WO2016116994A1 - 高圧ポンプ及びその製造方法 - Google Patents

高圧ポンプ及びその製造方法 Download PDF

Info

Publication number
WO2016116994A1
WO2016116994A1 PCT/JP2015/006377 JP2015006377W WO2016116994A1 WO 2016116994 A1 WO2016116994 A1 WO 2016116994A1 JP 2015006377 W JP2015006377 W JP 2015006377W WO 2016116994 A1 WO2016116994 A1 WO 2016116994A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
plunger
diameter portion
pressure pump
pressurizing chamber
Prior art date
Application number
PCT/JP2015/006377
Other languages
English (en)
French (fr)
Inventor
政治 中岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580073617.9A priority Critical patent/CN107208589B/zh
Priority to DE112015005999.7T priority patent/DE112015005999T5/de
Priority to US15/543,778 priority patent/US10309393B2/en
Publication of WO2016116994A1 publication Critical patent/WO2016116994A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/445Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0413Cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0421Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • B21D31/04Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/22Arrangements for enabling ready assembly or disassembly

Definitions

  • the present disclosure relates to a high-pressure pump used for an internal combustion engine and a manufacturing method thereof.
  • a high-pressure pump that is provided in a fuel supply system that supplies fuel to an internal combustion engine and pressurizes the fuel is known.
  • the high pressure pump pressurizes the fuel by changing the volume of the pressurizing chamber formed in the deep part of the cylinder by the reciprocating movement of the plunger provided inside the cylinder.
  • the fuel pressurized in the pressurizing chamber is discharged from a discharge passage communicating therewith.
  • a ring-shaped member is fitted outside the diameter of the plunger exposed in the pressurizing chamber. This high-pressure pump is prevented from dropping the plunger from the cylinder by locking the ring-shaped member at the step portion between the pressurizing chamber and the cylinder before being attached to the internal combustion engine. .
  • the outer diameter of the plunger protruding from the cylinder opposite to the pressurizing chamber is larger than the outer diameter of the plunger positioned in the cylinder. Is formed small, and the plunger has a step at a location where the outer diameter changes.
  • This high-pressure pump also prevents the plunger from dropping from the cylinder by locking the step of the plunger to the step of the pump body before being attached to the internal combustion engine.
  • a suction valve unit that controls the supply of fuel to the pressurizing chamber is provided on the side opposite to the plunger of the pressurizing chamber.
  • the suction valve unit is detachably attached to the pump body. Therefore, in this high pressure pump configuration, the plunger can be inserted into the cylinder from the pressurizing chamber side before the suction valve unit is assembled to the pump body.
  • the high-pressure pump described in Patent Document 1 has a larger size in the axial direction of the cylinder due to the intake valve unit described above.
  • This disclosure is intended to provide a high-pressure pump capable of preventing the plunger from dropping off regardless of the direction in which the plunger is assembled to the cylinder, and a method for manufacturing the same.
  • the high pressure pump includes a cylinder, a pump body, a plunger, and a large diameter part.
  • FIG. 1 is a cross-sectional view of a high-pressure pump according to a first embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a portion II in FIG.
  • FIG. 3 is a flowchart of the manufacturing process of the high-pressure pump according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a state of manufacturing the high-pressure pump.
  • FIG. 5 is a partial cross-sectional view of the high-pressure pump attached to the internal combustion engine.
  • FIG. 6 is an enlarged view of a portion VI in FIG. FIG.
  • FIG. 7 is a cross-sectional view showing a state in which the high-pressure pump of the first comparative example is attached to the internal combustion engine.
  • FIG. 8 is a cross-sectional view showing a state in which the high-pressure pump of the second comparative example is attached to the internal combustion engine.
  • FIG. 9 is a partial cross-sectional view of a high-pressure pump according to the second embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of a high-pressure pump according to a third embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of a high-pressure pump according to a fourth embodiment of the present disclosure.
  • FIGS. 1 and 2 A first embodiment of the present disclosure is shown in FIGS.
  • the high-pressure pump 1 of this embodiment is attached to an engine block 2 of an internal combustion engine, pressurizes fuel pumped from a fuel tank, and pumps it to a delivery pipe.
  • the fuel accumulated in the delivery pipe is injected and supplied from the injector to each cylinder of the internal combustion engine.
  • the pump body 11 has a cylindrical fitting portion 12 that can be fitted into a bore 3 formed in the engine block 2 of the internal combustion engine.
  • the pump body 11 is fixed to the engine block 2 by a bolt (not shown) provided at a position indicated by a one-dot chain line 13 in FIG. At that time, the contact surface 14 provided outside the fitting portion 12 contacts the engine block 2.
  • the pump body 11 has a pressurizing chamber 15 formed in the deep part of the cylinder 10.
  • the pressurizing chamber 15 is closed by the pump body 11 on the side opposite to the plunger 40.
  • the inner diameter D1 of the pressurizing chamber 15 is formed slightly larger than the inner diameter D2 of the cylinder 10. Therefore, a tapered step portion 36 is formed at a connection location between the pressurizing chamber 15 and the inner wall of the cylinder 10.
  • a plunger 40 is accommodated inside the cylinder 10 formed in a cylindrical shape so as to be reciprocally movable in the axial direction.
  • the plunger 40 moves toward the damper chamber 16 to reduce the volume of the pressurizing chamber 15 and pressurizes the fuel.
  • the plunger 40 moves to the side opposite to the damper chamber 16 to increase the volume of the pressurizing chamber 15 and sucks fuel into the pressurizing chamber 15 from the supply passage 18.
  • a large-diameter portion 41 is provided at the end of the plunger 40 protruding into the pressurizing chamber 15.
  • the large diameter portion 41 and the plunger 40 are integrally formed.
  • the outer diameter D3 of the large diameter portion 41 is slightly larger than the outer diameter D4 of the plunger 40. Further, the outer diameter D 3 of the large diameter portion 41 is larger than the inner diameter D 2 of the cylinder 10 and smaller than the inner diameter D 1 of the pressurizing chamber 15.
  • the relationship between the inner diameter D1 of the pressurizing chamber 15, the inner diameter D2 of the cylinder 10, the outer diameter D3 of the large diameter portion 41, and the outer diameter D4 of the plunger 40 is D1>D3>D2> D4. It is.
  • the difference (D3 ⁇ D2) between the outer diameter D3 of the large diameter portion 41 and the inner diameter D2 of the cylinder 10 is about several ⁇ m.
  • the difference (D3-D2) between the outer diameter D3 of the large-diameter portion 41 and the inner diameter D2 of the cylinder 10 is set to a size that can achieve this.
  • the large diameter portion 41 can be inserted into the pressurizing chamber 15 from the opening of the cylinder 10 on the side opposite to the pressurizing chamber 15.
  • the inner diameter D1 of the pressurizing chamber 15 and the cylinder 10 are restored.
  • the inner diameter D2, the outer diameter D3 of the large-diameter portion 41, and the outer diameter D4 of the plunger 40 have a relationship of D1> D3> D2> D4.
  • the large-diameter portion 41 is locked to the step portion 36 that connects the cylinder 10 and the pressurizing chamber 15 before the high-pressure pump 1 is attached to the internal combustion engine.
  • the plunger 40 is prevented from falling off from the cylinder 10, and the plunger spring 43 described later is held in a compressed state.
  • a damper chamber 16 is formed in the pump body 11 on the opposite side of the pressurizing chamber 15 from the cylinder 10.
  • a pulsation damper 17 is provided in the damper chamber 16.
  • a gas having a predetermined pressure is sealed inside the two metal diaphragms, and the two metal diaphragms are elastically deformed according to the pressure change in the damper chamber 16, thereby causing the fuel pressure pulsation in the damper chamber 16. Reduce.
  • the pump body 11 has a supply passage 18 and a discharge passage 19 extending from the pressurizing chamber 15 in the radial direction of the cylinder 10.
  • a suction valve unit 20 is provided in the supply passage 18.
  • the suction valve unit 20 communicates or blocks the pressurizing chamber 15 and the supply passage 18 by the suction valve 22 being separated from or seated on the valve seat 21 provided in the supply passage 18.
  • the suction valve 22 is driven and controlled by an electromagnetic drive unit.
  • the electromagnetic drive unit includes a fixed core 23, a coil 24, a movable core 25, a shaft 26, a spring 27, and the like.
  • the suction valve 22 of the present embodiment is a normally open type, and when the coil 24 is energized from the connector terminal 28, the movable core 25 is magnetically attracted toward the fixed core 23 against the biasing force of the spring 27, and suction is performed. The biasing force of the shaft 26 that biases the valve 22 in the valve opening direction is released.
  • a discharge valve unit 29 is provided in the discharge passage 19.
  • the discharge valve unit 29 communicates or blocks the pressurizing chamber 15 and the discharge passage 19 when the discharge valve 31 is separated from or seated on the valve seat 30 provided in the discharge passage 19.
  • the discharge valve 31 when the force received by the discharge valve 31 from the fuel on the pressurizing chamber 15 side becomes larger than the sum of the force received by the discharge valve 31 from the fuel downstream of the valve seat 30 and the elastic force of the spring 32, Separate from the valve seat 30.
  • the fuel is discharged from the fuel outlet 33 through the discharge passage 19 from the pressurizing chamber 15.
  • a spring seat 42 is fixed to the end of the plunger 40 opposite to the pressurizing chamber 15.
  • a plunger spring 43 is provided between the spring seat 42 and the holder 52 fixed to the pump body 11. The plunger spring 43 urges the plunger 40 together with the spring seat 42 to the side opposite to the pressurizing chamber 15.
  • the spring seat 42 is fitted to the lifter 4 placed in the bore 3 of the internal combustion engine.
