WO2016121287A1 - 作業車両のエンジン制御装置 - Google Patents

作業車両のエンジン制御装置 Download PDF

Info

Publication number
WO2016121287A1
WO2016121287A1 PCT/JP2015/086489 JP2015086489W WO2016121287A1 WO 2016121287 A1 WO2016121287 A1 WO 2016121287A1 JP 2015086489 W JP2015086489 W JP 2015086489W WO 2016121287 A1 WO2016121287 A1 WO 2016121287A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
control
work
controller
diesel engine
Prior art date
Application number
PCT/JP2015/086489
Other languages
English (en)
French (fr)
Inventor
講介 鬼束
田中 剛
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2016121287A1 publication Critical patent/WO2016121287A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an engine control device for a work vehicle.
  • a first engine control unit that sets a target rotational speed based on an instruction from an operator, and a second engine that controls a fuel injection amount based on the target rotational speed and controls the rotational speed of the engine.
  • Control means and travel detection means for detecting the travel of the vehicle body, and the first engine control means determines whether the vehicle body is not traveling based on the detection result of the travel detection means, and the second engine control
  • the engine is instructed so that the engine rotation characteristic becomes an isochronous characteristic
  • the engine rotation characteristic is instructed to become a droop characteristic, and the fuel injection amount control characteristic is switched. In this way, the engine rotational speed corresponding to the traveling state and working state of the work machine is being realized.
  • Patent Document 1 switches droop control / isochronous control during combined operation of work and travel. Is gradually changing.
  • various sensors, a controller for controlling the various sensors, and the like are required as means for instructing the composite degree of the combined operation of work and travel, leading to an increase in cost.
  • An object of the present invention is to provide an engine control device for a work vehicle that secures work performance and running performance, suppresses engine noise during combined operation and running, and realizes low fuel consumption.
  • the present invention An engine, A traveling device that travels by receiving the power of the engine;
  • An engine control device for controlling a work vehicle comprising: a work device driven by receiving power from the engine; A controller for setting a target engine speed based on an instruction from an operator; Traveling state detecting means for detecting a traveling state of the traveling device; Working state detecting means for detecting the working state of the working device,
  • the controller is Isochronous control for making the engine speed constant when it is determined by the running state detecting means and the working state detecting means that the running of the running device and the work by the working device are combined. To do.
  • the engine control device for the work vehicle further includes means for detecting the load of the engine and, when there is no load, a means for setting the engine to a minimum unloaded speed.
  • the performance curve figure of a diesel engine The figure which shows the structure of an engine control apparatus.
  • (b) Performance curve diagram showing control mode when droop control is performed in running state The performance curve figure which shows the control aspect in the case of performing isochronous control in the combined operation state of work and traveling. Schematic of iso-fuel consumption line at the time of droop control.
  • the engine control device 50 can be mounted not only on the turning work vehicle 100 but also on an agricultural work vehicle or other work vehicles.
  • the turning work vehicle 100 mainly includes a traveling device 1, a working device 2, and a turning device 3 included in the working device 2.
  • the traveling device 1 is driven by the power of the diesel engine 34 and causes the turning work vehicle 100 to travel.
  • the traveling device 1 includes a pair of left and right crawlers 11 and 11, hydraulic motors 12 and 12, and the like.
  • the hydraulic motors 12 and 12 drive the left and right crawlers 11 and 11 so that the turning work vehicle 100 can move forward and backward. It is said. Further, the turning work vehicle 100 can be turned by the hydraulic motors 12 and 12 independently driving the left and right crawlers 11 and 11.
  • the working device 2 is driven by the power of the diesel engine 34 to perform excavation work such as earth and sand.
  • the work device 2 includes a boom 21, an arm 22, a bucket 23, and the like, and enables excavation work by driving them independently.
  • one end of the boom 21 is supported by the front portion of the turning device 3, and is rotated by a boom cylinder 21a that is movable in a telescopic manner.
  • one end of the arm 22 is supported by the other end of the boom 21 and is rotated by an arm cylinder 22a that is movable in a telescopic manner.
  • the bucket 23 is rotated by a bucket cylinder 23a that is supported at one end by the other end of the arm 22 and is movable in a telescopic manner. That is, the work device 2 forms an articulated structure that excavates earth and sand using the bucket 23.
  • this turning work vehicle 100 is set as the specification which attaches the bucket 23 and performs excavation work, for example, the specification which attaches a hydraulic breaker and performs crushing work may be sufficient, and it is not limited to this.
  • the work device 2 includes a turning device 3.
  • the turning device 3 turns the work device 2.
  • the turning device 3 includes a turning table 31 and a hydraulic motor 32 for turning the turning table 31.
  • the hydraulic motor 32 drives the turning table 31 to turn the work device 2.
  • the turning device 3 is also provided with a control unit 33, a diesel engine 34, and an engine control device 50 that controls the diesel engine 34.
  • the work device 2 and the turning device 3 are driven by pressure oil from a hydraulic pump driven by the diesel engine 34.
  • a boom cylinder 21a for driving the boom 21, an arm cylinder 22a for driving the arm 22, a bucket cylinder 23a for driving the bucket 23, and a hydraulic motor 32 for turning the swivel base 31 are used for excavation and turning hydraulics related to excavation and turning.
  • the hydraulic oil for excavation / turning is operated by operating a working (excavation / turning) operation tool 332b, so that pressure oil flows in, and the working device 2 and the turning device 3 operate to perform excavation / turning work.
  • the work state in the present embodiment includes a turning operation by the turning device 3 in addition to the work by the working device 2.
  • the control unit 33 includes a control seat 331, an operation tool 332 (travel operation tool 332a, work operation tool 332b), a control panel, and the like.
  • the diesel engine 34 is controlled by operating the operating tool 332, the control panel, etc. Further, the operator controls the hydraulic motors 12 and 32 by operating the operation tool 332 and the like. Further, the operator sets the engine speed N of the diesel engine 34 by operating an accelerator dial 36 (see FIG. 3) arranged on the control panel. At this time, as will be described in detail later, the target engine speed indicated by the accelerator dial 36 (also simply referred to as the accelerator instruction speed) is instructed to the controller 35 as the target engine speed of the diesel engine 34. Thus, the operator controls the turning work vehicle 100.
  • the hydraulic motor 12 that drives the crawler 11 is provided with a first pressure switch 37 as a traveling state detection means.
  • the first pressure switch 37 is disposed in the traveling motor drive oil passage of the hydraulic circuit in the hydraulic motor 12 and can detect that the traveling operation has been performed by the operator.
  • the configuration of the traveling state detection unit and the arrangement position of the traveling state detection unit are not limited, and may be detected by a rotation sensor that detects the rotation of the axle.
  • the accelerator dial 36 and the diesel engine 34 are electrically connected via a controller 35.
  • the controller 35 creates a control signal based on the electrical signal from the accelerator dial 36 and outputs the created control signal. Output to the diesel engine 34. That is, the controller 35 is a device that controls the output of the diesel engine 34. That is, the controller 35 controls the engine speed N of the diesel engine 34 based on the operation of the accelerator dial 36 by the operator.
  • a second pressure switch 30 is arranged in the hydraulic path as a working state detection means.
  • the second pressure switch 30 can detect whether or not a work operation by the work device 2 or the turning device 3 is performed by an operator.
  • the configuration using the second pressure switch 30 as the work state detection means for detecting whether or not the turning work vehicle 100 is in the work state will be specifically described, but the configuration is not particularly limited. Absent.
  • work state detection means such as a displacement sensor that detects whether the operation position of the operation tool 332 b or the like for operating the work device 2 or the turning device 3 is in the work state. Good.
  • the configuration of the work state detection unit and the arrangement position of the work state detection unit are not limited.
  • the operation tool 332 and the diesel engine 34 are electrically connected via a controller 35.
  • the controller 35 creates a control signal based on the electrical signal from the operation tool 332, and outputs the created control signal. Output to the diesel engine 34. That is, the controller 35 is a device that controls the output of the diesel engine 34. That is, the controller 35 controls the engine speed N of the diesel engine 34 based on the operation of the operation tool 332 by the operator.
  • the engine speed N of the diesel engine 34 can be arbitrarily changed from a low idle engine speed Nmin to a high idle engine speed Nmax.
  • the diesel engine 34 can be freely operated within a range surrounded by a torque curve Tcurve formed by connecting the maximum torque points set for each engine speed N.
