WO2016117297A1 - 高圧ポンプ及びその製造方法 - Google Patents

高圧ポンプ及びその製造方法 Download PDF

Info

Publication number
WO2016117297A1
WO2016117297A1 PCT/JP2016/000130 JP2016000130W WO2016117297A1 WO 2016117297 A1 WO2016117297 A1 WO 2016117297A1 JP 2016000130 W JP2016000130 W JP 2016000130W WO 2016117297 A1 WO2016117297 A1 WO 2016117297A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
cylinder
pressure pump
wall
pressurizing chamber
Prior art date
Application number
PCT/JP2016/000130
Other languages
English (en)
French (fr)
Inventor
忍 及川
政治 中岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/544,039 priority Critical patent/US20180010562A1/en
Publication of WO2016117297A1 publication Critical patent/WO2016117297A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/365Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages valves being actuated by the fluid pressure produced in an auxiliary pump, e.g. pumps with differential pistons; Regulated pressure of supply pump actuating a metering valve, e.g. a sleeve surrounding the pump piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/22Varying quantity or timing by adjusting cylinder-head space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/447Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means specially adapted to limit fuel delivery or to supply excess of fuel temporarily, e.g. for starting of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves
    • F04B1/0456Cylindrical

Definitions

  • the present disclosure relates to a high-pressure pump used for an internal combustion engine and a manufacturing method thereof.
  • a high-pressure pump that is provided in a fuel supply system that supplies fuel to an internal combustion engine and pressurizes the fuel.
  • the high-pressure pump pressurizes fuel by changing the volume of a pressurization chamber formed in the deep part of the cylinder by reciprocating movement of a plunger provided inside the cylinder.
  • the fuel pressurized in the pressurizing chamber is discharged from a discharge passage communicating therewith.
  • a ring-shaped member is fitted outside the diameter of the plunger exposed in the pressurizing chamber. This high-pressure pump is prevented from dropping the plunger from the cylinder by locking the ring-shaped member at the step portion between the pressurizing chamber and the cylinder before being attached to the internal combustion engine. .
  • the outer diameter of the plunger protruding from the cylinder opposite to the pressurizing chamber is larger than the outer diameter of the plunger positioned in the cylinder. Is formed small, and the plunger has a step at a location where the outer diameter changes.
  • This high-pressure pump also prevents the plunger from dropping from the cylinder by locking the step of the plunger to the step of the pump body before being attached to the internal combustion engine.
  • the suction valve unit that controls the supply of fuel to the pressurizing chamber is provided on the side opposite to the plunger of the pressurizing chamber.
  • the suction valve unit is detachably attached to the pump body. Therefore, in this high pressure pump configuration, the plunger can be inserted into the cylinder from the pressurizing chamber side before the suction valve unit is assembled to the pump body.
  • the high-pressure pump described in Patent Document 1 may increase the size of the cylinder in the axial direction due to the intake valve unit described above. Temporarily, in the high-pressure pump described in Patent Document 1, when the position where the suction valve unit is installed is changed in the radial direction of the cylinder and the side opposite to the plunger of the pressurizing chamber is closed with the pump body, It is also difficult to assemble the plunger to the cylinder from the opening on the opposite side of the cylinder from the pressurizing chamber.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a high-pressure pump capable of preventing the plunger from dropping off regardless of the direction in which the plunger is assembled to the cylinder, and a method for manufacturing the high-pressure pump.
  • the high-pressure pump is provided with a cylinder, a pump body having a pressurizing chamber provided in a deep portion of the cylinder, and reciprocally movable inside the cylinder, so that the volume of the pressurizing chamber is variable.
  • the plunger is provided on the opposite side of the cylinder from the pressurizing chamber and coaxially with the cylinder.
  • the large cylinder part defining the predetermined space with the outer wall of the plunger and the inner diameter of the large cylinder part opposite to the cylinder of the large cylinder part are smaller than the inner diameter.
  • the locking member is locked to the step portion between the large tube portion and the small tube portion of the cylindrical member before the high pressure pump is attached to the internal combustion engine, so that the plunger is prevented from falling off the cylinder. .
  • the method for manufacturing a high-pressure pump includes: housing a plunger inside a cylindrical jig; housing a locking member in a hole or groove of the plunger; Inserting the jig inside, removing the jig from the plunger, and projecting the locking member from the outer wall of the plunger to the large cylinder portion of the cylindrical member.
  • the manufacturing method of the high-pressure pump includes fitting the locking member into the space inside the large cylindrical portion from the side opposite to the small cylindrical portion of the cylindrical member, and inserting the plunger into the cylinder. And fixing the tubular member to the pump body.
  • the locking member is placed inside the large cylindrical portion of the cylindrical member, even if the high pressure pump has a shape in which the side opposite to the plunger of the pressurizing chamber is closed by the pump body. It is possible to install.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. It is sectional drawing which shows the state which attaches the high pressure pump of 1st Embodiment to an internal combustion engine.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12.
  • FIGS. 1 and 2 A high-pressure pump according to a first embodiment of the present disclosure is shown in FIGS.
  • the high-pressure pump 1 of this embodiment is attached to an engine block 2 of an internal combustion engine, pressurizes fuel pumped from a fuel tank, and pumps it to a delivery pipe.
  • the fuel accumulated in the delivery pipe is injected and supplied from the injector to each cylinder of the internal combustion engine.
  • the high-pressure pump 1 includes a cylinder 10, a pump body 11, a plunger 40, a holder 60 as a cylindrical member, a pin 71 as a locking member, and the like.
  • the boundary between the cylinder 10 and the pump body 11 is conceptually indicated by a broken line 110, but in the present embodiment, the cylinder 10 and the pump body 11 are integrally formed without a seam.
  • the cylinder 10 and the pump body 11 may be configured separately.
  • the pump body 11 has a cylindrical fitting portion 12 that can be fitted into a bore 3 formed in the engine block 2 of the internal combustion engine.
  • the pump body 11 is fixed to the engine block 2 by a bolt (not shown) provided at a position indicated by a one-dot chain line 13 in FIG. At that time, the contact surface 14 provided outside the fitting portion 12 contacts the engine block 2.
  • the pump body 11 has a pressurizing chamber 15 formed in the deep part (end part) of the cylinder 10.
  • the inner diameter of the pressurizing chamber 15 is slightly larger than the inner diameter of the cylinder 10.
  • the pressurizing chamber 15 is closed by the pump body 11 on the side opposite to the plunger 40.
  • a damper chamber 16 is formed in the pump body 11 on the opposite side of the pressurizing chamber 15 from the cylinder 10.
  • a pulsation damper 17 is provided in the damper chamber 16. In the pulsation damper 17, a gas having a predetermined pressure is sealed inside the two metal diaphragms, and the two metal diaphragms are elastically deformed according to the pressure change in the damper chamber 16, thereby causing the fuel pressure pulsation in the damper chamber 16. Reduce.
  • the pump body 11 has a supply passage 18 and a discharge passage 19 that extend from the pressurizing chamber 15 in the radial direction of the cylinder 10.
  • a suction valve unit 20 is provided in the supply passage 18.
  • the suction valve unit 20 communicates or blocks the pressurizing chamber 15 and the supply passage 18 by the suction valve 22 being separated from or seated on the valve seat 21 provided in the supply passage 18.
  • the suction valve 22 is driven and controlled by an electromagnetic drive unit.
  • the electromagnetic drive unit includes a fixed core 23, a coil 24, a movable core 25, a shaft 26, a spring 27, and the like.
  • the suction valve 22 of the present embodiment is a normally open type, and when the coil 24 is energized from the connector terminal 28, the movable core 25 is magnetically attracted toward the fixed core 23 against the biasing force of the spring 27, and suction is performed. The biasing force of the shaft 26 that biases the valve 22 in the valve opening direction is released.
  • a discharge valve unit 29 is provided in the discharge passage 19.
  • the discharge valve unit 29 communicates or blocks the pressurizing chamber 15 and the discharge passage 19 when the discharge valve 31 is separated from or seated on the valve seat 30 provided in the discharge passage 19.
  • the discharge valve 31 when the force received by the discharge valve 31 from the fuel on the pressurizing chamber 15 side becomes larger than the sum of the force received by the discharge valve 31 from the fuel downstream of the valve seat 30 and the elastic force of the spring 32, Separate from the valve seat 30.
  • the fuel is discharged from the fuel outlet 33 through the discharge passage 19 from the pressurizing chamber 15.
  • a plunger 40 is accommodated inside the cylinder 10 formed in a cylindrical shape so as to be reciprocally movable in the axial direction.
  • the plunger 40 moves toward the damper chamber 16 to reduce the volume of the pressurizing chamber 15 and pressurizes the fuel.
  • the plunger 40 moves to the side opposite to the damper chamber 16 to increase the volume of the pressurizing chamber 15 and sucks fuel into the pressurizing chamber 15 from the supply passage 18.
  • a spring seat 41 is fixed to the end of the plunger 40 opposite to the pressurizing chamber 15.
