WO2016132496A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2016132496A1
WO2016132496A1 PCT/JP2015/054500 JP2015054500W WO2016132496A1 WO 2016132496 A1 WO2016132496 A1 WO 2016132496A1 JP 2015054500 W JP2015054500 W JP 2015054500W WO 2016132496 A1 WO2016132496 A1 WO 2016132496A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control unit
change
air
indoor units
Prior art date
Application number
PCT/JP2015/054500
Other languages
English (en)
French (fr)
Inventor
遼太 福田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017500209A priority Critical patent/JP6320617B2/ja
Priority to GB1711447.1A priority patent/GB2552896B/en
Priority to PCT/JP2015/054500 priority patent/WO2016132496A1/ja
Publication of WO2016132496A1 publication Critical patent/WO2016132496A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner capable of automatically controlling a blower so that a predetermined air volume is obtained when it deviates from an initial static wind pressure value during operation.
  • a damper may be installed in the duct to adjust to a predetermined air volume. In the above-described method, even if the required air volume decreases, the power load of the blower hardly changes, so that energy loss occurs.
  • the present invention is for solving the above-described problems, and in the case of an installation configuration in which a plurality of indoor units are connected to a single duct, the entire air volume can be efficiently reduced without measuring static pressure and air volume.
  • An object is to provide an air conditioner to be controlled.
  • An air conditioner includes a plurality of indoor units each having a fan and a control unit, and a duct connected to the plurality of indoor units and sending out air conditioned by the plurality of indoor units,
  • One of the plurality of indoor units is a master unit, the other is a slave unit, and the control unit of the master unit and the control unit of the slave unit each determine the amount of air blown by the own unit, and the control unit of the master unit is , Taking in the blast volume of the slave unit, obtaining the overall blast volume of the plurality of indoor units including its own unit, determining whether the overall blast volume is excessive or insufficient with respect to the reference air volume, When it is determined that there is a shortage, the fan of the indoor unit that can be driven most efficiently among the plurality of indoor units including the own unit is selected, and a change in the rotation speed of the fan is commanded.
  • the indoor unit fan that can be driven most efficiently among all the indoor units is selected and the rotation speed of the fan is instructed, it approaches the predetermined air volume.
  • the entire air volume can be efficiently controlled without measuring the static pressure and the air volume.
  • FIG. 1 is a diagram illustrating an installation mode of indoor units 1, 2, and 3 of an air conditioner 100 according to Embodiment 1 of the present invention.
  • Two or more indoor units 1, 2, and 3 of the air conditioner 100 shown in FIG. Here, a case where three units are installed will be described as an example.
  • the indoor units 1, 2, and 3 are connected to the duct 4, and the indoor units 1, 2, and 3 are communicably connected via the communication line 5.
  • the communication line 5 may be wired or wireless.
  • one of the indoor units 1, 2, and 3 is set as a master unit, and other indoor units other than the master unit are set as slave units.
  • the indoor unit 1 is assumed to be a master unit.
  • the indoor units 2 and 3 are set as slave units.
  • FIG. 2 is a schematic diagram illustrating the configuration of the indoor unit 1 of the air conditioner 100 according to Embodiment 1 of the present invention.
  • the indoor unit 1 controls a heat exchanger 6 that exchanges heat between refrigerant and room air, a fan 7 that causes room air to flow out into the duct 4, a motor 8 that imparts rotational driving force to the fan 7, and the motor 8.
  • An inverter 9 and a microcomputer 10 that issues a control command to the inverter 9 are provided.
  • the indoor units 2 and 3 have the same configuration as the indoor unit 1. Therefore, the configuration of only the indoor unit 1 will be described.
  • the indoor unit 1 of the air conditioner 100 harmonizes the air by the heat exchanger 6, drives the fan 7 by the motor 8 controlled by the inverter 9 having the microcomputer 10, and conditioned air (outdoors) Blow out air).
  • the microcomputer 10 included in the indoor unit 1 of the air conditioner 100 stores fan characteristics such as the rotational speed of the fan 7, the air volume, the static pressure, and the current.
  • the inverter 9 equipped with the microcomputer 10 includes a mechanism that can detect the rotation speed and current of the fan 7, and can change the rotation speed of the fan 7 by changing the current to the motor 8 that drives the fan 7.
  • the microcomputers 10 of the indoor units 1, 2 and 3 can communicate with each other via the communication line 5.
  • the microcomputer 10 provided in the indoor unit 1 constitutes a control unit of the master unit of the air conditioner 100.
  • the microcomputer 10 with which the indoor units 2 and 3 are provided comprises the control part of the subunit
  • FIG. 3 is a refrigerant circuit diagram illustrating a schematic configuration of the air conditioner 100 according to Embodiment 1 of the present invention.
  • the microcomputer 10 switches the four-way valve 103 to the cooling operation, the refrigerant is compressed by the compressor 101 to become a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 104 through the four-way valve 103.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 104 undergoes heat exchange (heat radiation) with outdoor air that passes through the outdoor heat exchanger 104 and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 104 is depressurized by the capillary tube 105 and the electronically controlled expansion valve 106, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the heat exchanger 6.
  • the gas-liquid two-phase refrigerant that has flowed into the heat exchanger 6 is heat-exchanged with the room air passing through the heat exchanger 6, cools the room air, and is sucked into the compressor 101 as a low-temperature and low-pressure gas refrigerant. .