  • the engine torque T of the diesel engine 34 becomes maximum at the maximum torque point at the engine speed Nm (maximum torque point Tm).
  • the torque curve Tcurve is formed so as to have the maximum engine torque Tmax at the maximum torque point Tm at the engine speed Nm.
  • the engine output which is a function of the engine speed N of the diesel engine 34 and the engine torque T, becomes maximum at the maximum torque point (engine torque Te) at the engine speed Ne.
  • the torque curve Tcurve is formed so that the maximum engine output is obtained at the maximum torque point (engine torque Te) at the engine speed Ne.
  • the engine speed N of the diesel engine 34 becomes the high idle engine speed Nmax at the maximum engine speed Nh when the diesel engine 34 is not loaded.
  • the torque curve Tcurve is formed in the diesel engine 34 so that the maximum engine speed Nh when the diesel engine 34 is not loaded becomes the high idle engine speed Nmax.
  • Isochronous control is a control pattern in which the engine speed N is constant regardless of the increase or decrease of the load applied to the diesel engine 34.
  • the engine control device 50 determines that the load on the diesel engine 34 has increased.
  • the engine torque T is increased while maintaining the engine speed Nx of the diesel engine 34 constant (see point Xa2 in FIG. 2).
  • the engine control device 50 reduces the engine torque T while keeping the engine speed Nx of the diesel engine 34 constant (see point Xa3 in FIG. 2).
  • the engine speed N can be made constant regardless of the increase or decrease of the load applied to the diesel engine 34, and therefore, the power of the diesel engine 34 can be stably transmitted to the traveling device 1 or the like. Is possible.
  • the droop control is a control pattern in which the engine speed N is changed according to the increase or decrease of the load applied to the diesel engine 34.
  • the controller 35 detects the diesel engine 34 when the load on the diesel engine 34 increases.
  • the engine torque T is increased while gradually decreasing the engine speed N of the engine 34 (see point Xd2 in FIG. 2).
  • the controller 35 decreases the engine torque T while gradually increasing the engine speed N of the diesel engine 34 (see point Xd3 in FIG. 2).
  • the engine speed N changes according to the increase or decrease of the load applied to the diesel engine 34.
  • the above is the control mode when the droop control and the isochronous control are performed as the control pattern of the diesel engine 34.
  • the engine control device 50 for controlling the engine speed N of the diesel engine 34 The configuration of will be described.
  • the engine control device 50 includes a controller 35, an accelerator dial 36, a first pressure switch 37 that is a traveling state detection means, a second pressure switch 30 that is a work state detection means, and a diesel engine. And a switching relay 38 which is switching means for controlling the engine speed N of 34.
  • a battery 39 that is a DC power supply is connected to the controller 35, and power is supplied from the battery 39 to the controller 35, the switching relay 38, and the like via the fuse 40.
  • the controller 35 sets a target rotational speed (target engine rotational speed) of the diesel engine 34 based on an instruction from the operator.
  • the controller 35 is for performing control of the engine speed N of the diesel engine 34 and other various controls, and mainly includes a central processing unit (CPU) 26, storage means (RAM, ROM) 27, selection means 28, and the like. Consists of.
  • the controller 35 is electrically connected to an accelerator dial 36, a first pressure switch 37 that is a traveling state detecting means, a second pressure switch 30 that is a working state detecting means, a switching relay 38, and the like.
  • the controller 35 creates a control signal based on electric signals input from the accelerator dial 36, the first pressure switch 37, the second pressure switch 30, and the like.
  • the switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34.
  • the actuator 34a is an actuator that is turned on and off by the switching relay 38, and the engine speed N is controlled by changing the fuel injection amount and the injection timing of the diesel engine 34 by the actuator. In this way, the controller 35 outputs the created control signal to the diesel engine 34.
  • the storage means (RAM, ROM) 27 stores a plurality of control patterns in isochronous control and control patterns in droop control in order to control the diesel engine 34 in response to an operator request.
  • the selection means 28 which the controller 35 has selects the optimal control pattern according to work content, a driving
  • the controller 35 controls the engine speed N of the diesel engine 34 in accordance with a control flow to be described later, and at a predetermined engine speed N, the diesel engine is based on a control pattern for isochronous control or a control pattern for droop control. 34 is controlled. By doing so, the controller 35 realizes the operation of the diesel engine 34 requested by the operator.
  • the accelerator dial 36 is an instruction device for instructing the target engine speed of the diesel engine 34 to the controller 35.
  • the accelerator dial 36 is a dial type (rotary type) switch that allows the operator to set the target engine speed by manually turning the dial, and for operating and adjusting the target engine speed of the diesel engine 34. That is, the accelerator dial 36 is for setting the target value (maximum output magnitude) of the engine speed N of the diesel engine 34 to a magnitude according to the work content and the like.
  • the dial position (predetermined angle position) set by the accelerator dial 36 is output to the controller 35 as an electrical signal.
  • the controller 35 sets the engine speed N so that the controller 35 can provide an output corresponding to the traveling state and working state of the turning work vehicle 100.
  • the accelerator dial 36 is operated by the operator, the operation content (target engine speed set by the operator) is instructed to the controller 35, and the controller 35 performs control based on the control flow according to the control flow described later.
  • a signal is transmitted to the diesel engine 34, and the output of the diesel engine 34 is controlled.
  • the accelerator dial 36 is disposed on a control panel provided in the control unit 33 so that an operator can operate the seat while sitting on the control seat 331.
  • the first pressure switch 37 which is a traveling state detection means, is disposed in the hydraulic motor 12 of the traveling device 1 and detects the traveling state of the traveling device 1.
  • the first pressure switch 37 detects the traveling state of the traveling device 1 by grasping the driving state of the hydraulic motor 12.
  • the travel state detection means is a position sensor that is configured by a rotary potentiometer or the like instead of the first pressure switch 37 and detects the drive state of the travel device 1 by grasping the operation position of the travel operation tool 332a.
  • the present invention is not particularly limited to this embodiment.
  • the second pressure switch 30 serving as a work state detecting means is disposed in a predetermined hydraulic path for driving the excavation / turning hydraulic actuator described above, and detects the work state of the work device 2.
  • the second pressure switch 30 detects whether the working device 2 is in the working state by grasping the driving state of the excavating / turning hydraulic actuator.
  • the controller 35 determines whether or not the turning work vehicle 100 is in the working state by the second pressure switch 30 that is the working state detection means.
  • the switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34.
  • the switching relay 38 is used to control the maximum engine speed N in accordance with a control signal output from the controller 35.
  • the controller 35 drives the actuator 34a of the diesel engine 34 by the switching relay 38 to control the fuel injection amount and the injection timing of the diesel engine 34, and the engine rotation according to the working state and traveling state of the turning work vehicle 100.
  • the maximum number of revolutions of the number N is controlled.
  • FIG. 5 is a performance curve diagram showing a control mode when performing isochronous control and droop control according to the present embodiment.
  • FIG. 6A is a performance curve diagram showing a control mode when isochronous control is performed in a working state.
  • FIG. 6B is a performance curve diagram showing a control mode when the droop control is performed in the traveling state.
  • FIG. 7 is a performance curve diagram showing a control mode when isochronous control is performed in the combined operation state (work + running).
  • step S101 the controller 35 determines in what state the accelerator dial 36 that instructs the controller 35 to indicate the target engine speed. That is, the controller 35 grasps the target engine speed indicated by the accelerator dial 36, and the target engine speed exceeds the predetermined low idle engine speed or is equal to or lower than the predetermined low idle engine speed. Make a decision.
  • the means for instructing the target engine speed to the controller 35 is not limited to the accelerator dial 36.
  • step S101 is not an essential step in the control flow of the engine control device 50 shown in FIG.
  • step S102 If the controller 35 determines that the target engine speed indicated by the accelerator dial 36 (also simply referred to as the accelerator instruction speed) exceeds a predetermined low idle engine speed, the controller 35 proceeds to step S102. If it is determined that the target engine speed is equal to or lower than the predetermined low idle engine speed, the process proceeds to step S103.
  • step S103 the controller 35 selects a predetermined control pattern of isochronous control by the selection means 28, and controls the diesel engine 34 based on the predetermined control pattern. Specifically, in step S103, the controller 35 selects a predetermined control pattern for isochronous control from the control patterns stored in the controller 35, and creates a control signal based on the selected control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