  • the lifter 4 includes a cylindrical tube portion 5, a partition plate 6 provided at an intermediate portion in the axial direction of the tube portion 5, and a roller 7 provided on the opposite side of the spring seat 42 across the partition plate 6.
  • the outer wall of the cylindrical part 5 is in sliding contact with the inner wall of the bore 3 of the internal combustion engine.
  • the roller 7 is in sliding contact with a cam 8 provided in the deep portion of the bore 3 of the internal combustion engine.
  • the cam 8 rotates together with a camshaft or a crankshaft that drives an intake / exhaust valve of the internal combustion engine. The rotation of the cam 8 causes the lifter 4 to reciprocate inside the bore 3, and accordingly, the plunger 40 that contacts the partition plate 6 of the lifter 4 reciprocates in the cylinder 10 in the axial direction.
  • An annular spacer 50 is provided at the end of the cylinder 10 opposite to the pressurizing chamber 15.
  • a fuel seal 51 is provided on the side opposite to the pressurizing chamber 15 with respect to the spacer 50. The fuel seal 51 regulates the thickness of the fuel oil film around the plunger 40 and suppresses fuel leakage to the internal combustion engine due to the sliding of the plunger 40.
  • a holder 52 is provided on the side opposite to the pressurizing chamber 15 with respect to the fuel seal 51.
  • the holder 52 extends to the pump body 11 side and is fixed to a recessed portion 34 provided in the pump body 11 around the cylinder 10.
  • An oil seal 53 is attached to the end of the holder 52 opposite to the pressurizing chamber 15.
  • the oil seal 53 regulates the thickness of the oil film around the plunger 40 and suppresses the intrusion of oil from the internal combustion engine side due to the sliding of the plunger 40.
  • Step 2 the plunger 40 is inserted into the cylinder 10.
  • the large diameter portion 41 passes through the inside of the cylinder 10 and is accommodated in the pressurizing chamber 15.
  • the cylinder 10 and the large diameter portion 41 are brought close to the temperature before the temperature adjustment process.
  • the high-pressure pump 1 in which the plunger 40 is inserted into the cylinder 10 and the large-diameter portion 41 is inserted into the pressurizing chamber 15 may be left at room temperature.
  • the cylinder 10 may be cooled and the plunger 40 may be heated in order to return the high-pressure pump 1 to room temperature.
  • the high-pressure pump 1 is attached to the bore 3 formed in the engine block 2 of the internal combustion engine.
  • 5 and 6 show a state before the pump body 11 is fastened to the engine block 2 with the bolts 13.
  • the large diameter portion 41 is locked to the step portion 36 between the pressurizing chamber 15 and the cylinder 10, and the plunger spring 43 is compressed by a predetermined amount. Therefore, the fitting portion 12 of the pump body 11 is fitted into the bore 3 of the engine block 2. Therefore, the amount of compression of the plunger spring 43 at the time of bolt fastening becomes small, so that the pump body 11 can be easily bolted to the engine block 2.
  • the plunger 40 is prevented from falling off the cylinder 10. Can be removed. Therefore, the high pressure pump 1 can be assembled to the pump body 11 with the plunger spring 43 contracted by a predetermined amount. Therefore, when the high pressure pump 1 is bolted to the internal combustion engine, the length for further compressing the plunger spring 43 is shortened, so that the working efficiency can be improved.
  • the pump body 11 closes the side opposite to the plunger 40 of the pressurizing chamber 15, so that the suction valve unit 20 that supplies fuel to the pressurizing chamber 15 is replaced with the plunger 40 of the pressurizing chamber 15. It becomes the structure which is not provided in the opposite side. Therefore, the high pressure pump 1 can reduce the size of the cylinder 10 in the axial direction.
  • the high-pressure pump 1 has the large-diameter portion 41 provided at the end of the plunger 40 in the pressurizing chamber 15 even when the opposite side of the pressurizing chamber 15 to the plunger 40 is closed by the pump body 11. Can be inserted.
  • the high-pressure pump 1 can reduce the number of parts by integrally forming the cylinder 10 and the pump body 11. Furthermore, the high-pressure pump 1 can reduce the number of parts by integrally forming the large-diameter portion 41 and the plunger 40.
  • the manufacturing method of the high-pressure pump 1 according to the first embodiment performs at least one of “heating of the pump body 11 and the cylinder 10” and “cooling of the large diameter portion 41 and the plunger 40” in the temperature adjustment step.
  • the inner diameter of the cylinder 10 is made larger than the outer diameter of the large diameter portion 41.
  • the high-pressure pump 1 has the large-diameter portion 41 provided at the end of the plunger 40 in the pressurizing chamber 15 even when the opposite side of the pressurizing chamber 15 to the plunger 40 is closed by the pump body 11. Can be inserted.
  • the plunger 400 has a large column portion 401 having a large diameter and a small column portion 402 having an outer diameter smaller than that of the large column portion 401.
  • the large column portion 401 is inserted inside the cylinder 10.
  • the small column portion 402 protrudes on the opposite side of the cylinder 10 from the pressurizing chamber 15.
  • the plunger 400 has a step 403 at a location where the large column portion 401 and the small column portion 402 are connected.
  • the annular spacer 50 provided at the end of the cylinder 10 opposite to the pressurizing chamber 15 has an inner diameter corresponding to the small column portion 402 of the plunger 400. Therefore, in the high pressure pump 101 of the first comparative example, the plunger 400 is prevented from dropping from the cylinder 10 by the step 403 of the plunger 400 being locked to the spacer 50 before being attached to the internal combustion engine. It is.
  • the plunger 400 when the plunger 400 reciprocates in the cylinder 10 by the rotation of the cam 8, the plunger 400 is pressed in the rotation direction of the cam 8, so that the plunger reciprocates while tilting in the cylinder.
  • the high-pressure pump 101 of the first comparative example has a step 403 at the connecting portion between the large column portion 401 and the small column portion 402, and is in contact with the inner wall of the cylinder at the corner of the step. In this case, even if the pressing force by the cam is the same, the reaction force acting on the corner portion increases as the plunger moves up.
  • the plunger 40 of the first embodiment is in contact with the cylinder inner wall at the corner of the cylinder end.
  • the plunger 40 has a cylindrical convex portion 45 at the end on the pressurizing chamber 15 side.
  • the large diameter portion 44 is formed in an annular shape, and its inner wall in the radial direction is press-fitted and fixed to the outer wall in the radial direction of the convex portion 45 of the plunger 40. This press-fit load is larger than the urging force of the plunger spring 43.
  • austenitic stainless steel is exemplified as a material for forming the large diameter portion 44.
  • the linear expansion coefficient of austenitic stainless steel is about 17 ⁇ 10 ⁇ 6 / ° C.
  • the second embodiment also has an inner diameter D1 of the pressurizing chamber 15, an inner diameter D2 of the cylinder 10, an outer diameter D3 of the large diameter portion 44, and an outer diameter of the plunger 40 at normal temperature.
  • the relationship of D4 is D1> D3> D2> D4.
  • the large diameter portion 44 is locked to the step portion 36 connecting the cylinder 10 and the pressurizing chamber 15 before the high-pressure pump 1 is attached to the internal combustion engine. This prevents the plunger 40 from falling off the cylinder 10 and holds the plunger spring 43 in a compressed state.
  • the large diameter portion 44 when the large diameter portion 44 is inserted into the pressurizing chamber 15, the large diameter portion 44 may be cooled without cooling the plunger 40, so that energy required for cooling can be reduced.
  • the inner diameter D1 of the pressurizing chamber 15, the inner diameter D2 of the cylinder 10, the outer diameter D3 of the large diameter portion 41, and the outer diameter D4 of the plunger 40 are the following (G) (H) (I) When any of the above operations is performed, the relationship of D1> D2> D3> D4 is established. (G) The cylinder 10 is heated and the plunger 40 is cooled together with the large diameter portion 41. (H) The cylinder 10 is heated. (I) The plunger 40 is cooled together with the large diameter portion 41.
  • the manufacturing method of the high-pressure pump 1 of the third embodiment is substantially the same as the manufacturing method described in the first and second embodiments. However, in the third embodiment, “heating the cylinder 10” and “cooling the large-diameter portion 41 and the plunger 40” are performed in the temperature adjustment step of Step 1.
  • the inner diameter D1 of the pressurizing chamber 15, the inner diameter D2 of the cylinder 10, the outer diameter D3 of the large diameter portion 44, and the plunger 40 at normal temperature.
  • the relationship of the outer diameter D4 is D1> D3> D2> D4.
  • the inner diameter D1 of the pressurizing chamber 15, the inner diameter D2 of the cylinder 10, the outer diameter D3 of the large diameter portion 44, and the outer diameter D4 of the plunger 40 are the following (J) (K) (L).
  • the relationship D1> D2> D3 ⁇ D4 is established.
  • the cylinder 10 is heated and the large diameter portion 44 is cooled.
  • the cylinder 10 is heated.
  • the large diameter portion 44 is cooled.
  • the manufacturing method of the high-pressure pump 1 of the fourth embodiment is substantially the same as the manufacturing method described in the first to third embodiments.
  • “heating the cylinder 10” and “cooling the large-diameter portion 44” are performed in the temperature adjustment step of Step 1.
  • the relationship of D1> D2> D3 ⁇ D4 can be realized, only one of “heating the cylinder 10” and “cooling the large diameter portion 44” may be performed in the temperature adjustment step.
  • the cylinder 10 and the pump body 11 are made of different members, and the large diameter portion 44 and the plunger 40 are also made of different members.
  • the large diameter portion 44 when the large diameter portion 44 is inserted into the pressurizing chamber 15, the temperature of the cylinder 10 and the large diameter portion 44 may be adjusted, so that energy required for temperature adjustment can be reduced.
  • the high-pressure pump 1 having a configuration in which the side of the pressurizing chamber 15 opposite to the plunger 40 is closed by the pump body 11 has been described.
  • the high-pressure pump 1 may be configured to be detachably provided with the suction valve unit 20 or the discharge valve unit 29 on the opposite side of the pressurizing chamber 15 from the plunger 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