  • the refrigerant is compressed by the compressor 101 in the same manner as described above to become a high-temperature and high-pressure gas refrigerant and flows into the heat exchanger 6 through the four-way valve 103.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger 6 is heat-exchanged with the room air that passes through the heat exchanger 6, and warms the room air to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat exchanger 6 is depressurized by the electronic control type expansion valve 106 and the capillary tube 105, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 104.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 104 is heat-exchanged with outdoor air that passes through the outdoor heat exchanger 104 and is sucked into the compressor 101 as a low-temperature and low-pressure gas refrigerant.
  • FIG. 4 is a diagram showing a flow during a trial operation of the indoor units 1, 2, and 3 of the air conditioner 100 according to Embodiment 1 of the present invention. First, the control flow at the time of trial operation of the indoor units 1, 2, and 3 of the air conditioner 100 will be described with reference to FIG.
  • step S1 the microcomputer 10 of each indoor unit 1, 2, 3 operates at a predetermined air volume Q0 in which the air volume of the duct 4 is constant during a trial operation such as construction, and the current value A0 of the fan 7 and rotation at that time
  • the number N0 is stored in the microcomputer 10.
  • FIG. 5 is a diagram showing a flow during operation of the master unit of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the master unit control flow during operation of the master unit set in the indoor unit 1 of the air conditioner 100 will be described with reference to FIG.
  • step ST ⁇ b> 1 the microcomputer 10 of the parent device transmits a calculation command for the air flow rate Q from the parent device to the child device through the communication line 5 during the operation start.
  • the master unit also calculates the air flow rate Q.
  • the air flow rate Q is calculated by measuring the operating current value A and the operating rotational speed N and using the relationship stored in the microcomputer 10.
  • step ST ⁇ b> 2 the microcomputer 10 of the parent device receives the data of the blowing amount Q of the child device through the communication line 5.
  • step ST3 when the microcomputer 10 of the master unit receives the information on the air flow rate Q from the slave unit via the communication line 5, the predetermined air volume Q0 (reference air volume) that makes the duct 4 a constant air volume and all the indoor units 1 and 2 are set.
  • step ST4 the microcomputer 10 of the master unit determines whether or not there is an excess / shortage amount ⁇ Q of the air flow. If the excess air shortage amount ⁇ Q exists in step ST4 (YES), the process proceeds to step ST5. When there is no excess air shortage ⁇ Q (NO), the process proceeds to step ST1.
  • step ST5 the microcomputer 10 of the master unit sends a command to the slave unit to calculate the change amount ⁇ A between the current value A1 and the current value A when the blower amount is changed by the excess or shortage amount ⁇ Q. Send by.
  • the master unit also calculates the change amount ⁇ A.
  • step ST ⁇ b> 6 the microcomputer 10 of the parent device receives the change amount ⁇ A from the child device via the communication line 5.
  • step ST7 the microcomputer 10 of the parent device compares the change amount ⁇ A of each child device transmitted through the communication line 5 with the change amount ⁇ A of the parent device.
  • step ST8 the microcomputer 10 of the master unit performs the most efficient driving (the amount of current can be changed most efficiently) for the indoor unit that satisfies the amount of ventilation excess / deficiency ⁇ Q by the change amount ⁇ A.
  • a command for changing the rotational speed N of the fan 7 by the amount of change ⁇ A is transmitted through the communication line 5.
  • the most efficient driving by the change amount ⁇ A means that when the excess air shortage amount ⁇ Q is insufficient, the air amount is increased to increase the current value by ⁇ A in the indoor unit having the minimum change amount ⁇ A, This refers to minimizing the increase in the total amount of current.
  • step ST9 the microcomputer 10 of the parent device determines whether or not there is a command to change the rotational speed N of the fan 7. If there is a command to change the rotation speed N of the fan 7 in step ST9 (YES), the process proceeds to step ST10. If there is no command to change the rotational speed N of the fan 7 (NO), the process proceeds to step ST1.
  • step ST10 the microcomputer 10 of the master unit changes the rotational speed N of the fan 7 by the amount of change of the change amount ⁇ A by controlling the inverter 9 in accordance with a command for changing the rotational speed N of the fan 7. From step ST10, the process returns to step ST1.
  • FIG. 6 is a diagram showing a flow during operation of the slave unit of the air conditioner 100 according to Embodiment 1 of the present invention.
  • movement of the indoor units 2 and 3 of the air conditioner 100 is demonstrated using FIG.
  • step SH1 the microcomputer 10 of the slave unit receives an information transmission command (command of step ST1) from the master unit via the communication line 5 after the start of normal operation.
  • step SH ⁇ b> 2 the microcomputer 10 of the slave unit measures the operating current value A and the operating rotational speed N for the indoor units 2 and 3, and calculates the air flow rate Q using the relationship stored in the microcomputer 10.
  • step SH ⁇ b> 3 the microcomputer 10 of the child device transmits the calculated air flow rate Q to the parent device via the communication line 5.
  • step SH4 the microcomputer 10 of the slave unit changes the current value A1 when the air flow rate is changed by the air flow excess / shortage amount ⁇ Q calculated from the predetermined air flow rate Q0 and the entire air flow rate Q via the communication line 5. It is determined whether or not there is a command (command in step ST5) for calculating the amount of change ⁇ A from the current value A. If there is a command to calculate the change amount ⁇ A in step SH4 (YES), the process proceeds to step SH5. If there is no command to calculate the change amount ⁇ A (NO), the process proceeds to step SH1.
  • step SH5 the microcomputer 10 of the slave unit calculates the change amount ⁇ A from the difference between the current value A1 and the current value A when the air flow rate is changed by the air flow excess / deficiency amount ⁇ Q.
  • step SH6 the microcomputer 10 of the child device transmits the change amount ⁇ A to the parent device via the communication line 5.
  • step SH7 the microcomputer 10 of the slave unit determines whether or not there is a command for changing the rotational speed N of the fan 7 (command in step ST8) via the communication line 5. If there is a command to change the rotational speed N of the fan 7 in step SH7 (YES), the process proceeds to step SH8. If there is no command to change the rotational speed N of the fan 7 (NO), the process proceeds to step SH1.
