WO2016126071A1 - 키메릭 항원 수용체 전달용 ctla-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도 - Google Patents

키메릭 항원 수용체 전달용 ctla-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도 Download PDF

Info

Publication number
WO2016126071A1
WO2016126071A1 PCT/KR2016/001106 KR2016001106W WO2016126071A1 WO 2016126071 A1 WO2016126071 A1 WO 2016126071A1 KR 2016001106 W KR2016001106 W KR 2016001106W WO 2016126071 A1 WO2016126071 A1 WO 2016126071A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribozyme
cell
ctla
cancer
recombinant vector
Prior art date
Application number
PCT/KR2016/001106
Other languages
English (en)
French (fr)
Inventor
이성욱
양빛나
김성진
한승렬
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to US15/548,362 priority Critical patent/US10557140B2/en
Publication of WO2016126071A1 publication Critical patent/WO2016126071A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464469Tumor associated carbohydrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/124Type of nucleic acid catalytic nucleic acids, e.g. ribozymes based on group I or II introns
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • C12N2330/31Libraries, arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to (i) a trans-splicing ribozyme that targets Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4); (ii) a CTLA-4 targeting trans-splicing ribozyme expression cassette for chimeric antigen receptor delivery, comprising a polynucleotide encoding a chimeric antigen receptor linked to the 3 'exon of the ribozyme It characterized in that it comprises a, recombinant vector.
  • the present invention also relates to a transformed cell into which the recombinant vector is introduced, a ribozyme expressed from the recombinant vector, a retrovirus expressing the ribozyme, and a T cell treated with the retrovirus.
  • composition for preventing or treating cancer comprising the recombinant vector, transformed cell, ribozyme, retrovirus, T cell, or a combination thereof, and the recombinant vector, transformed cell, ribozyme, retrovirus, T
  • a method of treating cancer comprising administering a cell or a combination thereof to a subject in need thereof.
  • Cancer is one of the leading causes of death in Korea, and it can occur in all parts of the human body and can be caused by various factors such as environmental factors and genetic factors.
  • Existing treatments for cancer include surgical surgery, chemotherapy and radiation therapy, and the prognosis is improved with the development of medicine, but there are many limitations that may adversely affect normal cells as well as cancer cells.
  • most cancer treatments are currently performed using surgical removal (surgery) or chemotherapy.
  • surgical removal surgical removal
  • different treatments have been studied. These studies have focused on minimizing side effects by selectively treating cancer tissues using an autoimmune system naturally present in the human body.
  • CTLs cytotoxic T lymphocytes
  • Chimeric antigen which delivers T cell receptor (TCR) which recognizes specific antigen to T cell of patient or incorporates scFv portion of antibody that recognizes antigen into CD3 signaling domain.
  • TCR T cell receptor
  • CAR receptors
  • Incorporation of CAR into T cell enables activation of T cell anticancer activity with specific antigen phosphorus of scFv irrespective of signal transmission by antigen presenting cell (APC), and can be used as an effective treatment method because it is not limited to HLA type. have.
  • T cells have been developed as a therapeutic agent for blood cancer, and in the case of solid cancer, the environment around the cancer cells is suppressed to create an environment that suppresses immune action, resulting in low CAR treatment efficiency.
  • Activation of T cells induces the expression of CTLA-4 (Cytotoxic T-Lymphocyte-Associated Protein-4), which binds to the ligands of regulatory T cells (Tregs) that regulate the activity of activated T cells.
  • Tregs regulatory T cells
  • Gene therapy refers to a method of genetically treating a congenital or acquired gene abnormality that is difficult to treat by conventional methods.
  • gene therapy may be performed by expressing therapeutic proteins by administering genetic material such as DNA and RNA in the human body to treat and prevent chronic diseases such as congenital or acquired genetic defects, viral diseases, cancer or cardiovascular diseases. It is a therapeutic method to suppress the expression of a specific protein. This is a method that is expected to overcome the incurable disease as well as to replace the existing medical methods because it can fundamentally treat the cause of the disease at the genetic level.
  • tissue-specific cancer treatment adenovirus a representative example, a method using a trans-splicing ribozyme and the like has been developed.
  • trans-splicing ribozymes based on these Group I introns target specific RNAs that are specifically expressed only in gene transcripts or disease cells associated with specific tissues or diseases, thereby correcting them for normal RNA. It is anticipated that reprogramming may be triggered or replaced with new therapeutic gene transcripts, resulting in tissue and disease specific and safe gene therapy techniques.
  • the trans-splicing ribozyme can induce expression of a desired therapeutic gene product while removing specific RNA, and thus can express a desired therapeutic gene while suppressing a gene corresponding to the specific RNA. You can double.
  • trans-splicing ribozymes targeting human telomerase reverse transcriptase have been developed, but they have high tissue specificity by combining with tissue-specific promoters. While the expression efficiency is very low, it has not yet overcome the disadvantages in terms of treatment efficiency.
  • the present inventors have made diligent efforts to develop a cancer therapeutic gene therapy method that simultaneously suppresses CTLA-4 of T cells and simultaneously delivers a CAR targeting a cancer antigen, thereby improving the therapeutic efficacy from Tetrahymena thermophila .
  • Inhibition of CTLA-4 by inducing a trans-splicing response to CTLA-4 using Group I intron ribozyme and expression of CAR through gene substitution resulted in target functions for specific cancer antigens.
  • Inhibition of CTLA-4 of T cells which interfered with anticancer treatment and enabling autoimmune anticancer treatment using T cells expressing CAR showed effective anticancer effect which increased both anticancer specificity and efficiency.
  • the present invention was completed.
  • the object of the present invention is (i) a trans-splicing ribozyme that targets Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4); (ii) a CTLA-4 targeting trans-splicing ribozyme expression cassette for chimeric antigen receptor delivery, comprising a polynucleotide encoding a chimeric antigen receptor linked to the 3 'exon of the ribozyme To provide a recombinant vector, characterized in that it comprises a.
  • CTLA-4 Cytotoxic T-Lymphocyte-Associated Protein-4
  • Another object of the present invention is to provide a transformed cell into which the recombinant vector is introduced.
  • Still another object of the present invention is to provide a ribozyme expressed from the recombinant vector.
  • Another object of the present invention to provide a pharmaceutical composition for preventing or treating cancer comprising the recombinant vector or ribozyme as an active ingredient.
  • Still another object of the present invention is to provide a method for treating cancer, comprising administering the recombinant vector or ribozyme in a pharmaceutically effective amount to an individual in need thereof.
  • the recombinant vector of the present invention and the ribozyme expressed therefrom are gene cell therapies that can anticipate more efficient anticancer effects by inhibiting CTLA-4 of T cells, which has been hindered by conventional anticancer treatments, and enabling anticancer treatments. As a result, the toxicity to normal tissues is reduced, thereby increasing both the therapeutic effect and the safety, and thus may be widely used in the field of gene therapy in the future.
  • Figure 1 shows the results of in vitro and in vivo RNA mapping of the present invention, as a result of finding various recognition sites on CTLA-4 RNA, the main targeting sites are IGS32, IGS48, IGS65, IGS111 and IGS232.
  • A is a diagram showing the positions of IGS32, IGS48, IGS65, IGS111, IGS232 and IGS284 identified as major targeting sites of ribozyme on CTLA-4 RNA.
  • B) and (C) show the results of in vitro RNA mapping
  • (D) and (E) show the results of in vivo RNA mapping.
  • FIG. 2 shows the results of excellent targeting in IGS32, IGS48, IGS111, and IGS232 as a result of in vitro trans-splicing by constructing ribozymes (IGS48, IGS111, and IGS232) for cognitive sites, respectively.
  • Figure 3 is attached to the firefly luciferase gene reporter gene 3 'exon to confirm the target specific efficiency of the ribozyme and 5' UTR of the CTLA-4 recognition site identified above in the loop region IGS48, ORF and loop site A ribozyme was produced for each with IGS111 and 232. At this time, P1 and P10 helix were added to enhance specificity and efficiency in addition to IGS.
  • (A) is a schematic diagram showing the ribozyme expression cassette prepared above and its mechanism of action.
  • Figure 4 is a 3'exon to confirm the target specific efficiency of the ribozyme to the reporter gene firefly luciferase gene and the antisense without the ribozyme and the antisense for CTLA-4 100nt, 300nt respectively (respectively) AS100-IGS48P1P10-F.luci, AS300-IGS48P1P10-F.luci) confirms the activity of ribozyme.
  • FIG. 5 shows that clones were obtained by constructing a retroviral vector with IGS48 ribozyme (Rib # 5, Rib # 11 and Rib # 16), and reverse transcription of RNA obtained from primary T cells to which they were delivered, followed by CTLA in the cells.
  • Semi-quantitative PCR (Semi-quantitative PCR) was performed to confirm the level of -4.
  • FIG. 6 shows a clone obtained by constructing a retroviral vector with IGS48 ribozyme (Rib # 5, Rib # 11 and Rib # 16). Each cell was treated with FACS to confirm expression level of CAR on T cell surface. Measured through the drawing.
  • clone 7 is a retroviral vector prepared with IGS48 ribozyme to obtain a clone (Rib # 5, Rib # 11 and Rib # 16), and Western blotting of each cell to confirm the expression level of CAR in T cells delivered thereto. This is measured through.
  • T ratio is the ratio of target cells (LS174T) to T cells. In turn it means the ratio of 1: 5, 1:10, 1:20 and 1:30.
  • Figure 9 is a schematic diagram showing the configuration of the expression cassette CTLA4 Rib48-CAR, AS100-CTLA4 Rib48-CAR, CMV-CTLA4 Rib48-CAR and CMV-AS-CTLA4 Rib48-CAR used in the present invention.
  • constructs were constructed according to whether antisense sequences were introduced and whether CMV promoters were introduced.
  • FIG. 10 is data confirming the expression of CAR through FACS in T cells delivering the ribozyme of the present invention.
  • a negative control (Mock T) that delivered a blank retrovirus, a positive control (CAR T, CMV-CAR T) that delivered a CAR expressing retrovirus were used, and Rib-CAR T and AS-Rib are representative of the ribozymes of the present invention.
  • Expression of CAR was confirmed by delivery of -CAR T, CMV-Rib-CAR T, and CMV-AS-Rib-CAR T.
  • FIG. 11 is a diagram showing the level of CTLA-4 RNA by transferring Rib-CAR T and CMV-AS-Rib-CAR T to T cells as a retrovirus among the ribozymes of the present invention.
  • FIG. 12 is a diagram illustrating the results of confirming CTLA-4 RNA levels by treating Jurkat cells with a retrovirus delivering chemical and / or a ribozyme of the present invention to increase CTLA-4 RNA levels of Jurkat cells.
  • the II-1 experimental group is not treated with both chemical and retroviruses; II-2 experimental groups were treated with chemical and no retrovirus; II-3 experimental groups were treated with chemicals and no retroviruses; Group II-4 treated with both chemical and retroviruses; II-5 experimental groups were untreated with polybrene, chemical and retrovirus; Group II-6 was treated with polybrene and retrovirus untreated and chemically.
  • the bottom is a diagram measuring the CTLA-4 RNA level of the experimental group.
  • Figure 13 is a ribozyme of the present invention Rib-CAR and CMV-AS-Rib-CAR each delivered to the primary T cells via retrovirus and treated with cancer cell line LS174T expressing Tag72 antigen confirmed the cytotoxic effect to be.
  • CAR T was delivered to primary T cells as a retrovirus (CAR), and a control (Mock) treated with a blank retrovirus was used as a negative control.
  • the E: T ratio is the ratio of target cells (LS174T) to T cells. In turn it means the ratio of 1: 1, 1: 5, 1:10 and 1:20.
  • FIG. 14 is a schematic diagram of the trans-splicing scheme of the group I intron ribozyme used in the present invention.
  • FIG. 15 shows the overall scheme of the T cells of the present invention (delivering retrovirus expressing ribozyme targeting CTLA-4 to T cells, CAR is expressed on the T cell surface to attack the tumor cells expressing Tag72) It is a schematic diagram to show.
  • one aspect of the present invention is (i) a trans-splicing ribozyme that targets Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4); (ii) a CTLA-4 targeting trans-splicing ribozyme expression cassette for chimeric antigen receptor delivery, comprising a polynucleotide encoding a chimeric antigen receptor linked to the 3 'exon of the ribozyme It characterized in that it comprises a, recombinant vector.
  • CTLA-4 Cytotoxic T-Lymphocyte-Associated Protein-4
  • the present invention provides a trans-splicing ribozyme targeting the CTLA-4, wherein the internal guide sequence (IGS) IGS32, IGS48, IGS111, and IGS232 on the RNA of CTLA-4. It provides a recombinant vector, which targets one selected from the group consisting of:
  • the present invention is a trans-splicing ribozyme targeting the CTLA-4 is a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 38 It will provide a, recombinant vector.
  • the present invention provides a recombinant vector wherein the chimeric antigen receptor recognizes cancer cell specific antigens.
  • the cancer cell-specific antigen is EGP2 (Epithelial glycoprotein 2), EGP40 (Epithelial glycoprotein 40), TAG72 (Tumor associated glycoprotein 72), IL13R ⁇ 2 (Interleukin 13 receptor alpha-2 subunit), Carbonic anhydrase IX (CA IX), CD19, CD52, CD33, CD20, TSLPR, CD22, CD30, GD3, CD171, Anaplastic lymphoma kinas (ALK), CD47, EGFRvIII, Neural cell adhesion molecule (NCAM), Folate binding protein ), Le (Y) (Lewis-Y antigen), MUC1 (Mucin 1), PSCA (Prostate stem cell antigen), PSMA (Prostate-specific membrane antigen), Fibroblast growth factor receptor 4 (FGFR4), and Fetal acetylcholine receptor ), Carcinoembryonic antigen (CEA), Human epidermal growth factor receptor 2 (HER2), Mesothelin, Hyurouronate receptor variant
  • the present invention provides a recombinant vector, wherein the polynucleotide encoding the chimeric antigen receptor contained in the recombinant vector comprises a nucleic acid sequence of SEQ ID NO: 4.
  • the present invention (iii) further comprises a polynucleotide of the antisense sequence for the base sequence 100 to 300 nucleotides behind the ribozyme recognition site of CTLA-4 at the 5 'end of the ribozyme To provide a recombinant vector.
  • the present invention provides a recombinant vector, wherein the antisense sequence comprises the nucleic acid sequence of SEQ ID NO: 5 or 6.
  • the present invention is an expression cassette of the retrovirus LTR, cytomegalovirus (CMV) promoter, Raus sarcoma virus (RSV) promoter, MMT promoter, EF-1 alpha promoter, UB6 promoter, chicken beta -A recombinant vector, characterized in that it comprises a promoter selected from the group consisting of an actin promoter, a CAG promoter, an RPE65 promoter and an opsin promoter.
  • CMV cytomegalovirus
  • RSV Raus sarcoma virus
  • Another aspect of the present invention provides a transformed cell into which the recombinant vector is introduced.
  • Another aspect of the invention provides that the ribozyme expressed from the recombinant vector.
  • Another aspect of the present invention provides a retrovirus expressing the ribozyme.
  • Another aspect of the invention provides a T cell treated with the retrovirus.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the recombinant vector or the ribozyme as an active ingredient.
  • the cancer is selected from the group consisting of lung cancer, pancreatic cancer, liver cancer, melanoma, bone cancer, breast cancer, colorectal cancer, leukemia, uterine cancer, lymphoma, and brain cancer, the pharmaceutical composition for preventing or treating cancer to provide.
  • Another aspect of the present invention provides a method for treating cancer, comprising administering to a subject in need thereof, the recombinant vector or ribozyme.
  • One aspect of the invention is (i) a trans-splicing ribozyme that targets Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4); (ii) a CTLA-4 targeting trans-splicing ribozyme expression cassette for chimeric antigen receptor delivery, comprising a polynucleotide encoding a chimeric antigen receptor linked to the 3 'exon of the ribozyme It characterized in that it comprises a, recombinant vector.
  • the recombinant vector may include a nucleic acid sequence represented as selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11.
  • the recombinant vector targets CTLA-4, which interferes with the immune response by T cells, inhibits CTLA-4-related mechanisms, and at the same time, the T cells express desired antigens without signaling by antigen presenting cells (APCs). It is characterized by the development of an autoimmune anticancer treatment excellent in the therapeutic effect on the basis of inducing the expression of the chimeric antigen receptor that can attack the cell, and confirmed that the cancer treatment effect is excellent.
  • vector refers to a gene construct, which is an expression vector capable of expressing a protein of interest in a suitable host cell, and which contains essential regulatory elements operably linked to express a gene insert.
  • operably linked refers to a functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function.
  • the ribozyme coding sequence is operably linked to a promoter such that expression of the ribozyme coding sequence is under the influence or control of this promoter.
  • Two nucleic acid sequences are operably linked when the ribozyme coding sequence is transcribed by inducing promoter action, and the nature of the linkage between the two sequences It does not induce frame-shift mutations and is operably linked if expression control sequences do not interfere with the ability to dominate ribozyme expression.
  • Operable linkage with recombinant vectors can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can employ enzymes commonly known in the art.
  • the vector of the present invention includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals, enhancers and can be prepared in various ways according to the purpose. .
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector includes a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Vectors can self replicate or integrate into host DNA.
  • the vector may include a plasmid vector, a cosmid vector or a viral vector, and specifically, may be a viral vector.
  • Viral vectors are retroviruses such as Human immunodeficiency virus HIV (Murine leukemia virus) Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus (RSV) and Mouse mammary (MMTV). tumor viruses, and the like, but are not limited to vectors derived from Adenovirus, Adeno-associated virus, Herpes simplex virus, and the like. More specifically, the recombinant vector of the present invention may be a recombinant adenovirus vector or an adeno-associated virus vector.
  • the term "expression cassette" of the present invention includes a promoter and a trans-splicing ribozyme-purpose gene, and the trans-splicing ribozyme is CTLA-4 (Cytotoxic T-Lymphocyte-Associated Protein-4) And specifically target the Internal Guide Sequence (IGS), a key site of targeting of ribozymes, particularly on CTLA-4 RNA sequences.
  • a trans-splicing ribozyme targeting CTLA-4 of the present invention is a group consisting of Internal Guide Sequences (IGS) IGS32, IGS48, IGS111, and IGS232 on the RNA of CTLA-4.
  • a ribozyme targeting the IGS of the corresponding CTLA-4 may include a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 38 have.
