WO2016132935A1 - Contact combustion-type gas sensor - Google Patents

Contact combustion-type gas sensor Download PDF

Info

Publication number
WO2016132935A1
WO2016132935A1 PCT/JP2016/053576 JP2016053576W WO2016132935A1 WO 2016132935 A1 WO2016132935 A1 WO 2016132935A1 JP 2016053576 W JP2016053576 W JP 2016053576W WO 2016132935 A1 WO2016132935 A1 WO 2016132935A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
heater
reaction film
gas sensor
Prior art date
Application number
PCT/JP2016/053576
Other languages
French (fr)
Japanese (ja)
Inventor
服部 敦夫
Original Assignee
ヤマハファインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハファインテック株式会社 filed Critical ヤマハファインテック株式会社
Publication of WO2016132935A1 publication Critical patent/WO2016132935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to a technology for increasing the detection sensitivity of combustible gas and reducing power consumption in a contact combustion type gas sensor that detects combustible gas.
  • a catalytic combustion type gas sensor for combusting combustible gas using a catalyst and electrically detecting an increase in catalyst temperature due to combustion heat has been used.
  • a catalytic combustion type gas sensor for combusting combustible gas using a catalyst and electrically detecting an increase in catalyst temperature due to combustion heat.
  • the combustible gas is located near the catalyst layer that acts as a catalyst for combustion of combustible gas. It has been proposed to form a heater for promoting the combustion of the gas.
  • the present invention has been made in order to solve the above-described conventional problems, and in a contact combustion type gas sensor for detecting a combustible gas, a technique for increasing the detection sensitivity of the combustible gas and saving power.
  • the purpose is to provide.
  • a catalytic combustion type gas sensor of the present invention is a catalytic combustion type gas sensor for detecting a flammable gas, comprising a low thermal conduction part and a high thermal conduction part; on the low thermal conduction part; A reaction film heater formed; a gas reaction film including a carrier formed on the reaction film heater on the low heat conduction part and carrying a combustion catalyst for the combustible gas; and the gas reaction on the low heat conduction part.
  • silicon-based conductive materials have lower electrical conductivity and thermal conductivity than metals. For this reason, at least a part of the reaction film heater and the region on the low heat conduction part of the reaction film heater wiring are formed of a silicon-based conductive material. Accordingly, when the gas reaction membrane is heated by the reaction membrane heater to increase the gas detection sensitivity, the power for heating the reaction membrane heater is used more effectively for heating the gas reaction membrane, or the reaction membrane heater It is possible to suppress the heat generated in step 1 from being transmitted to the high heat conduction portion via the reaction film heater wiring. Therefore, it becomes easier to achieve high sensitivity and power saving of the gas sensor.
  • the reaction film heater may be formed in a flat plate shape using the silicon-based conductive material.
  • the resistance of the reaction film heater is made larger than that of the reaction film heater wiring, the amount of heat generated by the reaction film heater is sufficiently increased, and the heat generated in the reaction film heater wiring is increased. Can be suppressed. Therefore, the power for heating the reaction film heater can be used more effectively for heating the gas reaction film.
  • the width can be increased with respect to the length in the current direction. Thereby, it can suppress that resistance of a reaction film
  • the gas reaction film can be heated uniformly, so that the detection sensitivity and measurement reproducibility of the combustible gas can be further increased.
  • the reaction film heater may be formed of metal, and the reaction film heater wiring may be formed of the silicon-based conductive material. By forming the reaction film heater wiring from a silicon-based conductive material, it is possible to suppress the heat generated by the reaction film heater from being transferred to the high heat conduction portion via the reaction film heater wiring.
  • the temperature measuring element is configured by connecting a first thermoelectric element formed of the silicon-based conductive material and a second thermoelectric element formed of a conductive material different from the first thermoelectric element. It may be a hot contact point of the thermopile.
  • the present invention can be realized in various modes.
  • a gas sensor a sensor module using the gas sensor, a combustible gas detection device and a combustible gas detection system using the sensor module, a leak test device and a leak test system using the gas sensor, sensor module and combustible gas detection device, etc. It is realizable with the aspect of.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4A.
  • Sensor module: 1A and 1B are a cross-sectional view and a plan view showing a configuration of a catalytic combustion gas sensor module 10 (hereinafter also simply referred to as “sensor module 10”) according to the first embodiment of the present invention.
  • a sensor chip 100 is mounted in a package 19 including a case 11 and a cap 12.
  • the cap 12 is made of, for example, a sintered metal such as stainless steel or brass, a wire mesh made of stainless steel, or porous ceramics.
  • the sensor chip 100 is fixed to the case 11 by bonding the substrate 110 provided with the cavity 119 to the case 11 with the die bonding material 15.
  • FIG. 1B shows a state where the sensor chip 100 fixed to the case 11 is viewed from above.
  • 1B is a cutting line indicating the position of the cross section shown in FIG. 1A.
  • alternate long and short dash lines C1 and C2 are center lines indicating the center position of the sensor chip 100.
  • bonding pads P11 to P15 with exposed conductive films are formed on the upper surface of the sensor chip 100. By connecting the bonding pads P11 to P15 and the terminal 14 connected to the external electrode 13 of the case 11 with a wire 16, the sensor chip 100 and the external circuit can be connected.
  • a gas reaction film 191 for catalytically burning a combustible gas and a reference film 192 for comparison are provided on the upper surface of the sensor chip 100.
  • the combustible gas passes through the cap 12 and reaches the sensor chip 100, the combustible gas is catalytically combusted in the gas reaction film 191, and an amount of heat corresponding to the concentration of the combustible gas is generated. Therefore, the temperature of the gas reaction membrane 191 increases according to the concentration of the combustible gas.
  • the reference film 192 does not increase in temperature due to catalytic combustion.
  • the temperature difference between the gas reaction film 191 that rises in temperature by catalytic combustion of the combustible gas and the reference film 192 that does not rise in temperature due to the combustible gas is obtained, so that the combustible gas in the atmosphere is obtained. Concentration can be measured.
  • the sensor chip 100 since the sensor chip 100 has a function of detecting gas in the sensor module 10, it can be said that the sensor chip 100 is a gas sensor itself. Therefore, hereinafter, the sensor chip 100 is simply referred to as “gas sensor 100”.
  • Gas sensor: 2A and 2B are diagrams illustrating the configuration of the gas sensor 100 according to the first embodiment.
  • 2A shows the gas sensor 100 as viewed from above
  • FIG. 2B shows a cross section of the gas sensor 100 taken along line AA in FIG. 2A.
  • the gas sensor 100 includes a substrate 110 provided with a cavity 119, an insulating film 120 formed on the upper surface of the substrate 110, and a mask film 101 formed on the lower surface of the substrate 110 and provided with an opening 109. Yes.
  • On the insulating film 120 a plurality of films (functional films) forming a structure (described later) for realizing a gas detection function are stacked.
  • the n-type semiconductor film 130, the first interlayer insulating film 140, the p-type semiconductor film 150, the second interlayer insulating film 160, the conductive film 170, and the protection are formed on the insulating film 120.
  • the film 180 and the gas reaction film 191 or the reference film 192 are laminated in this order.
  • the n-type and p-type semiconductor films 130 and 150, the first and second interlayer insulating films 140 and 160, the conductive film 170, and the protective film 180 are used as a method for manufacturing a semiconductor device. It can be formed using a known technique. Note that the insulating film 120, the mask film 101, and each functional film stacked on the insulating film 120 are appropriately added or omitted depending on the contents of the manufacturing process.
  • a silicon (Si) substrate having no cavity 119 is prepared.
  • the insulating film 120 is formed by depositing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and SiO 2 in this order on the upper surface of the prepared Si substrate.
  • a mask film (not shown) having no opening 109 is formed on the lower surface of the Si substrate by depositing SiO 2 and Si 3 N 4 in this order in accordance with the formation of the insulating film 120.
  • the insulating film 120 and the mask film may be a single layer film of silicon oxynitride (SiON) instead of a multilayer film of SiO 2 and Si 3 N 4 .
  • an n-type semiconductor film 130 is formed by depositing and patterning n-type polysilicon.
  • various semiconductors such as single crystal silicon, iron silicide (FeSi 2 ), silicon germanium (SiGe), or bismuth antimony (BiSb) may be used instead of polysilicon. good.
  • SiO 2 is formed to form a first interlayer insulating film (not shown) that is not patterned.
  • a p-type semiconductor film 150 is formed by depositing and patterning p-type polysilicon.
  • the p-type semiconductor film 150 can be formed using various semiconductors other than polysilicon. It is also possible to reverse the dope types of these two semiconductor films 130 and 150.
  • SiO 2 is formed, and the formed SiO 2 film and the unpatterned first interlayer insulating film are patterned, whereby the first interlayer insulating film 140 and the first interlayer insulating film 140 are formed.
  • Two interlayer insulating films 160 are formed.
  • a conductive film 170 is formed by depositing and patterning platinum (Pt).
  • Pt platinum
  • various metals such as tungsten (W), tantalum (Ta), gold (Au), copper (Cu), aluminum (Al), or Al alloy may be used instead of Pt. good.
  • an adhesion layer made of titanium (Ti) or chromium (Cr) may be formed on at least one surface of the conductive film 170.
  • the damascene method which is a high-cost and complicated process, is used for patterning, which may increase the manufacturing cost of the gas sensor.
  • the material of the conductive film 170 is appropriately selected in consideration of such characteristics.
  • the protective film 180 is formed by depositing and patterning SiO 2 . 2A and 2B, the protective film 180 has five openings 181 to 185 formed by patterning, and the conductive film 170 is exposed in these openings 181 to 185. .
  • a cavity 119 provided in the substrate 110 is formed.
  • an opening 109 is formed in the mask film formed on the lower surface side of the substrate.
  • the cavity 119 is formed by etching the substrate using the mask film 101 provided with the opening 109 as a mask. Etching can be performed by, for example, crystal anisotropic etching using an aqueous solution of tetramethylammonium hydroxide (TMAH) or potassium hydroxide (KOH).
  • TMAH tetramethylammonium hydroxide
  • KOH potassium hydroxide
  • the cavity 119 may be formed by dry etching such as a so-called Bosch process.
  • the membrane 121 with the insulating film 120 exposed on the back surface side is formed. Since the cavity 119 formed on the lower surface of the membrane 121 is difficult to transfer heat, it can be referred to as a low thermal conduction portion. On the other hand, since the substrate 110 easily transfers heat to the outside of the gas sensor 100 such as the case 11 (FIG. 1A), it can be said to be a high thermal conductivity portion.
  • the cavity 119 is formed by etching the substrate from the lower surface side, but the cavity can also be formed by etching the substrate from the upper surface side.
  • a cavity can be formed by providing a through hole in the insulating film 120, the first and second interlayer insulating films 140 and 160, and the protective film 180 and etching the substrate through the through hole. .
  • the gas sensor can be manufactured only by processing from the upper surface side of the substrate, and the remaining portion of the substrate can be increased compared to the case where the remaining portion is etched from the lower surface side.
  • etching the substrate from the upper surface side in that the manufacturing process of the gas sensor can be simplified to increase the yield, and the strength of the substrate after etching can be further increased.
  • etching from the lower surface side of the substrate can form a cavity without providing a through hole in the insulating film 120, so that the strength of the through hole formed in the membrane is suppressed and the membrane is damaged. It is preferable at the point which can suppress.
  • the hollow portion is not necessarily provided in the substrate.
  • a cavity can be formed between the substrate 110 and the insulating film 120 or between the insulating film 120 and the n-type semiconductor film 130 and the first interlayer insulating film 140.
  • each functional film up to the protective film is formed as described above, and then the upper surface of the protective film is formed.
  • the through hole reaching the sacrificial film is provided, and the sacrificial film is removed through the through hole.
  • a resin such as polyimide or a semiconductor such as polysilicon can be used as a material for forming the sacrificial film.
  • a gas reaction film 191 and a reference film 192 are formed on the protective film 180 located above the cavity portion 119 (low thermal conductivity portion). Specifically, in a region where the gas reaction film 191 and the reference film 192 are formed, a paste containing alumina particles carrying Pt fine particles as a combustion catalyst, and a paste containing alumina particles not carrying a catalyst, respectively Apply.
  • the paste can be applied by using a dispenser coating technique or a screen printing technique.
  • the gas reaction film 191 and the reference film 192 are formed by baking.
  • the gas sensor 100 is obtained by forming the gas reaction film 191 and the reference film 192 on the protective film 180.
  • the combustion catalyst used for the gas reaction film 19 palladium (Pd) fine particles can be used instead of the Pt fine particles.
  • a metal oxide such as copper oxide (CuO) may be mixed in the paste for forming the reference film 192.
  • a combustion catalyst for example, Au ultrafine particles
  • Au ultrafine particles that selectively acts as a catalyst for a specific gas may be supported on the carrier included in the reference film 192. Even in this case, regarding the combustible gas other than the specific gas, it can be said that the combustion catalyst is not supported on the carrier of the reference film 192.
  • FIG. 3A and 3B are a plan view and a cross-sectional view showing a functional configuration of the gas sensor 100 according to the first embodiment.
  • FIG. 3A shows a state where the gas sensor 100 is viewed from the top, as in FIG. 2A.
  • FIG. 3B is an enlarged view of a region R1 surrounded by a two-dot chain line in FIG. 3A. 3A and 3B, for convenience of illustration, the protective film 180, the gas reaction film 191 and the reference film 192 are not hatched, and the entire conductive film 170 (FIGS. 2A and 2B) is shown on the surface. Show.
  • the hot junction connection line 171 constituting the hot junction is disposed under the gas reaction film 191 or the reference film 192.
  • the cold junction connection line 172 constituting the cold junction is disposed on the substrate 110. Therefore, the temperature of the gas reaction film 191 and the reference film 192 can be measured based on the substrate 110 or the case 11 (FIGS. 1A and 1B) having substantially the same temperature as the substrate 110.
  • the hot junctions of the thermopiles T11 to T14 can measure the temperatures of the gas reaction film 191 and the reference film 192, and can also be referred to as temperature measuring elements.
  • the hot junction is formed under the gas reaction film 191 or the reference film 192, respectively.
  • the heaters 132 and 133 are formed of the n-type semiconductor film 130 (FIGS. 2A and 2B), the resistance is made larger than the heater wirings 176 and 177 formed of the conductive film 170. be able to. Therefore, it is possible to sufficiently increase the amount of heat generated in the heaters 132 and 133 and to suppress heat generation in the heater wires 176 and 177. By suppressing heat generation in the heater wirings 176 and 177 in this manner, the power for heating the heaters 132 and 133 can be used more effectively for heating the gas reaction film 191 and the reference film 192. It is possible to save power.
  • the heaters 132 and 133 are formed by the n-type semiconductor film 130 made of polysilicon, the wirings 176, 177, and 178 formed by the conductive film 170 are widened to obtain a current density. Can be suppressed. Therefore, by using Al or an Al alloy as the material of the conductive film 170, it is possible to reduce the manufacturing cost of the gas sensor 100, reduce the size by miniaturization, and improve the accuracy and yield. Further, since the heater 130 is formed of the n-type semiconductor film 130 having a thermal expansion coefficient close to that of the membrane 121, even if pulse driving is performed in which current is intermittently supplied to the heaters 132 and 133, the heaters 132 and 133 and the membrane 121.
  • the membrane 121 is cracked due to the fluctuation of the film stress generated between the heater and the film, or the film peeling in which the heaters 132 and 133 are peeled off from the membrane 121 is suppressed. Therefore, it becomes easier to save power by performing pulse driving.
  • Second embodiment are diagrams showing the configuration of the gas sensor 200 in the second embodiment.
  • 4A shows the gas sensor 200 as viewed from above
  • FIG. 4B shows a cross section of the gas sensor 200 along the cutting line BB in FIG. 4A.
  • the gas sensor 200 according to the second embodiment is manufactured in the same manner as the gas sensor 100 according to the first embodiment.
  • the p-type semiconductor film 150 (FIGS. 2A and 2B) and the n-type semiconductor are changed in accordance with a change in functional configuration to be described later.
  • the interlayer insulating film 140 between the film 130 and the p-type semiconductor film 150 is omitted, and the cavity 219 is formed by a so-called Bosch process.
  • Other manufacturing steps are the same as those of the gas sensor 100 of the first embodiment.
  • a p-type semiconductor film may be used instead of the n-type semiconductor film 230.
  • FIG. 5A and 5B are diagrams illustrating a functional configuration of the gas sensor 200 according to the second embodiment.
  • FIG. 5A shows a state where the gas sensor 200 is viewed from above, as in FIG. 4A.
  • FIG. 5B is an enlarged view of a region R2 surrounded by a two-dot chain line in FIG. 5A. 5A and 5B, for convenience of illustration, the protective film 280, the gas reaction film 291 and the reference film 292 are not hatched, and the entire conductive film 270 (FIGS. 4A and 4B) appears on the surface. Show.
  • the gas sensor 200 in the second embodiment is different from the gas sensor 100 in the first embodiment in the following points.
  • the thermopile T21 to T24 includes an n-type thermoelectric element 231 and a metal thermoelectric element 279 formed on the n-type thermoelectric element 231.
  • the metal thermoelectric element 279 and the n-type thermoelectric element 231 stacked above and below are connected via a contact hole H21 formed in the interlayer insulating film 260 (FIGS. 4A and 4B).
  • the metal thermoelectric element 279 and the adjacent n-type thermoelectric element 231 are connected via a contact hole H22.
  • connection part between the metal thermoelectric element 279 and the n-type thermoelectric element 231 in the contact hole H21 functions as a hot junction
  • connection part between the metal thermoelectric element 279 and the n-type thermoelectric element 231 in the contact hole H22 serves as a cold junction.
  • the heaters MH ⁇ b> 1 and MH ⁇ b> 2 are formed in a narrow and narrow line shape, and a contact hole H ⁇ b> 26 is provided in the interlayer insulating film 260 at the end position.
  • a contact hole H ⁇ b> 26 is provided in the interlayer insulating film 260 at the end position.
  • Each of the heaters MH1 and MH2 is connected to the heater wires 234 and 235 through the contact hole H26.
  • One of the heater wires 234 and 235 is connected to the heater energizing electrode 275 through a contact hole H27 provided in the interlayer insulating film 260 above the heater energizing electrode 275.
  • the other heater wiring 235 includes a ground wiring 278 extending to a position substantially symmetrical with the heater energizing electrode 275 with respect to the central axis C2, and a contact hole H28 formed substantially symmetrical with the contact hole H27 with respect to the central axis C2. Connected through.
  • the contact hole H26 for connecting the heater wires 234 and 235 and the heaters MH1 and MH2 is disposed on the membrane 221, and the heater wires 234 and 235 and the heater energizing electrode 275 are provided.
  • contact holes H27 and H28 for connecting to the ground wiring 278 are arranged on the substrate 210 (FIGS. 4A and 4B). Therefore, the heater wires 234 and 235 are arranged so as to straddle the substrate 210 and the membrane 221.
  • the heater wires 234 and 235 that straddle the substrate 210 and the membrane 221 are formed of the n-type semiconductor film 230 having a lower thermal conductivity than the conductive film 270. Heat generated by catalytic combustion of the combustible gas in the gas reaction film 191 is suppressed from being transmitted to the substrate 210 via the heater wires 234 and 235. Therefore, it is possible to increase the amount of temperature increase accompanying catalytic combustion of the combustible gas, and to further increase the detection sensitivity of the combustible gas.
  • thermopiles T11 to T14 configured by connecting the n-type and p-type thermoelectric elements 131 and 151 by the hot junction connection line 171 and the cold junction connection line 172 are used.
  • thermopiles T21 to T24 configured by connecting to the n-type thermoelectric element 231 and the metal thermoelectric element 279 are used.
  • it is preferable that at least one of the two thermoelectric elements constituting the thermopile is formed of a semiconductor in that the thermoelectromotive force can be increased and the sensitivity of the gas sensor can be further increased.
  • the reference film including the carrier that does not carry the combustion catalyst is formed.
  • the formation of the reference film may be omitted.
  • the temperature measuring element of the compensation unit may be formed in the vicinity of the heater so as to measure the temperature of the heater whose temperature is close to the gas reaction film.
  • the heater of the compensation unit is formed in a region including the vicinity of the temperature measuring element of the compensation unit.
  • the reference film is formed in that the heat capacity of the region formed by each of the reference film and the gas reaction film can be made closer, and the decrease in the detection accuracy of the combustible gas due to the influence of the airflow and the like can be suppressed. Is preferred.