  • step SH8 the microcomputer 10 of the slave unit changes the rotational speed N of the fan 7 by the amount of change ⁇ A by controlling the inverter 9 in accordance with a command to change the rotational speed N of the fan 7 via the communication line 5. To do. From step SH8, the process returns to step SH1.
  • FIG. 5 and FIG. 6 the flow of FIG. 5 and FIG. 6 is executed during operation, so that the microcomputer 10 of the slave unit calculates the air flow rate Q in accordance with the command of the microcomputer 10 of the master unit and transfers it to the microcomputer 10 of the master unit. It transmits by the communication line 5.
  • the microcomputer 10 of the master unit that has received the air flow rate Q from the microcomputer 10 of the slave unit via the communication line 5 uses the air flow excess / shortage amount ⁇ Q from the predetermined air volume Q0 and the total air volume Q of all the indoor units 1, 2, and 3.
  • the microcomputer 10 of the master unit determines that there is an excess / shortage amount ⁇ Q of the blower, it issues a command to the microcomputer 10 of the slave unit via the communication line 5 to change the blower amount by the excess / shortage amount ⁇ Q of the slave unit.
  • the amount of change ⁇ A between the current value A1 and the current value A is calculated and transmitted to the microcomputer 10 of the parent machine via the communication line 5.
  • the change amount ⁇ A is also calculated by the microcomputer 10 of the parent machine.
  • the microcomputer 10 of the master unit compares the transmitted change ⁇ A of the master unit and each slave unit, and can be driven most efficiently by the change amount ⁇ A of all indoor units 1, 2, and 3 of the master unit and the slave units.
  • a command to control the rotational speed N of the fan 7 is transmitted through the communication line 5 to a simple indoor unit.
  • the microcomputer 10 of the indoor unit that has received the command changes the rotational speed of the fan 7 by the change amount of the change amount ⁇ A. By repeating this, the air flow rate Q can be adjusted to a predetermined air flow rate Q0.
  • the first embodiment it is possible to adjust the entire air flow rate Q so that the air flow rate Q0 (set value) becomes a predetermined air volume even if the air path pressure loss such as filter clogging increases or decreases during operation.
  • the information of the indoor units 1, 2, and 3 in operation is communicated among a plurality of indoor units, and the microcomputer 10 of the master unit is the most efficient indoor unit that can be driven by the change amount ⁇ A among all the indoor units.
  • the current value is efficiently changed to approach a predetermined air volume Q 0 (set value), and a plurality of indoor units 1, 2 for a single duct 4. 3 can be efficiently controlled without measuring static pressure and air volume.
  • the master unit since the master unit transmits a command to the slave unit and performs overall control, it is possible to achieve adjustment of the air volume and optimization of the power load in the plurality of indoor units 1, 2, and 3 as a whole.
  • the change in the current value is the least increased.
  • the current value is efficiently changed so as to decrease a lot, and can be brought close to a predetermined air volume Q0 (set value).
  • the microcomputer 10 of the parent device when it is determined that there is an excess or deficiency, the microcomputer 10 of the parent device can be driven most efficiently among the plurality of indoor units 1, 2, and 3 including the own device.
  • the fan 7 of the indoor unit is selected, and the change of the rotation speed of the fan 7 is instructed.
  • Q0 set value
  • a plurality of indoor units 1 In the case of the installation configuration in which two and three are connected, the entire air volume can be efficiently controlled without measuring the static pressure and the air volume.
  • the microcomputer 10 of the slave unit obtains the air flow rate Q of its own unit based on a command from the microcomputer 10 of the master unit and transmits it to the microcomputer 10 of the master unit. According to this, comprehensive control by the microcomputer 10 of the master unit can be realized, and adjustment of the air volume and optimization of the power load in the plurality of indoor units 1, 2, and 3 can be achieved.
  • the microcomputer 10 of the master unit acquires the change amount ⁇ A of the current of the slave unit, and is the indoor unit that can be driven most efficiently based on the change amount ⁇ A of the current of the plurality of indoor units 1, 2, and 3 including its own unit
  • the fan 7 is selected, and a change in the rotational speed of the fan 7 is commanded so as to satisfy the excess / deficiency air volume.
  • Q0 set value
  • the entire air volume can be controlled efficiently without measuring the static pressure and the air volume.
  • the microcomputer 10 of the master unit obtains the change amount ⁇ A of the current of the slave unit, and is the smallest change amount ⁇ A of the current among the change amounts ⁇ A of the plurality of indoor units 1, 2, and 3 including the self unit.
  • the indoor unit is selected as the fan of the indoor unit that can be driven most efficiently, and an increase in the number of rotations of the fan 7 is commanded so as to satisfy the insufficient air volume. According to this, in the case of an installation configuration in which a plurality of indoor units 1, 2, 3 are connected to a single duct 4 while the current value efficiently increases to the minimum necessary and approaches the predetermined air volume Q 0 (set value). In addition, the entire air volume can be efficiently controlled without measuring the static pressure and the air volume.
  • the slave microcomputer 10 obtains the current change amount ⁇ A of the own machine based on a command from the master microcomputer 10 and transmits it to the master microcomputer 10. According to this, comprehensive control by the microcomputer 10 of the master unit can be realized, and adjustment of the air volume and optimization of the power load in the plurality of indoor units 1, 2, and 3 can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 単一のダクトに対して複数の室内機を接続する設置形態の場合に静圧および風量の測定を行うことなく全体の風量を効率よく制御する。複数の室内機1、2、3と、ダクト4と、を備え、親機のマイコン10および子機のマイコン10は、それぞれ自機の送風量Qを求め、親機のマイコン10は、子機の送風量Qを取り込んで、自機を含む複数の室内機の全体の送風量Qを求め、全体の送風量Qが所定の風量Q0に対して過不足があるかどうかを判定し、過不足があると判定した場合には、自機を含む複数の室内機1、2、3のうちで最も効率良く駆動可能な室内機のファン7を選択し、ファン7の回転数の変更を指令する。