  • the present inventors intend to fabricate a ribozyme that can effectively act on CTLA-4 RNA, preferentially a ribozyme internal guide that can specifically and efficiently recognize specific sequences of CTLA-4 RNA
  • a ribozyme internal guide that can specifically and efficiently recognize specific sequences of CTLA-4 RNA
  • IGS48 was identified as a common recognition site in in vitro and in vivo mapping.
  • Ribozymes IGS32: SEQ ID NO: 38, IGS48: SEQ ID NO: 1, IGS111: SEQ ID NO: 2, and IGS232: SEQ ID NO: 3) for the identified recognition sites were prepared, respectively, using some ribozymes in In vitro trans-splicing was confirmed that targeting well in IGS32, IGS48, IGS111 and IGS232 (Fig. 2).
  • promoter of the present invention is involved in the binding of RNA polymerase to initiate transcription into a portion of DNA.
  • a protein that introduces an RNA polymerase or RNA polymerase a so-called transcription factor, binds to the enzyme or protein. It can be induced to be located at the starting site. In other words, it is located at the 5 'region of the gene to be transcribed on the sense strand and induces RNA polymerase to bind to the position directly or through a transcription factor to initiate mRNA synthesis for a target gene.
  • the universal promoter retrovirus LTR, cytomegalovirus (CMV) promoter, Raus sarcoma virus (RSV) promoter, MMT promoter, EF-1 alpha promoter, UB6 promoter, chicken beta- A promoter selected from the group consisting of an actin promoter, a CAG promoter, an RPE65 promoter and an opsin promoter can be used, but is not limited thereto.
  • CMV cytomegalovirus
  • RSV Raus sarcoma virus
  • MMT EF-1 alpha promoter
  • UB6 promoter chicken beta- A promoter selected from the group consisting of an actin promoter, a CAG promoter, an RPE65 promoter and an opsin promoter
  • ribozyme of the present invention is a molecule consisting of an RNA molecule that acts like an enzyme or a protein comprising the RNA molecule, also called an RNA enzyme or catalytic RNA.
  • RNA molecules with a clear tertiary structure carry out chemical reactions and have catalytic or autocatalytic properties, and some ribozymes have been shown to inhibit activity by cleaving magnetic or other RNA molecules, while other ribozymes It has been identified that catalyzes the aminotransferase activity of ribosomes.
  • Such ribozymes may include hammerhead ribozymes, VS ribozymes, hairpin ribozymes, group I introns, group II introns, and the like.
  • the ribozyme may inhibit the activity of cancer-specific genes through a trans-splicing reaction, resulting in selective anticancer effects, as well as being expressed in a conjugated form with cancer treatment genes and thus cancer treatment genes. Can be activated. Therefore, any type of compound can be used as long as it exhibits an activity capable of inactivating cancer specific genes and activating cancer therapeutic genes.
  • the ribozyme may include a nucleic acid sequence of SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 3.
  • trans-splicing of the present invention means linking RNAs from different genes. Specifically, CTLA-4 targeting trans-splicing group I ribozyme having a proven ability to recognize and trans-splice CTLA-4 mRNA specific for T cells may be used.
  • the inventors have devised a recombinant retrovirus that can express the target gene with the ribozyme. That is, the recombinant retrovirus may function to insert a target gene included in the target gene expression cassette linked to the ribozyme into a T cell specific gene transcript through a trans-splicing ribozyme specific for the T cell. have.
  • target gene refers to a gene linked to mRNA of a specific target cancer specific gene in a cell by the ribozyme, and the expression is induced.
  • the gene may be a therapeutic gene or a reporter gene. This is not restrictive.
  • the gene of interest included in the expression cassette of the present invention may be any gene to be expressed in place of CTLA-4 in T cells, and in particular, may be a chimeric antigen receptor (CAR) for the purpose of the present invention.
  • CAR chimeric antigen receptor
  • the "Chimeric antigen receptor” binds to a desired antigen without the mediation of antigen presenting cells (APC), which are naturally required for T cell activation, and induces activation of T cells through an antigen-antibody reaction. It may mean a fusion protein for expression in T cells in order to be able to attack cells expressing the antigen. In other words, it can be seen as a protein that induces activation of T cells by binding to antigen when expressed in T cells. This may be a protein that recognizes an antigen specific to the cell to cause an immune response, the cell to cause the immune response may mean a cell that is present in a specific tissue or forming a tissue causing the lesion.
  • APC antigen presenting cells
  • the chimeric antigen receptor may be one that recognizes cancer cell specific antigens
  • the cancer cell specific antigens may include epitopeal glycoprotein 2 (EGP2), epitope glycoprotein 40 (EGP40), or TAG72 (Tumor associated glycoprotein 72), IL13R ⁇ 2 (Interleukin 13 receptor alpha-2 subunit), CA IX (Carbonic anhydrase IX), CD19, CD52, CD33, CD20, TSLPR, CD22, CD30, GD3, CD171, Anaplastic lymphoma kinas (AKL), CD47, EGFRvIII, NCAM ( Neural cell adhesion molecule, FBP (Folate binding protein), Le (Y) (Lewis-Y antigen), MUC1 (Mucin 1), PSCA (Prostate stem cell antigen), PSMA (Prostate-specific membrane antigen), FGFR4 (Fibroblast) growth factor receptor 4), Fetal acetylcholine receptor (FAR), Carcinoembras, IL13R
  • a ribozyme in a retroviral vector (pMT-CAR) containing a Tag72 antigen recognition chimeric antigen receptor (CAR, SEQ ID NO: 4) received from ViroMed
  • pMT-CAR retroviral vector
  • CAR Tag72 antigen recognition chimeric antigen receptor
  • the envelope virus and gag-pol DNA were mixed with the pMT-Rib-CAR retroviral vector and sprinkled onto the cells to produce retroviruses.
  • CTLA-4 which inhibits the activity of activated T cells, thereby maintaining the activity of CAR expressing T cells, thereby exhibiting an effective anticancer effect.
  • Previous studies have reported the use of antibodies against CTLA-4 in combination with anticancer drugs to confirm the anticancer effect. However, since they generally suppress CTLA-4, they have low specificity and may cause side effects.
  • the ribozyme inhibits CTLA-4 and expresses a CAR that recognizes cancer antigens, thereby increasing efficiency and reducing side effects.
  • This ribozyme expresses CAR by leaky expression, and when CTLA-4 is expressed when T cell is activated, it inhibits CTLA-4 by trans-splicing of ribozyme and at the same time, expression of CAR is increased. It was developed to increase.
  • T cells recognize cancer cells and are activated, their activity is maintained, as well as CAR is expressed to recognize cancer antigens, thereby further maximizing anticancer effects. That is, by inhibiting CTLA-4 which inhibited the conventional chemotherapy and simultaneously inducing the expression of CAR, the previous problem was overcome, and an effective anti-cancer gene cell therapeutic agent was developed that increased both anticancer specificity and efficiency.
  • the ribozyme of the present invention when using the ribozyme of the present invention it can have a superior anti-cancer effect by enabling the expression of CAR continuously through the leaky expression of CTLA-4.
  • the recombinant vector of the present invention may further include (iii) a polynucleotide of an antisense sequence for the nucleotide behind the ribozyme recognition site of CTLA-4 at the 5 'end of the ribozyme.
  • the antisense sequence may include 50 to 400 polynucleotide sequences behind the ribozyme recognition site, and in particular, the antisense sequence may include the nucleic acid sequence of SEQ ID NO: 5 or 6.
  • the present invention can be used to increase the expression or increase the specificity using antisense sequences in conjunction with CMV, RSV promoter and the like.
  • it further comprises an antisense sequence compared to the Ret-CMV-CTLA-5 Rib48-CAR (CMV-Rib-CAR T) construct having the structure of [CMV promoter-CTLA-4 Rib48-CAR]
  • CMV-Rib-CAR T Ret-CMV-CTLA-5 Rib48-CAR
  • Intracellular expression effect of Ret-CMV-AS-CTLA-5 Rib48-CAR (CMV-AS-Rib-CAR T) construct with structure of [CMV promoter-antisense 100nt-CTLA-4 Rib48-CAR] is better It was confirmed (Fig. 10).
  • Another embodiment of the present invention provides a transformed cell into which the recombinant vector is introduced.
  • introduction refers to the introduction of foreign DNA into cells by transfection or transduction.
  • Transfections include sugars such as calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroshock, microinjection, liposome fusion, lipofectamine and protoplast fusion. It can be carried out by various methods known in the art. Transduction can also deliver genes into cells using viral or viral vector particles by means of infection.
  • transformed cell refers to a cell into which a polynucleotide of interest is introduced into a host cell. Transformation can be accomplished by the "introduction” method described above and can be carried out by selecting appropriate standard techniques depending on the host cell as is known in the art.
  • a recombinant vector is introduced into a cell using PEI or DNA is injected into a cell using a virus as a carrier, thereby preparing a transformed cell into which the recombinant vector is introduced. It can be prepared using a method for manufacturing a cell.
  • Yet another embodiment of the present invention provides a ribozyme expressed from the recombinant vector.
  • the content of the recombinant vector and the ribozyme is as described above.
  • Another embodiment of the present invention provides a retrovirus expressing the ribozyme.
  • the content of the ribozyme is as described above.
  • the T cells may be primary T cells, and in particular, primary T cells derived from humans, but are not limited thereto.
  • the T cells treated with the retrovirus may express the ribozyme to reduce the expression level of CTLA-4, and may be a T cell expressing the CAR, and thus, the cells expressing the antigen recognized by the CAR. T cells can be activated.
  • retronectin was coated on the bottom of the culture dish, and retrovirus was attached to the retrotrontin coated dish.
  • Primary T cells were put in a culture dish to prepare T cells treated with retrovirus.
  • Semi-quantitative RT-PCR and Western blot confirmed that the expression level of CTLA-4 in the corresponding T cells decreased (FIG. 5) and CAR expressed (FIGS. 6 and 7).
  • the expression level of CAR was significantly less than CAR T cells injected with a simple CAR expression cassette without using ribozyme.
  • the T cells thus prepared were treated with LS174T, a cancer cell line expressing Tag72, a recognition antigen of CAR, to confirm the effect of inducing cell death.
  • Another embodiment of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof as an active ingredient. do.
  • cancer of the present invention is a state in which a problem arises in the regulation of normal division, differentiation and death of cells, abnormally overgrown, invading surrounding tissues and organs to form agglomerates, and destroying or modifying existing structures.
  • the cancer may be selected from the group consisting of lung cancer, pancreatic cancer, liver cancer, melanoma, bone cancer, breast cancer, colon cancer, leukemia, uterine cancer, lymphoma, and brain cancer.
  • prevention refers to cancer by administration of a composition comprising the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof according to the present invention. It means any action that suppresses or delays onset.
  • treatment refers to the administration of a composition comprising the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof according to the present invention. Means any act that improves or beneficially changes.
  • the retroviral vector cloned with the ribozyme of the present invention was delivered to primary T cells and had a cytotoxic effect on LS174T, a cell line expressing Tag72 antigen.
  • Rib-CAR T of the present invention exhibits about 50-70% killing effect of CAR T as a positive control. That is, it was confirmed that the ribozyme of the present invention has actual cancer cell target killing ability (FIGS. 8 and 13).
  • T cells expressing ribozyme of the present invention not only have excellent killing capacity of 50-70% of the positive control against cancer cells expressing cancer specific antigens, but also specific killing of cancer cells expressing the antigens. It has an excellent effect.
  • T cells expressing the ribozyme of the present invention can effectively maintain the anticancer effect of T cells through killing ability by reducing the expression of CTLA-4, a T cell deactivator in vivo .
  • composition for preventing or treating cancer of the present invention may further include a pharmaceutically acceptable carrier, excipient or diluent.
  • Examples of pharmaceutically acceptable carriers, excipients and diluents that may be used in the pharmaceutical compositions of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate , Gelatin, calcium phosphate, calcium silicate, calcium carbonate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxy benzoate, talc, magnesium stearate, mineral oil and the like.
  • the pharmaceutical composition of the present invention may be used in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral dosage forms, external preparations, suppositories, and sterile injectable solutions according to conventional methods.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents and surfactants are usually used.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and these solid preparations include at least one excipient such as starch, calcium carbonate, sucrose or lactose, gelatin, etc.
  • lubricants such as magnesium stearate and talc may also be used.
  • Liquid preparations for oral administration include suspensions, solvents, emulsions, and syrups.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations, suppositories.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • Another embodiment of the present invention is to administer the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell or a combination thereof in a pharmaceutically effective amount to a subject in need of treatment.
  • a cancer treatment method comprising the step.
  • the term “pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, wherein the effective dose level is determined by the patient's sexually transmitted disease, age, type of disease, severity, It can be determined according to the activity of the drug, sensitivity to the drug, the time of administration, the route of administration and the rate of release, the duration of treatment, factors including the concurrent drug and other factors well known in the medical field.
  • the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, sequentially with conventional therapeutic agents. Or at the same time.
  • the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell or a combination thereof of the present invention may be administered singly or multiplely. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the term "individual" of the present invention refers to a cancer having a condition that can be ameliorated by administration of the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof according to the present invention.
  • Animals such as horses, sheep, pigs, goats, camels, antelopes, dogs or humans.
  • the treatment method according to the present invention may be a method of treating animals except humans, but is not limited thereto.
  • the cancer in the case of humans, considering that the cancer can be improved by administration of the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell or a combination thereof according to the present invention. It can be used sufficiently in the treatment of humans.
  • administration means introducing a predetermined substance into an animal by any suitable method, and said recombinant vector, said transformed cell, said ribozyme, said retrovirus, said T cell or
  • the route of administration of the combination may be administered orally or parenterally via any general route as long as it can reach the desired tissue.
  • the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell or a combination thereof according to the present invention can be administered by any device that can move the active ingredient to the target cell.
  • Preferred dosages of the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof in accordance with the present invention may be based on the condition and weight of the patient, the extent of the disease, the form of the drug, the route of administration and Depending on the time period, it may be appropriately selected by those skilled in the art.
  • the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell or a combination thereof of the present invention is 1 to 10 mg / kg per day, preferably 1 It is preferable to administer at 5 mg / kg. Administration may be administered once a day or may be divided several times.
  • the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof of the present invention may be administered alone or in combination with a known anticancer agent or in adjuvant therapeutic methods such as surgical surgery. It can be used in combination with to increase the anticancer effect.
  • Chemotherapeutic agents that can be used with administration of the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof are cisplatin, carbox Boplatin carboplatin, procarbazine, mechlorethamine, cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan (bisulfan), nitrosourea (nitrosourea), diactinomycin (dactinomycin), daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, mitomycin, Etoposide, tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin and Methotrexate (methotrex) ate), and the like.
  • radiation therapy that can be used in conjunction with the administration of the recombinant vector, the transformed cell, the ribozyme, the retrovirus, the T cell, or a combination thereof of the present invention is X-ray irradiation and ⁇ -ray irradiation. Etc.
  • an absolute amount of ribozyme library RNA and CTLA-4 RNA randomized to IGS for the trans-splicing reaction was 100 nM: 10 nM.
  • CTLA-4 RNA (2x reaction buffer, substrate RNA, 0.2 mM dGTP, DEPC-H 2 O) was preheated at 37 ° C. for 5 minutes and ribozyme RNA (2X reaction buffer, Ribozyme RNA, DEPC-H 2 O) was incubated at 50 °C for 5 minutes and then at 37 °C 2 minutes to induce the correct tertiary structure formation.
  • the two reactants (CTLA-4 RNA solution and ribozyme RNA solution) were mixed well and reacted at 37 ° C. for 3 hours.
  • 293 cells were co-transfected with DMRIE-C Reagent (invitrogen) with 5 ⁇ g of CTLA-4 RNA (substrate, 5′UTR ⁇ exon2 region) and 4 ⁇ g of ribozyme library RNA. After 24 hours, the total RNA was purified. Next, the primer (RY-RT) attached to the 3 'portion of the ribozyme library RNA and the purified total RNA were mixed well and reacted at 65 ° C. for 5 minutes and placed on ice for 10 minutes.
  • a total of 50 ⁇ l of 5X RT buffer, 10 mM dNTP mix (Beams bio), 1U MMLV Reverse transcriptase (abm), 16 U RNase inhibitor (Enzynomics), and DEPC dH 2 0 were made and reacted at 42 ° C. for 1 hour. After the reaction for 1 hour, the reaction was performed at 95 ° C. for 5 minutes to completely deactivate the activity of MMLV-RT, and then placed at 4 ° C.
  • trans-splicing results of trans-splicing were recognized by recognizing various sites through RT-PCR.
  • various recognition sites were found.
  • the ribozyme main targeting sites thus identified were IGS32, IGS48, IGS111, and IGS232 (FIG. 1).
  • IGS48 was identified as a recognition site in both in vitro and in vivo mapping.
  • the ribozymes (IGS32: SEQ ID NO: 38, IGS48: SEQ ID NO: 1, IGS111: SEQ ID NO: 2, and IGS232: SEQ ID NO: 3) for the identified recognition sites were respectively prepared for in vitro trans-splicing. As a result, IGS32, IGS48, IGS111 and IGS232 confirmed that the targeting occurs well (Fig. 2).
  • the cloned clone was transferred to the SV40 promoter vector to the pcDNA3.1 (+) vector.
  • the pcDNA3.1 (+) vector was prepared by double digestion with HindIII and XhoI, and the F.luciferase gene from the ribozyme was respectively prepared with 5 'primers (IGS48 P1P10 HindIII, IGS111 P1P10 HindIII, IGS232 P1P10 HindIII) and 3' primer. PCR was performed with (3 ′ F. luci end XhoI) and then ligated together. Sequencing analysis confirmed that the ribozyme having the P1 and P10 structures in the pcDNA3.1 (+) vector with the CMV promoter was cloned after the reporter gene firefly luciferase.
  • a ribozyme further comprising an antisense sequence for CTLA-4 was prepared in addition to the prepared ribozyme.
  • Example 2 The cognitive part is different Libozyme Active comparison
  • HEK-293 cells in a 35 mm dish at 3 ⁇ 10 5 and after 24 hours, prepare a tube containing 1 ⁇ g of DNA in 500 ⁇ l of serum-free media, and add 500 ⁇ l of serum-free medium and DMRIE to another tube. 3 ⁇ l-C (Invitrogen) was added. The two tubes were mixed well to form complexes in the form of liposomes that can enter DNA well, and then incubated at room temperature for 30 minutes. In the case of RNA, 1000 ⁇ l of serum-free medium and 3 ⁇ l of DMRIE-C (Invitrogen) were mixed, and 5 ⁇ g of RNA was rapidly mixed immediately before transformation. After incubation for 4 hours in a 5% CO 2 incubator was replaced with MEM media (Hyclone) containing 10% FBS, 1% Penicillin / Streptomycin.
