WO2016136124A1 - 基地局及び送信制御方法 - Google Patents

基地局及び送信制御方法 Download PDF

Info

Publication number
WO2016136124A1
WO2016136124A1 PCT/JP2016/000177 JP2016000177W WO2016136124A1 WO 2016136124 A1 WO2016136124 A1 WO 2016136124A1 JP 2016000177 W JP2016000177 W JP 2016000177W WO 2016136124 A1 WO2016136124 A1 WO 2016136124A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
csi
lte
coordinated
Prior art date
Application number
PCT/JP2016/000177
Other languages
English (en)
French (fr)
Inventor
領 高橋
裕太 関
星野 正幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/505,062 priority Critical patent/US10412713B2/en
Publication of WO2016136124A1 publication Critical patent/WO2016136124A1/ja
Priority to US16/525,237 priority patent/US11057869B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present disclosure relates to a base station and a transmission control method.
  • CoMP Coordinated Multi-Point transmission
  • LTE-Advanced Long Term Evolution
  • a plurality of base stations also referred to as BS (Base Station) or eNB (evolved Node B)
  • MS Mobile Station
  • UE User Equipment
  • FIG. 1 is a diagram illustrating a configuration example of a communication system that performs CoMP transmission, and illustrates an example of a plurality of base stations and terminals that exist in a cell covered by each of the plurality of base stations.
  • LTE terminal a terminal corresponding to an LTE system (for example, 3GPP Release 8, 9) is referred to as an “LTE terminal”, and a terminal corresponding to an LTE-Advanced system (for example, 3GPP Release 10 or later) is referred to as “LTE- This is referred to as “A terminal”.
  • one base station (hereinafter also referred to as a connected base station or Master BS) that determines the content of transmission control related to CoMP transmission, It is composed of other base stations (hereinafter also referred to as cooperative base stations or Slave BSs) that perform CoMP transmission in accordance with CoMP transmission control instructions from the connected base station.
  • a connected base station or Master BS that determines the content of transmission control related to CoMP transmission
  • Slave BSs cooperative base stations
  • Each of the connecting base station and the cooperative base station transmits a CSI-RS (Channel State Information Reference Signal) to the LTE-A terminal connected to the local station.
  • CSI-RS Channel State Information Reference Signal
  • the LTE-A terminal measures channel state information (CSI: Channel State Information), and transmits to the connection base station for reporting. That is, the connecting base station obtains the CSI between the connecting base station and the LTE-A terminal and the CSI between the cooperative base station and the LTE-A terminal from the LTE-A terminal connected to the local station. To do.
  • CSI-RS Channel State Information Reference Signal
  • the CSI includes CQI (Channel Quality Indicator) representing channel quality, PMI (Precoding Matrix Indicator) representing channel phase information, and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • the connecting base station optimizes the control of CoMP transmission using the CSI for the connecting base station and the CSI for the cooperative base station reported from the LTE-A terminal.
  • Examples of the CoMP transmission control method include AMC (Adaptive Modulation Coding) control, frequency scheduling, beam control, and the like.
  • LTE terminals are mixed in the communication system in addition to LTE-A terminals capable of CoMP communication.
  • signals are cooperatively transmitted from a plurality of base stations to one LTE terminal as in CoMP transmission.
  • an LTE terminal reports CSI between the base station and the LTE terminal using a CRS (Cell-specific Reference Signal) transmitted from one connected base station.
  • CRS Cell-specific Reference Signal
  • the LTE terminal reports CSI to other base stations other than the connected base station, for example, the cooperative base station in FIG. 1, using CSI-RS transmitted from a plurality of base stations. That is, it is difficult to apply CoMP transmission to LTE terminals.
  • Patent Document 1 discloses a method in which a terminal transmits a CQI for a connected base station and a CQI for a coordinated base station in a time division manner for each subframe. Then, the base station optimizes CoMP transmission by optimizing the transmission power of each base station by using the CQI for each base station transmitted from the terminal.
  • Patent Document 1 As described above, in the LTE-Advanced system, the connecting base station can simultaneously obtain CSI for a plurality of base stations from the LTE-A terminal. For this reason, in Patent Document 1, as compared with the LTE-Advanced system, the connecting base station acquires the CQIs of a plurality of base stations from the LTE terminal, and takes time to apply CoMP transmission to the LTE terminal. I need it.
  • the LTE terminal needs to newly have a function for measuring CSI and transmitting it to each of a plurality of base stations.
  • the invention according to one aspect of the present disclosure provides a base station and a transmission control method capable of applying CoMP transmission to an LTE terminal in the same manner as the LTE-A terminal without extending the function of the LTE terminal.
  • the purpose is to do.
  • the base station transmits data to the first terminal in cooperation with the coordinated base station, and instructs the coordinated base station to specify transmission parameters used for coordinated transmission.
  • a functioning base station that receives a first CSI (Channel State Information) between a connecting base station and the first terminal from a first terminal, and other than the first terminal From each of the at least one second terminal, a second CSI between the connecting base station and each of the at least one second terminal, and a coordinated base station and each of the at least one second terminal A third CSI corresponding to a terminal having the closest first CSI and second CSI among at least one second terminal and a receiving unit that receives the third CSI between the coordinated base station and With the first terminal An estimation unit for setting as an estimate of the CSI between using the first CSI and the estimated value, a configuration having a, a determination unit that determines transmission parameters.
  • CSI Channel State Information
  • the base station functions as a coordinated base station that transmits data to the first terminal in cooperation with the connected base station and receives transmission parameters used for coordinated transmission from the connected base station.
  • CSI Channel State Information
  • the first RSRP Reference Signal Received Power
  • a receiving unit that receives the second RSRP indicating the received power of the received reference signal, and at least one CSI corresponding to a terminal having a ratio between the first RSRP and the second RSRP within a predetermined range among the two terminals is set as an estimated value of CSI between the cooperative base station and the first terminal.
  • the estimation part which notifies the set CSI to a connection base station is taken.
  • a transmission control method is a connection base station that transmits data to a first terminal in cooperation with a coordinated base station and instructs a transmission parameter used for coordinated transmission to the coordinated base station.
  • Transmission control method in a base station that functions as a first terminal receiving a first CSI (Channel State Information) between a connected base station and a first terminal from a first terminal; A second CSI between each of the connected base station and each of the at least one second terminal, and a coordinated base station and at least one second terminal from each of at least one second terminal other than 3rd CSI between each of the terminals is received, and among the at least one second terminal, the third CSI corresponding to the terminal having the closest first CSI and the second CSI is received by the coordinated base station.
  • CSI Channel State Information
  • the transmission control method functions as a coordinated base station that transmits data to the first terminal in cooperation with the connected base station and receives transmission parameters used for coordinated transmission from the connected base station.
  • CSI Channel State Information
  • first RSRP Reference Signal Received Power
  • second RSRP Reference Signal Received Power
  • CoMP transmission can be applied to an LTE terminal in the same manner as the LTE-A terminal without extending the function of the LTE terminal.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system that performs CoMP transmission.
  • FIG. 2 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 3 is a block diagram showing configurations of the connecting base station and the cooperative base station according to the first embodiment.
  • FIG. 4 is a sequence diagram showing a CoMP transmission process according to the first embodiment.
  • FIG. 5 is a diagram for explaining the CSI estimation processing according to the first embodiment.
  • FIG. 6 is a diagram for explaining the cooperative transmission control process in the connected base station according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a communication system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system that performs CoMP transmission.
  • FIG. 2 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 3 is a block diagram showing configurations of the connecting base station and the cooperative base station
  • FIG. 8 is a block diagram showing configurations of a connection base station and a coordinated base station according to Embodiment 2.
  • FIG. 9 is a sequence diagram illustrating the CoMP transmission process according to the second embodiment.
  • FIG. 10 is a diagram for explaining the CSI estimation processing according to the second embodiment.
  • FIG. 11 is a diagram for explaining the cooperative transmission control process in the connected base station according to the second embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a communication system according to the present embodiment.
  • the communication system 10 shown in FIG. 2 as in FIG. 1, two base stations perform CoMP transmission to one terminal.
  • the connecting base station 100 and the coordinated base station 200 perform CoMP transmission to one CoMP application terminal.
  • This Embodiment demonstrates the case where a CoMP application terminal is a LTE terminal.
  • LTE terminals and LTE-A terminals are mixed in the communication system 10 shown in FIG.
  • FIG. 2 as an example, it is assumed that the LTE terminal 3 and the LTE-A terminals 1 and 2 are connected to the connection base station 100. Also, the LTE terminal 3 and the LTE-A terminals 1 and 2 are located in an area where cells of both the connecting base station 100 and the cooperative base station 200 overlap, that is, a cell edge.
  • the connecting base station 100 and the coordinated base station 200 transmit CSI-RS to the LTE-A terminals 1 and 2 and transmit CRS to the LTE terminal 3.
  • the LTE terminal 3 connected to the connected base station 100 can measure and report the CSI between the connected base station 100 and the LTE terminal 3 using the CRS transmitted from the connected base station 100.
  • the CSI between the coordinated base station 200 and the LTE terminal 3 cannot be measured and cannot be reported.
  • FIG. 3 is a block diagram showing an example of the configuration of the connection base station 100 and the coordinated base station 200 according to the present embodiment. Note that FIG. 3 mainly shows portions related to the invention according to an aspect of the present disclosure among the components of the connecting base station 100 and the cooperative base station 200.
  • the connection base station 100 is a base station that determines transmission parameters used for cooperative transmission in CoMP transmission by the connection base station 100 and the coordinated base station 200 and instructs the coordinated base station 200 on the determined transmission parameters.
  • the connecting base station 100 includes an antenna 101, a reception processing unit 102, a determination unit 103, a CSI estimation unit 104, a cooperative transmission control determination unit 105, a cooperative transmission control unit 106, and a transmission processing unit 107. Including.
  • the reception processing unit 102 performs reception processing such as A / D conversion and down-conversion on the signal received via the antenna 101, and outputs the signal after reception processing to the determination unit 103 and the CSI estimation unit 104. To do.
  • the received signal includes information transmitted from the LTE terminal 3 and the LTE-A terminals 1 and 2 connected to the connecting base station 100.
  • received signal power RSRP: Reference Signal Received Power
  • CSI measured using the CRS transmitted from the base station 100
  • RSRP measured using the reference signals transmitted from each of the connecting base station 100 and the cooperative base station 200, and the connecting base station 100 and the cooperative base CSI measured using the CSI-RS transmitted from each of the stations 200 is included.
  • the RSRP and CSI generated using the reference signal, CSI-RS, CRS, or the like transmitted from the connected base station 100 are represented as “RSRP (Master)” and “CSI (Master)”.
  • the RSRP and CSI generated using the reference signal, CSI-RS, CRS or the like transmitted from the cooperative base station 200 are represented as “RSRP (Slave)” and “CSI (Slave)”.
  • the RSRP and CSI for both base stations are collectively expressed as “RSRP (Master, Slave)” and “CSI (Master, Slave)”.
  • the reception processing unit 102 outputs the RSRP (Master, Slave) and CSI (Master) of the LTE terminal 3 to the determination unit 103. Also, the reception processing unit 102 outputs the RSRP (Master, Slave) and CSI (Master, Slave) of the LTE-A terminals 1 and 2 to the CSI estimation unit 104.
  • the determination unit 103 determines whether to start applying CoMP transmission to the LTE terminal 3 based on the information of the LTE terminal 3 received from the reception processing unit 102. For example, the determination unit 103 starts CoMP transmission for the LTE terminal 3 when the difference between the RSRP (Master) for the connected base station 100 and the RSRP (Slave) for the coordinated base station 200 is less than a predetermined threshold for the LTE terminal 3. Then, it may be determined. When the difference between RSRP (Master) and RSRP (Slave) is less than a predetermined threshold, it is assumed that LTE terminal 3 is located at the cell edge of connected base station 100 and coordinated base station 200. For example, it is the position of the LTE terminal 3 shown in FIG. When the determination unit 103 determines the start of application of CoMP transmission of the LTE terminal 3, the determination unit 103 outputs the RSRP (Master, Slave) and CSI (Master) of the LTE terminal 3 to the CSI estimation unit 104.
  • the CSI estimation unit 104 receives the CSI (Master) of the LTE terminal 3 received from the determination unit 103 and the CSI of the LTE-A terminals 1 and 2 received from the reception processing unit 102. (Master, Slave) is used to estimate the CSI (Slave) of the LTE terminal 3.