  • a plunger spring 42 is provided between the spring seat 41 and the holder 60 fixed to the pump body 11. The plunger spring 42 urges the plunger 40 together with the spring seat 41 to the side opposite to the pressurizing chamber 15.
  • the spring seat 41 is fitted to a lifter 4 placed in the bore 3 of the internal combustion engine.
  • the lifter 4 includes a cylindrical tube portion 5, a partition plate 6 provided at an intermediate portion in the axial direction of the tube portion 5, and a roller 7 provided on the opposite side of the spring seat 41 across the partition plate 6.
  • the outer wall of the cylindrical part 5 is in sliding contact with the inner wall of the bore 3 of the internal combustion engine.
  • the roller 7 is in sliding contact with a cam 8 provided in the deep portion of the bore 3 of the internal combustion engine.
  • the cam 8 rotates together with a camshaft or a crankshaft that drives an intake / exhaust valve of the internal combustion engine. The rotation of the cam 8 causes the lifter 4 to reciprocate inside the bore 3, and accordingly, the plunger 40 that contacts the partition plate 6 of the lifter 4 reciprocates in the cylinder 10 in the axial direction.
  • an annular spacer 50 is provided at the end of the cylinder 10 opposite to the pressurizing chamber 15 (see FIG. 1).
  • a fuel seal 51 is provided on the side opposite to the pressurizing chamber 15 with respect to the spacer 50.
  • the fuel seal 51 includes a ring member 52 made of a fluororesin and an O-ring 53 provided on the outer diameter side of the ring member 52.
  • the fuel seal 51 regulates the thickness of the fuel oil film around the plunger 40 and suppresses fuel leakage to the internal combustion engine due to the sliding of the plunger 40.
  • a holder 60 is provided on the side opposite to the pressurizing chamber 15 with respect to the fuel seal 51.
  • the holder 60 is provided coaxially with the cylinder 10 outside the diameter of the plunger 40.
  • the holder 60 has a holder main body 61 formed in a cylindrical shape, and a spring receiving portion 62 provided outside the diameter of the holder main body 61.
  • the spring receiving portion 62 extends from the outer diameter side of the holder main body 61 to the pump body 11 side, and is fixed to a recess 34 provided in the pump body 11 around the cylinder 10.
  • the holder 60 of the present embodiment corresponds to an example of a cylindrical member provided coaxially with the cylinder 10 on the side opposite to the pressurizing chamber 15 of the cylinder 10.
  • the holder body 61 has a large tube portion 63 and a small tube portion 64.
  • a cylindrical space 65 is formed between the large cylinder portion 63 and the plunger 40.
  • the small tube portion 64 is provided on the opposite side of the large tube portion 63 from the cylinder 10 and has an inner diameter smaller than that of the large tube portion 63. Therefore, a step surface 66 is provided between the large tube portion 63 and the small tube portion 64.
  • the oil seal 67 is attached to the end of the holder 60 opposite to the pressurizing chamber 15.
  • the oil seal 67 includes an annular plate 68 fixed to the outside of the holder body 61, an annular seal member 69 for molding the plate 68, and an annular coil spring 70 provided on the outer diameter side of the seal member 69. Composed.
  • the coil spring 70 of the present embodiment corresponds to an example of an annular second urging device that urges the seal member 69 in the radially inward direction.
  • the coil spring 70 urges the seal member 69 in the radially inward direction.
  • the oil seal 67 regulates the thickness of the oil film around the plunger 40 and suppresses the intrusion of oil from the internal combustion engine side due to the sliding of the plunger 40.
  • a hole 43 is provided on the outer wall of the plunger 40 at a position corresponding to the large cylindrical portion 63 of the holder 60.
  • a cylindrical pin 71 and a small spring 72 are accommodated in the hole 43.
  • the small spring 72 of this embodiment corresponds to an example of a biasing device that biases the pin 71 from the hole 43 of the plunger 40 toward the large cylindrical portion 63 of the cylindrical member.
  • the pin 71 and the small spring 72 of this embodiment correspond to an example of a locking member that protrudes radially outward from the outer wall of the plunger 40 and is accommodated in the space 65 inside the large cylindrical portion 63.
  • the small spring 72 urges the pin 71 from the hole 43 of the plunger 40 toward the large cylindrical portion 63 of the holder 60. Therefore, the pin 71 protrudes radially outward from the outer wall of the plunger 40 by the urging force of the small spring 72 and is accommodated in the space 65 inside the large cylindrical portion 63.
  • the length of the pin 71 is a length that can accommodate the entire pin 71 in the hole 43 of the plunger 40 when the small spring 72 is compressed.
  • FIG. 2 shows a state in which the plunger 40 is at the bottom dead center with the high-pressure pump 1 attached to the internal combustion engine.
  • the distance H1 between the inner wall of the large cylinder portion 63 on the cylinder 10 side and the pin 71 is larger than the distance that the plunger 40 reciprocates (see the peak height H2 of the cam 8 in FIG. 1). That is, even when the plunger 40 is at the top dead center, the inner wall of the large cylinder portion 63 on the cylinder 10 side and the pin 71 do not contact each other.
  • FIG. 3 shows a state before the high-pressure pump 1 is attached to the internal combustion engine.
  • the plunger 40 is biased to the side opposite to the pressurizing chamber 15 by the biasing force of the plunger spring 42.
  • one end of the pin 71 provided in the hole 43 of the plunger 40 is locked to the step surface 66 between the large tube portion 63 and the small tube portion 64 of the holder 60. Therefore, the plunger 40 is prevented from falling off the cylinder 10 and the plunger spring 42 is held in a compressed state.
  • the seal member 69 constituting the oil seal 67 is fitted into the groove portion 44 formed in the plunger 40 by the urging force of the coil spring 70 provided on the outer side.
  • an end surface 45 on the pressurizing chamber 15 side is formed perpendicular to the axis of the plunger 40. Therefore, since the seal member 69 is difficult to get over the end surface 45, the movement of the plunger 40 to the side opposite to the pressurizing chamber 15 is suppressed, and as a result, the plunger 40 is prevented from falling off.
  • the groove portion 44 of the plunger 40 has a tapered surface 46 on the side opposite to the pressurizing chamber 15.
  • the step is denoted as S.
  • the plunger 40 is accommodated inside the cylindrical jig 80.
  • the pin 71 is received in the hole 43 of the plunger 40 against the urging force of the small spring 72.
  • the jig insertion step of step 2 the plunger 40 is inserted into the cylinder 10, and the jig 80 is inserted inside the large cylinder portion 63 of the holder 60.
  • the insertion amount of the plunger 40 is adjusted so that the pin 71 is positioned inside the large cylinder portion 63.
  • the jig 80 is removed from the plunger 40.
  • the pin 71 projects from the outer wall of the plunger 40 toward the large cylindrical portion 63 of the holder 60.
  • FIG. 7 shows a state before the pump body 11 is fastened to the engine block 2 with bolts 13.
  • the plunger spring 42 is compressed by a predetermined amount, the fitting portion 12 of the pump body 11 is fitted in the bore 3 of the engine block 2. Accordingly, the amount of compression of the plunger spring 42 when the bolt is fastened is small, so that the pump body 11 can be easily bolted to the engine block 2.
  • step 1 is the same as described above.
  • step 12 the plunger 40 is inserted into the cylinder 10, and the jig 80 is contacted with the axial end of the holder 60.
  • the pin 71 is located on the opposite side of the pressurizing chamber 15 from the holder 60.
  • the plunger moving step of Step 13 the plunger 40 is moved to the pressurizing chamber 15 side.
  • the pin 71 moves from the inside of the jig 80 toward the holder 60, and the pin 71 protrudes from the outer wall of the plunger 40 toward the large cylindrical portion 63 of the holder 60. Then, the high pressure pump 1 is attached to the bore 3 formed in the engine block 2 in the same manner as described above.
  • the high-pressure pump 1 of the first embodiment has the following operational effects.
  • the pin 71 provided at a position corresponding to the large cylindrical portion 63 of the holder 60 protrudes radially outward from the outer wall of the plunger 40 and is accommodated inside the large cylindrical portion 63.
  • the pin 71 is locked to the step surface 66 between the large cylindrical portion 63 and the small cylindrical portion 64 of the holder 60 before the high-pressure pump 1 is attached to the internal combustion engine, so that the plunger 40 is detached from the cylinder 10. Is prevented. Therefore, the plunger spring 42 can be assembled to the pump body 11 in a state where the plunger spring 42 is contracted by a predetermined amount. Therefore, when the high pressure pump 1 is bolted to the internal combustion engine, the length for further compressing the plunger spring 42 is shortened, so that the working efficiency can be increased.
  • the pin 71 is disposed inside the holder 60 provided at a position away from the pressurizing chamber 15, even if the pin 71 is damaged, the high-pressure pump 1 is a fragment of the damaged pin 71. For example, the risk of damaging the inner wall of the cylinder 10 is reduced.
  • the pump body 11 closes the side of the pressurizing chamber 15 opposite to the plunger 40.
  • the high pressure pump 1 has a configuration in which the suction valve unit 20 that supplies fuel to the pressurizing chamber 15 is not provided on the side opposite to the plunger 40 of the pressurizing chamber 15. Therefore, the high pressure pump 1 can reduce the size of the cylinder 10 in the axial direction.
  • the pin 71 can be accommodated in the hole 43 provided in the outer wall of the plunger 40, and protrudes radially outward from the outer wall of the plunger 40 by the biasing force of the small spring 72. . Thereby, even after the holder 60 is assembled to the pump body 11, the pin 71 can be installed inside the large cylindrical portion 63 of the holder 60.
  • the high-pressure pump 1 includes an annular seal member 69 provided on the radially outer side of the plunger 40 and a coil spring 70 that biases the seal member 69 in the radially inward direction.