高圧ポンプのポンプボディ(11)は、シリンダ(10)の深部に形成される加圧室(15)を有し、加圧室(15)のプランジャ(40)とは反対側を塞ぐ。シリンダ(10)の内側に往復移動可能に設けられるプランジャ(40)は、加圧室(15)の容積を可変する。加圧室(15)に突出するプランジャ(40)の端部に設けられる大径部(41)は、シリンダ(10)の内径よりも大きく加圧室(15)の内径よりも小さい外径を有する。これにより、内燃機関に高圧ポンプを取り付ける前の状態で、シリンダ(10)と加圧室(15)との段差部分(36)に大径部(41)が係止され、プランジャ(40)はシリンダ(10)からの脱落が防がれる。

Description

高圧ポンプ及びその製造方法 関連出願の相互参照
 本出願は、2015年1月20日に出願された日本特許出願番号2015-8335号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関に用いられる高圧ポンプ及びその製造方法に関する。
 従来、内燃機関に燃料を供給する燃料供給系統に設けられ、燃料を加圧する高圧ポンプが知られている。
 高圧ポンプは、シリンダの内側に設けられたプランジャの往復移動により、シリンダの深部に形成された加圧室の容積を可変し、燃料を加圧する。加圧室で加圧された燃料は、そこに連通する吐出通路から吐出される。
 特許文献1に記載された高圧ポンプの一つの実施例では、加圧室に露出するプランジャの径外側にリング状の部材が嵌合している。この高圧ポンプは、内燃機関に取り付ける前の状態で、そのリング状の部材が加圧室とシリンダとの段差部分に係止されることにより、シリンダからプランジャが脱落することが防がれている。
 また、特許文献1に記載された高圧ポンプの別の実施例では、シリンダ内に位置する部分のプランジャの外径よりも、シリンダの加圧室とは反対側に突出する部分のプランジャの外径が小さく形成され、プランジャは、その外径が変化する箇所に段差を有している。この高圧ポンプも、内燃機関に取り付ける前の状態で、そのプランジャの段差がポンプボディの段差部分に係止されることにより、シリンダからプランジャが脱落することが防がれている。
 特許文献1に記載の高圧ポンプは、加圧室への燃料の供給を制御する吸入弁ユニットが、加圧室のプランジャとは反対側に設けられている。吸入弁ユニットは、ポンプボディに対し着脱可能に設けられている。したがって、この高圧ポンプの構成では、ポンプボディに吸入弁ユニットを組み付ける前に、加圧室側からシリンダにプランジャを挿し込むことが可能である。
 しかしながら、特許文献1に記載の高圧ポンプは、上述した吸入弁ユニットにより、シリンダの軸方向の体格が大型化している。仮に、特許文献1に記載の高圧ポンプにおいて、吸入弁ユニットを設置する位置をシリンダの径方向に変更し、加圧室のプランジャとは反対側をポンプボディで塞いだ場合、いずれの実施例のプランジャも、シリンダの加圧室とは反対側の開口部からシリンダに組み付けることは困難である。
特開2003-65175号公報
 本開示は、プランジャのシリンダへの組み付け方向に関わらずプランジャの脱落を防ぐことの可能な高圧ポンプ及びその製造方法を提供することを目的とする。
 高圧ポンプは、シリンダ、ポンプボディ、プランジャ及び大径部を備える。
 ポンプボディは、シリンダの深部にシリンダよりも内径が大きい加圧室を有し、加圧室のプランジャとは反対側を塞ぐ。シリンダの内側に往復移動可能に設けられるプランジャは、加圧室の容積を可変する。加圧室に突出するプランジャの端部に設けられる大径部は、シリンダの内径よりも大きく加圧室の内径よりも小さい外径を有する。
 これにより、内燃機関に高圧ポンプを取り付ける前の状態で、シリンダと加圧室との段差部分に大径部が係止され、プランジャはシリンダからの脱落が防がれる。
 高圧ポンプの製造方法は、温度調整工程及び挿入工程を含む。温度調整工程では、「シリンダの加熱」及び「大径部の冷却」の少なくともいずれか一方を行い、シリンダの内径を大径部の外径よりも大きくする。挿入工程では、シリンダにプランジャを挿入する。
 これにより、加圧室のプランジャとは反対側がポンプボディにより塞がれた形状の高圧ポンプであっても、プランジャの端部に設けた大径部を加圧室に挿入することが可能である。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、本開示の第1実施形態による高圧ポンプの断面図である。 図2は、図1のII部分の拡大図である。 図3は、第1実施形態の高圧ポンプの製造工程のフローチャートである。 図4は、高圧ポンプの製造時の状態を示す断面図である。 図5は、内燃機関に取り付ける状態の高圧ポンプの部分断面図である。 図6は、図5のVI部分の拡大図である。 図7は、第1比較例の高圧ポンプを内燃機関に取り付ける状態を示す断面図である。 図8は、第2比較例の高圧ポンプを内燃機関に取り付ける状態を示す断面図である。 図9は、本開示の第2実施形態による高圧ポンプの部分断面図である。 図10は、本開示の第3実施形態による高圧ポンプの断面図である。 図11は、本開示の第4実施形態による高圧ポンプの断面図である。
 以下、本開示の複数の実施形態を図面に基づいて説明する。なお、複数の実施形態において、実質的に同一の構成には、図面に同一の符号を付して説明を省略する。
 (第1実施形態)
 本開示の第1実施形態を図1~図6に示す。本実施形態の高圧ポンプ1は、内燃機関のエンジンブロック2に取り付けられ、燃料タンクから汲み上げられた燃料を加圧し、デリバリパイプに圧送する。デリバリパイプに蓄圧された燃料は、インジェクタから内燃機関の各気筒に噴射供給される。
 図1に示すように、高圧ポンプ1は、シリンダ10、ポンプボディ11、プランジャ40及び大径部41等を備えている。
 図1では、シリンダ10とポンプボディ11の境界を概念的に破線110で示しているが、本実施形態では、シリンダ10とポンプボディ11は一体に形成されている。
 ポンプボディ11は、内燃機関のエンジンブロック2に形成されたボア3に嵌合可能な筒状の嵌合部12を有する。ポンプボディ11は、図1の一点鎖線13で示した位置に設けられる図示していないボルトにより、エンジンブロック2に固定される。その際、嵌合部12の外側に設けられた当接面14がエンジンブロック2に当接する。
 ポンプボディ11は、シリンダ10の深部に形成される加圧室15を有する。この加圧室15は、プランジャ40と反対側がポンプボディ11によって塞がれている。
 図2に示すように、加圧室15の内径D1は、シリンダ10の内径D2よりも僅かに大きく形成されている。そのため、加圧室15とシリンダ10の内壁との接続箇所には、テーパ状の段差部分36が形成されている。
 円筒状に形成されたシリンダ10の内側には、プランジャ40が軸方向に往復移動可能に収容されている。プランジャ40は、ダンパ室16側へ移動することにより加圧室15の容積を小さくし、燃料を加圧する。また、プランジャ40は、ダンパ室16とは反対側へ移動することにより加圧室15の容積を大きくし、供給通路18から加圧室15へ燃料を吸入する。