  • the CSI estimation unit 104 outputs the RSRP (Master, Slave), CSI (Master), and the estimated CSI estimation value (Slave) of the LTE terminal 3 to the coordinated transmission control determination unit 105. Details of the CSI estimation process in the CSI estimation unit 104 will be described later.
  • the coordinated transmission control determining unit 105 determines transmission parameters used for coordinated transmission using the RSRP (Master, Slave), CSI (Master), and CSI estimated value (Slave) of the LTE terminal 3 received from the CSI estimating unit 104. Examples of control processing in coordinated transmission include AMC control, frequency scheduling, beam control, and the like.
  • the coordinated transmission control determining unit 105 outputs coordinated transmission control information indicating the determined transmission parameter to the coordinated transmission control unit 106 and transmits the coordinated transmission control information to the coordinated base station 200. The details of the coordinated transmission control process in the coordinated transmission control determination unit 105, that is, the transmission parameter determination process will be described later.
  • the coordinated transmission control unit 106 performs a CoMP transmission control process on data (not shown) for the LTE terminal 3 according to the coordinated transmission control information received from the coordinated transmission control determination unit 105, and transmits the processed data to the transmission process. Output to the unit 107.
  • the transmission processing unit 107 performs transmission processing such as up-conversion and D / A conversion on the data received from the coordinated transmission control unit 106, and transmits the signal after the transmission processing to the LTE terminal 3 via the antenna 101. To do.
  • the CoMP application terminal is an LTE terminal.
  • the CSI estimation process is performed by the CSI estimation unit 104 in the connected base station 100, and the CSI of the terminal adjacent to the LTE-A terminal is used. Then, the content of the cooperative transmission control may be determined.
  • the connected base station 100 does not perform CSI estimation processing in the CSI estimation unit 104, and the cooperative transmission control determination unit 105 performs RSRP (Master, Slave) and CSI transmitted from the LTE-A terminal that is a CoMP application terminal.
  • the content of cooperative transmission control may be determined using (Master, Slave).
  • the coordinated base station 200 is a base station that performs CoMP transmission according to transmission control by the connected base station 100. As illustrated in FIG. 3, the coordinated base station 200 includes a coordinated transmission control unit 201, a transmission processing unit 202, and an antenna 203.
  • the coordinated transmission control unit 201 performs a CoMP transmission control process on data (not shown) for the LTE terminal 3 according to the coordinated transmission control information received from the coordinated transmission control determination unit 105 of the connected base station 100. Are output to the transmission processing unit 202.
  • the transmission processing unit 202 performs transmission processing such as up-conversion and D / A conversion on the data received from the coordinated transmission control unit 201, and transmits the signal after the transmission processing to the LTE terminal 3 via the antenna 203. To do.
  • FIG. 4 is a sequence diagram showing an operation at the time of CoMP transmission in each device of the communication system 10 shown in FIG.
  • step (hereinafter simply referred to as “ST”) 101 the LTE terminal 3 measures RSRP (Master, Slave) measured using the reference signals transmitted from the connected base station 100 and the coordinated base station 200.
  • the CSI (Master) measured using the CRS transmitted from the connected base station 100 is reported to the connected base station 100. That is, CSI (Slave) is not reported from the LTE terminal 3 to the connecting base station 100.
  • the connecting base station 100 determines whether to start application of CoMP transmission to the LTE terminal 3 based on the information of the LTE terminal 3 acquired in ST101. Here, it is assumed that the connecting base station 100 determines to apply CoMP transmission to the LTE terminal 3.
  • the LTE-A terminals 1 and 2 transmit RSRP (Master, Slave) and CSI (Master, Slave) measured using the reference signals transmitted from the connecting base station 100 and the coordinated base station 200 to the connecting base station. Report to 100.
  • RSRP Master, Slave
  • CSI Master, Slave
  • timing at which the transmission processing of the LTE-A terminals 1 and 2 shown in ST103 is performed is not limited to after the processing of ST102, and the transmission processing of the LTE-A terminals 1 and 2 is individually performed before the processing of ST104 described later. It only has to be done.
  • the connecting base station 100 uses the CSI (Master) of the LTE terminal 3 acquired in ST101 and the CSI (Master, Slave) of the LTE-A terminals 1 and 2 acquired in ST103.
  • the CSI (Slave) for the cooperative base station 200 is estimated. Details of ST104 will be described later.
  • the connecting base station 100 uses the CSI (Master), RSRP (Master, Slave) of the LTE terminal 3 acquired in ST101, and the CSI (Slave) estimated in ST104 to perform CoMP transmission to the LTE terminal 3. Determine the transmission parameters to be used. Details of ST105 will be described later.
  • connected base station 100 transmits coordinated transmission control information indicating the transmission parameter determined in ST105 to coordinated base station 200.
  • the connected base station 100 performs CoMP transmission control for the LTE terminal 3 according to the content determined in ST105.
  • the coordinated base station 200 uses the coordinated transmission control information instructed from the connected base station 100 in ST106. CoMP transmission control for the LTE terminal 3 is performed according to the contents shown.
  • the connecting base station 100 and the cooperative base station 200 cooperatively transmit cooperative transmission data to the LTE terminal 3.
  • FIG. 5 is a diagram for explaining the CSI estimation process in the connected base station 100.
  • the connecting base station 100 first establishes a connection between the CSI (Master) between the LTE terminal 3 and the connecting base station 100 and the connecting base station 100 in each of the LTE-A terminals 1 and 2. Are compared with CSI (Master). Then, the connecting base station 100 selects the LTE-A terminal corresponding to the CSI (Master) closest to the CSI (Master) of the LTE terminal 3 from the LTE-A terminals 1 and 2.
  • the connecting base station 100 compares the CQI and PMI included in the CSI of the LTE terminal 3 with the CQI and PMI included in the CSI of the LTE-A terminals 1 and 2, respectively.
  • LTE-A terminal corresponding to CSI optimum for CSI of LTE terminal 3 based on the difference in CQI between LTE-A terminals 1 and 2 and the difference in PMI between LTE terminal and LTE-A terminals 1 and 2 Select.
  • the connecting base station 100 sets a threshold for the CQI between the LTE terminal 3 and the LTE-A terminals 1 and 2 or the PMI difference between the LTE terminal 3 and the LTE-A terminals 1 and 2, and the difference is the threshold value.
  • One LTE-A terminal corresponding to the CQI and PMI closest to the LTE terminal 3 may be selected from within the LTE-A terminals within.
  • the connecting base station 100 sets a threshold for the CQI between the LTE terminal 3 and the LTE-A terminals 1 and 2 or the PMI difference between the LTE terminal 3 and the LTE-A terminals 1 and 2, and the difference is the threshold
  • One LTE-A terminal corresponding to the average value of CSI of a plurality of LTE-A terminals within the range may be selected.
  • the connecting base station 100 selects the LTE-A terminal 1.
  • the connecting base station 100 sets the CSI (Slave) with the cooperative base station 200 in the selected LTE-A terminal 1 as the CSI (Slave) with the cooperative base station 200 in the LTE terminal 3. To do.
  • the connecting base station 100 changes the CSI (Slave) between the connecting base station 100 and the cooperative base station 200 in the LTE-A terminal 1 in the same channel state as that of the LTE terminal 3 to the LTE terminal. 3 is used as CSI (Slave) with the cooperative base station 200 in FIG.
  • FIG. 6 is a diagram for explaining an example of the cooperative transmission control process in the connecting base station 100.
  • the connecting base station 100 evaluates the estimation accuracy of the CSI estimated value (Slave) of the LTE terminal 3 estimated using the CSI (Slave) of the LTE-A terminal 1. Then, the connecting base station 100 determines the cooperative transmission control process based on the evaluation results (1) to (3), for example, as shown in FIG.
  • the transmission control process is associated with the evaluation result.
  • the CQI included in the CSI includes “Wideband CQI” that represents the channel quality of the entire frequency band and “Subband CQI” that represents the channel quality for each of a plurality of subbands obtained by dividing the entire frequency band. It is. Also, the PMI included in the CSI includes “Wideband PMI” that represents phase information in the entire frequency band, and “Subband PMI” that represents phase information for each of a plurality of subbands.
  • AMC control is a transmission control process that can be controlled using Wideband CQI or Subband CQI.
  • Frequency scheduling is a transmission control process that can be controlled using Subband CQI.
  • Beam control is a transmission control process that can be controlled using Wideband PMI or Subband PMI.
  • the CSI estimation accuracy is ⁇ for the evaluation result (1)
  • the CSI estimation accuracy is ⁇ for the evaluation result (2) or (3)
  • the CSI is for the evaluation result (4).
  • the accuracy of CSI is x, and the CSI estimation accuracy is good in this order. Therefore, the connecting base station 100 determines to perform transmission control processing corresponding to the evaluation result with the highest CSI estimation accuracy among the obtained evaluation results.
  • the connecting base station 100 determines whether or not the CQI / PMI included in the CSI (Master) of the LTE terminal 3 and the CQI / PMI included in the CSI (Master) of the LTE-A terminal 1 are substantially equal. Determine whether. For example, if the difference between the CQI value of the LTE terminal 3 and the CQI value corresponding to the connected base station 100 of the LTE-A terminal 1 is equal to or less than the threshold, the connecting base station 100 determines that the CQIs are substantially equal ( CQI evaluation: OK).
  • the connected base station 100 determines that the PMI is substantially equal when the PMI value of the LTE terminal 3 matches the PMI value corresponding to the connected base station 100 of the LTE-A terminal 1 (PMI evaluation: OK).
  • Evaluation result (1) is a case where both CQI evaluation and PMI evaluation are OK, and it is evaluated that the estimation accuracy of both CQI and PMI in CSI used as the CSI estimation value (Slave) of LTE terminal 3 is good.
  • CSI estimation accuracy: A The connecting base station 100 performs transmission control processing using all the parameters (Wideband CQI, Subband CQI, Wideband PMI, Subband PMI) of the CSI estimation value (Slave).
  • the connecting base station 100 performs AMC parameters, frequency scheduling, and beam control using the CSI (Master) of the LTE terminal 3 and the CSI estimation value (Slave), and transmits transmission parameters (MCS, Allocation resources, precoding weights, etc.).
  • Evaluation result (2) is a case where the PMI evaluation is NG and the CQI evaluation is OK, and it is evaluated that the CQI estimation accuracy in CSI used as the CSI estimation value (Slave) of the LTE terminal 3 is good.
  • CSI estimation accuracy: ⁇ The connected base station 100 performs transmission control processing (AMC control, frequency scheduling) using CQI (Wideband CQI, Subband CQI) in the CSI estimated value (Slave).
  • the connecting base station 100 performs AMC parameters and frequency scheduling using the CSI (Master) of the LTE terminal 3 and the CSI estimation value (Slave), and transmits transmission parameters (MCS, allocated resources, etc.) related to each transmission control. ).
  • Evaluation result (3) is a case where the CQI evaluation is NG and the PMI evaluation is OK, and it is evaluated that the PMI estimation accuracy in CSI used as the CSI estimation value (Slave) of the LTE terminal 3 is good.
  • CSI estimation accuracy: ⁇ The connected base station 100 performs transmission control processing (beam control) using PMI (Wideband PMI, Subband PMI) among the CSI estimated values (Slaves).
  • the connecting base station 100 performs beam control using the CSI (Master) of the LTE terminal 3 and the CSI estimated value (Slave), and performs transmission parameters (such as precoding weight) related to beam control.
  • both CQI and PMI estimation in CSI used as the CSI estimation value (Slave) of the LTE terminal 3 is estimated. It is evaluated that the accuracy is poor (CSI estimation accuracy: x).
  • the connecting base station 100 does not perform transmission control using the CSI estimated value (Slave).
  • AMC control and frequency scheduling are given as an example of the transmission control process using CQI
  • beam control is given as an example of the transmission control process using PMI. Any transmission control process that can be controlled using PMI may be used.
  • the connecting base station 100 is the LTE-A terminal of the LTE-A terminals 1 and 2 that has the closest CSI (Master) and LTE terminal 3 CSI (Master).
  • Corresponding CSI (Slave) is set as a CSI estimated value (Slave) between cooperative base station 200 and LTE terminal 3. Then, the connecting base station 100 determines the process of cooperative transmission control using the CSI (Master) reported from the LTE terminal 3 and the CSI estimated value (Slave) of the LTE terminal 3 estimated by the connecting base station 100. To do.
  • the connecting base station 100 uses the CSI of the LTE-A terminal 1 adjacent to the LTE terminal 3 as the CSI estimated value (Slave) for the cooperative base station 200 in the LTE terminal 3.
  • the connection base station 100 can optimize CoMP transmission control using CSI (Master, Slave) of both the connection base station 100 and the coordinated base station 200 for the LTE terminal 3.
  • the connecting base station 100 estimates the CSI (Slave) of the LTE terminal 3 using the CSI (Master, Slave) from the LTE-A terminals 1 and 2, so that the LTE terminal 3 performs the same as in the conventional case. Only the CSI (Master) for the connected base station 100 may be acquired. That is, the LTE terminal 3 only needs to perform the same processing as the conventional one, and does not need to have a new function for applying CoMP transmission.
  • the connecting base station 100 simultaneously acquires CSI transmitted from each of the LTE-A terminals 1 and 2 and the LTE terminal 3, the CSI (Master) for the connecting base station 100 reported from the LTE terminal 3, and The CSI (Slave) estimated by the connecting base station 100 can be acquired simultaneously, for example, in the same subframe, and CoMP transmission can be applied in the same manner as the LTE-A terminals 1 and 2.
