor is charged when the battery is discharged.
  • the charge-discharge switch unit is turned off, the discharge speed of the load capacitor does not show a significant difference between the prior art and the present invention.
  • FIG. 3 is a configuration diagram of a battery device according to another embodiment of the present invention.
  • a battery device may include a battery 100 that stores and provides electrical energy, a load 200 that receives electrical energy from the battery 100, and a battery 100. And a charge / discharge switch unit 300 provided between the load 200 to control charge / discharge of the battery 100, and control the driving of the charge / discharge switch unit 300, the state detector 410 and the controller 420. And a driving unit 400 including a signal output unit 430, a precharge unit 500 that is precharged when the battery 100 is discharged, and a discharge unit 600 that discharges charges of the precharge unit 500. And a load capacitor Ci connected to the load 200 in parallel, and a protection unit 700 protecting the charge / discharge switch unit 300.
  • the driver 400 includes a state detector 410, a controller 420, and a signal output unit 430.
  • the driver 400 including the state detector 410, the controller 420, and the signal output unit 430 may be provided in a battery management system that manages a state of a battery.
  • the state detector 410 is provided in at least one region of the battery 100 to detect a state of the battery 100.
  • the state detector 410 measures the voltage, temperature, and current of the battery 100.
  • the state detector 410 may include a voltage measuring unit (not shown) for measuring the voltage of the battery and a temperature measuring unit (not shown) for measuring the temperature of the battery.
  • the state detector 410 may further include a current measuring unit (not shown) for measuring the current of the battery.
  • the voltage measuring unit may be connected to one end and the other end of the battery 100, that is, the positive terminal and the negative terminal to measure the voltage of the battery 100.
  • the voltage measurement unit may measure the voltage difference between the positive terminal and the negative terminal of the battery 100.
  • the temperature measuring unit may be provided in at least one region of the battery 100 to measure the temperature of at least one region of the battery 100.
  • the temperature measuring unit may be connected to each of the plurality of battery modules to measure the temperature of each battery module, and may be provided in a plurality of regions of the battery 100 to measure the temperature of each region.
  • the voltage measuring unit may include a known voltage measuring circuit, the temperature measuring unit may include a thermocouple, and the current measuring unit may include a current measuring element such as a hall sensor.
  • the present invention is not limited thereto.
  • the controller 420 is connected to the state detector 410 to receive state data of the battery 100 from the state detector 410. In addition, the controller 420 generates a control signal according to the state data of the battery 100 and supplies it to the signal output unit 430. That is, the controller 420 generates a control signal for controlling the charge / discharge switch unit 300 by using data such as voltage, temperature, and current of the battery 100 detected by the state detector 410.
  • the controller 420 may refer to data stored in a storage unit (not shown) such as a memory device in order to generate a control signal according to the state of the battery 100.
  • the storage unit is provided with a look-up table in which the voltage and temperature of the battery 100 and the charge / discharge amount of the battery 100 are stored, and the controller 420 receives a voltage and temperature input from the state detector 410.
  • the data is matched with the data stored in the lookup table to generate a charge / discharge control signal according to the charge / discharge amount of the battery 100. That is, the control unit 420 compares the detection data of the state control unit 410 with the reference data of the storage unit to control the first and second switches 310 and 320 when the battery 100 is in an overcharge state. And a control signal for turning on the first and second switches 310 and 320 in the charging mode when the amount of charge of the battery 100 is insufficient.
  • the battery 100 may be managed under optimal conditions by controlling the charging and discharging of the battery 100 according to the overdischarge, full discharge, full charge, and overcharge states of the battery 100.
  • the signal output unit 430 may include a first signal output unit 431 outputting a control signal to the first switch 310, and a second signal output unit 432 outputting a control signal to the second switch 320. It may include.
  • the first signal output unit 431 is connected to the gate terminal of the first FET 311 through the first resistor R1 to turn on and turn off the first FET 311 according to the control signal of the controller 420. Can be controlled. That is, the first signal output unit 421 turns on or off the first FET 311 according to a control signal output according to overdischarge, full discharge, full charge, or overcharge of the battery 100.
  • the second signal output unit 432 is connected to the gate terminal of the second FET 321 through the second resistor (R2) to turn on and turn on the second FET 321 according to the control signal of the controller 420. Off can be controlled. That is, the second signal output unit 432 turns on or off the second FET 321 according to a control signal output according to overdischarge, full discharge, full charge, or overcharge of the battery 100.
  • a precharge part and a discharge part may be provided between the battery and the charge / discharge switch part.
  • the discharge switch may be turned on to slow down the charging of the load capacitor when the battery is discharged, thereby preventing damage to the load capacitor and the charge / discharge switch unit due to the inrush current.
  • the discharge unit may accelerate the driving of the charge / discharge switch unit by discharging the charge charged in the precharge unit when the discharge switch is turned off.
  • the precharge unit filters the high frequency current, thereby effectively preventing the battery from being damaged by the high frequency current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Abstract

본 발명은 배터리와, 배터리의 충방전을 제어하는 충방전 스위치부와, 배터리의 방전 시 충전되는 프리차지부와, 프리차지부에 충전된 전하를 방전시키는 방전부를 포함하는 배터리 장치를 개시한다.