Description

空気調和機
 本発明は、運転中に初期の静風圧値から外れた際に、自動で所定の風量となるように送風機を制御することができる空気調和機に関するものである。
 従来の空気調和機では、ダクト接続を行う場合には、設備設計の段階であらかじめ必要な静圧と風量を計算して、それに見合うプーリとベルトを選定することで所定の静圧と風量を得ていた。しかし、空気調和機の運転中にフィルタ詰まりなどの風路圧損の変化が生じることがある。風路圧損の変化によって風量の変化が発生した場合に、従来では運転を停止して風路圧損の復元を行うあるいはプーリベルトの設定を変更することで所定の風量を維持していた。
 従来の空気調和機では、ダクトを介して空気調和した空気を搬送する形態の場合に、あらかじめダクトの風路圧損によって減少する風量を見積もり、所定の風量に上乗せすることで、ダクト出口にて所定風量となるように初期の風量を設定していた。
 しかし、上述のように運転中に風路圧損の増減が生じた場合は所定の風量を維持することができない。そのため、ダクトにダンパーを設置して所定の風量へ調整することもある。上述の手法では、所要風量が減少しても送風機の動力負荷はほとんど変化しないため、エネルギーのロスが発生する。
 そこで、定風量システムにおいてバイパスダンパを用い、ダクト出口静圧によって送風機の回転数を制御する手法が示されている(例えば、特許文献1参照)。
特開平8-110079号公報
 しかしながら、静圧測定のための機器が必要であり、構成が複雑になるといった課題がある。また、単一のダクトに対して複数の室内機を接続する設置形態の場合に、それぞれの室内機が独立した制御となるため、全体の風量の調整と動力負荷の最適化とが困難である。
 本発明は、上記課題を解決するためのものであり、単一のダクトに対して複数の室内機を接続する設置形態の場合に静圧および風量の測定を行うことなく全体の風量を効率よく制御する空気調和機を提供することを目的とする。
 本発明に係る空気調和機は、ファンおよび制御部をそれぞれ有する複数の室内機と、前記複数の室内機に接続され、当該複数の室内機によって調和された空気を送り出すダクトと、を備え、前記複数の室内機のうち1つを親機とし、他を子機とし、前記親機の制御部および前記子機の制御部は、それぞれ自機の送風量を求め、前記親機の制御部は、前記子機の送風量を取り込んで、自機を含む前記複数の室内機の全体の送風量を求め、前記全体の送風量が基準風量に対して過不足があるかどうかを判定し、過不足があると判定した場合には、自機を含む前記複数の室内機のうちで最も効率良く駆動可能な室内機のファンを選択し、前記ファンの回転数の変更を指令するものである。
 本発明に係る空気調和機によれば、全室内機のうちで最も効率良く駆動可能な室内機のファンを選択し、ファンの回転数の変更を指令することで、所定の風量に近づけるので、単一のダクトに対して複数の室内機を接続する設置形態の場合に静圧および風量の測定を行うことなく全体の風量を効率よく制御することができる。
本発明の実施の形態1に係る空気調和機の室内機の設置形態を説明する図である。 本発明の実施の形態1に係る空気調和機の室内機の構成を説明する概略図である。 本発明の実施の形態1に係る空気調和装置の概略構成を示す冷媒回路図である。 本発明の実施の形態1に係る空気調和機の室内機の試運転時のフローを示す図である。 本発明の実施の形態1に係る空気調和機の親機の運転時のフローを示す図である。 本発明の実施の形態1に係る空気調和機の子機の運転時のフローを示す図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機100の室内機1、2、3の設置形態を説明する図である。図1に示す空気調和機100の室内機1、2、3を単一のダクト4に2台以上接続する。ここでは3台設置した場合を例として記述する。
 ダクト4に対して室内機1、2、3を接続し、室内機1、2、3間を通信線5にて通信可能に接続する。通信線5は、有線や無線であってよい。この際、室内機1、2、3のうちの1つを親機として設定し、親機以外のその他の室内機を子機として設定する。ここでは、室内機1を親機とする。室内機2、3を子機とする。
 図2は、本発明の実施の形態1に係る空気調和機100の室内機1の構成を説明する概略図である。室内機1は、冷媒と室内空気とを熱交換する熱交換器6と、室内空気をダクト4に流出させるファン7と、ファン7に回転駆動力を付与するモータ8と、モータ8を制御するインバータ9と、インバータ9に制御指令を発するマイコン10と、を備える。室内機2、3は、室内機1と同様な構成である。このため、室内機1のみの構成を説明する。
 空気調和機100の室内機1は、熱交換器6によって空気を調和し、マイコン10を備えたインバータ9で制御されるモータ8によってファン7を駆動し、室内機1外へと調和空気(室内空気)を吹き出す。
 空気調和機100の室内機1が備えるマイコン10には、ファン7の回転数、風量、静圧、電流などのファン特性が記憶されている。
 マイコン10を搭載したインバータ9は、ファン7の回転数と電流を検知できる機構を備え、ファン7を駆動するモータ8への電流を変更することでファン7の回転数を変更できる。
 室内機1、2、3のマイコン10が通信線5によって相互に通信可能である。
 室内機1が備えるマイコン10は、空気調和機100の親機の制御部を構成する。また、室内機2、3が備えるマイコン10は、空気調和機100の子機の制御部を構成する。
 図3は、本発明の実施の形態1に係る空気調和機100の概略構成を示す冷媒回路図である。