  • CoMP transmission can be applied to the LTE terminal 3 in the same manner as the LTE-A terminals 1 and 2 without extending the functions of the LTE terminal 3.
  • the connecting base station 100 evaluates the estimation accuracy of the CSI estimation value (Slave), and determines the transmission control process to be performed based on the evaluation result. Thereby, the connecting base station 100 can perform transmission control according to the estimation accuracy of the CSI estimation value (Slave), and can optimize CoMP transmission control.
  • FIG. 7 shows a configuration example of the communication system according to the present embodiment.
  • the connecting base station 300 and the coordinated base station 400 perform CoMP transmission to one CoMP application terminal.
  • This Embodiment demonstrates the case where a CoMP application terminal is a LTE terminal.
  • LTE terminal 6 that is a CoMP application terminal is connected to connection base station 300 and LTE terminals 4 and 5 are connected to cooperative base station 400. Moreover, the LTE terminal 6 and the LTE terminal 4 are located in the cell edge which is an area where the cells of both the connecting base station 100 and the cooperative base station 200 overlap.
  • the connecting base station 300 transmits a CRS to the LTE terminal 6, and the cooperative base station 400 transmits a CRS to the LTE terminals 4 and 5.
  • the LTE terminal 6 connected to the connection base station 300 can measure and report the CSI between the connection base station 300 and the LTE terminal 6 using the CRS transmitted from the connection base station 300.
  • the CSI between the coordinated base station 400 and the LTE terminal 6 cannot be measured and cannot be reported.
  • FIG. 8 is a block diagram showing an example of the configuration of connected base station 300 and cooperative base station 400 according to the present embodiment.
  • the same reference numerals are given to configurations that perform the same operations as those in FIG. 3 described in the first embodiment, and description thereof is omitted.
  • connection base station 300 includes an antenna 101, a reception processing unit 102, a determination unit 103, a CSI estimation unit 301, a coordinated transmission control determination unit 302, a coordinated transmission control unit 106, and a transmission processing unit 107.
  • the CSI estimation unit 301 uses a communication network (not shown) for estimating the CSI (Slave) of the LTE terminal 6 with respect to the CSI estimation unit 402 described later of the cooperative base station 400. Direct through. In addition, the CSI estimation unit 301 outputs the RSRP (Master, Slave) and CSI (Master) of the LTE terminal 6 to the coordinated transmission control determination unit 302.
  • the coordinated transmission control determination unit 302 receives the RSRP (Master, Slave) and CSI (Master) of the LTE terminal 6 received from the CSI estimation unit 301, and the CSI estimation value (Slave) received from the CSI estimation unit 402 described later of the coordinated base station 400. ) And RSRP (Master, Slave) of the LTE terminal used for CSI estimation, the transmission parameters used for cooperative transmission are determined. The details of the coordinated transmission control process in the coordinated transmission control determination unit 302, that is, the transmission parameter determination process will be described later.
  • the coordinated base station 400 includes a coordinated transmission control unit 201, a transmission processing unit 202, an antenna 203, a reception processing unit 401, and a CSI estimation unit 402.
  • the reception processing unit 401 performs reception processing such as A / D conversion and down-conversion on the signal received via the antenna 203 and outputs the signal after reception processing to the CSI estimation unit 402.
  • the received signal includes information transmitted from LTE terminals 4 and 5 connected to cooperative base station 400. For example, as information transmitted from the LTE terminals 4 and 5, the CSI (Slave) and the reference signal measured using the CRS transmitted from each of the connected base station 300 and the coordinated base station 400 in the LTE terminals 4 and 5 are used.
  • the received signal power (RSRP (Master, Slave)) measured by using is included.
  • the CSI estimation unit 402 estimates the CSI (Slave) of the LTE terminal 6 using the CSI (Slave) of the LTE terminals 4 and 5 received from the reception processing unit 401 and RSRP (Master, Slave).
  • the CSI estimation unit 402 transmits the CSI estimation value (Slave) and the RSRP (Master, Slave) of the LTE terminal used for CSI estimation to the coordinated transmission control determination unit 302 of the connected base station 300. Details of the CSI estimation process in the CSI estimation unit 402 will be described later.
  • connection base station 300 and the cooperative base station 400 operations of the connection base station 300 and the cooperative base station 400 described above will be described.
  • FIG. 9 is a sequence diagram showing an operation at the time of CoMP transmission in each device of the communication system 20 shown in FIG.
  • the same operations as those in FIG. 4 are denoted by the same reference numerals, and the description of the operations is omitted.
  • the connected base station 300 determines to apply CoMP transmission to the LTE terminal 6.
  • the connecting base station 300 transmits a CSI (Slave) estimation instruction to the cooperative base station 400.
  • LTE terminals 4 and 5 connected to cooperative base station 400 use RSRP (Master, Slave) and CRS measured using reference signals transmitted from connecting base station 100 and cooperative base station 200.
  • the measured CSI (Slave) is reported to the coordinated base station 400.
  • cooperative base station 400 uses CRS (Slave) for cooperative base station 400 of LTE terminal 6 using RSRP (Master, Slave) of LTE terminals 4 and 5 acquired in ST202. ).
  • coordinated base station 400 transmits the CSI value (Slave) estimated in ST203 and the RSRP (Master, Slave) of the LTE terminal used for CSI estimation to connected base station 300.
  • the connecting base station 300 uses the CSI (Master) and RSRP (Master, Slave) of the LTE terminal 6 acquired in ST101, and the CSI (Slave) and RSRP (Master, Slave) acquired in ST204.
  • a transmission parameter used for CoMP transmission to the LTE terminal 6 is determined.
  • FIG. 10 is a diagram for explaining CSI estimation processing in the coordinated base station 400.
  • the coordinated base station 400 includes an RSRP (Master) for the connected base station 300 and an RSRP (Slave) for the coordinated base station 400 in each of the LTE terminals 4 and 5 connected to the coordinated base station 400.
  • Ratio hereinafter referred to as RSRP ratio).
  • the LTE terminal 4 is located at the cell edge of both the connected base station 300 and the coordinated base station 400, similarly to the LTE terminal 6. For this reason, in the LTE terminal 4, the reference signal transmitted from the connection base station 300 and the reference signal transmitted from the cooperative base station 400 are received at substantially the same level. That is, the RSRP ratio calculated in the LTE terminal 4 is a value close to 1.
  • the LTE terminal 5 is outside the range of the connected base station 300 cell and is located in the cell of the coordinated base station 400. For this reason, in the LTE terminal 5, the reception level of the reference signal transmitted from the coordinated base station 400 is very high compared to the reference signal transmitted from the connected base station 300. That is, the RSRP ratio calculated in the LTE terminal 5 is a value much smaller than 1.
  • the cooperative base station 400 selects the LTE terminal 4 with the calculated RSRP ratio close to 1. Then, the coordinated base station 400 sets the CSI (Slave) between the selected LTE terminal 4 and the coordinated base station 400 as the CSI (Slave) between the LTE terminal 6 and the coordinated base station 400.
  • the coordinated base station 400 is a terminal in which the LTE terminal 4 having an RSRP ratio close to 1 is located at the cell edge of both the connected base station 300 and the coordinated base station 400 similar to the LTE terminal 6. And the CSI (Slave) of the LTE terminal 4 is set as the CSI estimated value (Slave) of the LTE terminal 6.
  • the connecting base station 300 may include RSRP (Master, Slave) of the LTE terminal 6 in the CSI estimation instruction for the cooperative base station 400.
  • the coordinated base station 400 may compare the RSRP ratio in the LTE terminal 6 with the RSRP ratio in the LTE terminals 4 and 5. That is, cooperative base station 400 selects LTE terminal 4 whose calculated RSRP ratio is close to the RSRP ratio in LTE terminal 6. By doing so, the coordinated base station 400 can specify an LTE terminal in an environment closer to the LTE terminal 6.
  • the CSI estimation unit 402 of the coordinated base station 400 uses the CSI corresponding to the LTE terminal 4 having an RSRP ratio within a predetermined range among the LTE terminals 4 and 5 as the CSI estimate of the coordinated base station 400 and the LTE terminal 6. What is necessary is just to set as a value (Slave).
  • (1 ⁇ threshold) or (RSRP ratio ⁇ threshold of CoMP application terminal) is set as the predetermined range.
  • the coordinated base station 400 may select one LTE terminal whose RSRP ratio is 1 or closest to the RSRP ratio of the LTE terminal 6 as the LTE terminal used for CSI estimation.
  • the coordinated base station 400 may select one LTE terminal corresponding to the average value of CSI of the terminals whose RSRP ratio is within a predetermined range (within a threshold) among the LTE terminals 4 and 5.
  • the coordinated base station 400 acquires the location information of the LTE terminals 4 and 5, and selects the LTE terminal closer to the location of the LTE terminal 6. You may choose.
  • GPS Global Positioning system
  • FIG. 11 is a diagram for explaining an example of the cooperative transmission control process in the connecting base station 300.
  • connection base station 300 evaluates the estimation accuracy of the CSI estimation value (Slave) of the LTE terminal 6 estimated using the CSI (Slave) of the LTE terminal 4. Then, the connected base station 300 determines the coordinated transmission control process based on the evaluation results (5) and (6), for example, as shown in FIG.
  • the connection base station 300 evaluates the estimation accuracy of the CSI estimation value (Slave) using the RSRP of the LTE terminal 6 and the RSRP of the LTE terminal 4 used for CSI estimation.
  • the ratio (RSRP ratio) between RSRP (Master) and RSRP (Slave) in the LTE terminal 6 and the RSRP ratio in the LTE terminal 4 used for CSI estimation are substantially equal. Determine whether or not.
  • the connecting base station 300 determines that the RSRP ratio is substantially equal when the difference in the RSRP ratio between the LTE terminal 6 and the LTE terminal 4 is equal to or less than a threshold value.
  • the connected base station 300 may determine that the RSRP ratio between the LTE terminal 6 and the LTE terminal 4 is substantially equal when the difference between the RSRP ratio of the LTE terminal 4 and “1” is equal to or less than the threshold.
  • the evaluation result (5) is the case where the RSRP is the same, that is, the received signal power level is the same in the terminal, and the Wideband CQI is estimated in the CSI used as the CSI estimated value (Slave) of the LTE terminal 6. It is evaluated that the accuracy is good.
  • the connected base station 300 performs transmission control processing (AMC control) using Wideband CQI among the parameters of the CSI estimation value (Slave).
  • the evaluation result is an evaluation result (6) that does not correspond to the evaluation result (5), it is evaluated that the estimation accuracy of Wideband CQI is poor in the CSI used as the CSI estimation value (Slave) of the LTE terminal 6 (CSI estimation accuracy: x).
  • the connected base station 300 does not perform transmission control using the CSI estimated value (Slave).
  • the connecting base station 300 instructs the cooperative base station 400 to estimate the CSI (Slave) of the LTE terminal 6. Then, the cooperative base station 400 uses the CSI (Slave) corresponding to the LTE terminal having an RSRP ratio close to 1 among the connected LTE terminals 4 and 5 as the CSI between the cooperative base station 400 and the LTE terminal 6. Set as an estimated value (Slave). Then, the connecting base station 300 determines cooperative transmission control processing using the CSI (Master) reported from the LTE terminal 6 and the CSI estimated value (Slave) of the LTE terminal 6 estimated by the cooperative base station 400. To do.
  • the connecting base station 300 uses the CSI of the LTE terminal 4 adjacent to the LTE terminal 6 as the CSI estimated value (Slave) for the cooperative base station 400 in the LTE terminal 6. Thereby, the connection base station 300 can optimize CoMP transmission control using CSI (Master, Slave) of both the connection base station 300 and the coordinated base station 400 for the LTE terminal 6.
  • connection base station 300 estimates the CSI (Slave) of the LTE terminal 6 using the CSI (Slave) for the LTE terminals 4 and 5 other than the LTE terminal 6, it is the same as the conventional one from the LTE terminal 6. Thus, only the CSI (Master) for the connected base station 100 may be acquired. That is, the LTE terminal 6 only needs to perform the same processing as the conventional one, and does not need to have a new function for applying CoMP transmission.
  • connection base station (100, 300) and the coordinated base station (200, 400) are configured in the first embodiment when the LTE-A terminal (1, 2) exists around the LTE terminal (3, 6). And only the LTE terminal (4, 5) exists around the LTE terminal (3, 6), the second embodiment may be applied.
  • the coordinated transmission control determination unit 302 of the connected base station 300 evaluates CSI (Slave) estimated from the LTE terminal 4 using the RSRP ratio.
  • the evaluation using the RSRP ratio may be applied to the evaluation of the CSI (Slave) estimated from the LTE-A terminal 1 in the first embodiment. That is, the evaluation results (5) and (6) shown in FIG. 11 may be added to the evaluation results (1) to (4) shown in FIG. Thereby, for example, even if the evaluation results (1) to (3) shown in FIG. 6 do not correspond to any of the evaluation results (5) shown in FIG. 11, AMC control is applied.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI (Large Scale Integration) that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be called IC (Integrated Circuit), system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • LSI Large Scale Integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the invention according to an aspect of the present disclosure is suitable for a communication system that performs CoMP transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第1の端末に対して、協調基地局と協調してデータを送信し、協調基地局に対して協調送信に用いる送信パラメータを指示する接続基地局において、受信処理部は、第1の端末から、接続基地局と第1の端末との間の第1のCSIを受信し、第1の端末以外の少なくとも1つの第2の端末の各々から、接続基地局と第2の端末との間の第2のCSI、及び、協調基地局と少なくとも1つの第2端末との間の第3のCSIを受信し、CSI推定部は、少なくとも1つの第2の端末のうち、第1のCSIと第2のCSIとが最も近い端末に対応する第3のCSIを、協調基地局と第1の端末との間のCSIの推定値として設定し、協調送信制御部は、第1のCSI及び推定値を用いて、送信パラメータを決定する。