Abstract

This contact combustion-type gas sensor for detecting a flammable gas comprises a low-thermal conductivity part and a high-thermal conductivity part, a reaction film heater formed in the low-thermal conductivity part, and a gas detection unit which comprises: a gas reaction film which is formed in the low-thermal conductivity part, on the reaction film heater, and which contains a carrier carrying a combustion catalyst of the flammable gas; and a temperature measuring element formed in the low-thermal conductivity part, near the gas reaction film. In this contact combustion-type gas sensor, reaction film heater wiring for powering the reaction film heater extends from the high-thermal conductivity area to the reaction film heater, and at least part of the reaction film heater and the region of the reaction film heater wiring in the low-thermal conductivity part is formed from a silicon-based conductive material.

Description

接触燃焼式ガスセンサContact combustion type gas sensor
 この発明は、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くするとともに、省電力化を図る技術に関する。
 本願は、2015年2月17日に、日本に出願された特願2015-28729号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a technology for increasing the detection sensitivity of combustible gas and reducing power consumption in a contact combustion type gas sensor that detects combustible gas.
This application claims priority based on Japanese Patent Application No. 2015-28729 filed in Japan on February 17, 2015, the contents of which are incorporated herein by reference.
 従来より、水素等の可燃性ガスを検出するガスセンサとして、触媒を用いて可燃性ガスを燃焼させ、燃焼熱による触媒温度の上昇を電気的に検出する接触燃焼式ガスセンサが使用されてきている。このような接触燃焼式ガスセンサにおいては、種々のセンサと同様に、検出感度をより高くすることが常に求められており、様々な方法により高感度化が図られている。例えば、特許文献1では、低濃度の可燃性ガスや感度の低い可燃性ガスに対してガス検出感度を高めるため、可燃性ガスの燃焼に対して触媒として作用する触媒層の近傍に可燃性ガスの燃焼を促すためのヒータを形成することが提案されている。 Conventionally, as a gas sensor for detecting a combustible gas such as hydrogen, a catalytic combustion type gas sensor for combusting combustible gas using a catalyst and electrically detecting an increase in catalyst temperature due to combustion heat has been used. In such a catalytic combustion type gas sensor, as in various sensors, it is always required to increase detection sensitivity, and high sensitivity is achieved by various methods. For example, in Patent Document 1, in order to increase the gas detection sensitivity for low-concentration combustible gas or low-sensitivity combustible gas, the combustible gas is located near the catalyst layer that acts as a catalyst for combustion of combustible gas. It has been proposed to form a heater for promoting the combustion of the gas.
特開2001-99801号公報JP 2001-99801 A
 しかしながら、触媒層の近傍に可燃性ガスの燃焼を促すためのヒータを形成し、ガスの検出感度を高めるためには、ヒータに比較的大きな電力を供給する必要がある。そのため、接触燃焼式のガスセンサにおいて、可燃性ガスの検出感度を高くするとともに、省電力化を図ることは、必ずしも容易ではなかった。 However, in order to form a heater for promoting the combustion of the combustible gas in the vicinity of the catalyst layer and increase the gas detection sensitivity, it is necessary to supply a relatively large electric power to the heater. For this reason, it is not always easy to increase the detection sensitivity of combustible gas and to save power in the contact combustion type gas sensor.
 本発明は、上述した従来の課題を解決するためになされたものであり、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くするとともに、省電力化を図る技術を提供することを目的とする。 The present invention has been made in order to solve the above-described conventional problems, and in a contact combustion type gas sensor for detecting a combustible gas, a technique for increasing the detection sensitivity of the combustible gas and saving power. The purpose is to provide.
 上記課題の少なくとも一部を達成するために、本発明の接触燃焼式ガスセンサは、可燃性ガスを検出する接触燃焼式ガスセンサであって、低熱伝導部および高熱伝導部と;前記低熱伝導部上に形成された反応膜ヒータと、前記低熱伝導部上において前記反応膜ヒータの上に形成され前記可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、前記低熱伝導部上において前記ガス反応膜の近傍に形成された測温素子とを有するガス検出部と;前記高熱伝導部上から前記反応膜ヒータに延びて前記反応膜ヒータに通電するための反応膜ヒータ配線とを備え、前記反応膜ヒータと前記反応膜ヒータ配線の前記低熱伝導部上の領域との少なくとも一部は、シリコン系の導電材料で形成されている。 In order to achieve at least a part of the above problems, a catalytic combustion type gas sensor of the present invention is a catalytic combustion type gas sensor for detecting a flammable gas, comprising a low thermal conduction part and a high thermal conduction part; on the low thermal conduction part; A reaction film heater formed; a gas reaction film including a carrier formed on the reaction film heater on the low heat conduction part and carrying a combustion catalyst for the combustible gas; and the gas reaction on the low heat conduction part. A gas detection unit having a temperature measuring element formed in the vicinity of the film; and a reaction film heater wiring extending from above the high heat conduction unit to the reaction film heater to energize the reaction film heater, At least a part of the film heater and the region on the low thermal conduction portion of the reaction film heater wiring is formed of a silicon-based conductive material.
 一般的にシリコン系の導電材料は、金属と比較して電気伝導度および熱伝導度が低い。そのため、反応膜ヒータと、反応膜ヒータ配線の低熱伝導部上の領域との少なくとも一部をシリコン系の導電材料で形成している。これにより、反応膜ヒータによりガス反応膜を加熱してガスの検出感度を高める際において、反応膜ヒータの加熱のための電力をより有効にガス反応膜の加熱に使用し、あるいは、反応膜ヒータで発生した熱が反応膜ヒータ配線を介して高熱伝導部に伝達されるのを抑制することができる。したがって、ガスセンサの高感度化と省電力化を図ることがより容易となる。 Generally, silicon-based conductive materials have lower electrical conductivity and thermal conductivity than metals. For this reason, at least a part of the reaction film heater and the region on the low heat conduction part of the reaction film heater wiring are formed of a silicon-based conductive material. Accordingly, when the gas reaction membrane is heated by the reaction membrane heater to increase the gas detection sensitivity, the power for heating the reaction membrane heater is used more effectively for heating the gas reaction membrane, or the reaction membrane heater It is possible to suppress the heat generated in step 1 from being transmitted to the high heat conduction portion via the reaction film heater wiring. Therefore, it becomes easier to achieve high sensitivity and power saving of the gas sensor.
 前記反応膜ヒータは、前記シリコン系の導電材料により平板状に形成されても良い。反応膜ヒータをシリコン系の導電材料により形成することにより、反応膜ヒータの抵抗を反応膜ヒータ配線よりも大きくし、反応膜ヒータでの発熱量を十分に大きくするとともに、反応膜ヒータ配線における発熱を抑制することができる。そのため、反応膜ヒータの加熱のための電力をより有効にガス反応膜の加熱に使用することができる。また、反応膜ヒータを平板状とすることにより、電流方向の長さに対して幅を広くすることができる。これにより、反応膜ヒータの抵抗が過度に大きくなり、ヒータ電圧が過度に高くなることを抑制することができる。さらに、ヒータを平板状にすることにより、ガス反応膜を均一にむらなく加熱できるため、可燃性ガスの検出感度および測定再現性をより高くすることができる。 The reaction film heater may be formed in a flat plate shape using the silicon-based conductive material. By forming the reaction film heater from a silicon-based conductive material, the resistance of the reaction film heater is made larger than that of the reaction film heater wiring, the amount of heat generated by the reaction film heater is sufficiently increased, and the heat generated in the reaction film heater wiring is increased. Can be suppressed. Therefore, the power for heating the reaction film heater can be used more effectively for heating the gas reaction film. Further, by making the reaction film heater flat, the width can be increased with respect to the length in the current direction. Thereby, it can suppress that resistance of a reaction film | membrane heater becomes large too much, and heater voltage becomes high too much. Furthermore, by making the heater flat, the gas reaction film can be heated uniformly, so that the detection sensitivity and measurement reproducibility of the combustible gas can be further increased.
 前記反応膜ヒータは、金属により形成されても良く、前記反応膜ヒータ配線は、前記シリコン系の導電材料で形成されても良い。反応膜ヒータ配線をシリコン系の導電材料で形成することにより、反応膜ヒータで発生した熱が反応膜ヒータ配線を介して高熱伝導部に伝達されるのを抑制することができる。 The reaction film heater may be formed of metal, and the reaction film heater wiring may be formed of the silicon-based conductive material. By forming the reaction film heater wiring from a silicon-based conductive material, it is possible to suppress the heat generated by the reaction film heater from being transferred to the high heat conduction portion via the reaction film heater wiring.
 前記測温素子は、前記シリコン系の導電材料で形成された第1の熱電素子と、前記第1の熱電素子とは異なる導電材料で形成された第2の熱電素子とを接続することにより構成されたサーモパイルの温接点であっても良い。シリコン系の導電材料で第1の熱電素子を形成することにより、反応膜ヒータと反応膜ヒータ配線とのうちシリコン系の導電材料で形成される部分を第1の熱電素子と同時に形成することができるので、ガスセンサの製造工程を短縮することが可能となる。 The temperature measuring element is configured by connecting a first thermoelectric element formed of the silicon-based conductive material and a second thermoelectric element formed of a conductive material different from the first thermoelectric element. It may be a hot contact point of the thermopile. By forming the first thermoelectric element using a silicon-based conductive material, a portion of the reaction film heater and the reaction film heater wiring formed of the silicon-based conductive material can be formed simultaneously with the first thermoelectric element. As a result, the manufacturing process of the gas sensor can be shortened.
 本発明は、種々の態様で実現することが可能である。例えば、ガスセンサ、そのガスセンサを利用したセンサモジュール、そのセンサモジュールを使用した可燃ガス検出装置および可燃ガス検出システム、それらのガスセンサ、センサモジュールおよび可燃ガス検出装置を用いたリークテスト装置やリークテストシステム等の態様で実現することができる。 The present invention can be realized in various modes. For example, a gas sensor, a sensor module using the gas sensor, a combustible gas detection device and a combustible gas detection system using the sensor module, a leak test device and a leak test system using the gas sensor, sensor module and combustible gas detection device, etc. It is realizable with the aspect of.
本発明の第1実施形態のセンサモジュールを断面図。Sectional drawing of the sensor module of 1st Embodiment of this invention. 本発明の第1実施形態のセンサモジュールを示す平面図。The top view which shows the sensor module of 1st Embodiment of this invention. 第1実施形態のガスセンサを示す平面図。The top view which shows the gas sensor of 1st Embodiment. 図2AのA-A線における断面図。FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A. 第1実施形態のガスセンサにおける導電膜等の形状を示す平面図。The top view which shows the shape of the electrically conductive film etc. in the gas sensor of 1st Embodiment. 図3AのR1部の拡大図。The enlarged view of R1 part of FIG. 3A. 本発明の第2実施形態のガスセンサを示す平面図。The top view which shows the gas sensor of 2nd Embodiment of this invention. 図4AのB-B線における断面図。FIG. 4B is a sectional view taken along line BB in FIG. 4A. 第2実施形態のガスセンサにおける導電膜等の形状を示す平面図。The top view which shows the shape of the electrically conductive film etc. in the gas sensor of 2nd Embodiment. 図5AのR2部の拡大図。The enlarged view of R2 part of FIG. 5A.
A.第1実施形態:
A1.センサモジュール:
 図1Aおよび図1Bは、本発明の第1実施形態の接触燃焼式ガスセンサモジュール10(以下、単に「センサモジュール10」とも呼ぶ)の構成を示す断面図および平面図である。
 図1Aにおいて、第1実施形態のセンサモジュール10においては、センサチップ100が、ケース11とキャップ12とからなるパッケージ19内に実装されている。キャップ12は、例えば、ステンレス鋼や真鍮等の焼結金属、ステンレス鋼等からなる金網、あるいは、多孔質セラミックスで形成されている。これにより、パッケージ19内外の通気性が確保されるとともに、センサチップ100の汚染が抑制され、また、センサモジュール10自体の防爆化が図られている。センサチップ100は、空洞部119が設けられた基板110がダイボンド材15によりケース11に接着されることにより、ケース11に固定されている。
A. First embodiment:
A1. Sensor module:
1A and 1B are a cross-sectional view and a plan view showing a configuration of a catalytic combustion gas sensor module 10 (hereinafter also simply referred to as “sensor module 10”) according to the first embodiment of the present invention.
1A, in the sensor module 10 of the first embodiment, a sensor chip 100 is mounted in a package 19 including a case 11 and a cap 12. The cap 12 is made of, for example, a sintered metal such as stainless steel or brass, a wire mesh made of stainless steel, or porous ceramics. As a result, air permeability inside and outside the package 19 is secured, contamination of the sensor chip 100 is suppressed, and the sensor module 10 itself is explosion-proof. The sensor chip 100 is fixed to the case 11 by bonding the substrate 110 provided with the cavity 119 to the case 11 with the die bonding material 15.
 図1Bは、ケース11に固定されたセンサチップ100を上面から見た様子を示している。図1Bにおける一点鎖線Aは、図1Aで示した断面の位置を示す切断線である。また、一点鎖線C1,C2は、センサチップ100の中心位置を示す中心線である。
 図1Bに示すように、センサチップ100の上面には、導電膜が露出したボンディングパッドP11~P15が形成されている。このボンディングパッドP11~P15と、ケース11の外部電極13に接続された端子14とをワイヤ16で接続することにより、センサチップ100と外部回路との接続が可能となっている。
FIG. 1B shows a state where the sensor chip 100 fixed to the case 11 is viewed from above. 1B is a cutting line indicating the position of the cross section shown in FIG. 1A. Also, alternate long and short dash lines C1 and C2 are center lines indicating the center position of the sensor chip 100.
As shown in FIG. 1B, bonding pads P11 to P15 with exposed conductive films are formed on the upper surface of the sensor chip 100. By connecting the bonding pads P11 to P15 and the terminal 14 connected to the external electrode 13 of the case 11 with a wire 16, the sensor chip 100 and the external circuit can be connected.
 センサチップ100の上面には、可燃性ガスを触媒燃焼させるためのガス反応膜191と、比較のための参照膜192とが設けられている。可燃性ガスがキャップ12を透過してセンサチップ100に到達すると、ガス反応膜191では、可燃性ガスが触媒燃焼し、可燃性ガスの濃度に応じた量の熱が発生する。そのため、ガス反応膜191は、可燃性ガスの濃度に応じて温度が上昇する。一方、参照膜192は、触媒燃焼による温度上昇が発生しない。詳細については後述するが、センサチップ100は、ガス反応膜191と参照膜192とのそれぞれの温度を表す信号を出力する。これらの出力信号に基づいて、可燃性ガスの触媒燃焼により温度上昇するガス反応膜191と、可燃性ガスによる温度上昇がない参照膜192との温度差を求めることにより、雰囲気中の可燃性ガスの濃度を測定することができる。
 このように、センサチップ100は、センサモジュール10において、ガスを検出する機能を担っているので、ガスセンサそのものであると謂える。そのため、以下では、センサチップ100を単に「ガスセンサ100」と呼ぶ。
On the upper surface of the sensor chip 100, a gas reaction film 191 for catalytically burning a combustible gas and a reference film 192 for comparison are provided. When the combustible gas passes through the cap 12 and reaches the sensor chip 100, the combustible gas is catalytically combusted in the gas reaction film 191, and an amount of heat corresponding to the concentration of the combustible gas is generated. Therefore, the temperature of the gas reaction membrane 191 increases according to the concentration of the combustible gas. On the other hand, the reference film 192 does not increase in temperature due to catalytic combustion. Although details will be described later, the sensor chip 100 outputs signals representing the temperatures of the gas reaction film 191 and the reference film 192. Based on these output signals, the temperature difference between the gas reaction film 191 that rises in temperature by catalytic combustion of the combustible gas and the reference film 192 that does not rise in temperature due to the combustible gas is obtained, so that the combustible gas in the atmosphere is obtained. Concentration can be measured.
Thus, since the sensor chip 100 has a function of detecting gas in the sensor module 10, it can be said that the sensor chip 100 is a gas sensor itself. Therefore, hereinafter, the sensor chip 100 is simply referred to as “gas sensor 100”.
A2.ガスセンサ:
 図2Aおよび図2Bは、第1実施形態におけるガスセンサ100の構成を示す図である。図2Aは、ガスセンサ100を上面から見た様子を示しており、図2Bは、図2Aの線A―Aにおけるガスセンサ100の断面を示している。
A2. Gas sensor:
2A and 2B are diagrams illustrating the configuration of the gas sensor 100 according to the first embodiment. 2A shows the gas sensor 100 as viewed from above, and FIG. 2B shows a cross section of the gas sensor 100 taken along line AA in FIG. 2A.
 ガスセンサ100は、空洞部119が設けられた基板110と、基板110の上面に形成された絶縁膜120と、基板110の下面に形成され開口部109が設けられたマスク膜101とを有している。絶縁膜120上には、ガスの検出機能を実現するための構造(後述する)を形成する複数の膜(機能膜)が積層されている。具体的には、絶縁膜120上には、n型半導体膜130と、第1の層間絶縁膜140と、p型半導体膜150と、第2の層間絶縁膜160と、導電膜170と、保護膜180と、ガス反応膜191もしくは参照膜192とがこの順で積層されている。
 これらの機能膜のうち、n型およびp型半導体膜130,150と、第1および第2の層間絶縁膜140,160と、導電膜170と、保護膜180とは、半導体デバイスの製造方法として周知の技術を用いて形成することができる。なお、絶縁膜120、マスク膜101、および、絶縁膜120上に積層される各機能膜は、製造工程の内容によって、適宜追加あるいは省略される。