Description

배터리 장치
본 발명은 배터리 장치에 관한 것으로, 특히 돌입 전류(inrush currnet)에 의한 부하 캐패시터 또는 배터리 장치에 포함된 부품의 손상을 방지할 수 있는 배터리 장치에 관한 것이다.
본 출원은 대한민국 특허청에 2015년 2월 24일자에 출원된 특허출원 제 10-2015-0025865호에 대해 우선권을 주장하며, 상기 특허출원의 내용은 본 명세서의 일부로서 합체된다.
가솔린이나 중유를 주연료로 사용하는 내연 엔진을 이용하는 자동차는 대기오염 등 공해 발생에 심각한 영향을 주고 있다. 따라서, 최근에는 공해 발생을 줄이기 위하여 배터리 장치(Battery apparatus)에서 출력되는 전기 에너지에 의해 동작하는 전기 자동차 또는 하이브리드(Hybrid) 자동차가 개발되고 있다.
전기 또는 하이브리드 자동차의 배터리 장치는 복수의 배터리 셀이 직렬 및/또는 병렬 연결되어 에너지를 저장 및 제공하는 배터리를 포함할 수 있다. 또한, 배터리 방치는 충방전 회로를 포함하는 주변 회로를 포함하며, 상기 주변 회로는 인쇄 회로 기판으로 제작된 후 배터리 셀과 전기적으로 결합된다.
이러한 배터리 장치에 있어서, 배터리가 외부 전원과 연결되면 충방전 회로를 통해 외부 전원이 공급되어 배터리 셀이 충전되며, 반대로 배터리가 부하(load)와 연결되면 배터리 셀의 전원이 충방전 회로를 통해 부하에 공급된다.
상기 충방전 회로는 배터리와 외부 전원 및 로드의 사이에서 배터리 셀의 충방전을 제어한다. 충방전 회로는 충전 전류 또는 방전 전류가 흐르는 선로에 충전 MOSFET(Metal Oxide Silicon Field Effect Transistor) 스위치 및 방전 MOSFET 스위치를 포함할 수 있다.
한편, 배터리를 전원으로 이용하는 자동차 내의 전자전기 제품, 예를 들어 ECU(Electric Control Unit), 모터, 전력변환장치 등의 로드는 배터리와 연결된 도전선에 고주파 전류를 유기할 수 있다. 고주파 전류는 배터리에 무리를 주게 되며, 고주파 전류가 발생되는 도전선에는 노이즈가 발생된다. 이를 해결하기 위해 모터 또는 전력변환장치 등의 부하의 전단에는 부하 캐패시터를 장착한다. 부하 캐패시터는 고주파의 스위칭 전류가 부하의 외부로 방출되는 것을 방지함으로써 배터리를 이용한 안정적인 전원 공급을 보장하기 위한 수단이다.
그러나, 전원 입력단에 부하 캐패시터가 구비된 부하가 배터리에 직접 연결될 경우에는 부하 측으로 순간적으로 돌입 전류(inrush current)가 흐를 수 있다. 순간적으로 발생된 돌입 전류는 충방전 스위치 및 부하 캐패시터를 손상시켜 각 소자의 수명을 저하시키거나 구동 불량의 원인이 될 수 있다.
본 발명은 돌입 전류에 의한 충방전 스위치의 손상을 방지할 수 있는 배터리 장치를 제공한다.
본 발명은 부하 캐패시터 측으로의 전류 유입 속도를 줄여 부하 캐패시터의 손상을 방지할 수 있는 배터리 장치를 제공한다.
본 발명은 충전시 외부로부터 배터리 측으로 유입되는 고주파 전류를 차단할 수 있는 배터리 장치를 제공한다.
본 발명의 일 양태에 따른 배터리 장치는 배터리; 상기 배터리의 충방전을 제어하는 충방전 스위치부; 상기 배터리와 상기 충방전 스위치부 사이에 설치되고 상기 배터리의 방전 시 충전되는 프리차지부; 및 상기 충방전 스위치부의 턴오프시 상기 프리차지부에 충전된 전하를 방전시키는 방전부를 포함한다.
바람직하게, 상기 충방전 스위치는 상기 배터리와 부하 사이에 마련된 제 1 및 제 2 스위치를 포함한다.
일 측면에서, 본 발명에 따른 배터리 장치는, 상기 부하와 병렬 연결된 부하 캐패시터를 더 포함한다.
바람직하게, 본 발명에 따른 배터리 장치는, 상기 제 1 및 제 2 스위치를 제어하는 구동부를 더 포함한다.
다른 측면에서, 상기 구동부는, 상기 배터리의 상태를 검출하는 상태 검출부; 상기 상태 검출부의 검출 데이터를 이용하여 상기 충방전 스위치부를 구동시키기 위한 제어 신호를 생성하는 제어부; 및 상기 제어 신호를 상기 충방전 스위치부에 출력하는 신호 출력부를 포함한다.
바람직하게, 상기 구동부는 상기 상태 검출부의 검출 데이터와 기준 데이터를 비교하여 상기 제 1 및 제 2 스위치를 제어한다.
바람직하게, 상기 프리차지부는 상기 배터리와 제 1 스위치 사이에 마련된 적어도 하나의 캐패시터를 포함한다.
상기 적어도 하나의 캐패시터는 상기 제 1 및 제 2 스위치가 턴온되어 상기 배터리가 방전될 때 충전된다.
바람직하게, 상기 프리차지부는 상기 부하 캐패시터보다 먼저 충전되어 상기 부하 캐패시터의 충전 시간을 조절한다.
바람직하게, 상기 방전부는 상기 프리차지부와 구동부 사이에 마련된 다이오드를 포함한다.
바람직하게, 상기 다이오드는 상기 제 1 및 제 2 스위치가 턴오프된 후 상기 프리차지부에 충전된 전하를 방전시킨다.
본 발명의 실시 예들에 따른 배터리 장치는 배터리와 충방전 스위치부 사이에 프리차지부 및 방전부가 마련될 수 있다. 프리차지부가 마련됨으로써 방전 스위치가 턴온되어 배터리가 방전될 때 부하 캐패시터의 충전을 느리게 할 수 있어 돌입 전류에 따른 부하 캐패시터 및 충방전 스위치부의 손상을 방지할 수 있다. 또한, 방전부는 방전 스위치가 턴오프될 때 프리차지부에 충전된 전하를 방전시킴으로써 충방전 스위치부의 구동을 빠르게 할 수 있다. 아울러, 외부로부터 배터리 측으로 고주파 전류가 유입되더라도 프리차지부가 고주파 전류를 필터링하므로 고주파 전류에 의해 배터리가 손상되는 것을 효과적으로 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시 예에 따른 배터리 장치의 구성도이다.