 加圧室15に突出するプランジャ40の端部には大径部41が設けられている。本実施形態では、大径部41とプランジャ40とは一体に形成されている。
 常温時において、大径部41の外径D3は、プランジャ40の外径D4よりも僅かに大きい。また、大径部41の外径D3は、シリンダ10の内径D2よりも大きく、加圧室15の内径D1よりも小さい。
 即ち、常温時において、加圧室15の内径D1と、シリンダ10の内径D2と、大径部41の外径D3と、プランジャ40の外径D4の関係は、D1>D3>D2>D4
 である。なお、大径部41の外径D3とシリンダ10の内径D2との差(D3-D2)は数μm程度である。
 本実施形態の大径部41とシリンダ10の関係について説明する。
 本実施形態の加圧室15の内径D1とシリンダ10の内径D2と大径部41の外径D3とプランジャ40の外径D4は、次の(A)(B)(C)のいずれかの作業を行ったとき、D1>D2>D3>D4の関係となる。(A)ポンプボディ11と共にシリンダ10を加熱し、且つ、大径部41と共にプランジャ40を冷却する。(B)ポンプボディ11と共にシリンダ10を加熱する。(C)大径部41と共にプランジャ40を冷却する。
 即ち、大径部41の外径D3とシリンダ10の内径D2との差(D3-D2)は、それを実現可能な大きさに設定されている。これにより、シリンダ10の加圧室15とは反対側の開口から、大径部41を加圧室15へ挿入することが可能である。
 また、上記(A)(B)(C)のいずれかの作業を行った後、再びシリンダ10と大径部41をその作業前の温度に戻せば、加圧室15の内径D1とシリンダ10の内径D2と大径部41の外径D3とプランジャ40の外径D4は、D1>D3>D2>D4の関係になる。これにより、内燃機関に高圧ポンプ1を取り付ける前の状態で、シリンダ10と加圧室15とを接続する段差部分36に大径部41が係止される。これにより、プランジャ40のシリンダ10からの脱落が防がれると共に、後述するプランジャスプリング43が圧縮された状態で保持される。
 図1に示すように、ポンプボディ11には、加圧室15のシリンダ10とは反対側にダンパ室16が形成されている。ダンパ室16には、パルセーションダンパ17が設けられている。パルセーションダンパ17は、2枚の金属ダイアフラムの内部に所定圧の気体が密封され、その2枚の金属ダイアフラムがダンパ室16の圧力変化に応じて弾性変形することで、ダンパ室16の燃圧脈動を低減する。
 ポンプボディ11には、加圧室15からシリンダ10の径方向に延びる供給通路18と吐出通路19が形成されている。
 供給通路18には、吸入弁ユニット20が設けられている。吸入弁ユニット20は、供給通路18に設けられた弁座21に対し、吸入弁22が離座又は着座することにより、加圧室15と供給通路18とを連通又は遮断する。吸入弁22は、電磁駆動部により駆動制御される。電磁駆動部は、固定コア23、コイル24、可動コア25、シャフト26およびスプリング27等により構成される。本実施形態の吸入弁22はノーマリオープンタイプであり、コネクタ端子28からコイル24へ通電されると、可動コア25がスプリング27の付勢力に抗して固定コア23側へ磁気吸引され、吸入弁22を開弁方向へ付勢するシャフト26の付勢力が解除される。
 吐出通路19には、吐出弁ユニット29が設けられている。吐出弁ユニット29は、吐出通路19に設けられた弁座30に対し、吐出弁31が離座又は着座することにより、加圧室15と吐出通路19とを連通又は遮断する。吐出弁31は、加圧室15側の燃料から吐出弁31が受ける力が、弁座30より下流側の燃料から吐出弁31が受ける力とスプリング32の弾性力との和よりも大きくなると、弁座30から離座する。これにより、加圧室15から吐出通路19を通り、燃料出口33から燃料が吐出される。
 プランジャ40の加圧室15とは反対側の端部にスプリング座42が固定されている。そのスプリング座42と、ポンプボディ11に固定されたホルダ52との間に、プランジャスプリング43が設けられている。このプランジャスプリング43は、スプリング座42と共にプランジャ40を加圧室15とは反対側へ付勢している。スプリング座42は、内燃機関のボア3に入れられたリフタ4に嵌合している。
 リフタ4は、円筒状の筒部5、その筒部5の軸方向の中間部分に設けられた仕切板6、及びその仕切板6を挟んでスプリング座42の反対側に設けられたローラー7を有している。筒部5の外壁は、内燃機関のボア3の内壁に摺接している。ローラー7は、内燃機関のボア3の深部に設けられたカム8に摺接する。カム8は、内燃機関の吸・排気弁を駆動するカムシャフトまたはクランクシャフトと共に回転する。カム8の回転により、リフタ4がボア3の内側を往復移動し、それに伴って、リフタ4の仕切板6に当接するプランジャ40がシリンダ10内を軸方向に往復移動する。
 シリンダ10の加圧室15とは反対側の端部には、環状のスペーサ50が設けられている。このスペーサ50に対し加圧室15とは反対側に燃料シール51が設けられている。燃料シール51は、プランジャ40の周囲の燃料油膜の厚さを規制し、プランジャ40の摺動による内燃機関側への燃料のリークを抑制する。
 燃料シール51に対し加圧室15とは反対側にホルダ52が設けられている。ホルダ52は、ポンプボディ11側に延び、シリンダ10の周囲のポンプボディ11に設けられた陥凹部34に固定される。
 ホルダ52の加圧室15とは反対側の端部には、オイルシール53が装着されている。オイルシール53は、プランジャ40の周囲のオイル油膜の厚さを規制し、プランジャ40の摺動による内燃機関側からのオイルの浸入を抑制する。
 次に、高圧ポンプ1の製造方法について、図3から図6を参照して説明する。
 まず、ステップ1の温度調整工程では、「ポンプボディ11及びシリンダ10の加熱」と共に「大径部41及びプランジャ40の冷却」を行う。この工程は、加圧室15の内径D1とシリンダ10の内径D2と大径部41の外径D3とプランジャ40の外径D4が、D1>D2>D3>D4の関係になるまで行われる。
 なお、上記D1>D2>D3>D4の関係を実現可能であれば、温度調整工程では、「ポンプボディ11及びシリンダ10の加熱」と、「大径部41及びプランジャ40の冷却」のいずれか一方を行うのみでもよい。
 次に、ステップ2の挿入工程では、図4の矢印に示すように、シリンダ10にプランジャ40を挿入する。このとき、大径部41は、シリンダ10の内側を通り、加圧室15に収容される。
 続いて、ステップ3の常温調整工程では、シリンダ10と大径部41を温度調整工程前の温度に近づける。この工程は、シリンダ10にプランジャ40が挿入され、加圧室15に大径部41が挿入された高圧ポンプ1を常温で放置してもよい。または、高圧ポンプ1を常温に戻すべく、シリンダ10を冷却すると共に、プランジャ40を加熱してもよい。