The gas sensor 100 includes a substrate 110 provided with a cavity 119, an insulating film 120 formed on the upper surface of the substrate 110, and a mask film 101 formed on the lower surface of the substrate 110 and provided with an opening 109. Yes. On the insulating film 120, a plurality of films (functional films) forming a structure (described later) for realizing a gas detection function are stacked. Specifically, the n-type semiconductor film 130, the first interlayer insulating film 140, the p-type semiconductor film 150, the second interlayer insulating film 160, the conductive film 170, and the protection are formed on the insulating film 120. The film 180 and the gas reaction film 191 or the reference film 192 are laminated in this order.
Among these functional films, the n-type and p- type semiconductor films 130 and 150, the first and second interlayer insulating films 140 and 160, the conductive film 170, and the protective film 180 are used as a method for manufacturing a semiconductor device. It can be formed using a known technique. Note that the insulating film 120, the mask film 101, and each functional film stacked on the insulating film 120 are appropriately added or omitted depending on the contents of the manufacturing process.
 ガスセンサ100の作製工程では、まず、空洞部119を有さないシリコン(Si)基板を準備する。次いで、準備したSi基板の上面に、酸化ケイ素(SiO)、窒化ケイ素(Si)およびSiOをこの順に成膜することにより、絶縁膜120を形成する。また、Si基板の下面には、絶縁膜120の形成に合わせて、SiOおよびSiをこの順に成膜することにより、開口部109を有しないマスク膜(図示しない)を形成する。なお、絶縁膜120およびマスク膜を、SiOとSiとの多層膜とせず、酸窒化ケイ素(SiON)の単層膜とすることも可能である。 In the manufacturing process of the gas sensor 100, first, a silicon (Si) substrate having no cavity 119 is prepared. Next, the insulating film 120 is formed by depositing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and SiO 2 in this order on the upper surface of the prepared Si substrate. A mask film (not shown) having no opening 109 is formed on the lower surface of the Si substrate by depositing SiO 2 and Si 3 N 4 in this order in accordance with the formation of the insulating film 120. Note that the insulating film 120 and the mask film may be a single layer film of silicon oxynitride (SiON) instead of a multilayer film of SiO 2 and Si 3 N 4 .
 絶縁膜120の形成の後、n型ポリシリコンの成膜・パターニングを行うことにより、n型半導体膜130を形成する。n型半導体膜130を形成する材料として、ポリシリコンに替えて、単結晶シリコン、鉄シリサイド(FeSi)、シリコン・ゲルマニウム(SiGe)あるいはビスマス・アンチモン(BiSb)等の種々の半導体を用いても良い。n型半導体膜130の形成後、SiOの成膜を行うことにより、パターニングされていない第1の層間絶縁膜(図示しない)を形成する。
 次いで、p型ポリシリコンの成膜・パターニングを行うことにより、p型半導体膜150を形成する。p型半導体膜150もn型半導体膜130と同様に、ポリシリコン以外の種々の半導体を用いて形成することができる。また、これら2つの半導体膜130,150のドープ型を逆にすることも可能である。p型半導体膜150の形成の後、SiOを成膜し、成膜したSiO膜とパターニングされていない第1の層間絶縁膜とをパターニングすることにより、第1の層間絶縁膜140および第2の層間絶縁膜160を形成する。
After the formation of the insulating film 120, an n-type semiconductor film 130 is formed by depositing and patterning n-type polysilicon. As a material for forming the n-type semiconductor film 130, various semiconductors such as single crystal silicon, iron silicide (FeSi 2 ), silicon germanium (SiGe), or bismuth antimony (BiSb) may be used instead of polysilicon. good. After the n-type semiconductor film 130 is formed, SiO 2 is formed to form a first interlayer insulating film (not shown) that is not patterned.
Next, a p-type semiconductor film 150 is formed by depositing and patterning p-type polysilicon. Similarly to the n-type semiconductor film 130, the p-type semiconductor film 150 can be formed using various semiconductors other than polysilicon. It is also possible to reverse the dope types of these two semiconductor films 130 and 150. After the formation of the p-type semiconductor film 150, SiO 2 is formed, and the formed SiO 2 film and the unpatterned first interlayer insulating film are patterned, whereby the first interlayer insulating film 140 and the first interlayer insulating film 140 are formed. Two interlayer insulating films 160 are formed.
 第1と第2の層間絶縁膜140,160のパターニングの後、白金(Pt)の成膜・パターニングを行うことにより、導電膜170を形成する。導電膜170を形成する材料として、Ptに替えて、タングステン(W)、タンタル(Ta)、金(Au)、銅(Cu)、アルミニウム(Al)あるいはAl合金等、種々の金属を用いても良い。また、導電膜170の少なくとも一方の面に、チタン(Ti)やクロム(Cr)からなる密着層を形成しても良い。
 導電膜170の材料として、AlやAl合金を用いた場合、反応性イオンエッチング、プラズマエッチング、あるいは、ウェットエッチングを用いたフォトリソグラフィによってパターニングを行うことができるため、高精度かつ高歩留まりでの微細加工が容易であり、ガスセンサをより容易に製造することができる。しかしながら、後述するように、AlやAl合金からなる導電膜によりヒータを形成した場合等、電流密度が高くなる場合には、エレクトロマイグレーション等により耐久性や信頼性が低下する可能性がある。
 これに対し、PtやCuを用いると、エレクトロマイグレーションが抑制されるので、耐久性や信頼性が向上する。但し、Ptを用いた場合、Pt自体が高価であり、高精度かつ高歩留まりの微細加工がより難しいイオンミリングやリフトオフによりパターニングが行われるため、ガスセンサの製造コストが高くなる可能性がある。また、Cuを用いる場合も、パターニングには高コストで複雑なプロセスであるダマシン法が用いられるため、ガスセンサの製造コストが高くなる可能性がある。導電膜170の材料は、このような特性を考慮して、適宜選択される。
After patterning the first and second interlayer insulating films 140 and 160, a conductive film 170 is formed by depositing and patterning platinum (Pt). As a material for forming the conductive film 170, various metals such as tungsten (W), tantalum (Ta), gold (Au), copper (Cu), aluminum (Al), or Al alloy may be used instead of Pt. good. Further, an adhesion layer made of titanium (Ti) or chromium (Cr) may be formed on at least one surface of the conductive film 170.
When Al or an Al alloy is used as the material of the conductive film 170, patterning can be performed by photolithography using reactive ion etching, plasma etching, or wet etching, so that high precision and high yield can be achieved. Processing is easy and the gas sensor can be manufactured more easily. However, as will be described later, when the current density is high, such as when a heater is formed of a conductive film made of Al or an Al alloy, durability and reliability may be reduced due to electromigration or the like.
On the other hand, when Pt or Cu is used, since electromigration is suppressed, durability and reliability are improved. However, when Pt is used, Pt itself is expensive, and patterning is performed by ion milling or lift-off, which makes it difficult to perform high-precision and high-yield microfabrication, which may increase the manufacturing cost of the gas sensor. Also when Cu is used, the damascene method, which is a high-cost and complicated process, is used for patterning, which may increase the manufacturing cost of the gas sensor. The material of the conductive film 170 is appropriately selected in consideration of such characteristics.
 導電膜170の形成の後、SiOの成膜・パターニングを行うことにより、保護膜180を形成する。なお、図2Aおよび2Bに示すように、保護膜180には、パターニングにより5つの開口部181~185が形成されており、これらの開口部181~185においては、導電膜170が露出している。 After the formation of the conductive film 170, the protective film 180 is formed by depositing and patterning SiO 2 . 2A and 2B, the protective film 180 has five openings 181 to 185 formed by patterning, and the conductive film 170 is exposed in these openings 181 to 185. .
 保護膜180の形成の後、基板110に設けられる空洞部119を形成する。空洞部119の形成に際しては、まず、基板の下面側に形成されたマスク膜に開口部109を形成する。次いで、開口部109が設けられたマスク膜101をマスクとして基板をエッチングすることにより、空洞部119が形成される。エッチングは、例えば、水酸化テトラメチルアンモニウム(TMAH)や水酸化カリウム(KOH)の水溶液を用いた結晶異方性エッチングにより行うことができる。また、このようなウェットエッチングの他、いわゆるボッシュプロセス等のドライエッチングにより空洞部119を形成しても良い。基板をエッチングして空洞部119を形成することにより、絶縁膜120が裏面側において露出したメンブレン121が形成される。
 メンブレン121の下面に形成された空洞部119は、熱を伝達しにくいので、低熱伝導部ということができる。一方、基板110は、ケース11(図1A)等のガスセンサ100の外部に熱を伝達しやすいので、高熱伝導部ということができる。
After the formation of the protective film 180, a cavity 119 provided in the substrate 110 is formed. When forming the cavity 119, first, an opening 109 is formed in the mask film formed on the lower surface side of the substrate. Next, the cavity 119 is formed by etching the substrate using the mask film 101 provided with the opening 109 as a mask. Etching can be performed by, for example, crystal anisotropic etching using an aqueous solution of tetramethylammonium hydroxide (TMAH) or potassium hydroxide (KOH). In addition to such wet etching, the cavity 119 may be formed by dry etching such as a so-called Bosch process. By etching the substrate to form the cavity 119, the membrane 121 with the insulating film 120 exposed on the back surface side is formed.
Since the cavity 119 formed on the lower surface of the membrane 121 is difficult to transfer heat, it can be referred to as a low thermal conduction portion. On the other hand, since the substrate 110 easily transfers heat to the outside of the gas sensor 100 such as the case 11 (FIG. 1A), it can be said to be a high thermal conductivity portion.
 図2Aおよび2Bの例では、基板を下面側からエッチングすることにより空洞部119を形成しているが、空洞部は、基板を上面側からエッチングして形成することも可能である。この場合、絶縁膜120と、第1および第2の層間絶縁膜140,160と、保護膜180とに貫通穴を設け、当該貫通穴を通して基板をエッチングすることにより空洞部を形成することができる。このように基板を上面側からエッチングした場合、基板の上面側からの加工のみでガスセンサを製造でき、また、基板の残存部を下面側からエッチングした場合よりも多くすることができる。そのため、ガスセンサの製造工程を簡略化して歩留まりをより高くすることができるとともに、エッチング後の基板の強度をより高くすることができる点で、基板を上面側からエッチングするのが好ましい。一方、基板の下面側からエッチングする方が、絶縁膜120に貫通穴を設けることなく空洞部が形成できるので、メンブレンに貫通穴が形成されて強度が低下することを抑制し、メンブレンの破損を抑制できる点で、好ましい。 In the example of FIGS. 2A and 2B, the cavity 119 is formed by etching the substrate from the lower surface side, but the cavity can also be formed by etching the substrate from the upper surface side. In this case, a cavity can be formed by providing a through hole in the insulating film 120, the first and second interlayer insulating films 140 and 160, and the protective film 180 and etching the substrate through the through hole. . When the substrate is etched from the upper surface side in this way, the gas sensor can be manufactured only by processing from the upper surface side of the substrate, and the remaining portion of the substrate can be increased compared to the case where the remaining portion is etched from the lower surface side. Therefore, it is preferable to etch the substrate from the upper surface side in that the manufacturing process of the gas sensor can be simplified to increase the yield, and the strength of the substrate after etching can be further increased. On the other hand, etching from the lower surface side of the substrate can form a cavity without providing a through hole in the insulating film 120, so that the strength of the through hole formed in the membrane is suppressed and the membrane is damaged. It is preferable at the point which can suppress.
 空洞部は、必ずしも基板に設ける必要はない。例えば、基板110と絶縁膜120との間、もしくは、絶縁膜120とn型半導体膜130および第1の層間絶縁膜140との間に、空洞部を形成することも可能である。このような基板上の空洞部は、基板もしくは絶縁膜120上の空洞部を形成する領域に犠牲膜を形成した後、上述のように保護膜までの各機能膜を形成し、次いで保護膜上面から犠牲膜に到達する貫通穴を設け、当該貫通穴を通して犠牲膜を除去することにより、形成することができる。
 犠牲膜を形成する材料としては、ポリイミド等の樹脂やポリシリコン等の半導体を用いることができる。樹脂からなる犠牲膜は、アッシングにより除去することができ、半導体からなる犠牲膜は、エッチングにより除去することができる。但し、犠牲膜として半導体を用いる場合には、基板もしくはn型半導体膜のエッチングを阻止するため、基板、もしくは、絶縁膜120および犠牲膜の上に、SiOやSi等からなる阻止膜が形成される。
 このように、基板上に空洞部を形成した場合、基板をエッチングした場合よりも、基板の強度をより高くすることができる。一方、ガスセンサの製造工程をより簡略化できる点においては、基板をエッチングするのが好ましい。
The hollow portion is not necessarily provided in the substrate. For example, a cavity can be formed between the substrate 110 and the insulating film 120 or between the insulating film 120 and the n-type semiconductor film 130 and the first interlayer insulating film 140. In such a cavity on the substrate, after forming a sacrificial film in a region where the cavity on the substrate or the insulating film 120 is formed, each functional film up to the protective film is formed as described above, and then the upper surface of the protective film is formed. The through hole reaching the sacrificial film is provided, and the sacrificial film is removed through the through hole.
As a material for forming the sacrificial film, a resin such as polyimide or a semiconductor such as polysilicon can be used. The sacrificial film made of resin can be removed by ashing, and the sacrificial film made of semiconductor can be removed by etching. However, in the case where a semiconductor is used as the sacrificial film, in order to prevent the etching of the substrate or the n-type semiconductor film, the substrate or the insulating film 120 and the sacrificial film are made of blocking such as SiO 2 or Si 3 N 4. A film is formed.
Thus, when the cavity is formed on the substrate, the strength of the substrate can be made higher than when the substrate is etched. On the other hand, the substrate is preferably etched in that the manufacturing process of the gas sensor can be further simplified.
 空洞部119の形成後、空洞部119(低熱伝導部)の上部に位置する保護膜180上にガス反応膜191および参照膜192を形成する。具体的には、ガス反応膜191および参照膜192を形成する領域に、それぞれ、燃焼触媒としてのPt微粒子を担持させたアルミナ粒子を含むペーストと、触媒を担持させていないアルミナ粒子を含むペーストとを塗布する。ペーストの塗布は、ディスペンサによる塗布技術やスクリーン印刷技術を用いて行うことができる。ペーストを塗布した後、焼成することにより、ガス反応膜191および参照膜192が形成される。このように、保護膜180上にガス反応膜191と参照膜192とを形成することにより、ガスセンサ100が得られる。
 ガス反応膜191に使用する燃焼触媒として、Pt微粒子に替えて、パラジウム(Pd)微粒子を用いることも可能である。また、参照膜192の比熱をガス反応膜191に近づけるため、参照膜192を形成するためのペーストに酸化銅(CuO)等の金属酸化物を混ぜても良い。さらに、参照膜192に含まれる担体に、特定のガスについて選択的に触媒として作用する燃焼触媒(例えば、Auの超微粒子)を担持しても良い。この場合においても、当該特定のガス以外の可燃性ガスに関しては、参照膜192の担体には燃焼触媒が担持されていないと謂うことができる。
After the formation of the cavity portion 119, a gas reaction film 191 and a reference film 192 are formed on the protective film 180 located above the cavity portion 119 (low thermal conductivity portion). Specifically, in a region where the gas reaction film 191 and the reference film 192 are formed, a paste containing alumina particles carrying Pt fine particles as a combustion catalyst, and a paste containing alumina particles not carrying a catalyst, respectively Apply. The paste can be applied by using a dispenser coating technique or a screen printing technique. After the paste is applied, the gas reaction film 191 and the reference film 192 are formed by baking. Thus, the gas sensor 100 is obtained by forming the gas reaction film 191 and the reference film 192 on the protective film 180.
As the combustion catalyst used for the gas reaction film 191, palladium (Pd) fine particles can be used instead of the Pt fine particles. Further, in order to bring the specific heat of the reference film 192 closer to that of the gas reaction film 191, a metal oxide such as copper oxide (CuO) may be mixed in the paste for forming the reference film 192. Furthermore, a combustion catalyst (for example, Au ultrafine particles) that selectively acts as a catalyst for a specific gas may be supported on the carrier included in the reference film 192. Even in this case, regarding the combustible gas other than the specific gas, it can be said that the combustion catalyst is not supported on the carrier of the reference film 192.
 図3Aおよび図3Bは、第1実施形態におけるガスセンサ100の機能的な構成を示す平面図および断面図である。図3Aは、図2Aと同様に、ガスセンサ100を上面から見た様子を示している。図3Bは、図3Aにおいて二点鎖線で囲んだ領域R1の拡大図である。なお、図3Aおよび3Bにおいては、図示の便宜上、保護膜180、ガス反応膜191および参照膜192のハッチングを省略するとともに、導電膜170(図2Aおよび2B)の全体が表面に現れるように図示している。 3A and 3B are a plan view and a cross-sectional view showing a functional configuration of the gas sensor 100 according to the first embodiment. FIG. 3A shows a state where the gas sensor 100 is viewed from the top, as in FIG. 2A. FIG. 3B is an enlarged view of a region R1 surrounded by a two-dot chain line in FIG. 3A. 3A and 3B, for convenience of illustration, the protective film 180, the gas reaction film 191 and the reference film 192 are not hatched, and the entire conductive film 170 (FIGS. 2A and 2B) is shown on the surface. Show.
 図3Aに示すように、ガスセンサ100は、図3Aにおいて左右方向(以下、「横方向」という)に伸びる中心線C1に対して対称に、上下方向(以下、「縦方向」という)に伸びる中心線C2に対してほぼ対称に形成されている。そのため、以下では、対称性を有する部分については、必要がない限り、その1つについてのみ説明する。
 なお、後述するように、ガスセンサ100のうち、図3Aにおける中心線C1の上側の部分は、雰囲気中の可燃性ガスの濃度に対応するガス反応膜191の温度を測定する機能を有し、中心線C1の下側の部分は、外的要因によるガス反応膜191の温度変化を補償するための参照膜192の温度を測定する機能を有している。そのため、中心線C1の上側の部分は、ガスを検出するガス検出部ということができ、中心線C1の下側の部分は外的要因による出力変動を補償する補償部ということができる。