  • the plunger 40 has a groove portion 44 into which the seal member 69 can be fitted before or after the high-pressure pump 1 is installed in the internal combustion engine. Thereby, it is possible to suppress the plunger 40 from dropping from the cylinder 10 by the biasing force of the coil spring 70 before the high-pressure pump 1 is installed in the internal combustion engine.
  • the method for manufacturing the high-pressure pump 1 includes the jig installation step (S1), the jig insertion step (S2), and the jig removal step (S3) described above.
  • the pin 71 can be installed inside the large cylinder portion 63 of the holder 60. is there.
  • the plunger 40 is inserted into the cylinder 10 from the opening on the side opposite to the pressurizing chamber 15 of the cylinder 10, so there is no possibility that the inner wall of the cylinder 10 is damaged by the pins 71. Therefore, the high-pressure pump 1 can improve the quality related to the fuel discharge amount and the leakage amount.
  • the plunger 400 has a large column portion 401 having a large diameter and a small column portion 402 having an outer diameter smaller than that of the large column portion 401.
  • the large column portion 401 is inserted inside the cylinder 10.
  • the small column portion 402 protrudes on the opposite side of the cylinder 10 from the pressurizing chamber 15.
  • the plunger 400 has a step 403 at a location where the large column portion 401 and the small column portion 402 are connected.
  • the annular spacer 50 provided at the end of the cylinder 10 opposite to the pressurizing chamber 15 has an inner diameter corresponding to the small column portion 402 of the plunger 400. Therefore, in the high pressure pump 101 of the first comparative example, the plunger 400 is prevented from dropping from the cylinder 10 by the step 403 of the plunger 400 being locked to the spacer 50 before being attached to the internal combustion engine. It is.
  • the plunger 400 when the plunger 400 reciprocates in the cylinder 10 due to the rotation of the cam 8, the plunger 400 may be displaced in the rotation direction of the cam 8.
  • the load acting on the inner wall of the cylinder 10 is increased from the step 403 provided at the connection portion between the large column portion 401 and the small column portion 402. Therefore, in the high pressure pump 101 of the first comparative example, there is a concern that the seizure resistance of the plunger 400 is reduced as compared with the plunger 40 of the first embodiment.
  • the plunger 40 of the high pressure pump 102 of the second comparative example is a so-called straight plunger 404 having the same outer diameter in the axial direction as the plunger 40 of the first embodiment.
  • the high-pressure pump 102 of the second comparative example does not include a configuration that prevents the straight plunger 404 from falling off.
  • the plunger spring 42 extends to a free length, so that the fitting body 12 is not fitted into the bore 3 from the state in which the fitting portion 12 of the pump body 11 is not fitted. 11 bolts are to be fastened. Therefore, the high-pressure pump 102 must compress the plunger spring 42 to fit the fitting portion 12 of the pump body 11 into the bore 3 and the bolt fastening of the pump body 11 to the engine block 2 at the same time. Therefore, workability may be deteriorated.
  • an annular groove 47 is provided on the outer wall of the plunger 40 at a position corresponding to the large tube portion 63 of the holder 60.
  • An arc-shaped C-ring 73 is accommodated in the groove 47.
  • the C ring 73 of the present embodiment corresponds to an example of an arcuate elastic member that can be accommodated in a groove 47 provided in an annular shape on the outer wall of the plunger 40. Further, the C ring 73 of this embodiment corresponds to an example of the locking member.
  • the C ring 73 can be accommodated in the groove 47 of the plunger 40 in a state compressed in the radial direction. As indicated by a solid line 732 in FIG. 13, the C-ring 73 protrudes radially outward from the outer wall of the plunger 40 by its own elastic force, and is accommodated so as to extend from the groove 47 to the space 65 inside the large cylindrical portion 63. ing.
  • FIG. 12 shows a state before the high-pressure pump 1 is attached to the internal combustion engine.
  • the plunger 40 is biased to the side opposite to the pressurizing chamber 15 by the biasing force of the plunger spring 42.
  • the outer peripheral side of the C ring 73 is locked to the step surface 66 between the large tube portion 63 and the small tube portion 64 of the holder 60. Therefore, the plunger 40 is prevented from falling off the cylinder 10 and the plunger spring 42 is held in a compressed state.
  • This 2nd Embodiment can also have the same operation effect as a 1st embodiment.
  • FIGS. 14 to 17 A third embodiment of the present disclosure will be described based on FIGS. 14 to 17.
  • the large cylindrical portion 63 of the holder 60 has the same inner diameter from the small cylindrical portion 64 side to the cylinder 10 side. Therefore, the space 65 inside the large cylinder part 63 is open to the cylinder 10 side.
  • the plunger 40 integrally has a large diameter portion 74 at a position corresponding to the large cylinder portion 63 of the holder 60.
  • the outer diameter of the large diameter portion 74 is larger than the outer diameter of the plunger 40.
  • the large diameter portion 74 and the plunger 40 are integrated seamlessly.
  • the large diameter portion 74 of the present embodiment corresponds to an example of the locking member.
  • the outer diameter of the plunger 40 is Dp1
  • the outer diameter of the large diameter portion 74 is Dp2
  • the inner diameter of the large cylindrical portion 63 of the holder 60 is Dh2
  • the inner diameter of the small cylindrical portion 64 of the holder 60 is Dh1.
  • the relationship is Dh2> Dp2> Dh1> Dp1. Therefore, the large diameter portion 74 is locked to the step surface 66 between the large cylinder portion 63 and the small cylinder portion 64 before the high pressure pump 1 is attached to the internal combustion engine. Therefore, the plunger 40 is prevented from falling off the cylinder 10 and the plunger spring 42 is held in a compressed state.
  • FIG. 14 shows a state where the plunger 40 is at the bottom dead center with the high-pressure pump 1 attached to the internal combustion engine.
  • the distance H1 between the large diameter portion 74 and the end surface of the holder 60 on the cylinder 10 side is larger than the distance that the plunger 40 reciprocates. That is, even when the plunger 40 is at the top dead center, the large diameter portion 74 and the fuel seal 51 are not in contact with each other.
  • step 21 the plunger 40 is inserted into the holder 60 from the side opposite to the small tube portion 64 of the holder 60.
  • the large diameter portion 74 of the plunger 40 is fitted inside the large cylindrical portion 63 of the holder 60.
  • step 22 after inserting the fuel seal 51 and the spacer 50 into the plunger 40, the plunger 40 is inserted into the cylinder 10.
  • the spring receiving portion 62 of the holder 60 is fitted into the concave portion 34 of the pump body 11 by press fitting or the like.
  • the pump body 11 and the spring receiving portion 62 of the holder 60 are fixed by welding or the like. Thereafter, the high-pressure pump 1 is attached to a bore 3 formed in the engine block 2 of the internal combustion engine.
  • the high pressure pump 1 of the third embodiment has the following operational effects.
  • the large cylinder portion 63 has the same inner diameter from the small cylinder portion 64 side to the cylinder 10 side, and the space 65 inside the large cylinder portion 63 opens to the cylinder 10 side. .
  • the large diameter portion 74 of the plunger 40 from the cylinder 10 side of the holder 60 to the inside of the large cylinder portion 63 before the holder 60 is assembled to the pump body 11.
  • the large diameter portion 74 is formed integrally with the plunger 40 on the outer wall of the plunger 40. Thereby, the number of parts of the high-pressure pump 1 can be reduced.
  • the manufacturing method of the high-pressure pump 1 includes the fitting step (S21), the cylinder insertion step (S22), and the fixing step (S23) described above. Thereby, it is possible to install the large diameter portion 74 inside the large cylinder portion 63 of the holder 60 without using a jig or the like.
  • the plunger 40 has an annular groove 48 at a position corresponding to the large cylindrical portion 63 of the holder 60.
  • An annular elastic ring 75 is provided outside the annular groove 48.
  • the elastic ring 75 is made of, for example, rubber or elastomer, and is in fluid-tight contact with the inner wall of the large cylinder portion 63.
  • the elastic ring 75 of the present embodiment corresponds to an example of the locking member.
  • the elastic ring 75 is locked to the step surface 66 between the large tube portion 63 and the small tube portion 64 before the high pressure pump 1 is attached to the internal combustion engine. Therefore, the plunger 40 is prevented from dropping from the cylinder 10 and the plunger spring 42 is held in a compressed state.
  • the elastic ring 75 can be expanded and contracted in the circumferential direction. Therefore, as shown by the arrow in FIG. 19, the elastic ring 75 can be attached to the fitting groove of the plunger 40 from the axial direction of the plunger 40.
  • the elastic ring 75 is fitted in the annular groove 48 provided on the outer wall of the plunger 40.
  • the elastic ring 75 and the inner wall of the large cylindrical portion 63 are in fluid-tight sliding contact to prevent fuel leakage from the gap between the cylinder 10 and the plunger 40 to the outside, and from the outside to the gap. Infiltration of oil can be prevented.
  • the high-pressure pump 1 in which the opposite side of the pressurizing chamber 15 from the plunger 40 is closed by the pump body 11 has been described.
  • the high-pressure pump 1 may include a suction valve unit 20 or a discharge valve unit 29 detachably on the opposite side of the pressurizing chamber 15 from the plunger 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 高圧ポンプ(1)のプランジャ(40)は、シリンダ(10)の内側に往復移動可能に設けられる。シリンダの加圧室とは反対側に設けられるホルダ(60)は、プランジャの外壁と所定の空間(65)を形成する大筒部(63)、及びその大筒部のシリンダとは反対側に設けられる小筒部(64)を有する。大筒部に対応する位置でプランジャの穴(43)に差し込まれたピン(71)は、プランジャの外壁から径外方向へ突出し、大筒部の内側の空間(65)に収容される。これにより、内燃機関に高圧ポンプを取り付ける前の状態で、ホルダの大筒部と小筒部との段差面(66)にピンが係止され、プランジャはシリンダからの脱落が防がれる。これにより、プランジャのシリンダへの組み付け方向に関わらずプランジャの脱落を防ぐことができる。