도 2는 종래 기술 및 본 발명의 실시예에 따른 배터리 장치를 이용하여 부하에 방전 전류를 공급할 경우 부하 캐패시터의 전압 변화를 상호 대비한 그래프이다.
도 3은 본 발명의 다른 실시 예에 따른 배터리 장치의 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 배터리 장치의 구성도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 배터리 장치는 전기 에너지를 저장 및 제공하는 배터리(100)와, 배터리(100)로부터 전기 에너지를 제공받는 부하(200)와, 배터리(100)와 부하(200) 사이에 마련되어 배터리(100)의 충방전을 제어하는 충방전 스위치부(300)와, 충방전 스위치부(300)의 구동을 제어하는 구동부(400)와, 배터리(100)의 방전 시 프리차지되는 프리차지부(500)와, 프리차지부(500)의 전하를 방전시키는 방전부(600)를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 배터리 장치는, 선택적으로, 부하(200)에 병렬 연결된 부하 캐패시터(Ci)와, 충방전 스위치부(300)를 보호하는 보호부(700)를 더 포함할 수 있다.
상기 배터리(100)는 전기 에너지를 저장하고 제공한다. 이러한 배터리(100)는 충전 및 방전 가능한 복수의 배터리 셀을 포함할 수 있다. 또한, 배터리(100)는 적어도 하나 이상의 배터리 모듈을 포함할 수 있고, 각 배터리 모듈은 복수의 배터리 셀을 포함할 수 있다. 복수의 배터리 모듈은 배터리(100)나 부하(200) 등의 스펙(specification)에 부합되도록 다양한 방법으로 직렬 및/또는 병렬 연결될 수 있고, 복수의 배터리 셀 또한 직렬 및/또는 병렬 연결될 수 있다.
여기서, 배터리 셀의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.
부하(200)는 배터리(100)를 충전하기 위한 충전부(charging unit)를 포함할 수 있고, 배터리(100)로부터 제공되는 전기 에너지에 의해 구동되는 전기전자 제품(electric product)을 포함할 수 있다.
충전부는 배터리(100)를 충전하기 위한 충전기 및 커넥터를 포함할 수 있다. 또한, 전기전자 제품은 예를 들어 배터리(100)로부터 전기 에너지를 제공받아 구동될 수 있는 전기 자동차 내의 모터를 포함할 수 있고, 배터리(100)로부터 제공되는 전기 에너지를 변환시키는 인버터와 같은 전력 변환 장치를 포함할 수 있다. 또한, 부하(200)는 전기 자동차 뿐만 아니라 스마트 폰 등 충방전 가능한 배터리(100)에 의해 구동되는 다양한 전기전자 제품을 포함할 수 있다.
한편, 부하(200)와 병렬 연결된 부하 캐패시터(Ci)가 제공될 수 있다. 부하 캐패시터(Ci)는 고주파의 스위칭 전류가 부하(200)의 외부로 방출되는 것을 방지함으로써 배터리(100)를 이용한 안정적인 전원 공급을 보장하기 위해 제공될 수 있다.
충방전 스위치부(300)는 배터리(100)와 부하(200) 사이의 전류 경로 사이에 마련되어 배터리(100)의 충전 및 방전을 제어한다. 충방전 스위치부(300)는 제 1 스위치(310) 및 제 2 스위치(320)를 포함할 수 있다.
즉, 충방전 스위치부(300)는 배터리(100)와 부하(200) 사이에 마련되는데, 제 1 스위치(310)가 배터리(100) 측에 마련되고, 제 2 스위치(320)가 부하(200) 측에 마련될 수 있다. 제 1 및 제 2 스위치(310, 320)는 배터리(100)의 충전 및 방전 시 동시에 구동될 수 있고, 어느 하나가 선택적으로 구동될 수도 있다.
제 1 스위치(310)는 제 1 FET(311) 및 제 1 기생 다이오드(312)를 포함할 수 있다. 제 1 FET(311)는 드레인 단자와 소오스 단자가 배터리(100)의 전류 경로, 즉 제 1 노드(Q1)와 제 2 노드(Q2) 사이에 마련된다. 또한, 제 1 FET(311)는 게이트 단자가 구동부(400)와 전기적으로 연결된다. 이때, 제 1 FET(311)의 게이트 단자는 보호부(700)의 제 1 저항(R1)을 통해 구동부(400)와 연결될 수 있다. 따라서, 제 1 FET(311)는 구동부(400)로부터 제 1 저항(R1)을 통해 출력되는 제어 신호에 따라 구동되며, 충전 시 배터리(100)로 전류를 인가하고 방전 시 배터리(100)의 방전 전류를 부하(200)에 인가시키는 역할을 한다. 제 1 기생 다이오드(312)는 제 1 FET(311)에 병렬 연결된다. 즉, 제 1 기생 다이오드(312)는 제 1 FET(311)의 소오스 단자와 드레인 단자 사이에 순방향으로 연결된다. 제 1 기생 다이오드(312)는 제 1 FET(311)가 턴온되어 배터리(100)의 충전 및/또는 방전 시 방전 전류의 경로를 차단한다. 따라서, 배터리(100)가 충전될 때 제 1 기생 다이오드(312)에 의해 배터리(100)의 충전과 방전이 동시에 진행되는 현상이 방지되어 배터리(100)의 안전성을 향상시킬 수 있다.