As shown in FIG. 3A, the gas sensor 100 has a center extending in the vertical direction (hereinafter referred to as “vertical direction”) symmetrically with respect to a center line C1 extending in the left-right direction (hereinafter referred to as “lateral direction”) in FIG. 3A. It is formed substantially symmetrical with respect to the line C2. Therefore, in the following description, only one of the symmetrical portions will be described unless necessary.
As will be described later, in the gas sensor 100, the upper part of the center line C1 in FIG. 3A has a function of measuring the temperature of the gas reaction film 191 corresponding to the concentration of the combustible gas in the atmosphere. The lower part of the line C1 has a function of measuring the temperature of the reference film 192 for compensating for the temperature change of the gas reaction film 191 due to an external factor. Therefore, the upper part of the center line C1 can be referred to as a gas detector that detects gas, and the lower part of the center line C1 can be referred to as a compensator that compensates for output fluctuations due to external factors.
 ガスセンサ100は、図2Aおよび2Bに示されたn型半導体膜130、p型半導体膜150および導電膜170によって、ガスの検出機能を実現するための構造が形成される。すなわち、n型半導体膜130(図2Aおよび2B)によってn型熱電素子131および2つのヒータ132,133が形成される。p型半導体膜150(図2Aおよび2B)によってp型熱電素子151が形成される。導電膜170(図2Aおよび2B)によって温接点接続線171、冷接点接続線172、信号出力電極173、サーモパイル接続線174、ヒータ通電電極175、ヒータ配線176,177およびグランド配線178が形成される。また、保護膜180(図2Aおよび2B)に開口部181~185を設けることにより、信号出力電極173が露出したボンディングパッド(信号出力パッド)P11,P13と、ヒータ通電電極175が露出したボンディングパッド(ヒータ通電パッド)P12,P14と、グランド配線178が露出したボンディングパッド(グランドパッド)P15とが形成されている。
 なお、図3Aおよび3Bの例では、ヒータ132,133をn型半導体膜130によって形成しているが、p型半導体膜150によって形成されたヒータを用いることも可能である。また、電磁ノイズからのシールド性を向上させ、冷接点の温度均一性を向上させるため、絶縁膜120と、第1および第2の層間絶縁膜140,160とに開口部を設け、グランド配線178と基板110とを接続しても良い。
In the gas sensor 100, a structure for realizing a gas detection function is formed by the n-type semiconductor film 130, the p-type semiconductor film 150, and the conductive film 170 shown in FIGS. 2A and 2B. That is, the n-type thermoelectric element 131 and the two heaters 132 and 133 are formed by the n-type semiconductor film 130 (FIGS. 2A and 2B). A p-type thermoelectric element 151 is formed by the p-type semiconductor film 150 (FIGS. 2A and 2B). The conductive film 170 (FIGS. 2A and 2B) forms a hot junction connection line 171, a cold junction connection line 172, a signal output electrode 173, a thermopile connection line 174, a heater energization electrode 175, heater wirings 176 and 177, and a ground wiring 178. . Further, by providing openings 181 to 185 in the protective film 180 (FIGS. 2A and 2B), bonding pads (signal output pads) P11 and P13 from which the signal output electrode 173 is exposed and bonding pads from which the heater energizing electrode 175 is exposed are provided. (Heater energization pads) P12 and P14 and bonding pads (ground pads) P15 where the ground wiring 178 is exposed are formed.
3A and 3B, the heaters 132 and 133 are formed of the n-type semiconductor film 130, but a heater formed of the p-type semiconductor film 150 can also be used. In addition, in order to improve the shielding property from electromagnetic noise and improve the temperature uniformity of the cold junction, an opening is provided in the insulating film 120 and the first and second interlayer insulating films 140 and 160, and the ground wiring 178 is provided. And the substrate 110 may be connected.
 第1実施形態のガスセンサ100においては、横方向に伸びる複数のn型熱電素子131が縦方向に配列され、n型熱電素子131の第1の層間絶縁膜140(図2Aおよび2B)を挟んで上の位置に、n型熱電素子131よりも短いp型熱電素子151が形成されている。第1および第2の層間絶縁膜140,160(図2Aおよび2B)には、上部にp型熱電素子151が形成されていないn型熱電素子131の両端部の位置に、第1および第2の層間絶縁膜140,160を貫通するコンタクトホールH11,H12が設けられている。また、第2の層間絶縁膜160には、p型熱電素子151の両端部の位置に、第2の層間絶縁膜160を貫通するコンタクトホールH13,H14が設けられている。 In the gas sensor 100 of the first embodiment, a plurality of n-type thermoelectric elements 131 extending in the horizontal direction are arranged in the vertical direction, and the first interlayer insulating film 140 (FIGS. 2A and 2B) of the n-type thermoelectric element 131 is interposed therebetween. A p-type thermoelectric element 151 shorter than the n-type thermoelectric element 131 is formed at the upper position. In the first and second interlayer insulating films 140 and 160 (FIGS. 2A and 2B), the first and second layers are positioned at both ends of the n-type thermoelectric element 131 on which the p-type thermoelectric element 151 is not formed. Contact holes H11 and H12 are formed through the interlayer insulating films 140 and 160. The second interlayer insulating film 160 is provided with contact holes H13 and H14 penetrating the second interlayer insulating film 160 at the positions of both ends of the p-type thermoelectric element 151.
 温接点接続線171は、コンタクトホールH11,H13を介して、第1の層間絶縁膜140を挟んで上下に積層されたn型熱電素子131とp型熱電素子151とを接続している。一方、冷接点接続線172は、コンタクトホールH12,H14を介して、隣接したn型熱電素子131とp型熱電素子151とを接続している。これにより、n型熱電素子131、p型熱電素子151、温接点接続線171および冷接点接続線172は、温接点と冷接点とを有する複数の熱電対を直列接続したサーモパイルT11を構成する。サーモパイルT12~T14もサーモパイルT11と同様に構成されている。 The hot junction connection line 171 connects the n-type thermoelectric element 131 and the p-type thermoelectric element 151 which are stacked vertically with the first interlayer insulating film 140 interposed therebetween via the contact holes H11 and H13. On the other hand, the cold junction connection line 172 connects the adjacent n-type thermoelectric element 131 and p-type thermoelectric element 151 through the contact holes H12 and H14. Thus, the n-type thermoelectric element 131, the p-type thermoelectric element 151, the hot junction connection line 171 and the cold junction connection line 172 constitute a thermopile T11 in which a plurality of thermocouples having hot junctions and cold junctions are connected in series. The thermopiles T12 to T14 are configured in the same manner as the thermopile T11.
 サーモパイル接続線174は、熱電対を直列接続したサーモパイルT11,T12をさらに直列接続する。信号出力電極173は、コンタクトホールH14を介して、直列接続されたサーモパイルT11,T12の一端のp型熱電素子151に接続されている。一方、直列接続されたサーモパイルT11,T12の他端にあるn型熱電素子131は、コンタクトホールH12を介して、グランド配線178に接続されている。また、サーモパイルT13,T14についても、サーモパイルT11,T12と同様に接続されている。これにより、ガス検出部の信号出力パッドP11には、グランドパッドP15に対して、サーモパイルT11,T12の温接点と冷接点との温度差に対応した電圧が発生し、補償部の信号出力パッドP13には、グランドパッドP15に対して、サーモパイルT13,T14において温接点接続線171により構成される温接点と、冷接点接続線172により構成される冷接点との温度差に対応した電圧が発生する。 The thermopile connection line 174 further connects in series the thermopile T11 and T12 in which thermocouples are connected in series. The signal output electrode 173 is connected to the p-type thermoelectric element 151 at one end of the thermopiles T11 and T12 connected in series via the contact hole H14. On the other hand, the n-type thermoelectric element 131 at the other end of the thermopiles T11 and T12 connected in series is connected to the ground wiring 178 via the contact hole H12. The thermopiles T13 and T14 are also connected in the same manner as the thermopiles T11 and T12. As a result, a voltage corresponding to the temperature difference between the hot and cold junctions of the thermopiles T11 and T12 is generated in the signal output pad P11 of the gas detection unit with respect to the ground pad P15, and the signal output pad P13 of the compensation unit. Generates a voltage corresponding to the temperature difference between the hot junction constituted by the hot junction connection line 171 and the cold junction constituted by the cold junction connection line 172 in the thermopile T13, T14 with respect to the ground pad P15. .
 図3Aおよび3Bに示すように、温接点を構成する温接点接続線171は、ガス反応膜191あるいは参照膜192の下に配置されている。また、冷接点を構成する冷接点接続線172は、基板110の上に配置されている。そのため、基板110あるいは基板110とほぼ同温度のケース11(図1Aおよび1B)を基準として、ガス反応膜191や参照膜192の温度を測定することが可能となる。
 このように、サーモパイルT11~T14の温接点は、ガス反応膜191や参照膜192の温度を測定することが可能であるので、測温素子ともいうことができる。
 なお、図3Aおよび3Bの例では、温接点は、それぞれ、ガス反応膜191あるいは参照膜192の下に形成されているが、一般に、温接点は、それぞれ、ガス反応膜191および参照膜192の近傍に形成されていれば良い。すなわち、測温素子は、空洞部119(低熱伝導部)上であって、ガス反応膜191の近傍に形成される。このようにしても、サーモパイルT11~T14により、ガス反応膜191および参照膜192の温度を測定することができる。
 同様に、サーモパイルT11~T14の冷接点は、基板110の近傍に形成されていれば良い。また、図3Aおよび3Bと、以上の説明とから分かるように、ガス反応膜191および参照膜192は、それぞれ、測温素子(すなわち、サーモパイルT11~T14の温接点)の近傍を含む領域に形成されていれば良い。
As shown in FIGS. 3A and 3B, the hot junction connection line 171 constituting the hot junction is disposed under the gas reaction film 191 or the reference film 192. In addition, the cold junction connection line 172 constituting the cold junction is disposed on the substrate 110. Therefore, the temperature of the gas reaction film 191 and the reference film 192 can be measured based on the substrate 110 or the case 11 (FIGS. 1A and 1B) having substantially the same temperature as the substrate 110.
As described above, the hot junctions of the thermopiles T11 to T14 can measure the temperatures of the gas reaction film 191 and the reference film 192, and can also be referred to as temperature measuring elements.
3A and 3B, the hot junction is formed under the gas reaction film 191 or the reference film 192, respectively. However, in general, the hot contact is formed by the gas reaction film 191 and the reference film 192, respectively. It may be formed in the vicinity. That is, the temperature measuring element is formed on the cavity portion 119 (low heat conduction portion) and in the vicinity of the gas reaction film 191. Even in this way, the temperatures of the gas reaction film 191 and the reference film 192 can be measured by the thermopiles T11 to T14.
Similarly, the cold junctions of the thermopiles T11 to T14 may be formed in the vicinity of the substrate 110. As can be understood from FIGS. 3A and 3B and the above description, the gas reaction film 191 and the reference film 192 are each formed in a region including the vicinity of the temperature measuring element (that is, the hot contacts of the thermopiles T11 to T14). It only has to be done.
 ガス検出部に設けられた平板状のヒータ132は、それぞれ、横方向に並んで配置されたサーモパイルT11,T12の間に配置されている。ヒータ132は、空洞部119(低熱伝導部)上に形成され、ガス反応膜191を加熱するために設けられる。
 第1および第2の層間絶縁膜140,160(図2Aおよび2B)には、ヒータ132の横方向の両端部の上において、第1および第2の層間絶縁膜140,160を貫通するコンタクトホールH15が設けられている。このコンタクトホールH15を介してヒータ132に接続されたヒータ配線176,177は、それぞれ、ヒータ通電電極175とグランド配線178とに接続されている。すなわち、ヒータ配線176,177は、空洞部119を囲む基板110(高熱伝導部)の上部からヒータ132まで延びてヒータ132に接続されている。そのため、ヒータ通電パッドP12とグランドパッドP15との間に電圧を印加することにより、ヒータ132に通電することができる。また、補償部に設けられた平板状のヒータ133にも、ヒータ通電パッドP14とグランドパッドP15との間に電圧を印加することにより通電することが可能となっている。
The flat heaters 132 provided in the gas detector are respectively disposed between the thermopiles T11 and T12 that are arranged in the horizontal direction. The heater 132 is formed on the cavity portion 119 (low heat conduction portion) and is provided to heat the gas reaction film 191.
The first and second interlayer insulating films 140 and 160 (FIGS. 2A and 2B) have contact holes penetrating the first and second interlayer insulating films 140 and 160 on both lateral ends of the heater 132. H15 is provided. The heater wirings 176 and 177 connected to the heater 132 through the contact hole H15 are connected to the heater energizing electrode 175 and the ground wiring 178, respectively. That is, the heater wirings 176 and 177 extend from the upper part of the substrate 110 (high heat conduction part) surrounding the cavity part 119 to the heater 132 and are connected to the heater 132. Therefore, the heater 132 can be energized by applying a voltage between the heater energization pad P12 and the ground pad P15. Further, it is possible to energize the flat heater 133 provided in the compensation unit by applying a voltage between the heater energizing pad P14 and the ground pad P15.
 ヒータ132を発熱させると、ガス反応膜191の温度が上昇する。これにより、ガス反応膜191が有する触媒の活性が高くなり、ガス反応膜191における可燃性ガスの触媒燃焼が促進されるので、ガスセンサ100における可燃性ガスの検出感度が高くなる。また、可燃性ガスとして水素ガス(H)を検出する場合、ガス反応膜191における触媒燃焼により水(HO)が生成される。このとき、ガス反応膜191の温度が低いと、生成されたHOが凝結してガス反応膜191が濡れ、検出感度が低下する虞がある。第1実施形態のガスセンサ100では、ヒータ132によりガス反応膜191を加熱することにより、生成されたHOによる検出感度の低下を抑制することが可能となる。
 参照膜192は、ガス反応膜191と同様にヒータ133により加熱することができ、ヒータ132とは独立に加熱温度を制御できるので、雰囲気に可燃性ガスが含まれない場合に、ガス反応膜191と参照膜192とをほぼ同温度とし、出力信号のオフセットをほぼ0とすることが可能となる。
When the heater 132 generates heat, the temperature of the gas reaction film 191 increases. Accordingly, the activity of the catalyst included in the gas reaction film 191 is increased, and the catalytic combustion of the combustible gas in the gas reaction film 191 is promoted, so that the detection sensitivity of the combustible gas in the gas sensor 100 is increased. When hydrogen gas (H 2 ) is detected as a combustible gas, water (H 2 O) is generated by catalytic combustion in the gas reaction film 191. At this time, if the temperature of the gas reaction film 191 is low, the generated H 2 O condenses, so that the gas reaction film 191 gets wet and the detection sensitivity may decrease. In the gas sensor 100 according to the first embodiment, the gas reaction film 191 is heated by the heater 132, so that a decrease in detection sensitivity due to the generated H 2 O can be suppressed.
The reference film 192 can be heated by the heater 133 similarly to the gas reaction film 191, and the heating temperature can be controlled independently of the heater 132. Therefore, when the atmosphere does not contain a flammable gas, the gas reaction film 191 And the reference film 192 can be set to substantially the same temperature, and the offset of the output signal can be set to substantially zero.
 このように、ガス検出部のヒータ132は、ガス反応膜191を加熱する機能を有しているので、反応膜ヒータともいうことができる。また、ガス検出部におけるヒータ配線176,177は、反応膜ヒータであるヒータ132に通電するための配線であるので、反応膜ヒータ配線ともいうことができる。同様に、補償部のヒータ133は、参照膜ヒータともいうことができ、補償部におけるヒータ配線176,177は、参照膜ヒータ配線ともいうことができる。また、図3Aおよび3Bから明らかなように、ヒータ配線176,177は、基板110上から、ガス検出部のヒータ132(反応膜ヒータ)および補償部のヒータ133(参照膜ヒータ)に延びている。 Thus, since the heater 132 of the gas detection unit has a function of heating the gas reaction film 191, it can also be called a reaction film heater. In addition, the heater wires 176 and 177 in the gas detection unit are wires for energizing the heater 132 that is a reaction film heater, and thus can also be referred to as reaction film heater wires. Similarly, the heater 133 of the compensation unit can also be referred to as a reference film heater, and the heater wires 176 and 177 in the compensation unit can also be referred to as reference film heater wires. 3A and 3B, the heater wires 176 and 177 extend from the substrate 110 to the heater 132 (reaction film heater) of the gas detection unit and the heater 133 (reference film heater) of the compensation unit. .
 図3Aおよび3Bに示すように、サーモパイルT11~T14の温接点を構成する温接点接続線171、ヒータ132,133、ガス反応膜191および参照膜192は、メンブレン121上に形成されている。メンブレン121は、一般に薄く(約1~5μm)形成されるので、メンブレン121自体の熱容量が小さくなるとともに、熱伝導度が低い絶縁膜(SiO、Si)を主体に構成されているので、メンブレン121に沿った方向への熱の伝達が抑制される。そして、薄いメンブレン121の下面には、熱を伝達しない空洞部119が形成されている。そのため、ガス反応膜191における可燃性ガスの触媒燃焼で発生する熱量が少ない場合においても、ガス反応膜191の温度を十分に上昇させることができるので、ガスセンサ100における可燃性ガスの検出感度をより高くすることができる。 As shown in FIGS. 3A and 3B, the hot junction connection line 171, the heaters 132 and 133, the gas reaction membrane 191 and the reference membrane 192 that constitute the hot junctions of the thermopiles T 11 to T 14 are formed on the membrane 121. Since the membrane 121 is generally formed thin (about 1 to 5 μm), the membrane 121 itself has a small heat capacity and is mainly composed of an insulating film (SiO 2 , Si 3 N 4 ) having low thermal conductivity. Therefore, the transfer of heat in the direction along the membrane 121 is suppressed. A hollow portion 119 that does not transmit heat is formed on the lower surface of the thin membrane 121. Therefore, even when the amount of heat generated by catalytic combustion of the combustible gas in the gas reaction film 191 is small, the temperature of the gas reaction film 191 can be sufficiently increased, so that the detection sensitivity of the combustible gas in the gas sensor 100 is further increased. Can be high.
