WO2016121766A1 - 細胞を分離、除去、及び解析する方法 - Google Patents

細胞を分離、除去、及び解析する方法 Download PDF

Info

Publication number
WO2016121766A1
WO2016121766A1 PCT/JP2016/052205 JP2016052205W WO2016121766A1 WO 2016121766 A1 WO2016121766 A1 WO 2016121766A1 JP 2016052205 W JP2016052205 W JP 2016052205W WO 2016121766 A1 WO2016121766 A1 WO 2016121766A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
polyimide porous
porous membrane
membrane
Prior art date
Application number
PCT/JP2016/052205
Other languages
English (en)
French (fr)
Inventor
昭吉 深水
俊達 金
萩原 昌彦
幸周 和田
Original Assignee
宇部興産株式会社
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社, 国立大学法人筑波大学 filed Critical 宇部興産株式会社
Priority to CA2974619A priority Critical patent/CA2974619C/en
Priority to SG11201706114RA priority patent/SG11201706114RA/en
Priority to JP2016572067A priority patent/JP6320576B2/ja
Priority to CN201680007161.0A priority patent/CN107208126B/zh
Priority to US15/546,055 priority patent/US10647956B2/en
Priority to EP16743369.7A priority patent/EP3252164A4/en
Publication of WO2016121766A1 publication Critical patent/WO2016121766A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects

Definitions

  • the present invention relates to a method for separating, removing and analyzing cells using a polyimide porous membrane.
  • cells exist as a three-dimensional population in a living body, but in classic planar culture, cells are cultured in a single layer form in a manner that they stick to a container. It has been reported that the properties of cells vary greatly depending on the culture environment. As for suspension culture in which cells are cultured in a liquid culture medium, some cells are suitable for suspension culture, while others are not suitable.
  • Non-Patent Documents 1 and 2 a new high-sensitivity, high-strength, high-selective methodology has been developed.
  • kits and methods based on the principle of cell migration have been devised and implemented.
  • a method for preparing a hole in a confluent cultured cell described in Patent Document 1 and comparing the filling phenomenon of the hole as a wound healing rate A method has been developed in which a pore having a certain size is punched in the structure and the chemotaxis of compounds is compared by cell migration.
  • the method described in Patent Document 2 has already been applied and implemented in various forms.
  • the cell movement itself is regarded as a target, and the Brownian movement of the cell and the protoplasmic flow are observed, and the evaluation is performed by following the change of the protoplasmic flow. Attempts like Patent Document 4 have been made to sow seeds and follow up the movement.
  • the state of cells contained therein may change depending on the state of the whole or a part of the living body.
  • treatments that remove leukocytes activated in connection with any etiology based on changes in the state of the cells are also known.
  • Blood component removal therapy from blood samples contains many cell types including white blood cells and red blood cells.
  • cellular diseases such as autoimmune diseases, it is known that excessively active self-cells cause an overreaction, and suppression of immune responses by drugs and removal of cells themselves have been adopted as medical practices.
  • rheumatic diseases, Crohn's disease or ulcerative colitis can be treated by removing beads and cells with high adhesion by filling beads and fibers in columns and passing blood through the space.
  • the methodology which performs is known (patent documents 5, 6, and 7 and nonpatent literature 3). Studies have also been shown to verify the effectiveness of respiratory diseases (Non-Patent Document 4).
  • a method for selectively obtaining cells presenting the same antigen by packing beads with an antibody immobilized on the surface in a column shape has also been reported (Patent Document 8).
  • carrier bodies use fibers, beads, etc., but they are structurally straight or spherical aggregates, have little similarity to anatomy, and have the property of acquiring cells structurally. There is no need to provide many opportunities and adsorb strong adherent cells. Since prolonged contact with a device can cause unexpected thrombus formation and blood cell activation, a simpler and quicker cell removal method with low blood activation ability is desired. Thus, if the characteristics of cells in a sample derived from a living body, not limited to blood cells, can be evaluated easily and quickly, the state of the living body can be easily and quickly evaluated.
  • the polyimide porous membrane polyimide is a general term for polymers containing an imide bond in a repeating unit.
  • the aromatic polyimide means a polymer in which aromatic compounds are directly linked by an imide bond.
  • Aromatic polyimide has a conjugated structure through the imide bond between aromatic and aromatic, so it has a rigid and strong molecular structure, and the imide bond has a strong intermolecular force, so it has a very high level of heat. Has mechanical, mechanical and chemical properties.
  • Patent Documents 9 to 11 are particularly excellent in permeability of substances such as gas, high porosity, excellent smoothness of both surfaces, relatively high in strength, and in the direction of film thickness despite high porosity.
  • a polyimide porous membrane having a large number of macrovoids having excellent proof stress against compressive stress is described. These are all polyimide porous membranes prepared via an amic acid.
  • the present invention relates to a method for separating, removing and / or analyzing cells, a method for screening a cell activation inhibitor, a device and kit for use in the method of the present invention, and a method of the present invention for a polyporous membrane.
  • the purpose is to provide use.
  • the present inventors have found that cells can be easily and rapidly separated, removed and analyzed by using a polyimide porous membrane, and the present invention has been conceived.
  • the method of the present invention can also be used to screen for substances that can affect the properties of cells.
  • this invention preferably includes the following aspects.
  • a method for separating, removing, and / or analyzing cells wherein a liquid sample containing cells is filtered through a polyimide porous membrane, and the cells trapped in the membrane without passing through the polyimide porous membrane, or the polyimide porous
  • For cells in a liquid sample that has passed through the membrane the number or type of cells, the structure of the outside or inside of the cell, the type or amount of cell surface antigens, the type or amount of secreted substances from the cells, cell adhesion and cell Examining the characteristics of one or more cells selected from the group consisting of viability.
  • the cell of interest is an activated cell.
  • a screening method for a cell activation inhibitor (I) optionally culturing the cells after adding a cell activator to a liquid sample containing the cells; (Ii) adding a test substance to the liquid sample of (i), (Iii) The liquid sample of (ii) is filtered with a polyimide porous membrane, and the cells captured by the membrane without passing through the polyimide porous membrane, or the cells in the liquid sample that has passed through the polyimide porous membrane are One or more selected from the group consisting of the type or number of cells, the structure of the exterior or interior of the cell, the type or amount of the cell surface antigen, the type or amount of the secreted substance from the cell, cell adhesion and cell viability Examine the characteristics of the cells, and (Iv) The ratio and / or number of activated cells among the cells trapped by the membrane without passing through the polyimide porous membrane are reduced as compared with the case where the test substance is not added in the step (ii).
  • the test substance is a cell activation inhibitor.
  • the screening method The method according to any one of aspects 1 to 7, wherein the liquid sample containing cells is a suspension of cells containing one or more cells consisting of primary cells, established cells, and blood separation cells.
  • the liquid sample containing cells is a biological sample selected from the group consisting of blood, urine, sweat, pooled body cavity fluid, body cavity washing fluid, and sputum.
  • the polyimide porous membrane is a polyimide porous membrane containing polyimide obtained from tetracarboxylic dianhydride and diamine.
  • Coloring obtained by forming a polyamic acid solution composition containing a polyamic acid solution obtained from tetracarboxylic dianhydride and diamine and a colored precursor, and then heat-treating at 250 ° C. or higher.
  • the method according to aspect 13, wherein the polyimide porous membrane is used.
  • the polyimide porous membrane is a multilayer porous polyimide membrane having two different surface layers and a macrovoid layer.
  • the method of the present invention By using a polyimide porous membrane by the method of the present invention, it becomes possible to separate, remove and analyze cells easily and quickly.
  • the method of the present invention can also be used to screen for substances that can affect the properties of cells.
  • the method of the present invention makes it possible to quickly and easily know the state of a living body by using a sample obtained from a living body and examining it in vitro.
  • FIG. 1 is a schematic diagram showing an embodiment for filtering a liquid sample (cell suspension) containing cells with a polyimide porous membrane as a typical example in the method of the present invention.
  • Cell filtration-Basic system 1 Cell filtration-Basic system 1
  • FIG. 2 is a schematic diagram showing an embodiment for filtering a liquid sample (cell suspension) containing cells with a polyimide porous membrane as a typical example in the method of the present invention.
  • FIG. 3 is a schematic diagram showing an embodiment for filtering a liquid sample (cell suspension) containing cells with a polyimide porous membrane as a typical example in the method of the present invention.
  • Cell filtration-centrifugal type FIG.
  • FIG. 4 is a schematic view showing an embodiment for filtering a liquid sample (cell suspension) containing cells with a polyimide porous membrane as a typical example in the method of the present invention.
  • FIG. 5 is a photograph showing the steps and results of Example 1.
  • FIG. 6 shows an example (Example 2) in which the whole blood filtration of the present invention was performed.
  • FIG. 7 shows the results of a filtration experiment using mice.
  • the present invention relates to a method for separating, removing, and / or analyzing cells.
  • the present invention relates to a screening method for a cell activation inhibitor as one aspect of a method for separating, removing and / or analyzing cells.
  • the present invention relates to a method for separating and removing and / or analyzing cells in one aspect.
  • the cell suspension is typically filtered by the polyimide porous membrane and trapped by the passed cells and the polyimide porous membrane by the operation.
  • the present inventors have found the phenomenon that the multi-faceted porous structure possessed by the polyimide porous membrane stays or passes through the membrane as it is in accordance with the size and characteristics of the cells, and has conceived the present invention.
  • the three-dimensional environment possessed by the polyimide porous membrane provides a variety of environments suitable for cells, and can select whether to remain in the membrane or pass through depending on the situation. If this principle is used, the state of the cell can be analyzed without requiring a special device. Moreover, it becomes possible to analyze the cell group after separation using various existing analytical instruments. It is possible to analyze the progression and suppression of the cell activation state and the inflammatory state by a very simple technique called membrane movement. By applying these, it is easy to develop a rapid and simple drug discovery screening kit and the like, and great industrial value is expected.
  • the method of separating, removing, and / or analyzing the cells of the present invention includes a method of filtering a liquid sample containing cells through a polyimide porous membrane and capturing the cells without passing through the polyimide porous membrane, or the polyimide porous
  • a method of filtering a liquid sample containing cells through a polyimide porous membrane and capturing the cells without passing through the polyimide porous membrane, or the polyimide porous For cells in a liquid sample that has passed through the membrane, the type or number of cells, the structure of the outside or inside of the cell, the type or amount of cell surface antigens, the type or amount of secreted substances from cells, cell adhesion and cells Examining the characteristics of one or more cells selected from the group consisting of:
  • the method of separating, removing and / or analyzing cells of the present invention can be used to successfully remove activated leukocytes in vitro from blood samples.
  • the non-fibrous multi-faceted porous structure of the polyimide porous membrane reduces the membrane passage characteristics of highly adherent cells and cells in an inflammatory state, and the patient's blood sample is filtered
  • the present inventors have found a phenomenon in which these cells tend to stay in the membrane as they are.
  • a number of medical devices for blood cell removal therapy have been invented and implemented before the present invention.
  • the cells are adsorbed on a fibrous or spherical carrier, and the filtration housing itself does not have filtration characteristics, so a large contact area is required.
  • the material itself has cell filtration properties, so that the contact time with the housing can be extremely shortened, and the possibility of shortening the removal therapy time is born. This significantly reduces the burden on patients who have to undergo such treatment. Furthermore, since unnecessary stress is reduced on the blood, the possibility of thrombus formation can be reduced. It is expected to be a material for innovative cell removal therapy.
  • Cells The subject of the method of the present invention is a liquid sample containing cells.
  • the type of cell is not particularly limited and can be used for the growth of any cell.
  • the cells are selected from the group consisting of animal cells, insect cells, plant cells, yeasts and bacteria.
  • Animal cells are roughly classified into cells derived from animals belonging to the vertebrate phylum and cells derived from invertebrates (animals other than animals belonging to the vertebrate phylum).
  • the origin of the animal cell is not particularly limited.
  • Vertebrates include the maxilla and maxilla, and the maxilla includes mammals, birds, amphibians, reptiles, and the like.
  • it is a cell derived from an animal belonging to the mammal class generally called a mammal. Mammals are not particularly limited, but preferably include mice, rats, humans, monkeys, pigs, dogs, cats, sheep, goats and the like.
  • the animal cells are preferably, but not limited to, for example, animal cells derived from Chinese hamster ovary tissue-derived cells (CHO cells), African green monkey kidney-derived cell lines (Vero cells), or canine kidney tubular epithelial cells. Or a cell selected from the group consisting of a human liver cancer tissue-derived established cell line (huGK-14).
  • Plant cells including moss plants, fern plants, and seed plants are targeted.
  • Plants from which seed plant cells are derived include monocotyledonous plants and dicotyledonous plants.
  • monocotyledonous plants include orchids, gramineous plants (rice, corn, barley, wheat, sorghum, etc.), cyperaceae plants, and the like.
  • Dicotyledonous plants include plants belonging to many subclasses such as Chrysanthemum, Magnolia, and Rose.
  • Algae can also be regarded as cell-derived organisms. Different from eubacteria, cyanobacteria (Cyanobacteria), eukaryotes that are unicellular (diatoms, yellow green algae, dinoflagellates, etc.) and multicellular organisms, seaweeds (red algae, brown algae, green algae) Includes groups.
  • the archaea and the types of bacteria in this specification are not particularly limited.
  • the archaea is composed of a group consisting of methane bacteria, highly halophilic bacteria, thermophilic acidophiles, hyperthermophilic bacteria, and the like.
  • the bacterium is selected from the group consisting of lactic acid bacteria, Escherichia coli, Bacillus subtilis, cyanobacteria and the like.
  • animal cells or plant cells that can be used in the method of the present invention are not limited, but are preferably selected from the group consisting of pluripotent stem cells, tissue stem cells, somatic cells, and germ cells.
  • pluripotent stem cell is intended to be a generic term for stem cells having the ability to differentiate into cells of any tissue (differentiation pluripotency).
  • the pluripotent stem cells include, but are not limited to, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ stem cells (EG cells), germ stem cells (GS cells), and the like. .
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • EG cells embryonic germ stem cells
  • GS cells germ stem cells
  • Any known pluripotent stem cell can be used.
  • the pluripotent stem cell described in International Publication WO2009 / 123349 PCT / JP2009 / 057041
  • PCT / JP2009 / 057041 can be used.
  • tissue stem cell means a stem cell that has the ability to differentiate into various cell types (differentiated pluripotency) although the cell line that can be differentiated is limited to a specific tissue.
  • hematopoietic stem cells in the bone marrow become blood cells, and neural stem cells differentiate into nerve cells.
  • the tissue stem cells are selected from mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, neural stem cells, skin stem cells, or hematopoietic stem cells.
  • somatic cells refers to cells other than germ cells among the cells constituting multicellular organisms. In sexual reproduction, it is not passed on to the next generation.
  • the somatic cells are hepatocytes, pancreatic cells, muscle cells, bone cells, osteoblasts, osteoclasts, chondrocytes, adipocytes, skin cells, fibroblasts, pancreatic cells, kidney cells, lung cells, or , Lymphocytes, erythrocytes, leukocytes, monocytes, macrophages or megakaryocyte blood cells.
  • Reproductive cells means cells that have a role in transmitting genetic information to the next generation in reproduction. For example, gametes for sexual reproduction, ie eggs, egg cells, sperm, sperm cells, spores for asexual reproduction, and the like.