  • MEM media Hyclone
  • each pcDNA3.1 (+)-Ribozyme-F.luciferase (0.5 ⁇ g) and target DNA (2.5 ⁇ g) were added and 200 ng of Renilla luciferase DNA was added together to correct the transformation efficiency.
  • Stop & Glo reagent mix (Stop & Glo 20 ⁇ l + 1 ml of promega) was added and mixed in the same manner, and the value was read with a luminometer. At this time, the mixing time and the number of the two reagents were the same and the sensitivity level was set between 20% and 60% according to the respective cell conditions.
  • the firefly luciferase gene which is a reporter gene, was attached to the 3 'exon, and IGS48 and ORF and loop sites located at 5' UTR and loop sites of the CTLA-4 recognition site identified above.
  • Libozymes were produced for IGS111 and 232, respectively (SEQ ID NOs. 13, 16 and 17). At this time, P1 and P10 helix were added to enhance specificity and efficiency in addition to IGS.
  • the reporter gene firefly luciferase gene
  • the reporter gene firefly luciferase gene
  • the activity of ribozyme was confirmed in (AS100-IGS48P1P10-F.luci-SEQ ID NO: 14, AS300-IGS48P1P10-F.luci-SEQ ID NO: 15, respectively).
  • a vector having only the CMV promoter Vec
  • a vector (CF) expressing F. luciferase in the CMV promoter was used as a positive control.
  • AS100-IGS48P1P10-F.luci and AS300-IGS48P1P10-F.luci were introduced into pcDNA3.1 (+) (vector containing CMV promoter) to confirm activity.
  • a ribozyme was cloned into a retroviral vector (pMT-CAR) containing a Tag72 antigen recognition chimeric antigen receptor (CAR, SEQ ID NO: 4) received from Viromed.
  • pMT-CAR retroviral vector
  • CAR Tag72 antigen recognition chimeric antigen receptor
  • the ribozyme efficiency was the highest, leaky expression is also well generated IGS48 ribozyme to produce a retrovirus vector to confirm the activity of the ribozyme.
  • PCR was carried out using a primer (IGS48 BamHI F, IGS48Rib BamHI R) from PcDNA3.1 (+)-IGS48 ribozyme-F.luciferase plasmid, followed by elution of DNA to obtain an insert.
  • the vector was prepared by digesting the pMT-CAR vector with BamHI. The vector and the insert were ligated at 16 ° C., and cloned ones were selected by BamHI to obtain three clones of # 5, # 11, and # 16 through sequencing (pMT-Rib-CAR).
  • 293T was prepared by seeding 1 X 10 6 cells in a 60 mm cell culture dish. 18 ⁇ l of 293T transfection reagent (Mirus) was added to 600 ⁇ l of serum-free media in a 1.5 ml tube and incubated at room temperature for 5 minutes. Next, envelope DNA and gag-pol DNA (2.4ug: 1.2ug: 2.4ug) were mixed with the pMT-Rib-CAR retroviral vector prepared above, put into a tube, and reacted at room temperature for 30 minutes. Sprinkle slowly on the cells.
  • Example 4 peripheral blood Monocytes (Peripheral blood mononuclear cell) isolation and culture
  • PBMC Primary peripheral blood Monocytes
  • PBMC Peripheral blood mononuclear cells
  • the PBMC was transferred to a new tube, mixed with 5 ml of 1 X PBS + 2% FBS solution, centrifuged for 300 xg for 8 minutes, and the pellet was removed but all supernatant was removed. Finally, the obtained PBMC pellet is resuspended in primary T cell growth media and grown in a 37 ° C. 5% CO 2 incubator.
  • the isolated PBMC is prepared at 1 X 10 6 cells / ml, incubated in a 100 mm dish, and 50 ng / ml of anti-CD3 (eBioscience) is added.
  • the T cell growth media is a medium in which 5% of human serum heat-inactivated is added to AIMV media (gibco), and the human Interleukin-2 (hIL- 2) was used by mixing 300 U / ml. Subsequently, primary T cell passage was incubated in a T75 flask once every 4 days, and the concentration was always maintained at (0.7 X 10 5 ⁇ 2 X 10 6 cells / ml).
  • each retrovirus was delivered to primary T cells twice a day at 4.8 ⁇ 10 10 copies / 1.
  • the retroviruses were treated with 20 ⁇ g / well of retronectin at the bottom of the culture dish before delivery to the cells for 2 hours at room temperature, and after 2 hours, the retronectins were removed, followed by blocking reagent (PBS). 2 ml / well each of w / 2.5% human albumin) was incubated at room temperature for 30 minutes. Then, the retrovirus frozen at -70 °C was thawed rapidly, mixed with 1: 1 with T cell culture medium, and placed in a retronectin coated dish, followed by retrovirus (2000 g, 32 °C, 2 hours). retrovirus).
  • the primary T cells were prepared by counting the cells at 5 X 10 5 cells / ml, leaving only 1 ml of medium in the culture dish after centrifugation, and putting the prepared cells into 4 ml / well and centrifuging at 1000 g for 15 minutes. Separated. The culture plate after centrifugation was carefully taken and incubated in a 37 ° C. 5% CO 2 incubator for one day. This process was repeated once the next day.
  • Example 6 retroviral transfection in primary T cells Semiquantity Semi-quantitative PCR (PCR) through CTLA -4 expression level measurement
  • RNA obtained from primary T cells carrying retroviruses expressing ribozymes After reverse transcription of RNA obtained from primary T cells carrying retroviruses expressing ribozymes, semi-quantitative PCR was performed to confirm CTLA-4 levels in the cells. For each sample, the experiment was conducted in triplet to obtain an average value. The melting point was confirmed and confirmed on an agarose gel. At this time, using the SYBR Green was measured using a standard control quantified to compare the samples semi-quantitatively. For calibration, RTS difference between the samples was corrected with the values obtained by 18S semi-quantitative PCR with RT samples such as CTLA-4 PCR. In this case, 5 'primer (CTLA-4 real F) and 3' primer (CTLA-4 real R) were used.
  • CTLA-4 real F CTLA-4 real F
  • CTLA-4 real R 3' primer
  • Example 3 The clones obtained in Example 3 were compared with each clone to obtain clones that are most well expressed in consideration of clonal variation. Specifically, each of the retroviruses expressing ribozymes was delivered to primary T cells, and then CTLA-4 RNA levels in T cells were confirmed. At this time, as a control, T cells (CAR T) that delivered a retrovirus in which CAR was expressed together with T cells that did not deliver the virus (mock-T) were used. As a result, it was confirmed that CTLA-4 RNA was decreased in T cells (rib # 5/11 / 16-CAR T) that delivered the ribozyme-expressing retrovirus, and # 11 and # 16 of the three clones It was confirmed that the efficiency is higher (Fig. 5).
  • the primary T cells delivered retroviruses were washed with 1X PBS, treated with 50 ⁇ l of 1X RIPA buffer (sigma) and 0.1M PMSF (Fluka) mixture to the cells, scraped with a scraper and transferred to 1.5 ml tubes. Cell debris was removed by centrifugation, and only supernatant was added to a new tube to obtain total whole extract. The total protein obtained was quantified by Bradford assay (sigma) and BSA was used as a quantitative standard.
  • Example 3 The clones obtained in Example 3 were compared with each clone to obtain clones that are most well expressed in consideration of clonal variation. Specifically, the expression of CAR was confirmed by Western blotting and FACS and compared. As a result, it was possible to confirm the expression of CAR in the T cells (Rib # 5/11 / 16-CAR T) in which ribozyme is expressed. First, FACS data was able to confirm the expression of CAR in all T cells delivered retrovirus expressing the ribozyme, the highest expression in the # 16 clone (Fig. 6).
  • Example 8 Tag72 For expressing cancer cells Cell death Check the induction effect
  • the apoptosis experiment was carried out by cloning the ribozyme-CAR in a retroviral vector and producing a virus (Ret-CTLA-4 Rib48-CAR, Rib # 16-CAR T) and delivering it to primary T cells.
  • LS174T cell line as 1 X 10 4 cells / 50 ⁇ l as a target cell
  • the retrovirus-delivered T cells (Effector cells) were resuspended in the culture medium according to the ratio (target cell: effector cell +1: 5, 1:10, 1:20, 1:30), and 50 ⁇ l after preparation.
  • target cell: effector cell +1: 5, 1:10, 1:20, 1:30 50 ⁇ l after preparation.
  • target cell effector cell +1: 5, 1:10, 1:20, 1:30
  • 50 ⁇ l after preparation.
  • As a background control of the cytotoxicity assay only the LS174T or Effector cells were added, and the same growth medium was added to exclude the effect of the medium.
  • the target growth media containing the dye at the above ratio was added.
  • 4 ⁇ l of lysis solution was added after mixing the same amount of effector cell growth media in the LS174T-only well as a toxicity control (positive control), and the same amount of dye was added to the well mixed with two cell culture medium as a negative control. After filling the plate as described above to create a light-blocking environment and reacted for 24 hours in a 37 °C CO 2 incubator and measured the value with a Fluorescence reader (Ex 485nm / Em 520nm).
  • Example 9 Jurkat Cell line stimulation and retrovirus delivery
  • RPMI1640 After dispensing the Jurkat cell line in 1x10 6 cells / well / 2ml (RPMI1640), 24 hours later, the retrovirus was mixed with RPMI1640 medium to make a total of 3ml by 3 x 10 9 copies / well.
  • polybrene 8ug / ml
  • Cells were then cell down for 32 minutes at 2800 rpm for 90 minutes to deliver retroviruses, followed by incubation for 2 hours in a CO 2 incubator.
  • 2 ml of RPMI1640 mixed with PMA (50 ng / ml) + PHA (1 ug / ml) was added. After 72 hours of incubation in a CO 2 incubator, cells were rolled to obtain RNA.
  • the experiment was performed with a T cell (CAR T) that delivered a retrovirus (Ret-CAR) expressing a CAR without ribozyme, and showed about five times cytotoxicity compared to mock T cells. , About 70% of the positive control (Fig. 8).
  • Example 1-4 produced a ribozyme introduced an antisense sequence and confirmed its trans-splicing effect was confirmed that the efficiency did not improve (Fig. 4).
  • a ribozyme construct SEQ ID NO: 9 and SEQ ID NO: 11 with antisense 100 nt and a strong promoter CMV promoter were attached.
  • the ribozyme constructs SEQ ID NO: 10 and SEQ ID NO: 11 were cloned into retroviral vectors and transferred to primary T cells to compare and confirm apoptosis effects, respectively.
  • Rib # 16 (hereinafter referred to as Rib) having the highest efficiency.
  • Ret-CTLA-5 Rib48-CAR (Rib-CAR T) construct having the structure of [CTLA-4 Rib48-CAR]
  • Ret-AS- having the structure of [antisense 100nt-CTLA-4 Rib48-CAR] CTLA-5 Rib48-CAR (AS-Rib-CAR T) construct
  • a Ret-CMV-AS-CTLA-5 Rib48-CAR (CMV-AS-Rib-CAR T) construct having a structure of [CMV promoter-antisense 100nt-CTLA-4 Rib48-CAR
  • the expression rate of CAR was high in Rib-CAR T having only ribozyme, and the expression of CAR was low in T cells transfected with another construct. In addition, it was confirmed that the expression of CAR was low even in CMV-CAR T which gave only CMV promoter.
  • CTLA-4 RNA level in the T cells to which the retroviruses used in the above experiments was confirmed.
  • the amount of CTLA-4 RNA was confirmed in Rib-CAR T and the next highest CMV-AS-Rib-CAR T.
  • T cells (CAR T) were used to deliver retroviruses in which CAR is expressed along with T cells (mock T).
  • CTLA-4 RNA level was about two times higher in CAR T, a control group retrovirus delivered compared to mock T.
  • the expression of CTLA-4 was increased. Therefore, it was thought that the expression of CTLA-4 was increased in other T cells that delivered the retrovirus expressing ribozyme.
  • CTLA-4 RNA levels of Rib-CAR T and CMV-AS-Rib-CAR T were similar to mock T, and the amount of CTLA-4 elevated by retrovirus was reduced by ribozyme. There is room for interpretation as appearing at a level similar to T.
  • CTLA-4 RNA level was about 2 times higher, and about 3 times higher when the chemical was treated only.
  • CTLA-4 levels were increased by about 9 times.
  • the result shows that the expression level of CTLA-4 is increased even when only retroviruses are delivered, such as the CTLA-4 level of Jurkat cells is increased through chemicals. It was confirmed that elevated CTLA-4 RNA level was reduced by ribozyme compared to T cells.
  • CTLA-4 RNA levels were reduced and target killing ability of Rib-CAR and CMV-AS-Rib-CAR, which showed the highest CAR expression, was confirmed.
  • Rib-CAR T showed a killing effect of about 50% of CAR T, a positive control, the killing ability is better in Rib-CAR than CMV-AS-Rib-CAR It was confirmed that. Therefore, in accordance with the results of the previous experiments, Rib-CAR was the most effective target to the CTLA-4 RNA, it was confirmed that the CAR expression efficiency is excellent, through which confirmed that the cancer cell target killing ability is also excellent construct.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임; (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터에 관한 것이다. 또한, 본 발명은 상기 재조합 벡터가 도입된 형질전환 세포, 상기 재조합 벡터로부터 발현된 라이보자임, 상기 라이보자임을 발현하는 레트로바이러스 및 상기 레트로바이러스로 처리한 T 세포에 관한 것이다. 아울러, 상기 재조합 벡터, 형질전환 세포, 라이보자임, 레트로바이러스, T 세포 또는 이들의 조합을 포함하는 암 예방 또는 치료용 약학 조성물 및 상기 재조합 벡터, 형질전환 세포, 라이보자임, 레트로바이러스, T 세포 또는 이들의 조합을 암치료를 필요로 하는, 개체에 투여하는 단계를 포함하는, 암 치료방법에 관한 것이다. 본 발명의 재조합 벡터 및 이로부터 발현되는 라이보자임은 기존의 항암 치료에 방해가 되었던 T cell의 CTLA-4를 억제함과 동시에 항암 치료가 가능하게 함으로써 더 효율적인 항암효과를 기대할 수 있는 유전자 세포 치료법으로 정상 조직에 미치는 독성은 감소시켜 치료 효과 및 안전성을 모두 높이는 효과를 나타내어 향후 유전자 치료 분야에서 널리 활용될 수 있다.

Description

키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도
본 발명은 (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임; (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터에 관한 것이다. 또한, 본 발명은 상기 재조합 벡터가 도입된 형질전환 세포, 상기 재조합 벡터로부터 발현된 라이보자임, 상기 라이보자임을 발현하는 레트로바이러스 및 상기 레트로바이러스로 처리한 T 세포에 관한 것이다. 아울러, 상기 재조합 벡터, 형질전환 세포, 라이보자임, 레트로바이러스, T 세포 또는 이들의 조합을 포함하는 암 예방 또는 치료용 약학 조성물 및 상기 재조합 벡터, 형질전환 세포, 라이보자임, 레트로바이러스, T 세포 또는 이들의 조합을 암치료를 필요로 하는, 개체에 투여하는 단계를 포함하는, 암 치료방법에 관한 것이다.
암은 국내 사망 원인의 1위를 차지하는 중대 질환으로, 인체의 모든 부위에서 발생할 수 있으며, 환경적 요인, 유전적 요인 등 다양한 요인들에 의해 발생할 수 있다. 암을 정복하기 위한 수많은 연구가 있어 왔지만 아직까지 정복되지 않고 있는 난치병이다. 암에 대한 기존의 치료법으로는 외과적 수술, 화학 요법 및 방사선 치료 등이 있으며 의학의 발달로 예후가 좋아지고 있지만, 암세포 뿐 아니라 정상 세포에도 악영향을 끼칠 수 있는 한계가 많다. 특히, 현재 대부분의 암 치료는 외과적 제거(수술) 또는 항암화학요법을 이용하여 시행되고 있다. 최근에는 이러한 치료법들과는 개념이 다른 치료법들이 연구되고 있는데 특히 인체에 자연적으로 존재하는 자가 면역 체계를 이용하여 암 조직을 선택적으로 치료하여 부작용을 최소화하여 효율적으로 치료하고자하는 연구가 주목받고 있다.
효과적인 암 치료를 위해서 직접적으로 암 세포를 표적하는 cytotoxic T lymphocytes(CTL)이 중요하다는 사실이 보고되어 왔다. 지금까지 T cell therapy를 이용한 항암 치료에 대한 연구는 환자의 T cell에 특정 항원을 인식하는 TCR(T cell receptor)을 전달하거나 또는 항원을 인식하는 항체의 scFv 부분을 CD3 signalling domain에 접목시킨 Chimeric antigen receptor(CAR)를 전달하는 방법으로 시도되었다. CAR를 T cell에 접목시키면 antigen presenting cell(APC)에 의한 신호 전달과 관계없이 scFv의 특정 항원 인지만으로 T cell을 항암 작용을 활성화시킬 수 있으며, 또한 HLA type에 제한적이지 않아 효율적인 치료 방법으로 이용할 수 있다. 그러나 대부분 혈액 암에 대한 치료제로 많이 개발되어 왔으며, 고형암의 경우 암 세포 주변이 면역 작용을 억제할 수 있는 환경이 조성되어 CAR의 치료 효율이 낮게 나타났다. T cell이 활성화되면 CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)의 발현이 유도되는데, 이는 활성화된 T cell의 활성을 조절하는 regulatory T cell(Treg)의 ligand와 결합하여 T cell 내로 활성 억제 신호를 전달하게 되어 암 표적 T cell의 활성을 감소시킬 수 있다.
유전자 치료(gene therapy)란 통상적인 방법으로는 치료가 곤란한 선천적 또는 후천적 유전자 이상을 유전공학적 방법으로 치료하는 방법을 일컫는다. 구체적으로, 유전자 치료는 선천적 또는 후천적 유전자 결함, 바이러스성 질병, 암 또는 심혈관계 질환 등과 같은 만성 질환의 치료와 예방을 위하여, DNA 및 RNA 등의 유전 물질을 인체 내에 투여하여 치료 단백질을 발현시키거나 특정 단백질의 발현을 억제하도록 하는 치료 방법이다. 이는, 질병의 원인을 유전자 차원에서 해석하여 근본적으로 치료할 수 있기 때문에 난치병의 극복은 물론 기존 의료 방식의 대체 수단으로 기대되고 있는 방법이다.