 次に、図3を参照して空気調和機100の冷房運転時の動作例について説明する。マイコン10によって四方弁103が冷房運転に切り替えられた場合には、冷媒が圧縮機101により圧縮されて高温高圧のガス冷媒となり、四方弁103を介して室外熱交換器104に流入する。室外熱交換器104に流入した高温高圧のガス冷媒は、室外熱交換器104を通過する室外空気と熱交換(放熱)され、高圧の液冷媒となって流出する。室外熱交換器104から流出した高圧の液冷媒は、毛細管105および電子制御式膨張弁106で減圧され、低圧の気液二相の冷媒となり、熱交換器6に流入する。熱交換器6に流入した気液二相の冷媒は、熱交換器6を通過する室内空気と熱交換され、室内空気を冷却して低温低圧のガス冷媒となって圧縮機101に吸入される。
 次に、図3を参照して空気調和機100の暖房運転時の動作例について説明する。マイコン10によって四方弁103が暖房運転に切り替えられた場合には、冷媒は、上記と同様に圧縮機101により圧縮されて高温高圧のガス冷媒となり、四方弁103を介して熱交換器6に流入する。熱交換器6に流入した高温高圧のガス冷媒は、熱交換器6を通過する室内空気と熱交換され、室内空気を暖めて高圧の液冷媒となる。熱交換器6から流出した高圧の液冷媒は、電子制御式膨張弁106および毛細管105で減圧され、低圧の気液二相の冷媒となり、室外熱交換器104に流入する。室外熱交換器104に流入した低圧の気液二相の冷媒は、室外熱交換器104を通過する室外空気と熱交換され、低温低圧のガス冷媒となって圧縮機101に吸入される。
 次に、実施の形態1に係る空気調和機100のダクト4の風量を制御する動作について説明する。
 図4は、本発明の実施の形態1に係る空気調和機100の室内機1、2、3の試運転時のフローを示す図である。
 まず、図4を用いて空気調和機100の室内機1、2、3の試運転時の制御フローを説明する。
 ステップS1として、各室内機1、2、3のマイコン10は、施工時などの試運転時にダクト4の風量が一定化する所定の風量Q0にて運転し、その時のファン7の電流値A0と回転数N0をマイコン10に記憶しておく。
 図5は、本発明の実施の形態1に係る空気調和機100の親機の運転時のフローを示す図である。
 次に、図5を用いて空気調和機100の室内機1に設定された親機の運転時の親機制御フローを説明する。
 ステップST1として、親機のマイコン10は、運転開始中に親機から子機に対して送風量Qの計算指令を通信線5により送信する。また、親機も送風量Qの計算をする。送風量Qは、運転電流値Aと運転回転数Nとを計測し、マイコン10に記憶された関係を用いて計算される。
 ステップST2では、親機のマイコン10は、子機の送風量Qのデータを通信線5により受信する。
 ステップST3では、親機のマイコン10は、子機からの送風量Qの情報を通信線5により受信すると、ダクト4を一定風量にする所定の風量Q0(基準風量)と全室内機1、2、3の送風量Qの総和(全体の送風量)とから送風過不足量ΔQを計算する。
 ステップST4では、親機のマイコン10は、送風過不足量ΔQが存在するか否かを判別する。ステップST4で送風過不足量ΔQが存在する場合(YES)には、ステップST5に移行する。送風過不足量ΔQが存在しない場合(NO)には、ステップST1に移行する。
 ステップST5では、親機のマイコン10は、送風過不足量ΔQだけ送風量を変化させた際の電流値A1と現在の電流値Aとの変化量ΔAを計算する指令を子機に通信線5により送信する。また、親機も変化量ΔAを計算する。
 ステップST6では、親機のマイコン10は、変化量ΔAを子機から通信線5により受信する。
 ステップST7では、親機のマイコン10は、通信線5により送信されてきた各子機の変化量ΔAおよび親機の変化量ΔAを比較する。
 ステップST8では、親機のマイコン10は、変化量ΔAによって送風過不足量ΔQだけの送風量を充足させる最も効率良く駆動可能な(電流量が最も効率的に変更させられる)室内機に対して変化量ΔAの変化分だけファン7の回転数Nを変更させる指令を通信線5により送信する。
 ここで、変化量ΔAによって最も効率良く駆動可能とは、送風過不足量ΔQが不足の場合には風量を増量するため変化量ΔAが最小値の室内機にてΔAだけ電流値を増加させ、全体の電流量の増加を最少に抑えることをいう。また、送風過不足量ΔQが過剰の場合には風量を減少するため変化量ΔAが最大値の室内機にて変化量ΔAだけ電流値を減少させ、全体の電流量の減少を最大にすることをいう。これにより、電流量を最も効率よく変更する。
 ステップST9では、親機のマイコン10は、ファン7の回転数Nを変更する指令があるか否かを判別する。ステップST9でファン7の回転数Nを変更する指令がある場合(YES)には、ステップST10に移行する。ファン7の回転数Nを変更する指令が無い場合(NO)には、ステップST1に移行する。
 ステップST10では、親機のマイコン10は、ファン7の回転数Nを変更する指令に従い、インバータ9を制御して変化量ΔAの変化分だけファン7の回転数Nを変更する。ステップST10からは、ステップST1に戻る。
 図6は、本発明の実施の形態1に係る空気調和機100の子機の運転時のフローを示す図である。
 図6を用いて空気調和機100の室内機2、3の運転時の子機制御フローを説明する。
 ステップSH1では、子機のマイコン10は、通常の運転開始後に親機からの情報発信指令(ステップST1の指令)を、通信線5を介して受信する。
 ステップSH2では、子機のマイコン10は、室内機2、3に対して運転電流値Aと運転回転数Nとを計測し、マイコン10に記憶された関係を用いて送風量Qを計算する。
 ステップSH3では、子機のマイコン10は、計算した送風量Qを親機へと通信線5により送信する。
 ステップSH4では、子機のマイコン10は、通信線5を介して、所定の風量Q0と全体の送風量Qから算出された送風過不足量ΔQだけ送風量を変化させた際の電流値A1と現在の電流値Aとの変化量ΔAを計算する指令(ステップST5の指令)があるか否かを判別する。ステップSH4で変化量ΔAを計算する指令がある場合(YES)には、ステップSH5に移行する。変化量ΔAを計算する指令が無い場合(NO)には、ステップSH1に移行する。