Description

高圧ポンプ及びその製造方法 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年1月20日に出願された日本特許出願2015-008336を基にしている。
 本開示は、内燃機関に用いられる高圧ポンプ及びその製造方法に関する。
 従来、内燃機関に燃料を供給する燃料供給系統に設けられ、燃料を加圧する高圧ポンプが知られている。高圧ポンプは、シリンダの内側に設けられたプランジャの往復移動により、シリンダの深部に形成された加圧室の容積を可変し、燃料を加圧する。加圧室で加圧された燃料は、そこに連通する吐出通路から吐出される。
 特許文献1に記載された高圧ポンプの一つの実施例では、加圧室に露出するプランジャの径外側にリング状の部材が嵌合している。この高圧ポンプは、内燃機関に取り付ける前の状態で、そのリング状の部材が加圧室とシリンダとの段差部分に係止されることにより、シリンダからプランジャが脱落することが防がれている。
 また、特許文献1に記載された高圧ポンプの別の実施例では、シリンダ内に位置する部分のプランジャの外径よりも、シリンダの加圧室とは反対側に突出する部分のプランジャの外径が小さく形成され、プランジャは、その外径が変化する箇所に段差を有している。この高圧ポンプも、内燃機関に取り付ける前の状態で、そのプランジャの段差がポンプボディの段差部分に係止されることにより、シリンダからプランジャが脱落することが防がれている。
 ところで、特許文献1に記載の高圧ポンプは、加圧室への燃料の供給を制御する吸入弁ユニットが、加圧室のプランジャとは反対側に設けられている。吸入弁ユニットは、ポンプボディに対し着脱可能に設けられている。したがって、この高圧ポンプの構成では、ポンプボディに吸入弁ユニットを組み付ける前に、加圧室側からシリンダにプランジャを挿し込むことが可能である。
特開2003-65175号公報
 特許文献1に記載の高圧ポンプは、上述した吸入弁ユニットにより、シリンダの軸方向の体格が大型化する場合がある。仮に、特許文献1に記載の高圧ポンプにおいて、吸入弁ユニットを設置する位置をシリンダの径方向に変更し、加圧室のプランジャとは反対側をポンプボディで塞いだ場合、いずれの実施例のプランジャも、シリンダの加圧室とは反対側の開口部からシリンダに組み付けることは困難である。
 本開示は、上記点に鑑みてなされたものであり、プランジャのシリンダへの組み付け方向に関わらずプランジャの脱落を防ぐことの可能な高圧ポンプ及びその製造方法を提供することを目的とする。
 本開示の第1態様によると、高圧ポンプは、シリンダと、シリンダの深部に設けられる加圧室を有するポンプボディと、シリンダの内側に往復移動可能に設けられ、加圧室の容積を可変するプランジャと、シリンダの加圧室とは反対側でシリンダと同軸に設けられ、プランジャの外壁と所定の空間を区画する大筒部、及び大筒部のシリンダとは反対側で大筒部の内径よりも小さい内径の小筒部を有する筒状部材と、筒状部材の大筒部に対応する位置で、プランジャの外壁から径外方向へ突出し、大筒部の内側の空間に収容される係止部材と、を備える。
 これにより、内燃機関に高圧ポンプを取り付ける前の状態で、筒状部材の大筒部と小筒部との段差部分に係止部材が係止されるので、プランジャはシリンダからの脱落が防がれる。
 本開示の第2態様によると、高圧ポンプの製造方法は、筒状の治具の内側にプランジャを収容し、係止部材をプランジャの穴又は溝に収容すること、筒状部材の大筒部の内側に治具を挿し込むこと、およびプランジャから治具を取り外し、プランジャの外壁から筒状部材の大筒部に係止部材を突出させること、を含む。
 本開示の第3態様によると、高圧ポンプの製造方法は、筒状部材の小筒部とは反対側から大筒部の内側の空間に係止部材を嵌合すること、シリンダにプランジャを挿し込むこと、およびポンプボディに筒状部材を固定すること、を含む。
 上記第2及び第3態様による製造方法は、加圧室のプランジャとは反対側がポンプボディにより塞がれた形状の高圧ポンプであっても、筒状部材の大筒部の内側に係止部材を設置することが可能である。
本開示の第1実施形態による高圧ポンプの断面図である。 図1のII部分を示す図である。 第1実施形態における内燃機関に取り付け前の状態の高圧ポンプの一部を示す断面図である。 第1実施形態の高圧ポンプの製造工程を示すフローチャートである。 第1実施形態の高圧ポンプの製造時の状態を示す断面図である。 図5のVI-VI線の断面図である。 第1実施形態の高圧ポンプを内燃機関に取り付ける状態を示す断面図である。 第1実施形態の高圧ポンプの別の製造工程を示すフローチャートである。 第1実施形態の高圧ポンプの製造時の状態を示す断面図である。 本開示の第1比較例の高圧ポンプを内燃機関に取り付ける状態を示す断面図である。 本開示の第2比較例の高圧ポンプを内燃機関に取り付ける状態を示す断面図である。 本開示の第2実施形態の高圧ポンプの一部を示す断面図である。 図12のXIII-XIII線の断面図である。 本開示の第3実施形態の高圧ポンプの一部を示す断面図である。 第3実施形態の高圧ポンプの製造工程を示すフローチャートである。 第3実施形態の高圧ポンプの製造時の状態を示す断面図である。 第3実施形態の高圧ポンプの製造時の状態を示す断面図である。 本開示の第4実施形態の高圧ポンプの部分断面図である。 第4実施形態の高圧ポンプの製造時の状態を示す断面図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 本開示の第1実施形態による高圧ポンプを図1~図9に示す。本実施形態の高圧ポンプ1は、内燃機関のエンジンブロック2に取り付けられ、燃料タンクから汲み上げられた燃料を加圧し、デリバリパイプに圧送する。デリバリパイプに蓄圧された燃料は、インジェクタから内燃機関の各気筒に噴射供給される。
 図1に示すように、高圧ポンプ1は、シリンダ10、ポンプボディ11、プランジャ40、筒状部材としてのホルダ60、及び係止部材としてのピン71等を備えている。図1では、シリンダ10とポンプボディ11の境界を概念的に破線110で示しているが、本実施形態では、シリンダ10とポンプボディ11は継ぎ目なく一体に形成されている。なお、シリンダ10とポンプボディ11は別体で構成してもよい。ポンプボディ11は、内燃機関のエンジンブロック2に形成されたボア3に嵌合可能な筒状の嵌合部12を有する。ポンプボディ11は、図1の一点鎖線13で示した位置に設けられる図示していないボルトにより、エンジンブロック2に固定される。その際、嵌合部12の外側に設けられた当接面14がエンジンブロック2に当接する。
 ポンプボディ11は、シリンダ10の深部(端部)に形成される加圧室15を有する。加圧室15の内径は、シリンダ10の内径よりも僅かに大きく形成されている。この加圧室15は、プランジャ40と反対側がポンプボディ11によって塞がれている。ポンプボディ11には、加圧室15のシリンダ10とは反対側にダンパ室16が形成されている。ダンパ室16には、パルセーションダンパ17が設けられている。パルセーションダンパ17は、2枚の金属ダイアフラムの内部に所定圧の気体が密封され、その2枚の金属ダイアフラムがダンパ室16の圧力変化に応じて弾性変形することで、ダンパ室16の燃圧脈動を低減する。
 ポンプボディ11は、加圧室15からシリンダ10の径方向に延びる供給通路18と吐出通路19を有する。供給通路18には、吸入弁ユニット20が設けられている。吸入弁ユニット20は、供給通路18に設けられた弁座21に対し、吸入弁22が離座又は着座することにより、加圧室15と供給通路18とを連通又は遮断する。吸入弁22は、電磁駆動部により駆動制御される。電磁駆動部は、固定コア23、コイル24、可動コア25、シャフト26およびスプリング27等により構成される。本実施形態の吸入弁22はノーマリオープンタイプであり、コネクタ端子28からコイル24へ通電されると、可動コア25がスプリング27の付勢力に抗して固定コア23側へ磁気吸引され、吸入弁22を開弁方向へ付勢するシャフト26の付勢力が解除される。
 吐出通路19には、吐出弁ユニット29が設けられている。吐出弁ユニット29は、吐出通路19に設けられた弁座30に対し、吐出弁31が離座又は着座することにより、加圧室15と吐出通路19とを連通又は遮断する。吐出弁31は、加圧室15側の燃料から吐出弁31が受ける力が、弁座30より下流側の燃料から吐出弁31が受ける力とスプリング32の弾性力との和よりも大きくなると、弁座30から離座する。これにより、加圧室15から吐出通路19を通り、燃料出口33から燃料が吐出される。
 円筒状に形成されたシリンダ10の内側には、プランジャ40が軸方向に往復移動可能に収容されている。プランジャ40は、ダンパ室16側へ移動することにより加圧室15の容積を小さくし、燃料を加圧する。また、プランジャ40は、ダンパ室16とは反対側へ移動することにより加圧室15の容積を大きくし、供給通路18から加圧室15へ燃料を吸入する。
 プランジャ40の加圧室15とは反対側の端部にスプリング座41が固定されている。そのスプリング座41と、ポンプボディ11に固定されたホルダ60との間に、プランジャスプリング42が設けられている。このプランジャスプリング42は、スプリング座41と共にプランジャ40を加圧室15とは反対側へ付勢している。スプリング座41は、内燃機関のボア3に入れられたリフタ4に嵌合している。