 第1実施形態のガスセンサ100では、ヒータ132,133をn型半導体膜130(図2Aおよび2B)によって形成しているので、導電膜170によって形成されたヒータ配線176,177よりも抵抗を大きくすることができる。そのため、ヒータ132,133での発熱量を十分に大きくするとともに、ヒータ配線176,177における発熱を抑制することができる。このようにヒータ配線176,177における発熱を抑制することにより、ヒータ132,133の加熱のための電力をより有効にガス反応膜191および参照膜192の加熱に使用することができるので、ガスセンサ100の省電力化を図ることが可能となる。 In the gas sensor 100 of the first embodiment, since the heaters 132 and 133 are formed of the n-type semiconductor film 130 (FIGS. 2A and 2B), the resistance is made larger than the heater wirings 176 and 177 formed of the conductive film 170. be able to. Therefore, it is possible to sufficiently increase the amount of heat generated in the heaters 132 and 133 and to suppress heat generation in the heater wires 176 and 177. By suppressing heat generation in the heater wirings 176 and 177 in this manner, the power for heating the heaters 132 and 133 can be used more effectively for heating the gas reaction film 191 and the reference film 192. It is possible to save power.
 ヒータは、必ずしも平板状でなくても良いが、第1実施形態のガスセンサ100では、ヒータ132,133を平板状としている。ヒータ132,133を平板状とすることにより、電流方向の長さに対して、幅を広くすることができる。そのため、ヒータ132,133の抵抗が過度に大きくなり、ヒータ通電パッドP12,P14に印加する電圧(ヒータ電圧)が過度に高くなることを抑制することができる。
 また、平板状のヒータ132,133に通電した場合、ヒータ132,133の全体が発熱するため、ガス反応膜191や参照膜192に温度むらが発生することを抑制することができる。そのため、ガス反応膜191や参照膜192の温度むらに起因して、メンブレン121における温度分布の対称性が崩れ、可燃性ガスがない場合の2つの信号出力パッドP11,P13の電圧の差(オフセット)が増大したり、環境温度やガス流量等によるオフセットの変化(ドリフト)が増大することを抑制することができる。
 このように、オフセットやドリフトの増大を抑制することにより、ガスの検出感度および測定再現性をより高くすることが可能となる。さらに、温度むらによりガス反応膜191に低温の領域が発生し、ガスの検出感度が低下すること、あるいは、特定のガスについて選択的に触媒として作用する燃焼触媒を使用した場合において、温度むらにより温度が高い領域が発生し、触媒の温度が過度に上昇して当該特定のガス以外の可燃性ガスに対しても燃焼触媒として作用することにより検出ガスの選択性が低下することを抑制することができる。
 温度むらをさらに抑制するため、ガス反応膜191や参照膜192の下部に、n型半導体膜130(図2Aおよび2B)あるいはp型半導体膜150(図2Aおよび2B)によって形成された均熱部を設けても良い。
The heater does not necessarily have a flat plate shape, but in the gas sensor 100 of the first embodiment, the heaters 132 and 133 have a flat plate shape. By making the heaters 132 and 133 flat, the width can be increased with respect to the length in the current direction. Therefore, it is possible to suppress the resistance of the heaters 132 and 133 from becoming excessively high and the voltage (heater voltage) applied to the heater energization pads P12 and P14 from being excessively high.
Further, when the flat heaters 132 and 133 are energized, the entire heaters 132 and 133 generate heat, so that it is possible to suppress the occurrence of temperature unevenness in the gas reaction film 191 and the reference film 192. Therefore, due to the temperature unevenness of the gas reaction membrane 191 and the reference membrane 192, the symmetry of the temperature distribution in the membrane 121 is lost, and the voltage difference (offset) between the two signal output pads P11 and P13 when there is no flammable gas. ) And an increase in offset change (drift) due to environmental temperature, gas flow rate, and the like can be suppressed.
Thus, by suppressing the increase in offset and drift, it becomes possible to further increase the gas detection sensitivity and measurement reproducibility. In addition, a low temperature region is generated in the gas reaction film 191 due to the temperature unevenness, and the gas detection sensitivity decreases, or when a combustion catalyst that selectively acts as a catalyst for a specific gas is used, due to the temperature unevenness. Suppresses the decrease in the selectivity of the detection gas by generating a region with a high temperature and excessively increasing the temperature of the catalyst and acting as a combustion catalyst for combustible gases other than the specific gas. Can do.
In order to further suppress temperature unevenness, a soaking part formed by the n-type semiconductor film 130 (FIGS. 2A and 2B) or the p-type semiconductor film 150 (FIGS. 2A and 2B) below the gas reaction film 191 and the reference film 192. May be provided.
 また、第1実施形態では、ポリシリコンからなるn型半導体膜130によってヒータ132,133を形成しているので、導電膜170によって形成された配線176,177,178の幅を広く取り、電流密度の増大を抑制することができる。そのため、導電膜170の材料としてAlあるいはAl合金を用いて、ガスセンサ100の製造コスト低減、微細化による小型化、および、精度や歩留まりの向上を図ることが可能となる。
 さらに、ヒータ130をメンブレン121に熱膨張係数が近いn型半導体膜130によって形成しているので、ヒータ132,133に間歇的に電流を流すパルス駆動を行っても、ヒータ132,133とメンブレン121との間で発生する膜応力の変動によりメンブレン121がひび割れ、あるいは、ヒータ132,133がメンブレン121から剥がれる膜剥がれが抑制される。そのため、パルス駆動を行って、省電力化を図ることがより容易となる。
In the first embodiment, since the heaters 132 and 133 are formed by the n-type semiconductor film 130 made of polysilicon, the wirings 176, 177, and 178 formed by the conductive film 170 are widened to obtain a current density. Can be suppressed. Therefore, by using Al or an Al alloy as the material of the conductive film 170, it is possible to reduce the manufacturing cost of the gas sensor 100, reduce the size by miniaturization, and improve the accuracy and yield.
Further, since the heater 130 is formed of the n-type semiconductor film 130 having a thermal expansion coefficient close to that of the membrane 121, even if pulse driving is performed in which current is intermittently supplied to the heaters 132 and 133, the heaters 132 and 133 and the membrane 121. The membrane 121 is cracked due to the fluctuation of the film stress generated between the heater and the film, or the film peeling in which the heaters 132 and 133 are peeled off from the membrane 121 is suppressed. Therefore, it becomes easier to save power by performing pulse driving.
B.第2実施形態:
 図4Aおよび図4Bは、第2実施形態におけるガスセンサ200の構成を示す図である。図4Aは、ガスセンサ200を上面から見た様子を示しており、図4Bは、図4Aの切断線B―Bにおけるガスセンサ200の断面を示している。
 第2実施形態のガスセンサ200は、第1実施形態のガスセンサ100と同様に作製されるが、後述する機能的な構成の変更に伴い、p型半導体膜150(図2Aおよび2B)およびn型半導体膜130とp型半導体膜150との間の層間絶縁膜140を省略し、空洞部219をいわゆるボッシュプロセスで形成している。他の作製工程は、第1実施形態のガスセンサ100と同様である。なお、n型半導体膜230に替えて、p型半導体膜を用いても良い。
B. Second embodiment:
4A and 4B are diagrams showing the configuration of the gas sensor 200 in the second embodiment. 4A shows the gas sensor 200 as viewed from above, and FIG. 4B shows a cross section of the gas sensor 200 along the cutting line BB in FIG. 4A.
The gas sensor 200 according to the second embodiment is manufactured in the same manner as the gas sensor 100 according to the first embodiment. However, the p-type semiconductor film 150 (FIGS. 2A and 2B) and the n-type semiconductor are changed in accordance with a change in functional configuration to be described later. The interlayer insulating film 140 between the film 130 and the p-type semiconductor film 150 is omitted, and the cavity 219 is formed by a so-called Bosch process. Other manufacturing steps are the same as those of the gas sensor 100 of the first embodiment. Note that a p-type semiconductor film may be used instead of the n-type semiconductor film 230.
 図5Aおよび図5Bは、第2実施形態におけるガスセンサ200の機能的な構成を示す図である。図5Aは、図4Aと同様に、ガスセンサ200を上面から見た様子を示している。図5Bは、図5Aにおいて二点鎖線で囲んだ領域R2の拡大図である。なお、図5Aおよび5Bにおいても、図示の便宜上、保護膜280、ガス反応膜291および参照膜292のハッチングを省略するとともに、導電膜270(図4Aおよび4B)の全体が表面に現れるように図示している。 5A and 5B are diagrams illustrating a functional configuration of the gas sensor 200 according to the second embodiment. FIG. 5A shows a state where the gas sensor 200 is viewed from above, as in FIG. 4A. FIG. 5B is an enlarged view of a region R2 surrounded by a two-dot chain line in FIG. 5A. 5A and 5B, for convenience of illustration, the protective film 280, the gas reaction film 291 and the reference film 292 are not hatched, and the entire conductive film 270 (FIGS. 4A and 4B) appears on the surface. Show.
 第2実施形態におけるガスセンサ200は、以下の点で第1実施形態におけるガスセンサ100と異なっている。
・p型半導体膜150(図2Aおよび2B)によって形成されたp型熱電素子151(図3Aおよび3B)に替えて導電膜270(図4Aおよび4B)によって形成された金属熱電素子279を用いている点、
・n型半導体膜130によって形成されたヒータ132,133に替えて導電膜270によって形成されたヒータMH1,MH2を用いている点、
・導電膜170によって形成されたヒータ配線176,177に替えてn型半導体膜230によって形成されたヒータ配線234,235を用いている点、および
・これらの変更に合わせて各部の形状を変更している点。
 他の点は、第1実施形態におけるガスセンサ100と同様である。
The gas sensor 200 in the second embodiment is different from the gas sensor 100 in the first embodiment in the following points.
Using the metal thermoelectric element 279 formed by the conductive film 270 (FIGS. 4A and 4B) instead of the p-type thermoelectric element 151 (FIGS. 3A and 3B) formed by the p-type semiconductor film 150 (FIGS. 2A and 2B) The point
The heaters MH1 and MH2 formed by the conductive film 270 are used instead of the heaters 132 and 133 formed by the n-type semiconductor film 130,
The heater wirings 234 and 235 formed by the n-type semiconductor film 230 are used in place of the heater wirings 176 and 177 formed by the conductive film 170, and the shape of each part is changed in accordance with these changes. Points.
Other points are the same as those of the gas sensor 100 in the first embodiment.
 第2実施形態において、サーモパイルT21~T24は、n型熱電素子231と、n型熱電素子231の上部に形成された金属熱電素子279とにより構成されている。上下に積層された金属熱電素子279とn型熱電素子231とは、層間絶縁膜260(図4Aおよび4B)に形成されたコンタクトホールH21を介して接続されている。また、金属熱電素子279と隣接するn型熱電素子231とは、コンタクトホールH22を介して接続されている。これにより、コンタクトホールH21における金属熱電素子279とn型熱電素子231との接続部が温接点として機能し、コンタクトホールH22における金属熱電素子279とn型熱電素子231との接続部が冷接点として機能する。 In the second embodiment, the thermopile T21 to T24 includes an n-type thermoelectric element 231 and a metal thermoelectric element 279 formed on the n-type thermoelectric element 231. The metal thermoelectric element 279 and the n-type thermoelectric element 231 stacked above and below are connected via a contact hole H21 formed in the interlayer insulating film 260 (FIGS. 4A and 4B). The metal thermoelectric element 279 and the adjacent n-type thermoelectric element 231 are connected via a contact hole H22. Thereby, the connection part between the metal thermoelectric element 279 and the n-type thermoelectric element 231 in the contact hole H21 functions as a hot junction, and the connection part between the metal thermoelectric element 279 and the n-type thermoelectric element 231 in the contact hole H22 serves as a cold junction. Function.
 ヒータMH1,MH2は、幅の狭い葛折の線状に形成されており、その端部の位置において、層間絶縁膜260には、コンタクトホールH26が設けられている。このようにヒータMH1,MH2を葛折の線状に形成することにより、ヒータMH1,MH2と、メンブレン221との間で発生する膜応力を低減し、メンブレン221の反りやひび割れが抑制されるとともに、ヒータMH1,MH2の膜剥がれが抑制される。また、葛折の線状に形成することにより、ヒータMH1,MH2の抵抗値を高精度で制御することが容易となる。
 ヒータMH1,MH2のそれぞれは、コンタクトホールH26を介して、ヒータ配線234,235と接続されている。これらのヒータ配線234,235のうちの一方のヒータ配線234は、ヒータ通電電極275の上部において層間絶縁膜260に設けられたコンタクトホールH27を介して、ヒータ通電電極275に接続されている。また、他方のヒータ配線235は、中心軸C2に対してヒータ通電電極275とほぼ対称な位置まで延びるグランド配線278と、中心軸C2に対してコンタクトホールH27とほぼ対称に形成されたコンタクトホールH28を介して接続されている。
The heaters MH <b> 1 and MH <b> 2 are formed in a narrow and narrow line shape, and a contact hole H <b> 26 is provided in the interlayer insulating film 260 at the end position. By forming the heaters MH1 and MH2 in the shape of a twisted line in this way, the film stress generated between the heaters MH1 and MH2 and the membrane 221 is reduced, and warping and cracking of the membrane 221 are suppressed. Further, film peeling of the heaters MH1 and MH2 is suppressed. Further, by forming the lines in a twisted line shape, it becomes easy to control the resistance values of the heaters MH1 and MH2 with high accuracy.
Each of the heaters MH1 and MH2 is connected to the heater wires 234 and 235 through the contact hole H26. One of the heater wires 234 and 235 is connected to the heater energizing electrode 275 through a contact hole H27 provided in the interlayer insulating film 260 above the heater energizing electrode 275. The other heater wiring 235 includes a ground wiring 278 extending to a position substantially symmetrical with the heater energizing electrode 275 with respect to the central axis C2, and a contact hole H28 formed substantially symmetrical with the contact hole H27 with respect to the central axis C2. Connected through.
 図5Aおよび5Bに示すように、ヒータ配線234,235とヒータMH1,MH2とを接続するためのコンタクトホールH26は、メンブレン221上に配置されており、ヒータ配線234,235と、ヒータ通電電極275あるいはグランド配線278とを接続するためのコンタクトホールH27,H28は、基板210(図4Aおよび4B)上に配置されている。そのため、ヒータ配線234,235は、基板210とメンブレン221とを跨ぐように配置されている。 As shown in FIGS. 5A and 5B, the contact hole H26 for connecting the heater wires 234 and 235 and the heaters MH1 and MH2 is disposed on the membrane 221, and the heater wires 234 and 235 and the heater energizing electrode 275 are provided. Alternatively, contact holes H27 and H28 for connecting to the ground wiring 278 are arranged on the substrate 210 (FIGS. 4A and 4B). Therefore, the heater wires 234 and 235 are arranged so as to straddle the substrate 210 and the membrane 221.
 このように、第2実施形態のガスセンサ200においては、基板210とメンブレン221とを跨ぐヒータ配線234,235が導電膜270よりも熱伝導度が低いn型半導体膜230によって形成されているので、ガス反応膜191において可燃性ガスが触媒燃焼することにより発生する熱がヒータ配線234,235を介して基板210に伝達されるのが抑制される。そのため、可燃性ガスの触媒燃焼に伴う温度の上昇量をより大きくし、可燃性ガスの検出感度をより高くすることが可能である。このように、可燃性ガスの検出感度をより高くすることができるので、ヒータMH1,MH2に供給電力を最小限に抑え、ガスセンサ200の省電力化を図ることができる。また、ヒータMH1,MH2に通電することにより発生した熱についても、ヒータ配線234,235を介して基板210に伝達されるのが抑制される。そのため、ヒータMH1,MH2に通電する電流を低減し、ガスセンサ200の省電力化を図ることが可能となる。 Thus, in the gas sensor 200 of the second embodiment, the heater wires 234 and 235 that straddle the substrate 210 and the membrane 221 are formed of the n-type semiconductor film 230 having a lower thermal conductivity than the conductive film 270. Heat generated by catalytic combustion of the combustible gas in the gas reaction film 191 is suppressed from being transmitted to the substrate 210 via the heater wires 234 and 235. Therefore, it is possible to increase the amount of temperature increase accompanying catalytic combustion of the combustible gas, and to further increase the detection sensitivity of the combustible gas. Thus, since the detection sensitivity of combustible gas can be made higher, the power supplied to the heaters MH1 and MH2 can be minimized, and the power consumption of the gas sensor 200 can be reduced. Further, the heat generated by energizing the heaters MH1 and MH2 is also suppressed from being transmitted to the substrate 210 through the heater wires 234 and 235. Therefore, it is possible to reduce the current supplied to the heaters MH1 and MH2 and save power in the gas sensor 200.
 上述のように、第2実施形態におけるガスセンサ200では、n型熱電素子231と金属熱電素子279とを接続することにより構成されたサーモパイルT21~T24を用いている。これにより、p型半導体膜150(図2Aおよび2B)およびn型半導体膜130とp型半導体膜150との間の層間絶縁膜140を省略することができる。
 第2実施形態は、このようにガスセンサ200の製造工程を短縮することができる点で、第1実施形態よりも好ましい。一方、第1実施形態は、サーモパイルT11~T14における熱起電力が高くなり、ガスの検出感度をより高くすることが容易となる点で、第2実施形態よりも好ましい。
As described above, the gas sensor 200 according to the second embodiment uses the thermopiles T21 to T24 configured by connecting the n-type thermoelectric element 231 and the metal thermoelectric element 279. Thereby, the p-type semiconductor film 150 (FIGS. 2A and 2B) and the interlayer insulating film 140 between the n-type semiconductor film 130 and the p-type semiconductor film 150 can be omitted.
The second embodiment is preferable to the first embodiment in that the manufacturing process of the gas sensor 200 can be shortened in this way. On the other hand, the first embodiment is preferable to the second embodiment in that the thermoelectromotive force in the thermopiles T11 to T14 is increased and the gas detection sensitivity can be easily increased.