  • the cells may be selected from the group consisting of sarcoma cells, established cells and transformed cells.
  • “Sarcoma” is a cancer that develops in connective tissue cells derived from non-epithelial cells such as bone, cartilage, fat, muscle, blood, etc., and includes soft tissue sarcoma, malignant bone tumor and the like.
  • Sarcoma cells are cells derived from sarcomas.
  • the “established cell” means a cultured cell that has been maintained outside the body for a long period of time, has a certain stable property, and is capable of semi-permanent subculture.
  • PC12 cells derived from rat adrenal medulla
  • CHO cells derived from Chinese hamster ovary
  • HEK293 cells derived from human fetal kidney
  • HL-60 cells derived from human leukocyte cells
  • HeLa cells derived from human cervical cancer
  • Vero cells There are cell lines derived from various tissues of various species including humans (derived from African green monkey kidney epithelial cells), MDCK cells (derived from canine kidney tubular epithelial cells).
  • a “transformed cell” means a cell in which a nucleic acid (DNA or the like) has been introduced from the outside of the cell to change its genetic properties.
  • the “liquid sample containing cells” to be subjected to the method of the present invention is preferably a biological sample derived from mammals such as humans, monkeys, dogs and cats.
  • the “cell” is preferably an animal cell or a bacterium contained in a biological sample derived from a mammal.
  • the state of cells contained therein may change depending on the state of the whole or a part of the living body.
  • the method of the present invention aims to know the state of a living body by analyzing a “liquid sample containing cells” derived from the living body. For example, when a liquid sample derived from a living body contains many activated cells, it is determined that the whole (whole body) or a part of the living body is activated, that is, it may be inflamed.
  • the target cell is an activated cell (eg, activated leukocyte).
  • the subject of the method of the present invention is a liquid sample containing cells.
  • the liquid sample in the present invention is not particularly limited as long as it contains cells or may contain cells. It may be a biological sample derived from a living body, that is, a biological sample obtained from the living body, or a sample prepared artificially.
  • the “liquid sample” includes a “blood sample” presumed to contain activated leukocytes, but in this specification, it is collected for the purpose of removing activated leukocytes from the blood sample.
  • the obtained sample is referred to as “blood sample” in a limited manner, and is sometimes used separately from the “liquid sample”.
  • a liquid sample including a blood sample is appropriately described as “liquid sample or the like”, but “liquid sample”, “liquid sample or the like”, and “blood sample” are used interchangeably.
  • the liquid sample containing cells may be a cell suspension containing one or more cells consisting of primary cells, established cells, and blood separation cells. Methods for preparing these cells and liquid samples containing the cells are known to those skilled in the art.
  • Primary cell means a cell obtained by first seeding and culturing a tissue or cell collected from a living body. In general, it means cells in a culture state before performing subculture operation, and in many cases, various cells are mixed instead of a single cell.
  • a cell passaged from a primary cell is called a passage cell.
  • a series of cells that maintain their proliferative ability through passage are called "cell lines.”
  • Various cell lines have been established. As described above in the section of “cells”, PC12 cells (derived from rat adrenal medulla), CHO cells (derived from Chinese hamster ovary), HEK293 cells (derived from human fetal kidney), HL -60 cells (derived from human leukocyte cells), HeLa cells (derived from human cervical cancer), Vero cells (derived from African green monkey kidney epithelial cells), MDCK cells (derived from canine kidney tubular epithelial cells), HepG2 cells (derived from human liver cancer) Etc.
  • Blood-separated cells mean a group of cells (blood cells) that are contained in blood and can be separated from blood.
  • the blood component is composed of a blood cell component (cellular component, blood cell), platelets, a blood cell component and a plasma component (fluid component) that floats the platelets.
  • Blood cell components include red blood cells, white blood cells, and platelets.
  • leukocytes particularly leukocytes activated by an action such as inflammation
  • Leukocytes broadly refer to immunocompetent cells involved in biological defense, and are generally a generic term for lymphocytes, granulocytes, and monocytes.
  • activated granulocytes are particularly selectively captured by the polyimide porous membrane in the present invention.
  • Granulocytes are generally a generic term for neutrophils, eosinophils and eosinophils. Although not limited, it is the activated eosinophils that are particularly selectively captured.
  • the liquid sample containing cells may be a biological sample selected from the group consisting of blood, urine, sweat, pooled body cavity fluid, body cavity wash, and sputum.
  • the blood sample is as described above.
  • Urine samples and sweat samples contain cell components such as leukocytes, erythrocytes, and urine casts.
  • the liquid sample may be filtered with a polyimide porous membrane.
  • the “cell activator” is a general term for substances that activate cells in vitro or in vivo, and is not particularly limited. “Inflammation-inducing substances” that cause inflammation in cells can also be included in the cell activator herein.
  • Changes may occur in the properties of one or more cells selected from the group consisting of: type or amount, cell adhesion and cell viability. As a result, a change may occur in the cells captured by the membrane without passing through the polyimide porous membrane and / or the cells in the liquid sample passing through the polyimide porous membrane.
  • the “cell activator” may include, but is not limited to, inflammatory cytokines such as phorbol ester, diacylglycerol, lipopolysaccharide, TNF ⁇ , and the like.
  • Polyimide porous membrane The present invention includes a step of filtering a liquid sample containing cells with a polyimide porous membrane.
  • Polyimide is a general term for polymers containing imide bonds in repeating units, and usually means an aromatic polyimide in which aromatic compounds are directly linked by imide bonds.
  • Aromatic polyimide has a conjugated structure through the imide bond between aromatic and aromatic, so it has a rigid and strong molecular structure, and the imide bond has a strong intermolecular force, so it has a very high level of heat. Has mechanical, mechanical and chemical properties.
  • the polyimide porous membrane used in the present invention is a polyimide porous membrane containing a polyimide obtained from tetracarboxylic dianhydride and diamine (as a main component), more preferably from tetracarboxylic dianhydride and diamine.
  • This is a polyimide porous membrane made of the resulting polyimide.
  • “Containing as a main component” means that a component other than polyimide obtained from tetracarboxylic dianhydride and diamine may be essentially not included or included as a component of the polyimide porous membrane. It means that it is an additional component that does not affect the properties of the polyimide obtained from tetracarboxylic dianhydride and diamine.
  • the polyimide porous membrane used in the present invention is obtained by molding a polyamic acid solution composition containing a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component and a colored precursor, and then heat-treating the composition at 250 ° C. or higher. The resulting colored polyimide porous membrane is also included.
  • Polyamic acid A polyamic acid is obtained by polymerizing a tetracarboxylic acid component and a diamine component.
  • Polyamic acid is a polyimide precursor that can be ring-closed to form polyimide by thermal imidization or chemical imidization.
  • the polyamic acid even if a part of the amic acid is imidized, it can be used as long as it does not affect the present invention. That is, the polyamic acid may be partially thermally imidized or chemically imidized.
  • fine particles such as an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and organic fine particles can be added to the polyamic acid solution as necessary.
  • fine particles such as a chemical imidating agent, a dehydrating agent, inorganic fine particles, and organic fine particles, etc. can be added to a polyamic acid solution as needed. Even when the above components are added to the polyamic acid solution, it is preferable that the coloring precursor is not precipitated.
  • Colored precursor used in the present invention means a precursor that is partially or wholly carbonized by heat treatment at 250 ° C. or higher to produce a colored product.
  • the colored precursor used in the present invention is uniformly dissolved or dispersed in a polyamic acid solution or a polyimide solution, and heat treatment at 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably 300 ° C. or higher.
  • heat treatment at 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably 300 ° C. or higher in the presence of oxygen such as air to produce a colored product by carbonization
  • oxygen such as air
  • the carbon-based coloring precursor is not particularly limited.
  • polymers such as petroleum tar, petroleum pitch, coal tar, coal pitch, or polymers obtained from monomers including pitch, coke, and acrylonitrile, ferrocene compounds (ferrocene and ferrocene derivatives). Etc.
  • the polymer and / or ferrocene compound obtained from the monomer containing acrylonitrile are preferable, and polyacrylonitrile is preferable as a polymer obtained from the monomer containing acrylonitrile.
  • tetracarboxylic dianhydride any tetracarboxylic dianhydride can be used, and can be appropriately selected according to desired characteristics.
  • tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4 ′.
  • -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid an
  • At least one aromatic tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is particularly preferable.
  • the biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be suitably used.
  • diamines include the following. 1) One benzene nucleus such as 1,4-diaminobenzene (paraphenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, etc .; 2) 4,4'-diaminodiphenyl ether, diaminodiphenyl ether such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'- Dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′- Dicar
  • diamine to be used can be appropriately selected according to desired characteristics.
  • aromatic diamine compounds are preferable, and 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used.
  • at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is preferred.
  • the polyimide porous membrane used in the present invention is a tetracarboxylic acid having a glass transition temperature of 240 ° C. or higher or no clear transition point at 300 ° C. or higher from the viewpoint of heat resistance and dimensional stability at high temperatures. It is preferably formed from polyimide obtained by combining dianhydride and diamine.
  • the polyimide porous membrane used in the present invention is preferably a polyimide porous membrane made of the following aromatic polyimide from the viewpoints of heat resistance and dimensional stability at high temperatures.
  • an aromatic polyimide comprising at least one tetracarboxylic acid unit selected from the group consisting of a biphenyltetracarboxylic acid unit and a pyromellitic acid unit, and an aromatic diamine unit
  • an aromatic polyimide comprising a tetracarboxylic acid unit and at least one aromatic diamine unit selected from the group consisting of a benzenediamine unit, a diaminodiphenyl ether unit and a bis (aminophenoxy) phenyl unit
  • the polyimide porous film has a total film thickness of 5 to 500 ⁇ m and a porosity of 40% or more and less than 95%.
  • the total film thickness of the polyimide porous film used in the present invention is not limited, but may be 25 to 75 ⁇ m as one embodiment. Due to the difference in film thickness, differences in cell growth rate, cell morphology, in-plane cell saturation, etc. can be observed.
  • the average hole diameter of the holes may be different from the average hole diameter of the holes existing on the B surface.
  • the average pore diameter of the holes present on the A plane is smaller than the average pore diameter of the holes present on the B plane.
  • the average pore diameter of the holes existing on the A plane is smaller than the average pore diameter of the holes existing on the B plane, and the average pore diameter of the holes existing on the A plane is 0.01 to 50 ⁇ m, 0.01 ⁇ m to 40 ⁇ m, 0 0.01 ⁇ m to 30 ⁇ m, 0.01 ⁇ m to 20 ⁇ m, or 0.01 ⁇ m to 15 ⁇ m, and the average pore diameter of the holes present on the B surface is 20 ⁇ m to 100 ⁇ m, 30 ⁇ m to 100 ⁇ m, 40 ⁇ m to 100 ⁇ m, 50 ⁇ m to 100 ⁇ m, or 60 ⁇ m to 100 ⁇ m It is.
  • the A surface of the polyimide porous membrane has a mesh structure having small pores with an average pore diameter of 15 ⁇ m or less, for example, 0.01 ⁇ m to 15 ⁇ m, and the B surface has a large pore structure with an average pore diameter of 20 ⁇ m or more, for example, 20 ⁇ m to 100 ⁇ m. It is.
  • the total film thickness of the polyimide porous membrane used in the present invention can be measured with a contact-type thickness meter.
  • the average pore diameter on the surface of the polyimide porous membrane was determined by measuring the pore area of 200 or more apertures from the scanning electron micrograph on the surface of the porous membrane, and calculating the pore size according to the following formula (1) from the average value of the pore area.
  • the average diameter when the shape is assumed to be a perfect circle can be obtained by calculation.
  • the porosity of the polyimide porous film used in the present invention can be determined from the mass per unit area according to the following formula (2) by measuring the film thickness and mass of the porous film cut to a predetermined size.
  • S is the area of the porous film
  • d is the total film thickness
  • w is the measured mass
  • D is the polyimide density.
  • the polyimide density is 1.34 g / cm 3 ).
  • polyimide porous film described in International Publication WO2010 / 038873, JP2011-219585A, or JP2011-219586 can also be used in the present invention.
  • the polyimide porous membrane loaded with cells in the present invention does not contain cells other than those loaded, that is, is sterilized.
  • the method of the present invention preferably includes a step of pre-sterilizing the polyimide porous membrane.
  • the polyimide porous membrane is extremely excellent in heat resistance, is lightweight, can be freely selected in shape and size, and is easy to sterilize. Arbitrary sterilization treatments such as dry heat sterilization, steam sterilization, sterilization with a bactericide such as ethanol, and electromagnetic wave sterilization including UV and gamma rays are possible.
  • a step of pretreating the whole or a part of the surface of the polyimide porous membrane may be included before the filtration step.
  • the surface treatment when the liquid sample is blood, effects such as prevention of coagulation, separation, removal and analysis efficiency, and imparting hydrophilicity can be obtained.
  • the surface treatment of the polyimide porous membrane is a chemical treatment using a surface treatment agent such as an anticoagulant, collagen, poly L lysine, laminin, gelatin, fibronectin, integrin, insulin, serum, or PDS combined with a hydrophilic resin. May be.
  • physical treatment such as UV or plasma may be performed.
  • the present invention includes a step of filtering a liquid sample containing cells with a polyimide porous membrane.
  • the specific steps are not particularly limited. The steps described herein or any method suitable for applying cells to a membrane-like carrier can be employed.
  • the polyimide porous membrane can be used in a fixed state, or can be used simply by placing it in a petri dish or the like. It is also possible to wet a part of the membrane and simply fix it on the petri dish or on the upper part of the dent of the laboratory instrument with the dent. Use of a glass bottom petri dish as a receiver leads to an improvement in efficiency in order to optically advance the evaluation of the indented portion.
  • the polyimide porous membrane may be entirely wetted with a phosphate buffer or a medium. It is also possible to place a cell suspension on a dried polyimide porous membrane, store it in an incubator, and perform filtration over a long period of time. In addition, when filtration is performed by placing a cell suspension on such a dried polyimide porous membrane, moving the position of the polyimide porous membrane, for example, a few minutes after placing the suspension, Will lead to a significant increase in
  • filtration may be promoted by applying force to the liquid part by a method such as centrifugal force or pressurization.
  • force such as centrifugal force or pressurization.
  • the permeation speed of the liquid part can be increased by attaching a support to the centrifuge tube and rotating it with a centrifuge.