한편, 최근에는 조직 특이적인 암치료용 아데노바이러스를 개발하려는 연구가 진행되고 있는데, 대표적인 예로서, 트랜스-스플라이싱 라이보자임 등을 사용하는 방법이 개발되고 있다.
상기 트랜스-스플라이싱 라이보자임을 이용한 조직 특이적인 암치료용 아데노바이러스의 개발에 관한 연구는 테트라하이메나 써모필라(Tetrahymena thermophila)로부터의 그룹 I 인트론 라이보자임이 실험관 내에서뿐만 아니라 박테리아 나아가 인체 세포 내에서 트랜스-스플라이싱 반응을 수행함으로써 별도로 존재하는 두 개의 전사체를 서로 연결시킬 수 있음이 밝혀지면서 주목받게 되었다.
구체적으로, 이러한 그룹 I 인트론을 기초로 한 트랜스-스플라이싱 라이보자임은 특정 조직 또는 질환과 관련된 유전자 전사체 또는 질병 세포에서만 특이적으로 발현되는 특정 RNA를 표적으로 하여, 이들을 정상적인 RNA로 보정하거나 또는 새로운 치료용 유전자 전사체로 치환되도록 재프로그램을 유발할 수 있어, 조직 및 질환 특이적이며 안전한 유전자 치료 기술이 될 수 있을 것이라 예상되고 있다. 또한, 트랜스-스플라이싱 라이보자임은 특이 RNA를 제거함과 동시에 원하는 치료용 유전자 산물의 발현을 유도할 수 있으므로 특이 RNA에 해당하는 유전자를 억제하면서 원하는 치료용 유전자를 발현할 수 있어 치료 효과를 배가시킬 수 있다.
특히, 최근 연구에 있어 암 조직에서 특이적으로 작용할 수 있는 유전자(human Telomerase reverse transcriptase)를 타겟으로 하는 트랜스-스플라이싱 라이보자임이 개발되었으나, 이들이 조직 특이적인 프로모터와의 조합에 의하여 높은 조직특이성을 보이는 반면 발현 효율이 매우 낮아, 치료 효율 측면의 단점을 아직까지 극복하지 못하고 있다.
즉, 아직까지 트랜스-스플라이싱 라이보자임을 이용한 유전자 치료법은 아직까지 치료 효율을 높이기 위하여 계속적인 연구 및 개발이 이루어지고 있는 상태이다.
한편, 기존의 면역 시스템을 이용하여 효율적인 항암 치료를 하고자 하는 많은 시도들이 이뤄지고 있다. T 세포에 특정 항원을 인식하는 CAR를 발현시켜줌으로써 APC에 의존하지 않고 직접적으로 암 세포를 공격하는 T 세포가 개발되었다. 하지만 지금까지 혈액암에 대한 치료제로서 많이 개발되어 왔으며, 암 조직 주변이 면역 작용을 억제하는 환경으로 조성되는 고형암에서는 CAR에 의한 치료 효과가 낮은 것으로 알려졌다. 이를 극복하기 위해서 활성화된 T 세포의 활성을 저해하는 CTLA-4를 억제하여 CAR를 발현하는 T 세포의 활성을 유지시켜 효율적인 항암 효과를 나타낼 수 있도록 하고자 하였으나, 이전 보고된 연구에서는 항암 치료제와 함께 CTLA-4에 대한 antibody를 함께 사용하여 항암 효과를 확인한 결과, CTLA-4를 전반적으로 억제하기 때문에 특이성이 낮고 부작용 또한 유발되었다.
본 발명자들은 T 세포의 CTLA-4를 억제하고 동시에 암 항원을 표적하는 CAR를 전달하여 치료 효능이 동시에 향상된 암 치료 유전자 치료 방안을 개발하기 위하여 예의 노력한 결과, 테트라하이메나 써모필라(Tetrahymena thermophila)로부터의 그룹 I 인트론 라이보자임을 이용하여 CTLA-4에 대한 트랜스-스플라이싱 반응을 유도함으로써 CTLA-4를 억제하고 유전자 치환을 통해 CAR를 발현시켜 특정 암 항원에 대한 표적 기능을 갖도록 한 결과, 기존의 항암 치료에 방해가 되었던 T 세포의 CTLA-4를 억제함과 동시에 CAR을 발현하는 T 세포를 이용한 자가 면역적 항암 치료가 가능하게 함으로써 항암 특이성과 효율성을 모두 증대시킨 효과적인 항암효과를 나타냄을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임; (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터를 제공하는 것이다.
본 발명의 다른 목적은 상기 재조합 벡터가 도입된 형질전환 세포를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 재조합 벡터로부터 발현된 라이보자임을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 재조합 벡터 또는 라이보자임을 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물을 제공하는 것이다.
본 발명이 또 다른 목적은 상기 재조합 벡터 또는 라이보자임을 암치료를 필요로 하는 개체에 약학적으로 유효한 양으로 투여하는 단계를 포함하는, 암 치료방법을 제공하는 것이다.
본 발명의 재조합 벡터 및 이로부터 발현되는 라이보자임은 기존의 항암 치료에 방해가 되었던 T cell의 CTLA-4를 억제함과 동시에 항암 치료가 가능하게 함으로써 더 효율적인 항암효과를 기대할 수 있는 유전자 세포 치료법으로 정상 조직에 미치는 독성은 감소시켜 치료 효과 및 안전성을 모두 높이는 효과를 나타내어 향후 유전자 치료 분야에서 널리 활용될 수 있다.
도 1은 본 발명의 in vitroin vivo RNA 맵핑을 수행한 결과, CTLA-4 RNA 상 다양한 인지부위를 찾은 결과 라이보자임 주요 타겟팅 부위는 IGS32, IGS48, IGS65, IGS111 및 IGS232임을 나타낸 도면이다. (A)는 CTLA-4 RNA 상 라이보자임의 주요 타겟팅 부위로 확인된 IGS32, IGS48, IGS65, IGS111, IGS232 및 IGS284의 위치를 표시한 도이다. (B) 및 (C) 는 in vitro RNA 맵핑한 결과, (D) 및 (E)는 in vivo RNA 맵핑한 결과를 나타낸다.
도 2는 인지 부위에 대한 라이보자임(IGS48, IGS111 및 IGS232)을 각각 제작하여 in vitro 트랜스-스플라이싱을 진행한 결과 IGS32, IGS48, IGS111 및 IGS232에서 타겟팅이 우수하게 일어남을 확인한 도면이다.
도 3은 라이보자임의 표적 특이적 효율을 확인하기 위해 3' exon으로 리포터 유전자인 firefly luciferase 유전자를 달아주고 위에서 확인한 CTLA-4 인지 부위 중 5' UTR이면서 loop 부위에 위치한 IGS48, ORF이면서 loop 부위인 IGS111 및 232로 각각에 대한 라이보자임을 제작하였다. 이때 IGS 외에 특이성과 효율성을 높이기 위해 P1,P10 helix를 붙여주었다. (A)는 상기 제작한 라이보자임 발현카세트 및 이의 작용 기작을 나타낸 모식도이다. (B)는 상기 제작한 라이보자임의 효과를 루시퍼라제 활성을 통해 측정한 결과, 표적 RNA가 있을 때, 라이보자임이 트랜스-스플라이싱에 의해 효율이 증가하는 것을 확인하였으며, IGS48을 가지는 라이보자임(IGS48P1P10 F.luci)이 가장 효율이 높은 것을 확인한 도면이다.
도 4는 라이보자임의 표적 특이적 효율을 확인하기 위해 3'exon으로 리포터 유전자인 firefly luciferase gene을 달아주고 antisense 없이 라이보자임만 있을 경우와 CTLA-4에 대한 antisense가 각각 100nt, 300nt 있을 경우(각각 AS100-IGS48P1P10-F.luci, AS300-IGS48P1P10-F.luci)에 라이보자임의 활성을 확인한 도면이다.
도 5는 IGS48 라이보자임으로 레트로바이러스 벡터를 제작하여 클론을 수득하였으며(Rib#5, Rib#11 및 Rib#16) 이를 전달한 일차 T 세포에서 얻은 RNA를 역전사(reverse transcription)시킨 후, 세포 내의 CTLA-4 수준을 확인하기 위해서 반정량 PCR(semi-quantitative PCR)을 수행한 결과를 나타낸 것이다.
도 6은 IGS48 라이보자임으로 레트로바이러스 벡터를 제작하여 클론을 수득하였으며(Rib#5, Rib#11 및 Rib#16) 이를 전달한 T 세포 표면에서의 CAR의 발현 수준을 확인하기 위해서 각 세포를 FACS를 통해 측정한 도면이다.
도 7은 IGS48 라이보자임으로 레트로바이러스 벡터를 제작하여 클론을 수득하였으며(Rib#5, Rib#11 및 Rib#16) 이를 전달한 T 세포에서의 CAR의 발현 수준을 확인하기 위해서 각 세포를 웨스턴 블랏팅을 통해 측정한 도면이다.
도 8은 본 발명에서 제작한 레트로바이러스 벡터에 라이보자임-CAR을 클로닝한 것을 바이러스 (Ret-CTLA-4 Rib48-CAR, Rib#16-CAR T) 로 제작하여 일차 T cell에 전달하여 Tag72를 발현하는 암세포에 대한 세포사 유도(세포독성, cytotoxicity) 효과 확인한 도면으로, 라이보자임 없이 CAR를 발현하는 레트로바이러스(Ret-CAR)를 전달한 T cell (CAR T)은 양성 대조군으로 사용하였다. 해당 도면에서 E:T 비율은 target 세포(LS174T) : T 세포의 비율이다. 차례로 1:5, 1:10, 1:20 및 1:30의 비율을 의미한다.
도 9는 본 발명에서 대표적으로 사용한 CTLA4 Rib48-CAR, AS100-CTLA4 Rib48-CAR, CMV-CTLA4 Rib48-CAR 및 CMV-AS-CTLA4 Rib48-CAR의 발현 카세트 구성을 나타낸 모식도이다. 즉, antisense 서열의 도입 여부와 CMV 프로모터의 도입여부에 따라 각각 construct를 제작하였다.
도 10은 본 발명의 라이보자임을 전달한 T 세포에서 CAR의 발현을 FACS를 통해서 확인한 데이터이다. 공백 레트로바이러스를 전달한 음성 대조군(Mock T), CAR 발현 레트로바이러스를 전달한 양성 대조군(CAR T, CMV-CAR T)를 사용하였으며, 본 발명의 라이보자임 중 대표적으로 Rib-CAR T, AS-Rib-CAR T, CMV-Rib- CAR T, 및 CMV-AS-Rib-CAR T를 전달하여 CAR의 발현율을 확인하였다.
도 11은 본 발명의 라이보자임 중에서 Rib-CAR T와 CMV-AS-Rib-CAR T를 레트로바이러스로 T 세포에 전달하여 CTLA-4 RNA 수준을 확인한 도이다.
도 12는 Jurkat 세포의 CTLA-4 RNA 수준을 높이는 chemical 및/또는 본원발명의 라이보자임을 전달하는 레트로바이러스를 Jurkat 세포에 처리하여 CTLA-4 RNA 수준을 확인한 결과를 정리한 도이다. 먼저, 상단에는 각 실험군의 실험 조건을 정리한 것으로, 구체적으로 II-1 실험군은 chemical 및 레트로바이러스 모두 미처리; II-2 실험군은 chemical 미처리 및 레트로바이러스 처리; II-3 실험군은 chemical 처리 및 레트로바이러스 미처리; II-4 실험군은 chemical 및 레트로바이러스 모두 처리; II-5 실험군은 polybrene, chemical 및 레트로바이러스 미처리; II-6 실험군은 polybrene 및 레트로바이러스 미처리 및 chemical 처리하였다. 하단에는 상기 실험군의 CTLA-4 RNA 수준을 측정한 도이다.
도 13은 본 발명의 라이보자임인 Rib-CAR과 CMV-AS-Rib-CAR 각각을 레트로바이러스를 통해 1차 T 세포에 전달하고 Tag72 항원을 발현하는 암세포주 LS174T에 처리하여 세포독성 효과를 확인한 도이다. 이의 양성 대조군으로 CAR T를 레트로바이러스로 1차 T 세포에 전달한 대조군(CAR)을 이용하였으며, 음성 대조군으로 공백 레트로바이러스를 처리한 대조군(Mock)을 이용하였다. 해당 도면에서 E:T 비율은 target 세포(LS174T) : T 세포의 비율이다. 차례로 1:1, 1:5, 1:10 및 1:20의 비율을 의미한다.
도 14는 본 발명에서 이용한 group I intron ribozyme의 trans-splicing scheme 모식도이다.
도 15는 본 발명의 T 세포가 작용하는 전체적인 scheme(CTLA-4를 표적하는 ribozyme을 발현하는 retrovirus를 T cell에 전달한 후, T cell 표면에 CAR가 발현되어 Tag72를 발현하는 tumor cell을 공격)을 나타내는 모식도이다.
상기 목적을 달성하기 위하여, 본 발명의 일 양태는 (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임; (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터를 제공한다.
하나의 구체예로서, 본 발명은 상기 CTLA-4를 표적으로 하는 트랜스-스플라이싱 라이보자임은 CTLA-4의 RNA 상에서 내부 가이드 서열(Internal Guide Sequence, IGS) IGS32, IGS48, IGS111, 및 IGS232로 이루어진 군으로부터 선택된 것을 표적으로 하는 것인, 재조합 벡터를 제공한다.
다른 하나의 구체예로서, 본 발명은 상기 CTLA-4를 표적으로 하는 트랜스-스플라이싱 라이보자임은 서열번호 1, 서열번호 2, 서열번호 3, 및 서열번호 38로 이루어진 군으로부터 선택된 핵산 서열을 포함하는 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 상기 키메릭 항원 수용체는 암세포 특이적 항원을 인식하는 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 상기 암세포 특이적 항원은 EGP2(Epithelial glycoprotein 2), EGP40(Epithelial glycoprotein 40), TAG72(Tumor associated glycoprotein 72), IL13Rα2(Interleukin 13 receptor alpha-2 subunit), CA IX(Carbonic anhydrase IX), CD19, CD52, CD33, CD20, TSLPR, CD22, CD30, GD3, CD171, ALK(Anaplastic lymphoma kinas), CD47, EGFRvIII, NCAM(Neural cell adhesion molecule), FBP(Folate binding protein), Le(Y)(Lewis-Y antigen), MUC1(Mucin 1), PSCA(Prostate stem cell antigen), PSMA(Prostate-specific membrane antigen), FGFR4(Fibroblast growth factor receptor 4), FAR(Fetal acetylcholine receptor), CEA(Carcinoembryonic antigen), HER2(Human epidermal growth factor receptor 2), Mesothelin, CD44v6(Hyaluronate receptor variant 6), B7-H3, Glypican-3,5, ROR1, Survivin, FOLR1(folate receptor), WT1(Wilm's tumor antigen), CD70 및 VEGFR2(Vascular endothelial growth factor 2)으로 이루어진 군으로부터 선택된 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 상기 재조합 벡터에 포함된 키메릭 항원 수용체를 암호화하는 폴리뉴클레오티드는 서열번호 4의 핵산 서열을 포함하는 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 (iii) 상기 라이보자임의 5' 말단에 CTLA-4의 라이보자임 인지 부위 뒤쪽의 염기서열 100 내지 300 뉴클레오티드에 대한 antisense 서열의 폴리뉴클레오티드를 추가로 포함하는 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 상기 antisense 서열은 서열번호 5 또는 6의 핵산 서열을 포함하는 것인, 재조합 벡터를 제공한다.
또 다른 하나의 구체예로서, 본 발명은 상기 발현카세트는 레트로바이러스의 LTR, 사이토메갈로바이러스(CMV) 프로모터, 라우스 육종 바이러스(RSV) 프로모터, MMT 프로모터, EF-1 알파 프로모터, UB6 프로모터, 치킨 베타-액틴 프로모터, CAG 프로모터, RPE65 프로모터 및 옵신 프로모터로 이루어진 군으로부터 선택된 프로모터를 포함하는 것을 특징으로 하는 것인, 재조합 벡터를 제공한다.
본 발명의 다른 양태는, 상기 재조합 벡터가 도입된 형질전환 세포를 제공한다.
본 발명의 또 다른 양태는, 상기 재조합 벡터로부터 발현된 라이보자임을 제공한다.
본 발명의 또 다른 양태는, 상기 라이보자임을 발현하는, 레트로바이러스를 제공한다.
본 발명의 또 다른 양태는, 상기 레트로바이러스로 처리한 T 세포를 제공한다.
본 발명의 또 다른 양태는 상기 재조합 벡터 또는 상기 라이보자임을 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물을 제공한다.
하나의 구체예로서, 상기 암은 폐암, 췌장암, 간암, 흑색종, 골암, 유방암, 대장암, 백혈병, 자궁암, 림프종, 및 뇌암으로 이루어진 군으로부터 선택된 것인, 암 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 또 다른 양태는, 상기 재조합 벡터 또는 라이보자임을 암치료를 필요로 하는, 개체에 투여하는 단계를 포함하는, 암 치료방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 양태는 (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임; (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터에 관한 것이다. 구체적으로 상기 재조합 벡터는 서열번호 8, 서열번호 9, 서열번호 10 및 서열번호 11로 이루어진 군으로부터 선택된 것으로 표시되는 핵산 서열을 포함하는 것일 수 있다.
상기 재조합 벡터는 T 세포에 의한 면역반응을 방해하는 CTLA-4를 타겟팅하여 CTLA-4 관련 기작을 억제하는 동시에 T 세포가 항원 제시 세포(antigen presenting cell, APC)에 의한 신호전달 과정없이 원하는 항원을 가지는 세포를 공격할 수 있도록 하는 키메릭 항원 수용체의 발현을 유도하여, 암치료 효과가 탁월한 것을 확인한 것을 기초로, 치료 효과가 우수한 자가면역적 항암치료 수단을 개발한 것을 특징으로 한다.
본 발명에서 용어, "벡터"란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.
본 발명에서 용어, "작동 가능하게 연결된(operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어, 라이보자임 암호화 서열은 프로모터에 작동 가능하게 연결시킴으로써, 라이보자임 암호화 서열의 발현은 이 프로모터의 영향 또는 조절 하에 있게 된다. 2개의 핵산 서열(라이보자임 암호화 서열과 이 서열의 5' 말단의 프로모터 부위 서열)은 프로모터 작용이 유도됨으로써 라이보자임 암호화 서열이 전사되는 경우 작동 가능하게 연결된 것이며, 상기 두 서열 사이의 연결 특성이 프레임 변경 돌연변이(frame-shift mutation)를 유도하지 않으며, 발현 조절서열이 라이보자임의 발현을 지배하는 능력을 저해하지 않는 경우 작동 가능하게 연결되었다고 한다. 재조합 벡터와의 작동 가능한 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 이용할 수 있다.