C.変形例:
 本発明は上記各実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
C. Variations:
The present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
C1.変形例1:
 上記第1実施形態では、ヒータ132,133をn型ポリシリコンにより形成し、ヒータ132,133に通電するためのヒータ配線176,177を金属により形成している。また、上記第2実施形態では、ヒータMH1,MH2を金属により形成し、ヒータ配線234,235をn形ポリシリコンにより形成している。
 しかしながら、ヒータおよびヒータ配線の全体をポリシリコンにより形成し、あるいは、ヒータの一部もしくはヒータ配線の一部をポリシリコンにより形成し、他の部分を金属により形成しても良い。一般的には、ヒータと、ヒータに通電するためのヒータ配線の低熱伝導部(メンブレン)上の領域との少なくとも一部が、シリコン系の導電材料で形成されていれば良い。このようにしても、シリコン系の導電材料は、一般的に電気伝導度および熱伝導度が金属より低いため、ヒータの加熱のための電力をより有効にガス反応膜および参照膜の加熱に使用し、あるいは、ヒータで発生した熱がヒータ配線を介して基板に伝達されるのを抑制することができるので、ガスセンサの省電力化を図ることができる。
 また、シリコン系の導電材料は、メンブレンと熱膨張係数が近いので、パルス駆動によりガスセンサの省電力化を図ることもできる。なお、シリコン系の導電材料としては、サーモパイルを構成する熱電素子の一方と同一の材料を用いても良く、熱電素子とは異なる材料を用いても良い。但し、ヒータとヒータ配線のうちのシリコン系の導電材料で形成される部分を、サーモパイルを構成する熱電素子の一方と同時に形成し、ガスセンサの製造工程を短縮することが可能となる点で、シリコン系の導電材料として、サーモパイルを構成する熱電素子の一方と同一の材料を用いるのが好ましい。
C1. Modification 1:
In the first embodiment, the heaters 132 and 133 are made of n-type polysilicon, and the heater wires 176 and 177 for energizing the heaters 132 and 133 are made of metal. In the second embodiment, the heaters MH1 and MH2 are made of metal, and the heater wires 234 and 235 are made of n-type polysilicon.
However, the entire heater and heater wiring may be formed of polysilicon, or a part of the heater or a part of the heater wiring may be formed of polysilicon, and the other part may be formed of metal. Generally, at least a part of the heater and the region on the low thermal conductive portion (membrane) of the heater wiring for energizing the heater may be formed of a silicon-based conductive material. Even in this way, silicon-based conductive materials generally have lower electrical and thermal conductivity than metals, so the power for heating the heater is used more effectively for heating the gas reaction film and the reference film. Alternatively, heat generated in the heater can be suppressed from being transmitted to the substrate via the heater wiring, so that power saving of the gas sensor can be achieved.
In addition, since the silicon-based conductive material has a thermal expansion coefficient close to that of the membrane, the power consumption of the gas sensor can be reduced by pulse driving. As the silicon-based conductive material, the same material as one of the thermoelectric elements constituting the thermopile may be used, or a material different from the thermoelectric element may be used. However, the portion of the heater and the heater wiring formed of silicon-based conductive material is formed at the same time as one of the thermoelectric elements constituting the thermopile, so that the manufacturing process of the gas sensor can be shortened. As the conductive material of the system, it is preferable to use the same material as that of one of the thermoelectric elements constituting the thermopile.
C2.変形例2:
 上記各実施形態では、ガス検出部のヒータに通電するためのヒータ通電パッドと、補償部のヒータに通電するためのヒータ通電パッドとを別個に形成し、ガス検出部のヒータと補償部のヒータとに別個に通電できるようにしている。
 しかしながら、例えば、これらのヒータ通電パッドを1つの端子に接続し、2つのヒータに同時に通電することも可能である。但し、雰囲気中に可燃性ガスがない状態において各ヒータの通電電流を調整して、ガス濃度に対応する出力信号のオフセットを0に調整することにより、より低濃度のガスを検出することが可能となる点で、ガス検出部のヒータと補償部のヒータとに別個に通電できるようにするのが好ましい。
C2. Modification 2:
In each of the above embodiments, the heater energization pad for energizing the heater of the gas detection unit and the heater energization pad for energizing the heater of the compensation unit are separately formed, and the heater of the gas detection unit and the heater of the compensation unit And can be energized separately.
However, for example, it is possible to connect these heater energization pads to one terminal and energize two heaters simultaneously. However, it is possible to detect a lower concentration gas by adjusting the energization current of each heater and adjusting the offset of the output signal corresponding to the gas concentration to 0 when there is no flammable gas in the atmosphere. Therefore, it is preferable that the heater of the gas detection unit and the heater of the compensation unit can be energized separately.
C3.変形例3:
 上記第1実施形態では、n型およびp型熱電素子131,151を温接点接続線171および冷接点接続線172で接続することにより構成されたサーモパイルT11~T14を用いている。また、第2実施形態では、n型熱電素子231および金属熱電素子279と接続することにより構成されたサーモパイルT21~T24を用いている。
 しかしながら、材質の異なる2つの金属熱電素子を接続してサーモパイルを構成することも可能である。但し、熱起電力を高くし、ガスセンサの感度をより高くすることができる点で、サーモパイルを構成する2つの熱電素子の少なくとも一方を半導体により形成するのが好ましい。
C3. Modification 3:
In the first embodiment, the thermopiles T11 to T14 configured by connecting the n-type and p-type thermoelectric elements 131 and 151 by the hot junction connection line 171 and the cold junction connection line 172 are used. In the second embodiment, thermopiles T21 to T24 configured by connecting to the n-type thermoelectric element 231 and the metal thermoelectric element 279 are used.
However, it is also possible to configure a thermopile by connecting two metal thermoelectric elements of different materials. However, it is preferable that at least one of the two thermoelectric elements constituting the thermopile is formed of a semiconductor in that the thermoelectromotive force can be increased and the sensitivity of the gas sensor can be further increased.
C4.変形例4:
 上記各実施形態では、ガス検出部と補償部とのそれぞれにおいて、2つのサーモパイルを設けているが、サーモパイルの数は、任意の数とすることができる。例えば、ガス検出部と補償部とのそれぞれにおいて、単一のサーモパイルを設けても良く、また、さらにサーモパイルを増やしても良い。
 また、上記各実施形態では、ガス反応膜と参照膜との温度を測定するために、熱電対を直列接続したサーモパイルを用いているが、ガス検出部と補償部とのそれぞれにおいて、単一の熱電対、あるいは、測温抵抗体やサーミスタ等の他の測温素子を設け、それによりガス反応膜と参照膜との温度を測定しても良い。但し、ガス反応膜と参照膜との温度を表す十分に高い電圧信号が直接出力され、可燃性ガスの検出感度をより高くすることが容易となる点で、サーモパイルによりガス反応膜と参照膜との温度を測定するのが好ましい。
C4. Modification 4:
In each of the embodiments described above, two thermopiles are provided in each of the gas detection unit and the compensation unit, but the number of thermopiles can be any number. For example, a single thermopile may be provided in each of the gas detection unit and the compensation unit, and the thermopile may be further increased.
Further, in each of the above embodiments, a thermopile in which thermocouples are connected in series is used to measure the temperature of the gas reaction film and the reference film. Other temperature measuring elements such as a thermocouple or a resistance temperature detector or a thermistor may be provided to measure the temperature of the gas reaction film and the reference film. However, a sufficiently high voltage signal representing the temperature of the gas reaction membrane and the reference membrane is directly output, and it becomes easy to further increase the detection sensitivity of the combustible gas. It is preferable to measure the temperature of
C5.変形例5:
 上記実施形態では、燃焼触媒を担持していない担体を含む参照膜を形成しているが、製造工程を簡略化するために参照膜の形成を省略することも可能である。この場合、補償部の測温素子は、温度がガス反応膜に近くなるヒータの温度を測定するように、ヒータの近傍に形成されていれば良い。なお、このとき、補償部のヒータは、補償部の測温素子の近傍を含む領域に形成されているといえる。但し、参照膜およびガス反応膜のそれぞれが形成している領域の熱容量をより近くし、気流等の影響による可燃性ガスの検出精度の低下を抑制することができる点で、参照膜を形成するのが好ましい。
C5. Modification 5:
In the above embodiment, the reference film including the carrier that does not carry the combustion catalyst is formed. However, in order to simplify the manufacturing process, the formation of the reference film may be omitted. In this case, the temperature measuring element of the compensation unit may be formed in the vicinity of the heater so as to measure the temperature of the heater whose temperature is close to the gas reaction film. At this time, it can be said that the heater of the compensation unit is formed in a region including the vicinity of the temperature measuring element of the compensation unit. However, the reference film is formed in that the heat capacity of the region formed by each of the reference film and the gas reaction film can be made closer, and the decrease in the detection accuracy of the combustible gas due to the influence of the airflow and the like can be suppressed. Is preferred.
C6.変形例6:
 上記各実施形態では、ガス反応膜および参照膜のそれぞれの下にヒータを形成しているが、参照膜の下のヒータを省略することも可能である。この場合においても、空洞部を渡る薄いメンブレン上にガス反応膜および参照膜が形成されているので、雰囲気が可燃性ガスを含まない場合におけるガス反応膜と参照膜と温度差は、主としてメンブレン上の構造により決定される。そして、基板の温度が変動しても、ガス反応膜と参照膜との温度差の変動は抑制されるので、可燃性ガスの濃度に対応するガス反応膜の温度上昇量をより正確に求めることが可能となる。但し、雰囲気が可燃性ガスを含まない場合においてガス反応膜と参照膜とをほぼ同温度とし、ガス濃度に対応する出力信号のオフセットをほぼ0とすることにより、低濃度のガスをより容易に検出することが可能となる点で、ガス反応膜および参照膜のそれぞれの下にヒータを形成するのが好ましい。
C6. Modification 6:
In each of the above embodiments, the heater is formed under each of the gas reaction film and the reference film, but the heater under the reference film may be omitted. Even in this case, since the gas reaction membrane and the reference membrane are formed on the thin membrane across the cavity, the temperature difference between the gas reaction membrane and the reference membrane when the atmosphere does not contain a flammable gas is mainly on the membrane. Determined by the structure of Even if the temperature of the substrate fluctuates, fluctuations in the temperature difference between the gas reaction film and the reference film are suppressed, so that the amount of temperature increase of the gas reaction film corresponding to the concentration of combustible gas can be obtained more accurately. Is possible. However, when the atmosphere does not contain a flammable gas, the gas reaction film and the reference film are set to substantially the same temperature, and the offset of the output signal corresponding to the gas concentration is set to approximately 0, so that the low concentration gas can be made easier. It is preferable to form a heater under each of the gas reaction film and the reference film in that detection is possible.
C7.変形例7:
 上記各実施形態では、ガスセンサに、ガス検出部と補償部とを設けているが、補償部を省略することも可能である。この場合、ガス反応膜を加熱するヒータに通電を開始してから十分に時間が経過した後、演算増幅器等を用いて出力電圧が0となるようにオフセットを調整することにより、可燃性ガスの検出を行うことができる。
C7. Modification 7:
In each of the above embodiments, the gas sensor is provided with the gas detection unit and the compensation unit, but the compensation unit may be omitted. In this case, after a sufficient amount of time has elapsed since the start of energization of the heater that heats the gas reaction membrane, the offset of the combustible gas is adjusted by adjusting the offset so that the output voltage becomes zero using an operational amplifier or the like. Detection can be performed.
C8.変形例8:
 上記各実施形態では、低熱伝導部として、基板自体に設けられた空洞部、もしくは、基板上に形成された空洞部を用いているが、低熱伝導部は必ずしも空洞である必要はない。
 低熱伝導部は、例えば、基板自体に設けられた空洞部に、多孔質材や樹脂等の断熱材を埋め込むことにより形成することができる。多孔質材としてSiOを用いる場合には、周知の低比誘電率(Low-k)絶縁膜やシリカエアロゲルの形成技術により空洞部に多孔質SiOを埋め込むことができる。多孔質材として樹脂を用いる場合には、当該樹脂のモノマやプレポリマを空洞部に充填し、その後、熱や紫外線によりモノマやプレポリマを重合させれば良い。
 また、低熱伝導部として、基板上に多孔質材や樹脂等の断熱膜を形成しても良い。この場合、上述した基板上に空洞部を形成する工程と同様に、基板もしくは絶縁膜上に多孔質材や樹脂等の断熱膜を形成し、形成した断熱膜を残存させることにより低熱伝導部を形成することができる。また、基板上に断熱膜を形成するためのポリシリコン膜を形成し、当該ポリシリコン膜を陽極酸化により多孔質化しても良い。
 さらに、低熱伝導部として、基板自体に多孔質部を形成しても良い。多孔質部は、例えば、基板としてSi基板を用いている場合には、基板自体に空洞部を形成する工程と同様に、基板の下面側もしくは基板の上面側から、空洞部に相当する領域を陽極酸化により多孔質化することで形成することができる。
 なお、空洞でない低熱伝導部を用いる場合において、低熱伝導部の材料が導電性を有する場合には、低熱伝導部と、半導体膜あるいは導電膜との間には絶縁膜が追加される。このように、空洞でない低熱伝導部を用いることにより、低熱伝導部上に形成された機能膜の破損が抑制される。
C8. Modification 8:
In each of the embodiments described above, a cavity provided in the substrate itself or a cavity formed on the substrate is used as the low thermal conduction part. However, the low thermal conduction part is not necessarily a cavity.
The low heat conductive part can be formed, for example, by embedding a heat insulating material such as a porous material or a resin in a cavity provided in the substrate itself. When SiO 2 is used as the porous material, the porous SiO 2 can be embedded in the cavity by a known technique of forming a low relative dielectric constant (Low-k) insulating film or silica airgel. When a resin is used as the porous material, the resin monomer or prepolymer is filled in the cavity, and then the monomer or prepolymer is polymerized by heat or ultraviolet light.
Moreover, you may form heat insulation films, such as a porous material and resin, on a board | substrate as a low heat conductive part. In this case, similarly to the above-described step of forming the cavity on the substrate, a heat insulating film such as a porous material or a resin is formed on the substrate or the insulating film, and the formed heat insulating film is left so that the low heat conductive portion is formed. Can be formed. Further, a polysilicon film for forming a heat insulating film may be formed on the substrate, and the polysilicon film may be made porous by anodic oxidation.
Furthermore, you may form a porous part in board | substrate itself as a low heat conductive part. For example, when a Si substrate is used as the substrate, the porous portion is a region corresponding to the cavity from the lower surface side of the substrate or the upper surface side of the substrate, as in the step of forming the cavity portion in the substrate itself. It can be formed by making it porous by anodization.
In the case of using a low thermal conduction part that is not a cavity, if the material of the low thermal conduction part is conductive, an insulating film is added between the low thermal conduction part and the semiconductor film or the conductive film. As described above, the use of the low thermal conductive portion that is not a cavity suppresses the breakage of the functional film formed on the low thermal conductive portion.
10…センサモジュール
11…ケース
12…キャップ
13…外部電極
14…端子
15…ダイボンド材
16…ワイヤ
19…パッケージ
100,200…ガスセンサ
101…マスク膜
109…開口部
110, 210…基板
119, 219…空洞部
120,220…絶縁膜
121,221…メンブレン
130,230…n型半導体膜
131,231…n型熱電素子
132,133,MH1,MH2…ヒータ
234,235…ヒータ配線
140,160,260…層間絶縁膜
150…p型半導体膜
151…p型熱電素子
170,270…導電膜
171…温接点接続線
172…冷接点接続線
173,273…信号出力電極
174,274…サーモパイル接続線
175,275…ヒータ通電電極
176,177…ヒータ配線
178,278…グランド配線
279…金属熱電素子
180,280…保護膜
181~185,281~285…開口部
191,291…ガス反応膜
192,292…参照膜
H11~H15,H21,H22,H26~H28…コンタクトホール
P11,P13,P21,P23…信号出力パッド
P12,P14,P22,P24…ヒータ通電パッド
P15,P25…グランドパッド
PD3,PD4…ボンディングパッド
T11~T14,T21~T24…サーモパイル
DESCRIPTION OF SYMBOLS 10 ... Sensor module 11 ... Case 12 ... Cap 13 ... External electrode 14 ... Terminal 15 ... Die bond material 16 ... Wire 19 ... Package 100, 200 ... Gas sensor 101 ... Mask film 109 ... Opening part 110, 210 ... Substrate 119, 219 ... Cavity Sections 120, 220 ... insulating films 121, 221 ... membranes 130, 230 ... n- type semiconductor films 131, 231 ... n-type thermoelectric elements 132, 133, MH1, MH2 ... heaters 234, 235 ... heater wirings 140, 160, 260 ... interlayers Insulating film 150 ... p-type semiconductor film 151 ... p-type thermoelectric elements 170 and 270 ... conductive film 171 ... hot junction connection line 172 ... cold junction connection lines 173 and 273 ... signal output electrodes 174 and 274 ... thermopile connection lines 175 and 275 ... Heater energizing electrodes 176, 177 ... heater wiring 178, 278 ... ground wiring 2 79 ... Metal thermoelectric elements 180, 280 ... Protective films 181 to 185, 281 to 285 ... Openings 191, 291 ... Gas reaction films 192, 292 ... Reference films H11 to H15, H21, H22, H26 to H28 ... Contact holes P11, P13, P21, P23 ... Signal output pads P12, P14, P22, P24 ... Heater energizing pads P15, P25 ... Ground pads PD3, PD4 ... Bonding pads T11-T14, T21-T24 ... Thermopile