  • the engine speed N does not increase, and there is an advantage in terms of noise and fuel consumption compared to the droop control even at light loads.
  • step S102 the controller 35 operates the turning work vehicle (this machine) 100 in an operating state (with the traveling device 1) by the second pressure switch 30 serving as the working state detecting means and the first pressure switch 37 serving as the traveling state detecting means. It is determined whether at least one of the working devices 2 is in operation) or is on standby (for example, the diesel engine 34 is driven but the traveling device 1 and the working device 2 are stopped).
  • the controller 35 proceeds to step S104 when determining that the turning work vehicle 100 is in operation, and proceeds to step S105 when determining that the turning work vehicle 100 is on standby.
  • step S105 the controller 35 uses the selection means 28 to select a predetermined control pattern in the droop control, and controls the diesel engine 34 based on the predetermined control pattern. Specifically, in step S105, the controller 35 selects a predetermined control pattern for droop control from the control patterns stored in the controller 35, and creates a control signal based on the selected control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
  • step S104 the controller 35 determines whether the operation state of the turning work vehicle (this machine) 100 is working (including the combined operation state in which the working device 2 is in the working state and the traveling device 1 is in the traveling state). Judge whether it is traveling only. Specifically, the controller 35 determines whether the turning work vehicle 100 is in a combined operation state of the work and the traveling state by the second pressure switch 30 that is the working state detecting unit and the first pressure switch 37 that is the traveling state detecting unit. Judge whether it is only.
  • step S107 determines that the turning work vehicle 100 is not in a working state but in a traveling state. If so, the process proceeds to step S106.
  • step S106 the controller 35 selects the control pattern P2 in the droop control shown in FIG. 6B by the selection means 28, and controls the diesel engine 34 based on the control pattern P2. Specifically, in step S106, the controller 35 selects a droop control pattern P2 from the control patterns stored in the controller 35, and creates a control signal based on the selected control pattern P2. Then, the controller 35 outputs the created control signal to the diesel engine 34. In the state where the traveling device 1 is only traveling in the turning work vehicle 100, it is important to ensure the vehicle speed and to know the climbing / downhill conditions, and therefore droop control in which the engine speed N changes is effective.
  • step S107 the controller 35 selects the control pattern P3 for isochronous control shown in FIG. 7 by the selection means 28, and controls the diesel engine 34 based on the control pattern P3. Specifically, in step S107, the controller 35 selects a control pattern P3 for isochronous control from the control patterns stored in the controller 35, and creates a control signal based on the selected control pattern P3. Then, the controller 35 outputs the created control signal to the diesel engine 34. That is, the controller 35 performs a combined operation in which the travel of the travel device 1 and the work by the work device 2 are combined by the second pressure switch 30 as the work state detection means and the first pressure switch 37 as the travel state detection means.
  • isochronous control is performed to keep the rotational speed of the diesel engine 34 constant.
  • delicate work may be required, and the engine speed N does not fluctuate depending on the work load, and isochronous control in which the excavation / turning operation speed and travel speed do not change is effective.
  • the controller 35 selects a control pattern P1 for isochronous control from the control patterns stored in the controller 35, and a control signal based on the selected control pattern P1.
  • the control pattern P1 is in the same control mode as the control pattern P3.
  • the engine speed N does not increase and low noise and low fuel consumption operation can be performed. Also, by performing isochronous control even during light load and combined operation, there is an advantage in terms of noise and fuel consumption compared to droop control.
  • the pattern P2 and the control pattern P3 of isochronous control to be applied in the combined operation state of work and travel shown in FIG. 7 are stored in advance in the storage means 27 of the controller 35. Select or instruct one.
  • the control pattern P1 for isochronous control shown in FIG. 6A is a control pattern used when the working device 2 of the turning work vehicle 100 is in operation (including when the turning device 3 is turned).
  • the diesel engine 34 connects an isochronous line (a line where the engine speed N is constant even if the torque changes) and a maximum torque point set for each engine speed N. It is possible to operate freely within the range surrounded by the torque curve Tcurve.
  • this control pattern P1 there are four isochronous lines a1 to a4 indicated by dotted lines in FIG. 6A, and these isochronous lines a1 to a4 have an engine speed N of high to low.
  • the controller 35 can be appropriately changed according to the situation at the time of work.
  • four isochronous lines a1 to a4 are illustrated and described as a plurality of isochronous lines, but are not particularly limited.
  • the control pattern has a plurality of isochronous lines intermittently or continuously, and the plurality of isochronous lines are configured so that the engine speed N can be appropriately changed from a high speed to a low speed. You can also.
  • the isochronous line a1 in FIG. 4 is the same as the isochronous line a1 in FIG.
  • the droop control control pattern P2 shown in FIG. 6B is a control pattern used when the traveling device 1 of the turning work vehicle 100 is traveling.
  • the diesel engine 34 has a droop line (a line inclined to the right where the engine speed N also changes when the torque changes) and the maximum torque set for each engine speed N. It is possible to operate freely within a range surrounded by a torque curve Tcurve formed by connecting points.
  • the control pattern P2 has five droop lines b1 to b5 shown in FIG. 6B, and the droop lines b1 to b5 have five stages in which the engine speed N is high to low.
  • the controller 35 can be changed as appropriate according to the situation during travel.
  • the five droop lines b1 to b5 are illustrated and described as a plurality of droop lines, but are not particularly limited.
  • the control pattern has a plurality of droop lines intermittently or continuously, and the plurality of droop lines is configured so that the engine speed N can be appropriately changed from a high speed to a low speed in multiple stages. You can also.
  • the droop line b1 in FIG. 4 is the same as the droop line b1 in FIG. 6B, and is given the same reference numerals.
  • the control pattern P3 for isochronous control shown in FIG. 7 is a control pattern used when the work device 2 of the turning work vehicle 100 is in the combined operation (work + running state).
  • the diesel engine 34 connects an isochronous line (a line where the engine speed N is constant even if the torque changes) and a maximum torque point set for each engine speed N. It is possible to operate freely within the range surrounded by the torque curve Tcurve.
  • the controller 35 can be changed as appropriate according to the situation during the combined operation.
  • four isochronous lines c1 to c4 are illustrated and described as a plurality of isochronous lines, but are not particularly limited.
  • the control pattern has a plurality of isochronous lines intermittently or continuously, and the plurality of isochronous lines are configured so that the engine speed N can be appropriately changed from a high speed to a low speed. You can also.
  • the isochronous line c1 in FIG. 4 is the same as the isochronous line c1 in FIG.
  • the engine control device 50 is further equipped with a means for achieving a no-load minimum speed of the diesel engine 34, that is, a so-called auto-decel function, to solve the problem.
  • the auto-decel function is a function of so-called automatic low-speed control, which is intended to reduce fuel consumption and noise by automatically lowering the engine speed to a low idle speed under predetermined conditions in a working machine such as a hydraulic excavator. That is.
  • the auto-decel function is a function for reducing the engine speed N to a low idle speed when the operating tool 332b for operating the work device 2 is not operated for a predetermined time (when not working).
  • FIG. 8 is a schematic diagram of iso-fuel consumption lines during droop control.
  • the schematic diagram of the iso-fuel consumption line is a graph showing the relationship between the engine output torque (N ⁇ m) on the vertical axis and the engine speed (min ⁇ 1 ) on the horizontal axis.
  • a curve indicated by a solid line in FIG. 8 is a curve (equal fuel consumption curve) connecting points having the same fuel consumption rate.
  • the portion having an elliptical shape in the center of the graph has better fuel efficiency, and the fuel efficiency becomes worse as the distance from the elliptical portion is increased.
  • the droop control control pattern (engine output torque characteristic) indicated by the solid line in FIG. 8 if the engine speed characteristic decreases from the rated torque point T1 on the droop line b1, the fuel efficiency deteriorates. Is shown.
  • traveling device 2 working device 34 diesel engine 35 controller 36 accelerator dial 30 second pressure switch (working state detecting means) 37 First pressure switch (traveling state detecting means) 50 Engine control device 100 Turning work vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Operation Control Of Excavators (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 作業性能や走行性能を確保しつつ、作業及び走行の複合動作時においてエンジン騒音を抑えるとともに低燃費を実現する、作業車両のエンジン制御装置を提供する。 ディーゼルエンジン34と、走行装置1と、作業装置2と、を備える作業車両を制御するエンジン制御装置50において、オペレータの指示に基づいてディーゼルエンジン34の目標回転数を設定するコントローラ35と、走行装置1の走行状態を検出する走行状態検出手段である第1圧力スイッチ37と、作業装置2の作業状態を検出する作業状態検出手段である第2圧力スイッチ30と、を備え、コントローラ35は、第1圧力スイッチ37及び第2圧力スイッチ30により走行装置1の走行と作業装置2による作業を合わせて行う複合動作時であると判断した場合に、ディーゼルエンジン34の回転数を一定とするアイソクロナス制御を行う。