  • any known technique for filtration selected from the group consisting of natural filtration, centrifugal filtration, vacuum filtration, and pressure filtration can be applied to the filtration.
  • the aspect for filtering the liquid sample containing a cell with a polyimide porous membrane in the method of the present invention is shown without limitation.
  • Cell Filtration—Basic System 1 Natural Filtration
  • FIG. 1 A polyimide porous membrane is placed on a glass bottom petri dish, and a cell suspension is placed thereon. After passing through the solution, the membrane and the glass bottom petri dish are separated, and the cells remaining on the glass bottom petri dish and the cells trapped on the polyimide porous membrane are observed as living cells or cells are fixed. To evaluate. The cells remaining on the glass bottom petri dish can be observed as they are, for example, using an optical microscope such as an inverted microscope.
  • FIG. 2 Cell filtration-basic system 2 (Natural filtration) (FIG. 2)
  • Cell filtration-basic system 2 Natural filtration
  • FIG. 2 A polyimide porous membrane is placed on a petri dish, and a cell suspension is placed thereon. After passing through the liquid, the membrane and the petri dish are separated, and the cells are evaluated by observing the cells trapped on the liquid part in the petri dish and the polyimide porous membrane as they are, or the cells are fixed.
  • FIG. 3 is a schematic diagram showing a manner.
  • Cell filtration-centrifugation cell filtration-centrifugation
  • FOG. 3 cell filtration-centrifugal filtration
  • a polyimide porous membrane is placed in a centrifuge tube with a support, and a cell suspension is added thereto. The solution is passed through a centrifuge and cell filtration is performed. The collected liquid part is observed with the living cells remaining or fixed, and the cells are evaluated. In addition, the cells trapped on the polyimide porous membrane are observed to evaluate the cells.
  • the method of the present invention is the following: the cells captured in the membrane without passing through the polyimide porous membrane after the filtration step, or the cells in the liquid sample that passed through the polyimide porous membrane; The characteristics of one or more cells selected from the group consisting of: number, external or internal structure of the cell, type or amount of cell surface antigen, type or amount of secreted substance from the cell, cell adhesion and cell viability Including examining.
  • the “type or number of cells” can be examined using, for example, a device for observing cells, such as flow cytometry or a blood cell analyzer.
  • the number of cells is not an exact number, but only an increase / decrease in the number may be known.
  • the ratio of cells captured by the polyimide porous membrane may change before and after administration. Activated when the percentage of cells trapped in the membrane without passing through the polyimide porous membrane decreased or the percentage of cells in the liquid sample that passed through the polyimide porous membrane increased by administration of a substance It means that the cells were decreased, that is, the administered substance acted as a cell activation inhibitor.
  • the increase / decrease in the number (ratio) of cells can be confirmed by using a simple method such as observation with an optical microscope or a stereomicroscope, or Giemsa staining in a body cavity fluid cytodiagnosis.
  • “External or internal structure of the cell” can be performed using, for example, an optical microscope, an electron microscope, a microscope such as a fluorescence microscope, flow cytometry, Western blotting, FIB-SEM, or the like.
  • Cell surface antigen is a general term for various molecules of glycoprotein sugars present on the surface of various cells such as human leukocytes.
  • specific surface antigens such as CD8 ⁇ antigen are expressed on myeloid dendritic cells and T cells, and CD34 antigen and CD133 are expressed on hematopoietic stem cells depending on the cell type.
  • By examining cell surface antigens it is possible to know the type and nature of cells (adhesiveness, etc.).
  • Cell surface antigens can be examined using, for example, specific antibodies against individual cell surface antigens.
  • secreted substances from cells for example, cytokine production, extracellular matrix production, etc. may be examined.
  • the secretory substance IL-6 can be confirmed by a technique such as ELISA.
  • Cell adhesion can be examined by using a technique such as colorimetric adhesion to an extracellular matrix.
  • Cell viability can be examined, for example, using techniques such as trypan blue staining, LIVE / DEAD (registered trademark) assay.
  • Either the cells captured by the membrane without passing through the polyimide porous membrane, the cells in the liquid sample passing through the polyimide porous membrane, or both may be examined. It is preferable to examine the cells in the liquid sample that has passed through the polyimide porous membrane from the viewpoint of simplicity of measurement and rapidity. For example, when the number of cells in the liquid sample that passed through the polyimide porous membrane increased, the number of activated cells decreased without examining the cells trapped in the membrane without passing through the polyimide porous membrane. That is, it can be assumed that the inflammatory condition has been alleviated.
  • the cells captured by the membrane without passing through the polyimide porous membrane can be examined for the characteristics of the cells by, for example, further culturing the cells while being applied to the polyimide porous membrane. Is possible.
  • the present invention includes a screening method for a cell activation inhibitor using a polyimide porous membrane.
  • the screening method of the present invention corresponds to an embodiment of the method for separating, removing and / or analyzing cells of the present invention.
  • the screening method of the present invention comprises: (I) optionally culturing the cells after adding a cell activator to a liquid sample containing the cells; (Ii) adding a test substance to the liquid sample of (i), (Iii) The liquid sample of (ii) is filtered with a polyimide porous membrane, and the cells captured by the membrane without passing through the polyimide porous membrane, or the cells in the liquid sample that has passed through the polyimide porous membrane are One or more selected from the group consisting of the type or number of cells, the structure of the exterior or interior of the cell, the type or amount of the cell surface antigen, the type or amount of the secreted substance from the cell, cell adhesion and cell viability Examine the characteristics of the cells, and (Iv) The ratio and / or number of activated cells among the cells trapped by the membrane without passing through the polyimide porous membrane are reduced as compared with the case where the test substance is not added in the step (ii).
  • the test substance has a cell activation inhibiting ability, that is, a cell activation inhibiting substance. Including that.
  • Steps (i) and (iii) are as described for cell separation, removal and analysis methods.
  • whether or not cell activation is suppressed by adding a test substance (step (ii)) to the cells activated by the cell activator in step (i) It is characterized by investigating the degree of trapping in the polyimide porous membrane as an index.
  • the ratio and / or number of activated cells is reduced compared to the case where no test substance is added in the step (ii), or When the ratio and / or the number of activated cells among the cells in the liquid sample that have passed through the polyimide porous membrane increase compared to the case where the test substance is not added in the step (ii), It is determined that the test substance is a cell activation inhibitor.
  • test substance is not particularly limited, and any substance whose effect is to be confirmed, such as a low molecular compound, protein, peptide, glycoprotein, short RNA, etc., can be used as a candidate compound for a cell activation inhibitor.
  • the cell separation, removal, and / or analysis method of the present invention and the screening method of the present invention may further include culturing cells in a liquid sample that has passed through the polyimide porous membrane.
  • the method may further include culturing the cells captured by the membrane without passing through the polyimide porous membrane while being applied to the polyimide porous membrane. Moreover, you may analyze the substance which this trapped cell produces.
  • Culture methods suitable for animal cells, plant cells, and bacterial cells are known, and those skilled in the art can culture cells on a polyimide porous membrane using any known method.
  • a cell culture medium can also be suitably prepared according to the kind of cell.
  • Animal cell culture methods and cell culture media are described, for example, in the cell culture media catalog of Lonza.
  • Plant cell culture methods and cell culture media are described in, for example, the plant tissue culture series from WAKO.
  • Bacterial cell culture methods and cell culture media are described in, for example, the general bacterial culture catalog of BD.
  • the cells can be cultured using any known method.
  • cell culture using a polyimide porous membrane it can coexist with other floating culture carriers such as microcarriers and cellulose sponges.
  • the polyimide porous membrane In a cell culture apparatus for culturing cells while being applied to a polyimide porous membrane, the polyimide porous membrane may be fixed and used, or may be used suspended in a cell culture medium. Or may be exposed from the culture medium. In the cell culture device, two or more polyimide porous membranes may be laminated vertically or horizontally. Laminated aggregates and aggregates may be placed in the medium or exposed from the medium.
  • the cell culture device that can be used in the method of the present invention may take any form as long as it includes a polyimide porous membrane, and a known cell culture device can be used.
  • the shape, scale, etc. of the culture apparatus are not particularly limited and can be appropriately used from petri dishes, test tubes to large tanks.
  • a cell culture dish manufactured by BD Falcon, a Nunc cell factory manufactured by Thermo Scientific, and the like are included.
  • a polyimide porous membrane in the present invention it has become possible to culture cells in a state similar to suspension culture using a suspension culture apparatus even for cells that were not inherently capable of suspension culture.
  • a spinner flask manufactured by Corning, rotary culture, or the like can be used as an apparatus for suspension culture.
  • hollow fiber culture such as FiberCell (registered trademark) System of VERITAS can also be used.
  • the cell culture device using cultured cells of the present invention is a continuous circulation or open type device in which a medium is continuously added to a membrane on a mesh and recovered, and a type in which a polyimide porous membrane is exposed to the air. It is also possible to execute with.
  • Apparatus for use in the method of the invention further relates to an apparatus for use in the method of the invention comprising a polyimide porous membrane.
  • a polyimide porous membrane In the apparatus of the present invention, two or more polyimide porous membranes may be laminated vertically or horizontally.
  • the apparatus of the present invention can appropriately include components necessary for filtration of a sample containing cells in addition to the polyimide porous membrane.
  • a glass or module that supports a polyimide porous membrane, a liquid feeding tube, a pump, and a sterilization bag in some cases are included.
  • One embodiment includes, but is not limited to, a column module in which a polyimide porous membrane is fixed and filled with a sterilized liquid in a transparent bag.
  • it may include components for cell culture such as a continuous medium supply device, a continuous medium circulation device, and a cell culture device.
  • the polyimide porous membrane can be used in a fixed state, or can be used simply by placing it in a sterilized column or module. It is also possible to start using the column filled with a sterilized packing solution. The column and module in this state are passed through one or more porous polyimide membranes installed in the column using pressure and gravity from the pump, thereby removing highly residual cells in the membrane. To do.
  • the column or module can be of any shape such as cylindrical or disk shape. There are no particular restrictions on the composition of the material. Commercially available empty columns such as GE Healthcare's XK column and Thermo Fisher Scientific's disposable plastic column can be used.
  • Kit The present invention further relates to a kit for use in the method of the present invention comprising a polyimide porous membrane.
  • the kit of the present invention may appropriately contain components necessary for filtration of a liquid sample containing cells in addition to the polyimide porous membrane.
  • the cell applicable to a polyimide porous membrane, the crow or module which supports a polyimide porous membrane, a liquid feeding tube, a pump, the sterilization bag depending on the case, the instruction manual of a kit, etc. are contained.
  • it may include components for cell culture such as a cell culture medium, a continuous medium supply device, a continuous medium circulation device, and a cell culture device.
  • a sterilized polyimide porous membrane is stored alone or in a plurality of sheets in a transparent pouch, and a package containing a form that can be used for cell culture as it is, or the same
  • a sterilizing liquid is enclosed in a pouch together with a polyimide porous membrane, and includes an integrated membrane / liquid kit that enables efficient suction seeding.
  • kits of the membrane / liquid integrated form in a mode in which the blood from which activated leukocytes have been removed is returned to the subject by the method of the present invention from the subject's blood sample, for example, in a sterilized transparent bag
  • a sterilized transparent bag Included is a column module filled with a sterilized liquid with a polyimide porous membrane fixed inside, and if the sterilization bag is broken, an integrated kit that can be directly connected to the pump and used by the subject is also provided Can do.
  • the present invention further includes the use of a polyimide porous membrane for the above-described method of the present invention.
  • polyimide porous membrane refers to a polyimide porous membrane having a total film thickness of 25 ⁇ m and a porosity of 73%.
  • the polyimide porous membrane had two different surface layers (A surface and B surface) and a macrovoid layer sandwiched between the two surface layers.
  • the average hole diameter of the holes existing on the A surface was 6 ⁇ m
  • the average hole diameter of the holes existing on the B surface was 46 ⁇ m.
  • the polyimide porous membrane used in the following examples is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) which is a tetracarboxylic acid component and 4 which is a diamine component. , 4′-diaminodiphenyl ether (ODA) and a polyamic acid solution composition containing a polyamic acid solution, which is a colored precursor, and a heat treatment at 250 ° C. or higher. .
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • ODA 4′-diaminodiphenyl ether
  • a polyamic acid solution composition containing a polyamic acid solution, which is a colored precursor, and a heat treatment at 250 ° C. or higher.
  • Example 1 In this example, Jurkat cells, which are human leukemia T cell lines, were activated by adding phorbol ester and then subjected to cell filtration using a polyimide porous membrane. The state of the cells was analyzed by observing the number of cells.
  • Jurkat cells (1.5 ⁇ 10 6 per ml) are cultured in RPMI 1640 medium supplemented with 10% FBS, 10 ng of phorbol ester per ml is added thereto and incubated for 5 minutes.
  • a wet area is made with glycerin around a glass bottom dish previously coated with poly-L lysine (Photo 1), and a 2 cm square square polyimide porous membrane sterilized using that area is placed with the B-side of the large hole structure facing up.
  • Photo 2 In this state, when the activated Jurkat cells prepared earlier are placed on a 100 ⁇ l membrane as a suspension (Photo 3) and incubated in a CO 2 incubator for 12 hours, almost all of the liquid part permeates the polyimide porous membrane.
  • Photo 4 A passing liquid is obtained at the bottom (Photo 5). Carefully remove the liquid, wash the remaining cells twice with phosphate buffer, and fix in formalin.
  • Example 2 lipopolysaccharide was intraperitoneally administered to 6 6-week-old Balb / c mice, and 16 hours later, whole blood was collected using a BD Microtina (registered trademark) MAP micro blood collection tube. Whole blood is filtered using a polyimide porous membrane (filtration time: 5 to 10 minutes), and blood cell components before and after filtration are pre-filtered and post-filtered using SIEMENS blood cell analyzer ADVIA 2120. was analyzed. As a comparative example, a similar filtration experiment was carried out using 5 healthy Balb / c mice (FIG. 2).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)