 その後、図5及び図6に示すように、内燃機関のエンジンブロック2に形成されたボア3に高圧ポンプ1を取り付ける。図5及び図6では、エンジンブロック2に対しポンプボディ11をボルト13により締結する前の状態を示している。この状態で、大径部41が加圧室15とシリンダ10との段差部分36に係止され、プランジャスプリング43は所定量圧縮されている。そのため、ポンプボディ11の嵌合部12がエンジンブロック2のボア3に嵌まり込んでいる。したがって、ボルト締結時におけるプランジャスプリング43の圧縮量が小さくなるので、ポンプボディ11をエンジンブロック2に容易にボルト締結することが可能である。
 第1実施形態では、次の作用効果を奏する。(1)第1実施形態の高圧ポンプ1は、加圧室15のプランジャ40とは反対側をポンプボディ11が塞いでいる。加圧室15に突出するプランジャ40の端部には、シリンダ10の内径よりも大きく、加圧室15の内径よりも小さい外径を有する大径部41が設けられている。
 これにより、内燃機関に高圧ポンプ1を取り付ける前の状態で、シリンダ10と加圧室15との段差部分36に大径部41が係止されるので、プランジャ40はシリンダ10からの脱落が防がれる。そのため、高圧ポンプ1は、プランジャスプリング43を所定量収縮させた状態でポンプボディ11に組み付けることが可能である。したがって、高圧ポンプ1を内燃機関にボルト締結する際、そのプランジャスプリング43をさらに圧縮する長さが短くなるので、作業効率を高めることができる。
 また、高圧ポンプ1は、ポンプボディ11が加圧室15のプランジャ40とは反対側を塞いでいるので、加圧室15に燃料を供給する吸入弁ユニット20を、加圧室15のプランジャ40とは反対側に設けることの無い構成となる。そのため、この高圧ポンプ1は、シリンダ10の軸方向の体格を小さくすることが可能である。
 (2)第1実施形態の高圧ポンプ1は、シリンダ10とポンプボディ11が一体に形成されている。また、大径部41とプランジャ40が一体に形成されている。この高圧ポンプ1は、「ポンプボディ11及びシリンダ10の加熱」及び「大径部41及びプランジャ40の冷却」の少なくともいずれか一方を行ったとき、シリンダ10の内径が大径部41の外径よりも大きくなる。
 これにより、高圧ポンプ1は、加圧室15のプランジャ40とは反対側がポンプボディ11により塞がれた形状であっても、プランジャ40の端部に設けた大径部41を加圧室15に挿入することが可能である。
 また、高圧ポンプ1は、シリンダ10とポンプボディ11を一体に形成することにより、部品点数を低減することが可能である。さらに、高圧ポンプ1は、大径部41とプランジャ40を一体に形成することにより、部品点数を低減することが可能である。
 (3)第1実施形態の高圧ポンプ1の製造方法は、温度調整工程において、「ポンプボディ11及びシリンダ10の加熱」及び「大径部41及びプランジャ40の冷却」の少なくともいずれか一方を行い、シリンダ10の内径を大径部41の外径よりも大きくする。
 これにより、高圧ポンプ1は、加圧室15のプランジャ40とは反対側がポンプボディ11により塞がれた形状であっても、プランジャ40の端部に設けた大径部41を加圧室15に挿入することが可能である。
 (第1比較例)
 第1比較例について図7を参照して説明する。第1比較例の高圧ポンプ101は、プランジャ400が大径の大柱部401と、その大柱部401よりも外径が小さい小柱部402を有している。大柱部401は、シリンダ10の内側に挿入されている。小柱部402は、シリンダ10の加圧室15とは反対側に突出している。プランジャ400は、大柱部401と小柱部402の接続する箇所に段差403を有している。
 シリンダ10の加圧室15とは反対側の端部に設けられた環状のスペーサ50は、その内径がプランジャ400の小柱部402に対応するものとなっている。そのため、この第1比較例の高圧ポンプ101は、内燃機関に取り付ける前の状態で、プランジャ400の段差403がスペーサ50に係止されることにより、シリンダ10からプランジャ400が脱落することが防がれている。
 一般に、高圧ポンプ101は、カム8の回転によりプランジャ400がシリンダ10内を往復移動する際、カム8の回転方向にプランジャ400が押し付けられる為、プランジャはシリンダ内で傾きながら往復動する。第1比較例の高圧ポンプ101は、大柱部401と小柱部402の接続箇所に段差403を有しており、シリンダの内壁とは段差の角部で接する。この場合、例えカムによる押し付け力が同じ大きさであっても、プランジャが上昇するに従い、角部に作用する反力は大きくなっていく。一方、第一実形態のプランジャ40は、シリンダ内壁とは、シリンダ端の角部で接する。この場合、カムによる押し付け力が同じの場合、プランジャが上昇するに従い、接触部に作用する反力は小さくなっていく。そのため、第1比較例の高圧ポンプ101は、第1実施形態のプランジャ40と比べて、プランジャ400の耐焼き付き性が低下することが懸念される。
 (第2比較例)
 次に、第2比較例について図8を参照して説明する。第2比較例の高圧ポンプ102のプランジャ40は、その外径が軸方向に同一に形成された所謂ストレートプランジャ404である。しかし、第2比較例の高圧ポンプ102は、ストレートプランジャ404の脱落を防ぐ構成を備えていない。そのため、この高圧ポンプ102を内燃機関のボア3に取り付ける際、プランジャスプリング43が自由長まで伸びているので、ポンプボディ11の嵌合部12がボア3に嵌合していない状態から、ポンプボディ11のボルト締結を行うことになる。したがって、この高圧ポンプ102は、プランジャスプリング43を圧縮してポンプボディ11の嵌合部12をボア3に嵌合する作業と、ポンプボディ11をエンジンブロック2にボルト締結する作業を同時に行わなければならないので、作業性が悪化するおそれがある。
 (第2実施形態)
 続いて、本開示の第2実施形態を図9に基づいて説明する。第2実施形態では、プランジャ40と大径部44とが別部材から構成されている。
 プランジャ40は、加圧室15側の端部に円柱状の凸部45を有している。大径部44は、円環状に形成され、その径方向の内壁がプランジャ40の凸部45の径方向の外壁に圧入固定されている。この圧入荷重は、プランジャスプリング43の付勢力よりも大きいものである。
 なお、プランジャ40と大径部44は、圧入のみに限らず、ねじ又は溶接などにより固定してもよい。
 プランジャ40と大径部44とは、異なる材質から形成されている。大径部44の線膨張係数は、プランジャ40の線膨張係数よりも大きい。即ち、大径部44は、プランジャ40に比べて、冷却により収縮しやすい材料から形成されている。
 なお、プランジャ40を形成する材料として、マルテンサイト系のステンレスが例示される。マルテンサイト系のステンレスの線膨張係数は、10×10-6/℃程度である。
 一方、大径部44を形成する材料として、オースナイト系のステンレスが例示される。オースナイト系のステンレスの線膨張係数は、17×10-6/℃程度である。
 もっとも、プランジャ40と大径部44は、これらに限らず、例えば2相系ステンレスなど、種々の材料を選択することが可能である。
 第2実施形態も、上述した第1実施形態と同様、常温時において、加圧室15の内径D1と、シリンダ10の内径D2と、大径部44の外径D3と、プランジャ40の外径D4の関係は、D1>D3>D2>D4である。