Description

基地局及び送信制御方法
 本開示は、基地局及び送信制御方法に関する。
 3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)を拡張したLTE-Advancedにおいて、基地局協調(CoMP:Coordinated Multi-Point transmission)送信の運用が検討されている。CoMP送信では、複数の基地局(BS(Base Station)又はeNB(evolved Node B)と称されることもある)が1つの端末(MS(Mobile Station)又はUE(User Equipment)と称されることもある)に対してデータを協調して送信し、端末が複数の基地局から送信されたデータを合成することにより、端末における受信品質を改善する。
 図1は、CoMP送信を行う通信システムの構成例を示す図であり、複数の基地局、及び、複数の基地局のそれぞれがカバーするセルに存在する端末の一例を示す。
 なお、以下では、LTEシステム(例えば、3GPPのRelease 8、9)に対応する端末を「LTE端末」と称し、LTE-Advancedシステム(例えば、3GPPのRelease 10以降)に対応する端末を「LTE-A端末」と称する。
 図1に示すように、複数の基地局は、CoMP送信を行う場合、CoMP送信に関する送信制御の内容を決定する1つの基地局(以下、接続基地局又はMaster BSと称することもある)と、接続基地局からのCoMP送信制御の指示に従ってCoMP送信を行う他の基地局(以下、協調基地局又はSlave BSと称することもある)とから構成される。
 接続基地局及び協調基地局はそれぞれ、自局に接続しているLTE-A端末に向けてCSI-RS(Channel State Information Reference Signal)を送信する。LTE-A端末は、接続基地局及び協調基地局からそれぞれ送信されたCSI-RSを受信すると、チャネル状態情報(CSI:Channel State Information)を測定し、接続基地局に送信して報告する。すなわち、接続基地局は、自局に接続しているLTE-A端末から接続基地局とLTE-A端末との間のCSI、及び、協調基地局とLTE-A端末との間のCSIを取得する。
 なお、CSIには、チャネル品質を表すCQI(Channel Quality Indicator)、及び、チャネルの位相情報を表すPMI(Precoding Matrix Indicator)等が含まれる。
 接続基地局は、LTE-A端末から報告される、接続基地局に対するCSI及び協調基地局に対するCSIを用いて、CoMP送信の制御を最適化する。CoMP送信の制御方法としては、例えば、AMC(Adaptive Modulation Coding:適応変調符号化)制御、周波数スケジューリング、ビーム制御等が挙げられる。
 ところで、図1に示すように、通信システムには、CoMP通信可能なLTE-A端末に加え、LTE端末も混在する場合がある。しかし、LTEシステムでは、CoMP送信のように複数の基地局から1つのLTE端末に対して信号を協調送信することは規定されていない。また、LTEシステムでは、LTE端末が、接続している1つの基地局から送信されるCRS(Cell-specific Reference Signal)を用いてその基地局とLTE端末との間のCSIを報告することが規定されている。しかしLTE端末が、複数の基地局から送信されるCSI-RSを用いて、接続基地局以外の他の基地局、例えば図1では協調基地局、に対するCSIを報告することは規定されていない。つまり、LTE端末にはCoMP送信を適用することが困難であった。
 これに対して、特許文献1には、端末が、接続基地局に対するCQIと、協調基地局に対するCQIとをサブフレーム毎に時分割で送信する方法が開示されている。そして、基地局は、端末から送信される各基地局に対するCQIを用いて、各基地局の送信電力を最適化することにより、CoMP送信の最適化を図る。
日本国特許第5189111号公報
 しかしながら、特許文献1に開示されている方法では、LTE端末が或る基地局に対するCQIを測定または送信している間は、他の基地局に対するCQIを測定または送信することができない。一方、上述したように、LTE-Advancedシステムでは、接続基地局は、複数の基地局に対するCSIをLTE-A端末から同時に取得することが可能である。このため、特許文献1は、LTE-Advancedシステムと比較して、接続基地局において、LTE端末から複数の基地局のCQIを取得し、このLTE端末に対してCoMP送信を適用するまでに時間を要してしまう。
 また、特許文献1に開示されている方法では、LTE端末は、CSIを測定し、複数の基地局のそれぞれへ送信するための機能を新たに備える必要がある。
 本開示の一態様に係る発明は、LTE端末の機能を拡張することなく、LTE端末に対してもLTE-A端末と同様にしてCoMP送信を適用することができる基地局及び送信制御方法を提供することを目的とする。
 本開示の一態様に係る基地局は、第1の端末に対して、協調基地局と協調してデータを送信し、協調基地局に対して協調送信に用いる送信パラメータを指示する接続基地局として機能する基地局であって、第1の端末から、接続基地局と前記第1の端末との間の第1のCSI(Channel State Information:チャネル状態情報)を受信し、第1の端末以外の少なくとも1つの第2の端末の各々から、接続基地局と少なくとも1つの第2の端末の各々との間の第2のCSI、及び、協調基地局と少なくとも1つの第2の端末の各々との間の第3のCSIを受信する受信部と、少なくとも1つの第2の端末のうち、第1のCSIと第2のCSIとが最も近い端末に対応する第3のCSIを、協調基地局と第1の端末との間のCSIの推定値として設定する推定部と、第1のCSI及び推定値を用いて、送信パラメータを決定する決定部と、を具備する構成を採る。
 本開示の一態様に係る基地局は、第1の端末に対して、接続基地局と協調してデータを送信し、接続基地局から協調送信に用いる送信パラメータを受信する協調基地局として機能する基地局であって、第1の端末以外の少なくとも1つの第2の端末の各々から、協調基地局と少なくとも1つの第2の端末の各々との間のCSI(Channel State Information:チャネル状態情報)、及び、少なくとも1つの第2の端末の各々における接続基地局から送信された参照信号の受信電力を示す第1のRSRP(Reference Signal Received Power)、及び、第2の端末における協調基地局から送信された参照信号の受信電力を示す第2のRSRPを受信する受信部と、少なくとも1つの第2の端末のうち、第1のRSRPと第2のRSRPとの比が所定の範囲内である端末に対応するCSIを、協調基地局と第1の端末との間のCSIの推定値として設定し、設定されたCSIを接続基地局へ通知する推定部と、を具備する構成を採る。
 本開示の一態様に係る送信制御方法は、第1の端末に対して、協調基地局と協調してデータを送信し、協調基地局に対して協調送信に用いる送信パラメータを指示する接続基地局として機能する基地局における送信制御方法であって、第1の端末から、接続基地局と第1の端末との間の第1のCSI(Channel State Information:チャネル状態情報)を受信し、第1の端末以外の少なくとも1つの第2の端末の各々から、前記接続基地局と少なくとも1つの第2の端末の各々との間の第2のCSI、及び、協調基地局と少なくとも1つの第2の端末の各々との間の第3のCSIを受信し、少なくとも1つの第2の端末のうち、第1のCSIと第2のCSIとが最も近い端末に対応する第3のCSIを、協調基地局と第1の端末との間のCSIの推定値として設定し、第1のCSI及び推定値を用いて、送信パラメータを決定する。
 本開示の一態様に係る送信制御方法は、第1の端末に対して、接続基地局と協調してデータを送信し、接続基地局から協調送信に用いる送信パラメータを受信する協調基地局として機能する基地局における送信制御方法であって、第1の端末以外の少なくとも1つの第2の端末の各々から、協調基地局と少なくとも1つの第2の端末の各々との間のCSI(Channel State Information:チャネル状態情報)、及び、少なくとも1つの第2の端末の各々における接続基地局から送信された参照信号の受信電力を示す第1のRSRP(Reference Signal Received Power)、及び、少なくとも1つの第2の端末の各々における協調基地局から送信された参照信号の受信電力を示す第2のRSRPを受信し、少なくとも1つの第2の端末のうち、第1のRSRPと第2のRSRPとの比が所定の範囲内である端末に対応するCSIを、協調基地局と第1の端末との間のCSIの推定値として設定し、設定されたCSIを接続基地局へ通知する。
 本開示の一態様によれば、LTE端末の機能を拡張することなく、LTE端末に対してもLTE-A端末と同様にしてCoMP送信を適用することができる。
図1は、CoMP送信を行う通信システムの構成例を示す図である。 図2は、実施の形態1に係る通信システムの構成例を示す図である。 図3は、実施の形態1に係る接続基地局及び協調基地局の構成を示すブロック図である。 図4は、実施の形態1に係るCoMP送信処理を示すシーケンス図である。 図5は、実施の形態1に係るCSI推定処理の説明に供する図である。 図6は、実施の形態1に係る接続基地局における協調送信制御処理の説明に供する図である。 図7は、実施の形態2に係る通信システムの構成例を示す図である。 図8は、実施の形態2に係る接続基地局及び協調基地局の構成を示すブロック図である。 図9は、実施の形態2に係るCoMP送信処理を示すシーケンス図である。 図10は、実施の形態2に係るCSI推定処理の説明に供する図である。 図11は、実施の形態2に係る接続基地局における協調送信制御処理の説明に供する図である。
 以下、本開示の一態様に係る発明の各実施の形態について、図面を参照して詳細に説明する。
 なお、以下では、LTE規格、または、LTE-Advanced規格を用いた移動通信システムに各実施の形態を適用する場合について説明するが、これに限定されるものではない。
 [実施の形態1]
 [通信システムの概要]
 図2は、本実施の形態に係る通信システムの構成例を示す図である。図2に示す通信システム10では、図1と同様に、2つの基地局が1つの端末に対してCoMP送信を行う。
 例えば、図2では、接続基地局100及び協調基地局200が1つのCoMP適用端末に対してCoMP送信を行う。本実施の形態では、CoMP適用端末がLTE端末である場合について説明する。
 また、本実施の形態では、図2に示す通信システム10においてLTE端末とLTE-A端末とが混在する場合を想定する。図2では、一例として、LTE端末3及びLTE-A端末1、2は、接続基地局100に接続されているものとする。また、LTE端末3及びLTE-A端末1、2は、接続基地局100及び協調基地局200の双方のセルが重複するエリア、すなわち、セルエッジに位置する。
 また、接続基地局100及び協調基地局200は、LTE-A端末1、2に対してCSI-RSを送信し、LTE端末3に対してCRSを送信する。
 よって、接続基地局100に接続しているLTE端末3は、接続基地局100から送信されるCRSを用いて、接続基地局100とLTE端末3との間のCSIを測定し、報告できるが、協調基地局200とLTE端末3との間のCSIを測定できず、報告できない。
 [接続基地局100及び協調基地局200の構成]