본 발명의 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서와 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다. 상기 벡터는 플라스미드 벡터, 코즈미드 벡터 또는 바이러스 벡터 등을 포함할 수 있으며 구체적으로는 바이러스 벡터일 수 있다. 바이러스 벡터는 레트로바이러스(Retrovirus), 예를 들어 HIV(Human immunodeficiency virus) MLV(Murine leukemia virus) ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus) 등, 아데노바이러스(Adenovirus), 아데노 관련 바이러스(Adeno-associated virus), 헤르페스 심플렉스 바이러스(Herpes simplex virus) 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다. 더욱 구체적으로, 본 발명의 재조합 벡터는 재조합 아데노바이러스 벡터 또는 아데노 관련 바이러스 벡터일 수 있다.
본 발명의 용어 "발현 카세트"는 프로모터와 트랜스-스플라이싱 라이보자임-목적 유전자를 포함하고 있고, 트랜스-스플라이싱 라이보자임은 CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하고 있으며, 특히 CTLA-4 RNA 서열 상에서 특히 라이보자임의 타겟팅 주요 부위인 내부 가이드 서열(Internal Guide Sequence, IGS)을 표적으로 할 수 있다. 예를 들어, 본 발명의 CTLA-4를 표적으로 하는 트랜스-스플라이싱 라이보자임은 CTLA-4의 RNA 상에서 내부 가이드 서열(Internal Guide Sequence, IGS) IGS32, IGS48, IGS111, 및 IGS232로 이루어진 군으로부터 선택된 것을 표적으로 할 수 있으며, 해당 CTLA-4의 IGS를 타겟팅하는 라이보자임은 서열번호 1, 서열번호 2, 서열번호 3, 및 서열번호 38로 이루어진 군으로부터 선택된 핵산 서열을 포함하는 것일 수 있다.
본 발명의 구체적인 일 실시예에서, 본 발명자들은 CTLA-4 RNA에 효과적으로 작용할 수 있는 라이보자임을 제작하고자, 우선적으로 CTLA-4 RNA의 특정 서열에 특이적이고 효율적으로 인지할 수 있는 라이보자임 내부 가이드 서열 (Ribozyme Internal Guide Sequence, Ribozyme IGS) 서열을 찾기 위해 in vitroin vivo 맵핑(mapping)을 수행하였다. 상기 in vitroin vivo RNA 맵핑을 수행한 결과, 다양한 트랜스-스플라이싱 결과물들을 확인할 수 있었고, 상기 결과물들을 서열분석하여 다양한 인지부위를 찾았다. 이렇게 확인된 라이보자임 주요 타겟팅 부위는 IGS32, IGS48, IGS111, 및 IGS232였으며(도 1), 특히 in vitroin vivo 맵핑에서 공통적으로 인지부위로 확인된 부위는 IGS48이었다. 상기 확인된 인지 부위에 대한 라이보자임들(IGS32 : 서열번호 38, IGS48 : 서열번호 1, IGS111 : 서열번호 2, 및 IGS232 : 서열번호 3)을 각각 제작하였으며, 일부 라이보자임들을 이용하여 in vitro 트랜스-스플라이싱을 진행한 결과 IGS32, IGS48, IGS111 및 IGS232에서 타겟팅이 잘 일어남을 확인하였다(도 2).
본 발명의 용어 "프로모터"는 DNA의 일부분으로 전사를 개시할 수 있도록 RNA 중합효소의 결합에 관여한다. 일반적으로 표적 유전자와 동일 가닥상에 표적 유전자에 인접하여 이의 상류에 위치하며, RNA 중합효소 또는 RNA 중합효소를 도입하는 단백질 이른바 전사인자(transcription factor)가 결합하는 자리로서 상기 효소 또는 단백질이 올바른 전사시작 부위에 위치하도록 유도할 수 있다. 즉, 센스 가닥(sense strand) 상에서 전사하고자 하는 유전자의 5' 부위에 위치하여 RNA 중합효소가 직접 또는 전사인자를 통해 해당 위치에 결합하여 표적 유전자에 대한 mRNA 합성을 개시하도록 유도하는 것으로 특정한 유전자 서열을 갖는다. 유전자의 발현을 높이기 위하여 보편적인 프로모터(universal promoter)인 레트로바이러스의 LTR, 사이토메갈로바이러스(CMV) 프로모터, 라우스 육종 바이러스(RSV) 프로모터, MMT 프로모터, EF-1 알파 프로모터, UB6 프로모터, 치킨 베타-액틴 프로모터, CAG 프로모터, RPE65 프로모터 및 옵신 프로모터로 이루어진 군으로부터 선택된 프로모터를 이용할 수 있으나, 이에 한정되지 않는다.
본 발명의 용어 "라이보자임"은 효소처럼 작용하는 RNA 분자 또는 그 RNA 분자를 포함하는 단백질로 구성되는 분자로 RNA 효소 또는 촉매적 RNA라고도 불린다. 명확한 3차 구조를 갖는 RNA 분자로 화학반응을 수행하며 촉매적 또는 자기촉매적 특성을 가지며, 몇몇 라이보자임은 자기 또는 다른 RNA 분자를 절단하여 활성을 저해하는 것으로 밝혀졌으며, 다른 라이보자임은 리보솜의 아미노전달효소(aminotransferase) 활성을 촉매하는 것이 확인되었다. 이러한 라이보자임에는 망치머리(hammerhead) 라이보자임, VS 라이보자임, 헤어핀(hairpin) 라이보자임, 그룹 I 인트론, 그룹 II 인트론 등이 포함될 수 있다. 본 발명에서 라이보자임은 트랜스-스플라이싱 반응을 통해 암 특이적 유전자의 활성을 저해시켜서 결과적으로는 선택적인 항암효과를 나타낼 수 있을 뿐만 아니라 암치료 유전자와 접합된 형태로 발현되어 암치료 유전자를 활성화시킬 수 있다. 따라서, 암특이적 유전자를 불활성화시키고, 암치료 유전자를 활성화시킬 수 있는 활성을 나타낸다면 어떠한 형태의 것이라도 사용 가능하다. 구체적으로 상기 라이보자임은 서열번호 1, 서열번호 2 또는 서열번호 3의 핵산서열을 포함하는 것일 수 있다.
본 발명의 용어 "트랜스-스플라이싱(trans-splicing)"은 서로 다른 유전자로부터의 RNA를 연결하는 것을 의미한다. 구체적으로는 T 세포에 특이적인 CTLA-4의 mRNA를 인지하여 트랜스-스플라이싱하는 능력이 검증된 CTLA-4 타겟팅 트랜스-스플라이싱 그룹 I 라이보자임을 사용하는 것일 수 있다.
한편, 본 발명자들은 상기 라이보자임과 함께 목적 유전자를 발현시킬 수 있는 재조합 레트로바이러스를 고안하였다. 즉, 상기 재조합 레트로바이러스는 T 세포에 특이적인 트랜스-스플라이싱 라이보자임을 통하여 라이보자임에 연결된 목적 유전자 발현카세트에 포함된 목적 유전자를 T 세포 특이적 유전자 전사체에 삽입하는 기능을 할 수 있다.
본 발명의 용어 "목적 유전자"는 상기 라이보자임에 의하여 세포 내 특이적 표적 암특이적 유전자의 mRNA에 연결되어 발현이 유도되는 유전자를 의미하며, 본 발명에서는 치료용 유전자 또는 리포터 유전자일 수 있으나 이에 제한되지 않는다.
아울러, 본 발명의 발현 카세트에 포함되는 목적 유전자는 T 세포에 CTLA-4 대신 발현시키고자 하는 모든 유전자일 수 있으며, 특히 본 발명의 목적상 키메릭 항원 수용체(CAR)일 수 있다.
본 발명에서 "키메릭 항원 수용체(Chimeric antigen receptor)"는 자연적으로 T 세포가 활성화하는데 필요한 항원 제시 세포(APC)의 매개없이 원하는 항원에 결합하여 항원-항체 반응을 통해 T 세포의 활성화를 유도하고 해당 항원을 발현하는 세포를 공격할 수 있도록 하기 위해 T 세포에 발현시키기 위한 융합 단백질을 의미할 수 있다. 곧, T 세포에 발현시 항원에 결합하여 T 세포의 활성화를 유도하는 단백질이라고 볼 수 있다. 이를 통해 면역 반응을 일으키고자 하는 세포에 특이적인 항원을 인식하는 단백질일 수 있으며, 상기 면역 반응을 일으키고자 하는 세포는 특정 조직에 존재하거나 병변을 일으킨 조직을 이루는 세포를 의미할 수 있다.
본 발명의 목적상 상기 키메릭 항원 수용체는 암세포 특이적 항원을 인식하는 것일 수 있으며, 상기 암세포 특이적 항원은 EGP2(Epithelial glycoprotein 2), EGP40(Epithelial glycoprotein 40), TAG72(Tumor associated glycoprotein 72), IL13Rα2(Interleukin 13 receptor alpha-2 subunit), CA IX(Carbonic anhydrase IX), CD19, CD52, CD33, CD20, TSLPR, CD22, CD30, GD3, CD171, ALK(Anaplastic lymphoma kinas), CD47, EGFRvIII, NCAM(Neural cell adhesion molecule), FBP(Folate binding protein), Le(Y)(Lewis-Y antigen), MUC1(Mucin 1), PSCA(Prostate stem cell antigen), PSMA(Prostate-specific membrane antigen), FGFR4(Fibroblast growth factor receptor 4), FAR(Fetal acetylcholine receptor), CEA(Carcinoembryonic antigen), HER2(Human epidermal growth factor receptor 2), Mesothelin, CD44v6(Hyaluronate receptor variant 6), B7-H3, Glypican-3,5, ROR1, Survivin, FOLR1(folate receptor), WT1(Wilm's tumor antigen), CD70 및 VEGFR2(Vascular endothelial growth factor 2)으로 이루어진 군으로부터 선택된 것일 수 있으며, 특히 TAG72일 수 있다. 본 발명에서 키메릭 항원 수용체는 서열번호 4의 핵산 서열로 이루어진 폴리뉴클레오티드로부터 암호화되는 것일 수 있다.
본 발명의 구체적인 일 실시예에서, (주) 바이로메드에서 받은 Tag72 항원 인지 키메릭 항원 수용체(chimeric antigen receptor, CAR, 서열번호 4)가 들어있는 레트로바이러스 벡터(pMT-CAR)에 라이보자임을 클로닝하여, pMT-Rib-CAR 레트로바이러스 벡터와 함께 envelope DNA와 gag-pol DNA를 섞어서 세포에 뿌려 레트로바이러스를 생산하였다.
한편, 기존의 면역 시스템을 이용하여 효율적인 항암 치료를 하고자 하는 많은 시도들이 이뤄지고 있었다. T cell에 특정 항원을 인식하는 CAR를 발현시켜줌으로써 APC에 의존하지 않고 직접적으로 암 세포를 공격하는 T cell이 개발되었다. 하지만 지금까지 혈액암에 대한 치료제로서 많이 개발되어 왔으며, 암 조직 주변이 면역 작용을 억제하는 환경으로 조성되는 고형암에서는 CAR에 의한 치료 효과가 낮은 것으로 알려졌다.
이를 극복하기 위해서 활성화된 T cell의 활성을 저해하는 CTLA-4를 억제하여 CAR를 발현하는 T cell의 활성을 유지시켜 효율적인 항암 효과를 나타낼 수 있도록 하였다. 이전에 항암 치료제와 함께 CTLA-4에 대한 antibody를 함께 사용하여 항암 효과를 확인한 연구가 보고되었으나, 이는 CTLA-4를 전반적으로 억제하기 때문에 특이성이 낮고 부작용 또한 유발될 수 있다.
본 발명에서는 cytotoxic T cell에 CTLA-4-타겟팅 라이보자임을 전달하여 라이보자임이 CTLA-4를 억제하는 동시에 암 항원을 인식하는 CAR를 발현시킴으로써 효율성을 높이고 부작용을 감소시킬 수 있다. 이 라이보자임은 leaky expression에 의해 CAR를 발현시키고, T cell이 활성화 상태가 되었을 때 CTLA-4가 발현되면 라이보자임의 트랜스-스플라이싱에 의해 CTLA-4를 억제하고 동시에 CAR의 발현이 더 증가할 수 있도록 개발되었다.
따라서 T cell이 암 세포를 인지하고 활성화되었을 때, 그 활성이 유지될 뿐만 아니라 암 항원을 더 잘 인식하도록 CAR가 발현됨으로써 항암 효과를 더 극대화할 수 있다. 즉, 기존의 항암 치료를 저해했던 CTLA-4를 억제하고 동시에 CAR의 발현을 유도함으로써 이전의 문제점을 극복하고, 항암 특이성과 효율성을 모두 증대시킨 효과적인 항암 유전자 세포 치료제를 개발하였다.
특히, 본 발명의 라이보자임을 이용할 경우 CTLA-4의 leaky expression을 통하여 CAR의 발현이 지속적으로 일어날 수 있게 함으로써 항암 효과를 더욱 우수하게 가질 수 있다.
한편, 본 발명의 재조합 벡터는 (iii) 상기 라이보자임의 5' 말단에 CTLA-4의 라이보자임 인지 부위 뒤쪽의 뉴클레오티드에 대한 antisense 서열의 폴리뉴클레오티드를 추가로 포함하는 것일 수 있다. 상기 antisense 서열은 라이보자임 인지 부위 뒤쪽의 염기서열 50 내지 400 폴리뉴클레오티드를 포함하는 것일 수 있으며, 특히 antisense 서열은 서열번호 5 또는 6의 핵산 서열을 포함하는 것일 수 있다. 아울러, 본 발명은 CMV, RSV 프로모터 등과 함께 antisense 서열을 사용하여 발현 증가 또는 특이성을 높일 수 있다.
본 발명의 구체적인 실시예에서는, [CMV 프로모터-CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-CMV-CTLA-5 Rib48-CAR(CMV-Rib-CAR T) construct에 비해서 antisense 서열을 추가로 포함하는 [CMV 프로모터-antisense 100nt-CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-CMV-AS-CTLA-5 Rib48-CAR(CMV-AS-Rib-CAR T) construct의 세포 내 발현 효과가 더 우수함을 확인하였다(도 10).
본 발명의 또 다른 일 구현예는 상기 재조합 벡터가 도입된 형질전환 세포를 제공한다.
본 발명에서 용어 "도입"은 형질감염(transfection) 또는 형질도입(transduction)에 의해 외래 DNA를 세포로 유입시키는 것을 의미한다. 형질감염은 칼슘 포스페이트-DNA 공침전법, DEAE-덱스트란-매개 형질감염법, 폴리브렌-매개 형질감염법, 전기충격법, 미세주사법, 리포좀 융합법, 리포펙타민 및 원형질체 융합법 등의 당분야에 공지된 여러 방법에 의해 수행될 수 있다. 또한, 형질도입은 감염(infection)을 수단으로 하여 바이러스 또는 바이러스 벡터 입자를 사용하여 세포 내로 유전자를 전달시킬 수 있다.
본 발명에서 용어, "형질전환 세포"는 숙주세포에 목적으로 하는 폴리뉴클레오티드를 도입한 세포를 의미한다. 형질전환은 상기 "도입" 방법에 의해 이루어질 수 있고, 당분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다.
본 발명의 일 실시예에서는 재조합 벡터를 PEI를 이용하여 DNA를 세포 내로 주입하거나, 바이러스를 전달체로 이용하여 세포 내로 주입하여 재조합 벡터가 도입된 형질전환 세포를 제조하였으며, 나아가 일시적인 형질도입이 아닌 stable cell을 제작하는 방법을 사용하여 제조할 수 있다.
본 발명의 또 다른 일 구현예는 상기 재조합 벡터로부터 발현된 라이보자임을 제공한다. 본 발명에서 재조합 벡터 및 라이보자임에 관한 내용은 앞서 설명한 바와 같다.
본 발명의 또 다른 일 구현예는 상기 라이보자임을 발현하는, 레트로바이러스를 제공한다. 본 발명에서 라이보자임에 관한 내용은 앞서 설명한 바와 같다.
본 발명의 또 다른 일 구현예는 상기 레트로바이러스를 처리한 T 세포를 제공한다. 본 발명에서 T 세포는 일차 T 세포일 수 있고, 특히 인간 유래 일차 T 세포일 수 있으나, 이에 제한되지 않는다.
본 발명에서 레트로바이러스를 처리한 T 세포는, 상기 라이보자임을 발현하여 CTLA-4의 발현량이 감소되고, CAR이 발현된 T 세포일 수 있으며, 이에 따라 CAR이 인식하는 항원을 발현하는 세포에 의해서 T 세포가 활성화될 수 있다.
본 발명의 구체적인 일 실시예로서, 배양접시의 바닥에 레트로넥틴(retronectin)을 코팅해주었고, 레트로넥틴 코팅 배양접시(retronectin coated dish)에 레트로바이러스(retrovirus)를 붙여주었다. 일차 T 세포를 배양접시에 넣어 레트로바이러스를 처리한 T 세포를 제조하였다. 반정량 RT-PCR 및 웨스턴 블랏을 통해 해당 T 세포에서 CTLA-4의 발현량이 감소하는 것(도 5)과 CAR이 발현하는 것(도 6 및 도 7)을 확인하였다. 다만, CAR의 발현량은 라이보자임을 이용하지 않고 단순 CAR 발현 카세트를 주입한 CAR T 세포에 비해서 현저히 적었다. 아울러 이렇게 제조한 T 세포를 CAR의 인지 항원인 Tag72를 발현하는 암세포주인 LS174T에 처리하여 세포사 유도 효과를 확인하였다. 그 결과, mock T cell에 비해 약 5배의 cytotoxicity를 보였으며, 양성대조군의 70% 정도의 효과를 보이는 것을 확인하였다(도 8). 이는 CAR 발현량이 양성대조군인 CAR T에 비해 현저히 적은 것을 고려할 때 추가적인 CTLA-4의 억제 등에 의해 개별 T 세포의 활성이 매우 우수해진 것을 시사한다.