 また、第2実施形態では、加圧室15の内径D1とシリンダ10の内径D2と大径部44の外径D3とプランジャ40の外径D4は、次の(D)(E)(F)のいずれかの作業を行ったとき、D1>D2>D3≧D4の関係となる。(D)ポンプボディ11と共にシリンダ10を加熱し、且つ、大径部44を冷却する。(E)ポンプボディ11と共にシリンダ10を加熱する。(F)大径部44を冷却する。
 これにより、シリンダ10の加圧室15とは反対側の開口から、大径部44を加圧室15へ挿入することが可能である。
 また、上記(D)(E)(F)のいずれかの作業を行った後、再びシリンダ10と大径部44をその作業前の温度に戻せば、加圧室15の内径D1とシリンダ10の内径D2と大径部44の外径D3とプランジャ40の外径D4は、D1>D3>D2>D4の関係となる。これにより、内燃機関に高圧ポンプ1を取り付ける前の状態で、シリンダ10と加圧室15とを接続する段差部分36に大径部44が係止される。これにより、プランジャ40のシリンダ10からの脱落が防がれると共に、プランジャスプリング43が圧縮された状態で保持される。
 第2実施形態の高圧ポンプ1の製造方法は、第1実施形態で説明した製造方法と略同一である。但し、第2実施形態では、ステップ1の温度調整工程において、「ポンプボディ11及びシリンダ10の加熱」を行うと共に、「大径部44の冷却」を行う。
 なお、上記D1>D2>D3≧D4の関係を実現可能であれば、温度調整工程において、「ポンプボディ11及びシリンダ10の加熱」と、「大径部44の冷却」のいずれか一方を行うのみでもよい。
 第2実施形態では、次の作用効果を奏する。(1)第2実施形態の高圧ポンプ1は、プランジャ40と大径部44が別部材から構成されている。
 シリンダ10と大径部44は、「ポンプボディ11及びシリンダ10の加熱」及び「大径部44の冷却」の少なくともいずれか一方を行ったとき、シリンダ10の内径D2が大径部44の外径D3よりも大きくなる関係を有する。
 これにより、大径部44を加圧室15に挿入する際、プランジャ40を冷却することなく、大径部44を冷却すればよいので、冷却に必要なエネルギーを低減することができる。
 (2)第2実施形態の高圧ポンプ1は、大径部44とプランジャ40とが異なる材質から形成されており、大径部44の線膨張係数は、プランジャ40の線膨張係数よりも大きい。
 これにより、大径部44の冷却に必要なエネルギーをさらに低減することができる。
 (第3実施形態)
 本開示の第3実施形態を図10に基づいて説明する。第3実施形態では、シリンダ10とポンプボディ11とが別部材から構成されている。また、大径部41とプランジャ40とは一体に形成されている。
 第3実施形態も、上述した第1、第2実施形態と同様、常温時において、加圧室15の内径D1と、シリンダ10の内径D2と、大径部41の外径D3と、プランジャ40の外径D4の関係は、D1>D3>D2>D4である。
 また、第3実施形態では、加圧室15の内径D1とシリンダ10の内径D2と大径部41の外径D3とプランジャ40の外径D4は、次の(G)(H)(I)のいずれかの作業を行ったとき、D1>D2>D3>D4の関係となる。(G)シリンダ10を加熱し、且つ、大径部41と共にプランジャ40を冷却する。(H)シリンダ10を加熱する。(I)大径部41と共にプランジャ40を冷却する。
 これにより、シリンダ10の加圧室15とは反対側の開口から、大径部41を加圧室15へ挿入することが可能である。
 また、上記(G)(H)(I)のいずれかの作業を行った後、再びシリンダ10と大径部41をその作業前の温度に戻せば、加圧室15の内径D1とシリンダ10の内径D2と大径部41の外径D3とプランジャ40の外径D4は、D1>D3>D2>D4の関係となる。
 第3実施形態の高圧ポンプ1の製造方法は、第1、第2実施形態で説明した製造方法と略同一である。但し、第3実施形態では、ステップ1の温度調整工程において、「シリンダ10の加熱」を行うと共に、「大径部41及びプランジャ40の冷却」を行う。
 なお、上記D1>D2>D3>D4の関係を実現可能であれば、温度調整工程において、「シリンダ10の加熱」と、「大径部41及びプランジャ40の冷却」のいずれか一方を行うのみでもよい。
 第3実施形態の高圧ポンプ1は、シリンダ10とポンプボディ11が別部材から構成されている。
 これにより、大径部41を加圧室15に挿入する際、ポンプボディ11を加熱することなく、シリンダ10のみを加熱すればよいので、加熱に必要なエネルギーを低減することができる。
 (第4実施形態)
 本開示の第4実施形態を図11に基づいて説明する。第4実施形態では、シリンダ10とポンプボディ11とが別部材から構成されている。また、大径部44とプランジャ40も別部材から構成されている。
 第4実施形態も、上述した第1-第3実施形態と同様、常温時において、加圧室15の内径D1と、シリンダ10の内径D2と、大径部44の外径D3と、プランジャ40の外径D4の関係は、D1>D3>D2>D4である。
 また、第4実施形態では、加圧室15の内径D1とシリンダ10の内径D2と大径部44の外径D3とプランジャ40の外径D4は、次の(J)(K)(L)のいずれかの作業を行ったとき、D1>D2>D3≧D4の関係となる。(J)シリンダ10を加熱し、且つ、大径部44を冷却する。(K)シリンダ10を加熱する。(L)大径部44を冷却する。
 これにより、シリンダ10の加圧室15とは反対側の開口から、大径部44を加圧室15へ挿入することが可能である。
 また、上記(G)(H)(I)のいずれかの作業を行った後、再びシリンダ10と大径部44をその作業前の温度に戻せば、加圧室15の内径D1とシリンダ10の内径D2と大径部44の外径D3とプランジャ40の外径D4は、D1>D3>D2>D4の関係となる。
 第4実施形態の高圧ポンプ1の製造方法は、第1-第3実施形態で説明した製造方法と略同一である。但し、第4実施形態では、ステップ1の温度調整工程において、「シリンダ10の加熱」を行うと共に、「大径部44の冷却」を行う。なお、上記D1>D2>D3≧D4の関係を実現可能であれば、温度調整工程では、「シリンダ10の加熱」と、「大径部44の冷却」のいずれか一方を行うのみでもよい。
 第4実施形態の高圧ポンプ1は、シリンダ10とポンプボディ11が別部材から構成され、大径部44とプランジャ40も別部材から構成されている。
 これにより、大径部44を加圧室15に挿入する際、シリンダ10と大径部44の温度調整を行えばよいので、温度調整に必要なエネルギーを低減することができる。
 (他の実施形態)
 上述した複数の実施形態では、加圧室15のプランジャ40とは反対側がポンプボディ11により塞がれた構成の高圧ポンプ1について説明した。これに対し、他の実施形態では、高圧ポンプ1は、加圧室15のプランジャ40とは反対側に吸入弁ユニット20または吐出弁ユニット29などを着脱可能に備える構成としてもよい。
 このように、本開示は、上述した実施形態に限定されるものではなく、上述した複数の実施形態を組み合わせることに加え、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。