 図3は、本実施の形態に係る接続基地局100及び協調基地局200の構成の一例を示すブロック図である。なお、図3には、接続基地局100及び協調基地局200の構成要素のうち、本開示の一態様に係る発明に関連する部分が主に示されている。
 接続基地局100は、接続基地局100及び協調基地局200によるCoMP送信における協調送信に用いる送信パラメータを決定し、決定した送信パラメータを協調基地局200へ指示する基地局である。図3に示すように、接続基地局100は、アンテナ101、受信処理部102、判定部103、CSI推定部104、協調送信制御決定部105、協調送信制御部106、及び、送信処理部107を含む。
 受信処理部102は、アンテナ101を介して受信した信号に対して受信処理、例えば、A/D変換、ダウンコンバートなど、を施し、受信処理後の信号を判定部103及びCSI推定部104へ出力する。
 受信信号には、接続基地局100に接続された、LTE端末3及びLTE-A端末1、2から送信される情報が含まれる。
 例えば、LTE端末3から送信される情報として、接続基地局100及び協調基地局200の各々から送信された参照信号を用いて測定された受信信号電力(RSRP:Reference Signal Received Power)、及び、接続基地局100から送信されたCRSを用いて測定されたCSIが含まれる。
 また、LTE-A端末1、2から送信される情報として、接続基地局100及び協調基地局200の各々から送信された参照信号を用いて測定されたRSRP、及び、接続基地局100及び協調基地局200の各々から送信されたCSI-RSを用いて測定されたCSIが含まれる。
 ここで、接続基地局100から送信された参照信号、CSI-RS又はCRS等を用いて生成されたRSRP及びCSIを「RSRP(Master)」及び「CSI(Master)」と表す。また、協調基地局200から送信された参照信号、CSI-RS又はCRS等を用いて生成されたRSRP及びCSIを「RSRP(Slave)」及び「CSI(Slave)」と表す。また、双方の基地局に対するRSRP及びCSIをまとめて「RSRP(Master、Slave)」及び「CSI(Master、Slave)」と表す。
 受信処理部102は、LTE端末3のRSRP(Master、Slave)及びCSI(Master)を判定部103に出力する。また、受信処理部102は、LTE-A端末1、2のRSRP(Master、Slave)及びCSI(Master、Slave)をCSI推定部104に出力する。
 判定部103は、受信処理部102から受け取るLTE端末3の情報に基づいて、LTE端末3に対してCoMP送信の適用を開始するか否かを判定する。例えば、判定部103は、LTE端末3について、接続基地局100に対するRSRP(Master)と協調基地局200に対するRSRP(Slave)の差が所定の閾値未満である場合、LTE端末3に対するCoMP送信を開始すると判定してもよい。RSRP(Master)とRSRP(Slave)の差が所定の閾値未満である場合とは、LTE端末3が接続基地局100と協調基地局200のセルエッジに位置していると想定される。例えば、図2に示すLTE端末3の位置である。判定部103は、LTE端末3のCoMP送信の適用の開始を決定した場合、LTE端末3のRSRP(Master、Slave)及びCSI(Master)をCSI推定部104に出力する。
 CSI推定部104は、LTE端末3のCSI(Slave)が存在しない場合、判定部103から受け取るLTE端末3のCSI(Master)、及び、受信処理部102から受け取るLTE-A端末1、2のCSI(Master、Slave)を用いて、LTE端末3のCSI(Slave)を推定する。CSI推定部104は、LTE端末3のRSRP(Master、Slave)、CSI(Master)、及び、推定したCSI推定値(Slave)を協調送信制御決定部105に出力する。なお、CSI推定部104におけるCSI推定処理の詳細については後述する。
 協調送信制御決定部105は、CSI推定部104から受け取るLTE端末3のRSRP(Master、Slave)、CSI(Master)及びCSI推定値(Slave)を用いて、協調送信に用いる送信パラメータを決定する。協調送信における制御処理としては、例えば、AMC制御、周波数スケジューリング、及び、ビーム制御などが挙げられる。協調送信制御決定部105は、決定した送信パラメータを示す協調送信制御情報を、協調送信制御部106に出力するとともに、協調基地局200に送信する。なお、協調送信制御決定部105における協調送信の制御処理、すなわち、送信パラメータの決定処理の詳細については後述する。
 協調送信制御部106は、協調送信制御決定部105から受け取る協調送信制御情報に従って、LTE端末3に対するデータ(図示せず)に対して、CoMP送信の制御処理を行い、処理後のデータを送信処理部107に出力する。
 送信処理部107は、協調送信制御部106から受け取るデータに対して送信処理、例えば、アップコンバート、D/A変換などを施し、送信処理後の信号を、アンテナ101を介してLTE端末3へ送信する。
 なお、ここでは、CoMP適用端末がLTE端末である場合について説明した。CoMP適用端末がLTE-A端末である場合にも、上述したように、接続基地局100においてCSI推定部104でのCSIの推定処理を行い、このLTE-A端末に近接する端末のCSIを利用して協調送信制御の内容を決定してもよい。または、接続基地局100においてCSI推定部104でのCSIの推定処理は行わず、協調送信制御決定部105において、CoMP適用端末であるLTE-A端末から送信されたRSRP(Master、Slave)及びCSI(Master、Slave)を用いて協調送信制御の内容を決定してもよい。
 協調基地局200は、接続基地局100による送信制御に従ってCoMP送信を行う基地局である。図3に示すように、協調基地局200は、協調送信制御部201、送信処理部202、及び、アンテナ203を含む。
 協調送信制御部201は、接続基地局100の協調送信制御決定部105から受け取る協調送信制御情報に従って、LTE端末3に対するデータ(図示せず)に対して、CoMP送信の制御処理を行い、処理後のデータを送信処理部202に出力する。
 送信処理部202は、協調送信制御部201から受け取るデータに対して送信処理、例えば、アップコンバート、D/A変換などを施し、送信処理後の信号を、アンテナ203を介してLTE端末3へ送信する。
 [接続基地局100及び協調基地局200の動作]
 次に、上述した接続基地局100及び協調基地局200の動作について説明する。
 図4は、図2に示す通信システム10の各装置におけるCoMP送信時の動作を示すシーケンス図である。
 図4において、ステップ(以下、単に「ST」と表す)101では、LTE端末3は、接続基地局100及び協調基地局200から送信された参照信号を用いて測定したRSRP(Master、Slave)、及び、接続基地局100から送信されたCRSを用いて測定したCSI(Master)を、接続基地局100へ報告する。つまり、LTE端末3から接続基地局100へはCSI(Slave)が報告されない。
 ST102では、接続基地局100は、ST101で取得したLTE端末3の情報に基づいて、LTE端末3に対してCoMP送信の適用を開始するか否かを判定する。ここでは、接続基地局100がLTE端末3に対してCoMP送信を適用すると判定したものとする。
 ST103では、LTE-A端末1、2は、接続基地局100及び協調基地局200から送信された参照信号を用いて測定したRSRP(Master、Slave)及びCSI(Master、Slave)を、接続基地局100へ報告する。
 なお、ST103に示すLTE-A端末1,2の送信処理が行われるタイミングは、ST102の処理後に限定されず、LTE-A端末1,2の送信処理は、後述するST104の処理までに個別に行われていればよい。
 ST104では、接続基地局100は、ST101で取得したLTE端末3のCSI(Master)、及び、ST103で取得したLTE-A端末1,2のCSI(Master、Slave)を用いて、LTE端末3の協調基地局200に対するCSI(Slave)を推定する。ST104の詳細は、後述する。
 ST105では、接続基地局100は、ST101で取得したLTE端末3のCSI(Master)、RSRP(Master、Slave)、及び、ST104で推定したCSI(Slave)を用いて、LTE端末3に対するCoMP送信に用いる送信パラメータを決定する。ST105の詳細は、後述する。
 ST106では、接続基地局100は、ST105において決定した送信パラメータを示す協調送信制御情報を協調基地局200へ送信する。
 ST107では、接続基地局100は、ST105において決定した内容に従って、LTE端末3に対するCoMP送信制御を行い、ST108では、協調基地局200は、ST106において接続基地局100から指示された協調送信制御情報に示される内容に従って、LTE端末3に対するCoMP送信制御を行う。
 ST109及びST110では、接続基地局100及び協調基地局200は、LTE端末3に対して協調送信データを協調して送信する。
 [CSI推定処理]
 次に、ST104の処理である、接続基地局100のCSI推定部104におけるCSI推定処理の詳細について説明する。
 図5は、接続基地局100におけるCSI推定処理の説明に供する図である。
 図5に示すように、接続基地局100は、まず、LTE端末3における接続基地局100との間のCSI(Master)と、LTE-A端末1、2の各々における接続基地局100との間のCSI(Master)と、をそれぞれ比較する。そして、接続基地局100は、LTE-A端末1、2の中から、LTE端末3のCSI(Master)と最も近いCSI(Master)に対応するLTE-A端末を選択する。
 具体的には、接続基地局100は、LTE端末3のCSIに含まれるCQI及びPMIと、LTE-A端末1、2のCSIに含まれるCQI及びPMIと、をそれぞれ比較し、LTE端末3とLTE-A端末1、2とのCQIの差分、及び、LTE端末とLTE-A端末1、2とのPMIの差分に基づいて、LTE端末3のCSIに最適なCSIに対応するLTE-A端末を選択する。
 例えば、接続基地局100は、LTE端末3とLTE-A端末1、2とのCQI又はLTE端末3とLTE-A端末1、2とのPMIの差分に対して閾値を設けて、差分が閾値以内となるLTE-A端末のうち、LTE端末3と最も近いCQI、PMIに対応するLTE-A端末を1台選択してもよい。又は、接続基地局100は、LTE端末3とLTE-A端末1、2とのCQI又はLTE端末3とLTE-A端末1、2とのPMIの差分に対して閾値を設けて、差分が閾値以内となる複数のLTE-A端末のCSIの平均値に対応するLTE-A端末を1台選択してもよい。
 図5では、LTE-A端末1のCSI(Master)とLTE端末3のCSI(Master)とが近似しており、LTE-A端末2のCSI(Master)とLTE端末3のCSI(Master)とが近似していない。そこで、接続基地局100は、LTE-A端末1を選択する。
 次に、接続基地局100は、選択したLTE-A端末1、における協調基地局200との間のCSI(Slave)を、LTE端末3における協調基地局200との間のCSI(Slave)として設定する。
 つまり、接続基地局100は、接続基地局100において、LTE端末3のチャネル状態と同程度のチャネル状態であるLTE-A端末1における協調基地局200との間のCSI(Slave)を、LTE端末3における協調基地局200との間のCSI(Slave)として用いる。