본 발명의 또 다른 일 구현예는 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합을 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 용어 "암"은 세포의 정상적인 분열, 분화 및 사멸의 조절 기능에 문제가 발생하여 비정상적으로는 과다 증식하여 주위 조직 및 장기에 침윤하여 덩어리를 형성하고 기존의 구조를 파괴하거나 변형시킨 상태를 의미하며, 구체적으로 상기 암은 폐암, 췌장암, 간암, 흑색종, 골암, 유방암, 대장암, 백혈병, 자궁암, 림프종, 및 뇌암으로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 용어, "예방"은 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합을 유효성분으로 포함하는 조성물의 투여로 암을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 발명의 용어, "치료"는 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합을 유효성분으로 포함하는 조성물의 투여로 암이 호전되거나 이롭게 변경하는 모든 행위를 의미한다.
본 발명의 구체적인 일 실시예로서, 본 발명의 라이보자임을 클로닝한 레트로바이러스 벡터를 1차 T 세포에 전달하고 Tag72 항원을 발현하는 세포주인 LS174T에 대해서 세포독성 효과를 나타내는지 확인하였다. 그 결과, 본원발명의 Rib-CAR T에서 양성 대조군인 CAR T의 50 내지 70 % 정도의 살상능 효과를 나타내는 것을 확인하였다. 즉, 본원발명의 라이보자임이 실제적인 암세포 표적 살상능을 가짐을 확인하였다(도 8, 및 도 13).
본 발명의 라이보자임을 발현하는 T 세포는 암특이적 항원을 발현하는 암세포에 대하여 양성 대조군의 50 내지 70 %에 달할 정도로 우수한 살상능을 가질 뿐 아니라, 해당 항원을 발현하는 암세포에 대한 특이적 살상능을 가지는 우수한 효과를 가지고 있다.
특히, 본 발명의 라이보자임을 발현하는 T 세포는 in vivo에서 T 세포 비활성화인자인 CTLA-4의 발현을 감소시킴으로써 살상능을 통한 T 세포의 항암효과를 효과적으로 유지시킬 수 있다.
아울러, 본 발명의 암 예방 또는 치료용 약학 조성물은 약학적으로 허용가능한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다.
본 발명의 약학적 조성물에 사용될 수 있는 약학적으로 허용가능한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 칼슘 카보네이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시 벤조에이트, 탈크, 마그네슘 스테아레이트, 광물유 등을 들 수 있다.
본 발명의 약학적 조성물은 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 제형화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제의 예로는 정제, 환제, 산제, 과립제, 캡슐제 등이 있으며, 이러한 고형제제는 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘 카보네이트, 수크로즈 또는 락토스, 젤라틴 등을 혼합하여 조제될 수 있다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다.
경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 또 다른 일 구현예는 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합을 치료를 필요로 하는 개체에 약학적으로 유효한 양으로 투여하는 단계를 포함하는, 암 치료방법을 제공한다.
본 발명의 용어 "약학적으로 유효한 양"은 의학적 치료에 적용가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 성병, 연령, 질병의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있다. 또한 본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합은 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 용어 "개체"는 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 투여에 의해 증상이 호전될 수 있는 암을 가진 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 또는 인간을 포함한다. 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합을 개체에게 투여함으로써, 암을 효과적으로 예방 및 치료할 수 있다. 본 발명에 따른 상기 치료방법은 인간을 제외한 동물을 치료하는 방법일 수 있으나, 이에 제한되지 않는다. 즉, 인간의 경우 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 투여에 의해 증상이 호전될 수 있는 암을 가지는 것을 고려할 때, 인간의 치료에 있어서도 충분히 사용될 수 있다.
본 발명의 용어 "투여"는 어떠한 적절한 방법으로 동물에게 소정의 물질을 도입하는 것을 의미하며, 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 경구 또는 비경구 투여될 수 있다. 또한, 본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합은 유효성분이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명에 따른 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서, 본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합은 1일 1 내지 10 mg/kg으로, 바람직하게는 1 내지 5 mg/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다.
본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합은 단독으로, 또는 공지의 항암제를 병용 투여하거나 외과적 수술요법 등의 보조 치료 방법들과 병행하여 사용하여 항암 효과를 증대시킬 수 있다. 본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 투여와 함께 이용될 수 있는 화학 요법제(chemotherapeutic agent)는 시스플라틴(cisplatin), 카르보플라틴 carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드 (ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아 (nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 마이토마이신(mitomycin), 에토포시드(etoposide), 탁목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함할 수 있다. 또한, 본 발명의 상기 재조합 벡터, 상기 형질전환 세포, 상기 라이보자임, 상기 레트로바이러스, 상기 T 세포 또는 이들의 조합의 투여와 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1. 라이보자임 제작
1-1. CTLA -4 RNA에 대한 in vitro 맵핑
본 발명자들은 CTLA-4 RNA에 효과적으로 작용할 수 있는 라이보자임을 제작하고자, 우선적으로 CTLA-4 RNA의 특정 서열에 특이적이고 효율적으로 인지할 수 있는 라이보자임 내부 가이드 서열 (Ribozyme Internal Guide Sequence, Ribozyme IGS) 서열을 찾기 위해 in vitro 맵핑(mapping)을 수행하였다.
구체적으로, 트랜스-스플라이싱(Trans-splicing) 반응을 위하여 IGS를 랜덤화 한 라이보자임 라이브러리(ribozyme library) RNA와 CTLA-4 RNA의 절대량을 100 nM : 10 nM로 하여 반응시켰다. 반응에 앞서 기질인 CTLA-4 RNA (2x reaction buffer, substrate RNA, 0.2 mM dGTP, DEPC-H2O)는 37 ℃에서 미리 5분간 전가열(preheating) 시켜주고 라이보자임 RNA (2X reaction buffer, Ribozyme RNA, DEPC-H2O)는 50 ℃에서 5분간 정치시킨 후 37 ℃에서 2분간 정치시킴으로써 올바른 3차 구조 형성을 유도하였다. 상기 두 반응물(CTLA-4 RNA 용액 및 라이보자임 RNA 용액)을 잘 섞어준 다음 37 ℃에서 3시간 동안 반응시켰다.
상기 반응물 10 ㎕와 함께 라이보자임 라이브러리 RNA의 3' 부분에 붙는 primer(RY-RT)와 정제한 total RNA를 잘 섞은 후 65 ℃에서 5분간 반응시키고 얼음에 10분간 두었다. 여기에 5X RT buffer, 10mM dNTP mix(Beams bio)와 1U MMLV Reverse transcriptase(abm)와 16U RNase inhibitor(Enzynomics), DEPC dH20로 총 50 ㎕를 만들어 42 ℃에서 1시간 동안 반응시켰다. 1시간 동안 반응시킨 후 95 ℃에서 5분간 반응시켜 MMLV-RT의 활성을 완전히 불활성화시킨 후 4 ℃에 두었다. 그 다음 5' primer(CTLA-4 5' UTR XhoI)와 3' primer(RT-TS)와 함께 10X taq polymerase buffer, 10mM dNTP mix(beams bio), 1U taq polymerase(Solis BioDyne)를 넣고 D.W로 20 ul를 맞춰준 다음, [95 ℃ 5min → (95 ℃ 30sec → 58 ℃ 30sec → 72 ℃ 30sec) x40cycles → 72 ℃ 5min]의 조건으로 PCR하였다. 그 결과물을 2% TAE 아가로즈 젤에 로딩한 후 모든 band를 용리한 후 서열분석을 하기 위해 T-blunt vector(Solgent)에 클로닝한 후 서열분석을 진행하였다.
1-2. CTLA -4 RNA에 대한 in vivo 맵핑
in vivo에서는 293 세포에 CTLA-4 RNA(기질, 5'UTR~exon2 region) 5 ㎍과 라이보자임 라이브러리 RNA 4 ㎍을 함께 DMRIE-C Reagent(invitrogen)으로 공-형질전환(co-transfection)한 후 24시간 뒤에 total RNA를 정제하여 얻었다. 그 다음 라이보자임 라이브러리 RNA의 3' 부분에 붙는 primer(RY-RT)와 정제한 total RNA를 잘 섞은 후65 ℃에서 5분간 반응시키고 얼음에 10분간 두었다. 여기에 5X RT buffer, 10 mM dNTP mix(Beams bio)와 1U MMLV Reverse transcriptase(abm)와 16 U RNase inhibitor(Enzynomics), DEPC dH20로 총 50 ㎕를 만들어 42 ℃에서 1시간 동안 반응시켰다. 1시간 동안 반응시킨 후 95 ℃에서 5분간 반응시켜 MMLV-RT의 활성을 완전히 불활성화시킨 후 4 ℃에 두었다. 그 다음 5' primer(CTLA-4 5' UTR XhoI)와 3' primer(RT-TS)와 함께 10X taq polymerase buffer, 10mM dNTP mix(beams bio), 1U taq polymerase(Solis BioDyne)를 넣고 D.W로 20 ul를 맞춰준 다음, [95 ℃, 5 min → (95 ℃, 30 sec → 58 ℃, 30 sec → 72 ℃, 30 sec) x 40 cycles → 72 ℃, 5 min]의 조건으로 PCR하였다. 그 결과물을 2% TAE 아가로즈 젤에 로딩한 후 모든 band를 용리한 후 서열분석을 하기 위해 T-blunt vector(Solgent)에 클로닝한 후 서열분석을 진행하였다.
1-3. CTLA -4 RNA 상 라이보자임 타겟팅 부위 맵핑
상기 실시예 1-1 및 1-2에서 in vitroin vivo RNA 맵핑을 수행한 결과, RT-PCR을 통해 여러 부위를 인지하여 트랜스-스플라이싱이 된 트랜스-스플라이싱 결과물들을 확인할 수 있었고, 상기 결과물들을 서열분석한 결과 다양한 인지부위를 찾았다. 이렇게 확인된 라이보자임 주요 타겟팅 부위는 IGS32, IGS48, IGS111, 및 IGS232였다(도 1). 특히 in vitroin vivo 맵핑에서 공통적으로 인지부위로 확인된 부위는 IGS48이었다.
상기 확인된 인지 부위에 대한 라이보자임들(IGS32 : 서열번호 38, IGS48 : 서열번호 1, IGS111 : 서열번호 2, 및 IGS232 : 서열번호 3)을 각각 제작하여 in vitro 트랜스-스플라이싱을 진행한 결과 IGS32, IGS48, IGS111 및 IGS232에서 타겟팅이 잘 일어남을 확인하였다(도 2).
1-4. 특이성을 증가시킨 라이보자임 제작
라이보자임의 IGS에 P1과 P10을 포함한 5' primer(IGS48P1P10 StuI)와 3' primer(RY-RT) / 5' primer(IGS111P1P10 StuI)와 3' primer(RY-RT)/ 5' primer(IGS232P1P10 StuI)와 3' primer(RY-RT)를 이용하여 PCR 한 후 StuI과 ScaI으로 digestion한 SV40 프로모터 벡터와 함께 T4 ligase(doctor protein)로 16 ℃에서 4시간 반응시켜 라이게이션하였다.
이어서 라이보자임이 클로닝된 벡터를 ScaI과 XhoI으로 double digestion한 후 5' primer(5' F.luci ScaI P10 IGS48, 5' F.luci ScaI P10 IGS111, 5' F.luci ScaI P10 IGS232), 3' primer(3' F.luci end XhoI)으로 PCR하여 얻은 Firefly luciferase 유전자를 라이게이션 하였는데, 이때 IGS232을 인지하는 라이보자임의 경우 CTLA-4 뒤에 라이게이션되어 transgene의 단백질이 올바르게 발현되도록 reading frame을 맞춰 주었다.
이후 SV40 프로모터 벡터에 클로닝한 것을 pcDNA3.1(+) 벡터에 옮기기 위해 클로닝을 하였다. 우선 pcDNA3.1(+) vector를 HindIII와 XhoI으로 double digestion하여 준비하고, 라이보자임으로부터 F.luciferase 유전자를 각각의 5' primer (IGS48 P1P10 HindIII, IGS111 P1P10 HindIII, IGS232 P1P10 HindIII)와 3' primer(3' F.luci end XhoI)로 PCR한 후 함께 라이게이션하였다. 서열분석을 통해 CMV 프로모터를 가지는 pcDNA3.1(+) 벡터에 P1과 P10 구조를 가지는 라이보자임과 그 뒤에 리포터 유전자인 firefly luciferase가 클로닝된 것을 확인하였다.
한편, CTLA-4에 대한 라이보자임 활성의 특이성 및/또는 효율성을 증대시키고자 상기 제조한 라이보자임에 CTLA-4에 대한 antisense 서열을 추가로 포함하는 라이보자임을 추가로 제조하였다. IGS48를 가지는 라이보자임의 5' 쪽에 CTLA-4의 라이보자임 인지 부위 뒤쪽의 염기서열 100nt(서열번호 5) 또는 300nt(서열번호 6)를 antisense로 클로닝하고자 하였다. PcDNA3.1(+)-CTLA-4 플라스미드에서 antisense 100nt과 300nt을 각각 5' primer(IGS48 AS100 kit F), 3' primer(IGS48 AS kit R)/ 5' primer(IGS48 AS300 kit F), 3' primer(IGS48 AS kit R)를 이용하여 PCR하여 DNA를 용리하였다. pcDNA3.1(+)-ribozyme-F.luciferase 플라스미드를 HindIII로 digestion한 후, 벡터와 insert를 각각 100 ㎍씩 사용하여 5X infusion mix(Clontech)와 함께 섞은 후 65 ℃에서 15분간 반응시킨 다음 얼음에서 잠시 식혀준 후 DH5α E. coli에 형질전환하여 벡터에 클로닝된 것을 선별하고, 서열분석을 통해 확인하였다.
실시예 2. 인지부위가 다른 라이보자임 활성 비교
맵핑을 통해 찾아진 CTLA-4 특정 부위를 인지하는 각각의 라이보자임의 세포 내 기능과 효율성을 확인하기 위해 실험을 수행하였다.
HEK-293 세포를 35 mm dish에 3 X 105으로 시딩하고 24시간 후에 무혈청 배지(serum-free media) 500 ㎕에 DNA 1 ㎍을 넣은 튜브를 준비하고 다른 튜브에 무혈청 배지 500 ㎕와 DMRIE-C(Invitrogen) 3 ㎕를 첨가하였다. DNA가 세포에 잘 들어갈 수 있는 리포좀 형태로 복합체를 이룰 수 있도록 두 튜브를 잘 섞어준 다음 상온에서 30분간 인큐베이션하였다. RNA의 경우에는 무혈청 배지 1000 ㎕와 DMRIE-C(Invitrogen) 3 ㎕를 섞은 후 형질전환 직전에 RNA 5 ㎍을 빠르게 섞었다. 5% CO2 인큐베이터에서 4시간 동안 배양한 다음 FBS 10%, Penicillin/Streptomycin 1%를 넣은 MEM media(Hyclone)로 교체해주었다.
150 mM NaCl 100 ㎕에 각각의 pcDNA3.1(+)-Ribozyme-F.luciferase(0.5 ㎍)와 target DNA(2.5 ㎍)를 첨가하고 형질전환 효율을 보정하기 위해 Renilla luciferase DNA 200 ng을 함께 넣었다. 다른 튜브에 150 mM NaCl 100 ㎕에 PEI(6 ㎍)를 섞은 후 5분간 상온에서 인큐베이션하고 라이보자임과 target DNA가 섞여 있는 각 튜브에 100 ㎕ 씩 분주하여 섞은 후 20분간 상온에서 인큐베이션한 다음, DNA와 PEI가 섞은 혼합물을 각각 200 ㎕씩 HEK-293에 천천히 넣었다. 24시간 뒤에 형질전환한 세포의 배지를 모두 제거하고 1X PBS로 씻어주고 1X passive lysis buffer 200 ㎕을 넣고 상온에서 15분간 lysis시켜 주었다. Cell lysate를 1.5 ml 튜브에 옮긴 후 원심분리(centrifugation)하여 cell debris 제외한 상층액을 새 튜브로 옮겨 total protein을 얻었다. 1.5 ml 튜브에 cell lysate를 20 ㎕씩 옮겨 담은 후 LARII(Luciferase assay reagent II, promega)를 100 ㎕씩 넣고 섞은 후 Luminometer(TD+20/20)로 값을 읽었다. 그 다음에 Stop&Glo reagent mix(Stop&Glo 20 ㎕ + buffer 1 ml, promega)를 100 ㎕ 씩 넣어 동일하게 섞은 후 역시 Luminometer로 값을 읽었다. 이때, 두 reagent를 섞는 시간과 횟수를 동일하게 해주고 sensitivity level은 각각의 세포 조건에 맞춰 20%에서 60% 사이로 설정하였다.
상기 설명한 바대로 라이보자임의 표적 특이적 효율을 확인하기 위해 3' exon으로 리포터 유전자인 firefly luciferase 유전자를 달아주고 위에서 확인한 CTLA-4 인지 부위 중 5' UTR이면서 loop 부위에 위치한 IGS48, ORF이면서 loop 부위인 IGS111 및 232로 각각에 대한 라이보자임을 제작하였으며(서열번호 13, 16 및 17), 이때 IGS 외에 특이성과 효율성을 높이기 위해 P1,P10 helix를 붙여주었다.
그 결과, 표적 RNA가 있을 때, 라이보자임이 트랜스-스플라이싱에 의해 효율이 증가하는 것을 확인하였으며, IGS48을 가지는 라이보자임(IGS48P1P10 F.luci)이 가장 효율이 높은 것을 확인할 수 있었다. 또한, 표적 유전자가 없는 경우에 IGS48P1P10 라이보자임에서 leaky expression이 잘 일어남을 확인할 수 있었다. 즉, 실험 목적에 따라 라이보자임 효율이 가장 높고, leaky expression도 잘 일어나는 IGS48P1P10 라이보자임을 본 실험의 대표적으로 선정하여 이후 실험을 진행하였다(도 3).
상기 실험에 추가로 라이보자임의 표적 특이적 효율을 확인하기 위해 3'exon으로 리포터 유전자인 firefly luciferase gene을 달아주고 antisense 없이 라이보자임만 있을 경우와 CTLA-4에 대한 antisense가 각각 100nt, 300nt 있을 경우(각각 AS100-IGS48P1P10-F.luci-서열번호 14, AS300-IGS48P1P10-F.luci-서열번호 15)에 라이보자임의 활성을 확인하였다. 이때, 음성 대조군으로서 CMV 프로모터만 가지고 있는 벡터(Vec)를 사용하고, 양성 대조군으로서 CMV 프로모터에 F.luciferase가 발현되는 벡터(CF)를 사용하였다.
그 결과 모두 표적 RNA가 존재할 경우 활성이 증가함을 확인할 수 있었고, in vitro에서는 antisense를 달아주지 않은 라이보자임이 가장 활성이 높았다. 또한 CTLA-4가 내재적 발현되는 Jurkat 세포주에서 확인하였을 때도 마찬가지로 모두 라이보자임의 활성을 확인할 수 있었으며, 그 중 antisense를 달아주지 않은 IGS48P1P10 라이보자임이 가장 활성이 높게 나타나는 것을 확인하였다(도 4).