 リフタ4は、円筒状の筒部5、その筒部5の軸方向の中間部分に設けられた仕切板6、及びその仕切板6を挟んでスプリング座41の反対側に設けられたローラー7を有している。筒部5の外壁は、内燃機関のボア3の内壁に摺接している。ローラー7は、内燃機関のボア3の深部に設けられたカム8に摺接する。カム8は、内燃機関の吸・排気弁を駆動するカムシャフトまたはクランクシャフトと共に回転する。カム8の回転により、リフタ4がボア3の内側を往復移動し、それに伴って、リフタ4の仕切板6に当接するプランジャ40がシリンダ10内を軸方向に往復移動する。
 図2に示すように、シリンダ10の加圧室15(図1参照)とは反対側の端部には、環状のスペーサ50が設けられている。このスペーサ50に対し加圧室15とは反対側に燃料シール51が設けられている。この燃料シール51は、フッ素樹脂から形成されるリング部材52と、そのリング部材52の径外側に設けられたOリング53から構成されている。燃料シール51は、プランジャ40の周囲の燃料油膜の厚さを規制し、プランジャ40の摺動による内燃機関側への燃料のリークを抑制する。
 燃料シール51に対し加圧室15とは反対側にホルダ60が設けられている。ホルダ60は、プランジャ40の径外側に、シリンダ10と同軸に設けられている。ホルダ60は、筒状に形成されるホルダ本体61、及び、そのホルダ本体61の径外側に設けられたスプリング受部62を有している。スプリング受部62は、ホルダ本体61の径外側からポンプボディ11側に延び、シリンダ10の周囲のポンプボディ11に設けられた凹部34に固定される。本実施形態のホルダ60は、シリンダ10の加圧室15とは反対側でシリンダ10と同軸に設けられた筒状部材の一例に相当する。
 ホルダ本体61は、大筒部63及び小筒部64を有する。大筒部63とプランジャ40との間には、円筒状の空間65が形成されている。小筒部64は、大筒部63のシリンダ10とは反対側に設けられ、大筒部63よりも内径が小さい。そのため、大筒部63と小筒部64との間には段差面66が設けられる。
 ホルダ60の加圧室15とは反対側の端部には、オイルシール67が装着されている。オイルシール67は、ホルダ本体61の外側に固定された環状の板材68、その板材68をモールドする環状のシール部材69、及び、そのシール部材69の径外側に設けられた環状のコイルスプリング70から構成される。本実施形態のコイルスプリング70は、シール部材69を径内方向へ付勢する環状の第2付勢装置の一例に相当する。コイルスプリング70は、シール部材69を径内方向へ付勢している。オイルシール67は、プランジャ40の周囲のオイル油膜の厚さを規制し、プランジャ40の摺動による内燃機関側からのオイルの浸入を抑制する。
 プランジャ40の外壁には、ホルダ60の大筒部63に対応する位置に穴43が設けられている。この穴43には、円柱状のピン71と、小スプリング72が収容されている。本実施形態の小スプリング72は、ピン71をプランジャ40の穴43から筒状部材の大筒部63に向けて付勢する付勢装置の一例に相当する。また、本実施形態のピン71と小スプリング72は、プランジャ40の外壁から径外方向へ突出し、大筒部63の内側の空間65に収容される係止部材の一例に相当する。
 小スプリング72は、ピン71をプランジャ40の穴43からホルダ60の大筒部63に向けて付勢している。そのため、ピン71は、小スプリング72の付勢力によりプランジャ40の外壁から径外方向へ突出し、大筒部63の内側の空間65に収容されている。なお、ピン71の長さは、小スプリング72を圧縮したとき、プランジャ40の穴43にピン71の全体が収容可能な長さである。
 なお、図2は、高圧ポンプ1を内燃機関に取り付けた状態で、プランジャ40が下死点にある状態を示している。この状態で、大筒部63のシリンダ10側の内壁とピン71との距離H1は、プランジャ40が往復移動する距離(図1のカム8の山の高さH2を参照)よりも大きい。即ち、プランジャ40が上死点にあるときも、大筒部63のシリンダ10側の内壁とピン71とは接触しない。
 図3では、高圧ポンプ1を内燃機関に取り付ける前の状態を示している。この状態で、プランジャ40はプランジャスプリング42の付勢力により、加圧室15とは反対側に付勢されている。このとき、プランジャ40の穴43に設けられたピン71は、一端がホルダ60の大筒部63と小筒部64との段差面66に係止されている。そのため、プランジャ40のシリンダ10からの脱落が防がれると共に、プランジャスプリング42が圧縮された状態で保持される。
 また、この状態のとき、オイルシール67を構成するシール部材69は、その外側に設けられたコイルスプリング70の付勢力により、プランジャ40に形成された溝部44に嵌合する。プランジャ40の溝部44は、加圧室15側の端面45がプランジャ40の軸に対して垂直に形成されている。そのため、シール部材69がその端面45を乗り越えにくいので、プランジャ40の加圧室15とは反対側への移動が抑制され、その結果プランジャ40の脱落が抑制される。
 また、プランジャ40の溝部44は、加圧室15とは反対側がテーパ面46となっている。これにより、シール部材69がそのテーパ面46を乗り越えやすいので、プランジャ40の加圧室15側への移動が容易となり、その結果、ポンプボディ11のエンジンブロック2への取り付けが容易になる。
 次に、高圧ポンプ1の製造方法について、図4から図7を参照して説明する。なお、図面に記載のフローチャートでは、ステップをSと表記する。まず、ステップ1の治具設置工程では、筒状の治具80の内側にプランジャ40を収容する。このとき、小スプリング72の付勢力に抗してピン71をプランジャ40の穴43に収容する。次に、ステップ2の治具挿込工程では、シリンダ10にプランジャ40を挿し込むと共に、ホルダ60の大筒部63の内側に治具80を挿し込む。このとき、図5及び図6に示すように、ピン71が大筒部63の内側に位置するように、プランジャ40の挿入量を調整する。続いて、ステップ3の治具取り外し工程では、プランジャ40から治具80を取り外す。これにより、プランジャ40の外壁からホルダ60の大筒部63に向けてピン71が突出する。
 その後、図7に示すように、内燃機関のエンジンブロック2に形成されたボア3に高圧ポンプ1を取り付ける。図7では、エンジンブロック2に対しポンプボディ11をボルト13により締結する前の状態を示している。この状態で、プランジャスプリング42は所定量圧縮されているので、ポンプボディ11の嵌合部12がエンジンブロック2のボア3に嵌まり込んでいる。したがって、ボルト締結時におけるプランジャスプリング42の圧縮量が小さくなるので、ポンプボディ11をエンジンブロック2に容易にボルト締結することが可能である。
 なお、図8及び図9では、第1実施形態の高圧ポンプ1の別の製造方法を例示している。この製造方法では、ステップ1は上述の説明と同じである。次に、ステップ12の当接工程では、シリンダ10にプランジャ40を挿し込むと共に、ホルダ60の軸方向の端部に治具80を当接する。このとき、図9に示すように、ピン71はホルダ60よりも加圧室15とは反対側に位置する。続いて、ステップ13のプランジャ移動工程では、プランジャ40を加圧室15側へ移動する。これにより、治具80の内側からホルダ60側へピン71が移動し、プランジャ40の外壁からホルダ60の大筒部63に向けてピン71が突出する。その後、上述した工程と同じく、エンジンブロック2に形成されたボア3に高圧ポンプ1を取り付ける。
 第1実施形態の高圧ポンプ1は、次の作用効果を奏する。(1)第1実施形態では、ホルダ60の大筒部63に対応する位置に設けられたピン71は、プランジャ40の外壁から径外方向へ突出し、大筒部63の内側に収容される。
 これにより、内燃機関に高圧ポンプ1を取り付ける前の状態で、ホルダ60の大筒部63と小筒部64との段差面66にピン71が係止されるので、プランジャ40はシリンダ10からの脱落が防がれる。そのため、プランジャスプリング42を所定量収縮させた状態でポンプボディ11に組み付けることが可能である。したがって、高圧ポンプ1を内燃機関にボルト締結する際、そのプランジャスプリング42をさらに圧縮する長さが短くなるので、その作業効率を高めることができる。
 また、ピン71は、加圧室15から離れた位置に設けられたホルダ60の内側に配置されるので、高圧ポンプ1は、仮にそのピン71が破損した場合でも、その破損したピン71の破片などによりシリンダ10の内壁を傷つけるおそれが低いものとなる。
 (2)第1実施形態では、ポンプボディ11は、加圧室15のプランジャ40とは反対側を塞いでいる。これにより、高圧ポンプ1は、加圧室15に燃料を供給する吸入弁ユニット20を、加圧室15のプランジャ40とは反対側に設けることの無い構成となる。そのため、この高圧ポンプ1は、シリンダ10の軸方向の体格を小さくすることが可能である。
 (3)第1実施形態では、ピン71は、プランジャ40の外壁に設けられた穴43に収容可能であり、小スプリング72の付勢力によりプランジャ40の外壁から径外方向へ突出するものである。これにより、ポンプボディ11にホルダ60を組み付けた後であっても、ホルダ60の大筒部63の内側にピン71を設置することが可能である。
 (4)第1実施形態では、高圧ポンプ1は、プランジャ40の径外側に設けられた環状のシール部材69と、そのシール部材69を径内方向へ付勢するコイルスプリング70を備える。プランジャ40は、高圧ポンプ1が内燃機関に設置される前の状態又は設置された状態でシール部材69が嵌合可能な溝部44を有する。これにより、高圧ポンプ1を内燃機関に設置する前の状態で、コイルスプリング70の付勢力により、シリンダ10からプランジャ40が脱落することを抑制することができる。