 以上、接続基地局100におけるCSI推定処理について説明した。
 [協調送信制御の決定処理]
 次に、ST105の処理である、接続基地局100の協調送信制御決定部105における協調送信制御処理の詳細について説明する。
 図6は、接続基地局100における協調送信制御処理の一例についての説明に供する図である。
 接続基地局100は、LTE-A端末1のCSI(Slave)を用いて推定したLTE端末3のCSI推定値(Slave)の推定精度を評価する。そして、接続基地局100は、例えば、図6に示すように評価結果(1)~(3)に基づいて協調送信制御処理を決定する。
 図6に示すように、評価結果に対して、送信制御処理が対応付けている。なお、CSIに含まれるCQIには、周波数帯域全体のチャネル品質を表す「Wideband CQI」と、周波数帯域全体を分割して得られる複数のサブバンド毎のチャネル品質を表す「Subband CQI」とが含まれる。また、CSIに含まれるPMIには、周波数帯域全体における位相情報を表す「Wideband PMI」と、複数のサブバンド毎の位相情報を表す「Subband PMI」とが含まれる。
 例えば、AMC制御は、Wideband CQI又はSubband CQIを用いて制御可能な送信制御処理である。また、周波数スケジューリングは、Subband CQIを用いて制御可能な送信制御処理である。また、ビーム制御は、Wideband PMI又はSubband PMIを用いて制御可能な送信制御処理である。
 図6に示すように、評価結果(1)に対してCSIの推定精度は◎、評価結果(2)又は(3)に対してCSIの推定精度は○、評価結果(4)に対してCSIの精度は×であり、この順に、CSIの推定精度が良い。そこで、接続基地局100は、得られた評価結果のうちCSI推定精度が最も高い評価結果に対応する送信制御処理の実施を決定する。
 具体的には、接続基地局100は、LTE端末3のCSI(Master)に含まれるCQI/PMIと、LTE-A端末1のCSI(Master)に含まれるCQI/PMIと、が略等しいか否かを判断する。例えば、接続基地局100は、LTE端末3のCQIの値と、LTE-A端末1の接続基地局100に対応するCQIの値との差分が閾値以下の場合、CQIが略等しいと判断する(CQI評価:OK)。
 また、接続基地局100は、LTE端末3のPMIの値と、LTE-A端末1の接続基地局100に対応するPMIの値とが一致する場合、PMIが略等しいと判断する(PMI評価:OK)。
 評価結果(1)は、CQI評価、PMI評価ともOKの場合であり、LTE端末3のCSI推定値(Slave)として用いたCSIにおけるCQI及びPMIの双方の推定精度が良好であると評価される(CSI推定精度:◎)。接続基地局100は、CSI推定値(Slave)の全てのパラメータ(Wideband CQI、Subband CQI、Wideband PMI、Subband PMI)を用いて送信制御処理を実施する。
 すなわち、接続基地局100は、LTE端末3のCSI(Master)、及び、CSI推定値(Slave)を用いて、AMCのパラメータ、周波数スケジューリング及びビーム制御を行い、各送信制御に関する送信パラメータ(MCS、割当リソース、プリコーディングウェイトなど)を決定する。
 評価結果(2)は、PMI評価がNGであり、CQI評価がOKの場合であり、LTE端末3のCSI推定値(Slave)として用いたCSIにおけるCQIの推定精度が良好であると評価される(CSI推定精度:○)。接続基地局100は、CSI推定値(Slave)のうちCQI(Wideband CQI、Subband CQI)を用いて送信制御処理(AMC制御、周波数スケジューリング)を実施する。
 すなわち、接続基地局100は、LTE端末3のCSI(Master)、及び、CSI推定値(Slave)を用いて、AMCのパラメータ及び周波数スケジューリングを行い、各送信制御に関する送信パラメータ(MCS、割当リソースなど)を決定する。
 評価結果(3)は、CQI評価がNGであり、PMI評価がOKの場合であり、LTE端末3のCSI推定値(Slave)として用いたCSIにおけるPMIの推定精度が良好であると評価される(CSI推定精度:○)。接続基地局100は、CSI推定値(Slave)のうちPMI(Wideband PMI、Subband PMI)を用いて送信制御処理(ビーム制御)を実施する。
 すなわち、接続基地局100は、LTE端末3のCSI(Master)、及び、CSI推定値(Slave)を用いてビーム制御を行い、ビーム制御に関する送信パラメータ(プリコーディングウェイトなど)を実施する。
 評価結果が、評価結果(1)~(3)の何れにも該当しない評価結果(4)の場合は、LTE端末3のCSI推定値(Slave)として用いたCSIにおけるCQI及びPMIの双方の推定精度が劣悪であると評価される(CSI推定精度:×)。接続基地局100は、CSI推定値(Slave)を用いた送信制御を行わない。
 なお、送信制御処理として、CQIを用いた送信制御処理の一例としてAMC制御及び周波数スケジューリングを挙げ、PMIを用いた送信制御処理の一例としてビーム制御を挙げたが、これらに限定されず、CQI及びPMIを用いて制御可能な送信制御処理であればよい。
 以上、接続基地局100における協調送信制御の決定処理について説明した。
 このように、本実施の形態では、接続基地局100は、LTE-A端末1、2のうち、各々のCSI(Master)とLTE端末3のCSI(Master)とが最も近いLTE-A端末に対応するCSI(Slave)を、協調基地局200とLTE端末3との間のCSI推定値(Slave)として設定する。そして、接続基地局100は、LTE端末3から報告されるCSI(Master)、及び、接続基地局100が推定したLTE端末3のCSI推定値(Slave)を用いて、協調送信制御の処理を決定する。
 すなわち、本実施の形態では、接続基地局100は、LTE端末3に近接するLTE-A端末1のCSIを、LTE端末3における協調基地局200に対するCSI推定値(Slave)として用いる。これにより、接続基地局100は、LTE端末3に対する接続基地局100及び協調基地局200の双方のCSI(Master、Slave)を用いてCoMP送信制御を最適化することができる。
 また、接続基地局100は、LTE-A端末1、2からのCSI(Master、Slave)を用いて、LTE端末3のCSI(Slave)を推定するので、LTE端末3から、従来と同様にして接続基地局100に対するCSI(Master)のみを取得すればよい。すなわち、LTE端末3は、従来と同様の処理を行えばよく、CoMP送信を適用するための新たな機能を備える必要は無い。
 また、接続基地局100は、LTE-A端末1、2及びLTE端末3の各々から送信されるCSIを同時に取得するので、LTE端末3から報告される接続基地局100に対するCSI(Master)、及び、接続基地局100が推定するCSI(Slave)を同時に、例えば同一サブフレーム内で取得することができ、CoMP送信をLTE-A端末1、2と同様に適用できる。
 よって、本実施の形態によれば、LTE端末3の機能を拡張することなく、LTE端末3に対してもLTE-A端末1、2と同様にしてCoMP送信を適用することができる。
 更に、本実施の形態によれば、接続基地局100は、CSI推定値(Slave)の推定精度を評価し、評価結果に基づいて、実施する送信制御処理を決定する。これにより、接続基地局100は、CSI推定値(Slave)の推定精度に応じた送信制御の実施が可能となり、CoMP送信制御を最適化することができる。
 [実施の形態2]
 [通信システムの概要]
 実施の形態1では、CoMP適用端末の周辺に存在するLTE-A端末のCSIを利用する場合について説明した。これに対して、本実施の形態では、CoMP適用端末の周辺にLTE-A端末が存在せずに、LTE端末のみが存在する場合について説明する。
 図7は、本実施の形態に係る通信システムの構成例を示す。図7に示す通信システム20では、接続基地局300及び協調基地局400が1つのCoMP適用端末に対してCoMP送信を行う。本実施の形態では、CoMP適用端末がLTE端末である場合について説明する。
 また、本実施の形態では、一例として、CoMP適用端末であるLTE端末6が接続基地局300に接続され、LTE端末4,5が協調基地局400に接続されているものとする。また、LTE端末6及びLTE端末4は、接続基地局100及び協調基地局200の双方のセルが重複するエリアであるセルエッジに位置する。
 また、接続基地局300は、LTE端末6に対してCRSを送信し、協調基地局400は、LTE端末4、5に対して、CRSを送信する。
 よって、接続基地局300に接続しているLTE端末6は、接続基地局300から送信されるCRSを用いて、接続基地局300とLTE端末6との間のCSIを測定し、報告できるが、協調基地局400とLTE端末6との間のCSIを測定できず、報告できない。
 [接続基地局300及び協調基地局400の構成]
 図8は、本実施の形態に係る接続基地局300及び協調基地局400の構成の一例を示すブロック図である。なお、図8において、実施の形態1で説明した図3と同一の動作を行う構成には同一符号を付し、その説明を省略する。
 図8に示すように、接続基地局300は、アンテナ101、受信処理部102、判定部103、CSI推定部301、協調送信制御決定部302、協調送信制御部106と送信処理部107を含む。
 CSI推定部301は、LTE端末6のCSI(Slave)が存在しない場合、協調基地局400の後述するCSI推定部402に対して、LTE端末6のCSI(Slave)の推定を図示しない通信ネットワークを介して指示する。また、CSI推定部301は、LTE端末6のRSRP(Master、Slave)及びCSI(Master)を協調送信制御決定部302に出力する。
 協調送信制御決定部302は、CSI推定部301から受け取るLTE端末6のRSRP(Master、Slave)、CSI(Master)、及び、協調基地局400の後述するCSI推定部402から受け取るCSI推定値(Slave)及びCSI推定に利用したLTE端末のRSRP(Master、Slave)を用いて、協調送信に用いる送信パラメータを決定する。協調送信制御決定部302における協調送信の制御処理、すなわち、送信パラメータの決定処理の詳細については後述する。
 図8に示すように、協調基地局400は、協調送信制御部201、送信処理部202、アンテナ203、受信処理部401、及び、CSI推定部402を含む。
 受信処理部401は、アンテナ203を介して受信した信号に対して受信処理、例えば、A/D変換、ダウンコンバートなどを施し、受信処理後の信号をCSI推定部402へ出力する。受信信号には、協調基地局400に接続されたLTE端末4、5から送信される情報が含まれる。例えば、LTE端末4、5から送信される情報として、LTE端末4、5において接続基地局300及び協調基地局400の各々から送信されたCRSを用いて測定されたCSI(Slave)及び参照信号を用いて測定された受信信号電力(RSRP(Master、Slave))が含まれる。
 CSI推定部402は、受信処理部401から受け取るLTE端末4、5のCSI(Slave)及びRSRP(Master、Slave)を用いて、LTE端末6のCSI(Slave)を推定する。CSI推定部402は、CSI推定値(Slave)、及び、CSI推定に利用したLTE端末のRSRP(Master、Slave)を接続基地局300の協調送信制御決定部302に送信する。なお、CSI推定部402におけるCSI推定処理の詳細については後述する。