Claims (4)

  1.  可燃性ガスを検出する接触燃焼式ガスセンサであって、
     低熱伝導部および高熱伝導部と、
     前記低熱伝導部上に形成された反応膜ヒータと、前記低熱伝導部上において前記反応膜ヒータの上に形成され前記可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、前記低熱伝導部上において前記ガス反応膜の近傍に形成された測温素子と、を有するガス検出部と、
     前記高熱伝導部上から前記反応膜ヒータに延びて前記反応膜ヒータに通電するための反応膜ヒータ配線と、
     を備え、
     前記反応膜ヒータと、前記反応膜ヒータ配線の前記低熱伝導部上の領域との少なくとも一部は、シリコン系の導電材料で形成されている、
     接触燃焼式ガスセンサ。
    A contact combustion type gas sensor for detecting a combustible gas,
    A low heat conduction part and a high heat conduction part;
    A reaction membrane heater formed on the low thermal conduction portion; a gas reaction membrane including a carrier formed on the reaction membrane heater on the low thermal conduction portion and carrying a combustion catalyst for the combustible gas; A temperature measuring element formed in the vicinity of the gas reaction film on the part, and a gas detection unit,
    A reaction film heater wiring for extending the reaction film heater from above the high heat conduction portion and energizing the reaction film heater;
    With
    At least a part of the reaction film heater and the region on the low thermal conduction part of the reaction film heater wiring is formed of a silicon-based conductive material,
    Contact combustion type gas sensor.
  2.  前記反応膜ヒータは、前記シリコン系の導電材料により平板状に形成されている、請求項1記載の接触燃焼式ガスセンサ。 The catalytic combustion type gas sensor according to claim 1, wherein the reaction film heater is formed in a flat plate shape by the silicon-based conductive material.
  3.  前記反応膜ヒータは、金属により形成されており、前記反応膜ヒータ配線は、前記シリコン系の導電材料で形成されている、請求項1記載の接触燃焼式ガスセンサ。 The catalytic combustion type gas sensor according to claim 1, wherein the reaction film heater is made of metal, and the reaction film heater wiring is formed of the silicon-based conductive material.
  4.  前記測温素子は、前記シリコン系の導電材料で形成された第1の熱電素子と、前記第1の熱電素子とは異なる導電材料で形成された第2の熱電素子とを接続することにより構成されたサーモパイルの温接点である、請求項1ないし3のいずれか1項に記載の接触燃焼式ガスセンサ。 The temperature measuring element is configured by connecting a first thermoelectric element formed of the silicon-based conductive material and a second thermoelectric element formed of a conductive material different from the first thermoelectric element. The contact combustion type gas sensor according to claim 1, wherein the contact combustion type gas sensor is a hot junction of a thermopile.
PCT/JP2016/053576 2015-02-17 2016-02-05 Contact combustion-type gas sensor WO2016132935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015028729A JP2016151472A (en) 2015-02-17 2015-02-17 Contact combustion type gas sensor
JP2015-028729 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132935A1 true WO2016132935A1 (en) 2016-08-25