Description

作業車両のエンジン制御装置
 本発明は、作業車両のエンジン制御装置に関する。
 従来、車体の走行を検出して、エンジンの制御(ドループ/アイソクロナス制御)を切替えるエンジン制御装置を備えた走行式作業機械が公知となっている(例えば、特許文献1参照)。
 特許文献1においては、オペレータの指示に基づいて目標回転数を設定する第1エンジン制御手段と、前記目標回転数に基づいて燃料噴射量を制御し、前記エンジンの回転数を制御する第2エンジン制御手段と、前記車体の走行を検出する走行検出手段とを備え、第1エンジン制御手段は、走行検出手段の検出結果に基づいて車体の非走行時かどうかを判断し、前記第2エンジン制御手段に対して、車体の非走行時はエンジン回転特性がアイソクロナス特性となるように指示し、車体の走行時はエンジン回転特性がドループ特性となるように指示し、燃料噴射量の制御特性を切り換えることで、作業機械の走行状態や作業状態に応じたエンジン回転数を実現しようとしている。
特許第4437771号公報
 しかしながら、特許文献1に記載の技術では、掘削・旋回等の作業中に走行操作が必要な場合、エンジン制御がドループ制御になるため、作業負荷によってエンジン回転数が変動し、掘削・旋回の動作速度や走行速度が変化することで操作性が低下することが考えられる。さらに、このような作業及び走行の複合動作時はドループ制御である為、軽負荷時には、エンジン回転速度が上昇し、エンジン騒音の増加や燃費が悪化する。
 上記課題の対策を行うために(例えば、エンジン回転数の変動による車体のショックを低減させるために)、特許文献1に記載の技術では、作業及び走行の複合動作時にドループ制御/アイソクロナス制御の切替を徐々に変化させている。しかし、この場合、作業及び走行の複合動作の複合度合を指示する手段として、各種センサや該各種センサを制御するためのコントローラ等が必要であり、コストアップにつながる。
 本発明は、作業性能や走行性能を確保しつつ、作業及び走行の複合動作時においてエンジン騒音を抑えるとともに低燃費を実現する、作業車両のエンジン制御装置を提供することを目的としている。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明は、
 エンジンと、
 前記エンジンの動力を受けて走行する走行装置と、
 前記エンジンの動力を受けて駆動する作業装置と、を備える作業車両を制御するエンジン制御装置において、
 オペレータの指示に基づいて前記エンジンの目標回転数を設定するコントローラと、
 前記走行装置の走行状態を検出する走行状態検出手段と、
 前記作業装置の作業状態を検出する作業状態検出手段と、を備え、
 前記コントローラは、
 前記走行状態検出手段及び前記作業状態検出手段により前記走行装置の走行と前記作業装置による作業を合わせて行う複合動作時であると判断した場合に、前記エンジンの回転数を一定とするアイソクロナス制御を行う、としたものである。
 本発明は、前記作業車両のエンジン制御装置において、前記エンジンの負荷を検出し、負荷が無い場合には、前記エンジンの無負荷最低回転数にする手段を更に備える、としたものである。
 本発明の効果として、以下に示すような効果を奏する。
 本発明によれば、作業性能や走行性能を確保しつつ、作業及び走行の複合動作時においてエンジン騒音を抑えるとともに低燃費を実現することができる。
本発明の一実施形態に係るエンジン制御装置が搭載された旋回作業車の全体構成を示す図。 ディーゼルエンジンの性能曲線図。 エンジン制御装置の構成を示す図。 エンジン制御装置の制御フローを示す図。 本実施形態に係るアイソクロナス制御及びドループ制御を行う場合の制御態様を示す性能曲線図。 (a)作業状態においてアイソクロナス制御を行なう場合の制御態様を示す性能曲線図、(b)走行状態においてドループ制御を行なう場合の制御態様を示す性能曲線図。 作業及び走行の複合動作状態においてアイソクロナス制御を行なう場合の制御態様を示す性能曲線図。 ドループ制御時における等燃費線の概略図。
 まず、図1を用いて、本発明の一実施形態に係るエンジン制御装置50が搭載された作業車両である旋回作業車100の全体構成について説明する。但し、エンジン制御装置50は、旋回作業車100だけでなく、農業作業車やその他の作業車両に搭載することも可能である。
 図1に示すように、旋回作業車100は、主に走行装置1と、作業装置2と、該作業装置2が有する旋回装置3と、から構成される。
 走行装置1は、ディーゼルエンジン34の動力を受けて駆動し、旋回作業車100を走行させるものである。走行装置1は、左右一対のクローラ11・11や油圧モータ12・12等から構成され、該油圧モータ12・12が左右のクローラ11・11を駆動することによって旋回作業車100の前後進を可能としている。また、油圧モータ12・12が左右のクローラ11・11を独立して駆動することによって旋回作業車100の旋回を可能としている。
 作業装置2は、ディーゼルエンジン34の動力を受けて駆動し、土砂等の掘削作業を行なうものである。作業装置2は、ブーム21やアーム22、バケット23等から構成され、これらを独立して駆動することによって掘削作業を可能としている。
 具体的に説明すると、ブーム21は、その一端部が旋回装置3の前部に支持されて、伸縮自在に可動するブームシリンダ21aによって回動される。また、アーム22は、その一端部がブーム21の他端部に支持されて、伸縮自在に可動するアームシリンダ22aによって回動される。そして、バケット23は、その一端部がアーム22の他端部に支持されて、伸縮自在に可動するバケットシリンダ23aによって回動される。つまり、作業装置2は、バケット23を用いて土砂等の掘削を行なう多関節構造を構成している。
 なお、本旋回作業車100は、バケット23を取り付けて掘削作業を行なう仕様としているが、例えば油圧ブレーカーを取り付けて破砕作業を行なう仕様であっても良く、これに限定するものではない。
 また、作業装置2は、旋回装置3を備える。旋回装置3は、作業装置2を旋回させるものである。旋回装置3は、旋回台31や該旋回台31を旋回させるための油圧モータ32等から構成され、該油圧モータ32が旋回台31を駆動することによって作業装置2を旋回させる。また、旋回装置3には、操縦部33、ディーゼルエンジン34、該ディーゼルエンジン34を制御するエンジン制御装置50が配置されている。作業装置2及び旋回装置3は、ディーゼルエンジン34により駆動される油圧ポンプからの圧油によって駆動される。
 また、ブーム21を駆動するブームシリンダ21a、アーム22を駆動するアームシリンダ22a、バケット23を駆動するバケットシリンダ23a、旋回台31を旋回させる油圧モータ32は、掘削や旋回に係わる掘削・旋回用油圧アクチュエータである。掘削・旋回用油圧アクチュエータには、作業用(掘削・旋回用)の操作具332bを操作することで圧油が流入され、作業装置2や旋回装置3が動作し、掘削・旋回作業が行われる。
 なお、本実施形態における作業状態とは、作業装置2による作業以外にも、旋回装置3による旋回動作を含むものである。
 具体的に説明すると、操縦部33には、操縦席331、操作具332(走行用の操作具332a、作業用の操作具332b)やコントロールパネル等が備えられており、オペレータは、操縦席331に着座して操作具332やコントロールパネル等を操作することによってディーゼルエンジン34の制御を行なう。更に、オペレータは、操作具332等を操作することによって各油圧モータ12・32の制御を行なう。また、オペレータは、コントロールパネルに配置されたアクセルダイヤル36(図3参照)を操作することによってディーゼルエンジン34のエンジン回転数Nを設定する。このとき、詳細は後述するが、アクセルダイヤル36で指示された目標エンジン回転数(単に、アクセル指示回転数ともいう)がディーゼルエンジン34の目標エンジン回転数としてコントローラ35へ指示される。こうして、オペレータは、旋回作業車100の操縦を行なうのである。クローラ11を駆動する油圧モータ12には、走行状態検出手段として、第1圧力スイッチ37が配置されている。該第1圧力スイッチ37は、油圧モータ12における油圧回路の走行モータ駆動油路に配置され、オペレータにより走行操作されたことを検出することが可能である。
 なお、走行状態検出手段の構成、及び走行状態検出手段の配置位置は限定するものではなく、車軸の回転を検出する回転センサで検知してもよい。