 [接続基地局300及び協調基地局400の動作]
 次に、上述した接続基地局300及び協調基地局400の動作について説明する。
 図9は、図7に示す通信システム20の各装置におけるCoMP送信時の動作を示すシーケンス図である。なお、図9において、図4と同一の動作には同一符号を付し、その動作の説明を省略する。
 図9において、ST102では接続基地局300がLTE端末6に対してCoMP送信を適用すると判定したものとする。
 ST201では、接続基地局300は、協調基地局400に対して、CSI(Slave)の推定指示を送信する。
 ST202では、協調基地局400に接続しているLTE端末4、5は、接続基地局100及び協調基地局200から送信された参照信号を用いて測定したRSRP(Master、Slave)及びCRSを用いて測定したCSI(Slave)を、協調基地局400へ報告する。
 ST203では、協調基地局400は、ST201においてCSI推定指示を受け取ると、ST202で取得したLTE端末4、5のRSRP(Master、Slave)を用いて、LTE端末6の協調基地局400に対するCSI(Slave)を推定する。
 ST204では、協調基地局400は、ST203において推定したCSI値(Slave)及びCSI推定に利用したLTE端末のRSRP(Master、Slave)を接続基地局300へ送信する。
 ST205では、接続基地局300は、ST101で取得したLTE端末6のCSI(Master)、RSRP(Master、Slave)、及び、ST204で取得したCSI(Slave)、RSRP(Master、Slave)を用いて、LTE端末6に対するCoMP送信に用いる送信パラメータを決定する。
 [CSI推定処理]
 次に、ST203の処理である、協調基地局400のCSI推定部402におけるCSI推定処理の詳細について説明する。
 図10は、協調基地局400におけるCSI推定処理の説明に供する図である。
 図10に示すように、協調基地局400は、協調基地局400に接続しているLTE端末4、5の各々における接続基地局300に対するRSRP(Master)と協調基地局400に対するRSRP(Slave)との比(以下、RSRP比と呼ぶ)を算出する。
 ここで、図7に示すように、LTE端末4は、LTE端末6と同様に、接続基地局300及び協調基地局400の双方のセルエッジに位置する。このため、LTE端末4では、接続基地局300から送信される参照信号、及び、協調基地局400から送信される参照信号は、略同じレベルにて受信される。すなわち、LTE端末4において算出されるRSRP比は、1に近い値となる。
 一方、図7に示すように、LTE端末5は、接続基地局300のセルの範囲外であって、協調基地局400のセル内に位置する。このため、LTE端末5では、協調基地局400から送信される参照信号の受信レベルは、接続基地局300から送信される参照信号と比較して非常に高い。すなわち、LTE端末5において算出されるRSRP比は、1よりも非常に小さい値となる。
 協調基地局400は、算出したRSRP比が1に近いLTE端末4を選択する。そして、協調基地局400は、選択したLTE端末4における協調基地局400との間のCSI(Slave)を、LTE端末6における協調基地局400との間のCSI(Slave)として設定する。
 このようにして、協調基地局400は、RSRP比が1に近い値となるLTE端末4を、LTE端末6と同様の接続基地局300及び協調基地局400の双方のセルエッジに位置する端末であると推定し、LTE端末4のCSI(Slave)を、LTE端末6のCSI推定値(Slave)として設定する。
 なお、接続基地局300は、協調基地局400に対するCSI推定指示にLTE端末6のRSRP(Master、Slave)を含めてもよい。この場合、協調基地局400は、LTE端末6におけるRSRP比と、LTE端末4、5におけるRSRP比とを比較してもよい。すなわち、協調基地局400は、算出したRSRP比がLTE端末6におけるRSRP比に近いLTE端末4を選択する。こうすることで、協調基地局400は、LTE端末6とより近い環境のLTE端末を特定することができる。
 すなわち、協調基地局400のCSI推定部402は、LTE端末4、5のうち、RSRP比が所定の範囲内であるLTE端末4に対応するCSIを、協調基地局400とLTE端末6のCSI推定値(Slave)として設定すればよい。ここで、所定の範囲内としては、例えば、(1±閾値)、又は、(CoMP適用端末のRSRP比±閾値)などが設定される。
 また、例えば、協調基地局400は、CSI推定に利用するLTE端末として、RSRP比が1又はLTE端末6のRSRP比に最も近いLTE端末を1台選択してもよい。又は、協調基地局400は、LTE端末4、5のうち、RSRP比が所定の範囲内(閾値以内)である端末のCSIの平均値に対応するLTE端末を1台選択してもよい。
 また、LTE端末4、5にGPS(Global Positioning system)機能が搭載されている場合、協調基地局400は、LTE端末4、5の位置情報を取得し、LTE端末6の位置により近いLTE端末を選択してもよい。
 以上、協調基地局400におけるCSI推定処理について説明した。
 [協調送信制御の決定処理]
 次に、ST205の処理である、接続基地局300の協調送信制御決定部302における協調送信制御処理の詳細について説明する。
 図11は、接続基地局300における協調送信制御処理の一例についての説明に供する図である。
 接続基地局300は、LTE端末4のCSI(Slave)を用いて推定したLTE端末6のCSI推定値(Slave)の推定精度を評価する。そして、接続基地局300は、例えば、図11に示すように評価結果(5)、(6)に基づいて協調送信制御処理を決定する。
 接続基地局300は、LTE端末6のRSRP、及び、CSIの推定に用いられたLTE端末4のRSRPを用いて、CSI推定値(Slave)の推定精度を評価する。
 具体的には、接続基地局100は、LTE端末6におけるRSRP(Master)とRSRP(Slave)との比(RSRP比)と、CSI推定に用いられたLTE端末4におけるRSRP比と、が略等しいか否かを判断する。
 例えば、接続基地局300は、LTE端末6とLTE端末4との間のRSRP比の差分が閾値以下である場合にRSRP比が略等しいと判断する。または、接続基地局300は、LTE端末4のRSRP比と‘1’との差分が閾値以下の場合に、LTE端末6とLTE端末4とのRSRP比が略等しいと判断してもよい。
 RSRPが同程度、つまり、端末における受信信号電力のレベルが同程度の場合には、周波数帯域全体の受信品質(Wideband CQIに相当)が同程度であると言える。つまり、評価結果(5)は、RSRPが同程度、つまり、端末における受信信号電力のレベルが同程度の場合であり、LTE端末6のCSI推定値(Slave)として用いたCSIにおいてWideband CQIの推定精度が良好であると評価される。接続基地局300は、CSI推定値(Slave)のパラメータうちWideband CQIを用いて送信制御処理(AMC制御)を実施する。
 評価結果が、評価結果(5)に該当しない評価結果(6)の場合は、LTE端末6のCSI推定値(Slave)として用いたCSIにおいてWideband CQIの推定精度が劣悪であると評価される(CSI推定精度:×)。接続基地局300は、CSI推定値(Slave)を用いた送信制御を行わない。
 以上、接続基地局300における協調送信制御の決定処理について説明した。
 このように、本実施の形態では、接続基地局300は、協調基地局400に対してLTE端末6のCSI(Slave)の推定を指示する。そして、協調基地局400は、接続されているLTE端末4、5のうち、RSRP比が1に近いLTE端末に対応するCSI(Slave)を、協調基地局400とLTE端末6との間のCSI推定値(Slave)として設定する。そして、接続基地局300は、LTE端末6から報告されるCSI(Master)、及び、協調基地局400が推定したLTE端末6のCSI推定値(Slave)を用いて、協調送信制御の処理を決定する。
 すなわち、本実施の形態では、接続基地局300は、LTE端末6に近接するLTE端末4のCSIを、LTE端末6における協調基地局400に対するCSI推定値(Slave)として用いる。これにより、接続基地局300は、LTE端末6に対する接続基地局300及び協調基地局400の双方のCSI(Master、Slave)を用いてCoMP送信制御を最適化することができる。
 また、接続基地局300は、LTE端末6以外の他のLTE端末4、5に対するCSI(Slave)を用いて、LTE端末6のCSI(Slave)を推定するので、LTE端末6から、従来と同様にして接続基地局100に対するCSI(Master)のみを取得すればよい。すなわち、LTE端末6は、従来と同様の処理を行えばよく、CoMP送信を適用するための新たな機能を備える必要は無い。
 よって、本実施の形態によれば、LTE端末6の機能を拡張することなく、LTE端末6に対してもLTE-A端末と同様にしてCoMP送信を適用することができる。
 以上、本開示の一態様に係る各実施の形態について説明した。
 なお、本開示の一態様では、上述したように、LTE端末とLTE-A端末とが混在する場合が想定される。このため、本開示の一態様では、実施の形態1と実施の形態2の動作を組み合わせてもよい。例えば、接続基地局(100,300)及び協調基地局(200,400)は、LTE端末(3、6)の周辺にLTE-A端末(1,2)が存在する場合には実施の形態1を適用し、LTE端末(3、6)の周辺にLTE端末(4、5)のみが存在する場合には実施の形態2を適用してもよい。
 また、実施の形態2では、接続基地局300の協調送信制御決定部302において、LTE端末4から推定されたCSI(Slave)についてRSRP比を用いて評価する場合について説明した。しかし、RSRP比を用いた評価を、実施の形態1におけるLTE-A端末1から推定されたCSI(Slave)についての評価に適用してもよい。すなわち、図6に示す評価結果(1)~(4)に対して、図11に示す評価結果(5),(6)を追加してもよい。これにより、例えば、図6に示す評価結果(1)~(3)の何れにも該当しない場合でも、図11に示す評価結果(5)に該当する場合には、AMC制御が適用される。
 また、上記各実施の形態では、本開示の一態様に係る発明をハードウェアで構成する場合を例にとって説明したが、本開示の一態様に係る発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSI(Large Scale Integration)として実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programable Gate Array)又は、LSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の一態様に係る発明は、CoMP送信を行う通信システムに好適である。
 1,2 LTE-A端末
 3,4,5,6 LTE端末
 10,20 通信システム
 100,300 接続基地局
 101,203 アンテナ
 102,401 受信処理部
 103 判定部
 104,301,402 CSI推定部
 105,302 協調送信制御決定部
 106,201 協調送信制御部
 107,202 送信処理部
 200,400 協調基地局