 

Claims (7)

  1.  シリンダ(10)と、
     前記シリンダの深部に前記シリンダよりも内径が大きい加圧室(15)を有し、前記加圧室の前記シリンダとは反対側を塞ぐポンプボディ(11)と、
     前記シリンダの内側に往復移動可能に設けられ、前記加圧室の容積を可変するプランジャ(40)と、
     前記加圧室に突出する前記プランジャの端部に設けられ、前記シリンダの内径(D2)よりも大きく、前記加圧室の内径(D1)よりも小さい外径(D3)を有する大径部(41,44)と、を備える高圧ポンプ。
  2.  前記シリンダと前記大径部は、「前記シリンダの加熱」及び「前記大径部の冷却」の少なくともいずれか一方を行ったとき、前記シリンダの内径が前記大径部の外径よりも大きくなる関係、または、前記大径部の外径が前記シリンダの内径よりも小さくなる関係を有する請求項1に記載の高圧ポンプ。
  3.  前記シリンダと前記ポンプボディは一体に形成されており、
     前記シリンダと前記大径部は、「前記ポンプボディ及び前記シリンダの加熱」及び「前記大径部の冷却」の少なくともいずれか一方を行ったとき、前記シリンダの内径が前記大径部の外径よりも大きくなる関係、または、前記大径部の外径が前記シリンダの内径よりも小さくなる関係を有する請求項1または2に記載の高圧ポンプ。
  4.  前記大径部(41)と前記プランジャとは一体に形成されており、
     前記シリンダと前記大径部は、「前記シリンダの加熱」及び「前記大径部及び前記プランジャの冷却」の少なくともいずれか一方を行ったとき、前記シリンダの内径が前記大径部の外径よりも大きくなる関係、または、前記大径部の外径が前記シリンダの内径よりも小さくなる関係を有する請求項1または2に記載の高圧ポンプ。
  5.  前記大径部と前記プランジャとは一体に形成され、前記シリンダと前記ポンプボディは一体に形成されており、
     前記シリンダと前記大径部は、「前記ポンプボディ及び前記シリンダの加熱」及び「前記大径部及び前記プランジャの冷却」の少なくともいずれか一方を行ったとき、前記シリンダの内径が前記大径部の外径よりも大きくなる関係、または、前記大径部の外径が前記シリンダの内径よりも小さくなる関係を有する請求項1から4のいずれか一項に記載の高圧ポンプ。
  6.  前記大径部(44)と前記プランジャとは異なる材質から形成されており、
     前記大径部の線膨張係数は、前記プランジャの線膨張係数よりも大きい請求項1から3のいずれか一項に記載の高圧ポンプ。
  7.  請求項1から6のいずれか一項に記載の高圧ポンプの製造方法において、
     「前記シリンダの加熱」及び「前記大径部の冷却」の少なくともいずれか一方を行い、前記シリンダの内径を前記大径部の外径よりも大きく、または、前記大径部の外径を前記シリンダの内径よりも小さくする温度調整工程(S1)と、
     前記シリンダに前記プランジャを挿入する挿入工程(S2)と、
     前記シリンダと前記大径部を温度調整工程前の温度に近づける常温調整工程(S3)と、を含む高圧ポンプの製造方法。