제 2 스위치(320)는 제 2 FET(321) 및 제 2 기생 다이오드(322)를 포함할 수 있다. 제 2 FET(321)는 소오스 단자와 드레인 단자가 배터리(100)의 전류 경로, 즉, 제 2 노드(Q2)와 제 3 노드(Q3) 사이에 마련된다. 또한, 제 2 FET(321)는 게이트 단자가 구동부(400)와 전기적으로 연결된다. 이때, 제 2 FET(321)의 게이트 단자는 보호부(700)의 제 2 저항(R2)을 통해 구동부(400)와 연결될 수 있다. 따라서, 제 2 FET(321)는 구동부(400)로부터 제 2 저항(R2)을 통해 출력되는 제어 신호에 따라 구동되며, 충전 시 배터리(100)로 전류를 인가하고 방전 시 배터리(100)의 방전 전류를 부하(200)에 인가시키는 역할을 한다. 제 2 기생 다이오드(322)는 제 2 FET(321)에 병렬 연결된다. 즉, 제 2 기생 다이오드(322)는 제 2 FET(321)의 소오스 단자와 드레인 단자 사이에 순방향으로 연결된다. 제 2 기생 다이오드(322)는 배터리(100)의 충전 및/또는 방전 시 충전 전류의 경로를 차단한다. 따라서, 배터리(100)가 방전될 때 제 2 기생 다이오드(322)에 의해 배터리(100)의 충전과 방전이 동시에 진행되는 현상이 방지되어 배터리(100)의 안전성을 향상시킬 수 있다.
구동부(400)는 충방전 스위치부(300)를 구동시키기 위한 제어 신호를 출력한다. 즉, 구동부(400)는 제 1 FET(311)의 게이트 단자와 제 2 FET(321)의 게이트 단자에 연결되어 제 1 및 제 2 FET(311, 321)를 각각 구동시킨다. 구동부(400)는 배터리(100) 충전 및 방전 시 제 1 및 제 2 FET(311, 321)를 각각 턴온시키고, 그 이외의 경우에는 각각 턴오프시킬 수 있다. 이때, 제 1 및 제 2 FET(311, 321)를 턴온시키는 제어 신호는 로직 하이 신호일 수 있고, 제 1 및 제 2 FET(311, 321)를 턴오프시키는 제어 신호는 로직 로우 신호일 수 있다. 한편, 구동부(400)는 배터리 관리 시스템(Battery Management System; BMS) 내에 마련될 수 있다.
프리차지부(500)는 배터리(100)와 제 1 스위치(310) 사이에 마련될 수 있다. 이러한 프리차지부(500)는 제 1 FET(311)의 게이트 단자와 드레인 단자 사이에 연결된 적어도 하나의 캐패시터(Cs)를 포함할 수 있다. 즉, 적어도 하나의 캐패시터(Cs)는 제 1 노드(Q1)와 제 4 노드(Q4) 사이에 마련된다. 이때, 캐패시터(Cs)가 복수 개 마련되는 경우 제 1 노드(Q1)와 제 4 노드(Q4) 사이에 병렬 연결될 수 있다. 이러한 적어도 하나의 캐패시터(Cs)를 포함하는 프리차지부(500)는 제 1 및 제 2 스위치(310, 320)가 턴온될 때 부하 캐패시터(Ci)의 전압이 상승하는 기울기를 제어하여 부하 캐패시터(Ci) 측으로 돌입 전류가 흐르는 현상을 방지할 수 있도록 한다. 즉, 제 1 및 제 2 스위치(320, 320)가 턴온되어 배터리(100)가 방전할 때 캐패시터(Cs)를 포함하는 프리차지부(500)가 충전된 후 부하 캐패시터(Ci)가 충전되므로 부하 캐패시터(Ci)가 급격히 충전되지 않도록 함으로써 부하 캐패시터(Ci) 측으로 돌입 전류가 흐르는 것을 방지할 수 있다. 따라서, 돌입 전류에 따른 충방전 스위치부(300)의 손상을 방지할 수 있고, 부하 캐패시터(Ci)의 수명을 증가시킬 수 있다. 여기서, 프리차지부(500)는 캐패시터(Cs)의 용량 또는 캐패시터(Cs)의 수에 따라 부하 캐패시터(Ci)의 전압 상승 기울기를 조절할 수 있다. 즉, 캐패시터(Cs)의 용량이 클수록 부하 캐패시터(Ci)의 충전 시간을 길게 할 수 있으며, 캐패시터(Cs)의 수가 증가할수록 부하 캐패시터(Ci)의 충전 시간을 길게 할 수 있다.
방전부(600)는 프리차지부(500)에 충전된 전하를 방전시키기 위해 마련된다. 방전부(600)는 다이오드(D1)를 포함할 수 있다. 이러한 방전부(600)는 프리차지부(500)와 구동부(400) 사이에 마련될 수 있다. 즉, 다이오드(D1)는 제 4 노드(Q4)와 제 6 노드(Q6) 사이에 마련될 수 있다. 방전부(600)는 제 1 및 제 2 스위치(310, 320)를 턴오프시킬 때 프라차지부(500), 즉 캐패시터(Cs)에 충전된 전하를 방전시켜 제 1 및 제 2 스위치(310, 320)의 턴오프가 빠르게 이루어질 수 있도록 한다.