Abstract

 本発明は、細胞を分離、除去、及び解析する方法を提供することを目的とする。細胞を分離、除去、及び解析する方法であって、細胞を含む液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の数若しくは種類、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べる、ことを含む、前記方法を提供する。

Description

細胞を分離、除去、及び解析する方法
 本発明は、ポリイミド多孔質膜を用いて細胞を分離、除去、及び解析する方法に関する。
 細胞の特性
 細胞は生体内では一般に三次元的な集団として存在するが、古典的な平面培養では、細胞が容器に張り付く形で単層状に培養される。培養環境の相違により、細胞の性質も大きく異なることが数多く報告されている。また、液体培養培地中で細胞を培養する浮遊培養については、浮遊培養に適した細胞がある一方、適さない細胞もある。
 近年、創薬研究の加速と評価技術の向上により、これら細胞を用いる各種評価システムやキットが開発されて来た。物質産生量を抗原抗体反応と酵素反応の組み合わせで呈色反応としたELISAキットや2つの対象部位の近接度によりエネルギー移動が起こる現象を光として測定する形で利用したFRETやBRETなど、多くの原理により、新規で高感度・高強度・高選択的な方法論が開拓されている(非特許文献1、2)。
 これらのスクリーニング法の中で、細胞の移動現象を原理とした各種キットや方法も考案・実施されている。例えば特許文献1に記載の、コンフルエントになった培養細胞に穴部を作製し、その穴部の充填現象を創傷治癒速度として比較する方法や、特許文献2に記載の様な、インサートカルチャー様の構造で一定サイズの多孔を穿ち、細胞の移動により化合物の走化性を比較する方法等が開発されている。特に特許文献2に記載の方法は、既に様々な形態で応用・実施化されている。また、細胞運動そのものをターゲットとして捉え、細胞のブラウン運動と原形質流動を見極めて原形質流動の変化を追う事で評価を進める特許文献3やインクジェットを活用し、狭い領域に多数の細胞を規則的に播種して、その運動を追跡調査するという特許文献4の様な試みも進められている。
 細胞の走行性や移動現象を創薬等の評価の為に使用した場合、定量性や明確さという点で先行研究群が示す通り、興味深い細胞の特性を明確化させる事が可能となる為、非常に魅力的な方法となるが、その一方で、非常に複雑なシステムや込み入った装置が必要となるケースや時間的あるいは処理的に多くの手間を要するケースとなってしまう事が多く、より簡便かつ迅速な評価法の構築が希求されている。
 また、生体由来の試料は、生体の全体又は一部分の状態に応じてその中に含まれる細胞の状態が変化する場合がある。例えば、細胞の状態変化に基づいて、何等かの病因に関連して活性化された白血球を除去する治療法も知られている。
 血液試料からの血液成分除去療法
 血液には、白血球や赤血球を始めとして、多数の細胞種が含まれている。自己免疫性疾患等の細胞性疾患に於いては、活性の高すぎる自己細胞が過剰反応を引き起こす事が知られており、医薬品による免疫反応の抑制や細胞そのものの除去が、医療行為として採用されている。例えば、ビーズや繊維をカラム状にして充填し、その空間に血液を通過させる事により、接着性の高いリンパ球や細胞を除去する事で、リウマチ疾患やクローン病あるいは潰瘍性大腸炎等を治療する方法論が知られている(特許文献5、6、7及び非特許文献3)。また、呼吸器疾患に関しても有効性を検証する研究が示されている(非特許文献4)。更に、抗体を表面に固定化したビーズをカラム形状に詰め、同抗原を提示する細胞を選択的に取得する方法も報告されている(特許文献8)。
 これらの担体本体は、繊維やビーズ等が使用されているが、構造的に直線や球面の集合体であり、生体構造への類似性に乏しく、構造的に細胞を取得する特性を有する訳ではないので、多くの機会を提供し、接着性の強い細胞を吸着させる必要性がある。長時間の機器への接触は、想定外の血栓形成や血液細胞の活性化を惹起する要因となり得る為、より簡便・迅速でかつ血液活性化能の低い細胞除去方法が希求されている。このように、血液細胞に限らず、生体由来の試料中の細胞の特性を簡便かつ迅速な評価することができれば、生体の状態を簡便かつ迅速な評価する途につながる。
 ポリイミド多孔質膜
 ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称である。芳香族ポリイミドは、芳香族化合物が直接イミド結合で連結された高分子を意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
 ポリイミド多孔質膜は、本発明前よりフィルター、低誘電率フィルム、燃料電池用電解質膜など、特に電池関係を中心とする用途のために利用されてきた。特許文献9~11は、特に、気体などの物質透過性に優れ、空孔率の高い、両表面の平滑性が優れ、相対的に強度が高く、高空孔率にもかかわらず、膜厚み方向への圧縮応力に対する耐力に優れるマクロボイドを多数有するポリイミド多孔質膜を記載している。これらはいずれも、アミック酸を経由して作成されたポリイミド多孔質膜である。
特許第3682772号 特許第4857292号 特許第4507060号 特許第5024823号 特許第2835923号 特許第3812909号 特許第4473324号 特許第4196592号 WO2010/038873 特開2011-219585 特開2011-219586
ORISTM CELL-BASED ASSAYS brochure ASCB 2014 POSTER, An Automatable 3-Dimensional Cell Invasion Assay Compatible with High Content Analysis, Fronczak et. Al. Hagiwara et al,Journal of Surgical Research 171, 777-782 (2011) ONORATI et al. Ann Thorac Surg 2011;92:111-21
 本発明は、細胞を分離、除去、及び/又は解析する方法、細胞活性化抑制物質のスクリーニング方法、本発明の方法に使用するための装置及びキット、並びに、ポリ多孔質膜の本発明の方法への使用を提供することを目的とする。
 本発明者らは上記問題の解決に努めた結果、ポリイミド多孔質膜を使用することにより細胞を簡便かつ迅速に分離、除去、及び解析することを見出し、本発明を想到した。本発明の方法は細胞に特性に影響を与える得る物質のスクリーニングに用いることも可能である。
 限定されるわけではないが、本発明は好ましくは以下の態様を含む。
[態様1]
 細胞を分離、除去、及び/又は解析する方法であって、細胞を含む液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の数若しくは種類、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べる、ことを含む、前記方法。
[態様2]
 対象とする細胞が活性化された細胞である、態様1に記載の方法。
[態様3]
 活性化された細胞が活性化白血球である、態様2に記載の方法。
[態様4]
 濾過工程の前に、ポリイミド多孔質膜の表面の全体又は一部を予め処理する工程を含む、態様1~3のいずれかに記載の方法。
[態様5]
 ポリイミド多孔質膜の表面処理を、抗凝固剤、コラーゲン、ポリLリジン、UV、プラズマ及びPolyethylene oxide-polypropyrene oxide-polyethylene oxideから成る3共重合体にPyridyl disulfideを結合させたもの(親水樹脂を結合したPDS)からなる群から選択される、1以上の剤もしくは処理方法を用いて行う、態様4に記載の方法。
[態様6]
 細胞を含む液体試料に細胞活性化剤を加えてから、細胞を培養した後に、当該液体試料をポリイミド多孔質膜で濾過する、ことを含む、態様1~5のいずれかに記載の方法。
[態様7]
 細胞活性化抑制物質のスクリーニング方法であって、
  (i) 場合により細胞を含む液体試料に細胞活性化剤を加えてから細胞を培養し、
  (ii) (i)の液体試料に被検物質を加え、
  (iii) (ii)の液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べ、そして、
  (iv) ポリイミド多孔質膜を通過せず膜に捕捉された細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも減少する場合、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも増加する場合に、被検物質は細胞活性化抑制物質である、と判断する、
ことを含む、前記スクリーニング方法。
[態様8]
 細胞を含む液体試料が、初代細胞、株化細胞、及び血液分離細胞からなる1以上の細胞を含む、細胞の縣濁液である、態様1~7のいずれかに記載の方法。
[態様9]
 細胞を含む液体試料が、血液、尿、汗、貯留体腔液、体腔洗浄液及び喀痰からなる群から選択される生体試料である、態様1~7のいずれかに記載の方法。
[態様10]
 濾過が、自然濾過、遠心濾過、減圧濾過及び加圧濾過からなる群から選択される、態様1~9のいずれかに記載の方法。
[態様11]
 ポリイミド多孔質膜を通過した液体試料中の細胞をさらに培養する、ことを含む、態様1~10のいずれかに記載の方法。
[態様12]
 ポリイミド多孔質膜を通過せず膜に捕捉された細胞を、ポリイミド多孔質に適用された状態のままさらに培養する、ことを含む、態様1~10のいずれか1項に記載の方法。
[態様13]
 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、態様1~12のいずれかに記載の方法。
[態様14]
 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、態様13に記載の方法。
[態様15]
 前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、態様13又は14に記載の方法。
[態様16]
 前記ポリイミド多孔質膜の膜厚が75μm以下である、態様15に記載の方法。
[態様17]
 2以上のポリイミド多孔質膜を、上下又は左右に積層して用いる、態様1~16のいずれかに記載の方法。
[態様18]
 ポリイミド多孔質膜を含む、態様1~17のいずれかに記載の方法に使用するための装置。
[態様19]
 ポリイミド多孔質膜を含む、態様1~17のいずれかに記載の方法に使用するためのキット。
[態様20]
 ポリイミド多孔質膜の態様1~17のいずれかに記載の方法のための使用。
 本発明の方法によりポリイミド多孔質膜を用いることにより、細胞を簡便かつ迅速に分離、除去、及び解析することが可能になった。本発明の方法は細胞に特性に影響を与える得る物質のスクリーニングに用いることも可能である。また、本発明の方法は、生体から得た試料で用いてインビトロで調べることにより、生体の状態を迅速かつ簡便に知ることも可能になった。
図1は、本発明の方法において、典型例として、細胞を含む液体試料(細胞懸濁液)をポリイミド多孔質膜で濾過するための一態様を示す模式図である。(1)(細胞濾過-基本系1) 図2は、本発明の方法において、典型例として、細胞を含む液体試料(細胞懸濁液)をポリイミド多孔質膜で濾過するための一態様を示す模式図である。(2)(細胞濾過-基本系2) 図3は、本発明の方法において、典型例として、細胞を含む液体試料(細胞懸濁液)をポリイミド多孔質膜で濾過するための一態様を示す模式図である。(3)(細胞濾過-遠心型) 図4は、本発明の方法において、典型例として、細胞を含む液体試料(細胞懸濁液)をポリイミド多孔質膜で濾過するための一態様を示す模式図である。(4)(細胞濾過-圧力型) 図5は、実施例1の工程及び結果を示す写真である。 図6は、本発明の全血濾過を行った例(実施例2)を示す。 図7は、マウスを用いた濾過実験の結果を示す。
 本発明は、一態様において細胞を分離、除去、及び/又は解析する方法に関する。本発明は、細胞を分離、除去、及び/又は解析する方法の一態様として、細胞活性化抑制物質のスクリーニング方法に関する。
 本発明者らは、細胞を含む液体試料(例えば、細胞懸濁液)及び血液試料を用いてポリイミド多孔質膜を通過させると、ポリイミド多孔質膜が、膜上に載せられた細胞のサイズや特性に応じて、細胞の通過度が左右される、という事実を発見し、本発明を想到した。接着性細胞を濾過する場合には殆どの細胞がポリイミド多孔質膜内に捕捉されることが判明した。さらに、サイズの小さな細胞の内、特に浮遊系細胞は膜通過し易い事から、浮遊系小型細胞を対象とした場合、細胞の状態をも反映し得る可能性を想起し、フォルボールエステルで活性化した免疫系株化細胞を用いて検証した所、炎症を惹起した細胞では細胞がポリイミド多孔質膜を殆ど通過しない現象を見出した。同様に、この炎症状態を抑制する事が可能となれば、細胞の通過率は復帰する事となる。即ち、ポリイミド多孔質膜の通過という短い時間の評価で、炎症状態をある程度普遍的に評価する事が可能となる。迅速スクリーニングに適した単膜の評価方法が初めて見出された。
 I.細胞を分離、除去、及び/又は解析する方法
 本発明は、一態様において細胞を分離除去、及び/又は解析する方法に関する。本発明の細胞の分離、除去、及び/又は解析方法は、ポリイミド多孔質膜によって、典型的には、細胞懸濁液を濾過し、その操作により通過した細胞及びポリイミド多孔質膜に捕捉された細胞により、細胞の状態を分析するシステム及び方法論を含む。本発明者らは、ポリイミド多孔質膜の有する多面的多孔質構造が、細胞の大きさや特性に準じ、そのまま膜中に留まったり通過したりする現象を見出し、本発明を想到した。ポリイミド多孔質膜の有する立体的環境は、細胞に好適で多様な環境を与え、情況に応じて膜内に留まるかあるいは通過するかを選択させ得る。この原理を利用すれば、特別の装置を必要とせず、細胞の状態解析が可能となる。また、既存の各種分析機器を利用して、分離後の細胞群を解析する事も可能となる。細胞の活性化状態や炎症状態の進行及び抑制を、膜の移動という極めて簡便な手法にて解析が可能となる訳である。これらを応用すれば、迅速かつ簡便な創薬のスクリーニングキット等への展開が容易であり、大きな工業的価値が期待される。
 本発明の細胞を分離、除去、及び/又は解析する方法は、細胞を含む液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べる、ことを含む。
 本発明の細胞を分離、除去、及び/又は解析する方法は、血液試料からインビトロで活性化白血球を首尾よく除去するために使用され得る。濾過の際、ポリイミド多孔質膜に捕捉された活性化白血球が除去される事により、細胞除去療法を進める方法論を含む。本発明者らは、ポリイミド多孔質膜の有する非繊維型の多面的多孔質構造が、高接着性細胞や炎症状態にある細胞が膜通過特性を減じており、患者の血液試料を濾過した場合、これらの細胞がそのまま膜中に留まり易い現象を見出した。本発明前より、血球除去療法の医療機器は数多く発明され実施されている。しかしながら、細胞の吸着性により、繊維性や球形の担体に細胞を吸着される方式となっており、濾過躯体そのものは濾過特性を有している訳ではない為、多くの接触面積が必要となる。ポリイミド多孔質膜を細胞濾過の本体として使用した場合、素材そのものもが細胞濾過特性を有する為、躯体への接触時間を極めて短くする事が可能となり、除去療法の時間短縮の可能性が生まれる。これはこのような処置を受けなければならない患者の負担を著しく軽減するものである。さらに、血液に不要のストレスを与える事が少なくなる為、血栓形成の可能性を低下させる事も可能となる。画期的な細胞除去療法向けの素材となる事が期待される。
 1.細胞
 本発明の方法の対象は、細胞を含む液体試料である。細胞の種類は特に限定されず、任意の細胞の増殖に利用可能である。
 例えば、細胞は、動物細胞、昆虫細胞、植物細胞、酵母菌及び細菌からなる群から選択される。動物細胞は、脊椎動物門に属する動物由来の細胞と無脊椎動物(脊椎動物門に属する動物以外の動物)由来の細胞とに大別される。本明細書における、動物細胞の由来は特に限定されない。好ましくは、脊椎動物門に属する動物由来の細胞を意味する。脊椎動物門は、無顎上綱と顎口上綱を含み、顎口上綱は、哺乳綱、鳥綱、両生綱、爬虫綱などを含む。好ましくは、一般に、哺乳動物と言われる哺乳綱に属する動物由来の細胞である。哺乳動物は、特に限定されないが、好ましくは、マウス、ラット、ヒト、サル、ブタ、イヌ、ネコ、ヒツジ、ヤギなどを含む。
 限定されるわけではないが、動物細胞としては好ましくは例えば、動物細胞が、チャイニーズハムスター卵巣組織由来細胞(CHO細胞)、アフリカミドリザル腎臓由来株化細胞(Vero細胞)、イヌ腎臓尿細管上皮細胞由来の細胞株(MDCK細胞)及びヒト肝癌組織由来樹立細胞株(huGK-14)からなる群から選択される、細胞が使用される。
 本明細書における植物細胞の由来は特に限定されない。コケ植物、シダ植物、種子植物を含む植物の細胞が対象となる。
 種子植物細胞が由来する植物は、単子葉植物、双子葉植物のいずれも含まれる。限定されるわけではないが、単子葉植物には、ラン科植物、イネ科植物(イネ、トウモロコシ、オオムギ、コムギ、ソルガム等)、カヤツリグサ科植物などが含まれる。双子葉植物には、キク亜綱、モクレン亜綱、バラ亜綱など多くの亜綱に属する植物が含まれる。
 藻類も、細胞由来生物として見なす事が出来る。真正細菌であるシアノバクテリア(藍藻)から、真核生物で単細胞生物であるもの(珪藻、黄緑藻、渦鞭毛藻など)及び多細胞生物である海藻類(紅藻、褐藻、緑藻)などの異なるグループを含む。
 本明細書における古細菌及び細菌の種類も特に限定されない。古細菌は、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌等からなる群から構成される。細菌は、例えば、乳酸菌、大腸菌、枯草菌及びシアノバクテリアなどからなる群から選択される。