 ステップSH5では、子機のマイコン10は、変化量ΔAを、送風過不足量ΔQだけ送風量を変化させた際の電流値A1と現在の電流値Aとの差から計算する。
 ステップSH6では、子機のマイコン10は、変化量ΔAを親機に通信線5により送信する。
 ステップSH7では、子機のマイコン10は、通信線5を介して、ファン7の回転数Nを変更する指令(ステップST8の指令)があるか否かを判別する。ステップSH7でファン7の回転数Nを変更する指令がある場合(YES)には、ステップSH8に移行する。ファン7の回転数Nを変更する指令が無い場合(NO)には、ステップSH1に移行する。
 ステップSH8では、子機のマイコン10は、通信線5を介したファン7の回転数Nを変更する指令に従い、インバータ9を制御して変化量ΔAの変化分だけファン7の回転数Nを変更する。ステップSH8からは、ステップSH1に戻る。
 以上のように、図5、図6のフローが運転時に実行されることで、子機のマイコン10は、親機のマイコン10の指令に従い送風量Qを計算して親機のマイコン10へと通信線5により送信する。子機のマイコン10からの送風量Qを通信線5により受信した親機のマイコン10は、所定の風量Q0と全室内機1、2、3の全体の送風量Qとから送風過不足量ΔQを計算する。
 親機のマイコン10が送風過不足量ΔQが存在すると判断すると、通信線5を介して子機のマイコン10に指令を出し、子機のマイコン10に送風過不足量ΔQだけ送風量を変化させた際の電流値A1と現在の電流値Aとの変化量ΔAを計算させ、親機のマイコン10に通信線5により送信させる。親機のマイコン10でも変化量ΔAを計算する。
 親機のマイコン10は、送信されてきた親機および各子機の変化量ΔAを比較し、親機および子機の全室内機1、2、3のうち変化量ΔAによって最も効率良く駆動可能な室内機に対してファン7の回転数Nを制御させる指令を通信線5により送信する。
 指令を受信した室内機のマイコン10は、変化量ΔAの変化分だけファン7の回転数を変更する。これを繰り返すことで送風量Qを所定の風量Q0へ調整することができる。
 実施の形態1によれば、運転中にフィルタ詰まりなどの風路圧損の増減が発生しても所定の風量Q0(設定値)となるように全体の送風量Qを調整することができる。また、複数の室内機の間で運転中の室内機1、2、3の情報を通信し、親機のマイコン10が全室内機のうち変化量ΔAによって最も効率良く駆動可能な室内機に対してファン7の回転数Nの変更を指令することで、電流値が効率的に変更されて所定の風量Q0(設定値)に近づけ、単一のダクト4に対して複数の室内機1、2、3を接続する設置形態の場合に、静圧および風量の測定を行うことなく全体の風量を効率よく制御することができる。また、親機が子機に指令を発信して総合制御するので、複数の室内機1、2、3全体での風量の調整と動力負荷の最適化とを達成することができる。
 また、電流の変化量ΔAによって最も効率良く駆動可能な室内機に対してのみ電流の変化量ΔAの変化分だけファン7の回転数を変更するので、電流値の変化が最も少なく増加するか最も多く減少するように電流値が効率的に変更されて所定の風量Q0(設定値)に近づけることができる。
 以上の実施の形態1によれば、親機のマイコン10は、過不足があると判定した場合には、自機を含む複数の室内機1、2、3のうちで最も効率良く駆動可能な室内機のファン7を選択し、ファン7の回転数の変更を指令する。これによると、最も効率良く駆動可能な室内機のファン7の回転数が変更されることで、所定の風量Q0(設定値)に近づけ、単一のダクト4に対して複数の室内機1、2、3を接続する設置形態の場合に、静圧および風量の測定を行うことなく全体の風量を効率よく制御することができる。
 子機のマイコン10は、親機のマイコン10からの指令に基づいて自機の送風量Qを求めて親機のマイコン10に送信する。これによると、親機のマイコン10による総合制御を実現することができ、複数の室内機1、2、3全体での風量の調整と動力負荷の最適化を達成することができる。
 親機のマイコン10は、子機の電流の変化量ΔAを取得し、自機を含む複数の室内機1、2、3の電流の変化量ΔAに基づいて、最も効率良く駆動可能な室内機のファン7を選択し、過不足分の風量を充足するように、ファン7の回転数の変更を指令する。これによると、電流値が効率的に変更されて所定の風量Q0(設定値)に近づけ、単一のダクト4に対して複数の室内機1、2、3を接続する設置形態の場合に、静圧および風量の測定を行うことなく全体の風量を効率よく制御することができる。
 親機のマイコン10は、子機の電流の変化量ΔAを取得し、自機を含む複数の室内機1、2、3の電流の変化量ΔAのうち、最も小さい電流の変化量ΔAである室内機を最も効率良く駆動可能な室内機のファンとして選択し、不足分の風量を充足するように、ファン7の回転数の増加を指令する。これによると、電流値が効率良く必要最小限増加して所定の風量Q0(設定値)に近づけ、単一のダクト4に対して複数の室内機1、2、3を接続する設置形態の場合に、静圧および風量の測定を行うことなく全体の風量を効率よく制御することができる。
 子機のマイコン10は、親機のマイコン10からの指令に基づいて自機の電流の変化量ΔAを求めて親機のマイコン10に送信する。これによると、親機のマイコン10による総合制御を実現することができ、複数の室内機1、2、3全体での風量の調整と動力負荷の最適化とを達成することができる。
 1 室内機、2 室内機、3 室内機、4 ダクト、5 通信線、6 熱交換器、7 ファン、8 モータ、9 インバータ、10 マイコン、100 空気調和機、101 圧縮機、103 四方弁、104 室外熱交換器、105 毛細管、106 電子制御式膨張弁。