한편, 충방전 스위치부(300)를 보호하기 위한 보호부(700)가 더 마련될 수 있다. 보호부(700)는 복수의 저항(R1 내지 R4)를 포함할 수 있다. 제 1 저항(R1)은 제 1 FET(311)의 게이트 단자와 구동부(400) 사이, 즉 제 4 노드(Q4)와 제 6 노드(Q6) 사이에 연결되고, 제 2 저항(R2)는 제 2 FET(321)의 게이트 단자와 구동부(400) 사이, 즉 제 5 노드(Q5)와 제 6 노드(Q6) 사이에 연결된다. 또한, 제 3 저항(R3)은 제 1 FET(311)의 소오스 단자와 게이트 단자 사이, 즉 제 2 노드(Q2)와 제 4 노드(Q4) 사이에 연결되고, 제 4 저항(R4)는 제 2 FET(321)의 소오스 단자와 게이트 단자 사이, 즉 제 2 노드(Q2)와 제 5 노드(Q5) 사이에 연결된다. 여기서, 제 1 및 제 2 저항(R1 및 R2)는 구동부(400)에서 출력되는 신호의 임펄스(impulse) 성분을 흡수하는 역할을 하여 각각 제 1 및 제 2 FET(311, 321)을 보호하는 역할을 한다. 또한, 제 3 및 제 4 저항(R3 및 R4)는 각각 제 1 및 제 2 FET(311, 321)의 게이트 단자와 소오스 단자 사이의 음의 전압차를 형성하여 소오스 단자와 드레인 단자 사이에서 흐르는 초기 전류량을 조절하는 역할을 한다.
상기한 본 발명의 일 실시 예에 따른 배터리 장치의 구동 방법을 설명하면 다음과 같다.
배터리(100)의 충전 시 배터리(100)는 부하(200) 대신 커넥터를 이용하여 전원 공급 장치(미도시)와 연결되고, 구동부(400)는 충방전 스위치부(300)의 제 1 및 제 2 스위치(310, 320)에 로직 하이 레벨의 제어 신호를 출력한다. 이에 따라 제 1 스위치(310)의 제 1 FET(311)와 제 2 스위치(320)의 제 2 FET(321)가 턴온된다. 따라서, 충전기로부터 전원이 배터리(100)에 인가되어 배터리(100)가 충전된다. 이때, 제 1 스위치(310)의 제 1 기생 다이오드(312)가 배터리(100)의 방전 전류의 경로를 차단한다
또한, 부하(200)에 전기 에너지를 공급하기 위해 배터리(100)의 방전 시 구동부(400)는 충방전 스위치부(300)의 제 1 및 제 2 스위치(310, 320)에 로직 하이 레벨의 제어 신호를 출력한다. 이에 따라 제 1 및 제 2 FET(311, 321)가 각각 턴온된다. 따라서, 배터리(100)로부터 부하(200)로 전기 에너지가 제공되는데, 이때 프리차지부(500)의 적어도 하나의 캐패시터(Cs)가 충전된 후 부하 캐패시터(Ci)가 충전된다. 즉, 배터리(100)의 전원이 부하 캐패시터(Ci)를 충전시키기 이전에 캐패시터(Cs)가 충전된다. 따라서, 부하 캐패시터(Ci)의 전압 상승 속도, 즉 충전 속도를 조절할 수 있다. 그에 따라 부하 캐패시터(Ci)의 급격한 충전 때문에 생기는 돌입 전류에 의한 충방전 스위치부(300)의 손상을 방지할 수 있다. 한편, 배터리(100)의 방전 시 제 2 스위치(320)의 제 2 기생 다이오드(322)가 배터리(100)의 충전 전류의 경로를 차단한다.
부하(200)에 전원의 공급이 완료되면, 구동부(400)는 제 1 및 제 2 스위치(310, 320)에 로직 로우 레벨의 제어 신호를 출력하여 제 1 및 제 2 FET(311, 321)을 턴오프시킨다. 이때, 방전부(600)가 프리차지부(500)에 충전된 전하를 방전시킬 수 있다. 즉, 다이오드(D1)를 포함하는 방전부(600)가 프리차지부(500)와 구동부(400) 사이에 마련되고 구동부(400)가 제 1 및 제 2 FET(311, 321)를 턴오프시키기 위해 로직 로우 레벨의 신호를 출력하므로 방전부(600)는 프리차지부(500)에 충전된 전하를 구동부(400)를 통해 방전시키게 된다. 따라서, 제 1 및 제 2 스위치(310, 320)의 턴오프가 빠르게 이루어질 수 있게 된다. 또한, 제 1 및 제 2 FET(311, 321)가 턴오프됨에 따라 부하 캐패시터(Ci)에 충전된 전하가 방전된다.
도 2는 종래의 배터리 장치와 본 발명의 실시예에 따른 배터리 장치의 배터리 방전 시 부하 캐패시터의 전압 파형을 도시한 도면이다.
본 발명에 따른 배터리 장치는 프리차지부 및 방전부를 포함한다. 도 2(a)에 도시된 바와 같이 종래의 배터리 장치는 배터리 방전 시 돌입 전류에 의해 부하 캐패시터가 급격히 충전된다. 그러나, 도 2(b)에 도시된 바와 같이 본 발명에 따른 배터리 장치는 부하 캐패시터가 제한된 전류에 의해 서서히 충전되는 것을 알 수 있다. 즉, 본 발명에 따른 배터리 장치는 프리차지부가 마련되어 배터리 방전 시 프리차지부가 먼저 충전된 후 부하 캐패시터가 충전되기 때문에 부하 캐패시터의 충전 속도를 종래보다 느리게 할 수 있다. 한편, 충방전 스위치부를 턴오프할 경우에는 부하 캐패시터의 방전 속도는 종래 기술과 본 발명이 큰 차이를 보이지 않았다.
도 3은 본 발명의 다른 실시 예에 따른 배터리 장치의 구성도이다.
도 3을 참조하면, 본 발명의 다른 실시 예에 따른 배터리 장치는 전기 에너지를 저장 및 제공하는 배터리(100)와, 배터리(100)로부터 전기 에너지를 제공받는 부하(200)와, 배터리(100)와 부하(200) 사이에 마련되어 배터리(100)의 충방전을 제어하는 충방전 스위치부(300)와, 충방전 스위치부(300)의 구동을 제어하며, 상태 검출부(410), 제어부(420) 및 신호 출력부(430)를 포함하는 구동부(400)와, 배터리(100)의 방전 시 프리차지되는 프리차지부(500)와, 프리차지부(500)의 전하를 방전시키는 방전부(600)와, 선택적으로 부하(200)에 병렬 연결된 부하 캐패시터(Ci)와, 충방전 스위치부(300)를 보호하는 보호부(700)를 포함할 수 있다.