 (5)第1実施形態では、高圧ポンプ1の製造方法は、上述した治具設置工程(S1)、治具挿込工程(S2)及び治具取り外し工程(S3)を含む。これにより、加圧室15のプランジャ40とは反対側がポンプボディ11により塞がれた形状の高圧ポンプ1であっても、ホルダ60の大筒部63の内側にピン71を設置することが可能である。また、高圧ポンプ1の組み立ての際、シリンダ10の加圧室15とは反対側の開口からシリンダ10にプランジャ40を挿入することになるので、シリンダ10の内壁をピン71により傷つけるおそれが無い。したがって、この高圧ポンプ1は、燃料吐出量及び漏れ量等に関する品質を高めることができる。
 ここで、第1比較例について図10を参照して説明する。第1比較例の高圧ポンプ101は、プランジャ400が大径の大柱部401と、その大柱部401よりも外径が小さい小柱部402を有している。大柱部401は、シリンダ10の内側に挿入されている。小柱部402は、シリンダ10の加圧室15とは反対側に突出している。プランジャ400は、大柱部401と小柱部402の接続する箇所に段差403を有している。シリンダ10の加圧室15とは反対側の端部に設けられた環状のスペーサ50は、その内径がプランジャ400の小柱部402に対応するものとなっている。そのため、この第1比較例の高圧ポンプ101は、内燃機関に取り付ける前の状態で、プランジャ400の段差403がスペーサ50に係止されることにより、シリンダ10からプランジャ400が脱落することが防がれている。
 ところで、一般に、高圧ポンプ101は、カム8の回転によりプランジャ400がシリンダ10内を往復移動する際、カム8の回転方向にプランジャ400が軸ずれすることがある。この場合、第1比較例の高圧ポンプ101は、大柱部401と小柱部402の接続箇所に設けられた段差403からシリンダ10の内壁に作用する荷重が大きくなることが考えられる。そのため、第1比較例の高圧ポンプ101は、第1実施形態のプランジャ40と比べて、プランジャ400の耐焼き付き性が低下することが懸念される。
 次に、第2比較例について図11を参照して説明する。第2比較例の高圧ポンプ102のプランジャ40は、第1実施形態のプランジャ40と同様に、その外径が軸方向に同一に形成された所謂ストレートプランジャ404である。しかし、第2比較例の高圧ポンプ102は、ストレートプランジャ404の脱落を防ぐ構成を備えていない。そのため、この高圧ポンプ102を内燃機関のボア3に取り付ける際、プランジャスプリング42が自由長まで伸びているので、ポンプボディ11の嵌合部12がボア3に嵌合していない状態から、ポンプボディ11のボルト締結を行うことになる。したがって、この高圧ポンプ102は、プランジャスプリング42を圧縮してポンプボディ11の嵌合部12をボア3に嵌合する作業と、ポンプボディ11をエンジンブロック2にボルト締結する作業を同時に行わなければならないので、作業性が悪化するおそれがある。
 (第2実施形態)
 続いて、本開示の第2実施形態を図12及び図13に基づいて説明する。第2実施形態では、プランジャ40の外壁に、ホルダ60の大筒部63に対応する位置に環状の溝47が設けられている。この溝47には、円弧状のCリング73が収容されている。本実施形態のCリング73は、プランジャ40の外壁に環状に設けられた溝47に収容可能な円弧状の弾性部材の一例に相当する。また、本実施形態のCリング73は、上記係止部材の一例に相当する。
 図13の破線731に示すように、Cリング73は、径内方向に圧縮した状態で、プランジャ40の溝47にCリング73の全体が収容可能である。図13の実線732に示すように、このCリング73は、自身の弾性力によりプランジャ40の外壁から径外方向へ突出し、溝47から大筒部63の内側の空間65に亘るようにして収容されている。
 図12は、高圧ポンプ1を内燃機関に取り付ける前の状態を示している。この状態で、プランジャ40はプランジャスプリング42の付勢力により、加圧室15とは反対側に付勢されている。このとき、Cリング73は、外周側がホルダ60の大筒部63と小筒部64との段差面66に係止されている。そのため、プランジャ40のシリンダ10からの脱落が防がれると共に、プランジャスプリング42が圧縮された状態で保持される。この第2実施形態も、第1実施形態と同様の作用効果を奏することが可能である。
 (第3実施形態)
 本開示の第3実施形態を図14から図17に基づいて説明する。第3実施形態では、ホルダ60の大筒部63は、その内径が小筒部64側からシリンダ10側に亘り同一に形成されている。そのため、大筒部63の内側の空間65は、シリンダ10側へ開口している。
 プランジャ40は、ホルダ60の大筒部63に対応する位置に大径部74を一体に有している。大径部74の外径は、プランジャ40の外径よりも大きい。大径部74とプランジャ40とは継ぎ目なく一体化されている。本実施形態の大径部74は、上記係止部材の一例に相当する。
 ここで、プランジャ40の外径をDp1、大径部74の外径をDp2、ホルダ60の大筒部63の内径をDh2、ホルダ60の小筒部64の内径をDh1とする。このとき、それらの関係は、Dh2>Dp2>Dh1>Dp1である。したがって、高圧ポンプ1を内燃機関に取り付ける前の状態で、大径部74は、大筒部63と小筒部64との段差面66に係止される。そのため、プランジャ40のシリンダ10からの脱落が防がれると共に、プランジャスプリング42が圧縮された状態で保持される。
 なお、図14は、高圧ポンプ1を内燃機関に取り付けた状態で、プランジャ40が下死点にある状態を示している。この状態で、大径部74とホルダ60のシリンダ10側の端面との距離H1は、プランジャ40が往復移動する距離よりも大きい。即ち、プランジャ40が上死点にあるときも、大径部74と燃料シール51とは接触しない。
 次に、第3実施形態の高圧ポンプ1の製造方法について、図15から図17を参照して説明する。まず、ステップ21の嵌合工程では、図16の矢印に示すように、ホルダ60の小筒部64とは反対側からホルダ60の内側にプランジャ40を入れる。このとき、プランジャ40の大径部74をホルダ60の大筒部63の内側に嵌合する。次に、ステップ22のシリンダ挿込工程では、図17の矢印に示すように、プランジャ40に燃料シール51とスペーサ50を入れた後、そのプランジャ40をシリンダ10に挿し込む。このとき、ホルダ60のスプリング受部62をポンプボディ11の凹部34に圧入等により嵌め入れる。続いて、ステップ23の固定工程では、ポンプボディ11とホルダ60のスプリング受部62を溶接などにより固定する。その後、高圧ポンプ1は、内燃機関のエンジンブロック2に形成されたボア3に取り付けられる。
 第3実施形態の高圧ポンプ1は、次の作用効果を奏する。(1)第3実施形態では、大筒部63は、その内径が小筒部64側からシリンダ10側に亘り同一に形成され、大筒部63の内側の空間65がシリンダ10側へ開口している。これにより、ポンプボディ11にホルダ60を組み付ける前の段階で、ホルダ60のシリンダ10側から大筒部63の内側にプランジャ40の大径部74を嵌合することが可能である。
 (2)第3実施形態では、大径部74は、プランジャ40の外壁にプランジャ40と一体に形成されている。これにより、高圧ポンプ1の部品点数を少なくすることができる。
 (3)第3実施形態では、高圧ポンプ1の製造方法は、上述した嵌合工程(S21)、シリンダ挿込工程(S22)、および固定工程(S23)を含む。これにより、治具等を使用することなく、ホルダ60の大筒部63の内側に大径部74を設置することが可能である。
 (第4実施形態)
 本開示の第4実施形態を図18及び図19に基づいて説明する。第4実施形態では、プランジャ40は、ホルダ60の大筒部63に対応する位置に環状溝48を有している。この環状溝48の外側には、環状の弾性リング75が設けられている。弾性リング75は、例えばゴム又はエラストマーなどから形成され、大筒部63の内壁に液密に摺接する。本実施形態の弾性リング75は、上記係止部材の一例に相当する。
 高圧ポンプ1を内燃機関に取り付ける前の状態で、弾性リング75は、大筒部63と小筒部64との段差面66に係止される。そのため、シリンダ10からのプランジャ40の脱落が防がれると共に、プランジャスプリング42が圧縮された状態で保持される。
 なお、弾性リング75は、周方向に伸縮可能である。そのため、図19の矢印に示すように、弾性リング75は、プランジャ40の軸方向からプランジャ40の嵌合溝に取り付けることが可能である。
 第4実施形態では、弾性リング75は、プランジャ40の外壁に設けられた環状溝48に嵌合する。これにより、プランジャ40の外壁に突出する箇所を設けることが無いので、プランジャ40を軸方向に連続して研磨することが可能になる。したがって、プランジャ40の製造工程を簡素にすることができる。さらに、第4実施形態では、弾性リング75と大筒部63の内壁とが液密に摺接することで、シリンダ10とプランジャ40との隙間から外部への燃料漏れを防ぐと共に、外部からその隙間へのオイルの浸入を防ぐことができる。
 上述した複数の実施形態では、加圧室15のプランジャ40とは反対側がポンプボディ11により塞がれた高圧ポンプ1について説明した。高圧ポンプ1は、加圧室15のプランジャ40とは反対側に吸入弁ユニット20または吐出弁ユニット29などを着脱可能に備えてもよい。
 本開示は、上述した実施形態に限定されるものではなく、上述した複数の実施形態を組み合わせることに加え、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (11)