 本発明の方法に利用しうる動物細胞又は植物細胞の種類は、限定されるわけではないが、好ましくは、多能性幹細胞、組織幹細胞、体細胞、及び生殖細胞からなる群から選択される。
 本発明において「多能性幹細胞」とは、あらゆる組織の細胞へと分化する能力(分化多能性)を有する幹細胞の総称することを意図する。限定されるわけではないが、多能性幹細胞は、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖幹細胞(EG細胞)、生殖幹細胞(GS細胞)等を含む。好ましくは、ES細胞又はiPS細胞である。iPS細胞は倫理的な問題もない等の理由により特に好ましい。多能性幹細胞としては公知の任意のものを使用可能であるが、例えば、国際公開WO2009/123349(PCT/JP2009/057041)に記載の多能性幹細胞を使用可能である。
 「組織幹細胞」とは、分化可能な細胞系列が特定の組織に限定されているが、多様な細胞種へ分化可能な能力(分化多能性)を有する幹細胞を意味する。例えば骨髄中の造血幹細胞は血球のもととなり、神経幹細胞は神経細胞へと分化する。このほかにも肝臓をつくる肝幹細胞、皮膚組織になる皮膚幹細胞などさまざまな種類がある。好ましくは、組織幹細胞は、間葉系幹細胞、肝幹細胞、膵幹細胞、神経幹細胞、皮膚幹細胞、又は造血幹細胞から選択される。
 「体細胞」とは、多細胞生物を構成する細胞のうち生殖細胞以外の細胞のことを言う。有性生殖においては次世代へは受け継がれない。好ましくは、体細胞は、肝細胞、膵細胞、筋細胞、骨細胞、骨芽細胞、破骨細胞、軟骨細胞、脂肪細胞、皮膚細胞、線維芽細胞、膵細胞、腎細胞、肺細胞、又は、リンパ球、赤血球、白血球、単球、マクロファージ若しくは巨核球の血球細胞から選択される。
 「生殖細胞」は、生殖において遺伝情報を次世代へ伝える役割を持つ細胞を意味する。例えば、有性生殖のための配偶子、即ち卵子、卵細胞、***、精細胞、無性生殖のための胞子などを含む。
 細胞は、肉腫細胞、株化細胞及び形質転換細胞からなる群から選択してもよい。「肉腫」とは、骨、軟骨、脂肪、筋肉、血液等の非上皮性細胞由来の結合組織細胞に発生する癌で、軟部肉腫、悪性骨腫瘍などを含む。肉腫細胞は、肉腫に由来する細胞である。「株化細胞」とは、長期間にわたって体外で維持され、一定の安定した性質をもつに至り、半永久的な継代培養が可能になった培養細胞を意味する。PC12細胞(ラット副腎髄質由来)、CHO細胞(チャイニーズハムスター卵巣由来)、HEK293細胞(ヒト胎児腎臓由来)、HL-60細胞(ヒト白血球細胞由来)、HeLa細胞(ヒト子宮頸癌由来)、Vero細胞(アフリカミドリザル腎臓上皮細胞由来)、MDCK細胞(イヌ腎臓尿細管上皮細胞由来)などヒトを含む様々な生物種の様々な組織に由来する細胞株が存在する。「形質転換細胞」は、細胞外部から核酸(DNA等)を導入し、遺伝的性質を変化させた細胞を意味する。
 限定されるわけではないが、本発明の方法の対象となる「細胞を含む液体試料」は好ましくは、ヒト、サル、イヌ、ネコ等の哺乳動物に由来する生体試料である。よって、「細胞」は好ましくは哺乳動物に由来する生体試料に含まれる、動物細胞又は細菌である。
 生体由来の試料は、生体の全体又は一部分の状態に応じてその中に含まれる細胞の状態が変化する場合がある。本発明の方法は、一態様において、生体に由来する「細胞を含む液体試料」を解析することにより、生体の状態を知ることを目的とする。例えば、生体に由来する液体試料が活性化された細胞を多く含む場合、生体の全体(全身)又は一部分が活性化されている、即ち炎症を起こしている可能性がある、と判断される。本発明の一態様において、対象とする細胞は活性化された細胞(例えば、活性化白血球)である。
 2.細胞を含む液体試料等
 本発明の方法の対象は、細胞を含む液体試料である。本発明における液体試料は、細胞を含む、あるいは細胞を含む可能性があれば特に限定されない。生体に由来する、即ち生体より取得された生体試料であっても、あるいは、人為的に調整された試料であってもよい。なお、「液体試料」には、活性化された白血球を含むことが推定される「血液試料」を含むが、本明細書においては、血液試料から活性化白血球を除去することを目的して採取された試料を限定的に「血液試料」と称して、「液体試料」と区別して用いる場合がある。また、血液試料を含む液体試料を「液体試料等」として適宜記載されるが、「液体試料」、「液体試料等」、及び「血液試料」は互換的に使用される。
 細胞を含む液体試料が、初代細胞、株化細胞、及び血液分離細胞からなる1以上の細胞を含む、細胞の縣濁液であってもよい。これらの細胞、及び細胞を含む液体試料の調製方法は当業者に公知である。
 「初代細胞」とは、生体から採取した組織や細胞を最初に播種して培養した細胞を意味する。一般には継代操作を行う前の培養状態の細胞を意味し、多くの場合、単一の細胞ではなく種々の細胞が混在している。
 初代細胞を継代したものは継代細胞と呼ばれる。継代により増殖能を維持している一連の細胞を「株化細胞」と呼ぶ。種々の株化細胞が樹立されており、「細胞」の項目で上述したように、PC12細胞(ラット副腎髄質由来)、CHO細胞(チャイニーズハムスター卵巣由来)、HEK293細胞(ヒト胎児腎臓由来)、HL-60細胞(ヒト白血球細胞由来)、HeLa細胞(ヒト子宮頸癌由来)、Vero細胞(アフリカミドリザル腎臓上皮細胞由来)、MDCK細胞(イヌ腎臓尿細管上皮細胞由来)、HepG2細胞(ヒト肝癌由来)等を含む。
 「血液分離細胞」とは、血液中に含まれ血液から分離されうる一群の細胞(血液細胞)を意味する。血液の成分は、血球成分(細胞性成分、血液細胞)、血小板、血球成分と血小板を浮遊させる血漿成分(液性成分)からなる。血球成分(血液細胞)は、赤血球、白血球、血小板を含む。
 本発明者らは、血液の成分のうち、白血球、特に炎症等の作用により活性化された白血球が選択的に捕捉されることを見出した。白血球は、広義には生体防御に関わる免疫担当細胞を意味し、一般には、リンパ球、顆粒球、単球の総称である。血液試料を用いた場合、本発明においてポリイミド多孔質膜に特に選択的に捕捉されるのは、活性化された顆粒球である。顆粒球は、一般には、好中球、好酸球及び好酸球の総称である。限定されるわけではないが、特に選択的に捕捉されるのは活性化された好酸球である。
 細胞を含む液体試料は、血液、尿、汗、貯留体腔液、体腔洗浄液及び喀痰からなる群から選択される生体試料であってもよい。血液試料については上述した通りである。尿試料、汗試料は、特に白血球、赤血球, 尿円柱等の細胞成分を含む。これらの生体試料をポリイミド多孔質膜を濾過することにより、試料中の細胞成分のうち特に活性化された細胞がポリイミド多孔質膜に選択的に捕捉されうる。
 3.細胞活性化剤
 本発明において、細胞を含む液体試料に細胞活性化剤を加えてから、細胞を培養した後に、当該液体試料をポリイミド多孔質膜で濾過してもよい。
 「細胞活性化剤」は、インビトロ又はインビボで細胞を活性化する物質の総称であり、特に限定されない。細胞に炎症を生じさせる「炎症惹起物質」も本明細書における細胞活性化剤に含まれうる。
 細胞を含む液体試料に細胞活性化剤を加えることにより、液体試料に含まれる細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性について、変化が生じうる。その結果、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、及び/又は、ポリイミド多孔質膜を通過した液体試料中の細胞に変化が生じうる。
 「細胞活性化剤」は、非限定的に、フォルボールエステル、ジアシルグリセロール、リポポリサッカライド、TNFα等の炎症性サイトカイン類等が含まれうる。
 4.ポリイミド多孔質膜
 本発明は、細胞を含む液体試料をポリイミド多孔質膜で濾過する工程を含むことを特徴の1つとする。
 ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称であり、通常は、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドを意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
 本発明において用いるポリイミド多孔質膜は、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを(主たる成分として)含むポリイミド多孔質膜であり、より好ましくはテトラカルボン酸二無水物とジアミンとから得られるポリイミドからなるポリイミド多孔質膜である。「主たる成分として含む」とは、ポリイミド多孔質膜の構成成分として、テトラカルボン酸二無水物とジアミンとから得られるポリイミド以外の成分は、本質的に含まない、あるいは含まれていてもよいが、テトラカルボン酸二無水物とジアミンとから得られるポリイミドの性質に影響を与えない付加的な成分であることを意味する。
 本発明において用いられるポリイミド多孔質膜は、テトラカルボン酸成分とジアミン成分とから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜も含まれる。
 ポリアミック酸
 ポリアミック酸は、テトラカルボン酸成分とジアミン成分とを重合して得られる。ポリアミック酸は、熱イミド化又は化学イミド化することにより閉環してポリイミドとすることができるポリイミド前駆体である。
 ポリアミック酸は、アミック酸の一部がイミド化していても、本発明に影響を及ぼさない範囲であればそれを用いることができる。すなわち、ポリアミック酸は、部分的に熱イミド化又は化学イミド化されていてもよい。
 ポリアミック酸を熱イミド化する場合は、必要に応じて、イミド化触媒、有機リン含有化合物、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。また、ポリアミック酸を化学イミド化する場合は、必要に応じて、化学イミド化剤、脱水剤、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。ポリアミック酸溶液に前記成分を配合しても、着色前駆体が析出しない条件で行うことが好ましい。
 着色前駆体
 本発明において用いられる着色前駆体とは、250℃以上の熱処理により一部または全部が炭化して着色化物を生成する前駆体を意味する。
 本発明において用いられる着色前駆体としては、ポリアミック酸溶液又はポリイミド溶液に均一に溶解または分散し、250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理、好ましくは空気等の酸素存在下での250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理により熱分解し、炭化して着色化物を生成するものが好ましく、黒色系の着色化物を生成するものがより好ましく、炭素系着色前駆体がより好ましい。
 着色前駆体は、加熱していくと一見炭素化物に見えるものになるが、組織的には炭素以外の異元素を含み、層構造、芳香族架橋構造、四面体炭素を含む無秩序構造のものを含む。
 炭素系着色前駆体は特に制限されず、例えば、石油タール、石油ピッチ、石炭タール、石炭ピッチ等のタール又はピッチ、コークス、アクリロニトリルを含むモノマーから得られる重合体、フェロセン化合物(フェロセン及びフェロセン誘導体)等が挙げられる。これらの中では、アクリロニトリルを含むモノマーから得られる重合体及び/又はフェロセン化合物が好ましく、アクリロニトリルを含むモノマーから得られる重合体としてはポリアクリルニトリルが好ましい。
 テトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。また、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸を用いることも好ましい。これらは単独でも、2種以上を組み合わせて用いることもできる。
 これらの中でも、特に、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種の芳香族テトラカルボン酸二無水物が好ましい。ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を好適に用いることができる。
 ジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。
 1)1,4-ジアミノベンゼン(パラフェニレンジアミン)、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン;
 2)4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン;
 3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン;
 4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
 これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
 これらの中でも、芳香族ジアミン化合物が好ましく、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
 本発明において用いられるポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が240℃以上であるか、又は300℃以上で明確な転移点がないテトラカルボン酸二無水物とジアミンとを組み合わせて得られるポリイミドから形成されていることが好ましい。
 本発明において用いられるポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、以下の芳香族ポリイミドからなるポリイミド多孔質膜であることが好ましい。
 (i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
 (ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
 (iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
 限定されるわけではないが、ポリイミド多孔質膜として、少なくとも、2つの表面層(A面及びB面)と、当該2つの表面層の間に挟まれたマクロボイド層とを有する多層構造のポリイミド多孔質膜を、本発明に使用することが可能である。好ましくは、ポリイミド多孔質膜は、前記マクロボイド層が、前記表面層(A面及びB面)に結合した隔壁と、当該隔壁並びに前記表面層(A面及びB面)に囲まれた、膜平面方向の平均孔径が10~500μmである複数のマクロボイドとを有し、前記のマクロボイド層の隔壁、並びに前記表面層(A面及びB面)はそれぞれ、厚さが0.01~20μmであり、平均孔径0.01~100μmの複数の孔を有し、当該細孔同士が連通しても良く、更に前記マクロボイドに連通して部分的あるいは全面的に多層構造を有しており、そして、総膜厚が5~500μmであり、空孔率が40%以上95%未満である、ポリイミド多孔質膜である。
 本発明において用いられるポリイミド多孔質膜の総膜厚は、限定されるわけではないが、一態様として25~75μmとしてもよい。膜厚の相違により、細胞の増殖速度、細胞の形態、面内における細胞の飽和度等に相違が観察されうる。
 本発明において、2つの異なる表面層(A面及びB面)と、当該2つの表面層の間に挟まれたマクロボイド層とを有するポリイミド多孔質膜が使用される場合、A面に存在する孔の平均孔径は、B面に存在する孔の平均孔径と差があってもよい。好ましくは、A面に存在する孔の平均孔径は、B面に存在する孔の平均孔径よりも小さい。より好ましくは、A面に存在する孔の平均孔径がB面に存在する孔の平均孔径よりも小さく、A面に存在する孔の平均孔径が0.01~50μm、0.01μm~40μm、0.01μm~30μm、0.01μm~20μm、又は0.01μm~15μmであり、B面に存在する孔の平均孔径が20μm~100μm、30μm~100μm、40μm~100μm、50μm~100μm、又は60μm~100μmである。特に好ましくは、ポリイミド多孔質膜のA面が平均孔径15μm以下の、例えば0.01μm~15μmの小さい穴を有するメッシュ構造であり、B面が平均孔径20μm以上の、例えば20μm~100μmの大穴構造である。
 本発明において用いられるポリイミド多孔質膜の総膜厚の測定は、接触式の厚み計で行うことができる。
 ポリイミド多孔質膜表面の平均孔径は、多孔質膜表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めることができる。
Figure JPOXMLDOC01-appb-M000001
(式中、Saは孔面積の平均値を意味する。)
 本発明において用いられるポリイミド多孔質膜の空孔率は、所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から下式(2)に従って求めることができる。
Figure JPOXMLDOC01-appb-M000002
(式中、Sは多孔質フィルムの面積、dは総膜厚、wは測定した質量、Dはポリイミドの密度をそれぞれ意味する。ポリイミドの密度は1.34g/cm3とする。)
 例えば、国際公開 WO2010/038873、特開2011-219585、又は特開2011-219586に記載されているポリイミド多孔質膜も、本発明に使用可能である。
 本発明において細胞を装填するポリイミド多孔質膜は、当然、装填する以外の細胞を含まない状態、即ち、滅菌されていることが好ましい。本発明の方法は、好ましくは、ポリイミド多孔質膜を予め滅菌する工程を含む。ポリイミド多孔質膜は、耐熱性に極めて優れており、軽量であり、形・大きさも自由に選択可能であり、滅菌処理が容易である。乾熱滅菌、蒸気滅菌、エタノール等殺菌剤による滅菌、UVやガンマ線を含む電磁波滅菌等任意の滅菌処理が可能である。
 本発明において、濾過工程の前に、ポリイミド多孔質膜の表面の全体又は一部を予め処理する工程を含んでもよい。表面処理により、液体試料が血液の場合に凝固を防ぐ、分離、除去、及び解析効率を上げる、親水性を付与する、等の効果を得ることができる。ポリイミド多孔質膜の表面処理は、抗凝固剤、コラーゲン、ポリLリジン、ラミニン、ゼラチン、フィブロネクチン、インテグリン、インシュリン、血清、親水樹脂を結合したPDS等の表面処理剤を用いた化学的処理を行ってもよい。あるいは、UV、プラズマ等の物理的処理をおこなってもよい。