Claims (7)

  1.  第1の端末に対して、協調基地局と協調してデータを送信し、前記協調基地局に対して協調送信に用いる送信パラメータを指示する接続基地局として機能する基地局であって、
     前記第1の端末から、前記接続基地局と前記第1の端末との間の第1のCSI(Channel State Information:チャンネル状態情報)を受信し、前記第1の端末以外の少なくとも1つの第2の端末の各々から、前記接続基地局と前記少なくとも1つの第2の端末の各々との間の第2のCSI、及び、前記協調基地局と前記少なくとも1つの第2の端末の各々との間の第3のCSIを受信する受信部と、
     前記少なくとも1つの第2の端末のうち、前記第1のCSIと前記第2のCSIとが最も近い端末に対応する前記第3のCSIを、前記協調基地局と前記第1の端末との間のCSIの推定値として設定する推定部と、
     前記第1のCSI及び前記推定値を用いて、前記送信パラメータを決定する決定部と、
     を具備する基地局。
  2.  前記第1のCSI及び前記第2のCSIはチャネル品質を表すCQI(Channel Quality Indicator)を含み、
     前記決定部は、前記第1のCSIのCQIと、前記推定値として設定された前記第2のCSIのCQIとが略等しい場合、前記第1のCSIのCQI及び前記第2のCSIのCQIを用いてAMC(Adaptive Modulation and Coding:適応変調符号化)制御又は周波数スケジューリングを行い、前記送信パラメータとしてAMC制御又は周波数スケジューリングの結果を前記送信パラメータとする、
     請求項1に記載の基地局。
  3.  前記第1のCSI及び前記第2のCSIはチャネルの位相情報を表すPMI(Precoding Matrix Indicator)を含み、
     前記決定部は、前記第1のCSIのPMIと、前記推定値として設定された前記第2のCSIのPMIとが一致する場合、前記第1のCSIのPMIと前記第2のCSIのPMIを用いてビーム制御を行い、ビーム制御の結果を前記送信パラメータとする、
     請求項1に記載の基地局。
  4.  前記第1の端末はLTEシステムに対応する端末であり、前記少なくとも1つの第2の端末はLTE-Advancedシステムに対応する端末である、
     請求項1に記載の基地局。
  5.  第1の端末に対して、接続基地局と協調してデータを送信し、前記接続基地局から協調送信に用いる送信パラメータを受信する協調基地局として機能する基地局であって、
     前記第1の端末以外の少なくとも1つの第2の端末の各々から、前記協調基地局と前記少なくとも1つの第2の端末の各々との間のCSI(Channel State Information:チャネル状態情報)、及び、前記少なくとも1つの第2の端末の各々における前記接続基地局から送信された参照信号の受信電力を示す第1のRSRP(Reference Signal Received Power)、及び、前記少なくとも1つの第2の端末の各々における前記協調基地局から送信された参照信号の受信電力を示す第2のRSRPを受信する受信部と、
     前記少なくとも1つの第2の端末のうち、前記第1のRSRPと前記第2のRSRPとの比が所定の範囲内である端末に対応する前記CSIを、前記協調基地局と前記第1の端末との間のCSIの推定値として設定し、前記設定されたCSIを前記接続基地局へ通知する推定部と、
     を具備する基地局。
  6.  第1の端末に対して、協調基地局と協調してデータを送信し、前記協調基地局に対して協調送信に用いる送信パラメータを指示する接続基地局として機能する基地局における送信制御方法であって、
     前記第1の端末から、前記接続基地局と前記第1の端末との間の第1のCSI(Channel State Information:チャネル状態情報)を受信し、前記第1の端末以外の少なくとも1つの第2の端末の各々から、前記接続基地局と前記少なくとも1つの第2の端末の各々との間の第2のCSI、及び、前記協調基地局と前記少なくとも1つの第2の端末の各々との間の第3のCSIを受信し、
     前記少なくとも1つの第2の端末のうち、前記第1のCSIと前記第2のCSIとが最も近い端末に対応する前記第3のCSIを、前記協調基地局と前記第1の端末との間のCSIの推定値として設定し、
     前記第1のCSI及び前記推定値を用いて、前記送信パラメータを決定する、
     送信制御方法。
  7.  第1の端末に対して、接続基地局と協調してデータを送信し、前記接続基地局から協調送信に用いる送信パラメータを受信する協調基地局として機能する基地局における送信制御方法であって、
     前記第1の端末以外の少なくとも1つの第2の端末の各々から、前記協調基地局と前記少なくとも1つの第2の端末の各々との間のCSI(Channel State Information:チャネル状態情報)、及び、前記少なくとも1つの第2の端末の各々における前記接続基地局から送信された参照信号の受信電力を示す第1のRSRP(Reference Signal Received Power)、及び、前記少なくとも1つの第2の端末の各々における前記協調基地局から送信された参照信号の受信電力を示す第2のRSRPを受信し、
     前記少なくとも1つの第2の端末のうち、前記第1のRSRPと前記第2のRSRPとの比が所定の範囲内である端末に対応する前記CSIを、前記協調基地局と前記第1の端末との間のCSIの推定値として設定し、
     前記設定されたCSIを前記接続基地局へ通知する、
     送信制御方法。
PCT/JP2016/000177 2015-02-26 2016-01-15 基地局及び送信制御方法 WO2016136124A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/505,062 US10412713B2 (en) 2015-02-26 2016-01-15 Base station and transmission control method using terminal and coordination-providing base station channel quality information
US16/525,237 US11057869B2 (en) 2015-02-26 2019-07-29 Base station and transmission control method using terminal and coordination-providing base station channel quality information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036502A JP6369756B2 (ja) 2015-02-26 2015-02-26 基地局及び送信制御方法
JP2015-036502 2015-02-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/505,062 A-371-Of-International US10412713B2 (en) 2015-02-26 2016-01-15 Base station and transmission control method using terminal and coordination-providing base station channel quality information
US16/525,237 Division US11057869B2 (en) 2015-02-26 2019-07-29 Base station and transmission control method using terminal and coordination-providing base station channel quality information

Publications (1)

Publication Number Publication Date
WO2016136124A1 true WO2016136124A1 (ja) 2016-09-01

Family

ID=56788085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000177 WO2016136124A1 (ja) 2015-02-26 2016-01-15 基地局及び送信制御方法

Country Status (3)

Country Link
US (2) US10412713B2 (ja)
JP (1) JP6369756B2 (ja)
WO (1) WO2016136124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003298A1 (ja) * 2017-06-27 2019-01-03 三菱電機株式会社 下位無線基地局、上位無線基地局および無線基地局システム
WO2023153354A1 (ja) * 2022-02-14 2023-08-17 Kddi株式会社 複数の搬送波を使用する通信の効率を向上させるための、ネットワークノード、制御方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203964A1 (en) * 2018-04-17 2019-10-24 Kyocera Corporation Robust relaying information transmitted to origination device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189111B2 (ja) * 2010-01-07 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線通信システム及び無線通信方法
JP2014093650A (ja) * 2012-11-02 2014-05-19 Ntt Docomo Inc 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP2014140237A (ja) * 2014-03-27 2014-07-31 Ntt Docomo Inc 移動通信システム及び基地局装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210278B2 (ja) 2009-10-05 2013-06-12 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置及び無線通信方法
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9094855B2 (en) * 2012-05-30 2015-07-28 Intel Corporation Measurement of nodes in coordinated multipoint (CoMP) systems
JP5743965B2 (ja) * 2012-06-26 2015-07-01 株式会社Nttドコモ ユーザ端末、無線通信システム、無線通信方法及び無線基地局
US20150318966A1 (en) * 2012-12-05 2015-11-05 Nec Corporation Radio communication system and communication control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189111B2 (ja) * 2010-01-07 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線通信システム及び無線通信方法
JP2014093650A (ja) * 2012-11-02 2014-05-19 Ntt Docomo Inc 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP2014140237A (ja) * 2014-03-27 2014-07-31 Ntt Docomo Inc 移動通信システム及び基地局装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on CQI definition for CoMP systems", 3GPP TSG-RAN WG1#68 R1- 120200, 10 February 2012 (2012-02-10), pages 1 - 2, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_68/Docs/R1-120200.zip> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003298A1 (ja) * 2017-06-27 2019-01-03 三菱電機株式会社 下位無線基地局、上位無線基地局および無線基地局システム
JPWO2019003298A1 (ja) * 2017-06-27 2019-12-19 三菱電機株式会社 下位無線基地局、上位無線基地局および無線基地局システム
KR20200003212A (ko) * 2017-06-27 2020-01-08 미쓰비시덴키 가부시키가이샤 하위 무선 기지국, 상위 무선 기지국 및 무선 기지국 시스템
KR102105298B1 (ko) 2017-06-27 2020-04-28 미쓰비시덴키 가부시키가이샤 하위 무선 기지국, 상위 무선 기지국 및 무선 기지국 시스템
WO2023153354A1 (ja) * 2022-02-14 2023-08-17 Kddi株式会社 複数の搬送波を使用する通信の効率を向上させるための、ネットワークノード、制御方法、及びプログラム

Also Published As

Publication number Publication date
US20170280431A1 (en) 2017-09-28
US11057869B2 (en) 2021-07-06
JP6369756B2 (ja) 2018-08-08
JP2016158214A (ja) 2016-09-01
US10412713B2 (en) 2019-09-10
US20190357195A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018126887A1 (zh) 信道状态信息测量上报的配置方法及相关设备
US10951332B2 (en) Method and apparatus for coordinated multipoint (CoMP) communication using quasi-co-location
AU2019234146B2 (en) Beam reporting configuration for serving frequency measurements
US11405163B2 (en) Channel quality information reporting method, terminal device, and network device
JP6895528B2 (ja) 無線通信方法、端末装置及びネットワーク装置
JPWO2011126025A1 (ja) 基地局装置、移動局装置及び参照信号送信方法
US10034299B2 (en) Cooperating clusters in cellular communications systems
WO2018170691A1 (zh) 上行传输的方法、终端设备和网络设备
CN112188622A (zh) 一种协作传输方法及通信装置
US11057869B2 (en) Base station and transmission control method using terminal and coordination-providing base station channel quality information
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
AU2018436197B2 (en) Signal reporting method, terminal device and network device
CA3116599A1 (en) Method for determining transmission mode in sidelink, terminal apparatus, and network apparatus
CN114070528B (zh) 一种信号传输方法、装置及存储介质
EP3925257B1 (en) Methods and devices for inter-cell interference estimation
EP3668160B1 (en) Signal reporting method and terminal device
US11979212B2 (en) Method and apparatus for determining channel state information
CN117042173A (zh) 资源选择方法、设备、装置及存储介质
CN118283731A (zh) 连续条件小区接入方法、装置及存储介质
CN117641549A (zh) Sl-prs的功率控制方法、终端、网络侧设备、装置及存储介质
CN117202338A (zh) 定时提前值传输方法、装置及存储介质
CN116506963A (zh) 信息传输方法、装置及存储介质
CN112751647A (zh) 确定调制和编码方案的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15505062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754881

Country of ref document: EP

Kind code of ref document: A1