  1.  シリンダ(10)と、
     前記シリンダの深部に設けられる加圧室(15)を有するポンプボディ(11)と、
     前記シリンダの内側に往復移動可能に設けられ、前記加圧室の容積を可変するプランジャ(40)と、
     前記シリンダの前記加圧室とは反対側で前記シリンダと同軸に設けられ、前記プランジャの外壁と所定の空間(65)を区画する大筒部(63)、及び前記大筒部の前記シリンダとは反対側で前記大筒部の内径よりも小さい内径の小筒部(64)を有する筒状部材(60)と、
     前記筒状部材の前記大筒部に対応する位置で、前記プランジャの外壁から径外方向へ突出し、前記大筒部の内側の前記空間に収容される係止部材(71、72、73、74、75)と、を備える高圧ポンプ。
  2.  前記シリンダと前記ポンプボディとは一体化され、
     前記ポンプボディは、前記加圧室の前記プランジャとは反対側を塞いでいる請求項1に記載の高圧ポンプ。
  3.  前記係止部材は、前記プランジャの外壁に設けられた穴(43)または溝(47)に収容可能であり、前記プランジャの外壁から径外方向へ付勢力により突出するものである請求項1または2に記載の高圧ポンプ。
  4.  前記係止部材は、
     前記プランジャの外壁に設けられた前記穴に収容されるピン(71)と、
     前記ピンを前記プランジャの前記穴から前記筒状部材の前記大筒部に向けて付勢する付勢装置(72)と、を有する請求項3に記載の高圧ポンプ。
  5.  前記係止部材は、
     前記プランジャの外壁に環状に設けられた前記溝に収容可能な円弧状の弾性部材(73)である請求項3に記載の高圧ポンプ。
  6.  前記筒状部材の前記シリンダとは反対側に位置する前記プランジャの径外側に設けられる環状のシール部材(69)と、
     前記シール部材を径内方向へ付勢する環状の第2付勢装置(70)と、をさらに備え、
     前記プランジャは、前記ポンプボディが内燃機関(2)に設置される前の状態で前記シール部材が嵌合可能な溝部(44)を有する請求項1から5のいずれか一項に記載の高圧ポンプ。
  7.  前記大筒部は、前記小筒部側から前記シリンダ側に亘り同一の内径を有し、前記大筒部の内側の空間が前記シリンダ側へ開口している請求項1から6のいずれか一項に記載の高圧ポンプ。
  8.  前記係止部材は、前記プランジャの外壁に前記プランジャと一体化された大径部(74)である請求項7に記載の高圧ポンプ。
  9.  前記係止部材は、前記プランジャの外壁に設けられた環状溝(48)に嵌合する環状の弾性リング(75)である請求項7に記載の高圧ポンプ。
  10.  請求項1または2に記載の高圧ポンプの製造方法において、
     筒状の治具(80)の内側に前記プランジャを収容し、前記係止部材を前記プランジャの外壁に設けられた穴又は溝に収容すること(S1)と、
     前記筒状部材の前記大筒部の内側に前記治具を挿し込むこと(S2)と、
     前記プランジャから前記治具を取り外し、前記プランジャの外壁から前記筒状部材の前記大筒部に前記係止部材を突出させること(S3)と、を含む高圧ポンプの製造方法。
  11.  請求項7から9のいずれか一項に記載の高圧ポンプの製造方法において、
     前記筒状部材の前記小筒部とは反対側から前記大筒部の内側の空間に前記係止部材を嵌合すること(S21)と、
     前記シリンダに前記プランジャを挿し込むこと(S22)と、
     前記ポンプボディに前記筒状部材を固定すること(S23)と、を含む高圧ポンプの製造方法。
PCT/JP2016/000130 2015-01-20 2016-01-13 高圧ポンプ及びその製造方法 WO2016117297A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/544,039 US20180010562A1 (en) 2015-01-20 2016-01-13 High-pressure pump and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015008336A JP2016133058A (ja) 2015-01-20 2015-01-20 高圧ポンプ及びその製造方法
JP2015-008336 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117297A1 true WO2016117297A1 (ja) 2016-07-28