 なお、アクセルダイヤル36とディーゼルエンジン34は、コントローラ35を介して電気的に接続されており、コントローラ35は、アクセルダイヤル36からの電気信号に基づいて制御信号を作成するとともに、作成した制御信号をディーゼルエンジン34に出力する。すなわち、コントローラ35は、ディーゼルエンジン34の出力を制御する装置である。つまり、コントローラ35は、オペレータによるアクセルダイヤル36の操作に基づいてディーゼルエンジン34のエンジン回転数Nの制御を行なうのである。
 上述した掘削・旋回用油圧アクチュエータを駆動するため油圧経路には、作業状態検出手段として、第2圧力スイッチ30が配置されている。該第2圧力スイッチ30は、オペレータにより作業装置2や旋回装置3による作業操作が行われているかどうかを検出することが可能である。
 なお、本実施形態では、旋回作業車100が作業状態であるかどうかを検出する作業状態検出手段として、第2圧力スイッチ30を用いた構成について、具体的に説明するが、特に限定するものではない。例えば、第2圧力スイッチ30の代わりに、作業装置2や旋回装置3を操作する操作具332b等の操作位置が作業状態であるかどうかを検出する変位センサ等の作業状態検出手段であってもよい。また、作業状態検出手段の構成、及び作業状態検出手段の配置位置は限定するものではない。
 なお、操作具332とディーゼルエンジン34は、コントローラ35を介して電気的に接続されており、コントローラ35は、操作具332からの電気信号に基づいて制御信号を作成するとともに、作成した制御信号をディーゼルエンジン34に出力する。すなわち、コントローラ35は、ディーゼルエンジン34の出力を制御する装置である。つまり、コントローラ35は、オペレータによる操作具332の操作に基づいてディーゼルエンジン34のエンジン回転数Nの制御を行なうのである。
 以上が旋回作業車100の全体構成であるが、以下にディーゼルエンジン34の制御態様について説明する。
 まず、図2を用いて、ディーゼルエンジン34のエンジン回転数NとエンジントルクTとの関係を示した性能曲線図について説明する。
 図2に示すように、ディーゼルエンジン34のエンジン回転数Nは、ローアイドルエンジン回転数Nminからハイアイドルエンジン回転数Nmaxまで任意に変更可能とされる。そして、ディーゼルエンジン34は、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で自在に運転可能とされる。
 なお、ディーゼルエンジン34のエンジントルクTは、エンジン回転数Nmにおける最高トルク点で最大となる(最大トルク点Tm)。換言すると、ディーゼルエンジン34は、エンジン回転数Nmにおける最高トルク点Tmで最大エンジントルクTmaxとなるようにトルクカーブTcurveが形成されているのである。
 また、ディーゼルエンジン34のエンジン回転数NとエンジントルクTとの関数であるエンジン出力は、エンジン回転数Neにおける最高トルク点(エンジントルクTe)で最大となる。換言すると、ディーゼルエンジン34は、エンジン回転数Neにおける最高トルク点(エンジントルクTe)で最大エンジン出力となるようにトルクカーブTcurveが形成されているのである。
 更に、ディーゼルエンジン34のエンジン回転数Nは、該ディーゼルエンジン34に負荷が掛かっていないときにおける最高エンジン回転数Nhでハイアイドルエンジン回転数Nmaxとなる。換言すると、ディーゼルエンジン34は、該ディーゼルエンジン34に負荷が掛かっていないときにおける最高エンジン回転数Nhがハイアイドルエンジン回転数NmaxとなるようにトルクカーブTcurveが形成されているのである。
 次に、図2を用いて、ドループ制御を行なった場合の制御態様ならびにアイソクロナス制御を行なった場合の制御態様について説明する。
 アイソクロナス制御は、ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とする制御パターンである。ここで、ディーゼルエンジン34がエンジン回転数NxにおけるエンジントルクTxで運転している場合(図2中X1点参照。)を想定すると、エンジン制御装置50は、ディーゼルエンジン34に掛かる負荷が増加したときには該ディーゼルエンジン34のエンジン回転数Nxを一定に維持しつつ、エンジントルクTを増大させる(図2中Xa2点参照。)。
 また、エンジン制御装置50は、ディーゼルエンジン34に掛かる負荷が低減したときには該ディーゼルエンジン34のエンジン回転数Nxを一定に維持しつつ、エンジントルクTを減少させる(図2中Xa3点参照。)。
 このようにアイソクロナス制御においては、ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とすることができるため、該ディーゼルエンジン34の動力を走行装置1等に安定して伝達することが可能となる。
 一方、ドループ制御は、ディーゼルエンジン34に掛かる負荷の増減に応じてエンジン回転数Nを変化させる制御パターンである。ここで、ディーゼルエンジン34がエンジン回転数NxにおけるエンジントルクTxで運転している場合(図2中X1点参照。)を想定すると、コントローラ35は、ディーゼルエンジン34に掛かる負荷が増加したときには該ディーゼルエンジン34のエンジン回転数Nを漸減させつつ、エンジントルクTを増大させる(図2中Xd2点参照。)。
 また、コントローラ35は、ディーゼルエンジン34に掛かる負荷が低減したときには該ディーゼルエンジン34のエンジン回転数Nを漸増させつつ、エンジントルクTを減少させる(図2中Xd3点参照。)。
 このようにドループ制御においては、ディーゼルエンジン34に掛かる負荷の増減に応じてエンジン回転数Nが変化する。
 以上がディーゼルエンジン34の制御パターンとして、ドループ制御ならびにアイソクロナス制御を行なった場合の制御態様であるが、次に、図3を用いて、ディーゼルエンジン34のエンジン回転数Nを制御するエンジン制御装置50の構成について説明する。
 図3に示すように、エンジン制御装置50は、コントローラ35と、アクセルダイヤル36と、走行状態検出手段である第1圧力スイッチ37と、作業状態検出手段である第2圧力スイッチ30と、ディーゼルエンジン34のエンジン回転数Nを制御するための切替手段である切替リレー38と、から主に構成されている。コントローラ35には、直流電源であるバッテリ39が接続され、該バッテリ39からヒューズ40を介してコントローラ35や切替リレー38等に電力が供給される。
 コントローラ35は、オペレータの指示に基づいてディーゼルエンジン34の目標回転数(目標エンジン回転数)を設定するものである。コントローラ35は、ディーゼルエンジン34のエンジン回転数Nの制御やその他種々の制御を行うためのものであり、主として中央処理装置(CPU)26、記憶手段(RAM、ROM)27、及び選択手段28等により構成される。コントローラ35は、アクセルダイヤル36、走行状態検出手段である第1圧力スイッチ37、作業状態検出手段である第2圧力スイッチ30、及び切替リレー38等と電気的に接続されている。コントローラ35は、アクセルダイヤル36、第1圧力スイッチ37、第2圧力スイッチ30等から入力された電気信号に基づいて制御信号を作成する。切替リレー38は、ディーゼルエンジン34が有するエンジン回転数制御部であるアクチュエータ34aに電気的に接続されている。アクチュエータ34aは、前記切替リレー38により入り切りされるアクチュエータであり、該アクチュエータによりディーゼルエンジン34の燃料噴射量や噴射時期が変更されることでエンジン回転数Nが制御される。このようにして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。
 記憶手段(RAM、ROM)27には、オペレータの要求に応じてディーゼルエンジン34の制御を行なうべく、アイソクロナス制御における制御パターンやドループ制御における制御パターンが複数記憶されている。そして、コントローラ35が有する選択手段28は、これらの制御パターンのうちから作業内容や走行状態等に応じて最適な制御パターンを選択し、選択した制御パターンに基づいて制御信号を作成してディーゼルエンジン34に出力する。また、コントローラ35は、後述する制御フローに従って、ディーゼルエンジン34のエンジン回転数Nの制御を行うとともに、所定のエンジン回転数Nにおいて、アイソクロナス制御の制御パターンやドループ制御における制御パターンに基づいてディーゼルエンジン34の制御を行う。こうすることで、コントローラ35は、オペレータが要求するディーゼルエンジン34の運転を実現するのである。