Family

ID=56692081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053576 WO2016132935A1 (en) 2015-02-17 2016-02-05 Contact combustion-type gas sensor

Country Status (2)

Country Link
JP (1) JP2016151472A (en)
WO (1) WO2016132935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998303A (en) * 2017-08-10 2020-04-10 国际商业机器公司 Low power combustible gas sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630480B1 (en) 2016-10-06 2024-01-31 엘지전자 주식회사 Sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292202A (en) * 1995-04-25 1996-11-05 Ricoh Seiki Co Ltd Detector
US5902556A (en) * 1993-10-08 1999-05-11 Microchip (Proprietary) Limited Catalytic gas sensor
JP2000298108A (en) * 1999-04-13 2000-10-24 Osaka Gas Co Ltd Gas sensor
JP2001099798A (en) * 1999-09-29 2001-04-13 Yazaki Corp Contact combustion type gas sensor, and method and device for detecting gas
JP2004125684A (en) * 2002-10-04 2004-04-22 Tokyo Gas Co Ltd Thermopile type gas densimeter, and its design method
JP2005009998A (en) * 2003-06-18 2005-01-13 Toshiba Corp Infrared solid image pickup element and its manufacturing method
JP2010210293A (en) * 2009-03-06 2010-09-24 Nec Corp Thermal infrared sensor, and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728244A (en) * 1980-07-28 1982-02-15 Matsushita Electric Ind Co Ltd Manufacture of gas sensor
JP4323970B2 (en) * 2004-01-23 2009-09-02 パナソニック株式会社 Gas sensor structure and method for manufacturing gas sensor structure
JP2008057975A (en) * 2004-12-21 2008-03-13 Matsushita Electric Ind Co Ltd Hydrogen gas sensor and combustible gas detection sensor
JP5321327B2 (en) * 2009-07-31 2013-10-23 株式会社村田製作所 Thermal environment sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902556A (en) * 1993-10-08 1999-05-11 Microchip (Proprietary) Limited Catalytic gas sensor
JPH08292202A (en) * 1995-04-25 1996-11-05 Ricoh Seiki Co Ltd Detector
JP2000298108A (en) * 1999-04-13 2000-10-24 Osaka Gas Co Ltd Gas sensor
JP2001099798A (en) * 1999-09-29 2001-04-13 Yazaki Corp Contact combustion type gas sensor, and method and device for detecting gas
JP2004125684A (en) * 2002-10-04 2004-04-22 Tokyo Gas Co Ltd Thermopile type gas densimeter, and its design method
JP2005009998A (en) * 2003-06-18 2005-01-13 Toshiba Corp Infrared solid image pickup element and its manufacturing method
JP2010210293A (en) * 2009-03-06 2010-09-24 Nec Corp Thermal infrared sensor, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998303A (en) * 2017-08-10 2020-04-10 国际商业机器公司 Low power combustible gas sensing
JP2020529609A (en) * 2017-08-10 2020-10-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Combustible gas sensors, detectors, and methods for detecting flammable gases
JP7137283B2 (en) 2017-08-10 2022-09-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Combustible gas sensor, detector and method of detecting combustible gas

Also Published As

Publication number Publication date
JP2016151472A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6467173B2 (en) Contact combustion type gas sensor
JP5210491B2 (en) Thermal flow sensor
US6557411B1 (en) Heating element type mass air flow sensor, and internal combustion engine-control apparatus using the sensor
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
JP5683192B2 (en) Thermal flow sensor
WO2016132934A1 (en) Contact combustion-type gas sensor
WO2016132935A1 (en) Contact combustion-type gas sensor
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP2019158358A (en) Sensor element and gas sensor including the same
US11567025B2 (en) Gas sensor
US7185539B2 (en) Flow sensor
JP6467172B2 (en) Contact combustion type gas sensor
JP2016109527A (en) Contact combustion type gas sensor
JP2016151473A (en) Thermal sensor
JP2022139173A (en) flow sensor chip
KR102219542B1 (en) Contact combustion type gas sensor and method for manufacturing the same
JP2007242445A (en) Micro-heater and flow sensor using it
KR100559129B1 (en) Thermal air flow sensor
JP6685789B2 (en) Gas sensor
JP2016219365A (en) Micro heater and sensor
JP5319744B2 (en) Thermal flow sensor
KR0184803B1 (en) Automobile air-condition heater and its manufacturing method
JP2002156279A (en) Thermopile type infrared sensor
JP6467254B2 (en) Infrared sensor
JPH10221144A (en) Micro heater and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752322

Country of ref document: EP

Kind code of ref document: A1