Claims (5)

  1.  ファンおよび制御部をそれぞれ有する複数の室内機と、
     前記複数の室内機に接続され、当該複数の室内機によって調和された空気を送り出すダクトと、
    を備え、
     前記複数の室内機のうち1つを親機とし、他を子機とし、
     前記親機の制御部および前記子機の制御部は、それぞれ自機の送風量を求め、
     前記親機の制御部は、
     前記子機の送風量を取り込んで、自機を含む前記複数の室内機の全体の送風量を求め、前記全体の送風量が基準風量に対して過不足があるかどうかを判定し、
     過不足があると判定した場合には、自機を含む前記複数の室内機のうちで最も効率良く駆動可能な室内機のファンを選択し、前記ファンの回転数の変更を指令する
     空気調和機。
  2.  前記子機の制御部は、前記親機の制御部からの指令に基づいて自機の送風量を求めて親機の制御部に送信する
     請求項1に記載の空気調和機。
  3.  前記親機の制御部が、前記全体の送風量が基準風量に対して過不足であると判定した場合には、
     前記親機の制御部および前記子機の制御部は、それぞれ自機において過不足分の風量を変化させたときの電流の変化量を求め、
     前記親機の制御部は、前記子機の電流の変化量を取得し、自機を含む前記複数の室内機の前記電流の変化量に基づいて、最も効率良く駆動可能な室内機のファンを選択し、前記過不足分の風量を充足するように、前記ファンの回転数の変更を指令する
     請求項1または2に記載の空気調和機。
  4.  前記親機の制御部が、前記全体の送風量が基準風量に対して不足であると判定した場合には、
     前記親機の制御部および前記子機の制御部は、それぞれ自機において不足分の風量を増加させたときの電流の変化量を求め、
     前記親機の制御部は、前記子機の電流の変化量を取得し、自機を含む前記複数の室内機の前記電流の変化量のうち、最も小さい電流の変化量である室内機を最も効率良く駆動可能な室内機のファンとして選択し、前記不足分の風量を充足するように、前記ファンの回転数の増加を指令する
     請求項1または2に記載の空気調和機。
  5.  前記子機の制御部は、前記親機の制御部からの指令に基づいて自機の電流の変化量を求めて親機の制御部に送信する
     請求項3または4に記載の空気調和機。
PCT/JP2015/054500 2015-02-18 2015-02-18 空気調和機 WO2016132496A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017500209A JP6320617B2 (ja) 2015-02-18 2015-02-18 空気調和機
GB1711447.1A GB2552896B (en) 2015-02-18 2015-02-18 Air-conditioning apparatus
PCT/JP2015/054500 WO2016132496A1 (ja) 2015-02-18 2015-02-18 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054500 WO2016132496A1 (ja) 2015-02-18 2015-02-18 空気調和機