 アクセルダイヤル36は、コントローラ35へディーゼルエンジン34の目標エンジン回転数を指示する指示装置である。アクセルダイヤル36は、オペレータがダイヤルを手で回動して目標エンジン回転数を設定可能であり、ディーゼルエンジン34の目標エンジン回転数を操作調節するためのダイヤル式(回転式)のスイッチである。すなわち、アクセルダイヤル36は、ディーゼルエンジン34のエンジン回転数Nの目標値(最大出力の大きさ)を作業内容等に応じた大きさに設定するためのものである。アクセルダイヤル36により設定されたダイヤルの位置(所定角度位置)は、コントローラ35へ電気信号として出力される。オペレータがアクセルダイヤル36により所望のエンジン回転数Nとなるように操作した場合、コントローラ35により、旋回作業車100の走行状態や作業状態に応じた出力が得られるように、エンジン回転数Nが設定される。例えば、オペレータによってアクセルダイヤル36が操作されると、操作内容(オペレータに設定された目標エンジン回転数)がコントローラ35に指示され、該コントローラ35が後述する制御フローに従い、該制御フローに基づいた制御信号がディーゼルエンジン34へ伝達され、ディーゼルエンジン34の出力が制御される。
 なお、アクセルダイヤル36は、オペレータが操縦席331に着座した状態で操作することができるよう、操縦部33に設けられたコントロールパネルに配置されている。
 走行状態検出手段である第1圧力スイッチ37は、走行装置1の油圧モータ12に配置され、走行装置1の走行状態を検出するものである。本実施形態において第1圧力スイッチ37は、油圧モータ12の駆動状態を把握することによって走行装置1の走行状態を検出する。
 なお、走行状態検出手段としては、第1圧力スイッチ37の代わりに、ロータリーポテンショメータ等で構成され、走行用の操作具332aの操作位置を把握することによって走行装置1の駆動状態を検出するポジションセンサであってもよく、本実施形態に特に限定するものではない。
 作業状態検出手段である第2圧力スイッチ30は、上述した掘削・旋回用油圧アクチュエータを駆動するために所定の油圧経路に配置され、作業装置2の作業状態を検出するものである。第2圧力スイッチ30は、掘削・旋回用油圧アクチュエータの駆動状態を把握することによって作業装置2が作業状態かどうかを検出する。コントローラ35は、作業状態検出手段である第2圧力スイッチ30により旋回作業車100が作業状態であるかどうかを判断する。
 切替リレー38は、ディーゼルエンジン34が有するエンジン回転数制御部であるアクチュエータ34aに電気的に接続されている。切替リレー38は、コントローラ35から出力される制御信号に応じて、エンジン回転数Nの最高回転数を制御するために用いられる。コントローラ35は、切替リレー38により、ディーゼルエンジン34が有するアクチュエータ34aを駆動して、ディーゼルエンジン34の燃料噴射量や噴射時期を制御し、旋回作業車100の作業状態や走行状態に応じてエンジン回転数Nの最高回転数を制御する。
 以上がディーゼルエンジン34を制御するエンジン制御装置50の構成である。次に、図4を用いて、エンジン制御装置50の制御フローについて説明する。また、図5は、本実施形態に係るアイソクロナス制御及びドループ制御を行う場合の制御態様を示す性能曲線図である。図6(a)は、作業状態においてアイソクロナス制御を行なう場合の制御態様を示す性能曲線図である。図6(b)は、走行状態においてドループ制御を行なう場合の制御態様を示す性能曲線図である。図7は、複合動作状態(作業+走行)においてアイソクロナス制御を行なう場合の制御態様を示す性能曲線図である。
 まず、ステップS101においてコントローラ35は、該コントローラ35に目標エンジン回転数を指示するアクセルダイヤル36がどのような状態にあるかを判断する。すなわち、コントローラ35は、アクセルダイヤル36が指示している目標エンジン回転数を把握し、該目標エンジン回転数が所定のローアイドルエンジン回転数を超えているか、もしくは所定のローアイドルエンジン回転数以下であるかの判断を行なう。
 なお、コントローラ35に目標エンジン回転数を指示する手段としては、アクセルダイヤル36に限定するものではない。また、ステップS101は、図4に示すエンジン制御装置50の制御フローにおいて必須のステップではない。
 そして、コントローラ35は、アクセルダイヤル36が指示している目標エンジン回転数(単に、アクセル指示回転数ともいう)が所定のローアイドルエンジン回転数を超えていると判断した場合はステップS102へ移行し、目標エンジン回転数が所定のローアイドルエンジン回転数以下であると判断した場合はステップS103へ移行する。
 ステップS103においてコントローラ35は、選択手段28により、アイソクロナス制御の所定の制御パターンを選択し、該所定の制御パターンに基づいてディーゼルエンジン34の制御を行う。具体的には、ステップS103においてコントローラ35は、該コントローラ35が記憶している制御パターンから、アイソクロナス制御の所定の制御パターンを選択し、選択した制御パターンに基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。この場合、アイソクロナス制御であるためエンジン回転数Nが上昇せず、軽負荷時でもドループ制御と比べて騒音や燃費の面で優位性がある。
 ステップS102においてコントローラ35は、作業状態検出手段である第2圧力スイッチ30及び走行状態検出手段である第1圧力スイッチ37により旋回作業車(本機)100の動作状態が稼働中(走行装置1と作業装置2のうち少なくとも一方が稼働中)であるか待機中(例えば、ディーゼルエンジン34は駆動しているが走行装置1及び作業装置2が停止した状態)であるかを判断する。
 そして、コントローラ35は、旋回作業車100が稼働中あると判断した場合はステップS104へ移行し、旋回作業車100が待機中であると判断した場合はステップS105へ移行する。
 ステップS105においてコントローラ35は、選択手段28により、ドループ制御における所定の制御パターンを選択し、該所定の制御パターンに基づいてディーゼルエンジン34の制御を行う。具体的には、ステップS105においてコントローラ35は、該コントローラ35が記憶している制御パターンから、ドループ制御の所定の制御パターンを選択し、選択した制御パターンに基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。
 ステップS104においてコントローラ35は、旋回作業車(本機)100の稼働状況が作業中(作業装置2の作業状態であって、かつ走行装置1が走行状態である複合動作状態も含む)であるか走行のみかを判断する。具体的には、コントローラ35は、作業状態検出手段である第2圧力スイッチ30及び走行状態検出手段である第1圧力スイッチ37により旋回作業車100が作業及び走行の複合動作状態であるか走行状態のみであるかの判断を行なう。
 そして、コントローラ35は、旋回作業車100が作業中(複合動作中も含む)であると判断した場合はステップS107へ移行し、旋回作業車100が作業状態でなく走行のみの状態であると判断した場合はステップS106へ移行する。
 ステップS106においてコントローラ35は、選択手段28により、図6(b)に示すドループ制御における制御パターンP2を選択し、該制御パターンP2に基づいてディーゼルエンジン34の制御を行う。具体的には、ステップS106においてコントローラ35は、該コントローラ35が記憶している制御パターンから、ドループ制御の制御パターンP2を選択し、選択した制御パターンP2に基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。旋回作業車100において走行装置1が走行のみの状態では、車速の確保や登坂・降阪状況を把握することが重要なため、エンジン回転数Nが変化するドループ制御が有効となる。
 ステップS107においてコントローラ35は、選択手段28により、図7に示すアイソクロナス制御の制御パターンP3を選択し、該制御パターンP3に基づいてディーゼルエンジン34の制御を行う。具体的には、ステップS107においてコントローラ35は、該コントローラ35が記憶している制御パターンから、アイソクロナス制御の制御パターンP3を選択し、選択した制御パターンP3に基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。つまり、コントローラ35は、作業状態検出手段である第2圧力スイッチ30及び走行状態検出手段である第1圧力スイッチ37により走行装置1の走行と前記作業装置2による作業を合わせて行う複合動作時であると判断した場合に、ディーゼルエンジン34の回転数を一定とするアイソクロナス制御を行う。作業及び走行の複合動作状態の場合では繊細な作業を求められる場合もあり、作業負荷によってエンジン回転数Nが変動せず、掘削・旋回の動作速度や走行速度が変化しないアイソクロナス制御が有効となる。また、走行状態が伴わない作業状態の場合においては、コントローラ35は、該コントローラ35が記憶している制御パターンから、アイソクロナス制御の制御パターンP1を選択し、選択した制御パターンP1に基づいて制御信号を作成するが、該制御パターンP1は制御パターンP3と同じ制御態様である。作業及び走行の複合動作時や作業時においてアイソクロナス制御を行うことで、エンジン回転数Nが上昇せず、低騒音、低燃費作業を行うことができる。また、軽負荷かつ複合動作時でもアイソクロナス制御を行うことで、ドループ制御と比べて騒音や燃費の面で優位性がある。