본 발명의 다른 실시 예는 구동부(400)가 상태 검출부(410), 제어부(420) 및 신호 출력부(430)를 포함하는 점이 전술한 실시예와 다르다. 상기 상태 검출부(410), 제어부(420) 및 신호 출력부(430)를 포함하는 구동부(400)는 배터리의 상태를 관리하는 배터리 관리 시스템 내에 마련될 수 있다.
상태 검출부(410)는 배터리(100)의 적어도 일 영역에 마련되어 배터리(100)의 상태를 검출한다. 예를 들어, 상태 검출부(410)는 배터리(100)의 전압, 온도 및 전류 등을 측정한다. 이러한 상태 검출부(410)는 배터리의 전압을 측정하는 전압 측정부(미도시) 및 배터리의 온도를 측정하는 온도 측정부(미도시)를 포함할 수 있다. 또한, 상태 검출부(410)는 배터리의 전류를 측정하는 전류 측정부(미도시)를 더 포함할 수 있다. 전압 측정부는 예를 들어 배터리(100)의 일단 및 타단, 즉 양극 단자 및 음극 단자에 연결되어 배터리(100)의 전압을 측정할 수 있는데, 배터리(100)의 양극 단자와 음극 단자의 전압차를 측정함으로써 배터리(100)의 전압 상태에 측정할 수 있다. 또한, 온도 측정부는 배터리(100)의 적어도 일 영역에 마련되어 배터리(100)의 적어도 일 영역의 온도를 측정할 수 있다. 예를 들어, 온도 측정부는 복수의 배터리 모듈에 각각 연결되어 각 배터리 모듈의 온도를 측정할 수 있고, 배터리(100)의 복수의 영역에 마련되어 각 영역의 온도를 측정할 수 있다.
상기 전압 측정부는 공지된 전압 측정 회로를 포함하고, 상기 온도 측정부는 열전대를 포함하고, 상기 전류 측정부는 홀 센서와 같은 전류 측정 소자를 포함할 수 있다. 하지만, 본 발명이 이에 한정되는 것은 아니다.
제어부(420)는 상태 검출부(410)와 연결되어 상태 검출부(410)로부터 배터리(100)의 상태 데이터를 입력 받는다. 또한, 제어부(420)는 배터리(100)의 상태 데이터에 따른 제어 신호를 생성하여 신호 출력부(430)로 공급한다. 즉, 제어부(420)는 상태 검출부(410)에 의해 검출된 배터리(100)의 전압, 온도, 전류 등의 데이터를 이용하여 충방전 스위치부(300)를 제어하기 위한 제어 신호를 생성한다. 한편, 제어부(420)는 배터리(100)의 상태에 따른 제어 신호를 생성하기 위해 메모리 디바이스와 같은 저장부(미도시)에 저장된 데이터를 참조할 수 있다. 예를 들어, 저장부에는 배터리(100)의 전압, 온도와 그에 따른 배터리(100)의 충방전량이 저장된 룩업 테이블이 마련되고, 제어부(420)는 상태 검출부(410)로부터 입력된 전압 및 온도 등의 데이터를 룩업 테이블에 저장된 데이터와 매칭하여 그에 따른 배터리(100)의 충방전량에 따른 충방전 제어 신호를 생성한다. 즉, 제어부(420)는 상태 제어부(410)의 검출 데이터를 저장부의 기준 데이터와 비교하여 배터리(100)가 과충전 상태일 경우 제 1 및 제 2 스위치(310, 320)를 턴오프시키기 위한 제어 신호를 생성하고 배터리(100)의 충전량이 부족할 경우 제 1 및 제 2 스위치(310, 320)를 충전 모드에서 턴온시키기 위한 제어 신호를 생성한다. 이렇게 배터리(100)의 상태에 따라 배터리(100)의 충방전을 제어함으로써 배터리(100)를 최적의 조건에서 관리할 수 있다. 예를 들어, 배터리(100)의 과방전, 만방전, 만충전 및 과충전 등의 상태에 따라 배터리(100)의 충방전을 제어함으로써 배터리(100)를 최적의 조건에서 관리할 수 있다.
신호 출력부(430)는 제 1 스위치(310)에 제어 신호를 출력하는 제 1 신호 출력부(431)와, 제 2 스위치(320)에 제어 신호를 출력하는 제 2 신호 출력부(432)를 포함할 수 있다. 제 1 신호 출력부(431)는 제 1 저항(R1)을 통해 제 1 FET(311)의 게이트 단자에 연결되어 제어부(420)의 제어 신호에 따라 제 1 FET(311)의 턴온 및 턴오프를 제어할 수 있다. 즉, 제 1 신호 출력부(421)는 배터리(100)의 과방전, 만방전, 만충전 또는 과충전에 따라 출력되는 제어 신호에 따라 제 1 FET(311)를 턴온 또는 턴오프시킨다. 또한, 제 2 신호 출력부(432)는 제 2 저항(R2)를 통해 제 2 FET(321)의 게이트 단자에 연결되어 제어부(420)의 제어 신호에 따라 제 2 FET(321)의 턴온 및 턴오프를 제어할 수 있다. 즉, 제 2 신호 출력부(432)는 배터리(100)의 과방전, 만방전, 만충전 또는 과충전에 따라 출력되는 제어 신호에 따라 제 2 FET(321)를 턴온 또는 턴오프시킨다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
본 발명의 실시 예들에 따른 배터리 장치는 배터리와 충방전 스위치부 사이에 프리차지부 및 방전부가 마련될 수 있다. 프리차지부가 마련됨으로써 방전 스위치가 턴온되어 배터리가 방전될 때 부하 캐패시터의 충전을 느리게 할 수 있어 돌입 전류에 따른 부하 캐패시터 및 충방전 스위치부의 손상을 방지할 수 있다. 또한, 방전부는 방전 스위치가 턴오프될 때 프리차지부에 충전된 전하를 방전시킴으로써 충방전 스위치부의 구동을 빠르게 할 수 있다. 아울러, 외부로부터 배터리 측으로 고주파 전류가 유입되더라도 프리차지부가 고주파 전류를 필터링하므로 고주파 전류에 의해 배터리가 손상되는 것을 효과적으로 방지할 수 있다.