Publications (1)

Publication Number Publication Date
WO2016132496A1 true WO2016132496A1 (ja) 2016-08-25

Family

ID=56692498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054500 WO2016132496A1 (ja) 2015-02-18 2015-02-18 空気調和機

Country Status (3)

Country Link
JP (1) JP6320617B2 (ja)
GB (1) GB2552896B (ja)
WO (1) WO2016132496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009021A (ja) * 2019-04-15 2021-01-28 ダイキン工業株式会社 空気調和システム
JP2021032444A (ja) * 2019-08-21 2021-03-01 株式会社日立産機システム ファンフィルタユニット監視制御システムおよびファンフィルタユニット監視制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004607U (ja) * 1994-05-25 1994-11-22 東洋熱工業株式会社 空調制御システム
JP2003035447A (ja) * 2001-07-23 2003-02-07 Sanki Eng Co Ltd 空気調和機の省エネルギシステム
JP2012189268A (ja) * 2011-03-11 2012-10-04 Hitachi Appliances Inc 空気調和装置
JP2013204859A (ja) * 2012-03-27 2013-10-07 Toshiba Carrier Corp コンテナ用空調システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004607B2 (ja) * 1997-07-01 2000-01-31 ナビタス株式会社 転写紙の製造装置
JP2013160446A (ja) * 2012-02-06 2013-08-19 Daikin Industries Ltd 外気処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004607U (ja) * 1994-05-25 1994-11-22 東洋熱工業株式会社 空調制御システム
JP2003035447A (ja) * 2001-07-23 2003-02-07 Sanki Eng Co Ltd 空気調和機の省エネルギシステム
JP2012189268A (ja) * 2011-03-11 2012-10-04 Hitachi Appliances Inc 空気調和装置
JP2013204859A (ja) * 2012-03-27 2013-10-07 Toshiba Carrier Corp コンテナ用空調システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009021A (ja) * 2019-04-15 2021-01-28 ダイキン工業株式会社 空気調和システム
JP7181477B2 (ja) 2019-04-15 2022-12-01 ダイキン工業株式会社 空気調和システム
JP2021032444A (ja) * 2019-08-21 2021-03-01 株式会社日立産機システム ファンフィルタユニット監視制御システムおよびファンフィルタユニット監視制御方法
JP7249240B2 (ja) 2019-08-21 2023-03-30 株式会社日立産機システム ファンフィルタユニット監視制御システムおよびファンフィルタユニット監視制御方法

Also Published As

Publication number Publication date
GB2552896A (en) 2018-02-14
JPWO2016132496A1 (ja) 2017-08-31
GB2552896B (en) 2020-07-22
JP6320617B2 (ja) 2018-05-09
GB201711447D0 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
US10989429B2 (en) Air conditioning system
US9995517B2 (en) Operation control apparatus of air-conditioning apparatus and air-conditioning apparatus comprising same
US9677780B2 (en) Controller and air conditioning processing system
JP5182358B2 (ja) 冷凍装置
EP1684030B1 (en) Method for operating an air conditioner
AU2012392673B2 (en) Air conditioning apparatus
AU2012392672B2 (en) Air conditioning apparatus
CN102762928B (zh) 空气调和***
KR20070021821A (ko) 멀티 에어컨 시스템 및 그 운전제어방법
EP3336443A1 (en) Air conditioning system
CN102213470A (zh) 一种辐射及新风混合空调***
JP6320617B2 (ja) 空気調和機
US9464835B2 (en) Remote software loading for refrigerant system
CN204574266U (zh) 空调***
KR101991561B1 (ko) 공기 조화 시스템의 제어 방법 및 장치
WO2019215813A1 (ja) 空気調和機
JP7181477B2 (ja) 空気調和システム
WO2017212571A1 (ja) 空調システム及び中継機
CN109073256A (zh) 空调装置
CN110411078A (zh) 一种基于压力调节节流的空调器及控制方法
JP2000186864A (ja) 電動膨張弁の制御方法
KR101229345B1 (ko) 멀티형 공기조화기의 제어방법
JP2013159231A (ja) 車両用空調システム
CN107477683A (zh) 屋顶式空调器
WO2023148854A1 (ja) 熱交換型換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500209

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201711447

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150218

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882599

Country of ref document: EP

Kind code of ref document: A1