 このように、本実施形態においては、図6(a)に示す作業状態の際に適用するアイソクロナス制御の制御パターンP1と、図6(b)に示す走行状態の際に適用するドループ制御の制御パターンP2と、図7で示す作業及び走行の複合動作状態の際に適用するアイソクロナス制御の制御パターンP3がコントローラ35の記憶手段27に予め記憶されており、コントローラ35は、適用条件に応じて、いずれかを選択、指示する。
 図6(a)に示すアイソクロナス制御の制御パターンP1は、旋回作業車100の作業装置2が作業時(旋回装置3の旋回時含む)である場合に用いられる制御パターンである。このアイソクロナス制御の制御パターンP1の場合、ディーゼルエンジン34は、アイソクロナス線(トルクが変化してもエンジン回転数Nが一定となる線)と、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で自在に運転可能とされる。例えば、この制御パターンP1の場合、図6(a)に点線で示す4本のアイソクロナス線a1~a4を有し、このアイソクロナス線a1~a4はエンジン回転数Nが高回転数から低回転数の4段階の場合のものを示しており、コントローラ35は作業時の状況に応じて適宜変更可能である。
 なお、本実施形態及び図6(a)では、複数のアイソクロナス線として4本のアイソクロナス線a1~a4を例示して説明しているが、特に限定するものではない。例えば、制御パターンにおいて複数本のアイソクロナス線を間欠的にもしくは連続的に有し、この複数本のアイソクロナス線によりエンジン回転数Nが高回転数から低回転数の多段階に適宜変更可能に構成することもできる。
 また、図4におけるアイソクロナス線a1は、図6(a)におけるアイソクロナス線a1と同じものであり、同じ符号を付している。
 また、図6(b)に示すドループ制御の制御パターンP2は、旋回作業車100の走行装置1が走行時である場合に用いられる制御パターンである。このドループ制御の制御パターンP2の場合、ディーゼルエンジン34は、ドループ線(トルクが変化するとエンジン回転数Nも変化する右肩下がりに傾いた線)と、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で自在に運転可能とされる。例えば、この制御パターンP2の場合、図6(b)に示す5本のドループ線b1~b5を有し、このドループ線b1~b5はエンジン回転数Nが高回転数から低回転数の5段階の場合のものを示しており、コントローラ35は走行時の状況に応じて適宜変更可能である。
 なお、本実施形態及び図6(b)では、複数のドループ線として5本のドループ線b1~b5を例示して説明しているが、特に限定するものではない。例えば、制御パターンにおいて複数本のドループ線を間欠的にもしくは連続的に有し、この複数本のドループ線によりエンジン回転数Nが高回転数から低回転数の多段階に適宜変更可能に構成することもできる。
 また、図4におけるドループ線b1は、図6(b)におけるドループ線b1と同じものであり、同じ符号を付している。
 図7に示すアイソクロナス制御の制御パターンP3は、旋回作業車100の作業装置2が複合動作時(作業+走行の状態)である場合に用いられる制御パターンである。このアイソクロナス制御の制御パターンP3の場合、ディーゼルエンジン34は、アイソクロナス線(トルクが変化してもエンジン回転数Nが一定となる線)と、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で自在に運転可能とされる。例えば、この制御パターンP3の場合、図7に点線で示す4本のアイソクロナス線c1~c4を有し、このアイソクロナス線c1~c4はエンジン回転数Nが高回転数から低回転数の4段階の場合のものを示しており、コントローラ35は複合動作時の状況に応じて適宜変更可能である。
 なお、本実施形態及び図7では、複数のアイソクロナス線として4本のアイソクロナス線c1~c4を例示して説明しているが、特に限定するものではない。例えば、制御パターンにおいて複数本のアイソクロナス線を間欠的にもしくは連続的に有し、この複数本のアイソクロナス線によりエンジン回転数Nが高回転数から低回転数の多段階に適宜変更可能に構成することもできる。
 また、図4におけるアイソクロナス線c1は、図7におけるアイソクロナス線c1と同じものであり、同じ符号を付している。
 上述した制御フローでは、非作業時(ステップS106)かつ非走行時(ステップS105)はドループ制御となるため、アイソクロナス制御と比較すると騒音や燃費の面で問題はあるが、例えば、ディーゼルエンジン34の負荷を検出し、負荷が無い場合には、ディーゼルエンジン34の無負荷最低回転数にする手段、いわゆるオートデセル機能を発揮する手段をエンジン制御装置50に更に搭載することにより、その問題を解決することが可能である。オートデセル機能とは、油圧ショベル等の作業機においては、所定の条件下でエンジン回転数をローアイドル回転数まで自動的に低下させて低燃費化及び低騒音化を図る、いわゆる自動低回転制御のことである。例えば、オートデセル機能は、作業装置2を操作する操作具332bを所定時間継続して操作しない場合(非作業時の場合)、エンジン回転数Nをローアイドル回転数まで低下させる機能である。
 図8は、ドループ制御時における等燃費線の概略図である。等燃費線の概略図は、縦軸にエンジン出力トルク(N・m)と、横軸にエンジン回転数(min-1)との関係を示すグラフである。図8において実線で示す曲線は、燃料消費率の等しい点を結んだ曲線(等燃費曲線)である。ディーゼルエンジンを含め、内燃機関では、一般に、グラフ中央の楕円形を有する部分ほど燃費が良く、楕円形を有する部分から遠ざかるほど燃費が悪い。図8において実線で示すドループ制御の制御パターン(エンジンの出力トルク特性)では、ドループ線b1において定格トルク点T1よりエンジン出力特性が減少するのに応じて回転数が増加すると、燃費が悪化することを示している。
 以上のように構成されたエンジン制御装置50において、(1)ディーゼルエンジン34が駆動しているが、作業及び走行が停止時である場合、ドループ制御が適用され、該ドループ制御と上述したオートデセル機能とを組み合わせることにより、燃費及び騒音が抑えられる。また、(2)走行時である場合、ドループ制御が適用され、走行性が良好となる。また、(3)作業時のみである場合、アイソクロナス制御が適用され、作業性が良好であるとともに、燃費及び騒音が抑えられる。(4)作業及び走行の複合動作時の場合、アイソクロナス制御が適用され、作業性が良好であるとともに、燃費及び騒音が抑えられる。これに対して、従来技術(特許文献1)では、作業及び走行の複合動作時の場合、ドループ制御が適用されるため、上記(4)の場合に比べて、作業性、燃費及び騒音が劣る。
 具体的には、上記(2)の場合、すなわち走行のみの場合では車速の確保や登坂・降阪状況を把握することが重要なため、ドループ制御が有効となる。一方、上記(4)の場合、すなわち作業と走行の複合動作の場合では繊細な作業を求められる場合もあり、作業負荷によってエンジン回転数Nが変動せず、掘削・旋回の動作速度や走行速度が変化しないアイソクロナス制御が有効となる。また、複合動作時にアイソクロナス制御とすることで、軽負荷かつ複合動作時でもドループ制御と比べて騒音や燃費の面で優位性がある。上記(1)の場合、すなわち非作業時かつ非走行時はドループ制御となるため、アイソクロナス制御と比較すると騒音や燃費の面で問題はあるが、オートデセル機能を搭載することにより、その問題を解決可能である。
 上述したように本発明によれば、作業性能や走行性能を確保しつつ、作業及び走行の複合動作時においてエンジン騒音を抑えるとともに低燃費を実現することができる。
 1    走行装置
 2    作業装置
 34   ディーゼルエンジン
 35   コントローラ
 36   アクセルダイヤル
 30   第2圧力スイッチ(作業状態検出手段)
 37   第1圧力スイッチ(走行状態検出手段)
 50   エンジン制御装置
 100  旋回作業車