 5.細胞を含む液体試料等をポリイミド多孔質膜による濾過
 本発明は、細胞を含む液体試料等をポリイミド多孔質膜で濾過する工程を含むことを特徴の1つとする。
 細胞のポリイミド多孔質膜による濾過において、具体的な工程は特に限定されない。本明細書に記載の工程、あるいは、細胞を膜状の担体に適用するのに適した任意の手法を採用することが可能である。
 本発明の方法において、ポリイミド多孔質膜は、固定して使用する事も可能であり、シャーレ等に置くだけで使用する事も可能である。膜の一部を湿潤してシャーレ上や窪みのある実験器具の窪み上部に簡易的に固定する事も可能である。窪み部分の評価を光学的に効率良く進める為、グラスボトムシャーレを受器として用いる事は効率の向上に繋がる。
 濾過速度を向上させて分析時間を短縮する為、ポリイミド多孔質膜を全体的にリン酸緩衝液や培地等で湿潤してもよい。また、乾燥したポリイミド多孔質膜に細胞懸濁液を載せ、インキュベータ内に保存して、長時間をかけて、濾過を実施する事も可能である。また、この様な乾燥したポリイミド多孔質膜に細胞懸濁液を載せて濾過を実行する場合、懸濁液を載せてから例えば数分後に、ポリイミド多孔質膜の位置を動かす事は、濾過速度を大きく高める事に繋がる。
 同様に、遠心力や加圧などの方法で、液部に力を掛けて、濾過を促進させてもよい。遠心力を利用する場合、遠心チューブに支持台を装着し、遠心分離機にて回転させる事により、液部の透過速度を高める事が出来る。
 限定されるわけではないが、濾過は、自然濾過、遠心濾過、減圧濾過及び加圧濾過からなる群から選択される、任意の公知の濾過のための手法を適用することが可能である。以下、非限定的に、本発明の方法において、細胞を含む液体試料をポリイミド多孔質膜で濾過するための態様を示す。
 (1)(細胞濾過-基本系1)(自然濾過)(図1) ポリイミド多孔質膜をグラスボトムシャーレ上に置き、その上から細胞懸濁液を載せる。液通過後、膜とグラスボトムシャーレを分離し、生細胞のまま、あるいは、細胞を固定して、グラスボトムシャーレ上に残留した細胞及びポリイミド多孔質膜上に捕捉された細胞を観察し、細胞の評価を行なう。グラスボトムシャーレ上に残留した細胞は、そのまま、例えば、倒立顕微鏡等の光学顕微鏡を用いて観察することが可能である。
 (2)(細胞濾過-基本系2)(自然濾過)(図2) ポリイミド多孔質膜をシャーレ上に置き、その上から細胞懸濁液を載せる。液通過後、膜とシャーレを分離し、生細胞のまま、あるいは、細胞を固定して、シャーレ内液部及びポリイミド多孔質膜上に捕捉された細胞を観察し、細胞の評価を行なう。
 (様を示す模式図である。
 (3)(細胞濾過-遠心型)(遠心濾過)(図3) ポリイミド多孔質膜を支持台のある遠心チューブ内に設置し、その上から細胞懸濁液を加える。遠心分離にて液通過させ、細胞濾過を実行する。回収液部を、生細胞のまま、あるいは、細胞を固定して、観察し、細胞の評価を行なう。また、ポリイミド多孔質膜上に捕捉された細胞を観察し、細胞の評価を行なう。
 (4)(細胞濾過-圧力型)(加圧濾過)(図4) ポリイミド多孔質膜を、注射器に接合可能な濾過装置に入れ、注射器内に細胞懸濁液を仕込み、注射器にて懸濁液の濾過を実施する。濾過後、回収液部を、生細胞のまま、あるいは、細胞を固定して、観察し、細胞の評価を行なう。また、ポリイミド多孔質膜上に捕捉された細胞を観察し、細胞の評価を行なう。
 6.細胞の特性の決定
 本発明の方法は、濾過工程後、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べることを含む。
 細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率等は、細胞の特性を「定性的」又は「定量的」に分析するための任意の公知の方法を用いて調べることが可能である。
 「細胞の種類若しくは数」は、例えば、フローサイトメトリー、血球解析装置等細胞を観察するための装置を用いて調べることが可能である。細胞の数は、厳密な数ではなく数の増減を知るだけでも良い場合もある。例えば、ある細胞活性化抑制物質を被験者に投与した場合、投与前後で、ポリイミド多孔質膜に捕捉される細胞の割合に変化が生じうる。ある物質の投与によりポリイミド多孔質膜を通過せず膜に捕捉された細胞の割合が減少した、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞の割合が増加した場合、活性化された細胞が減少した、即ち、投与された物質が細胞活性化抑制物質として作用したことを意味する。
 細胞の数(割合)の増減は、例えば、光学顕微鏡、実体顕微鏡による観察、体腔液細胞診法でのギムザ染色等の簡便な方法を用いて確認することができる。
 「細胞の外部若しくは内部の構造」は例えば、光学顕微鏡、電子顕微鏡、蛍光顕微鏡等の顕微鏡、フローサイトメトリー、ウェスタンブロッティング、FIB-SEM等を用いて行うことができる。
 「細胞表面抗原」とは、例えば、ヒト白血球等の種々の細胞の表面に存在する、糖タンパク質糖の様々な分子の総称である。例えば、骨髄系樹状細胞、T細胞にはCD8α抗原、造血幹細胞にはCD34抗原、CD133など細胞の種類に応じて特異的な表面抗原が発現している。細胞表面抗原を調べることにより、細胞の種類、性質(接着性など)を知ることが可能である。細胞表面抗原は、例えば、個々の細胞表面抗原に対する特異的な抗体を用いて調べることが可能である。
 「細胞からの分泌物質」としては、例えば、サイトカイン産生、細胞外マトリクス産生等を調べるのもよい。分泌物質IL-6は、例えば、ELISA等の手法により確認することが可能である。
 「細胞の接着性」は、例えば細胞外マトリクスへの接着比色法等の手法を用いて調べることができる。
 「細胞の生存率」は、例えば、トリパンブルー染色法、LIVE/DEAD(登録商標)アッセイ等の手法を用いて調べることができる。
 ポリイミド多孔質膜を通過せず膜に捕捉された細胞、ポリイミド多孔質膜を通過した液体試料中の細胞のいずれか、あるいは、双方を調べても良い。測定の簡便性、迅速性より、ポリイミド多孔質膜を通過した液体試料中の細胞を調べるのが好ましい。例えば、ポリイミド多孔質膜を通過した液体試料中の細胞の数が増加した場合、ポリイミド多孔質膜を通過せず膜に捕捉された細胞を調べなくても、活性化された細胞が減少した、即ち炎症状態が緩和されたと推測することが可能である。
 ポリイミド多孔質膜を通過せず膜に捕捉された細胞も、所望により、例えば、ポリイミド多孔質に適用された状態のままさらに培養する、等の工程を経ることにより、細胞の特性を調べることが可能である。
 II.細胞活性化抑制物質のスクリーニング方法
 本発明は、ポリイミド多孔質膜を使用して細胞活性化抑制物質のスクリーニング方法を含む。本発明のスクリーニング方法は、本発明の細胞の分離、除去、及び/又は解析方法の一態様に相当する。本発明のスクリーニング方法は、
  (i) 場合により細胞を含む液体試料に細胞活性化剤を加えてから細胞を培養し、
  (ii) (i)の液体試料に被検物質を加え、
  (iii) (ii)の液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べ、そして、
  (iv) ポリイミド多孔質膜を通過せず膜に捕捉された細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも減少する場合、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも増加する場合に、被検物質は細胞活性化抑制能を有する、即ち、細胞活性化抑制物質である、
ことを含む。
 工程(i)及び(iii)については、細胞の分離、除去、及び解析方法に関して記載した通りである。本発明のスクリーニング方法では、工程(i)で細胞活性化剤により、活性化させた細胞に対し、被検物質の添加(工程(ii))により細胞活性化が抑制されたか否かを、細胞のポリイミド多孔質膜への捕捉の程度を指標に調べる、ことを特徴とする。
 ポリイミド多孔質膜を通過せず膜に捕捉された細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも減少する場合、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも増加する場合に、被検物質は細胞活性化抑制物質である、と判断する。
 「被検物質」は、特に限定されず効果を確認したい任意物質、例えば、低分子化合物、タンパク質、ペプチド、糖タンパク質、短鎖RNAなどを細胞活性化抑制物質の候補化合物として用いることができる。
 III.細胞の培養
 本発明の細胞の分離、除去、及び/又は解析方法、並びに本発明のスクリーニング方法において、ポリイミド多孔質膜を通過した液体試料中の細胞をさらに培養する、ことを含んでもよい。あるいは、ポリイミド多孔質膜を通過せず膜に捕捉された細胞を、ポリイミド多孔質に適用された状態のままさらに培養する、ことを含んでもよい。また、この捕捉された細胞が産生する物質を分析してもよい。
 ポリイミド多孔質膜を用いた濾過により分離された細胞をさらに培養することにより、細胞の特性の分析がより容易になる場合がある、あるいは、分離・培養された細胞を適宜生体に適用する、などのために使用してもよい。
 動物細胞、植物細胞、及び細菌の各細胞に適した培養方法が公知であり、当業者は任意の公知の方法を用いてポリイミド多孔質膜で細胞を培養することができる。細胞培養培地も細胞の種類に応じて適宜調製することができる。
 動物細胞の細胞培養方法、細胞培養培地は、例えば、ロンザ社の細胞培養培地カタログに記載されている。植物細胞の細胞培養方法、細胞培養培地は、例えば、WAKO社の植物組織培地シリーズ等に記載されている。細菌の細胞培養方法、細胞培養培地は、例えば、BD社の一般細菌用培地カタログに記載されている。
 本発明の方法において、ポリイミド多孔質膜に細胞が捕捉された後、細胞を任意の公知の方法を用いて培養することができる。ポリイミド多孔質膜を用いる細胞の培養に関して、マイクロキャリアやセルローススポンジ等、他の浮遊型培養担体と共存させることができる。
 細胞をポリイミド多孔質膜に適用したまま培養するための細胞培養装置において、ポリイミド多孔質膜は固定されて用いられてもよく、あるいは細胞培養培地中に浮遊して用いられてもよく、培地中に置かれても、培地から露出しても良い。細胞培養装置において、2以上のポリイミド多孔質膜が、上下又は左右に積層してもよい。積層された集合体や集積体は、培地中に置かれても培地から露出していてもかまわない。
 本発明の方法に使用しうる細胞培養装置としては、ポリイミド多孔質膜を含むものであれば任意の形態を取ってよく、公知の細胞培養装置を用いることが可能である。培養装置の形状、規模などは特に限定されず、シャーレ、試験管から大型のタンクまで適宜利用可能である。例えば、BD Falcon社製のセルカルチャーディッシュやサーモサイエンティフィック社製のNunc セルファクトリー等が含まれる。なお、本発明においてポリイミド多孔質膜を用いることにより、生来浮遊培養が可能でなかった細胞についても浮遊培養向け装置にて、浮遊培養類似状態での培養を行うことが可能になった。浮遊培養用の装置としては、例えば、コーニング社製のスピナーフラスコや回転培養等が使用可能である。また、同様の機能を実現出来る環境として、VERITAS社のFiberCell(登録商標) Systemの様な中空糸培養も使用する事が可能である。
 本発明の培養細胞による細胞培養装置は、メッシュ上の膜に連続的に培地を添加し回収する様な、連続循環もしくは開放型の装置で、空気中にポリイミド多孔質膜を露出させる様な型式で実行する事も可能である。
 IV.本発明の方法に使用するための装置
 本発明はさらに、ポリイミド多孔質膜を含む、本発明の方法に使用するための装置に関する。本発明の装置において、2以上のポリイミド多孔質膜が、上下又は左右に積層してもよい。
 本発明の装置は、ポリイミド多孔質膜の他に、細胞を含む試料の濾過のために要な構成要素を適宜含みうる。例えば、ポリイミド多孔質膜を支持するガラスもしくはモジュール、送液チューブ、ポンプ、場合により滅菌バッグなど含まれる。限定されるわけではないが、一態様として、透明なバック中に、内部にポリイミド多孔質膜が固定され、滅菌された液体で充填されたカラム・モジュールが含まれる。さらに、連続的培地供給装置、連続的培地循環装置、細胞培養装置などの細胞培養のための構成要素を含んでもよい。
 本発明の方法において、ポリイミド多孔質膜は、固定して使用する事も可能であり、滅菌されたカラムやモジュール内に置くだけで使用する事も可能である。また、滅菌された充填液にてカラム内を充填した状態で、使用を開始する事も可能である。この状態のカラム及びモジュールに対して、ポンプからの圧や重力を利用して、カラム内に設置した単数もしくは複数のポリイミド多孔質膜を通過させる事で、膜内に残留性の高い細胞を除去する。
 カラムもしくはモジュールは、円筒形や円盤形等、自由な形状を選ぶ事が出来る。素材の組成に関しても、特に制約は受けない。GEヘルスケア社製のXKカラム、サーモフィッシャーサイエンティフィック社製のディスポーザブル・プラスチックカラム等の市販空カラムを使用可能である。
 V.キット
 本発明はさらに、ポリイミド多孔質膜を含む、本発明の方法に使用するためのキットに関する。
 本発明のキットは、ポリイミド多孔質膜の他に、細胞を含む液体試料等の濾過に必要な構成要素を適宜含みうる。例えば、ポリイミド多孔質膜に適用する細胞、ポリイミド多孔質膜を支持するカラスもしくはモジュール、送液チューブ、ポンプ、場合により滅菌バッグ、及びキットの取り扱い説明書などが含まれる。さらに、細胞培養培地、連続的培地供給装置、連続的培地循環装置、細胞培養装置などの細胞培養のための構成要素を含んでもよい。
 限定されるわけではないが、一態様として、透明なパウチ内に滅菌されたポリイミド多孔質膜が単独で又は複数枚保存され、そのままで細胞培養に使用可能な形態を含むパッケージや、あるいは、同パウチ内にポリイミド多孔質膜と共に滅菌液体が封入されており、効率的吸込み播種が可能になっている膜・液体の一体型形態のキットを含む。また、この膜・液体の一体型形態のキットに関して、被験者の血液試料から本発明の方法によって、活性化白血球を除去した血液を被験者に戻すような態様において、例えば、滅菌した透明なバック中に、内部にポリイミド多孔質膜が固定され、滅菌された液体で充填されたカラム・モジュールが含まれ、滅菌バックを破れば、そのままポンプに直結して被験者の傍らで使用可能な一体型キットも提供し得る。
 VI.使用
 本発明はさらに、ポリイミド多孔質膜の上述した本発明の方法のための使用、を含む。
 以下、本発明を実施例に基づいて、より具体的に説明する。なお本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。以後、特に記述しない場合には、「ポリイミド多孔質膜」は総膜厚25μm、空孔率73%のポリイミド多孔質膜をいうものとする。当該ポリイミド多孔質膜は、2つの異なる表面層(A面及びB面)と、当該2つの表面層の間に挟まれたマクロボイド層とを有した。A面に存在する穴の平均孔径は6μmであり、B面に存在する穴の平均孔径は46μmであった。
 なお、以下の実施例で使用されたポリイミド多孔質膜は、テトラカルボン酸成分である3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とジアミン成分である4,4’-ジアミノジフェニルエーテル(ODA)とから得られるポリアミック酸溶液と、着色前駆体であるポリアクリルアミドとを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより、調製された。
 実施例1
 本実施例では、ヒト白血病T細胞株であるJurkat細胞を用いて、フォルボールエステルを加えて培養する事により活性化させた後に、ポリイミド多孔質膜を用いた細胞濾過を実施し、濾過された細胞数を観察する事で細胞の状態を解析した。
 Jurkat細胞(1ml当り1.5×106個)を、10%FBSを加えたRPMI1640培地内にて培養し、そこへ1mlあたり10ngのフォルボールエステルを加えて、5分間インキュベートする。
 予めポリLリジンコートしたガラスボトムディッシュの周りにグリセリンで湿潤部位を作り(写真1)、その部位を利用して滅菌した2cm角の正方形のポリイミド多孔質膜を、大穴構造のB面を上にして設置する(写真2)。この状態で、先に準備した活性化Jurkat細胞を懸濁液として100μl膜上に載せ(写真3)、12時間CO2インキュベータ内にてインキュベートすると、液部はほぼ全て、ポリイミド多孔質膜を透過して(写真4)下部に通過液が得られる(写真5)。慎重に液部を除去し、残留した細胞をリン酸バッファーにて2回洗浄後、ホルマリン固定する。同様の実験を、フォルボールエステルの変わりにDMSOを添加したJurkat細胞を用いて実施し、コントロール実験とする。濾過終了後にガラス面に付着した細胞を、倒立顕微鏡により、コントロール群(写真6)とフォルボールエステル群(写真7)で比較した。コントロール群では大量の細胞が観察されたが、フォルボールエステル群では殆ど細胞が観察されなかった。
 実施例2
 本実施例では、6週齢Balb/cマウス6匹にリポポリサッカライドを腹腔内投与し、16時間後、BD マイクロティナ(登録商標) MAP 微量採血管を用いて、全血を採取した。ポリイミド多孔質膜を用いて全血を濾過し(濾過時間5~10分)、濾過前、濾過後の血球成分を、SIEMENS社製血球解析装置アドヴィア2120を用いて、濾過前血と濾過後血を解析した。比較例として、健常なBalb/cマウス5匹を用いて同様の濾過実験を実施した(図2)。
 結果を表1及び図3に示す。本発明の方法により、白血球、特に、好酸球の大きな低下が観測された。濾過後の好酸球の値はLPSマウスと健常なマウスで実質的な差がなかった。
Figure JPOXMLDOC01-appb-T000003