     
PCT/JP2015/006377 2015-01-20 2015-12-22 高圧ポンプ及びその製造方法 WO2016116994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580073617.9A CN107208589B (zh) 2015-01-20 2015-12-22 高压泵及其制造方法
DE112015005999.7T DE112015005999T5 (de) 2015-01-20 2015-12-22 Hochdruckpumpe und Herstellungsverfahren hierfür
US15/543,778 US10309393B2 (en) 2015-01-20 2015-12-22 High-pressure pump and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015008335A JP6369337B2 (ja) 2015-01-20 2015-01-20 高圧ポンプ及びその製造方法
JP2015-008335 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016116994A1 true WO2016116994A1 (ja) 2016-07-28

Family

ID=56416563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006377 WO2016116994A1 (ja) 2015-01-20 2015-12-22 高圧ポンプ及びその製造方法

Country Status (5)

Country Link
US (1) US10309393B2 (ja)
JP (1) JP6369337B2 (ja)
CN (1) CN107208589B (ja)
DE (1) DE112015005999T5 (ja)
WO (1) WO2016116994A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE843925C (de) * 1950-06-20 1952-07-14 Kloeckner Humboldt Deutz Ag Kraftstoffeinspritzpumpe
JP2001355542A (ja) * 2000-06-12 2001-12-26 Aisan Ind Co Ltd 高圧燃料ポンプ
JP2003065175A (ja) * 2001-07-13 2003-03-05 Robert Bosch Gmbh ガソリン直噴式の内燃機関の燃料系のための燃料ポンプ
JP2004138062A (ja) * 2002-10-15 2004-05-13 Robert Bosch Gmbh 圧力制限弁及び該圧力制限弁を備えた燃料系
JP2008525713A (ja) * 2004-12-28 2008-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ピストンポンプ、特に内燃機関に用いられる燃料高圧ポンプ
EP2312155A1 (en) * 2009-10-15 2011-04-20 Delphi Technologies Holding S.à.r.l. Fluid pump and plunger therefor
JP2012167663A (ja) * 2011-01-27 2012-09-06 Nippon Soken Inc 高圧ポンプ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123322B2 (ja) 2000-04-19 2008-07-23 株式会社デンソー 燃料供給装置
US20150017040A1 (en) * 2013-07-12 2015-01-15 Denso Corporation Pulsation damper and high-pressure pump having the same
DE102014202795A1 (de) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Kolben-Kraftstoffpumpe für eine Brennkraftmaschine
JP2016133056A (ja) 2015-01-20 2016-07-25 株式会社デンソー 高圧ポンプ及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE843925C (de) * 1950-06-20 1952-07-14 Kloeckner Humboldt Deutz Ag Kraftstoffeinspritzpumpe
JP2001355542A (ja) * 2000-06-12 2001-12-26 Aisan Ind Co Ltd 高圧燃料ポンプ
JP2003065175A (ja) * 2001-07-13 2003-03-05 Robert Bosch Gmbh ガソリン直噴式の内燃機関の燃料系のための燃料ポンプ
JP2004138062A (ja) * 2002-10-15 2004-05-13 Robert Bosch Gmbh 圧力制限弁及び該圧力制限弁を備えた燃料系
JP2008525713A (ja) * 2004-12-28 2008-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ピストンポンプ、特に内燃機関に用いられる燃料高圧ポンプ
EP2312155A1 (en) * 2009-10-15 2011-04-20 Delphi Technologies Holding S.à.r.l. Fluid pump and plunger therefor
JP2012167663A (ja) * 2011-01-27 2012-09-06 Nippon Soken Inc 高圧ポンプ

Also Published As

Publication number Publication date
US10309393B2 (en) 2019-06-04
US20180010602A1 (en) 2018-01-11
CN107208589B (zh) 2019-07-26
CN107208589A (zh) 2017-09-26
DE112015005999T5 (de) 2017-10-05
JP2016133057A (ja) 2016-07-25
JP6369337B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
EP1801411B1 (en) Fluid pump and high-pressure fuel feed pump
EP3155305B1 (en) Pipe connection structure
US20100119395A1 (en) Valve assembly for fuel pump
WO2016116995A1 (ja) 高圧ポンプ及びその製造方法
JP4585977B2 (ja) 高圧燃料供給ポンプ及びその組立方法
JP2015075049A (ja) 高圧ポンプ
WO2021054006A1 (ja) 電磁吸入弁及び高圧燃料供給ポンプ
JP6369337B2 (ja) 高圧ポンプ及びその製造方法
WO2016117297A1 (ja) 高圧ポンプ及びその製造方法
US12006901B2 (en) Fuel pump
JP5703893B2 (ja) 高圧ポンプ
JP2019100268A (ja) 燃料供給ポンプ
JP6692303B2 (ja) 高圧燃料ポンプ
JP2021080883A (ja) 電磁弁、および、これを用いた高圧ポンプ
JP7518980B2 (ja) 燃料ポンプ
WO2022269977A1 (ja) 電磁吸入弁機構及び燃料ポンプ
JP7482313B2 (ja) 燃料ポンプ
JP7265644B2 (ja) 金属ダイアフラム、金属ダンパ、及び燃料ポンプ
WO2023203761A1 (ja) 電磁弁機構及び燃料供給ポンプ
US11719207B2 (en) Pump plunger assembly for improved pump efficiency
WO2022249550A1 (ja) 電磁弁機構及び燃料ポンプ
JP7024071B2 (ja) 燃料供給ポンプ
WO2024089843A1 (ja) 燃料ポンプ
JP2023071061A (ja) 燃料ポンプ
JP2006183579A (ja) 燃料噴射ポンプ用弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15543778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005999

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878690

Country of ref document: EP

Kind code of ref document: A1