Claims (2)

  1.  エンジンと、
     前記エンジンの動力を受けて走行する走行装置と、
     前記エンジンの動力を受けて駆動する作業装置と、を備える作業車両を制御するエンジン制御装置において、
     オペレータの指示に基づいて前記エンジンの目標回転数を設定するコントローラと、
     前記走行装置の走行状態を検出する走行状態検出手段と、
     前記作業装置の作業状態を検出する作業状態検出手段と、を備え、
     前記コントローラは、
     前記走行状態検出手段及び前記作業状態検出手段により前記走行装置の走行と前記作業装置による作業を合わせて行う複合動作時であると判断した場合に、前記エンジンの回転数を一定とするアイソクロナス制御を行うことを特徴とする、作業車両のエンジン制御装置。
  2.  前記請求項1に記載の作業車両のエンジン制御装置において、
     前記エンジンの負荷を検出し、負荷が無い場合には、前記エンジンの無負荷最低回転数にする手段を更に備えることを特徴とする、作業車両のエンジン制御装置。
PCT/JP2015/086489 2015-01-27 2015-12-28 作業車両のエンジン制御装置 WO2016121287A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-013777 2015-01-27
JP2015013777A JP2016138507A (ja) 2015-01-27 2015-01-27 作業車両のエンジン制御装置

Publications (1)

Publication Number Publication Date
WO2016121287A1 true WO2016121287A1 (ja) 2016-08-04

Family

ID=56542919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086489 WO2016121287A1 (ja) 2015-01-27 2015-12-28 作業車両のエンジン制御装置

Country Status (2)

Country Link
JP (1) JP2016138507A (ja)
WO (1) WO2016121287A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303414A (ja) * 1994-05-13 1995-11-21 Yanmar Agricult Equip Co Ltd 作業機におけるエンジンの燃料消費制御装置
JP2008215076A (ja) * 2007-02-28 2008-09-18 Iseki & Co Ltd エンジン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159609A (ja) * 1996-12-03 1998-06-16 Yanmar Agricult Equip Co Ltd 電子ガバナー機構付エンジン搭載乗用田植機
JPH1137284A (ja) * 1997-07-18 1999-02-12 Yanmar Agricult Equip Co Ltd 農作業車の自動変速装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303414A (ja) * 1994-05-13 1995-11-21 Yanmar Agricult Equip Co Ltd 作業機におけるエンジンの燃料消費制御装置
JP2008215076A (ja) * 2007-02-28 2008-09-18 Iseki & Co Ltd エンジン

Also Published As

Publication number Publication date
JP2016138507A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
JP5121405B2 (ja) 建設機械のエンジン制御装置
JP4675320B2 (ja) 作業機械の油圧駆動装置
JP4754969B2 (ja) 作業車両のエンジン制御装置
JP4282718B2 (ja) 油圧ショベルの油圧駆動装置
US9637890B2 (en) Power transmission device and hybrid construction machine provided therewith
KR101652661B1 (ko) 건설 기계
JP5192367B2 (ja) 作業車両および作業車両の制御方法
US20070214782A1 (en) Hybrid construction machine
JP4173489B2 (ja) ハイブリッド駆動式のホイール系作業車両
KR101549117B1 (ko) 하이브리드식 작업기계 및 그 제어방법
JP5097051B2 (ja) 建設機械の油圧制御装置
EP3043050B1 (en) Construction machine with pump torque control
JP2004340259A (ja) 建設機械の走行駆動装置
JP2014133455A (ja) 建設機械の油圧ポンプ駆動装置
WO2016129196A1 (ja) 作業車両のエンジン制御装置
JP2011196066A (ja) 作業車両の油圧回路
WO2016121287A1 (ja) 作業車両のエンジン制御装置
JP4546914B2 (ja) 電動作業機械
JP6752686B2 (ja) ショベル
JP2011002085A (ja) 建設機械の油圧制御装置
US11118517B2 (en) Construction machine
JP5437125B2 (ja) 旋回作業車
JP5371210B2 (ja) 油圧式建設機械
JP5808726B2 (ja) 油圧駆動装置
WO2022201676A1 (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880179

Country of ref document: EP

Kind code of ref document: A1