Family

ID=56416852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000130 WO2016117297A1 (ja) 2015-01-20 2016-01-13 高圧ポンプ及びその製造方法

Country Status (3)

Country Link
US (1) US20180010562A1 (ja)
JP (1) JP2016133058A (ja)
WO (1) WO2016117297A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743302B2 (ja) * 2017-06-27 2020-08-19 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
DE102020104313B3 (de) * 2020-02-19 2021-01-28 Schaeffler Technologies AG & Co. KG Stößel zur Beaufschlagung eines Pumpenkolbens einer Kraftstoffhochdruckpumpe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117823A (en) * 1978-02-16 1979-09-12 Bosch Gmbh Robert Fuel injection pump for internal combustion engine
JPH1172061A (ja) * 1997-06-30 1999-03-16 Unisia Jecs Corp 燃料加圧用ポンプ
JP2003206825A (ja) * 2002-01-16 2003-07-25 Denso Corp 代替燃料用の高圧ポンプ
JP2013050081A (ja) * 2011-08-31 2013-03-14 Denso Corp 高圧ポンプ
JP2013167250A (ja) * 2011-01-27 2013-08-29 Nippon Soken Inc 高圧ポンプ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ867900A0 (en) * 2000-07-10 2000-08-03 Medrad, Inc. Medical injector system
JP5939122B2 (ja) * 2012-10-09 2016-06-22 株式会社デンソー 高圧ポンプ
EP2821646A1 (en) * 2013-07-01 2015-01-07 Delphi International Operations Luxembourg S.à r.l. High pressure pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117823A (en) * 1978-02-16 1979-09-12 Bosch Gmbh Robert Fuel injection pump for internal combustion engine
JPH1172061A (ja) * 1997-06-30 1999-03-16 Unisia Jecs Corp 燃料加圧用ポンプ
JP2003206825A (ja) * 2002-01-16 2003-07-25 Denso Corp 代替燃料用の高圧ポンプ
JP2013167250A (ja) * 2011-01-27 2013-08-29 Nippon Soken Inc 高圧ポンプ
JP2013050081A (ja) * 2011-08-31 2013-03-14 Denso Corp 高圧ポンプ

Also Published As

Publication number Publication date
JP2016133058A (ja) 2016-07-25
US20180010562A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP3851056B2 (ja) 高圧ポンプ
JP4453028B2 (ja) 高圧燃料ポンプ
JP2006170184A (ja) 高圧燃料ポンプ
EP2915995B1 (en) Pump for supplying high-pressure fuel
JP2019074092A (ja) 高圧燃料供給ポンプ
KR19980086462A (ko) 고압 연료 공급펌프
JP2020020342A (ja) 高圧燃料ポンプ及びその製造方法
JP2016138531A (ja) 駆動機構搭載部品
JP3693992B2 (ja) 高圧燃料ポンプ
JP5862580B2 (ja) 高圧燃料ポンプ
WO2016116995A1 (ja) 高圧ポンプ及びその製造方法
WO2016117297A1 (ja) 高圧ポンプ及びその製造方法
JP5682335B2 (ja) 高圧ポンプ
JP6268279B2 (ja) 高圧燃料供給ポンプ
US10907630B2 (en) Relief valve device and high-pressure pump using same
KR20200033254A (ko) 피스톤 펌프, 특히 내연기관용 고압 연료 펌프
JP7178504B2 (ja) 燃料ポンプ
JP5082935B2 (ja) 高圧燃料ポンプ
JP2006207486A (ja) 高圧燃料ポンプ
JP6369337B2 (ja) 高圧ポンプ及びその製造方法
JPWO2019225627A1 (ja) ダンパ装置
JP4367395B2 (ja) 燃料供給装置
JP6220729B2 (ja) 高圧燃料供給ポンプ、高圧燃料供給ポンプの気密試験方法及び製造方法
WO2024089843A1 (ja) 燃料ポンプ
WO2023032253A1 (ja) 燃料ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739908

Country of ref document: EP

Kind code of ref document: A1