Claims (11)

  1. 배터리;
    상기 배터리의 충방전을 제어하는 충방전 스위치부;
    상기 배터리와 상기 충방전 스위치부 사이에 설치되고, 배터리의 방전 시 충전되는 프리차지부; 및
    상기 충방전 스위치부의 턴오프시 상기 프리차지부에 충전된 전하를 방전시키는 방전부를 포함하는 배터리 장치.
  2. 청구항 1에 있어서, 상기 충방전 스위치부는 상기 배터리와 부하 사이에 마련된 제 1 및 제 2 스위치를 포함하는 배터리 장치.
  3. 청구항 2에 있어서, 상기 부하와 병렬 연결된 부하 캐패시터를 더 포함하는 배터리 장치.
  4. 청구항 3에 있어서, 상기 제 1 및 제 2 스위치를 제어하는 구동부를 더 포함하는 배터리 장치.
  5. 청구항 4에 있어서, 상기 구동부는,
    상기 배터리의 상태를 검출하는 상태 검출부;
    상기 상태 검출부의 검출 데이터를 이용하여 상기 충방전 스위치부를 구동시키기 위한 제어 신호를 생성하는 제어부; 및
    상기 제어 신호를 상기 충방전 스위치부에 출력하는 신호 출력부를 포함하는 배터리 장치.
  6. 청구항 5에 있어서, 상기 구동부는 상기 상태 검출부의 검출 데이터와 기준 데이터를 비교하여 상기 제 1 및 제 2 스위치를 제어하는 배터리 장치.
  7. 청구항 4에 있어서, 상기 프리차지부는 상기 배터리와 제 1 스위치 사이에 마련된 적어도 하나의 캐패시터를 포함하는 배터리 장치.
  8. 청구항 7에 있어서, 상기 적어도 하나의 캐패시터는 상기 제 1 및 제 2 스위치가 턴온되어 상기 배터리가 방전될 때 충전되는 배터리 장치.
  9. 청구항 8에 있어서, 상기 프리차지부는 상기 부하 캐패시터보다 먼저 충전되어 상기 부하 캐패시터의 충전 시간을 조절하는 배터리 장치.
  10. 청구항 4 또는 청구항 7에 있어서, 상기 방전부는 상기 프리차지부와 구동부 사이에 마련된 다이오드를 포함하는 배터리 장치.
  11. 청구항 10에 있어서, 상기 다이오드는 상기 제 1 및 제 2 스위치가 턴오프된 후 상기 프리차지부에 충전된 전하를 방전시키는 배터리 장치.
PCT/KR2016/001808 2015-02-24 2016-02-24 배터리 장치 WO2016137230A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/513,307 US10348107B2 (en) 2015-02-24 2016-02-24 Battery device
CN201680003380.1A CN107078531B (zh) 2015-02-24 2016-02-24 电池装置
EP16755880.8A EP3200312B1 (en) 2015-02-24 2016-02-24 Battery device
PL16755880T PL3200312T3 (pl) 2015-02-24 2016-02-24 Urządzenie akumulatorowe
JP2017531483A JP6494762B2 (ja) 2015-02-24 2016-02-24 バッテリー装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0025865 2015-02-24
KR1020150025865A KR101787639B1 (ko) 2015-02-24 2015-02-24 배터리 장치