Claims (20)

  1.  細胞を分離、除去、及び/又は解析する方法であって、細胞を含む液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の数若しくは種類、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べる、ことを含む、前記方法。
  2.  対象とする細胞が活性化された細胞である、請求項1に記載の方法。
  3.  活性化された細胞が活性化白血球である、請求項2に記載の方法。
  4.  濾過工程の前に、ポリイミド多孔質膜の表面の全体又は一部を予め処理する工程を含む、請求項1~3のいずれか1項に記載の方法。
  5.  ポリイミド多孔質膜の表面処理を、抗凝固剤、コラーゲン、ポリLリジン、UV、プラズマ及び親水樹脂を結合したPDSからなる群から選択される、1以上の剤もしくは処理方法を用いて行う、請求項4に記載の方法。
  6.  細胞を含む液体試料に細胞活性化剤を加えてから、細胞を培養した後に、当該液体試料をポリイミド多孔質膜で濾過する、ことを含む、請求項1~5のいずれか1項に記載の方法。
  7.  細胞活性化抑制物質のスクリーニング方法であって、
      (i) 場合により細胞を含む液体試料に細胞活性化剤を加えてから細胞を培養し、
      (ii) (i)の液体試料に被検物質を加え、
      (iii) (ii)の液体試料をポリイミド多孔質膜で濾過し、ポリイミド多孔質膜を通過せず膜に捕捉された細胞、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞について、細胞の種類若しくは数、細胞の外部若しくは内部の構造、細胞表面抗原の種類若しくは量、細胞からの分泌物質の種類若しくは量、細胞の接着性及び細胞の生存率からなる群から選択される1以上の細胞の特性を調べ、そして、
      (iv) ポリイミド多孔質膜を通過せず膜に捕捉された細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも減少する場合、あるいは、ポリイミド多孔質膜を通過した液体試料中の細胞のうち、活性化された細胞の割合及び/又は数が、(ii)の工程において被検物質を加えない場合よりも増加する場合に、被検物質は細胞活性化抑制物質である、と判断する、
    ことを含む、前記スクリーニング方法。
  8.  細胞を含む液体試料が、初代細胞、株化細胞、及び血液分離細胞からなる1以上の細胞を含む、細胞の縣濁液である、請求項1~7のいずれか1項に記載の方法。
  9.  細胞を含む液体試料が、血液、尿、汗、貯留体腔液、体腔洗浄液及び喀痰からなる群から選択される生体試料である、請求項1~7のいずれか1項に記載の方法。
  10.  濾過が、自然濾過、遠心濾過、減圧濾過及び加圧濾過からなる群から選択される、請求項1~9のいずれか1項に記載の方法。
  11.  ポリイミド多孔質膜を通過した液体試料中の細胞をさらに培養する、ことを含む、請求項1~10のいずれか1項に記載の方法。
  12.  ポリイミド多孔質膜を通過せず膜に捕捉された細胞を、ポリイミド多孔質に適用された状態のままさらに培養する、ことを含む、請求項1~10のいずれか1項に記載の方法。
  13.  前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、請求項1~12のいずれか1項に記載の方法。
  14.  前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、請求項13に記載の方法。
  15.  前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、請求項13又は14に記載の方法。
  16.  前記ポリイミド多孔質膜の膜厚が75μm以下である、請求項15に記載の方法。
  17.  2以上のポリイミド多孔質膜を、上下又は左右に積層して用いる、請求項1~16のいずれかに記載の方法。
  18.  ポリイミド多孔質膜を含む、請求項1~17のいずれか1項に記載の方法に使用するための装置。
  19.  ポリイミド多孔質膜を含む、請求項1~17のいずれか1項に記載の方法に使用するためのキット。
  20.  ポリイミド多孔質膜の請求項1~17のいずれか1項に記載の方法のための使用。
PCT/JP2016/052205 2015-01-26 2016-01-26 細胞を分離、除去、及び解析する方法 WO2016121766A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2974619A CA2974619C (en) 2015-01-26 2016-01-26 Method for isolating, removing and analyzing cells
SG11201706114RA SG11201706114RA (en) 2015-01-26 2016-01-26 Method for isolating, removing and analyzing cells
JP2016572067A JP6320576B2 (ja) 2015-01-26 2016-01-26 細胞を分離、除去、及び解析する方法
CN201680007161.0A CN107208126B (zh) 2015-01-26 2016-01-26 分离、除去、和分析细胞的方法
US15/546,055 US10647956B2 (en) 2015-01-26 2016-01-26 Method for isolating, removing and analyzing cells
EP16743369.7A EP3252164A4 (en) 2015-01-26 2016-01-26 Method for isolating, removing and analyzing cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015012850 2015-01-26
JP2015012851 2015-01-26
JP2015-012850 2015-01-26
JP2015-012851 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121766A1 true WO2016121766A1 (ja) 2016-08-04

Family

ID=56543377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052205 WO2016121766A1 (ja) 2015-01-26 2016-01-26 細胞を分離、除去、及び解析する方法

Country Status (7)

Country Link
US (1) US10647956B2 (ja)
EP (1) EP3252164A4 (ja)
JP (1) JP6320576B2 (ja)
CN (1) CN107208126B (ja)
CA (1) CA2974619C (ja)
SG (1) SG11201706114RA (ja)
WO (1) WO2016121766A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138783A1 (ja) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 濃縮デバイス
WO2019138784A1 (ja) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 濃縮デバイス及び濃縮・分離装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122737A1 (en) * 2021-12-22 2023-06-29 The Regents Of The University Of Michigan Three-dimensional porous device for purifying biological materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324500A (ja) * 2000-05-18 2001-11-22 Nikkiso Co Ltd 体液濾過ユニットおよび体液濾過デバイス
WO2004083852A1 (ja) * 2003-03-10 2004-09-30 Arkray Inc. 血球分離膜およびこれを用いた血液保持用具
JP2006075140A (ja) * 2004-09-13 2006-03-23 Univ Waseda 薬剤のスクリーニング方法
WO2011001936A1 (ja) * 2009-06-30 2011-01-06 株式会社カネカ 血液成分の分離システム、分離材
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
WO2012070622A1 (ja) * 2010-11-25 2012-05-31 株式会社カネカ 白血球または単核球の分離方法、分離材
JP2014141490A (ja) * 2007-08-31 2014-08-07 Regents Of The Univ Of Michigan 選択的細胞吸着除去装置およびその関連方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228243A (en) * 1978-07-13 1980-10-14 Toray Industries, Inc. Cell culture propagation apparatus
JPS63196286A (ja) * 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
EP1947170B1 (en) * 2005-10-21 2018-08-08 Kaneka Corporation Stem cell separating material and method of separation
US9335868B2 (en) * 2008-07-31 2016-05-10 Apple Inc. Capacitive sensor behind black mask
EP2278724A1 (en) 2009-07-02 2011-01-26 Nanoscale Labs Communications system
US20110029011A1 (en) * 2009-08-03 2011-02-03 Ashish Awasthi Clotting method for the repair of vascular defects and malformations
US8366804B2 (en) * 2010-05-28 2013-02-05 Uop Llc High permeance polyimide membranes for air separation
US8734115B2 (en) * 2010-07-26 2014-05-27 Snecma Optimized aerodynamic profile for a turbine blade, in particular for a rotary wheel of the third stage of a turbine
CN104673670A (zh) 2011-03-30 2015-06-03 独立行政法人国立长寿医疗研究中心 膜分选培养器、膜分选培养试剂盒、和使用其的干细胞分选方法、以及分离膜
JP5785811B2 (ja) * 2011-08-02 2015-09-30 矢崎総業株式会社 防水ボックス及びそれを備えた電気接続箱
DE102013203050A1 (de) 2013-02-25 2014-08-28 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Mikrosiebs
US20140255636A1 (en) * 2013-03-06 2014-09-11 Saudi Basic Industries Corporation Polymeric Membranes
JP6781877B2 (ja) * 2015-10-27 2020-11-11 国立大学法人 熊本大学 標的細胞捕捉装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324500A (ja) * 2000-05-18 2001-11-22 Nikkiso Co Ltd 体液濾過ユニットおよび体液濾過デバイス
WO2004083852A1 (ja) * 2003-03-10 2004-09-30 Arkray Inc. 血球分離膜およびこれを用いた血液保持用具
JP2006075140A (ja) * 2004-09-13 2006-03-23 Univ Waseda 薬剤のスクリーニング方法
JP2014141490A (ja) * 2007-08-31 2014-08-07 Regents Of The Univ Of Michigan 選択的細胞吸着除去装置およびその関連方法
WO2011001936A1 (ja) * 2009-06-30 2011-01-06 株式会社カネカ 血液成分の分離システム、分離材
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
WO2012070622A1 (ja) * 2010-11-25 2012-05-31 株式会社カネカ 白血球または単核球の分離方法、分離材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252164A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138783A1 (ja) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 濃縮デバイス
WO2019138784A1 (ja) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 濃縮デバイス及び濃縮・分離装置
CN111587226A (zh) * 2018-01-15 2020-08-25 松下知识产权经营株式会社 浓缩设备
JPWO2019138783A1 (ja) * 2018-01-15 2021-01-14 パナソニックIpマネジメント株式会社 濃縮デバイス
CN111587226B (zh) * 2018-01-15 2022-05-03 松下知识产权经营株式会社 浓缩设备
JP7199027B2 (ja) 2018-01-15 2023-01-05 パナソニックIpマネジメント株式会社 濃縮デバイス

Also Published As

Publication number Publication date
CN107208126A (zh) 2017-09-26
US20180016542A1 (en) 2018-01-18
CA2974619C (en) 2020-12-22
US10647956B2 (en) 2020-05-12
CN107208126B (zh) 2021-06-22
JPWO2016121766A1 (ja) 2017-10-26
JP6320576B2 (ja) 2018-05-09
EP3252164A1 (en) 2017-12-06
CA2974619A1 (en) 2016-08-04
EP3252164A4 (en) 2018-09-26
SG11201706114RA (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6225993B2 (ja) 細胞の培養方法、細胞培養装置及びキット
US11053468B2 (en) Multiwell cell culture system having rotating shafts for mixing culture media and method of use thereof
JP6288312B2 (ja) ポリイミド多孔質膜を用いる細胞の大量培養方法、装置及びキット
Wu et al. Stem cells in microfluidics
JP6502392B2 (ja) 細胞の培養方法及びキット
JP6292323B2 (ja) ポリイミド多孔質膜を用いる細胞の長期培養、及びポリイミド多孔質膜を用いる細胞の凍結保存方法
KR20110003526A (ko) 3차원 미세유체 플랫폼 및 이의 사용 방법
US20210341462A1 (en) Artificial human pulmonary airway and methods of preparation
JP6320576B2 (ja) 細胞を分離、除去、及び解析する方法
JP7376013B2 (ja) 不死化単球細胞および誘導細胞を用いた抗感染症薬,ワクチンなどの評価方法
WO2018021365A1 (ja) 細胞培養装置、及び、それを使用した細胞培養方法
WO2020196678A1 (ja) 脳血管モデル及びデバイス
Durbec et al. In vitro migration assays of neural stem cells
WO2018021362A1 (ja) 脱分化しやすい細胞の脱分化を抑制する方法、当該細胞の調製方法、及び物質の産生方法
JP6288311B2 (ja) 物質の産生方法
Liu et al. DNA origami assembled spheroid for evaluating cytotoxicity and infiltration of chimeric antigen receptor macrophage (CAR-M)
Höll Analysis of three-dimensional in vitro tissue models using a light scattering biosensor
JP2020137519A (ja) ヒト脂肪由来幹細胞スフェロイドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572067

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2974619

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15546055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201706114R

Country of ref document: SG