한편, 본 발명에서 AS100-IGS48P1P10-F.luci 및 AS300-IGS48P1P10-F.luci는 pcDNA3.1(+)(CMV 프로모터 포함 벡터)에 도입하여 활성을 확인하였다.
실시예 3 : 라이보자임 발현 레트로바이러스 벡터 제작 및 생산
3-1. 라이보자임 발현 레트로바이러스 벡터 제작
(주)바이로메드에서 받은 Tag72 항원 인지 키메릭 항원 수용체(chimeric antigen receptor, CAR, 서열번호 4)가 들어있는 레트로바이러스 벡터(pMT-CAR)에 라이보자임을 클로닝하였다. 특히 상기 실시예 2에서 확인한 바대로 라이보자임 효율이 가장 높고, leaky expression도 잘 일어나는 IGS48 라이보자임으로 레트로바이러스 벡터를 제작하여 라이보자임의 활성을 확인하였다.
구체적으로 PcDNA3.1(+)-IGS48 ribozyme-F.luciferase 플라스미드로부터 primer (IGS48 BamHI F, IGS48Rib BamHI R)를 이용하여 PCR한 후 DNA를 용리하여 insert를 얻었으며, IGS48 라이보자임의 3' exon으로 CAR를 발현시키기 위해 pMT-CAR 벡터를 BamHI으로 digestion하여 벡터를 준비하였다. 벡터와 insert를 16 ℃에서 라이게이션 반응시켰고, 클로닝된 것을 BamHI으로 선별하여 서열분석을 통해 #5, #11, #16의 3개 클론을 얻었다(pMT-Rib-CAR).
3-2. 레트로바이러스 생산
24시간 전에 293T를 60 mm cell culture dish에 1 X 106 세포씩 seeding하여 준비하였다. 1.5 ml 튜브에 serum-free media 600 ㎕에 293T transfection reagent(Mirus)를 18 ㎕ 넣어 섞어주고 상온에서 5분간 인큐베이션하였다. 그 다음, 앞서 제작한 각각의 pMT-Rib-CAR 레트로바이러스 벡터와 함께 envelope DNA와 gag-pol DNA를 (2.4ug : 1.2ug : 2.4ug) 비율로 섞어서 튜브에 넣어주고 30분간 상온에서 반응시킨 후 세포에 천천히 뿌려주었다. 그로부터 4시간 뒤에 1X PBS로 2회 씻어낸 뒤, 알맞은 growth media를 넣어주고 48시간 뒤에 상층액을 걷어서 0.45um filter에 거른 후 -70 ℃에 분주하여 보관하였다. 이때, 레트로바이러스를 전달할 세포 특성에 따라 잘 감염할 수 있는 envelope DNA를 선택해야 하는데, 알려진 3가지의 envelope DNA 유형 중에서 1차 T 세포(primary T cell)에 전달효율이 제일 좋았던 RD114 envelope DNA를 이용하여 레트로바이러스를 생산하였다.
실시예 4 : 말초혈액 단핵세포 (Peripheral blood mononuclear cell) 분리 및 배양
4-1. 일차 말초혈액 단핵세포 ( PBMC ) 분리
사람의 혈액을 채취한 후 원심분리를 이용하여 말초혈액 단핵세포(Peripheral blood mononuclear cell, PBMC)를 분리하였다.
먼저 채취한 혈액에 1X PBS + 2% FBS 용액을 동량 섞었다. 그 다음, Ficoll-Paque PLUS(GE heathcare) 3 ㎖을 SepMate™-50(STEMCELL technologies)의 central hole을 통해 barrier 아래쪽에 넣고, 미리 섞어준 혈액 혼합물을 10 ㎖씩 Ficoll 위에 섞이지 않도록 천천히 올려준 후, 1200 x g 10분간 원심분리하였다. 원심분리가 끝난 튜브는 gradient가 형성되므로 제일 위층의 플라즈마를 먼저 제거해준 다음, 뿌옇게 형성된 단핵세포(PBMC) 층을 파이펫을 이용해 새로운 튜브에 옮긴다. 이 때, 적혈구가 따라나올 수 있으니 너무 넓은 층을 무리해서 따지 않도록 주의한다. 새로운 튜브에 옮긴 PBMC를 1 X PBS + 2% FBS 용액 5 ㎖과 섞어서 300 x g 8분간 원심분리 한 후, pellet만 남기고 상층액은 모두 제거한 후 이 과정을 한번 더 반복한다. 마지막으로 얻어진 PBMC pellet을 primary T cell growth media에 재현탁하여 37 ℃ 5% CO2 인큐베이터에서 키운다.
4-2. 일차 T 세포 배양
상기 분리한 PBMC를 1 X 106 cells/ml로 준비하여 100 mm dish에 배양한 후 anti-CD3(eBioscience) 50 ng/ml을 첨가한다. 이때, T cell 생장배지(growth media)는 AIMV media(gibco)에 열불활성화(heat inactivation)시킨 인간 혈청을 5% 첨가한 배지를 사용하고, 새로운 배지로 갈아줄 때마다 human Interleukin-2(hIL-2)를 300 U/ml씩 섞어서 사용하였다. 그 후에 일차 T cell의 계대배양은 4일마다 한 번씩 T75 flask에서 배양하였으며, 항상 (0.7 X 105 ~ 2 X 106 cells/ml)의 농도를 유지해주었다.
실시예 5 : 일차 T 세포에 레트로바이러스 형질주입
일차 T 세포에 각각의 레트로바이러스를 4.8 X 1010 copies/1회로 하루에 1회씩, 총 2회 전달하였다. 구체적으로 레트로바이러스를 세포에 전달하기 전에 미리 사용할 배양접시의 바닥에 레트로넥틴(retronectin)을 20 ㎍/well씩 처리하여 상온에서 2시간 코팅해주었고, 2시간 후에 레트로넥틴을 제거한 다음 blocking reagent(PBS w/2.5% human albumin)을 2 ml/well씩 첨가하여 상온에서 30분간 인큐베이션하였다. 그 다음에 -70 ℃에 얼려두었던 레트로바이러스를 급속 해동하여 T cell 배양 배지와 함께 1 : 1로 섞어 레트로넥틴 코팅 배양접시(retronectin coated dish)에 넣은 후 2000g, 32 ℃, 2시간 동안 레트로바이러스(retrovirus)를 붙여주었다. 그동안에 일차 T 세포를 5 X 105 cells/ml로 세포 수를 세어 준비해두었고, 원심분리가 끝난 배양접시에 배지를 1 ml 정도만 남겨둔 후 준비한 세포를 4 ml/well로 넣어주고 1000g에서 15분간 원심분리 해주었다. 원심분리가 끝난 배양접시는 조심스럽게 가져와 37 ℃ 5% CO2 인큐베이터에서 하루 동안 배양해주었다. 이와 같은 과정을 그 다음 날 1회 반복하였다.
실시예 6 : 레트로바이러스 형질주입 일차 T 세포에서 반정량 PCR(semi-quantitative PCR)을 통한 CTLA -4 발현량 측정
라이보자임을 발현하는 레트로바이러스를 전달한 일차 T 세포에서 얻은 RNA를 역전사(reverse transcription)시킨 후, 세포 내의 CTLA-4 수준을 확인하기 위해서 반정량 PCR(semi-quantitative PCR)을 수행하였다. 각각의 시료에 대해 실험을 triplet으로 진행하여 평균값을 구하였으며 melting point를 확인하고 아가로즈 젤(agarose gel)상에서 확인하였다. 이때 SYBR Green을 이용하여 측정하였으며 반정량하게 시료들을 비교할 수 있도록 정량이 된 standard 대조군을 사용하였다. 보정을 위하여 CTLA-4 PCR한 것과 같은 RT 시료로 18S 반정량 PCR(semi-quantitative PCR)을 하여 나온 값으로 시료 간의 RT 효율 차이를 보정해주었다. 이때 primer는 5' primer(CTLA-4 real F), 3' primer(CTLA-4 real R)를 이용하였다.
상기 실시예 3에서 수득한 클론 중에서 clonal variation을 고려하여 가장 발현이 잘 되는 clone을 얻고자 각 clone을 비교하였다. 구체적으로 라이보자임이 발현되는 레트로바이러스를 각각 일차 T 세포에 전달한 후 T 세포 내의 CTLA-4 RNA 수준을 확인하였다. 이때, 대조군으로서 비아러스를 전달하지 않은 T 세포(mock-T)과 함께 CAR가 발현되는 레트로바이러스를 전달한 T 세포(CAR T)를 사용하였다. 그 결과, 라이보자임이 발현되는 레트로바이러스를 전달한 T cell(각각 Rib#5/11/16-CAR T) 내에서 CTLA-4 RNA의 감소를 확인할 수 있었으며, 3개의 clone 중 #11과 #16이 더 효율이 높은 것을 확인하였다(도 5).
실시예 7 : 웨스턴 블랏을 통한 측정
레트로바이러스를 전달한 일차 T 세포를 1X PBS로 washing한 뒤 1X RIPA buffer(sigma)와 0.1M PMSF(Fluka) mixture를 세포에 50 ㎕ 처리하여 스크랩퍼로 긁어낸 후 1.5 ml 튜브에 모두 옮겼다. Cell debris는 원심분리를 통해 제거하고 상층액만 새 튜브에 따로 담아 total whole extract를 얻었다. 얻은 total protein을 Bradford assay(sigma)를 이용해 단백질을 정량했으며 이때 BSA를 정량 standard로 사용해주었다.
정량한 단백질 20 ㎍과 4X sample buffer(Invitrogen)을 3:1로 섞은 후 95 ℃에서 5분동안 단백질 변성(protein denaturation)시킨 후에 얼음에서 인큐베이션한 상태로 준비하였다. SDS-PAGE 겔(NuPAGE 4-12% Bis-Tris minigel, Invitrogen)을 준비하여 running buffer(1X NuPAGE MES SDS Running buffer, Invitrogen)에 담가준 후에 겔의 각 레인에 단백질 시료를 천천히 로딩해주었다. 그 다음 200V로 35분간 running시키고, running이 완료된 겔은 PVDF membrane에 12V, 60분간 이동시켰다.
이동이 완료되면 membrane을 조심스럽게 떼어내어 TBS로 1회 씻어준 다음 1X TBST(1X TBS + 0.5% tween20)에 5% skim milk를 넣어 blocking solution을 만든 후 30분간 상온에서 shaking하면서 처리하였다. 그 다음 blocking solution을 모두 제거하고, 새로운 blocking solution에 1차 항체로 mouse anti-human CD247(BD)를 1:500으로 희석하여 4 ℃에서 하룻밤 동안 shaking하면서 처리하였다. 1차 항체 처리가 끝나면 용액을 모두 제거한 후, 새로운 blocking solution에 2차 항체로 goat anti-mouse IgG HRP(Thermo)를 1:5000으로 희석하여 상온에서 1시간 동안 처리해주었다. 항체 처리가 모두 끝나면 1X TBST로 membrane을 15분씩 3회 washing한 뒤 luminol이 포함된 detection reagent(Santacruz)을 A:B=1:1 비율로 섞어 membrane에 전체적으로 뿌려준 후 1분간 암조건에서 반응시키고, Gel-doc(ImageQuant LAS4000, GE healthcare)에서 band를 확인하였다.
상기 실시예 3에서 수득한 클론 중에서 clonal variation을 고려하여 가장 발현이 잘 되는 clone을 얻고자 각 clone을 비교하였다. 구체적으로 웨스턴 블랏팅과 FACS로 CAR의 발현을 확인하여 비교하였다. 그 결과, 라이보자임이 발현되는 T 세포(각각 Rib#5/11/16-CAR T) 내에서 CAR의 발현을 확인할 수 있었다. 먼저, FACS 데이터는 라이보자임을 발현하는 레트로바이러스를 전달한 T 세포에서 모두 CAR의 발현을 확인할 수 있었으며, #16 클론에서 가장 높은 발현을 보였다(도 6).
또한, 웨스턴 블랏팅를 통해 확인한 결과 Rib#5/16-CAR T에서 CAR의 발현이 되는 것이 확인되었다. 다만, Rib#5/16-CAR에서는 CTLA-4 타겟팅 라이보자임을 이용하지 않은 CAR T에 비해 CAR를 발현량이 적은 것을 확인하였다. 한편, Rib#11-CAR T의 CAR의 발현량은 떨어지는 것으로 확인하였다(도 7).
상기 결과를 정리하면, CTLA-4 타겟팅 라이보자임을 발현하는 레트로바이러스가 전달된 T cell에서 표적 RNA의 감소와 CAR의 발현을 확인할 수 있었으며, 클론 16이 가장 효율이 높았다.
실시예 8 : Tag72를 발현하는 암세포에 대한 세포사 유도 효과 확인
상기 레트로바이러스 벡터에 라이보자임을 클로닝한 후 일차 T cell에 전달하고, Tag72 항원을 발현하는 세포주인 LS174T에 대해서 세포사멸능을 나타내는지 확인하였다. 세포사멸 실험은 레트로바이러스 벡터에 라이보자임-CAR을 클로닝한 것을 바이러스 (Ret-CTLA-4 Rib48-CAR, Rib#16-CAR T) 로 제작하여 일차 T cell에 전달하여 진행하였다.
구체적으로 LS174T 세포주를 target 세포로서 1 X 104 cells/50 ㎕로 준비한 뒤 CellTox green dye(Promega)를 준비한 50 ㎕ cell당 0.2 ㎕씩 첨가하여 섞어준 뒤 black 96-well plate에 50 ㎕/well으로 분주한다. 그 다음 레트로바이러스가 전달된 T cell(Effector cell)을 비율(target cell:effector cell +1:5, 1:10, 1:20, 1:30)에 따라 배양배지에 재현탁하여 준비 후 50 ㎕/well로 target cell과 섞어준다. 세포사멸 실험 (Cytotoxicity assay)의 background 대조군로 LS174T 또는 Effector cell만 넣고, 동량의 서로 다른 생장배지(growth media)를 넣어주어 배지에 의한 영향을 배제하였다. 이때 effector cell만 들어있는 well에는 CellTox green dye(Promaga)가 포함되어 있지 않으므로 dye를 위와 같은 비율로 섞은 target growth media를 넣어주었다. 또한 toxicity control(positive control)로 LS174T만 있는 well에 effector cell growth media를 동량 섞은 후 lysis solution을 4 ㎕ 첨가해주었으며, 음성대조군로 두 세포 배양배지만 섞은 well에도 dye를 같은 양 넣어주었다. 위와 같이 plate를 채워준 다음 빛을 차단한 환경을 만들어주고 37 ℃ CO2 인큐베이터에서 24시간동안 반응시킨 후 Fluorescence reader(Ex 485nm/Em 520nm)로 값을 측정하였다.
실시예 9 : Jurkat 세포주 활성(stimulation)과 레트로바이러스 전달
Jurkat 세포주를 1x106 cells/well/2ml(RPMI1640)에 분주한 후, 24시간 후 레트로바이러스를 3 x 109 카피/well씩 total 3ml이 되도록 RPMI1640 배지와 함께 섞어서 각 well에 배지 교체를 해줬다. 이 때, polybrene(8ug/ml)을 1 ul/ml로 함께 넣어줬다. 그 다음 32℃ 2800 rpm 90분 동안 cell down시켜 레트로바이러스를 전달한 후, CO2 인큐베이터에서 2 시간 동안 인큐베이션하였다. 2시간 뒤 배지 교체 시에 PMA(50ng/ml)+PHA(1ug/ml)을 섞은 RPMI1640 2ml을 넣어줬다. CO2 인큐베이터에서 72 시간 동안 인큐베이션한 후 세포를 걷어 RNA를 얻었다.
사용 프라이머
프라이머 서열 (5'-> 3')
RY-RT(서열번호 18) ATGTGCTGCAAGGCGATT
RY-TS(서열번호 19) TGTAAAACGACGGCCAGTG
CTLA4 5' UTR XhoI(서열번호 20) CCGCTCGAGCTTCTGTGTGTGCACATG
IGS48P1P10 StuI(서열번호 21) GAAGGCCTATCCTATGGATAGAAAAGTTATCAGGCAT
IGS111P1P10 StuI(서열번호 22) GAAGGCCTATCCTTTGCCTTTAAAAGTTATCAGGCAT
IGS232P1P10 StuI(서열번호 23) GAAGGCCTATCCTTTGACAGGAAAAGTTATCAGGCAT
5' F.luci ScaI P10 IGS48 (서열번호 24) AAAAGTACTCGTTAGGATGCCCACCATGGAAGACGCCAAAAACATA
5' F.luci ScaI P10 IGS111(서열번호 25) AAAAGTACTCGTAAGGATGCCCACCATGGAAGACGCCAAAAACATA
5' F.luci ScaI P10 IGS232(서열번호 26) AAAAGTACTGTAAGGATGCCCACCACGAAGACGCCAAAAACATA
IGS48 P1P10 HindIII(서열번호 27) CCCAAGCTTATCCTATGGATAGAAAAGTTATCAGGCAT
IGS111 P1P10 HindIII(서열번호 28) CCCAAGCTTATCCTTTGCCTTTAAAAGTTATCAGGCAT
IGS232 P1P10 HindIII(서열번호 29) CCCAAGCTTATCCTTTGACAGGAAAAGTTATCAGGCAT
3' F.luci end XhoI(서열번호 30) CCGCTCGAGTTACAATTTGGACTTTCCGCCCTT
IGS48 AS100 kit F(서열번호 31) CGTTTAAACTTAAGCTTAGCCATGGCTTTATGGGA
IGS48 AS300 kit F(서열번호 32) CGTTTAAACTTAAGCTTACCTCAGTGGCTTTGCCT
IGS48 AS kit R(서열번호 33) ATGGATCCGCGAAGCTTTGATTCTGTGTGGGTTCA
IGS48 BamHI F(서열번호 34) CGCGGATCCATCCTATGGATAGAAAAG
IGS48Rib BamHI R(서열번호 35) CGCGGATCCATCCTAACGAGTACTCCA
CTLA4 real F(서열번호 36) CTACCTGGGCATAGGCAACG
CTLA4 real R(서열번호 37) CCCCGAACTAACTGCTGCAA
실험의 양성 대조군으로서 라이보자임 없이 CAR를 발현하는 레트로바이러스(Ret-CAR)를 전달한 T cell (CAR T)과 함께 실험을 진행한 결과, mock T cell에 비해 약 5배의 세포 독성을 보였으며, 양성 대조군의 70% 정도의 효과를 보였다(도 8).
실시예 9 : 프로모터 추가 라이보자임 제작
한편, 상기 실시예 1-4에서 본 발명자들은 antisense 서열을 도입한 라이보자임을 제작하고 이의 트랜스-스플라이싱 효과를 확인한 결과 효율이 증진하지는 않았던 것을 확인하였다(도 4). 이에, 기본적인 CTLA4 Rib48-CAR 라이보자임(서열번호 8)에 라이보자임의 효과를 증진시키기 위하여 antisense 100 nt을 달아준 라이보자임 construct(서열번호 9 및 서열번호 11)와 강력한 프로모터인 CMV 프로모터를 달아준 라이보자임 construct(서열번호 10 및 서열번호 11)를 레트로바이러스 벡터에 클로닝한 것으로 일차 T cell에 전달하여 세포사멸 효과를 각각 비교, 확인하였다.
실시예 10 : 라이보자임의 특이성과 표적 효율을 높여 주기 위해 CMV 프로모터 및 안티센스를 붙여준 consturct의 개발 및 CAR 발현과 CTLA -4의 발현 감소 확인
상기 실시예를 통해서 가장 활성이 높게 나타난 것으로 확인된 IGS48 라이보자임으로 레트로바이러스 벡터를 제작한 후 그 중 가장 효율이 좋은 Rib#16(이하 Rib)으로 다음 실험을 진행하였다.
라이보자임의 CTLA-4 표적 특이성과 효율을 높여주기 위하여 레트로바이러스 프로모터 앞에 CMV 프로모터를 붙여주거나 또는 CTLA-4에 대한 안티센스 100nt를 붙여준 다음 그 효율을 비교하고자 실험을 진행하였다. 구체적으로, [CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-CTLA-5 Rib48-CAR(Rib-CAR T) construct, [antisense 100nt-CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-AS-CTLA-5 Rib48-CAR(AS-Rib-CAR T) construct, [CMV 프로모터-CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-CMV-CTLA-5 Rib48-CAR(CMV-Rib-CAR T) construct, 및 [CMV 프로모터-antisense 100nt-CTLA-4 Rib48-CAR]의 구조를 가지는 Ret-CMV-AS-CTLA-5 Rib48-CAR(CMV-AS-Rib-CAR T) construct를 제작하였으며, 이때, 레트로바이러스 벡터에 CMV 프로모터만 넣은 construct를 제작하여 CMV 프로모터를 붙여준 양성 대조군으로 사용하였다(도 9).
각각의 T cell에서 CAR의 발현을 확인하기 위해, PBMC에 각 레트로바이러스 벡터를 형질감염(transduction) 후 FACS를 수행하여 세포 밖 CAR의 발현을 확인하였다.
그 결과, 도 10에서 확인할 수 있듯이 라이보자임만 있는 Rib-CAR T에서 CAR의 발현율이 높게 나타났으며, 다른 construct를 형질감염한 T 세포에서는 CAR가 낮게 발현됨을 확인하였다. 또한 CMV 프로모터만을 넣어준 CMV-CAR T에서도 CAR의 발현이 낮음을 확인하였다.
또한 위 실험에서 사용한 레트로바이러스가 전달된 T cell 내의 CTLA-4 RNA level을 확인하였다. 라이보자임이 전달된 T cell 중 가장 CAR의 발현이 높게 나타난 Rib-CAR T와 그 다음으로 높게 나타난 CMV-AS-Rib-CAR T에서 CTLA-4 RNA 양을 확인하였으며 이때, 대조군으로서 바이러스를 전달하지 않은 T cell(mock T)과 함께 CAR가 발현되는 레트로바이러스를 전달한 T cell(CAR T)을 사용하였다.
그 결과, 도 11에서 확인할 수 있듯이 mock T와 비교하여 레트로바이러스가 전달된 대조군인 CAR T에서 CTLA-4 RNA 수준이 약 2배 높게 나타났다. 이를 통해 레트로바이러스를 전달한 경우 CTLA-4의 발현이 증가함을 확인할 수 있었다. 따라서 라이보자임이 발현되는 레트로바이러스를 전달한 다른 T cell에서도 CTLA-4의 발현이 증가했을 것으로 생각되었다.
그 결과, Rib-CAR T와 CMV-AS-Rib-CAR T의 CTLA-4 RNA level이 mock T와 비슷하게 나타났으며, 레트로바이러스에 의해 높아진 CTLA-4의 양이 라이보자임에 의해서 감소되어 mock T와 비슷한 수준으로 나타난 것으로 해석될 여지가 있다.
실시예 11 : 레트로바이러스 전달에 따른 세포 내 CTLA-4 RNA 수준의 영향
상기와 같이 레트로바이러스에 감염된 세포 내에서 CTLA-4의 발현이 증가함을 확인해보기 위해서 Jurkat 세포주(인간 T lymphocyte; acute T cell leukemia)에서 실험을 진행하였다. 이때, 사용한 레트로바이러스로 양성 대조군으로 CAR만 발현되는 Ret-CAR을 사용하였고, Jurkat 세포를 활성화시켜 CTLA-4의 발현을 높여준다고 알려진 PMA/PHA chemical을 사용하여 CTLA-4 RNA 수준을 비교하였다.
그 결과, 도 12에서 확인할 수 있듯이 이전 실험과 동일하게 세포에 레트로바이러스 만을 전달하였을 때(II-2) CTLA-4 RNA 레벨이 약 2배 높아지는 것을 확인하였고, chemical만 처리한 경우 약 3배 높아졌으며, 레트로바이러스와 chemical을 동시 처리한 대조군의 경우 CTLA-4의 수준이 약 9배 가량 높아지는 것을 확인하였다.
즉, 상기 결과는 chemical을 통해 Jurkat 세포의 CTLA-4 수준을 높인 것과 같이, 레트로바이러스만을 전달하였을 때에도 CTLA-4의 발현량이 증가함을 보여주며 결과적으로 상기 실시예 10에서 레트로바이러스를 전달한 후 mock T 세포에 비해 높아진 CTLA-4 RNA 수준이 라이보자임에 의해 감소함을 확인하였다.
실시예 12 : 표적 암 세포에 대한 세포독성 어세이(cytotoxicity assay)
레트로바이러스 벡터에 라이보자임을 클로닝한 후 1차 T 세포에 전달하고 Tag72 항원을 발현하는 세포주인 LS174T에 대해서 세포독성 효과를 나타내는지 확인하였다.
상기 실시예에서 CTLA-4 RNA 수준을 감소시키고 CAR 발현이 가장 높게 나타난 Rib-CAR과 CMV-AS-Rib-CAR의 표적살상능을 확인하였다.
그 결과, 도 13에서 확인할 수 있는 바와 같이, Rib-CAR T에서 양성 대조군인 CAR T의 50 % 정도의 살상능 효과를 나타냈으며, CMV-AS-Rib-CAR보다 Rib-CAR에서 살상능이 더 좋은 것으로 확인되었다. 따라서, 이전 실험 결과와 일치하게 결과적으로 Rib-CAR이 CTLA-4 RNA를 가장 효과적으로 표적하며, CAR 발현효율이 우수한 것을 확인하였으며, 이를 통해 암세포 표적 살상능도 가증 우수한 construct임을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. (i) CTLA-4(Cytotoxic T-Lymphocyte-Associated Protein-4)를 표적으로 하는 트랜스-스플라이싱 라이보자임;
    (ii) 상기 라이보자임의 3' 엑손에 연결된 키메릭 항원 수용체(Chimeric antigen receptor)를 암호화하는 폴리뉴클레오티드를 포함하는, 키메릭 항원 수용체 전달용 CTLA-4 타겟팅 트랜스-스플라이싱 라이보자임 발현 카세트를 포함하는 것을 특징으로 하는, 재조합 벡터.
  2. 제1항에 있어서,
    상기 CTLA-4를 표적으로 하는 트랜스-스플라이싱 라이보자임은 CTLA-4의 RNA 상에서 내부 가이드 서열(Internal Guide Sequence, IGS) IGS32, IGS48, IGS111, 및 IGS232로 이루어진 군으로부터 선택된 것을 표적으로 하는 것인, 재조합 벡터.
  3. 제2항에 있어서,
    상기 CTLA-4를 표적으로 하는 트랜스-스플라이싱 라이보자임은 서열번호 1, 서열번호 2, 서열번호 3, 및 서열번호 38로 이루어진 군으로부터 선택된 핵산 서열을 포함하는 것인, 재조합 벡터.
  4. 제1항에 있어서,
    상기 키메릭 항원 수용체는 암세포 특이적 항원을 인식하는 것인, 재조합 벡터.
  5. 제4항에 있어서,
    상기 암세포 특이적 항원은 EGP2(Epithelial glycoprotein 2), EGP40(Epithelial glycoprotein 40), TAG72(Tumor associated glycoprotein 72), IL13Rα2(Interleukin 13 receptor alpha-2 subunit), CA IX(Carbonic anhydrase IX), CD19, CD52, CD33, CD20, TSLPR, CD22, CD30, GD3, CD171, ALK(Anaplastic lymphoma kinas), CD47, EGFRvIII, NCAM(Neural cell adhesion molecule), FBP(Folate binding protein), Le(Y)(Lewis-Y antigen), MUC1(Mucin 1), PSCA(Prostate stem cell antigen), PSMA(Prostate-specific membrane antigen), FGFR4(Fibroblast growth factor receptor 4), FAR(Fetal acetylcholine receptor), CEA(Carcinoembryonic antigen), HER2(Human epidermal growth factor receptor 2), Mesothelin, CD44v6(Hyaluronate receptor variant 6), B7-H3, Glypican-3,5, ROR1, Survivin, FOLR1(folate receptor), WT1(Wilm's tumor antigen), CD70 및 VEGFR2(Vascular endothelial growth factor 2)으로 이루어진 군으로부터 선택된 것인, 재조합 벡터.
  6. 제4항에 있어서, 상기 재조합 벡터에 포함된 키메릭 항원 수용체를 암호화하는 폴리뉴클레오티드는 서열번호 4의 핵산 서열을 포함하는 것인, 재조합 벡터.
  7. 제1항에 있어서,
    (iii) 상기 라이보자임의 5' 말단에 CTLA-4의 라이보자임 인지 부위 뒤쪽의 염기서열 50 내지 400 뉴클레오티드에 대한 antisense 서열의 폴리뉴클레오티드를 추가로 포함하는 것인, 재조합 벡터.
  8. 제7항에 있어서,
    상기 antisense 서열은 서열번호 5 또는 6의 핵산 서열을 포함하는 것인, 재조합 벡터.
  9. 제1항에 있어서,
    상기 발현카세트는 사이토메갈로바이러스(CMV) 프로모터, 라우스 육종 바이러스(RSV) 프로모터, MMT 프로모터, EF-1 알파 프로모터, UB6 프로모터, 치킨 베타-액틴 프로모터, CAG 프로모터, RPE65 프로모터 및 옵신 프로모터로 이루어진 군으로부터 선택된 프로모터를 포함하는 것을 특징으로 하는 것인, 재조합 벡터.
  10. 제1항 내지 제9항 중 어느 한 항의 재조합 벡터가 도입된 형질전환 세포.
  11. 제1항 내지 제9항 중 어느 한 항의 재조합 벡터로부터 발현된 라이보자임.
  12. 제11항에 따른 라이보자임을 발현하는, 레트로바이러스.
  13. 제12항에 따른 레트로바이러스로 처리한 T 세포.
  14. 제1항 내지 제9항 중 어느 한 항의 재조합 벡터, 제10항의 형질전환 세포, 제11항의 라이보자임, 제12항의 레트로바이러스, 제13항의 T세포 또는 이들의 조합을 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물.
  15. 제14항에 있어서, 상기 암은 폐암, 췌장암, 간암, 흑색종, 골암, 유방암, 대장암, 백혈병, 자궁암, 난소암, 림프종, 및 뇌암으로 이루어진 군으로부터 선택된 것인, 암 예방 또는 치료용 약학적 조성물.
  16. 제1항 내지 제9항 중 어느 한 항의 재조합 벡터, 제10항의 형질전환 세포, 제11항의 라이보자임, 제12항의 레트로바이러스, 제13항의 T세포 또는 이들의 조합을 암치료를 필요로 하는 개체에 약학적으로 유효한 양으로 투여하는 단계를 포함하는, 암 치료방법.
PCT/KR2016/001106 2015-02-02 2016-02-02 키메릭 항원 수용체 전달용 ctla-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도 WO2016126071A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,362 US10557140B2 (en) 2015-02-02 2016-02-02 CTLA-4-targeting trans-splicing ribozyme for delivery of chimeric antigen receptor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150016152 2015-02-02
KR10-2015-0016152 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016126071A1 true WO2016126071A1 (ko) 2016-08-11

Family

ID=56564344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001106 WO2016126071A1 (ko) 2015-02-02 2016-02-02 키메릭 항원 수용체 전달용 ctla-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도

Country Status (3)

Country Link
US (1) US10557140B2 (ko)
KR (1) KR101755431B1 (ko)
WO (1) WO2016126071A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021225696A1 (en) * 2020-02-28 2022-09-29 Rznomics Inc. Trans-splicing ribozyme specific to ApoE4 RNA and use thereof
CN114521214A (zh) * 2020-07-24 2022-05-20 尔知渃米斯股份有限公司 视紫红质转录体特异性反式剪接核酶及其用途
KR20230077650A (ko) 2021-11-22 2023-06-01 재단법인 아산사회복지재단 자연살해세포-특이적 키메릭항원수용체 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100024055A (ko) * 2008-08-25 2010-03-05 단국대학교 산학협력단 조직 특이적 프로모터와 암 특이 유전자를 타겟팅하는트랜스-스플라이싱 라이보자임을 포함하는 재조합아데노바이러스 및 이의 용도
KR20120132594A (ko) * 2011-05-26 2012-12-06 단국대학교 산학협력단 마이크로rna를 이용한 조절을 통한 암 특이적 유전자 치료제
KR20130020492A (ko) * 2011-08-19 2013-02-27 국립암센터 트랜스-스플라이싱 라이보자임 및 암치료 유전자를 포함하는 재조합 아데노바이러스 및 이의 용도
US8822647B2 (en) * 2008-08-26 2014-09-02 City Of Hope Method and compositions using a chimeric antigen receptor for enhanced anti-tumor effector functioning of T cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473707A1 (en) * 2012-05-25 2019-04-24 Cellectis Methods for engineering allogeneic and immunosuppressive resistant t cell for immunotherapy
AU2013204922B2 (en) 2012-12-20 2015-05-14 Celgene Corporation Chimeric antigen receptors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100024055A (ko) * 2008-08-25 2010-03-05 단국대학교 산학협력단 조직 특이적 프로모터와 암 특이 유전자를 타겟팅하는트랜스-스플라이싱 라이보자임을 포함하는 재조합아데노바이러스 및 이의 용도
US8822647B2 (en) * 2008-08-26 2014-09-02 City Of Hope Method and compositions using a chimeric antigen receptor for enhanced anti-tumor effector functioning of T cells
KR20120132594A (ko) * 2011-05-26 2012-12-06 단국대학교 산학협력단 마이크로rna를 이용한 조절을 통한 암 특이적 유전자 치료제
KR20130020492A (ko) * 2011-08-19 2013-02-27 국립암센터 트랜스-스플라이싱 라이보자임 및 암치료 유전자를 포함하는 재조합 아데노바이러스 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN, LIZA B. ET AL.: "Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors by Gene -Modified T cells", CLINICAL CANCER RESEARCH, vol. 19, no. 20, 15 October 2013 (2013-10-15), pages 5636 - 5646 *
KWON, BYUNG - SU ET AL.: "Specific Regression of Human Cancer Cells by Ribozyme- Mediated Targeted Replacement of Tumor-Specific Transcript", MOLECULAR THERAPY., vol. 12, no. 5, November 2005 (2005-11-01), pages 824 - 834 *

Also Published As

Publication number Publication date
KR101755431B1 (ko) 2017-07-12
US10557140B2 (en) 2020-02-11
KR20160095635A (ko) 2016-08-11
US20190225969A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US7276488B2 (en) Vector system
WO2018124766A2 (ko) 키메라 항원 수용체 및 이를 발현하는 자연 살해 세포
KR20230033702A (ko) 조작된 면역 세포 및 이의 용도
CN112029001A (zh) 靶向nk激活性受体的嵌合抗原受体
WO2021256724A1 (ko) Bcma를 표적으로 하는 키메라 항원 수용체 및 이의 용도
WO2016126071A1 (ko) 키메릭 항원 수용체 전달용 ctla-4 타겟팅 트랜스-스플라이싱 라이보자임 및 이의 용도
WO2019112347A2 (ko) 악성 b 세포를 특이적으로 인지하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이의 용도
WO2020005003A1 (ko) Lag-3에 특이적으로 결합하는 단클론항체 및 이의 용도
WO2021235696A1 (ko) Cd22에 특이적인 항체 및 이의 용도
EP4194472A1 (en) Chimeric antigen receptor comprising novel co-stimulatory domain and use thereof
US20190192573A1 (en) Anti-osteosarcoma car-t derived from the antibody oi-3
WO2023277361A1 (ko) 메소텔린 특이적 항체 및 이의 용도
WO2019128998A1 (zh) 自表达pd-1抗体并靶向间皮素的嵌合抗原受体修饰t细胞及其用途
WO2022218226A1 (zh) 工程化免疫细胞及其用途
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2021153979A1 (ko) 항-taa 항체, 항-pd-l1 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
US7635687B2 (en) Vector system
WO2019128996A1 (zh) 自表达cd47抗体的间皮素特异性car-t细胞及其用途
WO2021235697A1 (ko) Cd22에 특이적인 항체 및 이의 용도
WO2018208108A1 (ko) 조절 t 세포에 특이적으로 존재하는 dkk1 단백질 및 그 용도
WO2023090780A1 (ko) 자연살해세포-특이적 키메릭항원수용체 및 이의 용도
WO2018128486A1 (ko) Ceacam6에 특이적으로 결합하는 항-ceacam6 키메릭 항원 수용체
WO2020080715A1 (ko) 생산성이 향상된 항체 및 이의 제조방법
WO2022220648A1 (ko) Hla-dr 특이적 키메라 항원 수용체 및 이의 용도
WO2022231298A1 (ko) 신규한 항-cd5 키메릭 항원 수용체 및 이를 발현하는 면역세포

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746812

Country of ref document: EP

Kind code of ref document: A1