Publications (1)

Publication Number Publication Date
WO2016137230A1 true WO2016137230A1 (ko) 2016-09-01

Family

ID=56788802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001808 WO2016137230A1 (ko) 2015-02-24 2016-02-24 배터리 장치

Country Status (7)

Country Link
US (1) US10348107B2 (ko)
EP (1) EP3200312B1 (ko)
JP (1) JP6494762B2 (ko)
KR (1) KR101787639B1 (ko)
CN (1) CN107078531B (ko)
PL (1) PL3200312T3 (ko)
WO (1) WO2016137230A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030165A (ja) * 2017-08-02 2019-02-21 株式会社豊田自動織機 電池パック

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840899B2 (en) * 2017-01-31 2020-11-17 Nidec Corporation Motor drive device and electric power steering device
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
KR102364237B1 (ko) * 2017-12-19 2022-02-16 주식회사 엘지에너지솔루션 프리차지 장치 및 방법
HUE059659T2 (hu) 2018-01-03 2022-12-28 Samsung Sdi Co Ltd Elõtöltési áramszabályozó eszköz
KR102515881B1 (ko) * 2018-02-02 2023-03-30 삼성에스디아이 주식회사 배터리 보호회로 및 이를 갖는 배터리 팩
TWI668939B (zh) * 2018-04-23 2019-08-11 國立交通大學 結合氫燃料電池的電源供應系統
CN112055913A (zh) * 2018-05-31 2020-12-08 本田技研工业株式会社 充电控制装置、输送设备以及程序
CN111293738A (zh) * 2018-12-10 2020-06-16 法雷奥动力总成(上海)有限公司 预充电控制电路及预充电控制方法
SE543638C2 (en) * 2019-09-05 2021-05-11 Scania Cv Ab An electronic circuit breaker for a vehicle, and a method therefor
CN113489301A (zh) * 2021-06-25 2021-10-08 东莞新能安科技有限公司 启动电路、电池管理***、电池包及用电装置
CN115236534B (zh) * 2022-07-29 2023-11-14 苏州浪潮智能科技有限公司 一种服务器rtc电池电压检测装置和检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2004248432A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp 駆動装置およびこれを備える自動車
KR20070016413A (ko) * 2005-08-03 2007-02-08 삼성탈레스 주식회사 전원 공급기의 돌입 전류 제한 회로
KR20110094406A (ko) * 2010-02-16 2011-08-24 (주)그린시스에이오씨 Dc-dc 컨버터
JP2011254650A (ja) * 2010-06-03 2011-12-15 Shin Kobe Electric Mach Co Ltd 電源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080491A (ja) 2003-09-04 2005-03-24 Fujitsu Ltd 電源装置
KR20080018540A (ko) 2006-08-24 2008-02-28 현대모비스 주식회사 차량의 전자부품에 대한 돌입전류 방지장치
JP4450817B2 (ja) * 2006-10-06 2010-04-14 日本テキサス・インスツルメンツ株式会社 電圧変換回路およびバッテリ装置
US8398702B2 (en) * 2007-06-29 2013-03-19 Boston Scientific Scimed, Inc. Molybdenum endoprostheses
US7884587B2 (en) 2007-08-07 2011-02-08 Ricoh Company, Limited Power supply device and image forming apparatus
JP5326373B2 (ja) 2007-08-07 2013-10-30 株式会社リコー 電源装置および画像形成装置
US8235373B2 (en) * 2008-05-20 2012-08-07 Goss International Americas, Inc. Multiplex gathering device and method
US8283893B2 (en) * 2009-02-05 2012-10-09 Samsung Sdi Co., Ltd. Protection circuit for battery pack and battery pack including the same
KR101097272B1 (ko) 2010-07-27 2011-12-21 삼성에스디아이 주식회사 배터리 팩 및 이를 구비하는 전기 이동수단
KR101243909B1 (ko) 2010-12-16 2013-03-14 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어 방법
WO2013076877A1 (ja) * 2011-11-25 2013-05-30 株式会社日立製作所 蓄電池システム
CN202616757U (zh) * 2012-04-13 2012-12-19 厦门华戎能源科技有限公司 一种锂离子电池组的保护装置
JP2014045551A (ja) * 2012-08-24 2014-03-13 Sanyo Electric Co Ltd パック電池及びパック電池の放電制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2004248432A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp 駆動装置およびこれを備える自動車
KR20070016413A (ko) * 2005-08-03 2007-02-08 삼성탈레스 주식회사 전원 공급기의 돌입 전류 제한 회로
KR20110094406A (ko) * 2010-02-16 2011-08-24 (주)그린시스에이오씨 Dc-dc 컨버터
JP2011254650A (ja) * 2010-06-03 2011-12-15 Shin Kobe Electric Mach Co Ltd 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030165A (ja) * 2017-08-02 2019-02-21 株式会社豊田自動織機 電池パック

Also Published As

Publication number Publication date
KR101787639B1 (ko) 2017-10-18
JP2017538390A (ja) 2017-12-21
EP3200312A4 (en) 2018-05-30
CN107078531A (zh) 2017-08-18
KR20160103404A (ko) 2016-09-01
US10348107B2 (en) 2019-07-09
PL3200312T3 (pl) 2020-06-01
EP3200312A1 (en) 2017-08-02
US20170317512A1 (en) 2017-11-02
CN107078531B (zh) 2020-09-08
EP3200312B1 (en) 2020-02-12
JP6494762B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2016137230A1 (ko) 배터리 장치
WO2014030839A1 (ko) 릴레이 제어 시스템 및 그 제어 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
US9954215B2 (en) Battery with integrated power management system and scalable battery cutoff
KR101673822B1 (ko) 친환경 차량의 릴레이 융착 검출 장치 및 그 방법
CN103597688B (zh) 二次电池的过电流保护装置、保护方法及其电池组
WO2009145577A2 (ko) 과방전 방지 기능을 구비한 배터리 팩의 밸런싱 장치
EP2336794A2 (en) Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus
US20110285539A1 (en) Apparatus and method for diagnosing abnormality in cell balancing circuit
CN101073990A (zh) 一种具有安全保护装置的电动车供电***及其控制方法
US20180152027A1 (en) Motor vehicle and charge and discharge control circuit thereof
CN104704697B (zh) 车载用蓄电装置及该车载用蓄电装置的控制方法
WO2015142145A1 (en) Pre-charging and voltage supply system for a dc-ac inverter
WO2020080881A1 (ko) 배터리 관리 장치
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
US20220285951A1 (en) Battery system and method for managing battery system
WO2016064224A1 (ko) 전류 제어 장치 및 방법
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2019245215A1 (ko) 전류 측정 장치, 전류 측정 방법 및 상기 전류 측정 장치를 포함하는 배터리 팩
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2016200009A1 (ko) 배터리 팩 보호 시스템 및 방법
KR20220039414A (ko) 배터리 보호 장치 및 이를 포함하는 배터리 시스템
KR20160071207A (ko) 배터리 셀의 과충전 보호 장치 및 방법
JP2011134756A (ja) 混成回路
WO2023287112A1 (ko) 배터리 장치, 배터리 관리 시스템 및 프리차지 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513307

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016755880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017531483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE