WO2016114362A1 - 近赤外線カットフィルタおよび固体撮像装置 - Google Patents

近赤外線カットフィルタおよび固体撮像装置 Download PDF

Info

Publication number
WO2016114362A1
WO2016114362A1 PCT/JP2016/051020 JP2016051020W WO2016114362A1 WO 2016114362 A1 WO2016114362 A1 WO 2016114362A1 JP 2016051020 W JP2016051020 W JP 2016051020W WO 2016114362 A1 WO2016114362 A1 WO 2016114362A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
infrared
transmittance
light
incident angle
Prior art date
Application number
PCT/JP2016/051020
Other languages
English (en)
French (fr)
Inventor
亨司 杉山
克昌 細井
小森 敦
大井 好晴
長谷川 誠
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020167020557A priority Critical patent/KR101764084B1/ko
Priority to JP2016544886A priority patent/JP6103152B2/ja
Priority to CN201680000782.6A priority patent/CN106062591B/zh
Publication of WO2016114362A1 publication Critical patent/WO2016114362A1/ja
Priority to US15/279,688 priority patent/US10310150B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to a near-infrared cut filter having a near-infrared shielding effect and a solid-state imaging device including the same.
  • optical filters that sufficiently transmit light in the visible wavelength region but shield light in the near infrared wavelength region have been used for various applications.
  • solid-state imaging devices CCD, CMOS, etc.
  • An optical filter is disposed between the imaging lens and the solid-state imaging device in order to bring the sensitivity of the solid-state imaging device close to human visibility.
  • an optical filter for an imaging device CuO or the like is added to fluorophosphate glass or phosphate glass so as to selectively absorb light in the near infrared wavelength region (hereinafter referred to as “near infrared light”).
  • near infrared light an added near-infrared absorbing glass and a glass filter using the same are known.
  • the light-absorbing glass filter does not have sufficient performance for shielding near infrared light and transparency in a wavelength band (630 to 700 nm) required for photographing a dark part brighter.
  • an optical filter having a sufficient near-infrared cut filter function has not been obtained.
  • a reflection type interference filter in which SiO 2 layers and TiO 2 layers are alternately laminated on a substrate, and reflects and blocks near infrared light by light interference, transparent
  • a film containing a dye that absorbs near-infrared light in a resin has been developed.
  • an optical filter in which a resin layer containing a pigment that absorbs near-infrared rays and a layer that reflects near-infrared light is combined has been developed.
  • a near-infrared cut filter in which a transparent resin layer containing a near-infrared absorbing dye and a near-infrared reflective dielectric multilayer film are provided on a substrate made of near-infrared absorbing glass is a very high near-red filter. It is known to have an outer cut function.
  • a solid-state imaging device using the near-infrared cut filter when a subject that includes a very bright light source is captured, an image that did not exist in the original subject appears in a part of the captured image. In some cases, the appearance of such a problem is a problem in solid-state imaging devices that require higher accuracy of subject image reproducibility. This phenomenon is caused by stray light generated by reflection or scattering in the optical system of the solid-state imaging device, and it is considered that all the stray light incident at various angles affects the near-infrared cut filter.
  • the present invention has a sufficient near-infrared shielding characteristic, and in a solid-state imaging device using the same, it is possible to reduce or prevent the occurrence of a phenomenon in which an image that does not exist in the original subject appears in the captured image.
  • An object of the present invention is to provide an infrared cut filter and a highly sensitive solid-state imaging device including the same.
  • the present invention provides a near-infrared cut filter and a solid-state imaging device having the following configuration.
  • a laminate having a near infrared absorbing layer containing a near infrared absorbing dye and a transparent resin on at least one main surface of the near infrared absorbing glass substrate and the near infrared absorbing glass substrate, and at least one of the laminates
  • a near-infrared cut filter having a dielectric multi-layer film on the main surface and having a maximum transmittance of 50% or less at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm.
  • a solid-state image pickup device including the near-infrared cut filter and an optical member including a solid-state image sensor, wherein the near-infrared cut filter and the solid-state image sensor are arranged in order from a subject side or a light incident side of a light source.
  • the present invention has sufficient near-infrared shielding characteristics, and in a solid-state imaging device using the same, the occurrence of a phenomenon in which an image that does not exist in the original subject appears in the captured image is reduced or prevented. It is possible to provide a near-infrared cut filter that can be used and a high-sensitivity solid-state imaging device including the same.
  • the near-infrared cut filter (hereinafter also referred to as NIR filter) of the present invention contains a near-infrared absorbing glass substrate and a near-infrared absorbing dye and a transparent resin on at least one main surface of the near-infrared absorbing glass substrate. And a dielectric multilayer film formed on at least one main surface of the multilayer body.
  • the provision of the near-infrared absorbing layer on the main surface of the near-infrared absorbing glass substrate means that the near-infrared absorbing layer does not necessarily have to be in contact with the main surface as long as it is on the main surface. That is, another member may exist between the main surface and the near-infrared absorbing layer, and further a space may exist.
  • the phrase “having a dielectric multilayer film on the main surface of the laminate” does not necessarily include the dielectric multilayer film so as to be in contact with the main surface.
  • the NIR filter has a maximum transmittance of 50% or less at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm.
  • the maximum transmittance at the wavelength and the incident angle is preferably low in order to suppress the occurrence of stray light, in-plane nonuniformity of color and intensity, and the like.
  • the maximum transmittance at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm in the NIR filter is preferably 30% or less, more preferably 10% or less, further preferably 5% or less, and 3% The following is more preferable, 1% or less is further preferable, 0.5% or less is further preferable, 0.3% or less is further more preferable, and 0.2% or less is particularly preferable.
  • the requirement “the maximum transmittance at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm is 50% or less” (referred to as “requirement A”) includes the following cases. Interpret.
  • the above “Requirement A” is, for example, when the average transmittance of light for every 10 nm band at a wavelength of 775 to 900 nm is obtained, and when the maximum transmittance is obtained from a plurality of obtained values, the value is 50% The following is sufficient.
  • the above “requirement A” is, for example, when the average transmittance of light for each angular range of 1 degree in 31 to 60 degrees is obtained, and the maximum transmittance is obtained from a plurality of obtained values. The value should just be 50% or less. If the above “Requirement A” is satisfied, it can be said that the cause of image quality deterioration hardly occurs. For light with a wavelength of 775 to 900 nm, even if the full width at half maximum is 1 nm or less and the full width at half maximum incident angle is 0.5 degrees or less, the maximum transmittance is more preferably 50% or less.
  • the value may be 1% or less (X% or less).
  • the value may be 1% or less (X% or less).
  • the NIR filter of the present invention is given a preferable specification stepwise according to the value of X.
  • the average value of the transmittance at an incident angle of 0 ° for light with a wavelength of 450 to 550 nm is preferably 80% or more, and 90% The above is more preferable.
  • the average transmittance of light having a wavelength of 650 to 720 nm at an incident angle of 0 ° is 15% or less. preferable.
  • the average value of the transmittance at an incident angle of 0 degree for light having a wavelength of 650 to 700 nm is preferably 35% or less, more preferably 30% or less, and further preferably 25% or less. Further, in the NIR filter of the present invention, the average value of the transmittance at an incident angle of 0 degrees for light with a wavelength of 690 to 720 nm is more preferably 3% or less.
  • the NIR filter of the present invention has a wavelength ⁇ 0 (NIR) at which the transmittance at an incident angle of 0 degree is 50% and a wavelength at which the transmittance at an incident angle of 30 degrees is 50% in a region where the wavelength is longer than 600 nm. and a lambda 30 (NIR), the absolute value of the difference of the wavelength
  • is more preferably 3 nm or less.
  • the average absolute value of the difference between the transmittance at an incident angle of 0 degree and the transmittance at an incident angle of 30 degrees is preferably 3% or less for light having a wavelength of 600 to 750 nm.
  • the average value is more preferably 2% or less.
  • the near-infrared-absorbing glass substrate has the near-infrared-absorbing layer on the surface on the side opposite to the near-infrared-absorbing glass substrate having the near-infrared-absorbing layer.
  • the reflectance at an incident angle of 5 degrees with respect to light having a wavelength of 430 to 600 nm, measured excluding the reflection of 1, is preferably 2.0% or less, more preferably 1.2% or less.
  • the absorptance, transmittance, and reflectance are values measured using a spectrophotometer.
  • the transmittance of 70% or more in a specific wavelength region means that the transmittance is 70% or more in the light of the entire wavelength region
  • the transmittance of 10% or less means that the transmittance is 10% or less. In light, the transmittance is 10% or less.
  • the optical characteristics are measured with respect to light incident from a direction orthogonal to the main surface of the specimen (incident angle 0 degree).
  • the incident angle is an angle formed by a straight line indicating the direction in which light is incident with respect to the normal line of the main surface.
  • the NIR filter of the present invention is a near-infrared cut filter excellent in near-infrared shielding characteristics, which effectively uses a near-infrared absorbing layer containing a near-infrared absorbing glass, a near-infrared absorbing dye, and a dielectric multilayer film.
  • the near-infrared cut filter is configured to have a maximum transmittance of 50% or less at a relatively large incident angle of 31 to 60 degrees with respect to light in a specific wavelength region (775 to 900 nm) in the near infrared region. In a solid-state imaging device using this, it is possible to reduce or prevent the occurrence of a phenomenon in which an image that does not exist in the original subject appears in the captured image.
  • the NIR filter according to a preferred embodiment of the present invention has a high average transmittance in the visible region because the spectral transmittance curve has a steep slope near the boundary between the visible region and the near infrared region, and further depends on the incident angle of light.
  • This is a near-infrared cut filter that has sufficient near-infrared shielding characteristics.
  • the average value of the transmittance at an incident angle of 0 degree in the visible range of 450 to 550 nm is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the NIR filter also converts the wavelengths of light having wavelengths of 550 to 720 nm at transmittances of 85%, 45%, and 5% at an incident angle of 0 ° to ⁇ (T85%), ⁇ (T45%), and ⁇ , respectively. If (T5%), the relationship of the following formula (2) should be satisfied. ⁇ (T45%) ⁇ ⁇ (T85%) ⁇ ⁇ ⁇ (T5%) ⁇ ⁇ (T45%) ⁇ (2) Since the NIR cut filter includes the near infrared absorption layer, it is possible to suppress a change in the spectral transmittance curve of the near infrared reflection band generated by the dielectric multilayer film with respect to light having an incident angle of 0 to 30 degrees. Formula (2) shows the light shielding property that the gradient reaching the transmittance of 45 to 5% is steeper than the gradient reaching the transmittance of 85 to 45% by including the near infrared absorption layer.
  • the near-infrared absorbing layer further contains an ultraviolet absorber.
  • the NIR filter of the present invention has an average transmittance of 70% or more at a light incident angle of 0 degree for light with a wavelength of 430 to 450 nm and a light incident angle of 0 degree for light with a wavelength of 350 to 390 nm.
  • the optical characteristic in which the average value of the transmittance at 5 is 5% or less can be realized.
  • the near-infrared absorption layer contains an ultraviolet absorber, so that the wavelength at which the transmittance at an incident angle of 0 degree is 50% is ⁇ in a region where the wavelength is shorter than 450 nm.
  • Can be small.
  • is preferably 5 nm or less, and more preferably 3 nm or less.
  • the near-infrared absorbing layer contains an ultraviolet absorber, and the difference between the transmittance at an incident angle of 0 ° and the transmittance at an incident angle of 30 ° is obtained for light having a wavelength of 380 to 430 nm.
  • the average absolute value is preferably 8% or less, and more preferably 5% or less.
  • the NIR filter of the present invention in which the near-infrared absorbing layer contains an ultraviolet absorber has the above-described near-infrared shielding characteristics, and a phenomenon in which an image that does not exist in the original subject appears in an image captured by the solid-state imaging device. Can be reduced or prevented.
  • the spectral transmittance curve has a steep slope near the boundary between the visible region and the ultraviolet wavelength region (hereinafter referred to as the “ultraviolet region”), and the incident angle dependency of the light transmittance at a wavelength of 500 nm or less is small.
  • the near-infrared cut filter with a higher average transmittance in the visible range can be realized.
  • FIG. 1 to 3 are cross-sectional views schematically showing one example, another example, and yet another example of the NIR filter according to the embodiment of the present invention.
  • the NIR filter 10A of the embodiment shown in FIG. 1 contains a near-infrared absorbing glass substrate 11 and a near-infrared absorbing dye and a transparent resin laminated on one main surface of the near-infrared absorbing glass substrate 11.
  • the laminated body L which consists of the near-infrared absorption layer 12 and the 1st dielectric multilayer film 13 laminated
  • the laminated body L has the near infrared absorbing layers 12 on both main surfaces of the near infrared absorbing glass substrate 11, and on one or both main surfaces of the laminated body L.
  • a configuration having a dielectric multilayer film may also be used.
  • a configuration in which a dielectric layer is provided between the near-infrared absorbing glass substrate 11 and the near-infrared absorbing layer 12 can also be mentioned.
  • the NIR filter 10B shown in FIG. 2 which is another example of the NIR filter of the embodiment includes a near-infrared absorbing glass substrate 11 and a near-infrared absorption layered on one main surface of the near-infrared absorbing glass substrate 11.
  • Near-infrared absorbing layer 12 containing a dye and a transparent resin
  • first dielectric multilayer film 13 laminated on the other main surface of near-infrared absorbing glass substrate 11, and near-infrared absorption of near-infrared absorbing layer 12
  • a second dielectric multilayer film 14 is provided on the main surface opposite to the glass substrate 11.
  • the NIR filter 10B has a configuration in which the second dielectric multilayer film 14 is laminated on the main surface of the near infrared absorption layer 12 of the NIR filter 10A opposite to the near infrared absorption glass substrate 11.
  • the NIR filter 10C shown in FIG. 3 which is still another example of the NIR filter according to the embodiment includes a dielectric layer between the near-infrared absorbing glass substrate 11 and the near-infrared absorbing layer 12 in the NIR filter 10B.
  • the configuration is the same as that of the NIR filter 10B except that 15 is provided.
  • the NIR filter of the present invention preferably has the configuration of the NIR filter 10B from the viewpoint of effectively shielding near infrared rays in addition to the above optical characteristics, and more preferably the configuration of the NIR filter 10C from the viewpoint of durability and the like. preferable.
  • the NIR filter of each embodiment may further contain layers other than the above.
  • each constituent layer included in the NIR filters 10A, 10B, and 10C of the present embodiment will be described.
  • the near-infrared absorbing glass substrate 11 (hereinafter, the near-infrared absorbing glass substrate is also simply referred to as “glass substrate”) transmits light in the visible region (450 to 600 nm) and in the near infrared region (700 to 1100 nm). It is composed of glass having the ability to absorb light, for example, CuO-containing fluorophosphate glass or CuO-containing phosphate glass (hereinafter collectively referred to as “CuO-containing glass”).
  • CuO-containing glass CuO-containing fluorophosphate glass or CuO-containing phosphate glass
  • the CuO-containing glass substrate has an absorption maximum wavelength ⁇ Gmax at a wavelength of 775 to 900 nm in an absorption spectrum of light having a wavelength of 400 to 1100 nm.
  • the CuO-containing glass substrate effectively shields near infrared light, so that the transmittance T ( ⁇ Gmax ) excluding surface reflection loss at the absorption maximum wavelength ⁇ Gmax is 50% or less.
  • the thickness is preferably adjusted, and is preferably adjusted to 30% or less. Further, since the CuO-containing glass substrate has a wide absorption wavelength band, visible light having a wavelength of 600 to 650 nm may also be absorbed.
  • the CuO-containing glass substrate may be adjusted in CuO content and thickness so that the transmittance is not significantly reduced by absorption of visible light, for example, T ( ⁇ Gmax ) is 5% or more.
  • the glass substrate 11 is made of CuO-containing glass, so that it has a high transmittance for visible light and a high shielding property for near-infrared light.
  • the “phosphate glass” includes silicic acid phosphate glass in which a part of the glass skeleton is composed of SiO 2 .
  • Examples of commercially available products include (1) glass such as NF-50E, NF-50EX, NF-50T, NF-50TX (trade name, manufactured by Asahi Glass Co., Ltd.), and (2) glass such as BG-60.
  • Examples of the glass of (5) include CD5000 (manufactured by HOYA, trade name) and the like.
  • the above-described CuO-containing glass may further contain a metal oxide.
  • the metal oxide contains, for example, one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc.
  • the CuO-containing glass has ultraviolet absorption characteristics. Have.
  • the near-infrared absorption performance of the glass substrate 11 is obtained by laminating the near-infrared absorption layer 12, the first dielectric multilayer film 13, the second dielectric multilayer film 14, and the dielectric layer 15 described below.
  • the NIR filters 10A, 10B, and 10C may have the optical characteristics of the present invention, that is, the characteristics that the maximum transmittance at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm is 50% or less. .
  • the glass substrate 11 is in a single state, and the absorptance at an incident angle of 0 degree with respect to light having a wavelength of 775 to 900 nm is preferably 75% or more, and more preferably 85% or more.
  • the thickness of the glass substrate 11 is preferably 0.03 to 5 mm from the viewpoint of reducing the size and thickness of the apparatus, and damage during handling, and 0.05 to 1 mm from the viewpoint of weight reduction and strength. More preferred.
  • the optical properties of the glass substrate 11 are preferably such that the light transmittance at an incident angle of 0 degree at a wavelength of 450 to 550 nm is 80% or more at a thickness of 0.03 to 5 mm.
  • dye and transparent resin which absorb specific near-infrared light as materials other than CuO containing glass is also mentioned.
  • the CuO-containing glass substrate is particularly characterized in that it absorbs light with a wavelength of 400 to 450 nm only slightly and has a low absorption ratio of light with a wavelength of 400 to 450 nm with respect to light with a wavelength of 775 to 900 nm.
  • the CuO-containing glass substrate is useful because even if the CuO content is increased and the absorption rate is increased so that light with a wavelength of 775 to 900 nm is sufficiently blocked by absorption, the visible light transmittance does not decrease significantly. It is.
  • the NIR filters 10A, 10B, and 10C are used as, for example, a cover that is hermetically sealed to protect the solid-state imaging device in the solid-state imaging device, the solid-state imaging device can be reduced in size and thickness.
  • an ⁇ -ray emitting element radioisotope
  • the CuO-containing glass constituting the glass substrate 11 has as little ⁇ -ray emitting element content as possible.
  • the content of U and Th is preferably 20 ppb or less, and more preferably 5 ppb or less.
  • the surface on which the layer is laminated may be subjected to a surface treatment with a silane coupling agent.
  • a silane coupling agent the same thing as used with the following near-infrared absorption layers 12 can be used, for example.
  • the near-infrared absorbing layer 12 is a layer containing a near-infrared absorbing dye (A) and a transparent resin (B). Typically, the near-infrared absorbing dye (A) is uniformly dispersed in the transparent resin (B). It is a layer formed. It is preferable that the near-infrared absorbing layer 12 further contains an ultraviolet absorber (U).
  • the near-infrared absorbing layer 12 is shown as being composed of one layer when it further contains an ultraviolet absorber (U), but is not limited to this configuration.
  • the near-infrared absorbing layer 12 contains a near-infrared absorbing dye (A) and a transparent resin (B) and does not contain an ultraviolet absorber (U)
  • the structure provided may be sufficient. That is, the ultraviolet absorbing layer may include an ultraviolet absorber (U) and a transparent resin, and may be provided as an independent layer.
  • the ultraviolet absorbing layer may be provided on the near infrared absorbing layer 12 side of both main surfaces of the glass substrate 11 or may be provided on the side facing the near infrared absorbing layer 12 side.
  • the NIR filter of the present invention has the same optical characteristics as the optical characteristics of the configuration in which the near infrared absorbing layer 12 further contains the ultraviolet absorber (U). It is done.
  • the near-infrared absorbing layer 12 contains a near-infrared absorbing dye (A), a transparent resin (B), and further an ultraviolet absorber (U), an ultraviolet absorber containing the ultraviolet absorber (U) and the transparent resin.
  • a layer may be provided separately.
  • the NIR of the present invention contains an ultraviolet absorber (U)
  • the near infrared absorbing layer 12 will be described as a configuration in which the ultraviolet absorber (U) is contained.
  • the near-infrared absorbing dye (A) (hereinafter referred to as “dye (A)”) transmits light in the visible region (wavelength 450 to 600 nm) and absorbs light in the near-infrared region (wavelength 700 to 1100 nm). If it is a near-infrared absorption pigment
  • the dye in the present invention may be a pigment, that is, a state in which molecules are aggregated.
  • the near-infrared absorbing dye is referred to as “NIR absorbing dye” as necessary.
  • the dye (A) is preferably a material having an absorption maximum wavelength ⁇ max at a wavelength of 650 to 750 nm, and more preferably a material having ⁇ max at a wavelength of 680 to 720 nm.
  • dye (A) has a high freedom degree in selection of the kind and content of a material which can narrow an absorption wavelength band width compared with near-infrared absorption glass. Therefore, the near-infrared absorbing layer has its transmittance T ( ⁇ max ) at its absorption maximum wavelength ⁇ max adjusted to be lower than the transmittance T ( ⁇ Gmax ) at the absorption maximum wavelength ⁇ Gmax of the near-infrared absorbing glass substrate.
  • dye (A) which has absorption maximum wavelength (lambda) max corresponds with absorption maximum wavelength (lambda) max .
  • the spectral transmittance curve of the near infrared external absorbing layer why absorption of visible light is less than lambda max visible light may have a steep slope in the (short wavelength) side, that is, the near infrared absorbing layer This is to realize a spectral transmittance curve close to the visibility.
  • the near-infrared absorbing layer has low absorption for light having a high visibility of about 550 to 600 nm, maintains a high transmittance, and has a transmittance of about 40 to 40 for light having a wavelength of about 600 to 650 nm where the visibility is gradually lowered.
  • the pigment (A) in the transparent resin (B) and its transparency are reduced so that the transmittance with respect to light having a wavelength of about 650 to 700 nm is lowered to about 60% and the visibility is low to almost no level. Adjust the content. Specifically, the dye (A) and its content are adjusted so that the transmittance T ( ⁇ max ) at ⁇ max of the near-infrared absorbing layer is 5% or less.
  • the absorption wavelength band having a low transmittance with near-infrared light of approximately 700 nm or more is wider.
  • the absorption wavelength band width transmittance is 20% or less at lambda max vicinity may be any 30nm or more, more preferably if more than 40 nm.
  • the near-infrared absorbing layer has the above-described absorption wavelength band width
  • the near-infrared reflective dielectric which will be described later, transmits near-infrared light that cannot be sufficiently blocked by absorption by the near-infrared absorbing glass substrate and the near-infrared absorbing layer.
  • the effect of shielding light using a multilayer film can be enhanced.
  • the near infrared ray It can be set so as to be within a change within the absorption wavelength band of the absorption layer. Therefore, the NIR filter based on the design can suppress the incident angle dependency of the dielectric multilayer film that affects the spectral transmittance curve particularly in the near infrared absorption region.
  • the dye (A) has a wavelength within a range of 650 to 750 nm in an absorption spectrum of light having a wavelength of 400 to 850 nm measured using a resin film obtained by dispersing the dye (A) in the transparent resin (B). Those exhibiting an absorption maximum wavelength are preferred.
  • the near-infrared absorbing dye having such absorption characteristics is referred to as a dye (A1).
  • the absorption maximum wavelength in the absorption spectrum is referred to as ⁇ max of the dye (A1).
  • the absorption spectrum of the dye (A1) has an absorption peak having an absorption peak at the wavelength ⁇ max (hereinafter referred to as “ ⁇ max absorption peak”).
  • the absorption spectrum of the dye (A1) preferably has ⁇ max within a wavelength of 650 to 750 nm, has little absorption of visible light, and has a steep slope on the visible light side of the absorption peak of ⁇ max . Furthermore, it is preferable that the absorption peak of ⁇ max has a gentle slope on the long wavelength side.
  • Examples of the dye (A1) include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, indophenol compounds, Examples include squarylium compounds.
  • the dye (A1) composed of a squarylium compound has little absorption of visible light in the above absorption spectrum, the absorption peak of ⁇ max has a steep slope on the visible light side, and has high storage stability and light stability. Therefore, it is preferable.
  • the dye (A1) composed of a cyanine compound is preferable because the absorption spectrum has little visible light absorption and high light absorption on the long wavelength side in the wavelength region near ⁇ max .
  • cyanine compounds are low-cost, and long-term stability can be secured by salt formation.
  • a dye (A1) made of a phthalocyanine compound is preferable because of excellent heat resistance and weather resistance.
  • the dye (A1) that is a squarylium compound include at least one selected from squarylium compounds represented by the formula (F1).
  • the compound represented by the formula (F1) is also referred to as a compound (F1). The same applies to other compounds.
  • Compound (F1) is a squarylium compound having a structure in which a benzene ring is bonded to the left and right sides of the squarylium skeleton, and a nitrogen atom is bonded to the 4-position of the benzene ring and a saturated heterocyclic ring containing the nitrogen atom is formed. And a compound having a light-absorbing property as the dye (A1).
  • other required characteristics such as increasing the solubility in the solvent (hereinafter sometimes referred to as “host solvent”) used for forming the near-infrared absorbing layer and the transparent resin (B). Accordingly, the substituent of the benzene ring can be appropriately adjusted within the following range.
  • R 4 and R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or —NR 7 R 8 (R 7 And R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —C ( ⁇ O) —R 9 (R 9 is a hydrogen atom or an optionally substituted carbon atom).
  • R 1 and R 2 , R 2 and R 5 , and R 1 and R 3 are connected to each other and have a nitrogen atom and 5 or 6 members, respectively, heterocyclic A, heterocyclic B, and Heterocycle C is formed.
  • R 1 and R 2 are a divalent group -Q- to which they are bonded, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, An alkylene group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent, or an alkyleneoxy group.
  • R 2 and R 5 when the heterocyclic ring B is formed, and R 1 and R 3 when the heterocyclic ring C is formed are each a divalent group —X 1 —Y 1 — and — X 2 —Y 2 — (X 1 and X 2 on the side bonded to nitrogen), X 1 and X 2 are each a group represented by the following formula (1x) or (2x), and Y 1 and Y 2 are each It is a group represented by any one selected from the following formulas (1y) to (5y). When X 1 and X 2 are groups represented by the following formula (2x), Y 1 and Y 2 may each be a single bond.
  • Z's are each independently a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 6 carbon atoms, or -NR 28 R 29 (R 28 and R 29 are each independently Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • R 21 to R 26 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 27 is an alkyl group having 1 to 6 carbon atoms or an alkyl group having 6 to 10 carbon atoms.
  • An aryl group is shown.
  • R 7 , R 8 , R 9 , R 4 , R 6 , R 21 to R 27 , R 1 to R 3 when not forming a heterocyclic ring, and R 5 are It may combine to form a 5-membered ring or a 6-membered ring.
  • R 21 and R 26 , R 21 and R 27 may be directly bonded.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group or allyl group having 1 to 6 carbon atoms, or 6 carbon atoms. Represents an aryl group or an araryl group of ⁇ 11.
  • R 3 and R 5 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or alkoxy group having 1 to 6 carbon atoms.
  • the heterocycle A may be simply referred to as ring A.
  • R 4 and R 6 each independently represent the above atom or group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • the alkyl group may be linear, branched or cyclic.
  • R 4 and R 6 are preferably a combination in which either one is a hydrogen atom and the other is —NR 7 R 8 .
  • —NR 7 R 8 is either R 4 or R 6 May be introduced.
  • —NR 7 R 8 is preferably introduced into R 4 .
  • each of —NR 7 R 8 is preferably introduced into R 6 .
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 10 carbon atoms, or an optionally substituted group.
  • an araryl group having 7 to 18 carbon atoms which may have an oxygen atom between carbon atoms is preferable.
  • Substituents include halogen atoms such as fluorine atoms, hydroxyl groups, carboxy groups, sulfo groups, cyano groups, alkyl groups having 1 to 6 carbon atoms, fluoroalkyl groups having 1 to 6 carbon atoms, and alkoxy groups having 1 to 6 carbon atoms. And an acyloxy group having 1 to 6 carbon atoms.
  • R 9 is a linear, branched or cyclic alkyl group having 1 to 17 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms and / or carbon which may be substituted with a fluorine atom.
  • a phenyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms, and a carbon atom having 7 to 18 carbon atoms which may have an oxygen atom between the carbon atoms, and substituted with a fluorine atom having 1 to 6 carbon atoms at the terminal A group selected from an alkyl group which may be substituted and / or an aryl group having a phenyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms is preferred.
  • one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and an unsaturated bond, oxygen atom, saturated or A group which is a hydrocarbon group having 5 to 25 carbon atoms and having at least one branch which may contain an unsaturated ring structure is also preferably used.
  • R 9 include groups represented by formulas (1a), (1b), (2a) to (2e), and (3a) to (3e).
  • R 1 and R 2 , R 2 and R 5 , and R 1 and R 3 are connected to each other to form 5 or 6 members of ring A, ring B, and ring C, At least any one of these may be formed, and two or three may be formed.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group or allyl group having 1 to 6 carbon atoms, or 6 to 6 carbon atoms.
  • 11 aryl groups or araryl groups are shown.
  • the alkyl group may be linear, branched or cyclic. Examples of the substituent include a hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, and an acyloxy group having 1 to 3 carbon atoms.
  • R 3 and R 5 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or alkoxy group having 1 to 6 carbon atoms.
  • R 1 , R 2 , R 3 , and R 5 an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of solubility in a host solvent or a transparent resin (B). And the 2-propyl group is particularly preferred.
  • the groups R 1 to R 6 of the benzene ring bonded to the left and right of the squarylium skeleton may be different on the left and right, but are preferably the same on the left and right.
  • the compound (F1) includes the compound (F1-1) represented by the formula (F1-1) having a resonance structure having the structure represented by the formula (F1).
  • compound (F1) a compound represented by formula (F11) having only ring B as a ring structure, a compound represented by formula (F12) having only ring A as a ring structure, ring B and ring And a compound represented by the formula (F13) having two C atoms as a ring structure.
  • the compound represented by the formula (F11) is the same compound as the compound (F1) having only the ring C as a ring structure and R 6 being —NR 7 R 8 .
  • the compound represented by the formula (F11) and the compound represented by the formula (F13) are compounds described in US Pat. No. 5,543,086.
  • X 1 is preferably an ethylene group in which the hydrogen atom represented by the above (2x) may be substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the substituent is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • X 1 specifically, — (CH 2 ) 2 —, —CH 2 —C (CH 3 ) 2 —, —CH (CH 3 ) —C (CH 3 ) 2 —, —C (CH 3 ) 2 -C (CH 3 ) 2- and the like.
  • Examples of the compound (F11) include the formula (F11-1), the formula (F11-2), the formula (F11-3), the formula (F11-4), the formula (F11-5), the formula (F11-6), And compounds represented by the formula (F11-7).
  • the compound (F11-2), the compound (F11-3), the compound (F11-4), the compound (F11-5), the compound (F11) are highly soluble in the host solvent and the transparent resin (B). -6) is more preferable.
  • Q is substituted with a hydrogen atom by an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an acyloxy group having 1 to 10 carbon atoms which may have a substituent. And an alkylene group having 4 or 5 carbon atoms and an alkyleneoxy group having 3 or 4 carbon atoms. In the case of an alkyleneoxy group, the position of oxygen is preferably other than next to N.
  • Q is preferably a butylene group which may be substituted with an alkyl group having 1 to 3 carbon atoms, particularly a methyl group.
  • —NR 7 R 8 is —NH—C ( ⁇ O) — (CH 2 ) m —CH 3 (m is 0 to 19), —NH—C ( ⁇ O) —Ph— R 10 (-Ph- represents a phenylene group, R 10 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a fluorine atom, or an alkoxy group having 1 to 3 carbon atoms, respectively. And the like are preferred.
  • compound (F12) since its lambda max is in the relatively long wavelength side among the wavelengths, it is possible to widen the transmission region of the visible wavelength band by using the compound (F12).
  • Examples of compound (F12) include compounds represented by formula (F12-1), formula (F12-2), and formula (F12-3).
  • the hydrogen atom represented by the above (2x) may be independently substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • An ethylene group is preferred.
  • the substituent is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • X 1 and X 2 specifically, — (CH 2 ) 2 —, —CH 2 —C (CH 3 ) 2 —, —CH (CH 3 ) —C (CH 3 ) 2 —, —C ( CH 3 ) 2 —C (CH 3 ) 2 — and the like.
  • Y 1 and Y 2 are independently —CH 2 —, —C (CH 3 ) 2 —, —CH (C 6 H 5 ) —, —CH ((CH 2 ) m CH 3 ) — (m is 0-5) and the like.
  • —NR 7 R 8 is —NH—C ( ⁇ O) —C m H 2m + 1 (m is 1 to 20, and C m H 2m + 1 is linear, branched, or cyclic.
  • —NH—C ( ⁇ O) —Ph—R 10 (—Ph— represents a phenylene group, R 10 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, 1 carbon atom) An alkoxy group having 1 to 3 carbon atoms or a perfluoroalkyl group having 1 to 3 carbon atoms, respectively).
  • Examples of the compound (F13) include compounds represented by the following formulas (F13-1) and (F13-2).
  • Formula (F6) represents a compound in which none of Ring A, Ring B, and Ring C is formed in Formula (F1) (wherein R 1 to R 6 are as follows).
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group or allyl group having 1 to 12 carbon atoms, or an aryl group or aryl group having 6 to 11 carbon atoms.
  • R 3 and R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 6 carbon atoms.
  • R 4 and R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or —NR 7 R 8 (R 7 And R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —C ( ⁇ O) —R 9 (R 9 is a hydrogen atom or an optionally substituted carbon atom).
  • Examples of the compound (F6) include compounds represented by the formula (F6-1) and the formula (F6-2).
  • a squarylium compound represented by the formula (F7) can also be used as the dye (A1).
  • the compound (F1) such as the compound (F11), the compound (F12), the compound (F13), the compound (F6), and the compound (F7) can be produced by a conventionally known method.
  • Compound (F11) such as compound (F11-1) can be produced, for example, by the method described in US Pat. No. 5,543,086.
  • the compound (F12) is, for example, J.I. Org. Chem. 2005, 70 (13), 5164-5173.
  • the compound (F12-1), the compound (F12-2) and the like can be produced, for example, according to the synthesis route shown in the reaction formula (F3).
  • Reaction Formula (F3) the carboxylic acid chloride having the desired substituent R 9 is reacted with the amino group of 1-methyl-2-iodo-4-aminobenzene to form an amide.
  • pyrrolidine is reacted, and further reacted with 3,4-dihydroxy-3-cyclobutene-1,2-dione (hereinafter referred to as squaric acid), whereby compound (F12-1), compound (F12-2) Etc. are obtained.
  • R 9 represents —Ph or — (CH 2 ) 5 —CH 3 .
  • -Ph represents a phenyl group.
  • Et represents an ethyl group, and THF represents tetrahydrofuran.
  • compound (F13-1), compound (F13-2) and the like can be produced, for example, according to the synthetic route shown in reaction formula (F4).
  • reaction formula (F4) first, 8-hydroxyjulolidine is reacted with trifluoromethanesulfonic anhydride (Tf 2 O) to form 8-trifluoromethanesulfonic acid julolidine, and then benzylamine (BnNH 2 ) is added thereto. Reaction is carried out to obtain 8-benzylaminojulolidine, which is further reduced to produce 8-aminojulolidine.
  • Tf 2 O trifluoromethanesulfonic anhydride
  • BnNH 2 benzylamine
  • Me is a methyl group
  • TEA is triethylamine
  • Ac is an acetyl group
  • BINAP is (2,2′-bis (diphenylphosphino) -1,1′-binaphthyl)
  • NaOtBu is sodium t-butoxide Respectively.
  • a commercially available product may be used as the dye (A1) which is a squarylium compound.
  • Examples of commercially available products include S2098, S2084 (trade names, manufactured by FEW Chemicals) and the like.
  • Specific examples of the dye (A1) that is a cyanine compound include at least one selected from cyanine compounds represented by the formula (F5).
  • R 11 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group or an alkylsulfone group, or an anionic species thereof.
  • R 12 and R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Z represents PF 6 , ClO 4 , R f —SO 2 , (R f —SO 2 ) 2 —N (R f represents an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. shown.), or an BF 4.
  • R 14 , R 15 , R 16 and R 17 each independently represent a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 6.
  • R 11 in the compound (F5) is preferably an alkyl group having 1 to 20 carbon atoms
  • R 12 and R 13 are each independently preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 14 , R 15 , R 16 and R 17 are each independently preferably a hydrogen atom, and the number of n is preferably 1 to 4.
  • the left and right structures sandwiching n repeating units may be different, but the same structure is preferred.
  • examples of the compound (F5) include a compound represented by the formula (F51) and a compound represented by the formula (F52).
  • Z - anion represented by Z in (F5) - is the same as.
  • a commercially available product may be used as the dye (A1) which is a cyanine compound.
  • Examples of commercially available products include ADS680HO (trade name, manufactured by American dye), S0830 (trade name, manufactured by FEW Chemicals), S2137 (trade name, manufactured by FEW Chemicals), and the like.
  • Examples of the phthalocyanine compound that can be used as the dye (A1) include FB22 (trade name, manufactured by Yamada Chemical Co., Ltd.), TXEX720 (trade name, manufactured by Nippon Shokubai Co., Ltd.), and PC142c (trade name, manufactured by Yamada Chemical Industry Co., Ltd.). And other commercially available products.
  • Table 1 shows the ⁇ max of each compound used as the pigment (A1) exemplified above together with the type of the transparent resin (B) used in the measurement.
  • B-OKP2 and Byron (registered trademark) 103 used as the transparent resin (B) in the above are polyester resin, SP3810 is polycarbonate resin, and EA-F5003 is acrylic resin, and details will be described later.
  • the dye (A1) one kind selected from a plurality of compounds having light absorption characteristics as the dye (A1) may be used alone, or two or more kinds may be used in combination.
  • the dye (A) preferably contains one or more of the dyes (A1).
  • dye (A) may contain another NIR absorption pigment
  • NIR absorbing dyes when a plurality of NIR absorbing dyes are used as the dye (A), in the absorption spectrum of light having a wavelength of 400 to 850 nm measured with respect to a resin film prepared by dispersing these in the transparent resin (B), a wavelength of 650 to 750 nm It is preferable to use a combination of NIR absorbing dyes so that the absorption maximum wavelength is expressed inside. Further, in the absorption spectrum, a combination of NIR absorbing dyes is used so that the absorption of visible light is small, the slope of the absorption peak of ⁇ max is steep on the visible light side, and the slope is gentle on the long wavelength side. It is preferable.
  • the ultraviolet absorber (U) (hereinafter also referred to as absorber (U)) is a compound that absorbs light having a wavelength of 430 nm or less.
  • absorber (U) a compound satisfying the requirements of (iv-1) and (iv-2) (hereinafter referred to as absorber (U1)) is preferable.
  • the light absorption spectrum has at least one absorption maximum wavelength at a wavelength of 415 nm or less, and is the most of the absorption maximums in light at a wavelength of 415 nm or less.
  • the absorption maximum wavelength ⁇ max (UV) on the long wavelength side is at a wavelength of 360 to 415 nm.
  • the absorption maximum wavelength of the absorber (U) satisfying (iv-1) does not change greatly even in the transparent resin. That is, the absorber (U) satisfying (iv-1) has an absorption maximum wavelength ⁇ max ⁇ P (UV) in the absorption spectrum in the resin even when the absorber (U) is dissolved or dispersed in a transparent resin. This is preferable because it exists in the wavelength range of 360 to 415 nm.
  • the absorber (U) satisfying (iv-2) exhibits excellent steepness even when contained in a transparent resin. That is, the absorber (U) satisfying (iv-2) has a transmittance at a wavelength longer than the absorption maximum wavelength ⁇ max ⁇ P (UV) even when the absorber (U) is dissolved or dispersed in a transparent resin.
  • the difference ( ⁇ P90 ⁇ P50 ) between the wavelength ⁇ P50 at which the transmittance is 50% and the wavelength ⁇ P90 at which the transmittance is 90% is approximately 14 nm or less, which is preferable because it exhibits the same steepness as in dichloromethane.
  • ⁇ p90 - ⁇ p50 is more preferably 13 nm or less, and even more preferably 12 nm or less.
  • the absorber (U) satisfying (iv-1) is used, the wavelength ⁇ 0 (UV) and the wavelength ⁇ 30 of the NIR filter of the embodiment obtained as the near-infrared absorbing layer 12 by dissolving or dispersing in the transparent resin. (UV) can be present in the region shorter than the wavelength of 450 nm, preferably in the wavelength range of 400 to 425 nm.
  • the absorber (U) satisfying (iv-2) is used, the absorption maximum wavelength by the absorber (U) is obtained in the NIR filter of the embodiment obtained as the near-infrared absorption layer 12 by being dissolved or dispersed in the transparent resin.
  • the difference between the wavelength at which the transmittance on the long wavelength side is 50% and the wavelength at which the transmittance is 90% can be reduced. That is, the change in the spectral transmittance curve can be made steep in the wavelength region.
  • the wavelength ⁇ 0 (UV) is set in a region shorter than the wavelength 450 nm, preferably in the wavelength 400 to 425 nm.
  • the wavelength ⁇ 30 (UV) is likely to exist, and a steep change in the spectral transmittance curve is easily obtained in a region shorter than the wavelength 450 nm.
  • an absorption spectrum of light having a wavelength of 350 to 800 nm measured by dissolving the absorber (U) in dichloromethane is also referred to as “absorption spectrum of the absorber (U)”.
  • the maximum absorption wavelength ⁇ max in the absorption spectrum of the absorber (U) to (UV) referred to as " ⁇ max of the absorber (U) (UV)”.
  • a spectral transmittance curve measured by dissolving the absorber (U) in dichloromethane is referred to as a “spectral transmittance curve of the absorber (U)”.
  • ⁇ L90 the wavelength at which the transmittance is 90% at a long wavelength
  • ⁇ L50 the wavelength at which the transmittance is 50% at a wavelength longer than ⁇ max (UV) of the absorber (U)
  • the absorption spectrum of light having a wavelength of 350 to 800 nm measured in an absorption layer prepared by dissolving the absorber (U) in a transparent resin is expressed as “absorption in the resin of the absorber (U)”. Also called “spectrum”.
  • a spectral transmittance curve measured for an absorption layer prepared by dissolving the absorber (U) in a transparent resin is referred to as “in-resin spectral transmittance curve of the absorber (U)”.
  • ⁇ max of the absorber (U) is contained.
  • the wavelength at which the transmittance is 90% at a wavelength longer than P (UV) is called “ ⁇ P90 ”, and the wavelength at which the transmittance is 50% longer than ⁇ max ⁇ P (UV) of the absorber (U). Is referred to as “ ⁇ P50 ”.
  • the wavelength ⁇ max (UV) of the absorber (U) is preferably in the wavelength range of 365 to 415 nm, and more preferably in the wavelength range of 370 to 410 nm.
  • the wavelength ⁇ max (UV) of the absorber (U) is in this region, the effect described above, that is, a steep change in the spectral transmittance curve is easily obtained at a wavelength of 400 to 425 nm.
  • the difference ( ⁇ L90 - ⁇ L50 ) between ⁇ L90 and ⁇ L50 of the absorber (U) is preferably 12 nm or less, more preferably 11 nm or less, and even more preferably 9 nm or less. The effect described above is easily obtained when ⁇ L90 - ⁇ L50 is in this region.
  • the absorber (U1) satisfying (iv-1) and (iv-2) include oxazole, merocyanine, cyanine, naphthalimide, oxadiazole, oxazine, oxazolidine, naphthalic acid And dyes such as styryl, styryl, anthracene, cyclic carbonyl, and triazole.
  • Examples of the absorber (U1) include a dye represented by the formula (N).
  • dye represented by Formula (N) is described as a pigment
  • group represented by Formula (1n) is described as group (1n). Groups represented by other formulas are also described in the same manner.
  • each R 18 independently represents a hydrocarbon group having 1 to 20 carbon atoms which may contain a saturated or unsaturated ring structure and may have a branch. Specific examples include linear or branched alkyl groups, alkenyl groups, saturated cyclic hydrocarbon groups, aryl groups, and araryl groups.
  • R 19 each independently represents a cyano group or a group represented by formula (n).
  • -COOR 30 (n) In the formula (n), R 30 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain a saturated or unsaturated ring structure and may have a branch. Specific examples include linear or branched alkyl groups, alkenyl groups, saturated cyclic hydrocarbon groups, aryl groups, and araryl groups.
  • R 18 in the dye (N) groups represented by the formulas (1n) to (4n) are particularly preferable.
  • R 19 in the dye (N) is preferably a group represented by the formula (5n).
  • dyes (N) include dyes (N-1) to (N-4) having the constitution shown in Table 2.
  • the specific structures of R 18 and R 19 in Table 2 correspond to formulas (1n) to (5n).
  • Table 2 also shows the corresponding dye abbreviations.
  • dyes (N-1) to (N-4) two R 18 s are the same, and R 19 is the same.
  • oxazole-based and merocyanine-based dyes are preferable, and commercially available products include, for example, Uvitex (registered trademark) OB, Hakkol (registered trademark) RF-K, S0511.
  • a merocyanine dye represented by the formula (M) is particularly preferable.
  • Y represents a methylene group or an oxygen atom substituted with Q 6 and Q 7 .
  • Q 6 and Q 7 each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 10 carbon atoms.
  • Q 6 and Q 7 are each independently preferably a hydrogen atom, an alkyl group or an alkoxy group having 1 to 10 carbon atoms, and both are hydrogen atoms, or at least one is a hydrogen atom and the other is 1 to More preferred are 4 alkyl groups. Particularly preferably, Q 6 and Q 7 are both hydrogen atoms.
  • Q 1 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • the monovalent hydrocarbon group having no substituent include an alkyl group having 1 to 12 carbon atoms in which a part of hydrogen atoms may be substituted with an aliphatic ring, an aromatic ring or an alkenyl group, and one hydrogen atom.
  • Part of the cycloalkyl group having 3 to 8 carbon atoms which may be substituted with an aromatic ring, an alkyl group or an alkenyl group, and a part of hydrogen atoms may be substituted with an aliphatic ring, an alkyl group or an alkenyl group
  • a good aryl group having 6 to 12 carbon atoms is preferred.
  • the alkyl group may be linear or branched, and the carbon number thereof is more preferably 1-6.
  • the alkyl group having 1 to 12 carbon atoms in which part of the hydrogen atoms is substituted with an aliphatic ring, an aromatic ring or an alkenyl group is an alkyl group having 1 to 4 carbon atoms having a cycloalkyl group having 3 to 6 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms substituted with a phenyl group is more preferred, and an alkyl group having 1 or 2 carbon atoms substituted with a phenyl group is particularly preferred.
  • the alkyl group substituted with an alkenyl group means an alkenyl group as a whole but having no unsaturated bond between the 1- and 2-positions, such as an allyl group or a 3-butenyl group.
  • the hydrocarbon group having a substituent is preferably an alkoxy group, an acyl group, an acyloxy group, a cyano group, a dialkylamino group, or a hydrocarbon group having at least one chlorine atom.
  • the alkoxy group, acyl group, acyloxy group and dialkylamino group preferably have 1 to 6 carbon atoms.
  • Preferred Q 1 is an alkyl group having 1 to 6 carbon atoms in which part of hydrogen atoms may be substituted with a cycloalkyl group or a phenyl group.
  • Particularly preferred Q 1 is an alkyl group having 1 to 6 carbon atoms, and specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group.
  • Q 2 to Q 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group or alkoxy group having 1 to 10 carbon atoms.
  • the alkyl group and alkoxy group preferably have 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • At least one of Q 2 and Q 3 is preferably an alkyl group, and more preferably an alkyl group. If Q 2 or Q 3 is not an alkyl group, more preferably a hydrogen atom.
  • Q 2 and Q 3 are both particularly preferably alkyl groups having 1 to 6 carbon atoms.
  • At least one of Q 4 and Q 5 is preferably a hydrogen atom, and more preferably a hydrogen atom. When Q 4 or Q 5 is not a hydrogen atom, an alkyl group having 1 to 6 carbon atoms is preferable.
  • Z represents any of divalent groups represented by formulas (Z1) to (Z5).
  • Q 8 and Q 9 each independently represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • Q 8 and Q 9 may be different groups, but are preferably the same group.
  • Examples of the monovalent hydrocarbon group having no substituent include an alkyl group having 1 to 12 carbon atoms in which a part of hydrogen atoms may be substituted with an aliphatic ring, an aromatic ring or an alkenyl group, and one hydrogen atom.
  • Part of the cycloalkyl group having 3 to 8 carbon atoms which may be substituted with an aromatic ring, an alkyl group or an alkenyl group, and a part of hydrogen atoms are substituted with an aliphatic ring, an alkyl group or an alkenyl group
  • Preferred is an aryl group having 6 to 12 carbon atoms.
  • the alkyl groups may be linear or branched, and the number of carbon atoms is more preferably 1-6.
  • the alkyl group having 1 to 12 carbon atoms in which part of the hydrogen atoms is substituted with an aliphatic ring, an aromatic ring or an alkenyl group is an alkyl group having 1 to 4 carbon atoms having a cycloalkyl group having 3 to 6 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms substituted with a phenyl group is more preferred, and an alkyl group having 1 or 2 carbon atoms substituted with a phenyl group is particularly preferred.
  • the alkyl group substituted with an alkenyl group means an alkenyl group as a whole but having no unsaturated bond between the 1- and 2-positions, such as an allyl group or a 3-butenyl group.
  • the monovalent hydrocarbon group having a substituent is preferably an alkoxy group, an acyl group, an acyloxy group, a cyano group, a dialkylamino group, or a hydrocarbon group having at least one chlorine atom.
  • the alkoxy group, acyl group, acyloxy group and dialkylamino group preferably have 1 to 6 carbon atoms.
  • Preferable Q 8 and Q 9 are both an alkyl group having 1 to 6 carbon atoms in which a part of hydrogen atoms may be substituted with a cycloalkyl group or a phenyl group.
  • Particularly preferred Q 8 and Q 9 are both alkyl groups having 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t- A butyl group etc. are mentioned.
  • Q 10 to Q 19 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent is the same hydrocarbon group as Q 8 and Q 9 .
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent is preferably an alkyl group having 1 to 6 carbon atoms which does not have a substituent.
  • Both Q 10 and Q 11 are more preferably an alkyl group having 1 to 6 carbon atoms, and the same alkyl group is particularly preferable.
  • Q 12 and Q 15 are each preferably a hydrogen atom or a C 1-6 alkyl group having no substituent.
  • the two groups (Q 13 and Q 14 , Q 16 and Q 17 , Q 18 and Q 19 ) bonded to the same carbon atom are both hydrogen atoms, or both are preferably alkyl groups having 1 to 6 carbon atoms. .
  • the compound represented by the formula (M) is a compound in which Y is an oxygen atom, Z is a group (Z1) or a group (Z2), and a methylene group in which Y is substituted with Q 6 and Q 7
  • a compound in which Z is a group (Z1) or a group (Z5) is preferable.
  • Q 1 is an alkyl group having 1 to 6 carbon atoms
  • Q 2 and Q 3 are both alkyl groups having 1 to 6 carbon atoms
  • Q 4 and Q 5 are both hydrogen atoms
  • a group (Z1) or a group ( Z2) is preferred.
  • Q 1 is an alkyl group having 1 to 6 carbon atoms
  • Q 2 and Q 3 Are each a hydrogen atom, preferably an alkyl group having 1 to 6 carbon atoms, Q 4 to Q 7 are all hydrogen atoms, and a group (Z1) or group (Z5) is preferable, and Q 1 is a carbon atom having 1 to 6 carbon atoms.
  • the group (Z1) or the group (Z5) in which the alkyl group 6 and Q 2 to Q 7 are all hydrogen atoms are more preferable.
  • the compound represented by the formula (M) is preferably a compound in which Y is an oxygen atom, Z is a group (Z1) or a group (Z2), Y is an oxygen atom, and Z is a group (Z1). Certain compounds are particularly preferred.
  • dye (M) examples include compounds represented by the formulas (M-1) to (M-11).
  • one type selected from a plurality of compounds having light absorption characteristics as the absorber (U1) may be used alone, or two or more types may be used in combination. .
  • the absorber (U) preferably contains one or more of the absorbers (U1).
  • an absorber (U) may contain another ultraviolet absorber as needed in the range which does not impair the effect by an absorber (U1) other than an absorber (U1).
  • Transparent resin (B)> As the transparent resin (B), a transparent resin having a refractive index of 1.45 or more is preferable.
  • the refractive index is more preferably 1.5 or more, and particularly preferably 1.6 or more.
  • the upper limit of the refractive index of the transparent resin (B) is not particularly limited, but is preferably about 1.72 from the viewpoint of availability.
  • the refractive index means the refractive index at a wavelength of 588 nm at 20 ° C.
  • the refractive index means the refractive index unless otherwise specified.
  • transparent resin (B) acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin , Polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, and polyester resin.
  • transparent resin (B) 1 type may be used individually from these resin, and 2 or more types may be mixed and used for it. In the case of using a transparent resin (B) having a refractive index of 1.45 or more, one kind of these resins may be used alone as long as the refractive index is 1.45 or more as a whole. You may mix and use a seed
  • the transparent resin is an acrylic resin, a polyester resin, a polycarbonate resin, an ene / thiol resin, an epoxy resin, and a cyclic resin.
  • the transparent resin is more preferably at least one selected from an acrylic resin, a polyester resin, a polycarbonate resin, and a cyclic olefin resin.
  • the polyester resin polyethylene terephthalate resin, polyethylene naphthalate resin and the like are preferable.
  • the refractive index of the transparent resin (B) can be adjusted to the above range by adjusting the molecular structure of the raw material component so that the polymer main chain and side chain have a specific structure, for example.
  • Examples of the structure in the polymer for adjusting the refractive index within the above range include a fluorene skeleton represented by the formula (B1).
  • the 9,9-bisphenylfluorene skeleton represented by the formula (B2) is preferable in that a higher refractive index and heat resistance can be obtained.
  • acrylic resin polycarbonate resin and polyester resin are preferable.
  • an acrylic resin having a fluorene skeleton for example, 9,9-bis, in which at least one substituent having a (meth) acryloyl group at the terminal is introduced into at least two phenyl groups of 9,9-bisphenylfluorene.
  • An acrylic resin obtained by polymerizing a raw material component containing a phenylfluorene derivative is mentioned.
  • (meth) acryloyl Korean Is a general term for “methacryloyl...” And “acryloyl.
  • an acrylic resin obtained by polymerizing a compound in which a hydroxyl group is introduced into the 9,9-bisphenylfluorene derivative having the (meth) acryloyl group and a urethane (meth) acrylate compound may be used.
  • a urethane (meth) acrylate compound a compound obtained as a reaction product of a (meth) acrylate compound having a hydroxyl group and a polyisocyanate compound, or a reaction product of a (meth) acrylate compound having a hydroxyl group, a polyisocyanate compound and a polyol compound The compound obtained is mentioned.
  • polyester resin into which the fluorene skeleton is introduced examples include a polyester resin in which a 9,9-bisphenylfluorene derivative represented by the formula (B2-1) is introduced as an aromatic diol.
  • the kind of dicarboxylic acid to be reacted with the aromatic diol is not particularly limited.
  • Such a polyester resin is suitably used as the transparent resin (B) from the viewpoint of the refractive index value and transparency in the visible wavelength region.
  • R 41 is an alkylene group having 2 to 4 carbon atoms
  • R 42 , R 43 , R 44 and R 45 are each independently a hydrogen atom, having 1 to 7 carbon atoms. Represents a saturated hydrocarbon group or an aryl group having 6 to 7 carbon atoms.
  • a commercially available product may be used as the transparent resin (B).
  • acrylic resins include resins obtained by curing OGSOL (registered trademark) EA-F5003 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index: 1.59).
  • acrylic resin that can be purchased as a polymer include polymethyl methacrylate (refractive index: 1.49) and polyisobutyl methacrylate (refractive index: 1.48) manufactured by Tokyo Chemical Industry Co., Ltd.
  • polyester resins include OKPH4HT (refractive index: 1.64), OKPH4 (refractive index: 1.61), B-OKP2 (refractive index: 1.63), OKP- manufactured by Osaka Gas Chemical Co., Ltd. 850 (refractive index: 1.65) and Byron (registered trademark) 103 (manufactured by Toyobo Co., Ltd., refractive index: 1.58).
  • Examples of commercially available polycarbonate resins include SP3810 (manufactured by Teijin Chemicals, Inc., refractive index: 1.64), LeXan (registered trademark) ML9103 (manufactured by sabic, refractive index 1.59).
  • polymer alloy examples include Panlite (registered trademark) AM-8 series (manufactured by Teijin Chemicals Ltd.) and xylex (registered trademark) 7507 (manufactured by sabic), which are alloys of polycarbonate and polyester.
  • the near-infrared absorption layer 12 is a layer containing a pigment (A) and a transparent resin (B).
  • the near-infrared absorbing layer 12 preferably further contains an absorber (U).
  • the near-infrared absorption layer 12 contains the pigment (A) to have the optical properties of (a1) and (a2).
  • A1 The absorption spectrum has an absorption maximum wavelength ( ⁇ max ) at a wavelength of 650 to 750 nm.
  • A2) The transmittance of light having a wavelength of 450 nm to 550 nm is 80% or more.
  • the near-infrared absorbing layer 12 is a combination of the near-infrared absorbing layer 12, the glass substrate 11, and at least one dielectric multilayer film selected from the first dielectric multilayer film 13 and the second dielectric multilayer film 14.
  • the NIR filters 10A, 10B, and 10C obtained by stacking may be configured to have the optical characteristics (i-1) and (i-2).
  • I-1) The average value of the light transmittance at an incident angle of 0 degree at a wavelength of 450 to 550 nm is 80% or more.
  • the near-infrared absorption layer 12 has the optical characteristics (a1) and (a2)
  • the optical characteristics (i-1) and (i-2) can be easily obtained as the NIR filters 10A, 10B, and 10C. And preferred.
  • the NIR filters 10A to 10C are used as, for example, an NIR filter such as a digital still camera, the use efficiency of visible light can be improved while blocking near-infrared light, and noise can be suppressed in dark part imaging. It will be advantageous.
  • the content of the dye (A) in the near-infrared absorbing layer 12 is preferably such that the near-infrared absorbing layer 12 satisfies the optical characteristics (a1) and (a2). Further, the content of the dye (A) in the near-infrared absorbing layer 12 is in a region where the wavelength is longer than the wavelength 600 nm of the spectral transmittance curve at the incident angle of 0 degree of the NIR filter of the embodiment, preferably in the wavelength of 610 to 640 nm. It is preferable to adjust to have a wavelength at which the transmittance is 50%.
  • the pigment (A) is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the transparent resin (B) in the near infrared absorption layer 12. 1 to 20 parts by mass is preferable.
  • the NIR filters 10A to 10C obtained by combining and laminating one dielectric multilayer film may be configured to have the optical characteristics (ii-1) and (ii-2).
  • Ii-1) At a wavelength of 430 to 450 nm, the average value of light transmittance at an incident angle of 0 degree is 70% or more.
  • Ii-2) At a wavelength of 350 to 390 nm, the average value of the light transmittance at an incident angle of 0 degree is 5% or less.
  • the content of the absorber (U) in the near infrared absorption layer 12 is preferably an amount satisfying (ii-1) and (ii-2) in the NIR filter of the embodiment having the near infrared absorption layer 12. Further, the content of the absorber (U) in the near-infrared absorbing layer 12 is a region where the wavelength is shorter than the wavelength 450 nm of the spectral transmittance curve at the incident angle of 0 degree of the NIR filter of the embodiment, preferably a wavelength of 400 to 425 nm. It is determined to have a wavelength at which the transmittance is 50% in the light of.
  • the absorber (U) is preferably contained in the near-infrared absorbing layer 12 in an amount of 0.01 to 30 parts by mass, more preferably 0.05 to 25 parts by mass with respect to 100 parts by mass of the transparent resin (B). Preferably, 0.1 to 20 parts by mass is even more preferable.
  • the near-infrared absorbing layer 12 contains other optional components as necessary, in addition to the pigment (A), the transparent resin (B), and the optional absorber (U), as long as the effects of the present invention are not impaired. May be.
  • other optional components specifically, near infrared rays or infrared absorbers, color tone correction dyes, ultraviolet absorbers, leveling agents, antistatic agents, heat stabilizers, light stabilizers, antioxidants, dispersants, flame retardants , Lubricants, plasticizers and the like.
  • the component added to the coating liquid used when forming the near-infrared absorption layer mentioned later for example, the component derived from a silane coupling agent, a heat
  • the content of these other optional components in the near-infrared absorbing layer is preferably 15 parts by mass or less for 100 parts by mass of the transparent resin (B).
  • the film thickness of the near-infrared absorbing layer 12 is appropriately determined according to the arrangement space in the apparatus to be used and the required absorption characteristics.
  • the film thickness is preferably 0.1 to 100 ⁇ m. If the film thickness is less than 0.1 ⁇ m, the near-infrared absorbing ability may not be sufficiently exhibited. On the other hand, if the film thickness exceeds 100 ⁇ m, the flatness of the film is lowered, and there is a possibility that the absorption rate varies.
  • the film thickness is more preferably 0.5 to 50 ⁇ m. If it exists in this range, sufficient near-infrared absorptivity and flatness of a film thickness can be compatible. Even when an ultraviolet absorbing layer is separately provided, the film thickness of the ultraviolet absorbing layer may satisfy the above range.
  • the near-infrared or infrared absorber those which do not impair the effects of the optical properties of the dye (A), preferably the dye (A1) are used.
  • a near-infrared absorber or infrared absorber inorganic fine particles can be preferably used.
  • ITO Indium Tin Oxide
  • ATO Antimony-doped TinOxide
  • cesium tungstate cesium tungstate
  • lanthanum boride etc.
  • Fine particles are mentioned.
  • ITO fine particles and cesium tungstate fine particles have high visible light transmittance and a wide range of light absorption including light in the infrared region exceeding 1200 nm. Is particularly preferred.
  • the number average aggregate particle diameter of the ITO fine particles and cesium tungstate fine particles is preferably from 5 to 200 nm, more preferably from 5 to 100 nm, and even more preferably from 5 to 70 nm, from the viewpoint of suppressing scattering and maintaining transparency.
  • the number average agglomerated particle size is a particle size measurement dispersion liquid in which specimen fine particles are dispersed in a dispersion medium such as water or alcohol, using a dynamic light scattering particle size distribution measurement device. The measured value.
  • the content of the near infrared absorber or infrared absorber is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the transparent resin (B).
  • or an infrared absorber can exhibit the function, ensuring the other physical property calculated
  • UV absorbers benzotriazole UV absorbers, benzophenone UV absorbers, salicylate UV absorbers, cyanoacrylate UV absorbers, triazine UV absorbers, oxanilide UV absorbers, nickel complex UV absorbers Inorganic UV absorbers are preferred.
  • a product name “TINUVIN 479” manufactured by Ciba and the like can be cited.
  • the inorganic ultraviolet absorber examples include particles of zinc oxide, titanium oxide, cerium oxide, zirconium oxide, mica, kaolin, sericite, and the like.
  • the number average aggregate particle diameter of the inorganic ultraviolet absorber is preferably 5 to 200 nm, more preferably 5 to 100 nm, and further preferably 5 to 70 nm from the viewpoint of transparency.
  • the content of the ultraviolet absorber is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the transparent resin (B). Thereby, an ultraviolet absorber can exhibit the function, ensuring the other physical property calculated
  • the light stabilizer examples include hindered amines and nickel complexes such as nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, and nickel dibutyldithiocarbamate. Two or more of these may be used in combination.
  • the content of the light stabilizer is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the transparent resin (B).
  • silane coupling agent examples include 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -N′-2- (amino Ethyl) -3-aminopropyltriethoxysilane, aminosilanes such as 3-anilinopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane Epoxy silanes such as, vinyltrimethoxysilane, vinylsilanes such as N-2- (N-vinylbenzylaminoethyl) -3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-
  • the kind of silane coupling agent to be used can be appropriately selected according to the transparent resin (B) used in combination.
  • the content of the silane coupling agent is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the transparent resin (B) in the coating liquid described below.
  • Examples of the photopolymerization initiator include acetophenones, benzophenones, benzoins, benzyls, Michler ketones, benzoin alkyl ethers, benzyl dimethyl ketals, and thioxanthones.
  • Examples of the thermal polymerization initiator include azobis-based and peroxide-based polymerization initiators. Two or more of these may be used in combination.
  • the content of the light or thermal polymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 5 parts by weight with respect to 100 parts by mass of the transparent resin (B) in the coating liquid described below. Part by mass.
  • the near-infrared absorption layer 12 is, for example, a coating prepared by dispersing and dissolving a pigment (A) and a transparent resin (B) or a raw material component of a transparent resin (B), and optionally an absorber (U).
  • the working solution can be produced by coating on the glass substrate 11, drying, and further curing as necessary.
  • a coating liquid contains this arbitrary component.
  • the solvent is any dispersion medium or solvent that can stably disperse the dye (A), the transparent resin (B), or the raw material components of the transparent resin (B), and optionally the absorber (U).
  • solvent is used in a concept including both a dispersion medium and a solvent.
  • the solvent include ketones such as acetone and cyclohexanone; ethers such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; methanol Ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methoxyethanol, 4-methyl-2-pentanol, 2-butoxyethanol, 1-methoxy- Examples include alcohols such as 2-propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isooctane, benzene, toluene, xylene, gasoline, light oil, and kerosene; acetonitrile, nitromethane, and water. Two or more of these may be used in combination.
  • the amount of the solvent is preferably 10 to 5000 parts by mass, particularly preferably 30 to 2000 parts by mass with respect to 100 parts by mass of the transparent resin (B).
  • the content of the non-volatile component (solid content) in the coating liquid is preferably 2 to 50% by mass, particularly preferably 5 to 40% by mass, based on the total amount of the coating liquid.
  • a stirring device such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, or an ultrasonic homogenizer can be used.
  • a stirring device such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, or an ultrasonic homogenizer.
  • Stirring may be performed continuously or intermittently.
  • a coating method such as a gravure coater method, a slit reverse coater method, a micro gravure method, an ink jet method, or a comma coater method can be used.
  • a bar coater method, a screen printing method, a flexographic printing method, etc. can also be used.
  • the near-infrared absorbing layer 12 is formed on the glass substrate 11 by applying the coating liquid onto the glass substrate 11 and then drying it.
  • the coating solution contains the raw material component of the transparent resin (B)
  • a curing treatment is further performed.
  • the reaction is thermosetting, drying and curing can be performed simultaneously.
  • a curing process is provided separately from the drying.
  • the near-infrared absorbing layer 12 directly on the glass substrate 11 by forming the near-infrared absorbing layer 12 directly on the glass substrate 11, a laminate L having the near-infrared absorbing layer 12 on one main surface of the glass substrate 11 is obtained.
  • the above-described method for forming the near-infrared absorbing layer 12 directly on the glass substrate 11 is the NIR filter 10A, 10B obtained using this in terms of workability. From the viewpoint of performance, it is preferable.
  • the NIR filter which has the dielectric material layer 15 between the glass base material 11 and the near-infrared absorption layer 12 like the NIR filter 10C
  • the main surface by the side of the near-infrared absorption layer 12 of the glass base material 11 is formed.
  • a dielectric layer is formed on the dielectric layer in advance by a method described later, and the near-infrared absorbing layer 12 may be formed on the dielectric layer by the same method as described above.
  • the first dielectric is formed by a method described later in advance.
  • a glass substrate 11 having a multilayer body film 13 formed thereon is prepared, and a near-infrared absorbing layer 12 is formed on the main surface of the glass substrate 11 on which the first dielectric multilayer film 13 is not formed by the same method as described above. May be formed.
  • the near-infrared absorbing layer 12 can be manufactured into a film by extrusion, and a plurality of films thus manufactured are laminated to form a thermocompression bonding. Can also be integrated. Moreover, it can manufacture also by peeling the near-infrared absorption layer 12 formed on the peelable base material.
  • the laminate L may be produced using the near-infrared absorbing layer 12 obtained as a single substance.
  • the near-infrared absorbing layer 12 is made of glass by an ordinary method, for example, using an adhesive or the like.
  • the laminated body L can be manufactured by making it stick on the base material 11. FIG.
  • the NIR filter of the present invention has a dielectric multilayer film on at least one main surface of a laminate having a near-infrared absorbing glass substrate and a near-infrared absorbing layer on at least one main surface thereof.
  • the dielectric multilayer film is a first dielectric only on the main surface on the glass substrate 11 side of the laminate L made of the glass substrate 11 and the near-infrared absorbing layer 12.
  • the multilayer film 13 is laminated.
  • the dielectric multilayer film is formed on the glass substrate 11 side of the laminate L made of the glass substrate 11 and the near-infrared absorbing layer 12, for example, as in the NIR filter 10B shown in FIG.
  • the first dielectric multilayer film 13 may be stacked on the main surface
  • the second dielectric multilayer film 14 may be stacked on the main surface on the near infrared absorption layer 12 side.
  • the second dielectric multilayer film 14 is laminated only on the main surface on the near infrared absorption layer 12 side of the laminate L composed of the glass substrate 11 and the near infrared absorption layer 12. But you can.
  • the laminated body L which consists of the glass base material 11 and the near-infrared absorption layer 12 is used as a component of a NIR filter
  • the main surface by the side of the glass base material 11 of the laminated body L, ie, glass It includes a dielectric multilayer film laminated on the main surface opposite to the main surface on which the near-infrared absorbing layer 12 of the substrate 11 is formed.
  • the dielectric multilayer film is referred to as a first dielectric multilayer film.
  • the dielectric multilayer film includes a dielectric multilayer film laminated on the principal surface of the laminate L on the near infrared absorption layer 12 side, that is, the principal surface of the near infrared absorption layer 12 opposite to the glass substrate 11 side. Is referred to as a second dielectric multilayer film.
  • the relationship between the first dielectric multilayer film and the second dielectric multilayer film is such that the multilayer body L has a dielectric layer 15 between the glass substrate 11 and the near-infrared absorbing layer 12 shown in FIG. The same applies to the filter 10C.
  • the first dielectric multilayer film and the second dielectric multilayer film are formed by alternately laminating a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film). It is a film
  • the low refractive index and the high refractive index mean that the refractive index has a high refractive index and a low refractive index with respect to the refractive index of the adjacent layer.
  • a material having a high refractive index may be a low refractive index material.
  • a dielectric multilayer using a material having a refractive index of 1.4 to 1.7 as a low refractive index material and a material having a refractive index of 2.0 to 2.6 as a high refractive index material. Forming a film is preferable from the viewpoint of ease of design and ease of manufacture.
  • examples of the low refractive index material include SiO 2 (1.45), SiO x N y (over 1.45 and 1.7 or less), MgF 2 (1.38), and the like.
  • a low refractive index material within the above refractive index range is preferable, and SiO 2 is particularly preferable in terms of reproducibility, stability, economy, and the like in film formability.
  • the number in the parenthesis after the compound indicates the refractive index.
  • the numbers in parentheses after the compounds similarly indicate the refractive index of the high refractive index material.
  • a high refractive index material more specifically, Ta 2 O 5 (2.22), TiO 2 (2.41), Nb 2 O 5 (2.3), ZrO 2 (1.99), etc. Is mentioned.
  • a high refractive index material in the range of the refractive index of the above preferred, its reproducibility refractive index such as film formability, comprehensively judges including stability, TiO 2, etc. Is particularly preferably used.
  • the first dielectric multilayer film 13 and the second dielectric multilayer film 14 are formed of a specific number of layers and film thickness, and high refractive index material and low refractive index material to be used according to required optical characteristics.
  • the refractive index can be designed using conventional techniques.
  • the dielectric multilayer can be manufactured as per the design.
  • the number of layers of the dielectric multilayer film depends on the optical characteristics of the dielectric multilayer film, but the total number of layers of the low refractive index film and the high refractive index film is preferably 2 to 100, more preferably 2 to 80.
  • the tact time at the time of manufacture becomes longer, warping of the dielectric multilayer film occurs, and the film thickness of the dielectric multilayer film is increased.
  • the first layer may be a low refractive index film or a high refractive index film, but a high refractive index film is preferred.
  • the thinner one is preferable from the viewpoint of reducing the thickness of the NIR filter while satisfying the preferable number of stacked layers.
  • the film thickness of such a dielectric multilayer film is preferably 2 to 10 ⁇ m, depending on the optical characteristics of the dielectric multilayer film.
  • the film thickness is preferably 0.1 to 1 ⁇ m.
  • the first dielectric multilayer film 13 and the second dielectric multilayer film 14 are provided on the main surface of the laminated body L on the glass substrate 11 side and the main surface on the near infrared absorption layer 12 side.
  • warping may occur due to the stress of the dielectric multilayer film.
  • the difference in the thickness of the dielectric multilayer film formed on each surface should be as small as possible after forming the film so as to have a desired selective wavelength shielding characteristic. preferable.
  • a dry film forming process such as an IAD (Ion Assisted Deposition) vapor deposition method, a CVD method, a sputtering method, or a vacuum vapor deposition method, or a wet film forming process such as a spray method or a dip method. Etc. can be used.
  • At least one of the dielectric multilayer films for example, at least one of the first dielectric multilayer film and the second dielectric multilayer film has a maximum at an incident angle of 0 degree with respect to light having a wavelength of 800 to 900 nm.
  • a near-infrared reflective dielectric multilayer film having a transmittance of 1% or less and a maximum transmittance of 3% or more at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm is preferable. .
  • the composition and thickness of the laminate having a glass substrate and a near-infrared absorbing layer It is preferable because the degree of freedom is high. Further, in the dielectric multilayer film, it is preferable that the maximum transmittance at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm is 3% or more because the design and manufacture of the dielectric multilayer film is facilitated. .
  • the dielectric multilayer film preferably has an average transmittance of 90% or more, more preferably 95% or more, for light having a wavelength of 430 to 660 nm incident at an incident angle of 0 to 30 degrees. Furthermore, it is preferable to have a near-infrared reflection band in which the transmittance for light with a wavelength of 700 to 1200 nm incident at an incident angle of 0 degree is 20% or less. Further, the average transmittance for light having an incident angle of 0 ° and a wavelength of 750 to 1150 nm is preferably 5% or less, and more preferably 3% or less.
  • the dielectric multilayer film defines the following parameters based on the spectral transmittance curve. That is, on the short wavelength side of the near-infrared reflection band, the wavelength at which the transmittance of light with an incident angle of 0 degrees is 50% is ⁇ Sh (R0_T50%), and the transmittance of the s-polarized component of light with an incident angle of 30 degrees is 50. % Is ⁇ Sh (R30_Ts50%).
  • the near infrared absorbing layer described above defines the following parameters based on the spectral transmittance curve.
  • the wavelength at which the transmittance is 20% on the short wavelength side of the absorption maximum wavelength ⁇ max is ⁇ Sh (D_T 20%), and the wavelength ⁇ Lo (D_T 20%) at which the transmittance is 20% on the long wavelength side of ⁇ max .
  • the relationship of the following formula (1) is preferably satisfied. ⁇ Sh (D_T20%) ⁇ ⁇ Sh (R30_Ts50%) ⁇ Sh (R0_T50%) ⁇ ⁇ Lo (D_T20%) (1)
  • the near-infrared dielectric multilayer film has a spectral transmittance curve in the boundary wavelength range where the transition from the visible to the near-infrared region is changed from transmission to blocking (reflection). Shift to the side.
  • the shift amount differs depending on the incident polarization component, and the s-polarized light is larger than the p-polarized light. Therefore, equation (1) satisfies the relationship that falls within the absorption region of the near-infrared absorbing layer even when the maximum shift amount obtained by adding polarization dependency to light incident angle dependency is taken into consideration. That is, by satisfying the relationship of the expression (1), it is possible to suppress the change in the spectral transmittance curve with respect to light having an incident angle of 0 to 30 degrees.
  • the boundary wavelength region in the transmittance X% The maximum shift amount at corresponds to the difference between the wavelength ⁇ Sh (R0_TX%) at an incident angle of 0 degrees and the wavelength ⁇ Sh (R_TsX%) of the s-polarized light at an incident angle of 30 degrees.
  • the wavelength at which the transmittance is Y% (0 ⁇ Y ⁇ 50) on the short wavelength side of ⁇ max is ⁇ Sh (D_TY%)
  • ⁇ Lo (D_TY%) be the wavelength at which the transmittance is Y% on the wavelength side.
  • the NIR filter having a dielectric multilayer film and a near infrared absorption layer satisfying the formula (3) at a predetermined transmittance X for the dielectric multilayer film and a predetermined transmittance Y for the near infrared absorption layer has an incident angle of 0 to 30 degrees. Even if a change in the spectral transmittance curve of the dielectric multilayer film with respect to light occurs, the wavelength of the transmittance X% falls within an absorption wavelength band that is equal to or less than the transmittance Y% of the near-infrared absorbing layer.
  • the NIR filter has a transmittance in the wavelength range of ⁇ Sh (R30_TsX%) to ⁇ Sh (R0_TX%), which should particularly suppress the change in transmittance due to the incident angle in the spectral transmittance curve, (X ⁇ Y) / 100. % Or less.
  • X and Y are predetermined values, so that a low transmittance can be realized in the wavelength region, so that the incidence angle dependency of the transmittance generated by the dielectric multilayer film can be reduced.
  • the expression (1) is the same as that in the expression (3) when the transmittance X for the dielectric multilayer film is 50% and the transmittance Y for the near-infrared absorbing layer is 20%.
  • This corresponds to the equation showing the relationship of the light shielding characteristics of the near infrared absorbing layer. That is, in the equation (1), the transmittance in the wavelength range from ⁇ Sh (R30_Ts50%) to ⁇ Sh (R0_T50%) is (X ⁇ Y) / 100 10% or less, and therefore the transmission that varies with the incident angle. The rate is low.
  • the transmittance in the wavelength range is 1% or less, which is preferable because the incident angle dependency is further reduced.
  • the NIR filter that combines the characteristics of the spectral transmittance curves of the dielectric multilayer film and the near-infrared absorbing layer so that the value of X ⁇ Y / 100 in Equation (3) is low can be obtained at a wavelength of 700 nm. Changes in the spectral transmittance curve depending on the incident angle can be suppressed.
  • change in spectral transmittance curve depending on the incident angle means a change in transmittance for light having the same wavelength and a change in wavelength for the same transmittance. Since the NIR filter of the present invention includes a near-infrared absorbing glass substrate, the change in the spectral transmittance curve depending on the incident angle can be further suppressed in consideration of the absorption of the near-infrared absorbing glass substrate in the above wavelength range.
  • the near-infrared absorbing layer has a narrow absorption wavelength band ⁇ Lo (D_T20%) ⁇ ⁇ Sh (D_T20%) ⁇ , for example, when the content concentration of the dye (A) is low. There is. At this time, the content of the dye (A) is increased so that the transmittance T ( ⁇ max ) of the near-infrared absorbing layer is decreased to widen the absorption wavelength band, or the wavelength shift amount ⁇ Sh (R0_T50%) of the dielectric multilayer film. ) ⁇ Sh (R30_Ts50%) ⁇ may be reduced to satisfy the expression (1).
  • the configuration of the dielectric multilayer film that reduces the wavelength shift amount depending on the incident angle in the short wavelength region of the near-infrared reflection band is described in, for example, International Publication No. 2013/015303 or Japanese Patent Application Laid-Open No. 2007-183525. Yes.
  • the former is a dielectric multilayer film in which 15 or more pairs of high refractive index layers and low refractive index layers having different optical film thickness ratios of 3 or more are stacked, and incident angles of 0 degrees and 30 degrees in a cutoff band near 650 nm. Discloses an example in which the difference in wavelength at which 50% transmittance is obtained is 16 nm.
  • the latter includes a high-refractive index layer and medium refractive index layer, so as to be substantially lambda 0/4 of reference wavelength optical thickness of each layer lambda 0, the dielectric multilayer film formed by laminating 27 layers alternately incident
  • a high-refractive index layer and medium refractive index layer so as to be substantially lambda 0/4 of reference wavelength optical thickness of each layer lambda 0, the dielectric multilayer film formed by laminating 27 layers alternately incident
  • the transmittance of the dielectric multilayer film refers to a value excluding absorption and reflection in a laminate having a glass substrate and a near infrared absorption layer.
  • the transmittance of the dielectric multilayer film with respect to light having a wavelength of 775 to 900 nm is determined by the transmittance on a substrate that transmits 100% of light having a wavelength of 775 to 900 nm, for example, a Schott borosilicate glass D263Teco glass substrate.
  • a dielectric multilayer film to be measured can be formed and measured using a spectrophotometer, for example, a spectrophotometer U4100 manufactured by Hitachi High-Tech Science.
  • the first dielectric multilayer film 13 is a near-infrared reflective dielectric multilayer film having the above optical characteristics.
  • the NIR filter has the first dielectric multilayer film 13 and the second dielectric multilayer film 14 like the NIR filters 10B and 10C, both of them may be the near-infrared reflective dielectric multilayer film, Only the first dielectric multilayer film 13 is preferably the near infrared reflective dielectric multilayer film.
  • the second dielectric multilayer film 14 may be designed as a dielectric multilayer film having a low reflection property with respect to visible light as a film having an antireflection function (antireflection film).
  • the dielectric multilayer film (antireflection film) improves the transmittance by preventing reflection of visible light incident on the NIR filters 10B and 10C. It has a function of efficiently using incident light, can be designed by the usual method using the above materials, and can be formed by the above method accordingly.
  • the NIR filter 10A that does not have the second dielectric multilayer film 14 and the NIR filters 10B and 10C that have the second dielectric multilayer film 14 also have a near infrared ray of the glass substrate 11.
  • the reflectance at is preferably 2% or less.
  • the surface of the NIR filter on the side having the near infrared absorption layer of the glass substrate is the surface of the NIR filter 10A that is exposed to the air on the opposite side of the near infrared absorption layer 12 from the glass substrate 11 side.
  • the second dielectric multilayer film 14 is exposed to the atmosphere on the side opposite to the near infrared absorption layer 12 side.
  • the near infrared absorption layer of the glass substrate 11 is used.
  • a measurement sample in which a black resin layer is formed instead of the first dielectric multilayer film 13 on the main surface on the opposite side of having 12 may be produced, and the reflectance may be measured on the surface.
  • the reflectance is preferably 2% or less, and more preferably 1.2% or less.
  • the dielectric film in contact with the near-infrared absorption layer 12 in the second dielectric multilayer film 14 has a refractive index of 1.
  • a dielectric material having 4 or more and 1.7 or less is preferable. Specific examples of the dielectric material having a refractive index of 1.4 or more and 1.7 or less are as described above. If the refractive index of the dielectric film in contact with the near-infrared absorbing layer 12 in the second dielectric multilayer film 14 is in such a range, ripples that affect the color reproducibility of the image captured by the solid-state imaging device Easy to suppress the occurrence.
  • the dielectric layer 15 included in the NIR filter 10C shown in FIG. 3 is formed between the glass substrate 11 and the near-infrared absorbing layer 12 mainly for the purpose of improving durability, and is an arbitrary layer in the NIR filter of the present invention. It is.
  • a dielectric material layer is applicable regardless of a structure in the NIR filter of this invention.
  • a dielectric layer may be formed between the glass substrate 11 and the near-infrared absorbing layer 12 in the NIR filter configured as the NIR filter 10A.
  • the dielectric layer 15 is a layer made of a dielectric material, and the thickness is preferably 5 nm or more. By configuring the dielectric layer 15 as described above, the durability of the near-infrared absorbing layer 12 in the NIR filter can be improved.
  • the thickness of the dielectric layer 15 is more preferably 30 nm or more, further preferably 100 nm or more, and particularly preferably 150 nm or more.
  • the upper limit of the thickness of the dielectric layer 15 is not particularly limited, but the thickness of the dielectric layer 15 is preferably 1000 nm or less and more preferably 500 nm or less from the viewpoint of ease of design and ease of manufacture.
  • the layer configuration other than the type and thickness of the dielectric material is not particularly limited.
  • the dielectric layer 15 includes, for example, alkali atoms such as Na atoms and K atoms in the glass substrate 11, and the alkali atoms diffuse into the near infrared absorption layer 12 so that the optical properties and weather resistance of the near infrared absorption layer 12 are increased.
  • alkali atoms such as Na atoms and K atoms in the glass substrate 11
  • the alkali atoms diffuse into the near infrared absorption layer 12 so that the optical properties and weather resistance of the near infrared absorption layer 12 are increased.
  • it functions as an alkali barrier film, and the durability of the NIR filter can be enhanced. Further, the reliability of a solid-state imaging device provided with the NIR filter can be improved.
  • the dielectric layer 15 includes a single layer or a plurality of layers including a dielectric material that functions as an alkali barrier film.
  • a dielectric material SiO 2 or SiO x (although, 0.8 ⁇ x ⁇ 2), Al 2 O 3 or the like are preferably exemplified.
  • the dielectric layer 15 is composed of a single layer, a dielectric material having a refractive index of 1.4 or more and 1.7 or less is preferable from the viewpoint of optical characteristics.
  • the dielectric layer 15 is composed of a single layer made of a dielectric material having a refractive index in this range, the reflection of light at the interface existing between the glass substrate 11 and the near-infrared absorbing layer 12 may increase. It is preferable.
  • the dielectric layer having a refractive index of 1.4 or more and 1.7 or less As a material of the dielectric layer having a refractive index of 1.4 or more and 1.7 or less, SiO 2 , SiO x N y (where 0.5 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1), MgF 2 , Al 2 Preferable examples include O 3 .
  • the dielectric layer 15 is an alkali barrier film (single film) configured to contain at least one material selected from, for example, SiO 2 , SiO x (where 0.8 ⁇ x ⁇ 2) and Al 2 O 3.
  • the range of 80:20 to 99: 1 is preferable because the adhesion to the near infrared absorption layer 12 is increased.
  • Al 2 O 3 alone has lower adhesion to the near-infrared absorbing layer 12 than SiO 2 or SiO x (where 0.8 ⁇ x ⁇ 2), SiO 2 at the above ratio.
  • alkali barrier film obtained by adding Al 2 O 3 is the Al 2 O 3 at the surface of the SiO 2 is reformed, the adhesion between the near-infrared absorption layer 12 is increased to.
  • This filter may further have an adhesion film between the glass substrate 11 and the near infrared absorption layer 12 for the purpose of improving the adhesion between them.
  • the dielectric layer 15 may include an adhesion film.
  • the adhesion film is preferably provided closest to the glass substrate 11 side.
  • the arrangement of the adhesion film is particularly effective in improving the adhesion when the glass constituting the glass substrate 11 contains fluorine.
  • the material constituting the adhesive film is appropriately selected from dielectric materials having adhesiveness with the glass substrate 11 mainly depending on the constituent material of the glass substrate 11.
  • the adhesion film is MgF 2 , CaF 2 , LaF 3 , NdF 3 , CeF 3 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3. , BaF 2 , YF 3 and Al 2 O 3. It is preferable that the dielectric material is selected from at least one material selected from Al 2 O 3 .
  • the dielectric layer 15 provided between the glass substrate 11 and the near-infrared absorbing layer 12 may be a single film of the alkali barrier film or a single film of an adhesion film, or the alkali layer You may have both a barrier film and this adhesion film.
  • the thickness of the adhesion film may be 5 to 100 nm, preferably 10 to 50 nm, and more preferably 15 to 30 nm.
  • fluorine is introduced from the glass substrate 11 side containing fluorine. It is preferable to provide the adhesive film, the alkali barrier film, and the near-infrared absorbing layer 12 in this order because the adhesive effect and the alkali barrier effect are enhanced.
  • the adhesion film is The alkali barrier film is composed of at least one material selected from MgF 2 , CeF 3 and Al 2 O 3 , and the alkali barrier film includes SiO 2 , SiO x (where 0.8 ⁇ x ⁇ 2) and Al 2. It is preferable to include at least one material selected from O 3 .
  • the adhesion film is composed of MgF 2 and the alkali barrier film is composed of SiO 2, or the adhesion film is composed of Al 2 O 3 and the alkali barrier film is composed of SiO 2 or SiO x.
  • This combination is more preferable in that the reflectance at the interface between the glass substrate 11 and the near infrared absorption layer 12 can be lowered.
  • the combination in which the adhesion film is made of Al 2 O 3 and the alkali barrier film is made of SiO 2 or SiO x can reduce the reflectance between the glass substrate 11 and the near infrared absorption layer 12.
  • Al 2 O 3 includes P 2 O 5 and aluminum phosphate, which are the main components of CuO-containing fluorophosphate glass or CuO-containing phosphate glass, which are given as typical examples of the glass substrate 11.
  • the silane coupling agent is more preferable because the chemical affinity with the resin can be easily increased by mixing the silane coupling agent with the resin, in particular because the adhesiveness between the two is increased.
  • the thickness of the Al 2 O 3 film may be 20 to 150 nm, and 20 to 100 nm.
  • the thickness of the SiO 2 film or the SiO x film may be 100 to 350 nm, preferably 100 to 250 nm, and more preferably 150 to 200 nm.
  • the dielectric layer 15 As a method for forming the dielectric layer 15 on the glass substrate 11, a method similar to the method for forming the dielectric multilayer film can be applied. Specifically, the dielectric layer 15 can be formed using a dry film formation process such as an IAD vapor deposition method, a CVD method, a sputtering method, or a vacuum vapor deposition method, or a wet film formation process such as a spray method or a dip method. is there.
  • the IAD vapor deposition method and the sputtering method are preferable methods for forming the dielectric layer 15 because the alkali barrier characteristics of the dielectric layer 15 formed thereby can be improved.
  • NIR filters 10A to 10C achieve the optical characteristics of the present invention with a maximum transmittance of 50% or less at an incident angle of 31 to 60 degrees with respect to light having a wavelength of 775 to 900 nm by appropriately combining the components described above. it can.
  • the maximum transmittance with respect to light having a wavelength of 775 to 900 nm at an incident angle of 31 to 60 degrees is preferably 30% or less, more preferably 10% or less, further preferably 5% or less, further preferably 3% or less. % Or less is more preferable, 0.5% or less is more preferable, 0.3% or less is further more preferable, and 0.2% or less is particularly preferable.
  • the NIR filter of the present invention having the optical characteristics of the present invention is used in a solid-state imaging device, it is possible to reduce or prevent the occurrence of a phenomenon in which an image that does not exist in the original subject appears in the captured image.
  • a wavelength at which the transmittance at an incident angle of 0 degrees is 50% in the region where the wavelength is longer than the wavelength of 600 nm as the optical characteristics as the NIR filter.
  • of the wavelength difference is more preferably 3 nm or less.
  • the optical characteristics of each of the above-described components as the NIR filter are as follows: light transmittance at an incident angle of 0 degrees and transmittance at an incident angle of 30 degrees at wavelengths of 600 to 750 nm. It is preferable to adjust each spectral transmission characteristic or the like so that the average of the absolute values of the differences is 3% or less, and more preferably the average of the absolute values is 2% or less. When the average absolute value of the difference in transmittance is within the above range, the difference in color development in the plane of the image can be minimized.
  • of the wavelength difference is more preferably 3 nm or less.
  • the optical characteristics as the NIR filter for each of the above-described components are as follows.
  • the incident angle is 0 degree at a wavelength of 380 to 430 nm. It is preferable to adjust the spectral transmission characteristics and the like so that the average of the absolute value of the difference between the transmittance of light and the transmittance of light at an incident angle of 30 degrees is 8% or less. Is more preferably 5% or less, and further preferably 3% or less.
  • the average absolute value of the difference in transmittance is within the above range, the difference in color development in the plane of the image can be minimized.
  • the NIR filter of the present invention may have other components than the above as long as it has the optical characteristics of the present invention.
  • Other components include an antireflection film, a reflective film that reflects light in a specific wavelength region, a selective wavelength shielding film that controls transmission and shielding of light in a specific wavelength region, and radiation that blocks radiation such as alpha rays.
  • a shielding film etc. are mentioned.
  • the NIR filter of the present invention may be used, for example, by being bonded to a low-pass filter having an ultraviolet shielding ability as a selective wavelength shielding film. Further, a black frame-shaped light shielding member may be disposed at the end of the main surface of the NIR filter. The position where the light shielding member is disposed in the NIR filter may be either one or both of the main surfaces, or may be the side surfaces.
  • the NIR filter When the NIR filter is used in combination with the low-pass filter, for example, when the surface on the near infrared absorption layer 12 side of the NIR filter 10A is bonded through the low-pass filter and an adhesive, It is preferable to provide a dielectric layer having a thickness of about 50 to 500 nm and a low-pass filter on the dielectric layer.
  • the material of the dielectric layer can be appropriately selected from materials that do not impair spectral characteristics after bonding, such as SiO 2 , SiO x N y , MgF 2 , ZrO 2 , Ta 2 O 5 , and TiO 2 .
  • the NIR filter of the present invention may be provided with a configuration that reduces surface reflection, such as a moth-eye structure, in order to increase the light utilization efficiency.
  • the moth-eye structure is a structure in which regular protrusion arrays are formed with a period smaller than 400 nm, for example, and the effective refractive index continuously changes in the thickness direction, so that the surface reflectance of light having a wavelength longer than the period can be increased.
  • the surface of the NIR filter for example, the NIR filter 10B shown in FIG. 2 can be formed on the second dielectric multilayer film 14 by molding or the like.
  • the NIR filter of the present invention is transparent, if necessary, with at least one selected from, for example, near infrared or infrared absorbers, color tone correction dyes and ultraviolet absorbers as a selective wavelength shielding film by a conventionally known method. You may have the light absorption layer which absorbs the light of the specific wavelength disperse
  • Transparent resins include polyester resins, acrylic resins, polyolefin resins, polycarbonate resins, polyamide resins, alkyd resins, and other thermoplastic resins, ene thiol resins, epoxy resins, thermosetting acrylic resins, photocurable acrylic resins, silsesquiskies.
  • Examples thereof include resins that are cured by heat and light, such as oxane resin.
  • the content of each absorbent in these light absorbing layers is appropriately adjusted in a range that does not impair the effects of the present invention, according to the light absorbing ability of each absorbent.
  • a light absorption layer for example, an infrared absorption layer in which ITO fine particles are dispersed in a transparent resin can be used.
  • the content of the ITO fine particles can be the same as in the case of the near infrared absorption layer. As a result, the visible light is not absorbed and transparency can be maintained.
  • a dye for the purpose of absorbing near infrared rays or infrared rays in a wide wavelength region as a light absorption layer in general, it often involves absorption of visible light, for example, CuO-containing fluorophosphate glass or CuO-containing
  • a near-infrared absorbing glass substrate made of phosphate glass is preferable because it can absorb near-infrared light while keeping visible light absorption low.
  • deterioration due to heat or the like may occur more remarkably.
  • CuO-containing fluorophosphate glass or CuO-containing phosphate glass A near-infrared absorbing glass substrate made of
  • the NIR filter of the present invention can be used as an NIR filter such as a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, a webcam, an automatic exposure meter, a PDP NIR filter, or the like.
  • the NIR filter of the present invention is suitably used for a solid-state imaging device in the imaging device, and the NIR filter is disposed, for example, between an imaging lens and a solid-state imaging device.
  • Solid-state imaging device In Solid-state imaging device
  • the NIR filter of the present invention is disposed between the imaging lens and the solid-state imaging device
  • FIG. 4 is a cross-sectional view schematically showing a main part of an example of a solid-state imaging device using the near NIR filter 10B.
  • the solid-state imaging device 20 includes a solid-state imaging device 21, a NIR filter 10 ⁇ / b> B, an imaging lens 23, and a housing 24 for fixing them in the following order in front of the solid-state imaging device 21. .
  • the imaging lens 23 is fixed by a lens unit 22 further provided inside the housing 24.
  • the NIR filter 10B is disposed so that the second dielectric multilayer film 14 is positioned on the solid-state imaging device 21 side and the first dielectric multilayer film 13 is positioned on the imaging lens 23 side.
  • the solid-state imaging device 21 and the imaging lens 23 are arranged along the optical axis X. Thus, the direction when installing the NIR filter in the apparatus is appropriately selected according to the design.
  • the NIR filter of the present invention is not limited to an integrated configuration.
  • the NIR filter in a solid-state imaging device that includes an NIR filter and an optical member that includes a solid-state imaging device and in which the NIR filter and the solid-state imaging device are arranged in order from the subject side or the light incident side, the NIR filter is It can be configured as follows. That is, in the solid-state imaging device, the NIR filter is provided so that the near-infrared absorbing glass substrate and the dielectric multilayer film are in contact with each other, and the near-infrared absorbing layer alone is in the same optical path as the near-infrared absorbing glass substrate.
  • positioned in the same optical path as a near-infrared absorption glass base material may be sufficient.
  • FIG. 8 is another example of a cross-sectional view of the NIR filter 10D and a solid-state imaging device using the NIR filter 10D.
  • the near infrared absorption layer 12 is disposed in an optical member on the light receiving surface side of the solid-state imaging device, which is a separate body from the near infrared absorption glass substrate 11.
  • the optical member include an RGB color filter formed for each pixel and a condensing microlens.
  • the near-infrared absorbing layer 12 may be disposed at the interface between the light receiving surface of the solid-state imaging device and the RGB color filter, the interface between the RGB color filter and the microlens, or the interface between the microlens and air. Further, the near-infrared absorbing layer may be handled as an RGB color filter or microlens containing the dye (A) in the resin.
  • FIG. 9 is another example of a cross-sectional view of the NIR filter 10E and a solid-state imaging device using the NIR filter 10E.
  • the near-infrared absorbing layer 12 is disposed at the air interface of the imaging lens 23. Since the imaging lens 23 is composed of a plurality of lenses and has a plurality of air interfaces, the near-infrared absorbing layer 12 is preferably disposed on a surface that is less affected by the resolution of the imaging lens 23.
  • the near-infrared absorbing layer may be handled as an imaging lens in which the imaging lens 23 contains a resin and the pigment (A) is contained in the resin.
  • the near infrared absorption layer may be configured to function as an optical member.
  • FIG. 10 is another example of a cross-sectional view of a NIR filter 10F and a solid-state imaging device using the NIR filter 10F.
  • the near-infrared absorbing layer 12 is disposed on the object-side incident surface of the lens unit 22.
  • the lens unit of the imaging apparatus is designed such that the entrance surface on the subject side is the aperture stop position. Therefore, it is preferable to have a light-shielding film containing a black absorbent that absorbs visible light and near infrared light in the peripheral region of the opening on the near infrared absorbing layer 12. Thereby, unnecessary high-angle incident light that leads to a reduction in resolution of the imaging lens can be blocked.
  • the solid-state imaging device of the present invention is a near-infrared cut filter excellent in near-infrared shielding characteristics that effectively uses a near-infrared absorbing glass and a near-infrared absorbing layer containing a near-infrared absorbing dye and a dielectric multilayer film,
  • the maximum transmittance at a relatively large incident angle of 31 to 60 degrees with respect to light in a specific wavelength region (775 to 900 nm) in the near infrared region is 50% or less.
  • Example 1 An NIR filter A having a cross-sectional view similar to that of FIG. 3 was produced. In addition, all the measurement of the optical characteristic of each structural member shown below and the NIR filter A was performed using the Hitachi High-Tech Science spectrophotometer U4100.
  • Asahi Glass's fluorophosphate glass substrate NF-50TX (hereinafter referred to as “glass substrate A”) having a size of 76 mm ⁇ 76 mm ⁇ 0.214 mm is used with Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000 (trade name). Then, it was washed with an ultrasonic cleaner for 10 minutes. With respect to the washed glass substrate A, the absorptance of light with a wavelength of 775 to 900 nm at an incident angle of 0 degree was measured and found to be 87.3% to 89.5%. The absorption maximum wavelength ⁇ Gmax was about 840 nm, and the transmittance T ( ⁇ Gmax ) was about 9%.
  • a high refractive index film and a low refractive index film are alternately formed on one main surface of the cleaned glass substrate A obtained above using an IAD vacuum vapor deposition apparatus, and then totaled.
  • a 40-layer (total layer thickness: 5950 nm) near-infrared reflective dielectric multilayer film (hereinafter referred to as “dielectric multilayer film R”) as a first dielectric multilayer film was formed. Note that TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material.
  • the transmittance of the sample for transmittance measurement obtained above was measured for light having an incident angle of 0 degree at a wavelength of 350 to 1000 nm.
  • FIG. 5 shows the transmission spectrum (350 to 1000 nm) obtained.
  • the maximum transmittance for light having a wavelength of 800 to 900 nm was 0.10%.
  • the transmittance of light having an incident angle of 31 to 60 degrees at a wavelength of 775 to 900 nm was measured for the specimen for transmittance measurement obtained above, the maximum transmittance was 6.2%.
  • the specimen has an average transmittance of 95% for wavelengths of 430 to 660 nm, 50% of transmittance for wavelengths of about 709 to 1000 nm or more, and 20 for wavelengths of 714 to 1000 nm for light with an incident angle of 0 degrees. %, And transmittance at wavelengths of 718 to 1000 nm was 10% or less.
  • the glass substrate A having the dielectric multilayer film R obtained above was washed again with an ultrasonic cleaner for 20 minutes using the Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000.
  • a 30 nm layer made of Al 2 O 3 and a 170 nm layer made of SiO 2 are formed using a vacuum deposition apparatus.
  • a dielectric layer composed of two layers was formed in this order.
  • the refractive index of the layer made of Al 2 O 3 formed was 1.60, and the refractive index of the layer made of SiO 2 formed was 1.45.
  • the coating liquid was obtained by stirring and dissolving at.
  • the obtained coating liquid was applied by die coating using an applicator with a gap of 30 ⁇ m on the dielectric layer of the glass substrate A having the dielectric multilayer film R and the dielectric layer on both main surfaces obtained above. Heat drying at 100 ° C. for 5 minutes to form a near-infrared absorbing layer having a film thickness of 800 nm to obtain a laminate in which the dielectric multilayer film R, the glass substrate A, the dielectric layer, and the near-infrared absorbing layer were laminated in this order. .
  • a low refractive index film and a high refractive index film are alternately formed on the near-infrared absorbing layer of the laminate obtained above using an IAD vacuum vapor deposition apparatus, and a total of 7
  • An antireflection film (low-reflection dielectric multilayer film) for visible light (hereinafter referred to as “dielectric multilayer film AR”) is formed as a second dielectric multilayer film of a layer (total layer thickness: 340 nm). Filmed. Note that TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material. Thus, the NIR filter A of Example 1 was obtained.
  • the dielectric multilayer film R formed on the surface of the glass substrate A opposite to the surface on which the dielectric layer, the near-infrared absorbing layer, and the dielectric multilayer film AR are formed The sample for reflectance measurement was prepared by removing it using sand blasting and applying black resin to reduce the regular reflection on this surface to a level that can be ignored.
  • the maximum reflectance was 1.15. %Met.
  • the NIR filter A produced above was measured for transmittance at an incident angle of 0 degree, 30 degrees, 31 degrees, 40 degrees, 50 degrees, and 60 degrees. From the measurement results, the following optical characteristics were obtained.
  • FIG. 6 shows the transmittance of the NIR filter A with respect to light having an incident angle of 31 degrees, 40 degrees, 50 degrees, and 60 degrees with a wavelength of 750 to 900 nm.
  • 7A to 7C show the results of measuring the transmittance of the NIR filter A at an incident angle of 0 degrees and 30 degrees.
  • 7A shows the measurement results at wavelengths of 350 to 900 nm
  • FIG. 7B shows the measurement results at wavelengths of 380 to 430 nm
  • FIG. 7C shows the measurement results at wavelengths of 600 to 750 nm.
  • the produced NIR filter A had an average transmittance of 92.0% for light with an incident angle of 0 degree at a wavelength of 450 to 550 nm.
  • the produced NIR filter A had an average transmittance of 7.9% with respect to light having an incident angle of 0 degree at a wavelength of 650 to 720 nm.
  • the NIR filter A produced above has a wavelength ⁇ 0 (NIR) at which the transmittance of light at an incident angle of 0 degrees is 50% and the transmittance of light at an incident angle of 30 degrees in a region where the wavelength is longer than 600 nm. and a wavelength lambda 30 becomes 50% (NIR), the absolute value of the difference of the wavelength
  • the average value of the absolute value of the difference between the transmittance for light with an incident angle of 0 degrees and the transmittance for light with an incident angle of 30 degrees at a wavelength of 600 to 750 nm in the manufactured NIR filter A was 1.8%.
  • the average value of the transmittance of the manufactured NIR filter A with respect to light having an incident angle of 0 degrees at a wavelength of 430 to 450 nm was 81.2%.
  • the average value of the transmittance of the manufactured NIR filter A with respect to light having an incident angle of 0 degrees at a wavelength of 350 to 390 nm was 0.2%.
  • the NIR filter A produced above has a wavelength ⁇ 0 (UV) at which the transmittance of light with an incident angle of 0 degrees is 50% and the transmittance with light with an incident angle of 30 degrees in a region where the wavelength is shorter than 450 nm.
  • was 1.5 nm.
  • the average value of the absolute value of the difference between the transmittance for light with an incident angle of 0 degrees and the transmittance for light with an incident angle of 30 degrees at a wavelength of 380 to 430 nm in the manufactured NIR filter A was 4.5%.
  • the NIR filter A has a transmittance of 85%, 45%, and 5% for light having an incident angle of 0 degrees and 30 degrees at wavelengths of 550 to 720 nm, ⁇ (T85%), ⁇ (T45%), and ⁇ (T5%) was as follows. ⁇ (T85%), ⁇ (T45%), and ⁇ (T5%) for light at an incident angle of 0 degrees were 574 nm, 633 nm, and 683 nm, respectively. Also, ⁇ (T85%), ⁇ (T45%), and ⁇ (T5%) for light at an incident angle of 30 degrees were 572 nm, 630 nm, and 680 nm, respectively.
  • Example 2 In Example 1, NF-50TX used as the near-infrared absorbing glass substrate was replaced with a 76 mm ⁇ 76 mm ⁇ 0.30 mmt Asahi Glass fluorophosphate glass substrate NF-50T (hereinafter referred to as “glass substrate B”). Produced a NIR filter B (Example 2) under the same conditions as in Example 1.
  • the optical characteristics of the obtained NIR filter B were all evaluated in the same manner as in Example 1 using a spectrophotometer U4100 manufactured by Hitachi High-Tech Science. The results are as follows.
  • the dielectric multilayer film R formed on the surface of the glass substrate B opposite to the surface on which the dielectric layer, the near-infrared absorbing layer, and the dielectric multilayer film AR are formed The sample for reflectance measurement was prepared by removing it using sand blasting and applying black resin to reduce the regular reflection on this surface to a level that can be ignored.
  • the maximum reflectance was 1.1. %Met.
  • the maximum value of the transmittance of the NIR filter B manufactured as described above with respect to light having an incident angle of 31 to 60 degrees at a wavelength of 775 to 900 nm was 0.15%.
  • the average value of the transmittance of the manufactured NIR filter B with respect to light with an incident angle of 0 degree at a wavelength of 450 to 550 nm was 91.5%.
  • the average value of the transmittance of the manufactured NIR filter B with respect to light having an incident angle of 0 degrees at a wavelength of 650 to 720 nm was 6.5%.
  • the NIR filter B produced above has a wavelength ⁇ 0 (NIR) at which the transmittance of light with an incident angle of 0 degrees is 50% and the transmittance of light with an incident angle of 30 degrees in a region where the wavelength is longer than 600 nm. and a wavelength lambda 30 becomes 50% (NIR), the absolute value of the difference of the wavelength
  • the average value of the absolute value of the difference between the transmittance for light with an incident angle of 0 degrees and the transmittance for light with an incident angle of 30 degrees at a wavelength of 600 to 750 nm in the manufactured NIR filter B was 1.9%.
  • the produced NIR filter B had an average transmittance of 82.7% with respect to light having an incident angle of 0 degree at a wavelength of 430 to 450 nm.
  • the average value of the transmittance of the manufactured NIR filter B with respect to light having an incident angle of 0 degrees at a wavelength of 350 to 390 nm was 0.1%.
  • the NIR filter B produced above has a wavelength ⁇ 0 (UV) at which the transmittance of light with an incident angle of 0 degrees is 50% and the transmittance of light with an incident angle of 30 degrees in a region where the wavelength is shorter than 450 nm.
  • the wavelength ⁇ 30 (UV) was 50%, and the absolute value
  • the average value of the absolute value of the difference between the transmittance for light with an incident angle of 0 degrees and the transmittance for light with an incident angle of 30 degrees at a wavelength of 380 to 430 nm in the manufactured NIR filter B was 4.6%.
  • the NIR filter of the present invention has good near-infrared shielding characteristics, it is useful for imaging devices such as digital still cameras, display devices such as plasma displays, glass windows for vehicles (automobiles, etc.), lamps and the like.
  • 10A, 10B, 10C, 10D, 10E, 10F ... NIR filter, 11 ... glass substrate, 12 ... near infrared absorption layer, 13 ... first derivative multilayer film, 14 ... second derivative multilayer film, 15 ... dielectric Layer 20: Solid-state imaging device, 21 ... Solid-state imaging device, 22 ... Lens unit, 23 ... Imaging lens, 24 ... Housing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

 十分な近赤外線遮蔽特性を有するとともに、これを用いた固体撮像装置において、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止することが可能な近赤外線カットフィルタおよび、これを備えた高感度な固体撮像装置を提供する。近赤外線吸収ガラス基材および、前記近赤外線吸収ガラス基材の少なくとも一方の主面上に、近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層を有する積層体と、前記積層体の少なくとも一方の主面上に形成された誘電体多層膜と、を備える近赤外線カットフィルタであって、波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下であることを特徴とする近赤外線カットフィルタ。

Description

近赤外線カットフィルタおよび固体撮像装置
 本発明は、近赤外線遮蔽効果を有する近赤外線カットフィルタおよびそれを備えた固体撮像装置に関する。
 近年、様々な用途に、可視波長領域の光は十分に透過するが、近赤外波長領域の光は遮蔽する光学フィルタが使用されている。
 例えば、デジタルスチルカメラ等の撮像装置には、固体撮像素子(CCD、CMOS等)が使用されている。固体撮像素子の感度を人間の視感度に近づけるため、撮像レンズと固体撮像素子との間に光学フィルタを配置している。
 撮像装置用の光学フィルタとしては、近赤外波長領域の光(以下「近赤外光」という)を選択的に吸収するように、フツリン酸塩系ガラスやリン酸塩系ガラスにCuO等を添加した近赤外線吸収ガラスやそれを用いたガラスフィルタが知られている。しかし、光吸収型のガラスフィルタは、近赤外光を遮蔽する性能や、暗部をより明るく撮影するために求められる波長帯(630~700nm)の透過性が十分でない。さらに、固体撮像素子の機能を阻害させないという層形成上の制約もあるため、十分な近赤外線カットフィルタ機能を有する光学フィルタが得られていないのが現状である。
 そこで、上記問題を解決すべく、基板上に、例えば、SiO層とTiO層とを交互に積層し、光の干渉によって近赤外光を反射して遮蔽する反射型の干渉フィルタ、透明樹脂中に近赤外光を吸収する色素を含有させたフィルム等が開発されている。また、これらを組み合わせた近赤外線を吸収する色素を含有する樹脂層と近赤外線を反射する層とを積層した光学フィルタも開発されている。
 上記の光学フィルタのうちでも、近赤外線吸収ガラスからなる基板に、近赤外線吸収色素を含む透明樹脂層と、近赤外線反射誘電体多層膜をそれぞれ設けた近赤外線カットフィルタは、非常に高い近赤外カット機能を有することが知られている。しかし、該近赤外線カットフィルタを用いた固体撮像装置では、一部に非常に明るい光源を含むような被写体を撮像すると、撮像された画像の一部分に本来の被写体には存在しなかった像が出現することがあり、それの出現が、より高い被写体像再現性の精度が求められる固体撮像装置において問題となっている。この現象は固体撮像装置の光学系内で反射や散乱して発生した迷光によるものであり、近赤外線カットフィルタには様々な角度で入射する迷光の全てが影響していると考えられる。
 しかしながら、従来の固体撮像装置の光学系の設計においては、設計された光路から近赤外線カットフィルタに入射する光の入射角としてせいぜい30度までの透過率しか考慮されていない。例えば、同様の構成の近赤外線カットフィルタでは、光の入射角が0度と30度についてのみ検討されたり(特許文献1)、0度と26度についてのみ検討されたりしたものしかなかった(特許文献2)。すなわち、上記様々な角度で入射する迷光について、比較的、入射角の小さい範囲での検討はなされているものの、より大きい入射角について検討することで、効果的に精度の高い撮像を得ようとする試みはなされていなかった。
国際公開2014/030628号 国際公開2014/168189号
 本発明は、十分な近赤外線遮蔽特性を有するとともに、これを用いた固体撮像装置において、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止できる近赤外線カットフィルタおよび、これを備えた高感度な固体撮像装置の提供を目的とする。
 本発明は、以下の構成を有する近赤外線カットフィルタおよび固体撮像装置を提供する。
 近赤外線吸収ガラス基材および、前記近赤外線吸収ガラス基材の少なくとも一方の主面上に、近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層を有する積層体と、前記積層体の少なくとも一方の主面上に誘電体多層膜と、を備え、波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下である近赤外線カットフィルタ。
 上記近赤外線カットフィルタと、固体撮像素子を含む光学部材を有し、被写体側または光源の光が入射する側から順に、前記近赤外線カットフィルタおよび前記固体撮像素子が配置された固体撮像装置。
 本発明によれば、十分な近赤外線遮蔽特性を有するとともに、これを用いた固体撮像装置において、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止できる近赤外線カットフィルタおよび、これを備えた高感度な固体撮像装置を提供できる。
本発明の実施形態に係る近赤外線カットフィルタの一例を概略的に示す断面図である。 本発明の実施形態に係る近赤外線カットフィルタの別の一例を概略的に示す断面図である。 本発明の実施形態に係る近赤外線カットフィルタのさらに別の一例を概略的に示す断面図である。 本発明の固体撮像装置の実施形態の一例を示す断面図である。 実施例の近赤外線カットフィルタに用いた近赤外線反射性の誘電体多層膜の透過スペクトルを示す図である。 実施例の近赤外線カットフィルタに入射角(31~60度)を変えて光を照射した際の透過スペクトルの違いを示す図である。 実施例の近赤外線カットフィルタに入射角を変えて(0度、30度)光を照射した際の透過スペクトルの違いを示す図である。 実施例の近赤外線カットフィルタに入射角を変えて(0度、30度)光を照射した際の透過スペクトルの違いを示す図である。 実施例の近赤外線カットフィルタに入射角を変えて(0度、30度)光を照射した際の透過スペクトルの違いを示す図である。 本発明の実施形態に係る近赤外線カットフィルタの一例と、それを用いた本発明の固体撮像装置の実施形態の一例を示す概略図である。 本発明の実施形態に係る近赤外線カットフィルタの一例と、それを用いた本発明の固体撮像装置の実施形態の一例を示す概略図である。 本発明の実施形態に係る近赤外線カットフィルタの一例と、それを用いた本発明の固体撮像装置の実施形態の一例を示す概略図である。
 以下に本発明の実施の形態を説明する。
[近赤外線カットフィルタ]
 本発明の近赤外線カットフィルタ(以下、NIRフィルタともいう)は、近赤外線吸収ガラス基材および、前記近赤外線吸収ガラス基材の少なくとも一方の主面上に、近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層を有する積層体と、前記積層体の少なくとも一方の主面上に形成された誘電体多層膜と、を備える。
 近赤外線吸収ガラス基材の主面上に近赤外線吸収層を備えるとは、主面上であれば該主面に必ずしも接する形に近赤外線吸収層を備えてなくてもよい。すなわち該主面と近赤外線吸収層の間に別の部材が存在してもよく、さらには空間が存在してもよい。同様に積層体の主面上に誘電体多層膜を有するとは、該主面に必ずしも接する形に誘電体多層膜を備えてなくてもよい。
 該NIRフィルタは、波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下である。該波長、該入射角度における最大透過率は、迷光、色や強度の面内不均一性等の発生原因を抑制するため低い方が好ましい。ここで、該NIRフィルタにおける、波長775~900nmの光に対する入射角31~60度での最大透過率は、30%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下がさらに好ましく、1%以下がさらに好ましく、0.5%以下がさらに好ましく、0.3%以下がさらにより好ましく、0.2%以下が特に好ましい。なお、ここでいう要件「波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下」(「要件A」と言う。)とは、下記の場合も含むものとして解釈する。
 具体的に、31~60度で入射する波長775~900nmの光の最大透過率が50%超となる波長を有する場合でも、その波長を含む半値波長全幅が1nm以下であれば、上記「要件A」を満たすものとする。また、31~60度の範囲で、入射角によって最大透過率が50%超となる波長を有する場合でも、その入射角を含む半値入射角全幅が0.5度以下であれば、上記「要件A」を満たすものとする。上記「要件A」は、例えば、波長775~900nmにおいて任意の10nm帯域毎の光の平均透過率を求め、得られた複数の値の中から最大透過率を得たとき、その値が50%以下であればよい。また、上記「要件A」は、例えば、31~60度において任意の1度の角度範囲毎の光の平均透過率を求め、得られた複数の値の中から最大透過率を得たとき、その値が50%以下であればよい。上記の「要件A」を満たせば、画質劣化の原因が発生し難いと言える。なお、波長775~900nmの光において、半値波長全幅が1nm以下、半値入射角全幅が0.5度以下であっても、最大透過率は50%以下がより好ましい。
 また、要件「波長775~900nmの光に対する、入射角31~60度での最大透過率がX%以下」(「要件X」を言う。)とする場合、Xは、50であればよいが上記のように30、10、5、3、1、0.5、0.3および0.2の順に好ましい値として与えられ、以下に具体例を示す。例えば、「要件X」においてX=1であるとき、波長775~900nmの光における入射角31~60度での最大透過率が1%超(X%超)となる波長を有する場合でも、その波長を含む半値波長全幅が1nm以下であれば、上記「要件X」を満たすものとする。さらに、上記「要件X」は、X=1であって、波長775~900nmの光における入射角31~60度での任意の10nm帯域毎の光の平均透過率を求め、得られた複数の値の中から最大透過率を得たとき、その値が1%以下(X%以下)であればよい。また、上記「要件X」は、X=1であるとき、31~60度における入射角31~60度での任意の1度の角度範囲毎の光の平均透過率を求め、得られた複数の値の中から最大透過率を得たとき、その値が1%以下(X%以下)であればよい。つまり、本発明のNIRフィルタは、Xの値に応じて段階的に好ましい仕様が与えられる。
 本発明のNIRフィルタにおける可視波長領域(以下「可視域」という)の光学特性については、波長450~550nmの光における入射角0度での透過率の平均値は80%以上が好ましく、90%以上がより好ましい。また、本発明のNIRフィルタにおいては、近赤外波長領域(以下「近赤外域」という)のうち、波長650~720nmの光における入射角0度での透過率の平均値は15%以下が好ましい。
 また、本発明のNIRフィルタは、波長650~700nmの光における入射角0度での透過率の平均値は、35%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。さらに、本発明のNIRフィルタは、波長690~720nmの光における入射角0度での透過率の平均値は、3%以下がさらに好ましい。
 本発明のNIRフィルタは、600nmよりも波長が長い領域において、入射角0度での透過率が50%となる波長λ(NIR)と入射角30度での透過率が50%となる波長λ30(NIR)とを有し、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|は、5nm以下が好ましい。前記波長の差の絶対値|λ(NIR)-λ30(NIR)|は、3nm以下がより好ましい。
 本発明のNIRフィルタは、波長600~750nmの光において、入射角0度での透過率と入射角30度での透過率との差の絶対値の平均は、3%以下が好ましく、該絶対値の平均は2%以下がより好ましい。
 本発明のNIRフィルタは、前記近赤外線吸収ガラス基材の前記近赤外線吸収層を有する側の表面において、前記近赤外線吸収ガラス基材の前記近赤外線吸収層を有するのと反対側の界面および表面の反射を除いて測定される、波長430~600nmの光に対する入射角5度での反射率は2.0%以下が好ましく、1.2%以下がより好ましい。
 本発明において吸収率、透過率、反射率は、分光光度計を用いて測定した値である。本明細書において、特定の波長領域で透過率が70%以上とは、その全波長領域の光において、透過率が70%以上をいい、透過率が10%以下とは、その全波長領域の光において、透過率が10%以下をいう。吸収率、反射率においても同様である。なお、特に断りのない限り光学特性の測定は、検体の主面に直交する方向から入射した光(入射角0度)に対して行う。なお、入射角とは主面の法線に対して光が入射する方向を示す直線のなす角度である。
 本発明のNIRフィルタは、近赤外線吸収ガラスと近赤外線吸収色素を含む近赤外線吸収層と誘電体多層膜とを効果的に用いた近赤外線遮蔽特性に優れる近赤外線カットフィルタである。該近赤外線カットフィルタは、近赤外域の特定波長領域(775~900nm)の光に対し、比較的大きい入射角31~60度での最大透過率を50%以下とする構成としたことで、これを用いた固体撮像装置において、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止できる。
 また、本発明の好ましい態様のNIRフィルタは、分光透過率曲線が可視域と近赤外域の境界付近で急峻な傾斜を有することで可視域の平均透過率が高く、さらに光の入射角に依存せずに十分な近赤外線遮蔽特性を有する近赤外線カットフィルタである。
 NIRフィルタは、具体的には、波長450~550nmの可視域における光の入射角0度での透過率の平均値は80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。
 NIRフィルタは、また、波長550~720nmにおける光の、入射角0度での透過率が85%、45%、5%となる波長をそれぞれ、λ(T85%)、λ(T45%)、λ(T5%)とすると、下記式(2)の関係を満足するとよい。
 {λ(T45%)-λ(T85%)}≧{λ(T5%)-λ(T45%)} ・・・ (2)
 NIRカットフィルタは、近赤外線吸収層を備えることにより、入射角0~30度の光に対して、誘電体多層膜により生成される近赤外反射帯の分光透過率曲線の変化を抑制できる。式(2)は、近赤外線吸収層を備えることで、透過率85~45%に至る勾配よりも、透過率45~5%に至る勾配が急峻となる遮光性を示している。
 本発明のNIRフィルタは、前記近赤外線吸収層がさらに紫外線吸収体を含有することが好ましい。この構成により、本発明のNIRフィルタは、波長430~450nmの光において、入射角0度での透過率の平均値が70%以上であり、かつ波長350~390nmの光において、入射角0度での透過率の平均値が5%以下である光学特性を実現できる。
 このように、本発明のNIRフィルタは、近赤外線吸収層が紫外線吸収体を含有することで、450nmよりも波長が短い領域において、入射角0度での透過率が50%となる波長をλ(UV)、入射角30度での透過率が50%となる波長をλ30(UV)としたとき、前記波長の差の絶対値|λ(UV)-λ30(UV)|を小さくできる。|λ(UV)-λ30(UV)|は、5nm以下が好ましく、3nm以下がより好ましい。
 また、本発明のNIRフィルタは、近赤外線吸収層が紫外線吸収体を含有し、波長380~430nmの光において、入射角0度での透過率と入射角30度での透過率との差の絶対値の平均は8%以下が好ましく、5%以下がより好ましい。
 近赤外線吸収層が紫外線吸収体を含有する本発明のNIRフィルタは、上記近赤外線遮蔽特性を有し、固体撮像装置において撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止できる。加えて、分光透過率曲線が可視域と紫外波長領域(以下「紫外域」という)の境界付近で急峻な傾斜を有し、さらに波長500nm以下における光の透過率の入射角依存性が小さいことで、可視域の平均透過率をより高くした近赤外線カットフィルタを実現できる。
 以下、図面を用いて本発明のNIRフィルタの実施形態を説明する。図1~図3は、本発明の実施形態に係るNIRフィルタの一例、別の一例、および、さらに別の一例をそれぞれ概略的に示す断面図である。
 図1に示される実施形態のNIRフィルタ10Aは、近赤外線吸収ガラス基材11と、近赤外線吸収ガラス基材11の一方の主面上に積層された、近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層12とからなる積層体Lと、積層体Lの近赤外線吸収ガラス基材11側の主面上に積層された第1の誘電体多層膜13とを備える。
 なお、NIRフィルタ10Aの変形例としては、積層体Lが近赤外線吸収ガラス基材11の両主面上に近赤外線吸収層12を有し、該積層体Lの一方または両方の主面上に誘電体多層膜を有する構成でもよい。また、NIRフィルタ10Aの変形例としては、近赤外線吸収ガラス基材11と近赤外線吸収層12の間に誘電体層を有する構成も挙げられる。
 実施形態のNIRフィルタの別の一例である図2に示されるNIRフィルタ10Bは、近赤外線吸収ガラス基材11と、近赤外線吸収ガラス基材11の一方の主面上に積層された近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層12と、近赤外線吸収ガラス基材11の他方の主面上に積層された第1の誘電体多層膜13と、近赤外線吸収層12の近赤外線吸収ガラス基材11と反対側の主面上に積層された第2の誘電体多層膜14を備える。NIRフィルタ10Bは、NIRフィルタ10Aの近赤外線吸収層12の近赤外線吸収ガラス基材11と反対側の主面上に第2の誘電体多層膜14を積層した構成である。
 実施形態のNIRフィルタのさらに別の一例である図3に示されるNIRフィルタ10Cは、NIRフィルタ10Bにおいて、積層体Lが近赤外線吸収ガラス基材11と近赤外線吸収層12の間に誘電体層15を備える以外はNIRフィルタ10Bと同様の構成である。
 本実施形態のNIRフィルタは、いずれも、波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下を実現できる。以下、該光学特性を本発明の光学特性という。ここで、本発明のNIRフィルタは、上記光学特性に加えて、近赤外線を効果的に遮蔽できる観点から、NIRフィルタ10Bの構成が好ましく、さらに耐久性等の観点からNIRフィルタ10Cの構成がより好ましい。なお、上記光学特性を満足する限り、各実施形態のNIRフィルタは、上記以外の層をさらに含んでもよい。
 以下、本実施形態のNIRフィルタ10A、10B、10Cが有する各構成層について説明する。
(近赤外線吸収ガラス基材)
 近赤外線吸収ガラス基材11(以下、近赤外線吸収ガラス基材を単に「ガラス基材」ともいう)は、可視域(450~600nm)の光を透過し、近赤外域(700~1100nm)の光を吸収する能力を有するガラス、例えば、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラス(以下、これらをまとめて「CuO含有ガラス」ともいう。)で構成される。CuO含有ガラスで構成したCuO含有ガラス基材を典型的な例としてガラス基材11について以下に説明する。
 CuO含有ガラス基材は、波長400~1100nmの光の吸収スペクトルにおいて、波長775~900nmに吸収極大波長λGmaxを有する。CuO含有ガラス基材は、近赤外光を有効に遮光するため、吸収極大波長λGmaxにおける、表面反射損失を除いた透過率T(λGmax)が50%以下となるように、CuO含有量、厚さを調整するとよく、30%以下に調整すると好ましい。
 また、CuO含有ガラス基材は、吸収波長帯域が広いため、波長600~650nmの可視光も吸収が発生する場合がある。CuO含有ガラス基材は、可視光の吸収によって顕著な透過率低下を招かない程度、例えば、T(λGmax)が5%以上となるように、CuO含有量、厚さを調整するとよい。
 ガラス基材11は、CuO含有ガラスで構成されることで、可視光に対し高い透過率を有するとともに、近赤外光に対して高い遮蔽性を有する。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含むものとする。ガラス基材11に使用されるCuO含有ガラスとしては、例えば、以下の組成のものが挙げられる。
(1)質量%表示で、P 46~70%、AlF 0.2~20%、LiF+NaF+KF0~25%、MgF+CaF+SrF+BaF+PbF 1~50%、ただし、F 0.5~32%、O 26~54%を含む基礎ガラス100質量部に対し、外割でCuO:0.5~7質量部を含むガラス。
(2)質量%表示で、P 25~60%、AlOF 1~13%、MgO 1~10%、CaO 1~16%、BaO 1~26%、SrO 0~16%、ZnO 0~16%、LiO 0~13%、NaO 0~10%、KO 0~11%、CuO 1~7%、ΣRO(R=Mg、Ca、Sr、Ba) 15~40%、ΣR’O(R’=Li、Na、K) 3~18%(ただし、39%モル量までのO2-イオンがFイオンで置換されている)からなるガラス。
(3)質量%表示で、P 5~45%、AlF 1~35%、RF(RはLi、Na、K) 0~40%、R’F(R’はMg、Ca、Sr、Ba、Pb、Zn) 10~75%、R”F(R”はLa、Y、Cd、Si、B、Zr、Ta、mはR”の原子価に相当する数) 0~15%(ただし、フッ化物総合計量の70%までを酸化物に置換可能)、およびCuO 0.2~15%を含むガラス。
(4)カチオン%表示で、P5+ 11~43%、Al3+ 1~29%、Rカチオン(Mg、Ca、Sr、Ba、Pb、Znイオンの合量) 14~50%、R’カチオン(Li、Na、Kイオンの合量) 0~43%、R”カチオン(La、Y、Gd、Si、B、Zr、Taイオンの合量) 0~8%、およびCu2+ 0.5~13%を含み、さらにアニオン%でF 17~80%を含有するガラス。
(5)カチオン%表示で、P5+ 23~41%、Al3+ 4~16%、Li 11~40%、Na 3~13%、R2+(Mg2+、Ca2+、Sr2+、Ba2+、Zn2+の合量) 12~53%、およびCu2+ 2.6~4.7%を含み、さらにアニオン%でF 25~48%、およびO2- 52~75%を含むガラス。
(6)質量%表示で、P 70~85%、Al 8~17%、B 1~10%、LiO 0~3%、NaO 0~5%、KO 0~5%、ただし、LiO+NaO+KO 0.1~5%、SiO 0~3%からなる基礎ガラス100質量部に対し、外割でCuOを0.1~5質量部含むガラス。
 市販品を例示すると、(1)のガラスとしては、NF-50E、NF-50EX、NF-50T、NF-50TX(旭硝子社製、商品名)等、(2)のガラスとしては、BG-60、BG-61(以上、ショット社製、商品名)等、(5)のガラスとしては、CD5000(HOYA社製、商品名)等が挙げられる。
 また、上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物として、例えば、Fe、MoO、WO、CeO、Sb、V等の1種または2種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。該金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe 0.6~5質量部、MoO 0.5~5質量部、WO 1~6質量部、CeO 2.5~6質量部、またはFeとSbの2種をFe 0.6~5質量部+Sb 0.1~5質量部、もしくはVとCeOの2種をV 0.01~0.5質量部+CeO 1~6質量部とすることが好ましい。
 ガラス基材11の近赤外線吸収性能は、以下に説明する近赤外線吸収層12および第1の誘電体多層膜13、第2の誘電体多層膜14、誘電体層15等と積層して得られるNIRフィルタ10A、10B、10Cとして、本発明の光学特性、すなわち、波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下である特性を有するものであればよい。
 ガラス基材11は、単体の状態で、波長775~900nmの光に対する入射角0度での吸収率は75%以上が好ましく、85%以上がより好ましい。ガラス基材11の厚さは、装置の小型化、薄型化、および取り扱い時の破損を抑制する点から、0.03~5mmが好ましく、軽量化および強度の点から、0.05~1mmがより好ましい。
 また、ガラス基材11の光学特性は、厚さ0.03~5mmにおいて、波長450~550nmにおける入射角0度での光の透過率が、80%以上が好ましい。
 基材としては、CuO含有ガラス以外の材料として、特定の近赤外光を吸収する、近赤外線吸収色素および透明樹脂を含む近赤外線吸収基材も挙げられる。
 この中でもとくにCuO含有ガラス基材は、波長400~450nmの光の吸収は僅かで、波長775~900nmの光に対する波長400~450nmの光の吸収率比が低い特徴がある。その結果、CuO含有ガラス基材は、波長775~900nmの光を吸収により十分遮断するようにCuO含有量を増やして吸収率を高くしても、可視光の顕著な透過率低下とならないため有用である。
 NIRフィルタ10A、10B、10Cは、例えば、固体撮像装置において固体撮像素子を保護するために気密封着されるカバーとしてこれを用いれば、固体撮像装置の小型化、薄型化に寄与できる。ここで、カバー中に不純物としてα線放出性元素(放射性同位元素)が含まれていると、α線を放出して固体撮像素子に一過性の誤動作(ソフトエラー)を引き起こすおそれがある。したがって、このような用途においてはガラス基材11を構成するCuO含有ガラスは、α線放出性元素の含有量ができるだけ少ないことが好ましい。α線放出性元素の中でも、U、Thの含有量が、20ppb以下が好ましく、5ppb以下がより好ましい。
 ガラス基材11は、その主面上に、近赤外線吸収層12を積層するにあたり、該層が積層される面にシランカップリング剤による表面処理を施してもよい。シランカップリング剤による表面処理が施されたガラス基材11を用いることにより、近赤外線吸収層12との密着性を高めることができる。シランカップリング剤としては、例えば、以下の近赤外線吸収層12で用いるのと同じものを使用できる。
(近赤外線吸収層)
 近赤外線吸収層12は、近赤外線吸収色素(A)と透明樹脂(B)とを含有する層であり、典型的には、透明樹脂(B)に近赤外線吸収色素(A)が均一に分散してなる層である。近赤外線吸収層12は、さらに紫外線吸収体(U)を含有することが好ましい。
 なお、図1~図3において、近赤外線吸収層12は、さらに紫外線吸収体(U)を含有する場合、1層で構成されるように図示しているが、この構成に限らない。例えば、近赤外線吸収層12が近赤外線吸収色素(A)と透明樹脂(B)とを含有し、紫外線吸収体(U)を含まない場合、図1~図3に図示しない紫外線吸収層を別途設ける構成でもよい。すなわち、紫外線吸収層は、紫外線吸収体(U)と透明樹脂を含有し、独立した層として設けられてもよい。
 この場合、紫外線吸収層は、ガラス基材11の両主面のうち、近赤外線吸収層12側に設けてもよく、近赤外線吸収層12側と対向する側に設けてもよく、その位置関係に制限はない。ただし、このように紫外線吸収層を別途設ける構成であっても、本発明のNIRフィルタは、近赤外線吸収層12がさらに紫外線吸収体(U)を含有する構成の光学特性と同じ光学特性が得られる。また、近赤外線吸収層12が、近赤外線吸収色素(A)と透明樹脂(B)、さらに紫外線吸収体(U)を含有する場合でも、紫外線吸収体(U)と透明樹脂を含有する紫外線吸収層を別途設けてもよい。以下は、本発明のNIRが紫外線吸収体(U)を含有する場合、近赤外線吸収層12に紫外線吸収体(U)が含有される構成として説明をする。
<近赤外線吸収色素(A)>
 近赤外線吸収色素(A)(以下、「色素(A)」という。)は、可視域(波長450~600nm)の光を透過し、近赤外域(波長700~1100nm)の光を吸収する能力を有する近赤外線吸収色素であれば特に制限されない。なお、本発明における色素は顔料、すなわち分子が凝集した状態でもよい。以下、近赤外線吸収色素を必要に応じて「NIR吸収色素」という。
 また、色素(A)は、波長650~750nmに吸収極大波長λmaxを有する材料が好ましく、波長680~720nmにλmaxを有する材料がさらに好ましい。また、色素(A)を含む近赤外線吸収層は、近赤外線吸収ガラスに比べ、吸収波長帯幅を狭くできる材料の種類や含有量の選択における自由度が高い。そのため、近赤外線吸収層は、それの吸収極大波長λmaxにおける透過率T(λmax)を、近赤外線吸収ガラス基板の吸収極大波長λGmaxにおける透過率T(λGmax)より低く調整することで、可視波長領域の透過率低下を抑制しつつ、λmax近傍の、急峻な遮光性を実現できる。なお、吸収極大波長λmaxを有する色素(A)を含有する近赤外吸収層における吸収極大波長は、吸収極大波長λmaxと一致する。
 近赤外外線吸収層の分光透過率曲線は、可視光の吸収が少なく、λmaxよりも可視光(短波長)側に急峻な傾きを有するとよい、とする理由は、該近赤外線吸収層により視感度に近い分光透過率曲線を実現するためである。つまり、近赤外線吸収層は、視感度の高い波長略550~600nmの光に対する吸収が少なく高透過率を維持し、視感度が徐々に低下する波長略600~650nmの光に対する透過率が40~60%程度まで低下し、視感度が低いレベルから殆ど無いレベルの波長略650~700nmの光に対する透過率が5%以下まで低下するように、透明樹脂(B)中の色素(A)およびその含有量を調整する。
 具体的には、近赤外線吸収層のλmaxにおける、透過率T(λmax)が5%以下となるよう、色素(A)およびその含有量を調整する。
 波長550~700nmの光に対する透過率が上記好ましい範囲となるよう色素(A)の調整を行った結果、略700nm以上の近赤外光で低透過率となる吸収波長帯域が広いほど好ましい。近赤外線吸収層は、λmax近傍で透過率が20%以下となる吸収波長帯幅が30nm以上あればよく、40nm以上あればより好ましい。
 近赤外線吸収層が上記の吸収波長帯幅を有すれば、近赤外線吸収ガラス基材および近赤外線吸収層の吸収で十分遮断できない近赤外域の透過光を、後述する近赤外線反射性の誘電体多層膜を用いて遮光する効果を高められる。つまり、入射角0~30度の光の角度依存により、誘電体多層膜の分光透過率曲線のうち近赤外線反射波長側の透過率50%の波長が短波長側にシフトしても、近赤外線吸収層の吸収波長帯幅内の変化に収まるよう設定できる。したがって、該設計に基づくNIRフィルタは、特に近赤外吸収領域における分光透過率曲線に影響する誘電体多層膜の入射角依存性を抑制できる。
 色素(A)は、該色素(A)が透明樹脂(B)中に分散して得られる樹脂膜を使用して測定される波長400~850nmの光の吸収スペクトルにおいて、波長650~750nm内に吸収極大波長を発現するものが好ましい。該吸収特性を有する近赤外線吸収色素を色素(A1)という。該吸収スペクトルにおける吸収極大波長を、色素(A1)のλmaxという。なお、色素(A1)の吸収スペクトルは、波長λmaxに吸収の頂点を有する吸収ピーク(以下、「λmaxの吸収ピーク」という)を有する。色素(A1)の吸収スペクトルは、波長650~750nm内にλmaxを有することに加えて、可視光の吸収が少なく、λmaxの吸収ピークの可視光側の傾きが急峻であることが好ましい。さらに、λmaxの吸収ピークは長波長側では傾きは緩やかであることが好ましい。
 色素(A1)としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、スクアリリウム系化合物等が挙げられる。
 これらの中ではスクアリリウム系化合物、シアニン系化合物およびフタロシアニン系化合物がより好ましく、スクアリリウム系化合物が特に好ましい。スクアリリウム系化合物からなる色素(A1)は、上記吸収スペクトルにおいて、可視光の吸収が少なく、λmaxの吸収ピークが可視光側で急峻な傾きを有するとともに、保存安定性および光に対する安定性が高いため好ましい。シアニン系化合物からなる色素(A1)は、上記吸収スペクトルにおいて、可視光の吸収が少なく、λmax近傍の波長領域において長波長側で光の吸収率が高いため好ましい。また、シアニン系化合物は低コストであって、塩形成することにより長期の安定性も確保できることが知られている。フタロシアニン系化合物からなる色素(A1)は、耐熱性や耐候性に優れるため好ましい。
 スクアリリウム系化合物である色素(A1)として、具体的には、式(F1)で示されるスクアリリウム系化合物から選ばれる少なくとも1種が挙げられる。本明細書において、式(F1)で示される化合物を化合物(F1)ともいう。他の化合物についても同様である。
 化合物(F1)は、スクアリリウム骨格の左右にベンゼン環が結合し、さらにベンゼン環の4位に窒素原子が結合するとともに該窒素原子を含む飽和複素環が形成された構造を有するスクアリリウム系化合物であり、上記色素(A1)としての吸光特性を有する化合物である。化合物(F1)においては、近赤外線吸収層を形成する際に用いる溶媒(以下、「ホスト溶媒」ということもある。)や透明樹脂(B)への溶解性を高める等のその他の要求特性に応じて、以下の範囲でベンゼン環の置換基を適宜調整できる。
Figure JPOXMLDOC01-appb-C000001
 ただし、式(F1)中の記号は以下のとおりである。
 RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、または-NR(RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または-C(=O)-R(Rは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基もしくは炭素数6~11のアリール基または、置換基を有していてもよく、炭素原子間に酸素原子を有していてもよい炭素数7~18のアルアリール基))を示す。
 RとR、RとR、およびRとRは、このうち少なくとも一組は、互いに連結して窒素原子と共に員数が5または6のそれぞれ複素環A、複素環B、および複素環Cを形成する。
 複素環Aが形成される場合のRとRは、これらが結合した2価の基-Q-として、水素原子が炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。
 複素環Bが形成される場合のRとR、および複素環Cが形成される場合のRとRは、これらが結合したそれぞれ2価の基-X-Y-および-X-Y-(窒素に結合する側がXおよびX)として、XおよびXがそれぞれ下記式(1x)または(2x)で示される基であり、YおよびYがそれぞれ下記式(1y)~(5y)から選ばれるいずれかで示される基である。XおよびXが、それぞれ下記式(2x)で示される基の場合、YおよびYはそれぞれ単結合であってもよい。
Figure JPOXMLDOC01-appb-C000002
 式(1x)中、4個のZは、それぞれ独立して水素原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、または-NR2829(R28およびR29は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す)を示す。R21~R26はそれぞれ独立して水素原子、炭素数1~6のアルキル基または炭素数6~10のアリール基を、R27は炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。
 R、R、R、R、R、R21~R27、複素環を形成していない場合のR~R、およびRは、これらのうちの他のいずれかと互いに結合して5員環または6員環を形成してもよい。R21とR26、R21とR27は直接結合してもよい。
 複素環を形成していない場合の、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基もしくはアリル基、または炭素数6~11のアリール基もしくはアルアリール基を示す。複素環を形成していない場合の、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~6のアルキル基もしくはアルコキシ基を示す。
 以下、複素環Aは単に環Aということもある。複素環B、複素環Cについても同様である。
 化合物(F1)において、RおよびRは、それぞれ独立して、上記の原子または基を示す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。アルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよい。RおよびRは、いずれか一方が水素原子であって、他方が-NRである組合せが好ましい。
 化合物(F1)が、環A~環Cのうち、環Aのみ、環Bと環Cのみ、環A~環Cをそれぞれ有する場合、-NRは、RとRのいずれに導入されてもよい。化合物(F1)が、環Bのみ、環Aと環Bのみをそれぞれ有する場合、-NRは、Rに導入されるのが好ましい。同様に、環Cのみ、環Aと環Cのみをそれぞれ有する場合、-NRは、Rに導入されるのが好ましい。
 -NRとしては、ホスト溶媒や透明樹脂(B)への溶解性の観点から、-NH-C(=O)-Rが好ましい。Rとしては、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数6~10のアリール基、または置換基を有していてもよく、炭素原子間に酸素原子を有していてもよい炭素数7~18のアルアリール基が好ましい。置換基としては、フッ素原子等のハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、炭素数1~6のアルキル基、炭素数1~6のフロロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアシルオキシ基等が挙げられる。
 Rとしては、これらのうちでも、フッ素原子で置換されてもよい直鎖状、分岐鎖状、環状の炭素数1~17のアルキル基、炭素数1~6のフロロアルキル基および/または炭素数1~6のアルコキシ基で置換されてもよいフェニル基、および炭素原子間に酸素原子を有していてもよい炭素数7~18の、末端に炭素数1~6のフッ素原子で置換されていてもよいアルキル基および/または炭素数1~6のアルコキシ基で置換されてもよいフェニル基を有するアルアリール基から選ばれる基が好ましい。
 Rとしては、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5~25の炭化水素基である基も好ましく使用できる。このようなRとしては、例えば、式(1a)、(1b)、(2a)~(2e)、(3a)~(3e)で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 化合物(F1)において、RとR、RとR、およびRとRが、それぞれ互いに連結して形成される員数5または6の環A、環B、および環Cは、少なくともこれらのいずれか1個が形成されていればよく、2個または3個が形成されていてもよい。
 環を形成していない場合の、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基もしくはアリル基、または炭素数6~11のアリール基もしくはアルアリール基を示す。アルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよい。置換基としては、水酸基、炭素数1~3のアルコキシ基、および炭素数1~3のアシルオキシ基が挙げられる。環を形成していない場合の、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~6のアルキル基もしくはアルコキシ基を示す。これらのなかでも、R、R、R、Rとしては、ホスト溶媒や透明樹脂(B)への溶解性の観点から、炭素数1~3のアルキル基が好ましく、メチル基、エチル基、2-プロピル基が特に好ましい。
 また、化合物(F1)において、スクアリリウム骨格の左右に結合するベンゼン環が有する基R~Rは、左右で異なってもよいが、左右で同一が好ましい。
 なお、化合物(F1)は、式(F1)で示される構造の共鳴構造を有する式(F1-1)で示される化合物(F1-1)を含む。
Figure JPOXMLDOC01-appb-C000005
 ただし、式(F1-1)中の記号は、式(F1)における規定と同じである。
 化合物(F1)として、より具体的には、環Bのみを環構造として有する式(F11)で示される化合物、環Aのみを環構造として有する式(F12)で示される化合物、環Bおよび環Cの2個を環構造として有する式(F13)で示される化合物が挙げられる。なお、式(F11)で示される化合物は、化合物(F1)において環Cのみを環構造として有し、Rが-NRである化合物と同じ化合物である。また、式(F11)で示される化合物および式(F13)で示される化合物は、米国特許第5,543,086号明細書に記載された化合物である。
Figure JPOXMLDOC01-appb-C000006
 式(F11)~(F13)中の記号は、式(F1)における規定と同じであり、好ましい態様も同様である。
 化合物(F11)において、Xとしては、上記(2x)で示される水素原子が炭素数1~6のアルキル基または炭素数6~10のアリール基で置換されてもよいエチレン基が好ましい。この場合、置換基としては炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。Xとして、具体的には、-(CH-、-CH-C(CH-、-CH(CH)-C(CH-、-C(CH-C(CH-等が挙げられる。化合物(F11)における-NRとしては、-NH-C(=O)-CH、-NH-C(=O)-C13、-NH-C(=O)-C、-NH-C(=O)-CH(C)-C、-NH-C(=O)-C(CH-C、-NH-C(=O)-C(CH-C、-NH-C(=O)-C(CH-(CH-O-C(CH等が好ましい。
 化合物(F11)として、例えば、式(F11-1)、式(F11-2)、式(F11-3)、式(F11-4)、式(F11-5)、式(F11-6)、式(F11-7)でそれぞれ示される化合物等が挙げられる。これらの中でもホスト溶媒や透明樹脂(B)に対する溶解性が高いことから、化合物(F11-2)、化合物(F11-3)、化合物(F11-4)、化合物(F11-5)、化合物(F11-6)がより好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 化合物(F12)において、Qは、水素原子が炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基に置換されてもよい炭素数4または5のアルキレン基、炭素数3または4のアルキレンオキシ基である。アルキレンオキシ基の場合の酸素の位置はNの隣以外が好ましい。なお、Qとしては、炭素数1~3のアルキル基、特にはメチル基に置換されてもよいブチレン基が好ましい。
 化合物(F12)において、-NRは、-NH-C(=O)-(CH-CH(mは、0~19)、-NH-C(=O)-Ph-R10(-Ph-はフェニレン基を、R10は、水素原子、水素原子がフッ素原子に置換されていてもよい炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基をそれぞれ示す。)等が好ましい。
 ここで、化合物(F12)は、そのλmaxが上記波長領域のなかでも比較的長波長側にあることから、化合物(F12)を用いれば可視波長帯の透過領域を広げることが可能となる。化合物(F12)として、例えば、式(F12-1)、式(F12-2)、式(F12-3)で示される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 化合物(F13)において、XおよびXとしては、独立して上記(2x)で示される水素原子が炭素数1~6のアルキル基または炭素数6~10のアリール基で置換されてもよいエチレン基が好ましい。この場合、置換基としては炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。XおよびXとして、具体的には、-(CH-、-CH-C(CH-、-CH(CH)-C(CH-、-C(CH-C(CH-等が挙げられる。YおよびYとしては、独立して-CH-、-C(CH-、-CH(C)-、-CH((CHCH)-(mは0~5)等が挙げられる。化合物(F13)において、-NRは、-NH-C(=O)-C2m+1(mは1~20であり、C2m+1は直鎖状、分岐鎖状、環状のいずれであってもよい。)、-NH-C(=O)-Ph-R10(-Ph-はフェニレン基を、R10は、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、または炭素数1~3のパーフロロアルキル基をそれぞれ示す。)等が好ましい。
 化合物(F13)として、例えば、下記式(F13-1)、式(F13-2)でそれぞれ示される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 また、色素(A1)として、式(F6)で示されるスクアリリウム系化合物を用いることもできる。式(F6)は、式(F1)において環A、環B、環Cのいずれも形成されていない化合物(ただし、R~Rは以下のとおりである。)を示す。
Figure JPOXMLDOC01-appb-C000011
 式(F6)中の記号は以下のとおりである。
 RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~12のアルキル基もしくはアリル基、または炭素数6~11のアリール基もしくはアルアリール基を示す。RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~6のアルキル基もしくはアルコキシ基を示す。RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、または-NR(RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または-C(=O)-R(Rは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基もしくは炭素数6~11のアリール基または、置換基を有していてもよく、炭素原子間に酸素原子を有していてもよい炭素数7~18のアルアリール基))を示す。
 化合物(F6)として、例えば、式(F6-1)、式(F6-2)で示される化合物等が挙げられる。
 さらに、色素(A1)として、式(F7)で示されるスクアリリウム系化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000013
 上記化合物(F11)、化合物(F12)、化合物(F13)等の化合物(F1)や、化合物(F6)、化合物(F7)は、従来公知の方法で製造可能である。
 化合物(F11-1)等の化合物(F11)は、例えば、米国特許第5,543,086号明細書に記載された方法で製造できる。
 また、化合物(F12)は、例えば、J.Org.Chem.2005,70(13),5164-5173に記載の方法で製造できる。
 これらのうちでも、化合物(F12-1)、化合物(F12-2)等は、例えば、反応式(F3)に示す合成経路にしたがって製造できる。
 反応式(F3)によれば、1-メチル-2-ヨード-4-アミノベンゼンのアミノ基に所望の置換基Rを有するカルボン酸塩化物を反応させてアミドを形成する。次いで、ピロリジンを反応させ、さらに3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(以下、スクアリン酸という。)と反応させることで、化合物(F12-1)、化合物(F12-2)等が得られる。
Figure JPOXMLDOC01-appb-C000014
 反応式(F3)中Rは、-Phまたは-(CH-CHを示す。-Phはフェニル基を示す。Etはエチル基、THFはテトラヒドロフランを示す。
 また、化合物(F13-1)、化合物(F13-2)等は、例えば、反応式(F4)に示す合成経路にしたがって製造できる。
 反応式(F4)では、まず、8-ヒドロキシジュロリジンにトリフルオロメタンスルホン酸無水物(TfO)を反応させ、8-トリフルオロメタンスルホン酸ジュロリジンとし、次いで、これにベンジルアミン(BnNH)を反応させ8-ベンジルアミノジュロリジンを得、さらにこれを還元して8-アミノジュロリジンを製造する。次いで、8-アミノジュロリジンのアミノ基に所望の置換基R(化合物(F13-1)の場合-(CH-CH、化合物(F13-2)の場合-CH(CH(CH)-CH-C(CH)-(CH-CH(CH)-CH-C(CH)を有するカルボン酸塩化物を反応させてジュロリジンの8位に-NH-C(=O)Rを有する化合物を得る。次いで、この化合物の2モルをスクアリン酸1モルと反応させることで、化合物(F13-1)、化合物(F13-2)等が得られる。
Figure JPOXMLDOC01-appb-C000015
 反応式(F4)中、Meはメチル基、TEAはトリエチルアミン、Acはアセチル基、BINAPは(2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル)、NaOtBuはナトリウムt-ブトキシドをそれぞれ示す。
 スクアリリウム系化合物である色素(A1)は、市販品を用いてもよい。市販品としては、S2098、S2084(商品名、FEWケミカルズ社製)等が挙げられる。
 シアニン系化合物である色素(A1)として、具体的には、式(F5)で示されるシアニン系化合物から選ばれる少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 ただし、式(F5)中の記号は以下のとおりである。
 R11は、それぞれ独立して、炭素数1~20のアルキル基、アルコキシ基もしくはアルキルスルホン基、またはそのアニオン種を示す。
 R12およびR13は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す。
 Zは、PF、ClO、R-SO、(R-SO-N(Rは少なくとも1つの水素原子がフッ素原子で置換された炭素数1~8のアルキル基を示す。)、またはBFを示す。
 R14、R15、R16およびR17は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基を示す。
 nは1~6の整数を示す。
 なお、化合物(F5)におけるR11としては、炭素数1~20のアルキル基が好ましく、R12およびR13はそれぞれ独立して、水素原子または炭素数1~6のアルキル基が好ましい。R14、R15、R16およびR17は、それぞれ独立して、水素原子が好ましく、nの数は1~4が好ましい。n個の繰り返し単位を挟んだ左右の構造は異なってもよいが、同一の構造が好ましい。
 化合物(F5)としてより具体的には、式(F51)で示される化合物、式(F52)で示される化合物等が例示される。Zが示すアニオンは(F5)におけるZと同様である。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 シアニン系化合物である色素(A1)は、市販品を用いてもよい。市販品としては、ADS680HO(商品名、American dye社製)、S0830(商品名、FEWケミカルズ社製)、S2137(商品名、FEWケミカルズ社製)等が挙げられる。
 また、色素(A1)として使用可能なフタロシアニン系化合物としては、FB22(商品名、山田化学工業社製)、TXEX720(商品名、日本触媒社製)、PC142c(商品名、山田化学工業社製)等の市販品が挙げられる。
 上に例示した色素(A1)として用いられる各化合物のλmaxを測定時に使用した透明樹脂(B)の種類と共に表1に示す。
Figure JPOXMLDOC01-appb-T000019
 なお、上記において透明樹脂(B)として用いた、B-OKP2、バイロン(登録商標)103は、ポリエステル樹脂、SP3810はポリカーボネート樹脂、EA-F5003はアクリル樹脂であり、詳細は後述のとおりである。
 本実施形態においては、色素(A1)として、上記色素(A1)としての吸光特性を有する複数の化合物から選ばれる1種を単独で用いてもよく、2種以上を併用してもよい。
 色素(A)は、好ましくは色素(A1)の1種または2種以上を含有する。なお、色素(A)は、色素(A1)以外に、必要に応じてその他のNIR吸収色素を含有してもよい。色素(A)として複数のNIR吸収色素を用いる場合、これらを透明樹脂(B)に分散して作製した樹脂膜に対して測定される波長400~850nmの光の吸収スペクトルにおいて、波長650~750nm内に吸収極大波長を発現するようにNIR吸収色素を組合せて用いることが好ましい。さらには、該吸収スペクトルにおいて、可視光の吸収が少なく、λmaxの吸収ピークの可視光側の傾きが急峻であり、長波長側では傾きは緩やかとなるように、NIR吸収色素を組合せて用いることが好ましい。
<紫外線吸収体(U)>
 紫外線吸収体(U)(以下、吸収体(U)ともいう。)は、波長430nm以下の光を吸収する化合物である。吸収体(U)としては、(iv-1)および(iv-2)の要件を満たす化合物(以下、吸収体(U1)という。)が好ましい。
(iv-1)ジクロロメタンに溶解して測定される波長350~800nmの光吸収スペクトルにおいて、波長415nm以下に、少なくとも一つの吸収極大波長を有し、波長415nm以下の光における吸収極大のうち、最も長波長側の吸収極大波長λmax(UV)は、波長360~415nmにある。
(iv-2)ジクロロメタンに溶解して測定される分光透過率曲線において、前記吸収極大波長λmax(UV)における透過率を10%としたとき、前記吸収極大波長λmax(UV)より長波長で透過率が90%となる波長λL90と、前記吸収極大波長λmax(UV)より長波長で透過率が50%となる波長λL50との差λL90-λL50が13nm以下である。
 (iv-1)を満たす吸収体(U)の吸収極大波長は、透明樹脂中においても大きく変化しない。すなわち、(iv-1)を満たす吸収体(U)は、該吸収体(U)を透明樹脂に溶解または分散した場合にも、樹脂中吸収スペクトルにおける吸収極大波長λmax・P(UV)が、概ね波長360~415nm内に存在するため、好ましい。
 (iv-2)を満たす吸収体(U)は、透明樹脂に含まれる場合にも優れた急峻性を示す。すなわち、(iv-2)を満たす吸収体(U)は、該吸収体(U)を透明樹脂に溶解または分散した場合にも、吸収極大波長λmax・P(UV)より長波長で透過率が50%となる波長λP50と透過率90%となる波長λP90の差(λP90-λP50)が概ね14nm以下となり、ジクロロメタン中と同等の急峻性を示し、好ましい。なお、吸収体(U)を透明樹脂に溶解または分散した場合の、λp90-λp50は13nm以下がより好ましく、12nm以下がより一層好ましい。
 (iv-1)を満たす吸収体(U)を使用すれば、透明樹脂中に溶解または分散して近赤外線吸収層12として得られる実施形態のNIRフィルタの波長λ(UV)と波長λ30(UV)を、いずれも波長450nmより短い領域、好ましくは波長400~425nmに存在させることができる。
 (iv-2)を満たす吸収体(U)を使用すれば、透明樹脂中に溶解または分散して近赤外線吸収層12として得られる実施形態のNIRフィルタにおいて、吸収体(U)による吸収極大波長の長波長側での透過率が50%となる波長と透過率が90%となる波長の差を小さくできる。すなわち、該波長領域において、分光透過率曲線の変化を急峻にできる。
 (iv-1)および(iv-2)を満たす吸収体(U1)を使用すれば、実施形態のNIRフィルタにおいて、波長450nmより短い領域、好ましくは波長400~425nmに波長λ(UV)と波長λ30(UV)を存在させやすく、かつ波長450nmより短い領域における分光透過率曲線の急峻な変化が得られやすい。
 本明細書において、吸収体(U)を、ジクロロメタンに溶解して測定される波長350~800nmの光の吸収スペクトルを「吸収体(U)の吸収スペクトル」ともいう。
 吸収体(U)の吸収スペクトルにおける吸収極大波長λmax(UV)を「吸収体(U)のλmax(UV)」という。
 吸収体(U)を、ジクロロメタンに溶解して測定される分光透過率曲線を「吸収体(U)の分光透過率曲線」という。
 吸収体(U)の分光透過率曲線において、吸収体(U)のλmax(UV)における透過率が10%となる量で含有したときに、吸収体(U)のλmax(UV)より長波長で透過率が90%となる波長を「λL90」といい、吸収体(U)のλmax(UV)より長波長で透過率が50%となる波長を「λL50」という。
 また、本明細書において、吸収体(U)を、透明樹脂に溶解して作製される吸収層の、測定される波長350~800nmの光の吸収スペクトルを「吸収体(U)の樹脂中吸収スペクトル」ともいう。
 吸収体(U)の樹脂中吸収スペクトルにおける吸収極大波長λmax・P(UV)を「吸収体(U)のλmax・P(UV)」という。
 吸収体(U)を、透明樹脂に溶解して作製される吸収層の測定される分光透過率曲線を「吸収体(U)の樹脂中分光透過率曲線」という。
 吸収体(U)の樹脂中分光透過率曲線において、吸収体(U)のλmax・P(UV)における透過率が10%となる量で含有したときに、吸収体(U)のλmax・P(UV)より長波長で透過率が90%となる波長を「λP90」といい、吸収体(U)のλmax・P(UV)より長波長で透過率が50%となる波長を「λP50」という。
 吸収体(U)の波長λmax(UV)は、波長365~415nmにあることが好ましく、波長370~410nmにあることがより好ましい。吸収体(U)の波長λmax(UV)がこの領域にあることで上述した効果、すなわち、波長400~425nmにおいて、分光透過率曲線の急峻な変化が得られやすい。
 また、吸収体(U)のλL90とλL50の差(λL90-λL50)は、12nm以下が好ましく、11nm以下がより好ましく、9nm以下がより一層好ましい。λL90-λL50がこの領域にあることで上述した効果が得られやすい。
 (iv-1)および(iv-2)を満たす吸収体(U1)の具体例としては、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。
 市販品としては、例えば、オキサゾール系として、Uvitex(登録商標)OB(Ciba社製 商品名)、Hakkol(登録商標) RF-K(昭和化学工業(株)製 商品名)、Nikkafluor EFS、Nikkafluor SB-conc(以上、いずれも日本化学工業(株)製 商品名)等が挙げられる。メロシアニン系として、S0511(Few Chemicals社製 商品名)等が挙げられる。シアニン系として、SMP370、SMP416(以上、いずれも(株)林原製 商品名)等が挙げられる。ナフタルイミド系として、Lumogen(登録商標)F violet570(BASF社製 商品名)等が挙げられる。
 吸収体(U1)として、式(N)で示される色素も挙げられる。なお、本明細書中、特に断らない限り、式(N)で表される色素を色素(N)と記す。他の式で表される色素も同様に記す。また、式(1n)で表される基を基(1n)と記す。他の式で表される基も同様に記す。
Figure JPOXMLDOC01-appb-C000020
 式(N)中、R18は、それぞれ独立に、飽和もしくは不飽和の環構造を含んでもよく、分岐を有してもよい炭素数1~20の炭化水素基を示す。具体的には、直鎖状または分枝状のアルキル基、アルケニル基、飽和環状炭化水素基、アリール基、アルアリール基等が挙げられる。
 また、式(N)中、R19は、それぞれ独立に、シアノ基、または式(n)で示される基である。
  -COOR30   …(n)
 式(n)中、R30は、飽和もしくは不飽和の環構造を含んでもよく、分岐を有してもよい炭素数1~20の炭化水素基を示す。具体的には、直鎖状または分枝鎖状のアルキル基、アルケニル基、飽和環状炭化水素基、アリール基、アルアリール基等が挙げられる。
 色素(N)中のR18としては、式(1n)~(4n)で示される基が中でも好ましい。また、色素(N)中のR19としては、式(5n)で示される基が中でも好ましい。
Figure JPOXMLDOC01-appb-C000021
 色素(N)の具体例としては、表2に示す構成の色素(N-1)~(N-4)が例示できる。なお、表2におけるR18およびR19の具体的な構造は、式(1n)~(5n)に対応する。表2には対応する色素略号も示した。なお、色素(N-1)~(N-4)において、2個存在するR18は同じであり、R19も同様である。
Figure JPOXMLDOC01-appb-T000022
 以上例示した吸収体(U1)の中でも、オキサゾール系、メロシアニン系の色素が好ましく、その市販品としては、例えば、Uvitex(登録商標)OB、Hakkol(登録商標) RF-K、S0511が挙げられる。
(メロシアニン系色素)
 吸収体(U1)としては、特に、式(M)で示されるメロシアニン系色素が好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(M)中、Yは、QおよびQで置換されたメチレン基または酸素原子を示す。ここで、QおよびQは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1~10のアルキル基もしくはアルコキシ基を表す。QおよびQは、それぞれ独立に、水素原子、または、炭素数1~10のアルキル基もしくはアルコキシ基が好ましく、いずれも水素原子であるか、少なくとも一方が水素原子で他方が炭素数1~4のアルキル基がより好ましい。特に好ましくは、QおよびQはいずれも水素原子である。
 Qは、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表す。置換基を有しない1価の炭化水素基としては、水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換されていてもよい炭素数1~12のアルキル基、水素原子の一部が芳香族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数3~8のシクロアルキル基、および水素原子の一部が脂肪族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数6~12のアリール基が好ましい。
 Qが無置換のアルキル基である場合、そのアルキル基は直鎖状であっても、分岐状であってもよく、その炭素数は1~6がより好ましい。
 水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換された炭素数1~12のアルキル基としては、炭素数3~6のシクロアルキル基を有する炭素数1~4のアルキル基、フェニル基で置換された炭素数1~4のアルキル基がより好ましく、フェニル基で置換された炭素数1または2のアルキル基が特に好ましい。なお、アルケニル基で置換されたアルキル基とは、全体としてアルケニル基であるが1、2位間に不飽和結合を有しないものを意味し、例えばアリル基や3-ブテニル基等をいう。
 置換基を有する炭化水素基としては、アルコキシ基、アシル基、アシルオキシ基、シアノ基、ジアルキルアミノ基または塩素原子を1個以上有する炭化水素基が好ましい。これらアルコキシ基、アシル基、アシルオキシ基およびジアルキルアミノ基の炭素数は1~6が好ましい。
 好ましいQは、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基である。
 特に好ましいQは炭素数1~6のアルキル基であり、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 Q~Qは、それぞれ独立に、水素原子、ハロゲン原子、または、炭素数1~10のアルキル基もしくはアルコキシ基を表す。アルキル基及びアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましい。
 QおよびQは、少なくとも一方が、アルキル基が好ましく、いずれもアルキル基がより好ましい。QまたはQがアルキル基でない場合は、水素原子がより好ましい。QおよびQは、いずれも炭素数1~6のアルキル基が特に好ましい。
 QおよびQは、少なくとも一方が、水素原子が好ましく、いずれも水素原子がより好ましい。QまたはQが水素原子でない場合は、炭素数1~6のアルキル基が好ましい。
 Zは、式(Z1)~(Z5)で表される2価の基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000024
 式(Z1)~(Z5)において、QおよびQは、それぞれ独立に、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表す。QおよびQは、異なる基であってもよいが、同一の基が好ましい。
 置換基を有しない1価の炭化水素基としては、水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換されていてもよい炭素数1~12のアルキル基、水素原子の一部が芳香族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数3~8のシクロアルキル基、および、水素原子の一部が脂肪族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数6~12のアリール基が好ましい。
 QおよびQが無置換のアルキル基である場合、そのアルキル基は直鎖状であっても、分岐状であってもよく、その炭素数は1~6がより好ましい。
 水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換された炭素数1~12のアルキル基としては、炭素数3~6のシクロアルキル基を有する炭素数1~4のアルキル基、フェニル基で置換された炭素数1~4のアルキル基がより好ましく、フェニル基で置換された炭素数1または2のアルキル基が特に好ましい。なお、アルケニル基で置換されたアルキル基とは、全体としてアルケニル基であるが1、2位間に不飽和結合を有しないものを意味し、例えばアリル基や3-ブテニル基等をいう。
 置換基を有する1価の炭化水素基としては、アルコキシ基、アシル基、アシルオキシ基、シアノ基、ジアルキルアミノ基または塩素原子を1個以上有する炭化水素基が好ましい。これらアルコキシ基、アシル基、アシルオキシ基およびジアルキルアミノ基の炭素数は1~6が好ましい。
 好ましいQおよびQは、いずれも、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基である。
 特に好ましいQおよびQは、いずれも、炭素数1~6のアルキル基であり、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 Q10~Q19は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表す。置換基を有していてもよい炭素数1~12の1価の炭化水素基は、前記Q、Qと同様の炭化水素基である。置換基を有していてもよい炭素数1~12の1価の炭化水素基としては、置換基を有しない炭素数1~6のアルキル基が好ましい。
 Q10とQ11は、いずれも、炭素数1~6のアルキル基がより好ましく、それらは同一のアルキル基が特に好ましい。
 Q12、Q15は、いずれも水素原子であるか、置換基を有しない炭素数1~6のアルキル基が好ましい。同じ炭素原子に結合した2つの基(Q13とQ14、Q16とQ17、Q18とQ19)は、いずれも水素原子であるか、いずれも炭素数1~6のアルキル基が好ましい。
 式(M)で表される化合物としては、Yが酸素原子であり、Zが基(Z1)または基(Z2)である化合物、および、YがQおよびQで置換されたメチレン基であり、Zが基(Z1)または基(Z5)である化合物が好ましい。
 Yが酸素原子である場合のZとしては、Qが炭素数1~6のアルキル基、QとQがいずれも水素原子であるかいずれも炭素数炭素数1~6のアルキル基、Q、Qがいずれも水素原子ある、基(Z1)または基(Z2)がより好ましい。特に、Qが炭素数1~6のアルキル基、QとQがいずれも炭素数1~6のアルキル基、Q、Qがいずれも水素原子ある、基(Z1)または基(Z2)が好ましい。
 YがQおよびQで置換されたメチレン基であり、Zが基(Z1)または基(Z5)である化合物としては、Qが炭素数1~6のアルキル基、QとQがいずれも水素原子であるかいずれも炭素数1~6のアルキル基、Q~Qがいずれも水素原子ある、基(Z1)または基(Z5)が好ましく、Qが炭素数1~6のアルキル基、Q~Qがいずれも水素原子ある、基(Z1)または基(Z5)がより好ましい。
 式(M)で表される化合物としては、Yが酸素原子であり、Zが基(Z1)または基(Z2)である化合物が好ましく、Yが酸素原子であり、Zが基(Z1)である化合物が特に好ましい。
 色素(M)の具体例としては、式(M-1)~(M-11)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 また、吸収体(U1)として、Exiton社製のABS407、QCR Solutions Corp.社製のUV381A、UV381B、UV382A、UV386A、VIS404A、HW Sand社製のADA1225、ADA3209、ADA3216、ADA3217、ADA3218、ADA3230、ADA5205、ADA2055、ADA6798、ADA3102、ADA3204、ADA3210、ADA2041、ADA3201、ADA3202、ADA3215、ADA3219、ADA3225、ADA3232、ADA4160、ADA5278、ADA5762、ADA6826、ADA7226、ADA4634、ADA3213、ADA3227、ADA5922、ADA5950、ADA6752、ADA7130、ADA8212、ADA2984、ADA2999、ADA3220、ADA3228、ADA3235、ADA3240、ADA3211、ADA3221、ADA5220、ADA7158、CRYSTALYN社製のDLS381B、DLS381C、DLS382A、DLS386A、DLS404A、DLS405A、DLS405C、DLS403A等を用いてもよい。
 上に例示した吸収体(U1)として用いられる各化合物の製品名、名称、または式番号とジクロロメタンに溶解して測定されるλmax(UV)、波長λL90、波長λL50およびλL90-λL50を表3に示す。
Figure JPOXMLDOC01-appb-T000027
 本実施形態においては、吸収体(U1)として、上記吸収体(U1)としての吸光特性を有する複数の化合物から選ばれる1種を単独で用いてもよく、2種以上を併用してもよい。
 吸収体(U)は、好ましくは吸収体(U1)の1種または2種以上を含有する。なお、吸収体(U)は、吸収体(U1)以外に、吸収体(U1)による効果を損なわない範囲で必要に応じてその他の紫外線吸収体を含有してもよい。
<透明樹脂(B)>
 透明樹脂(B)としては、屈折率が、1.45以上の透明樹脂が好ましい。屈折率は1.5以上がより好ましく、1.6以上が特に好ましい。透明樹脂(B)の屈折率の上限は特にないが、入手のしやすさ等から1.72程度が好ましい。
 本明細書において屈折率とは、20℃における波長588nmでの屈折率をいい、特に断りのない限り、屈折率とは該屈折率をいう。
 透明樹脂(B)として、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂が挙げられる。透明樹脂(B)としては、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。また、屈折率について1.45以上の透明樹脂(B)を用いる場合については、全体として屈折率が1.45以上であれば、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 上記の中でも、色素(A)や吸収体(U)の透明樹脂(B)に対する溶解性の観点から、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、エン・チオール樹脂、エポキシ樹脂、および環状オレフィン樹脂から選ばれる1種以上が好ましい。さらに、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、および環状オレフィン樹脂から選ばれる1種以上がより好ましい。ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等が好ましい。
 透明樹脂(B)の屈折率は、例えば、ポリマーの主鎖や側鎖に特定の構造を有するように、原料成分の分子構造を調整することで、上記範囲に調整できる。屈折率を上記範囲に調整するためにポリマー内に有する構造としては、例えば、式(B1)で示されるフルオレン骨格が挙げられる。なお、フルオレン骨格のうちでも、より高い屈折率および耐熱性が得られる点で、式(B2)で示される9,9-ビスフェニルフルオレン骨格が好ましい。
Figure JPOXMLDOC01-appb-C000028
 上記フルオレン骨格や9,9-ビスフェニルフルオレン骨格を有する樹脂としては、アクリル樹脂、ポリカーボネート樹脂およびポリエステル樹脂が好ましい。
 フルオレン骨格を有するアクリル樹脂としては、例えば、少なくとも、9,9-ビスフェニルフルオレンの2個のフェニル基に、末端に(メタ)アクリロイル基を有する置換基を各1個導入した9,9-ビスフェニルフルオレン誘導体を含む原料成分を重合させて得られるアクリル樹脂が挙げられる。なお、本明細書における「(メタ)アクリロイル…」とは、「メタクリロイル…」と「アクリロイル…」の総称である。
 また、上記(メタ)アクリロイル基を有する9,9-ビスフェニルフルオレン誘導体に水酸基を導入した化合物と、ウレタン(メタ)アクリレート化合物を重合させて得られるアクリル樹脂を用いてもよい。ウレタン(メタ)アクリレート化合物としては、水酸基を有する(メタ)アクリレート化合物とポリイソシアネート化合物の反応生成物として得られる化合物や、水酸基を有する(メタ)アクリレート化合物とポリイソシアネート化合物とポリオール化合物の反応生成物として得られる化合物が挙げられる。
 フルオレン骨格が導入されたポリエステル樹脂としては、例えば、式(B2-1)に示される9,9-ビスフェニルフルオレン誘導体が芳香族ジオールとして導入されたポリエステル樹脂が挙げられる。この場合、上記芳香族ジオールと反応させるジカルボン酸の種類は特に制限されない。このようなポリエステル樹脂は、屈折率値や可視波長領域における透明性の点から透明樹脂(B)として好適に用いられる。
Figure JPOXMLDOC01-appb-C000029
(ただし、式(B2-1)中、R41は炭素数が2~4のアルキレン基、R42、R43、R44およびR45は、各々独立に水素原子、炭素数が1~7の飽和炭化水素基、または炭素数が6~7のアリール基を表す。)
 透明樹脂(B)としては、市販品を用いてもよい。アクリル樹脂の市販品としては、オグソール(登録商標)EA-F5003(商品名、大阪ガスケミカル社製、屈折率:1.59)を硬化させた樹脂が挙げられる。また、既にポリマーとして購入可能なアクリル樹脂として、例えば、東京化成工業社製のポリメチルメタクリレート(屈折率:1.49)、ポリイソブチルメタクリレート(屈折率:1.48)が挙げられる。
 また、ポリエステル樹脂の市販品としては、大阪ガスケミカル社製のOKPH4HT(屈折率:1.64)、OKPH4(屈折率:1.61)、B-OKP2(屈折率:1.63)、OKP-850(屈折率:1.65)やバイロン(登録商標)103(東洋紡社製、屈折率:1.58)が挙げられる。ポリカーボネート樹脂の市販品としては、SP3810(帝人化成社製、屈折率:1.64)、LeXan(登録商標)ML9103(sabic社製、屈折率1.59)が挙げられる。ポリマーアロイとしてはポリカーボネートとポリエステルのアロイであるパンライト(登録商標)AM-8シリーズ(帝人化成社製)やxylex(登録商標) 7507(sabic社製)が挙げられる。
<近赤外線吸収層>
 近赤外線吸収層12は、色素(A)と透明樹脂(B)を含有する層である。近赤外線吸収層12は、好ましくは、さらに吸収体(U)を含有する。
 近赤外線吸収層12は、色素(A)を含有することで(a1)の光学特性を有し、かつ(a2)の光学特性を有することが好ましい。
(a1)吸収スペクトルにおいて、波長650~750nmに吸収極大波長(λmax)を有する。
(a2)波長450nm~550nmの光において、透過率が80%以上である。
 近赤外線吸収層12は、近赤外線吸収層12と、ガラス基材11と、第1の誘電体多層膜13および第2の誘電体多層膜14から選ばれる少なくとも1つの誘電体多層膜とを組み合わせて積層して得られるNIRフィルタ10A、10B、10Cとして、(i-1)および(i-2)の光学特性を有するように構成されるとよい。
(i-1)波長450~550nmにおける入射角0度での光の透過率の平均値が80%以上である。
(i-2)波長650~720nmにおける入射角0度での光の透過率の平均値が15%以下である。
 ここで、近赤外線吸収層12が光学特性(a1)および(a2)を有することで、NIRフィルタ10A、10B、10Cとして、(i-1)および(i-2)の光学特性を容易に得られ、好ましい。これにより、NIRフィルタ10A~10Cを例えば、デジタルスチルカメラ等のNIRフィルタとして用いた場合に、近赤外光を遮蔽しつつ可視光の利用効率を向上でき、暗部撮像でのノイズ抑制の点で有利となる。
 近赤外線吸収層12中における色素(A)の含有量は、近赤外線吸収層12が光学特性(a1)および(a2)を満足させる量が好ましい。さらに、近赤外線吸収層12中における色素(A)の含有量は、実施形態のNIRフィルタの入射角0度の分光透過率曲線の波長600nmよりも波長が長い領域、好ましくは波長610~640nmに透過率が50%となる波長を有するように調整することが好ましい。具体的には、色素(A)は、近赤外線吸収層12中において、透明樹脂(B)100質量部に対して、0.1~30質量部が好ましく、0.5~25質量部がより好ましく、1~20質量部が特に好ましい。
 近赤外線吸収層12が吸収体(U)を含有する場合、近赤外線吸収層12と、ガラス基材11と、第1の誘電体多層膜13および第2の誘電体多層膜14から選ばれる少なくとも1つの誘電体多層膜とを組み合わせて積層して得られるNIRフィルタ10A~10Cとして、(ii-1)および(ii-2)の光学特性を有するように構成されるとよい。
(ii-1)波長430~450nmにおいて、入射角0度での光の透過率の平均値が70%以上である。
(ii-2)波長350~390nmにおいて、入射角0度での光の透過率の平均値が5%以下である。
 近赤外線吸収層12中における吸収体(U)の含有量は、近赤外線吸収層12を有する実施形態のNIRフィルタにおいて、(ii-1)および(ii-2)を満足する量が好ましい。さらに、近赤外線吸収層12中における吸収体(U)の含有量は、実施形態のNIRフィルタの入射角0度の分光透過率曲線の波長450nmよりも波長が短い領域、好ましくは波長400~425nmの光において透過率が50%となる波長を有するように定める。吸収体(U)は、近赤外線吸収層12中において、透明樹脂(B)100質量部に対して、0.01~30質量部含有されるのが好ましく、0.05~25質量部がより好ましく、0.1~20質量部がより一層好ましい。
 近赤外線吸収層12は、色素(A)および透明樹脂(B)、任意成分の吸収体(U)以外に、本発明の効果を阻害しない範囲で、必要に応じてその他の任意成分を含有してもよい。その他の任意成分として、具体的には、近赤外線ないし赤外線吸収剤、色調補正色素、紫外線吸収剤、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等が挙げられる。また、後述する近赤外線吸収層を形成する際に用いる塗工液に添加する成分、例えば、シランカップリング剤、熱もしくは光重合開始剤、重合触媒に由来する成分等が挙げられる。近赤外線吸収層における、これらその他の任意成分の含有量は、透明樹脂(B)100質量部に対して、それぞれ15質量部以下が好ましい。
 近赤外線吸収層12の膜厚は、使用する装置内の配置スペースや要求される吸収特性等に応じて適宜定められる。上記膜厚は、0.1~100μmが好ましい。膜厚が0.1μm未満では、近赤外線吸収能を十分に発現できないおそれがある。また、膜厚が100μm超では膜の平坦性が低下し、吸収率のバラツキが生じるおそれがある。膜厚は、0.5~50μmがより好ましい。この範囲にあれば、十分な近赤外線吸収能と膜厚の平坦性を両立できる。なお、紫外線吸収層を別途設ける場合でも、紫外線吸収層の膜厚は、上記の範囲を満たせばよい。
 上記近赤外線ないし赤外線吸収剤としては、上記色素(A)、好ましくは色素(A1)の光学特性による効果を損なわないものが使用される。このような近赤外線吸収剤ないし赤外線吸収剤として、無機微粒子が好ましく使用でき、具体的には、ITO(Indium Tin Oxide)、ATO(Antimony-doped Tin Oxide)、タングステン酸セシウム、ホウ化ランタンなどの微粒子が挙げられる。中でも、ITO微粒子、タングステン酸セシウム微粒子は、可視光の透過率が高く、かつ1200nmを超える赤外域の光も含めた広範囲の光吸収性を有するため、赤外光の遮蔽性を必要とする場合に特に好ましい。
 ITO微粒子、タングステン酸セシウム微粒子の数平均凝集粒子径は、散乱を抑制し、透明性を維持する点から、5~200nmが好ましく、5~100nmがより好ましく、5~70nmがさらに好ましい。ここで、本明細書において、数平均凝集粒子径とは、検体微粒子を水、アルコール等の分散媒に分散させた粒子径測定用分散液について、動的光散乱式粒度分布測定装置を用いて測定した値をいう。
 近赤外線吸収剤ないし赤外線吸収剤の含有量は、透明樹脂(B)100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.3~10質量部である。これにより、近赤外線吸収層に求められる他の物性を確保しながら、近赤外線吸収剤ないし赤外線吸収剤がその機能を発揮できる。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、トリアジン系紫外線吸収剤、オキザニリド系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、無機系紫外線吸収剤等が好ましく挙げられる。市販品として、Ciba社製、商品名「TINUVIN 479」等が挙げられる。
 無機系紫外線吸収剤としては、例えば、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、マイカ、カオリン、セリサイト等の粒子が挙げられる。無機系紫外線吸収剤の数平均凝集粒子径は、透明性の点から、5~200nmが好ましく、5~100nmがより好ましく、5~70nmがさらに好ましい。
 紫外線吸収剤の含有量は、透明樹脂(B)100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~5質量部である。これにより、近赤外線吸収層に求められる他の物性を確保しつつ、紫外線吸収剤がその機能を発揮できる。
 光安定剤としては、ヒンダードアミン類およびニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体が挙げられる。これらは2種以上を併用してもよい。光安定剤の含有量は、透明樹脂(B)100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.5~5質量部である。
 シランカップリング剤としては、例えば、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-N’-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシランのようなアミノシラン類や、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシシラン類、ビニルトリメトキシシラン、N-2-(N-ビニルベンジルアミノエチル)-3-アミノプロピルトリメトキシシランのようなビニルシラン類、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、(3-ウレイドプロピル)トリメトキシシラン等が挙げられる。
 用いるシランカップリング剤の種類は、組合せて使用する透明樹脂(B)に応じて適宜選択できる。シランカップリング剤の含有量は、以下に説明する塗工液において、透明樹脂(B)100質量部に対して、好ましくは1~20質量部、より好ましくは5~15質量部である。
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ベンゾイン類、ベンジル類、ミヒラーケトン類、ベンゾインアルキルエーテル類、ベンジルジメチルケタール類、およびチオキサントン類等が挙げられる。また熱重合開始剤としてアゾビス系、および過酸化物系の重合開始剤が挙げられる。これらは2種以上を併用してもよい。光または熱重合開始剤の含有量は、以下に説明する塗工液において、透明樹脂(B)100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.5~5質量部である。
 近赤外線吸収層12は、例えば、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に吸収体(U)を溶媒に分散し、溶解させて調製した塗工液を、ガラス基材11上に塗工し、乾燥させ、さらに必要に応じて硬化させて製造できる。近赤外線吸収層12をこのような方法で成膜することで、所望の膜厚で均一に製造できる。近赤外線吸収層12が上記任意成分を含む場合、塗工液が該任意成分を含有する。
 上記溶媒としては、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に含有する吸収体(U)を安定に分散できる分散媒または溶解できる溶媒であれば、特に限定されない。なお、本明細書において「溶媒」の用語は、分散媒および溶媒の両方を含む概念で用いられる。溶媒として、具体的には、アセトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン等のエーテル類;酢酸エチル、酢酸ブチル、酢酸メトキシエチル等のエステル類;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メトキシエタノール、4-メチル-2-ペンタノール、2-ブトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール等のアルコール類;n-ヘキサン、n-ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン、ガソリン、軽油、灯油等の炭化水素類;アセトニトリル、ニトロメタン、水等が挙げられる。これらは2種以上を併用してもよい。
 溶媒の量は、透明樹脂(B)100質量部に対して、10~5000質量部が好ましく、30~2000質量部が特に好ましい。なお、塗工液中の不揮発成分(固形分)の含有量は、塗工液全量に対して2~50質量%が好ましく、5~40質量%が特に好ましい。
 塗工液の調製には、マグネチックスターラー、自転・公転式ミキサー、ビーズミル、遊星ミル、超音波ホモジナイザ等の撹拌装置を使用できる。高い透明性を確保するためには、撹拌を十分に行うことが好ましい。撹拌は、連続的に行ってもよく、断続的に行ってもよい。
 塗工液の塗工には、浸漬コーティング法、キャストコーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、インクジェット法、またはコンマコーター法等のコーティング法を使用できる。その他、バーコーター法、スクリーン印刷法、フレキソ印刷法等も使用できる。
 ガラス基材11上に上記塗工液を塗工した後、乾燥させることで該ガラス基材11上に近赤外線吸収層12が形成される。塗工液が透明樹脂(B)の原料成分を含有する場合には、さらに硬化処理を行う。反応が熱硬化の場合は乾燥と硬化を同時に行うことができるが、光硬化の場合は、乾燥と別に硬化処理を設ける。
 このように、ガラス基材11上に直接、近赤外線吸収層12を形成することで、ガラス基材11の一方の主面上に近赤外線吸収層12を有する積層体Lが得られる。このような積層体Lを製造する方法としては、ガラス基材11上に直接、近赤外線吸収層12を形成する上記の方法が、作業性の点、これを用いて得られるNIRフィルタ10A、10Bの性能の点から好ましい。
 なお、NIRフィルタ10Cのようにガラス基材11と近赤外線吸収層12の間に誘電体層15を有するNIRフィルタにおいては、ガラス基材11の近赤外線吸収層12が形成される側の主面上に予め後述する方法により誘電体層を形成し、該誘電体層上に上記と同様の方法で近赤外線吸収層12を形成すればよい。
 また、ガラス基材11の近赤外線吸収層12が形成されるのと反対側の主面に第1の誘電体多層膜13を有する構成のNIRフィルタにおいては、予め後述する方法により第1の誘電体多層膜13が形成されたガラス基材11を準備し、該ガラス基材11の第1の誘電体多層膜13が形成されていない主面上に上記と同様の方法で近赤外線吸収層12を形成してもよい。
 ここで、近赤外線吸収層12は、透明樹脂(B)の種類によっては、押出成形によりフィルム状に製造することも可能であり、さらに、このように製造した複数のフィルムを積層し熱圧着等により一体化させることもできる。また、剥離性の基材上に形成された近赤外線吸収層12を剥離することによっても製造できる。このようにして単体で得られる近赤外線吸収層12を用いて積層体Lを製造してもよく、この場合には、常法により、例えば接着剤等を用いて、近赤外線吸収層12をガラス基材11上に貼着させることで、積層体Lが製造できる。
(誘電体多層膜)
 本発明のNIRフィルタは、近赤外線吸収ガラス基材とその少なくとも一方の主面上に近赤外線吸収層とを有する積層体の、少なくとも一方の主面上に誘電体多層膜を有する。誘電体多層膜は、例えば、図1に示すNIRフィルタ10Aにおいては、ガラス基材11と近赤外線吸収層12とからなる積層体Lのガラス基材11側の主面のみに第1の誘電体多層膜13として積層されている。
 また、本発明のNIRフィルタにおいて誘電体多層膜は、例えば、図2に示すNIRフィルタ10Bのように、ガラス基材11と近赤外線吸収層12とからなる積層体Lのガラス基材11側の主面に第1の誘電体多層膜13として、近赤外線吸収層12側の主面に第2の誘電体多層膜14としてそれぞれ積層される構成でもよい。
 さらには、図示していないが、ガラス基材11と近赤外線吸収層12とからなる積層体Lの近赤外線吸収層12側の主面のみに第2の誘電体多層膜14として積層される構成でもよい。
 本明細書においては、NIRフィルタの構成要素として、ガラス基材11と近赤外線吸収層12とからなる積層体Lを用いた場合に、積層体Lのガラス基材11側の主面、すなわちガラス基材11の近赤外線吸収層12が形成された主面と反対側の主面に積層される誘電体多層膜を含み、該誘電体多層膜を第1の誘電体多層膜という。また、積層体Lの近赤外線吸収層12側の主面、すなわち近赤外線吸収層12のガラス基材11側と反対側の主面に積層される誘電体多層膜を含み、該誘電体多層膜を第2の誘電体多層膜という。なお、第1の誘電体多層膜および第2の誘電体多層膜の関係は、積層体Lにおいてガラス基材11と近赤外線吸収層12の間に誘電体層15を有する、図3に示すNIRフィルタ10Cの場合も同様である。
 第1の誘電体多層膜および第2の誘電体多層膜は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)を交互に積層することで得られる光学的機能を有する膜である。設計により、光の干渉を利用して特定の波長領域の光の透過や遮蔽を制御する機能を発現させた反射防止膜、反射膜、選択波長遮蔽膜等として使用できる。なお、低屈折率と高屈折率とは、隣接する層の屈折率に対して高い屈折率と低い屈折率を有することを意味する。
 高屈折率膜を構成する高屈折率材料および低屈折率膜を構成する低屈折率材料については、屈折率が異なる2種の材料を準備し、屈折率が高い材料を高屈折率材料、屈折率が低い材料を低屈折率材料とすればよい。
 具体的には、屈折率が1.4以上1.7以下の材料を低屈折率材料として用い、屈折率が2.0以上2.6以下の材料を高屈折率材料として用いて誘電体多層膜を形成することが、設計のしやすさや製造の容易さから好ましい。
 低屈折率材料として、より具体的には、SiO(1.45)、SiO(1.45超1.7以下)、MgF(1.38)などが挙げられる。これらのうちでも、本発明においては、上記の屈折率の範囲の低屈折率材料が好ましく、SiOが成膜性における再現性、安定性、経済性などの点で特に好ましい。なお、化合物の後の括弧内の数字は屈折率を示す。以下、高屈折率材料についても同様に化合物の後の括弧内の数字は屈折率を示す。
 また、高屈折率材料として、より具体的には、Ta(2.22)、TiO(2.41)、Nb(2.3)、ZrO(1.99)などが挙げられる。これらのうちでも、本発明においては、上記の屈折率の範囲の高屈折率材料が好ましく、成膜性と屈折率等をその再現性、安定性を含め総合的に判断して、TiO等が特に好ましく用いられる。
 第1の誘電体多層膜13および第2の誘電体多層膜14は、求められる光学特性に応じて、その具体的な層数や膜厚、および使用する高屈折率材料および低屈折率材料の屈折率を、従来の手法を用いて設計できる。さらに、誘電体多層膜は、該設計のとおりに製造できる。
 誘電体多層膜の層数は、誘電体多層膜の有する光学特性によるが、低屈折率膜と高屈折率膜との合計積層数として2~100が好ましく、2~80がより好ましい。合計積層数が増えると製作時のタクトが長くなり、誘電体多層膜の反りなどが発生するため、また、誘電体多層膜の膜厚が増加するため上記上限以下が好ましい。なお、求められる光学特性を有する限り層数は少ない方が好ましい。低屈折率膜と高屈折率膜の積層順は交互であれば、最初の層が低屈折率膜であっても高屈折率膜であってもよいが,高屈折率膜の方が好ましい。
 誘電体多層膜の膜厚としては、上記好ましい積層数を満たした上で、NIRフィルタの薄型化の観点からは、薄い方が好ましい。このような誘電体多層膜の膜厚としては、誘電体多層膜が有する光学特性によるが、2~10μmが好ましい。なお、誘電体多層膜を反射防止層として用いる場合には、その膜厚は0.1~1μmが好ましい。また、NIRフィルタ10Bのように、積層体Lのガラス基材11側の主面および近赤外線吸収層12側の主面に第1の誘電体多層膜13および第2の誘電体多層膜14をそれぞれ備える場合、誘電体多層膜の応力により反りが生じる場合がある。この反りの発生を抑制するために各々の表面に成膜される誘電体多層膜の膜厚の差は、所望の選択波長遮蔽特性を有するように成膜した上で、可能な限り少ない方が好ましい。
 誘電体多層膜は、その形成にあたっては、例えば、IAD(Ion Assisted Deposition)蒸着法、CVD法、スパッタ法、真空蒸着法等の乾式成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。
 本発明のNIRフィルタにおいて、誘電体多層膜の少なくとも一方、例えば、第1の誘電体多層膜および第2誘電体多層膜の少なくとも一方は、波長800~900nmの光に対する入射角0度での最大透過率が1%以下であり、かつ、波長775~900nmの光に対する入射角31~60度での最大透過率が3%以上である、近赤外線反射性の誘電体多層膜であることが好ましい。
 誘電体多層膜において、波長800~900nmの光に対する、入射角0度での最大透過率が1%以下であると、ガラス基材と近赤外線吸収層とを有する積層体の組成および厚さの自由度が高くなることから好ましい。また、誘電体多層膜において、波長775~900nmの光に対する、入射角31~60度での最大透過率が3%以上であると、誘電体多層膜の設計及び製造が容易になることから好ましい。
 また、誘電体多層膜は、入射角0~30度で入射する波長430~660nmの光に対する平均透過率は90%以上が好ましく、95%以上がさらに好ましい。さらに、入射角0度で入射する波長700~1200nmの光に対する透過率が20%以下となる近赤外線反射帯を有するとよい。また、入射角0度で波長750~1150nmの光に対する平均透過率は、5%以下が好ましく、3%以下がさらに好ましい。
 また、誘電体多層膜は、その分光透過率曲線に基づき、以下の各パラメータを定義する。つまり、近赤外線反射帯の短波長側で、入射角0度の光の透過率が50%となる波長をλSh(R0_T50%)、入射角30度の光のうちs偏光成分の透過率が50%となる波長をλSh(R30_Ts50%)とする。
 また、前述の近赤外線吸収層は、その分光透過率曲線に基づき、以下の各パラメータを定義する。つまり、吸収極大波長λmaxの短波長側で透過率が20%となる波長をλSh(D_T20%)、λmaxの長波長側で透過率が20%となる波長λLo(D_T20%)とする。
 このとき、下記式(1)の関係を満足するとよい。
 λSh(D_T20%)≦ λSh(R30_Ts50%)< λSh(R0_T50%)≦ λLo(D_T20%) ・・・ (1)
 近赤外線反射性を有する誘電体多層膜は、可視域から近赤外域に向けて透過から遮断(反射)へ遷移する境界波長域の分光透過率曲線が、光の入射角の増加にともない短波長側にシフトする。シフト量は入射偏光成分により異なり、p偏光に比べs偏光の方が大きい。そのため、式(1)は、光の入射角依存性にさらに偏光依存性を加えた最大のシフト量を考慮しても、近赤外線吸収層の吸収領域内に入る関係を満たす。つまり、式(1)の関係を満足することで、入射角0~30度の光に対する分光透過率曲線の変化を抑制できる。
 なお、誘電体多層膜において、近赤外線反射帯の短波長側における入射角0度の光に対する透過率をX%(0<X≦50)とするとき、透過率X%における、上記境界波長域での最大シフト量は、入射角0度の波長λSh(R0_TX%)と入射角30度のs偏光の波長λSh(R_TsX%)の差に相当する。
 また、式(1)に関連する、近赤外線吸収層については、λmaxの短波長側で透過率がY%(0<Y≦50)となる波長をλSh(D_TY%)、λmaxの長波長側で透過率がY%となる波長をλLo(D_TY%)とする。
 そして、NIRフィルタの仕様に応じて、誘電体多層膜に対する透過率X、および近赤外線吸収層に対する透過率Yをそれぞれ任意に設定し、式(3)の関係を満足させる。
 λSh(D_TY%)≦ λSh(R30_TsX%)< λSh(R0_TX%)≦ λLo(D_TY%) ・・・ (3)
 誘電体多層膜に対する所定の透過率Xおよび近赤外線吸収層に対する所定の透過率Yにおいて式(3)を満たす誘電体多層膜および近赤外線吸収層を有するNIRフィルタは、入射角0~30度の光に対する誘電体多層膜の分光透過率曲線の変化が生じても、透過率X%の波長は近赤外線吸収層の透過率Y%以下となる吸収波長帯内に収まる。そのため、該NIRフィルタは、分光透過率曲線において入射角による透過率変化を特に抑制すべき、λSh(R30_TsX%)~λSh(R0_TX%)の波長域における透過率が、(X×Y)/100%以下となる。ここで、X、Yを所定の値とすることで、該波長域において低い透過率を実現できるので、誘電体多層膜によって生じる透過率の入射角依存性を低減できる。
 なお、式(1)は、式(3)において、誘電体多層膜に対する透過率Xを50%、近赤外線吸収層に対する透過率Yを20%とした場合の、NIRフィルタにおける誘電体多層膜と近赤外線吸収層の遮光特性の関係を示した式に相当する。つまり、式(1)は、λSh(R30_Ts50%)~λSh(R0_T50%)の波長域における透過率が、(X×Y)/100=10%以下となるので、入射角にともなって変化する透過率は低い値に収まる。
 また、式(3)において、透過率Xを10%、透過率Yを10%に設定したNIRフィルタの場合、上記波長域における透過率が1%以下となり、入射角依存性がさらに低減され好ましい。このように、式(3)におけるX×Y/100の値が低くなるように誘電体多層膜および近赤外線吸収層が持つ各分光透過率曲線の特性を組合せたNIRフィルタは、波長700nmにおいて、入射角に依存した分光透過率曲線の変化を抑制できる。なお、ここで言う「入射角に依存した分光透過率曲線の変化」とは、同じ波長の光における透過率の変化および同じ透過率における波長の変化、を意味する。
 本発明のNIRフィルタは近赤外吸収ガラス基材を備えるため、上記波長域における近赤外吸収ガラス基材の吸収も考慮すると、入射角に依存した分光透過率曲線の変化はさらに抑制できる。
 また、近赤外線吸収層は、例えば、色素(A)の含有濃度が低くなると、吸収波長帯幅{λLo(D_T20%)-λSh(D_T20%)}が狭いため、式(1)を満たさない場合がある。このとき、近赤外線吸収層の透過率T(λmax)が低下するよう色素(A)の含有量を増して吸収波長帯幅を広げたり、誘電体多層膜の波長シフト量{λSh(R0_T50%)-λSh(R30_Ts50%)}を減らしたりすることにより式(1)を満足すればよい。
 近赤外反射帯の短波長域における入射角に依存した波長シフト量を減らす誘電体多層膜の構成は、例えば、国際公開第2013/015303号公報または特開2007-183525号公報に記載されている。
 前者は、各層の光学膜厚比が3以上異なる高屈折率層と低屈折率層のペアが15以上積層された誘電体多層膜により、650nm付近のカットオフ帯域における入射角度0度と30度における50%透過率となる波長の差を16nmとした例を開示している。
 後者は、高屈折率層と中屈折率層とを含み、各層の光学膜厚を参照波長λの略λ/4となるように、交互に27層積層した誘電体多層膜により、入射角度0度と25度における50%透過率となる波長の差を15nmとした例を開示している。
 なお、本明細書において誘電体多層膜の透過率は、ガラス基材と近赤外線吸収層とを有する積層体での吸収および反射を除いた値をいう。誘電体多層膜の波長775~900nmの光に対する透過率は、具体的には、波長775~900nmの光を100%透過する基板、例えば、Schott製硼ケイ酸ガラスD263Tecoガラス基板上に透過率の測定対象となる誘電体多層膜を成膜し、分光光度計、例えば、日立ハイテクサイエンス製分光光度計U4100を用いて測定できる。
 NIRフィルタ10A、10B、10C等の第1の誘電体多層膜13を有するNIRフィルタにおいては、少なくとも第1の誘電体多層膜13が、上記光学特性を有する近赤外線反射性の誘電体多層膜が好ましい。NIRフィルタがNIRフィルタ10B、10Cのように第1の誘電体多層膜13と第2の誘電体多層膜14を有する場合、これらの両方が上記近赤外線反射性の誘電体多層膜でもよいが、第1の誘電体多層膜13のみが上記近赤外線反射性の誘電体多層膜が好ましい。
 NIRフィルタ10B、10Cの場合、第2の誘電体多層膜14は反射防止機能を有する膜(反射防止膜)として、可視光に対して低反射性の誘電体多層膜として設計されるとよい。第2の誘電体多層膜14が反射防止膜である場合、該誘電体多層膜(反射防止膜)は、NIRフィルタ10B、10Cに入射した可視光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、上記の材料を用いて常法により設計し、それに従い上記の方法により形成できる。
 本発明のNIRフィルタにおいては、第2の誘電体多層膜14を有しないNIRフィルタ10Aにおいても、第2の誘電体多層膜14を有するNIRフィルタ10B、10Cにおいても、ガラス基材11の近赤外線吸収層12を有する側の表面において、ガラス基材11の近赤外線吸収層12を有するのと反対側の界面および表面の反射を除いて測定される、波長430~600nmの光に対する入射角5度での反射率は、2%以下が好ましい。
 NIRフィルタにおけるガラス基材の近赤外線吸収層を有する側の表面とは、NIRフィルタ10Aにおいては、近赤外線吸収層12のガラス基材11側とは反対側の大気に晒されている面であり、NIRフィルタ10B、10Cにおいては、第2の誘電体多層膜14の近赤外線吸収層12側とは反対側の大気に晒されている面である。ここで、ガラス基材11の近赤外線吸収層12を有するのと反対側の界面および表面の反射を除いて上記表面において反射率を測定するには、例えば、ガラス基材11の近赤外線吸収層12を有するのと反対側の主面上に第1の誘電体多層膜13の代わりに黒色樹脂層を形成した測定サンプルを作製し、上記表面において反射率を測定すればよい。該反射率は2%以下が好ましく、1.2%以下がより好ましい。
 なお、近赤外線吸収層12上に形成される第2の誘電体多層膜14においては、第2の誘電体多層膜14のうち近赤外線吸収層12に接する誘電体膜は、屈折率が1.4以上1.7以下である誘電体材料が好ましい。屈折率が1.4以上1.7以下である誘電体材料の具体例は上記のとおりである。第2の誘電体多層膜14のうち近赤外線吸収層12に接する誘電体膜の屈折率がこのような範囲にあると、固体撮像装置で撮像される画像の色再現性に影響を与えるリップルの発生を抑えやすい。
(誘電体層)
 図3に示すNIRフィルタ10Cが有する誘電体層15は、ガラス基材11と近赤外線吸収層12の間に、主として耐久性を向上させる目的で形成される、本発明のNIRフィルタにおける任意の層である。なお、誘電体層は本発明のNIRフィルタにおいて構成を問わず適用可能である。例えば、NIRフィルタ10Aのような構成のNIRフィルタにおいて、ガラス基材11と近赤外線吸収層12の間に誘電体層を形成してもよい。
 誘電体層15は、誘電体材料で構成される層であり、その厚さは5nm以上が好ましい。誘電体層15を上記構成とすることで、NIRフィルタにおける近赤外線吸収層12の耐久性を向上できる。誘電体層15の厚さは、30nm以上がより好ましく、100nm以上がさらに好ましく、150nm以上が特に好ましい。誘電体層15の厚さの上限は特にないが、設計のしやすさや製造の容易さの観点から誘電体層15の厚さは1000nm以下が好ましく、500nm以下がより好ましい。
 上記のとおり、NIRフィルタ10Bのように、積層体Lを挟んで両側に誘電体多層膜を有するNIRフィルタにおいては、両誘電体多層膜の特に厚さの違いにより反りが生じる場合がある。両誘電体多層膜の機能を維持しながら膜厚を調整できるが、NIRフィルタ10Cのように誘電体層15を有する場合は、第1の誘電体多層膜13、第2の誘電体多層膜14に加えて誘電体層15の厚さを調整することで、容易に応力バランスが取れ、反りの発生の抑制がしやすい利点を有する。
 なお、誘電体層15において、誘電体材料の種類および厚さ以外の層構成は特に制限されない。
 誘電体層15は、例えば、ガラス基材11にNa原子やK原子などのアルカリ原子が含まれ、そのアルカリ原子が近赤外線吸収層12に拡散することで近赤外線吸収層12の光学特性や耐候性に悪影響を及ぼすような場合に、アルカリバリア膜として機能し、NIRフィルタの耐久性を高められる。また、該NIRフィルタを備える固体撮像装置等の信頼性を高められる。
 上記の場合、誘電体層15はアルカリバリア膜として機能する誘電体材料を含んで単層または複数層から構成される。このような誘電体材料として、SiOやSiO(ただし、0.8≦x<2)、Alなどが好適に挙げられる。
 誘電体層15は、単層から構成される場合、光学特性の点から、屈折率が1.4以上1.7以下の誘電体材料が好ましい。誘電体層15がこの範囲の屈折率の誘電体材料からなる単層で構成されると、ガラス基材11と近赤外線吸収層12の間に存在する界面での光の反射が大きくなることがなく好適である。
 屈折率が1.4以上1.7以下の誘電体層の材料としては、SiOやSiO(ただし、0.5≦x<2、0<y≦1)、MgF、Alなどが好適に挙げられる。あるいは、誘電体層15がガラス基材11と近赤外線吸収層12の間の界面の反射を低くするような光学的構成の誘電体多層膜を形成するのも同様に好適である。なお、誘電体層15は、例えば、SiO、SiO(ただし、0.8≦x<2)およびAlから選ばれる少なくとも1つの材料を含んで構成されるアルカリバリア膜(単膜)から構成されてもよく、該アルカリバリア膜とは異なる材料からなる層を含む、複数層構成でもよい。
 誘電体層15が、SiOとAlを含むアルカリバリア膜単膜で構成される場合、SiOとAlの質量比は80:20~99:1の範囲であればよく、85:15~97.5:2.5の範囲が好ましく、90:10~97.5:2.5の範囲がより好ましい。80:20~99:1の範囲であれば、近赤外線吸収層12との密着性が高くなるので好ましい。詳細には、Alの単体では、SiOやSiO(ただし、0.8≦x<2)に比べて近赤外線吸収層12との密着性は低いものの、上記の割合でSiOにAlを添加して得られるアルカリバリア膜は、AlによりSiOの表面が改質されることで、近赤外線吸収層12との密着性が高められる。
 本フィルタは、ガラス基材11と近赤外線吸収層12との間に、両者の密着性を向上させる目的で、さらに密着膜を有してもよい。すなわち、誘電体層15には密着膜が含まれていてもよい。誘電体層15が密着膜を有する場合、密着膜は最もガラス基材11側に設けられることが好ましい。密着膜の配置は、特に、ガラス基材11を構成するガラスがフッ素を含む場合にその密着性向上の効果が大きい。密着膜を構成する材料は、主としてガラス基材11の構成材料に応じて、該ガラス基材11と密着性を有する誘電体材料から適宜選択される。例えば、ガラス基材11がフッ素を含むガラス基材である場合、密着膜は、MgF、CaF、LaF、NdF、CeF、NaAl14、NaAlF、AlF、BaF、YFおよびAlから選ばれる少なくとも1つの材料から選択される誘電体材料で構成されることが好ましい。このように、ガラス基材11と近赤外線吸収層12との間に備えられる誘電体層15は、上記のアルカリバリア膜の単膜または密着膜の単膜であってもよく、もしくは、該アルカリバリア膜と該密着膜との両方を有してもよい。
 密着膜の膜厚は、5~100nmであればよく、10~50nmが好ましく、15~30nmがより好ましい。さらに、例えば、ガラス基材11がフッ素を含むガラス基材であって、誘電体層15が、密着膜とアルカリバリア膜との両方を備える場合、フッ素を含むガラス基材11側から、フッ素を含む密着膜、アルカリバリア膜、近赤外線吸収層12の順に備えることで密着効果およびアルカリバリア効果が高くなるので好ましい。このように、ガラス基材11がフッ素を含むガラス基材であって誘電体層15が、ガラス基材11側から、密着膜、アルカリバリア膜をその順に備える構成である場合、密着膜は、MgF、CeFおよびAl、から選ばれる少なくとも1つの材料を含んで構成されるとともに、アルカリバリア膜は、SiOやSiO(ただし、0.8≦x<2)およびAlから選ばれる少なくとも1つの材料を含んで構成されることが好ましい。この中でも、密着膜がMgFから構成されるとともにアルカリバリア膜がSiOから構成される組み合わせや、密着膜がAlから構成されるとともにアルカリバリア膜がSiOまたはSiOから構成される組み合わせが、ガラス基材11と近赤外線吸収層12の間の界面での反射率が低くできる点でより好ましい。
 この中でも、密着膜がAlから構成されるとともにアルカリバリア膜がSiOまたはSiOから構成される組み合わせが、ガラス基材11と近赤外線吸収層12の間の反射率を低くできる。さらに、該組み合わせは、Alはガラス基材11の典型的な例として挙げられるCuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラスの主成分であるPとリン酸アルミニウムを形成したり、SiOまたはSiOとアルミノシリケートを形成したりして、ガラス基材11とSiOまたはSiOの両方の材料に対して化学的親和性が高く、さらにSiOまたはSiOは、シランカップリング剤を樹脂に混合することで容易に樹脂との化学的親和性を高められるという理由で、とくに両者の密着性が高められるためより好ましい。なお、密着膜がAlから構成されるとともにアルカリバリア膜がSiOまたはSiOから構成される場合、Al膜の膜厚は、20~150nmであればよく、20~100nmが好ましく、30~50nmがより好ましく、SiO膜またはSiO膜の膜厚は、100~350nmであればよく、100~250nmが好ましく、150~200nmがより好ましい。
 ガラス基材11上に誘電体層15を形成する方法としては、上記誘電体多層膜の成膜方法と同様な方法が適用できる。具体的には、IAD蒸着法、CVD法、スパッタリング法、真空蒸着法等の乾式成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用して誘電体層15が形成可能である。なお、IAD蒸着法やスパッタリング法は、これにより形成される誘電体層15のアルカリバリア特性を良好にできるため、誘電体層15の形成において好ましい方法である。
 NIRフィルタ10A~10Cは、それぞれ上に説明した各構成要素を適宜組み合わせて、波長775~900nmの光に対する入射角31~60度での最大透過率が50%以下という本発明の光学特性を達成できる。なお、波長775~900nmの光に対する、入射角31~60度での最大透過率は30%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下がさらに好ましく、1%以下がさらに好ましく、0.5%以下がさらに好ましく、0.3%以下がさらにより好ましく、0.2%以下が特に好ましい。本発明の光学特性を有する本発明のNIRフィルタを固体撮像装置に用いれば、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生を低減または防止できる。
 NIRフィルタ10A~10Cにおいては、それぞれ上に説明した各構成要素について、NIRフィルタとしての光学特性として、波長600nmよりも波長が長い領域において、入射角0度での透過率が50%となる波長λ(NIR)と入射角度30度での透過率が50%となる波長λ30(NIR)とを有し、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|が5nm以下となるように、それぞれの分光透過特性等を調整することが好ましい。なお、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|は3nm以下がより好ましい。
 |λ(NIR)-λ30(NIR)|が上記範囲にあると、固体撮像装置において、レンズの中心と外側から入った光のNIRフィルタを透過することによる可視域と近赤外域の境界付近の領域における変化の差が小さく、画像の面内での発色の違いを最小限にできる。これにより、例えば、近赤外線反射性の誘電体多層膜が有する光の入射する角度により遮蔽波長がシフトする角度依存性の影響をほぼ排除できる。
 また、NIRフィルタ10A~10Cにおいては、上述した各構成要素について、NIRフィルタとしての光学特性として、波長600~750nmにおいて、入射角0度の光の透過率と入射角30度での透過率との差の絶対値の平均が3%以下となるように、それぞれの分光透過特性等を調整することが好ましく、該絶対値の平均が2%以下とすることがより好ましい。この透過率の差の絶対値の平均が上記範囲にあると、同様に画像の面内での発色の違いを最小限にできる。
 NIRフィルタ10A~10Cにおいて、近赤外線吸収層12に吸収体(U)を含有する場合、上述した各構成要素について、NIRフィルタとしての光学特性として、波長450nmよりも波長が短い領域において、入射角0度の光の透過率が50%となる波長λ(UV)と入射角30度の光の透過率が50%となる波長λ30(UV)とを有し、前記波長の差の絶対値|λ(UV)-λ30(UV)|が5nm以下となるように、それぞれの分光透過特性等を調整することが好ましい。なお、前記波長の差の絶対値|λ(UV)-λ30(UV)|は3nm以下がより好ましい。
 |λ(UV)-λ30(UV)|が上記範囲にあると、固体撮像装置において、レンズの中心と外側から入った光のNIRフィルタを透過することによる可視域と紫外域の境界付近の領域における変化の差が小さく、画像の面内での発色の違いを最小限にできる。これにより、例えば、波長500nm以下において光の入射角依存性を小さくできる。
 また、NIRフィルタ10A~10Cにおいて、近赤外線吸収層12に吸収体(U)を含有する場合、上述した各構成要素について、NIRフィルタとしての光学特性として、波長380~430nmにおいて、入射角0度の光の透過率と、入射角30度の光の透過率の差の絶対値の平均が8%以下となるように、それぞれの分光透過特性等を調整することが好ましく、該絶対値の平均を5%以下とすることがより好ましく、3%以下とすることがさらに好ましい。この透過率の差の絶対値の平均が上記範囲にあると、同様に画像の面内での発色の違いを最小限にできる。
 本発明のNIRフィルタにおいては、本発明の光学特性を有する限り、上記以外の他の構成要素を有してもよい。他の構成要素としては、反射防止膜、特定の波長領域の光を反射する反射膜、特定の波長領域の光の透過と遮蔽を制御する選択波長遮蔽膜、α線等の放射線を遮蔽する放射線遮蔽膜等が挙げられる。
 本発明のNIRフィルタは、例えば、選択波長遮蔽膜として紫外線遮蔽能を有するローパスフィルタと貼り合わせて用いてもよい。また、NIRフィルタの主面の端部に黒い枠状の遮光部材が配設されていてもよい。NIRフィルタにおいて遮光部材が配設される位置は、主面のどちらか一方もしくは両方でもよく、側面でもよい。
 NIRフィルタをローパスフィルタと貼り合わせて用いる際に、例えば、NIRフィルタ10Aにおいて近赤外吸収層12側の表面がローパスフィルタと接着剤を介して貼り合わされる場合、該近赤外吸収層12上に厚さが50~500nm程度の誘電体層を設け、その上にローパスフィルタを貼り合わせるとよい。
 これにより、近赤外線吸収層12が含有する透明樹脂(B)の上記接着剤による溶解を防止できる。該誘電体層の材料は、SiO、SiO、MgF、ZrO、Ta、TiO等、貼り合せ後に分光特性を損ねない材料から適宜選択できる。
 さらに、本発明のNIRフィルタには、光の利用効率を高めるために、モスアイ構造のように表面反射を低減する構成を設けてもよい。モスアイ構造は、例えば400nmよりも小さい周期で規則的な突起配列を形成した構造で、厚さ方向に実効的な屈折率が連続的に変化するため、周期より長い波長の光の表面反射率を抑える構造であり、モールド成型等によりNIRフィルタの表面、例えば、図2に示すNIRフィルタ10Bであれば第2の誘電体多層膜14上に形成できる。
 また、本発明のNIRフィルタは、必要に応じて、選択波長遮蔽膜として、例えば、近赤外線ないし赤外線吸収剤、色調補正色素および紫外線吸収剤から選ばれる少なくとも1種を、従来公知の方法で透明樹脂に分散させた特定の波長の光を吸収する光吸収層を有してもよい。透明樹脂としては、ポリエステル樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、アルキド樹脂等の熱可塑性樹脂、エン・チオール樹脂、エポキシ樹脂、熱硬化型アクリル樹脂、光硬化型アクリル樹脂、シルセスキオキサン樹脂等の熱や光により硬化される樹脂等が挙げられる。これら光吸収層における各吸収剤の含有量は各吸収剤の光吸収能に応じて、本発明の効果を損ねない範囲で適宜調整される。
 このような光吸収層として、例えば、ITO微粒子を透明樹脂に分散した赤外線吸収層を使用できる。ITO微粒子の含有量は、近赤外線吸収層の場合と同様にできる。これにより、可視光に吸収を示さず、透明性を保持できる。
 光吸収層として、近赤外線ないし赤外線を広い波長領域で吸収させる目的で色素を添加する場合には、一般に、可視光の吸収を伴うことも多いので、例えば、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラスからなる近赤外線吸収ガラス基材を用いた場合、可視光の吸収を低く抑えたまま近赤外光を吸収できて好ましい。また、同一の吸収層に複数種の色素を混在させた場合において、熱等による劣化がより顕著に起こることがあり、その点でも、例えば、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラスからなる近赤外線吸収ガラス基材を用いるとよい。
 本発明のNIRフィルタは、デジタルスチルカメラやデジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ等の撮像装置や自動露出計等のNIRフィルタ、PDP用のNIRフィルタ等として使用できる。本発明のNIRフィルタは、上記撮像装置における固体撮像装置に好適に用いられ、NIRフィルタは、例えば、撮像レンズと固体撮像素子との間に配置される。
[固体撮像装置]
 以下に図4を参照しながら、本発明のNIRフィルタを撮像レンズと固体撮像素子との間に配置して用いた本発明の固体撮像装置の一例を説明する。
 図4は、上記近NIRフィルタ10Bを用いた固体撮像装置の一例の要部を概略的に示す断面図である。この固体撮像装置20は、図4に示すように、固体撮像素子21と、その前面に以下の順に、NIRフィルタ10Bと、撮像レンズ23を有し、さらにこれらを固定する筐体24とを有する。撮像レンズ23は、筐体24の内側にさらに設けられたレンズユニット22により固定されている。NIRフィルタ10Bは固体撮像素子21側に第2の誘電体多層膜14が、撮像レンズ23側に第1の誘電体多層膜13が位置するように配置されている。固体撮像素子21と、撮像レンズ23とは、光軸Xに沿って配置されている。このようにNIRフィルタを装置に設置する際の方向については、設計に応じて適宜選択される。
 なお、本発明のNIRフィルタは、一体化された構成に限らない。例えば、NIRフィルタと、固体撮像素子を含む光学部材を有し、被写体側または光源の光が入射する側から順に、NIRフィルタおよび固体撮像素子が配置された固体撮像装置において、NIRフィルタを以下のような構成にもできる。すなわち、該固体撮像装置において、NIRフィルタは、近赤外線吸収ガラス基材と誘電体多層膜が互いに接するように設けられるとともに、近赤外線吸収層は単独で近赤外線吸収ガラス基材と同じ光路中に設けられる、または近赤外線吸収ガラス基材と同じ光路中に配置された光学部材に含有されるように設けられる構成でもよい。
 図8は、NIRフィルタ10Dと、それを用いた固体撮像装置の断面図の他の一例である。
 このNIRフィルタ10Dは、近赤外線吸収層12が、近赤外線吸収ガラス基材11とは別体となる、固体撮像素子の受光面側の光学部材中に配置される。該光学部材は、例えば、画素毎に形成されたRGBカラーフィルタや集光用のマイクロレンズなどが挙げられる。近赤外線吸収層12は、固体撮像素子の受光面とRGBカラーフィルタとの界面、RGBカラーフィルタとマイクロレンズとの界面、または、マイクロレンズと空気との界面に配置してもよい。また、近赤外線吸収層は、色素(A)を樹脂中に含有したRGBカラーフィルタやマイクロレンズとして取り扱ってもよい。
 図9は、NIRフィルタ10Eと、それを用いた固体撮像装置の断面図の他の一例である。
 このNIRフィルタ10Eは、近赤外線吸収層12が撮像レンズ23の空気界面に配置される。撮像レンズ23は複数のレンズから構成され、複数の空気界面が有るため、近赤外線吸収層12は、撮像レンズ23の解像度などの影響が少ない面に配置するとよい。また、近赤外線吸収層は、撮像レンズ23が樹脂を含むとともに色素(A)を樹脂中に含有した撮像レンズとして取り扱ってもよい。このように、NIRフィルタにおいて近赤外線吸収層は、光学部材として機能するように構成されてもよい。
 図10は、NIRフィルタ10Fと、それを用いた固体撮像装置の断面図の他の一例である。
 このNIRフィルタ10Fは、近赤外線吸収層12が、レンズユニット22の被写体側の入射面に配置される。なお、撮像装置のレンズユニットは、被写体側の入射面が開口絞り位置となる設計例が多い。そのため、近赤外線吸収層12上における、開口部の周辺領域に、可視光および近赤外光を吸収する黒色吸収剤を含む遮光膜を有するとよい。これにより、撮像レンズの解像度低下につながる不要な高角入射光を遮断できる。
 本発明の固体撮像装置は、近赤外線吸収ガラスと近赤外線吸収色素を含む近赤外線吸収層と誘電体多層膜とを効果的に用いた近赤外線遮蔽特性に優れる近赤外線カットフィルタであって、該近赤外線カットフィルタにおいて、近赤外域の特定波長領域(775~900nm)の光に対する、比較的入射角の大きい入射角31~60度での最大透過率を50%以下とする構成の本発明のNIRフィルタを用いることで、撮像された画像に本来の被写体には存在しなかった像が出現する現象の発生が低減または防止された感度の高い固体撮像装置である。
 以下に、本発明を実施例によりさらに詳細に説明する。
[例1]
 図3と同様の断面図を有するNIRフィルタAを作製した。なお、以下に示す各構成部材およびNIRフィルタAの光学特性の測定は、全て日立ハイテクサイエンス製分光光度計U4100を用いて行った。
(第1の誘電体多層膜としての近赤外線反射性の誘電体多層膜の成膜)
 76mm×76mm×0.214mmtの旭硝子製フツリン酸ガラス基板NF-50TX(以下、「ガラス基板A」という。)を旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000(商品名)を用いて、超音波洗浄機で10分間洗浄した。洗浄したガラス基板Aについて、波長775~900nmの光の入射角0度の吸収率を測定したところ、87.3%~89.5%であった。
 また、吸収極大波長λGmaxは略840nmで、透過率T(λGmax)は略9%であった。
 上記で得られた洗浄したガラス基板Aの一方の主面上に、IAD真空蒸着装置を用いて、高屈折率膜からはじめて、高屈折率膜と低屈折率膜を交互に成膜して合計40層(合計層厚さ:5950nm)の、第1の誘電体多層膜としての近赤外線反射性の誘電体多層膜(以下、「誘電体多層膜R」という。)を成膜した。なお、高屈折率材料としてTiOを、低屈折率材料としてSiOを用いた。
 また同時に、上記誘電体多層膜Rの透過率測定用の検体として、波長775~900nmの光に対するNF-50TXと屈折率の差が0.01以下のSchott製硼ケイ酸ガラスD263Tecoガラス基板上にも、上記と同様の誘電体多層膜Rを成膜した。
 上記で得られた透過率測定用の検体について、波長350~1000nmにおける入射角0度の光の透過率を測定した。図5に得られた透過スペクトル(350~1000nm)を示す。得られた測定結果において、波長800~900nmの光に対する最大透過率は0.10%であった。また、上記で得られた透過率測定用の検体について、波長775~900nmにおける、入射角31~60度の光の透過率を測定したところ、最大透過率が6.2%であった。
 また、該検体は、入射角0度の光に対する、波長430~660nmの平均透過率が95%、波長略709~1000nm以上の透過率が50%以下、波長714~1000nm以上の透過率が20%以下、波長718~1000nm以上の透過率が10%以下を示した。
 さらに、該検体は、近赤外線反射帯の短波長側で、入射角0度の光に対する、透過率が50%、20%および10%となる波長は、それぞれ、λSh(R0_T50%)=709nm、λSh(R0_T20%)=714nmおよびλSh(R0_T10%)=718nmだった。また、該検体は、入射角30度のs偏光に対する、透過率が50%、20%および10%となる波長は、それぞれ、λSh(R30_Ts50%)=674nm、λSh(R30_Ts20%)=679nmおよびλSh(R30_Ts10%)=682nmであった。
(誘電体層の成膜)
 上記で得られた誘電体多層膜Rを有するガラス基板Aを、再び旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000を用いて、超音波洗浄機で20分間洗浄した。上記で得られた洗浄したガラス基板Aの誘電体多層膜Rを有する側とは反対側の面に、真空蒸着装置を用いて、Alからなる30nmの層とSiOからなる170nmの層の2層からなる誘電体層を、この順に成膜した。成膜したAlからなる層の屈折率は1.60、成膜したSiOからなる層の屈折率は1.45であった。
(近赤外線吸収層の成膜)
 ポリエステル樹脂としてフルオレン環含有ポリエステル(大阪ガスケミカル社製、商品名:OKP-850、屈折率:1.65)の41.25質量%シクロヘキサノン溶液に、NIR吸収色素としてスクアリリウム系色素(化合物(F11-2)、λmax:717nm(ただし、測定時に透明樹脂としてOKP-850を使用した。))をポリエステル樹脂100質量部に対して9質量部、および紫外線吸収体としてメロシアニン系色素(化合物(M-2)、ジクロロメタンに溶解して測定されるλmax(UV):396nm、λL90-λL50:9nm)をポリエステル樹脂100質量部に対して4.5質量部となる割合で混合した後、室温にて撹拌・溶解することで塗工液を得た。
 得られた塗工液を、上記で得られた両主面に誘電体多層膜Rおよび誘電体層を有するガラス基板Aの誘電体層上にギャップ30μmのアプリケーターを用いてダイコート法により塗布し、100℃で5分間加熱乾燥させ、膜厚800nmの近赤外線吸収層を形成して、誘電体多層膜R、ガラス基板A、誘電体層、近赤外線吸収層の順に積層された積層体を得た。
 また、上記NIR吸収色素の透過率測定用の検体として、D263Teco基板の片面に、上記と同様に近赤外線吸収層を形成した。得られた検体について、空気界面の反射損失を補正した近赤外線吸収層の透過率T(λmax)は、0.2%であった。すなわち、T(λGmax)=9%、T(λmax)=0.2%より、T(λGmax)>T(λmax)の関係である。
 なお、波長λmaxの短波長側で透過率が50%、20%および10%となる波長は、それぞれ、λSh(D_T50%)=647nm、λSh(D_T20%)=674nmおよびλSh(D_T10%)=682nmであった。また、波長λmaxの長波長側で透過率が50%、20%および10%となる波長は、それぞれ、λLo(D_T50%)=754nm、λLo(D_T20%)=746nmおよびλLo(D_T10%)=743nmであった。
 このように、この設計で得られた誘電体多層膜は、波長λSh(R0_T50%)=709nmと波長λSh(R30_Ts50%)=674nmであり、近赤外線吸収層は、波長λSh(D_T20%)=674nmと波長λLo(D_T20%)=746nmである。したがって、該設計は、λSh(D_T20%)≦ λSh(R30_Ts50%)< λSh(R0_T50%)≦ λLo(D_T20%)の式(1)の関係を満たす。つまり、該設計は、波長674~709nmで入射角0~30度の光に対し、透過率10%以下が得られた。
 また、該設計は、λSh(R30_Ts10%)=682nm、λSh(R0_T10%)=718nmから、式(3)のX=10、Y=20に対応する条件も満たす。つまり、該設計は、波長682~718nmで入射角0~30度の光に対し、透過率2%以下が得られた。
(第2の誘電体多層膜としての反射防止膜(低反射性の誘電体多層膜)の成膜)
 上記で得られた積層体の近赤外線吸収層の上に、IAD真空蒸着装置を用いて、低屈折率膜からはじめて、低屈折率膜と高屈折率膜とを交互に成膜して合計7層(合計層厚さ:340nm)の、第2の誘電体多層膜として可視光に対する反射防止膜(低反射性の誘電体多層膜)(以下、「誘電体多層膜AR」という。)を成膜した。なお、高屈折率材料としてTiOを、低屈折率材料としてSiOを用いた。このようにして、例1のNIRフィルタAを得た。
 NIRフィルタAについて、ガラス基板Aの誘電体層、近赤外線吸収層、誘電体多層膜ARを成膜した面とは反対側の面について、該面上に形成された誘電体多層膜Rを、サンドブラストを用いて除去し、黒色樹脂を塗工することにより、この面の正反射を無視できる程度まで低くした反射率測定用の検体を作製した。この検体について、誘電体多層膜ARの表面に波長430~600nmの光を入射角5度で照射した際の誘電体多層膜ARの表面における反射率を測定したところ、最大反射率は1.15%であった。
(NIRフィルタの評価)
 上記で作製したNIRフィルタAについて、入射角0度、30度、31度、40度、50度、60度の透過率を測定した。測定結果より、以下の光学特性を得た。
 上記で作製したNIRフィルタAの波長775~900nmの入射角31~60度の光に対する透過率の最大値は0.37%であった。なお、図6にNIRフィルタAの波長750~900nmの入射角31度、40度、50度、60度の光に対する透過率を示す。
 図7A~図7Cに、NIRフィルタAの入射角度0度、30度の透過率を測定した結果を示す。図7Aは、波長350~900nmの、図7Bは、波長380~430nmの、図7Cは、波長600~750nmの、各々の測定結果を示す。
 作製したNIRフィルタAの、波長450~550nmにおける入射角0度の光に対する透過率の平均値は92.0%であった。
 作製したNIRフィルタAの、波長650~720nmにおける入射角0度の光に対する透過率の平均値は7.9%であった。
 上記で作製したNIRフィルタAは、波長600nmよりも波長が長い領域において、入射角0度の光の透過率が50%となる波長λ(NIR)と入射角30度の光の透過率が50%となる波長λ30(NIR)とを有し、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|は、2.3nmであった。
 作製したNIRフィルタAの、波長600~750nmにおける入射角0度の光に対する透過率と入射角30度の光に対する透過率の差の絶対値の平均値は、1.8%であった。
 作製したNIRフィルタAの、波長430~450nmにおける入射角0度の光に対する透過率の平均値は、81.2%であった。
 作製したNIRフィルタAの、波長350~390nmにおける入射角0度の光に対する透過率の平均値は、0.2%であった。
 上記で作製したNIRフィルタAは、波長450nmよりも波長が短い領域において、入射角0度の光の透過率が50%となる波長λ(UV)と入射角30度の光での透過率が50%となる波長λ30(UV)とを有し、前記波長の差の絶対値|λ(UV)-λ30(UV)|は、1.5nmであった。
 作製したNIRフィルタAの、波長380~430nmにおける入射角0度の光に対する透過率と入射角30度の光に対する透過率の差の絶対値の平均値は、4.5%であった。
 また、NIRフィルタAは、波長550~720nmにおいて、入射角0度と30度の光に対する、透過率が85%、45%および5%となる、λ(T85%)、λ(T45%)およびλ(T5%)は、以下のとおりであった。
 入射角0度における光に対する、λ(T85%)、λ(T45%)およびλ(T5%)は、それぞれ、574nm、633nmおよび683nmであった。
 また、入射角30度における光に対する、λ(T85%)、λ(T45%)およびλ(T5%)は、それぞれ、572nm、630nmおよび680nmであった。
 上記結果より、NIRフィルタAは、{λ(T45%)-λ(T85%)}=58~59nm、{λ(T5%)-λ(T45%)}=50~51nmであり、式(2)を満たす。
 上記で作製したNIRフィルタAを用いて、固体撮像装置を作製し、視野の一部から強い光を入射させて画像を撮影したところ、取得した画像に迷光によると考えられる画像の乱れは確認されなかった。
[例2]
 例1において、近赤外線吸収ガラス基材として用いたNF-50TXを、76mm×76mm×0.30mmtの旭硝子製フツリン酸ガラス基板NF-50T(以下、「ガラス基板B」という。)に代えた以外は、例1と同様の条件でNIRフィルタB(例2)を作製した。
 なお、例1と同様に洗浄したガラス基板Bについて、日立ハイテクサイエンス製分光光度計U4100を用いて波長775~900nmの光の入射角0度の吸収率を測定したところ、89.6~91.1%であった。
 得られたNIRフィルタBの光学特性の評価を、全て日立ハイテクサイエンス製分光光度計U4100を用いて、例1と同様に行った。結果は以下のとおりである。
 NIRフィルタBについて、ガラス基板Bの誘電体層、近赤外線吸収層、誘電体多層膜ARを成膜した面とは反対側の面について、該面上に形成された誘電体多層膜Rを、サンドブラストを用いて除去し、黒色樹脂を塗工することにより、この面の正反射を無視できる程度まで低くした反射率測定用の検体を作製した。この検体について、誘電体多層膜ARの表面に波長430~600nmの光を入射角5度で照射した際の誘電体多層膜ARの表面における反射率を測定したところ、最大反射率は1.1%であった。
 上記で作製したNIRフィルタBの波長775~900nmにおける入射角31~60度の光に対する透過率の最大値は0.15%であった。
 作製したNIRフィルタBの、波長450~550nmにおける入射角0度の光に対する透過率の平均値は91.5%であった。
 作製したNIRフィルタBの、波長650~720nmにおける入射角0度の光に対する透過率の平均値は6.5%であった。
 上記で作製したNIRフィルタBは、波長600nmよりも波長が長い領域において、入射角0度の光の透過率が50%となる波長λ(NIR)と入射角30度の光の透過率が50%となる波長λ30(NIR)とを有し、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|は、2.4nmであった。
 作製したNIRフィルタBの、波長600~750nmにおける入射角0度の光に対する透過率と入射角30度の光に対する透過率の差の絶対値の平均値は、1.9%であった。
 作製したNIRフィルタBの、波長430~450nmにおける入射角0度の光に対する透過率の平均値は、82.7%であった。
 作製したNIRフィルタBの、波長350~390nmにおける入射角0度の光に対する透過率の平均値は、0.1%であった。
 上記で作製したNIRフィルタBは、波長450nmよりも波長が短い領域において、入射角0度の光の透過率が50%となる波長λ(UV)と入射角30度の光の透過率が50%となる波長λ30(UV)とを有し、前記波長の差の絶対値|λ(UV)-λ30(UV)|は、1.6nmであった。
 作製したNIRフィルタBの、波長380~430nmにおける入射角0度の光に対する透過率と入射角30度の光に対する透過率の差の絶対値の平均値は、4.6%であった。
 上記で作製したNIRフィルタBを用いて、固体撮像装置を作製し、視野の一部から強い光を入射させて画像を撮影したところ、取得した画像に迷光によると考えられる画像の乱れは確認されなかった。
 本発明のNIRフィルタは、良好な近赤外線遮蔽特性を有することから、デジタルスチルカメラ等の撮像装置、プラズマディスプレイ等の表示装置、車両(自動車等)用ガラス窓、ランプ等に有用である。
 10A,10B,10C,10D,10E,10F…NIRフィルタ、11…ガラス基材、12…近赤外線吸収層、13…第1の誘導体多層膜、14…第2の誘導体多層膜、15…誘電体層
20…固体撮像装置、21…固体撮像素子、22…レンズユニット、23…撮像レンズ、24…筐体。

Claims (21)

  1.  近赤外線吸収ガラス基材および、前記近赤外線吸収ガラス基材の少なくとも一方の主面上に、近赤外線吸収色素および透明樹脂を含有する近赤外線吸収層を有する積層体と、
     前記積層体の少なくとも一方の主面上に誘電体多層膜と、を備え、
     波長775~900nmの光に対する、入射角31~60度での最大透過率が50%以下である近赤外線カットフィルタ。
  2.  波長450~550nmの光に対する、入射角0度での透過率の平均値が80%以上である、請求項1に記載の近赤外線カットフィルタ。
  3.  前記近赤外線吸収ガラス基材は、波長775~900nmの光に対する、入射角0度での吸収率が75%以上である、請求項1または2に記載の近赤外線カットフィルタ。
  4.  前記誘電体多層膜は、波長800~900nmの光に対する、入射角0度での最大透過率が1%以下であり、かつ、波長775~900nmの光に対する入射角31~60度での最大透過率が3%以上である、近赤外線反射性の誘電体多層膜を含む、請求項1~3のいずれか1項に記載の近赤外線カットフィルタ。
  5.  入射角0度の光に対する、波長400~1100nmの吸収スペクトルにおいて、波長775~900nmに吸収極大波長λGmaxを有する近赤外線吸収ガラス基材と、波長650~750nmに吸収極大波長λmaxを有する近赤外線吸収色素を含む近赤外線吸収層と、近赤外線反射性の誘電体多層膜を備え、以下の(1)~(5)を満たす請求項1~4のいずれか1項に記載の近赤外線カットフィルタ。
    (1)前記近赤外線吸収層のλmaxにおける透過率T(λmax)が、前記近赤外線吸収ガラスのλGmaxにおける透過率T(λGmax)に比べて低い。
    (2)前記近赤外線吸収層は、透過率T(λmax)が5%以下である。
    (3)前記近赤外線吸収ガラス基材は、透過率T(λGmax)が50%以下である。
    (4)前記誘電体多層膜は、波長430~660nmの光の平均透過率が90%以上で、波長700~1200nm内に透過率が20%以下となる近赤外線反射帯を有する。
    (5)近赤外線カットフィルタの、波長450~550nmの光の透過率の平均値は80%以上である。
  6.  前記誘電体多層膜の近赤外線反射帯の短波長側で、入射角0度の光の透過率が50%となる波長λSh(R0_T50%)および入射角30度の光のうちs偏光成分の透過率が50%となる波長λSh(R30_Ts50%)、前記近赤外線吸収層のλmaxの短波長側で透過率が20%となる波長をλSh(D_T20%)および長波長側で透過率が20%となる波長をλLo(D_T20%)とし、
     λSh(D_T20%)≦ λSh(R30_Ts50%)< λSh(R0_T50%)≦ λLo(D_T20%)…式(1)
    を満たす請求項5に記載の近赤外線カットフィルタ。
  7.  波長550~720nmにおいて、入射角0度の光の透過率が85%、45%、および5%となる波長λ(T85%)、波長λ(T45%)、および波長λ(T5%)は、{λ(T45%)-λ(T85%)}≧{λ(T5%)-λ(T45%)}…式(2)を満たす請求項1~6のいずれか1項に記載の近赤外線カットフィルタ。
  8.  前記近赤外線吸収ガラス基材の前記近赤外線吸収層を有する側の表面において、前記近赤外線吸収ガラス基材の前記近赤外線吸収層側と対向する界面および表面の反射を除いて測定される、波長430~600nmの光に対する、入射角5度での反射率が2%以下である、請求項1~7のいずれか1項に記載の近赤外線カットフィルタ。
  9.  前記近赤外線吸収層の前記近赤外線吸収ガラス基材側と対向する面に前記誘電体多層膜を有し、前記近赤外線吸収層に接する誘電体膜の屈折率が1.4以上1.7以下である、請求項1~8のいずれか1項に記載の近赤外線カットフィルタ。
  10.  前記近赤外線吸収ガラス基材と、前記近赤外線吸収層との間に、厚さ5nm以上の誘電体層を有する、請求項1~9のいずれか1項に記載の近赤外線カットフィルタ。
  11.  前記誘電体層は、SiO、SiO(ただし、0.8≦x<2)およびAlから選ばれる少なくとも1つの材料を含んで構成されるアルカリバリア膜を含む、請求項10に記載の近赤外線カットフィルタ。
  12.  前記誘電体層は、MgF、CaF、LaF、NdF、CeF、NaAl14、NaAlF、AlF、BaF2、YFおよびAlから選ばれる少なくとも1つの材料を含んで構成される密着膜を含む、請求項10または請求項11に記載の近赤外線カットフィルタ。
  13.  前記誘電体層は、前記近赤外線吸収ガラス基材側に備えられた前記密着膜と、前記近赤外線吸収層側に備えられたアルカリバリア層を有し、
     前記密着膜はAlを含み、前記アルカリバリア層は、SiOまたはSiO(ただし、0.8≦x<2)を含む、請求項12に記載の近赤外線カットフィルタ。
  14.  前記近赤外線吸収ガラス基材の一方の主面上に前記近赤外線吸収層を有し、他方の主面上に前記近赤外線反射性の誘電体多層膜を有する、請求項4~13のいずれか1項に記載の近赤外線カットフィルタ。
  15.  波長600nmよりも波長が長い領域において、入射角0度での透過率が50%となる波長λ(NIR)と入射角30度での透過率が50%となる波長λ30(NIR)とを有し、前記波長の差の絶対値|λ(NIR)-λ30(NIR)|が5nm以下である、請求項1~14のいずれか1項に記載の近赤外線カットフィルタ。
  16.  波長600~750nmにおいて、入射角0度の光の透過率と入射角30度の光の透過率との差の絶対値の平均が3%以下である、請求項1~15のいずれか1項に記載の近赤外線カットフィルタ。
  17.  前記近赤外線吸収層がさらに紫外線吸収体を含有し、波長430~450nmにおいて、入射角0度の光の透過率の平均値が70%以上であり、かつ波長350~390nmにおいて、入射角0度の光の透過率の平均値が5%以下である、請求項1~16のいずれか1項に記載の近赤外線カットフィルタ。
  18.  波長450nmよりも波長が短い領域において、入射角0度の光の透過率が50%となる波長λ(UV)と入射角30度の光の透過率が50%となる波長λ30(UV)とを有し、前記波長の差の絶対値|λ(UV)-λ30(UV)|が5nm以下である、請求項17に記載の近赤外線カットフィルタ。
  19.  波長380~430nmにおいて、入射角0度の光の透過率と入射角30度の光の透過率との差の絶対値の平均が8%以下である、請求項17または18に記載の近赤外線カットフィルタ。
  20.  前記紫外線吸収体が下記(iv-1)および(iv-2)の要件を満たす紫外線吸収体を含有する、請求項17~19のいずれか1項に記載の近赤外線カットフィルタ。
    (iv-1)ジクロロメタンに溶解して測定される波長350~800nmの光吸収スペクトルにおいて、波長415nm以下の領域に、少なくとも一つの吸収極大波長を有し、波長415nm以下の領域における吸収極大のうち、最も長波長側の吸収極大波長λmax(UV)は、波長360~415nmにある。
    (iv-2)ジクロロメタンに溶解して測定される分光透過率曲線において、前記吸収極大波長λmax(UV)における透過率を10%としたとき、前記吸収極大波長λmax(UV)より長波長で透過率が90%となる波長λL90と、前記吸収極大波長λmax(UV)より長波長で透過率が50%となる波長λL50との差λL90-λL50が13nm以下である。
  21.  請求項1~20のいずれか1項に記載の近赤外線カットフィルタと、固体撮像素子を含む光学部材を有し、被写体側または光源の光が入射する側から順に、前記近赤外線カットフィルタおよび前記固体撮像素子が配置された固体撮像装置。
PCT/JP2016/051020 2015-01-14 2016-01-14 近赤外線カットフィルタおよび固体撮像装置 WO2016114362A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167020557A KR101764084B1 (ko) 2015-01-14 2016-01-14 근적외선 커트 필터 및 고체 촬상 장치
JP2016544886A JP6103152B2 (ja) 2015-01-14 2016-01-14 近赤外線カットフィルタおよび固体撮像装置
CN201680000782.6A CN106062591B (zh) 2015-01-14 2016-01-14 近红外线截止滤波器和固体摄像装置
US15/279,688 US10310150B2 (en) 2015-01-14 2016-09-29 Near-infrared cut filter and solid-state imaging device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-005382 2015-01-14
JP2015005382 2015-01-14
JP2015110617 2015-05-29
JP2015-110617 2015-05-29
JP2015-141205 2015-07-15
JP2015141205 2015-07-15
JP2015210820 2015-10-27
JP2015-210820 2015-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/279,688 Continuation US10310150B2 (en) 2015-01-14 2016-09-29 Near-infrared cut filter and solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2016114362A1 true WO2016114362A1 (ja) 2016-07-21

Family

ID=56405902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051020 WO2016114362A1 (ja) 2015-01-14 2016-01-14 近赤外線カットフィルタおよび固体撮像装置

Country Status (5)

Country Link
US (1) US10310150B2 (ja)
JP (1) JP6103152B2 (ja)
KR (1) KR101764084B1 (ja)
CN (1) CN106062591B (ja)
WO (1) WO2016114362A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273062B1 (ja) * 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6273063B1 (ja) * 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
WO2018021496A1 (ja) * 2016-07-28 2018-02-01 京セラ株式会社 光学フィルタおよび光学素子用パッケージ
CN107797164A (zh) * 2016-09-07 2018-03-13 大立光电股份有限公司 光学成像镜头及其塑胶材料、取像装置及电子装置
JP2018055091A (ja) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置
JP2018077304A (ja) * 2016-11-08 2018-05-17 株式会社デンソー 撮像装置
JP2018120097A (ja) * 2017-01-25 2018-08-02 Jsr株式会社 光学フィルターおよびその用途
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP2018163327A (ja) * 2017-03-27 2018-10-18 プラチナム オプティクス テクノロジー (スーチョウ) インコーポレイテッドPlatinum Optics Technology (Suzhou) Inc. フィルタ
JP2018200980A (ja) * 2017-05-29 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 撮像装置および固体撮像素子、並びに電子機器
WO2019004319A1 (ja) * 2017-06-30 2019-01-03 Jsr株式会社 固体撮像装置
KR20190009799A (ko) * 2016-10-25 2019-01-29 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 금속 산화물 나노입자를 함유하는 분산액 및 분사가능한 조성물
CN109641419A (zh) * 2016-08-18 2019-04-16 Agc株式会社 层叠体、电子设备的制造方法、层叠体的制造方法
CN109804613A (zh) * 2016-10-13 2019-05-24 浜松光子学株式会社 放射线图像读取装置
CN109804275A (zh) * 2016-08-26 2019-05-24 分子印记公司 单片高折光指数光子器件
JP2019536825A (ja) * 2016-10-25 2019-12-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 酸化セシウムタングステンナノ粒子および両性イオン性安定剤を含有する分散物および噴射可能な組成物
JP2021089357A (ja) * 2019-12-03 2021-06-10 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
TWI741195B (zh) * 2017-07-27 2021-10-01 日商日本板硝子股份有限公司 濾光器
TWI743180B (zh) * 2016-08-30 2021-10-21 日商富士軟片股份有限公司 感光性組成物、硬化膜、濾光器、積層體、圖案形成方法、固體成像元件、圖像顯示裝置以及紅外線感測器
TWI754100B (zh) * 2017-10-03 2022-02-01 日商日本板硝子股份有限公司 濾光器及攝像裝置
US11296133B2 (en) 2017-05-29 2022-04-05 Sony Semiconductor Solutions Corporation Imaging apparatus and electronic device
WO2022154017A1 (ja) * 2021-01-13 2022-07-21 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置
US11413591B2 (en) 2017-11-02 2022-08-16 Magic Leap, Inc. Preparing and dispensing polymer materials and producing polymer articles therefrom
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
WO2023248900A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタおよび撮像装置
WO2023248908A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタおよび撮像装置
WO2023248903A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタ、及び撮像装置
JP7454592B2 (ja) 2019-11-26 2024-03-22 富士フイルム株式会社 固体撮像素子

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442909B1 (ko) * 2015-03-02 2022-09-15 삼성디스플레이 주식회사 편광판 및 이를 포함하는 표시장치
KR101832114B1 (ko) * 2015-12-01 2018-02-23 아사히 가라스 가부시키가이샤 광학 필터 및 촬상 장치
JP6991706B2 (ja) * 2016-11-30 2022-02-03 キヤノン株式会社 光学素子およびそれを有する光学系
CN206339678U (zh) * 2016-12-26 2017-07-18 信阳舜宇光学有限公司 红外截止滤光片
KR101866104B1 (ko) * 2016-12-29 2018-06-08 주식회사 엘엠에스 카메라 모듈에 포함되는 근적외선 컷-오프 필터용 광학물품 및 이를 포함하는 카메라 모듈용 근적외선 컷-오프 필터
JP2018133392A (ja) * 2017-02-14 2018-08-23 キヤノン株式会社 光電変換装置
TWI789043B (zh) * 2017-02-24 2023-01-01 日商光馳股份有限公司 攝影機構造
DE102017206388A1 (de) * 2017-04-13 2018-10-18 Robert Bosch Gmbh Verfahren zum Schutz einer MEMS-Einheit vor Infrarot-Untersuchungen sowie MEMS-Einheit
KR102491491B1 (ko) 2017-09-08 2023-01-20 삼성전자주식회사 근적외선 흡수 필름용 조성물, 근적외선 흡수 필름, 카메라 모듈 및 전자 장치
CN109491003A (zh) * 2017-09-11 2019-03-19 白金光学科技(苏州)有限公司 近红外线截止滤光片及其制造工艺
KR102455527B1 (ko) 2017-09-12 2022-10-14 삼성전자주식회사 근적외선 흡수 필름용 조성물, 근적외선 흡수 필름, 카메라 모듈 및 전자 장치
KR101931731B1 (ko) 2017-09-28 2018-12-24 주식회사 엘엠에스 광학 물품 및 이를 포함하는 광학 필터
KR102542614B1 (ko) 2017-10-30 2023-06-15 삼성전자주식회사 이미지 센서
KR102374310B1 (ko) * 2017-11-09 2022-03-15 후지필름 가부시키가이샤 장치, 유기층 형성용 조성물
CN115079324B (zh) 2017-12-19 2023-08-01 白金光学科技(苏州)有限公司 吸收式近红外线滤光片
CN114578467A (zh) * 2018-02-05 2022-06-03 Agc株式会社 滤光片以及成像装置
WO2019176975A1 (ja) * 2018-03-16 2019-09-19 富士フイルム株式会社 構造体、近赤外線カットフィルタ用組成物、ドライフィルム、構造体の製造方法、光センサおよび画像表示装置
KR102158811B1 (ko) * 2018-07-03 2020-09-22 주식회사 엘엠에스 지문인식센서용 광학원판 및 이를 포함하는 광학필터
CN110749949B (zh) * 2018-07-24 2022-03-15 白金科技股份有限公司 滤光片
WO2020054786A1 (ja) * 2018-09-12 2020-03-19 Agc株式会社 光学フィルタおよび撮像装置
CN110723904B (zh) * 2019-11-12 2022-09-09 Oppo广东移动通信有限公司 蓝玻璃、红外截止滤光片、摄像头组件、电子设备
CN111031212A (zh) * 2019-12-20 2020-04-17 Oppo广东移动通信有限公司 蓝玻璃滤光片及制备方法、摄像模组和电子设备
CN111045126A (zh) * 2019-12-31 2020-04-21 Oppo广东移动通信有限公司 蓝玻璃滤光片及制备方法、摄像模组和电子设备
EP3885801A1 (en) * 2020-03-25 2021-09-29 Ams Ag An interference filter, optical device and method of manufacturing an interference filter
TWI752677B (zh) * 2020-11-12 2022-01-11 晶瑞光電股份有限公司 紅外截止濾光片結構
CN113093314A (zh) * 2021-03-31 2021-07-09 南昌欧菲光电技术有限公司 光学膜片和摄像模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158635A1 (ja) * 2010-06-18 2011-12-22 株式会社大真空 赤外線カットフィルタ
WO2013183557A1 (ja) * 2012-06-04 2013-12-12 旭硝子株式会社 近赤外線カットフィルタ
WO2014030628A1 (ja) * 2012-08-23 2014-02-27 旭硝子株式会社 近赤外線カットフィルタおよび固体撮像装置
JP2014048402A (ja) * 2012-08-30 2014-03-17 Kyocera Corp 光学フィルタ部材および撮像装置
WO2014168189A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ
JP5617063B1 (ja) * 2012-12-28 2014-10-29 旭硝子株式会社 近赤外線カットフィルタ

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333983A (en) * 1980-04-25 1982-06-08 Optical Coating Laboratory, Inc. Optical article and method
US5282084A (en) * 1989-05-19 1994-01-25 Minolta Camera Kabushiki Kaisha Multi-layered coating for optical part comprising YF3 layer
JP3232646B2 (ja) 1992-05-07 2001-11-26 日本板硝子株式会社 液晶表示素子用透明電導ガラスの製造方法
JP2004079608A (ja) * 2002-08-12 2004-03-11 Sanyo Electric Co Ltd 固体撮像装置および固体撮像装置の製造方法
JP2006106570A (ja) 2004-10-08 2006-04-20 Adl:Kk 光吸収フィルター
US8153239B2 (en) * 2005-03-28 2012-04-10 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and heat ray shielding molded product
JP2006301489A (ja) 2005-04-25 2006-11-02 Nidec Copal Corp 近赤外線カットフィルタ
JP2008051985A (ja) 2006-08-24 2008-03-06 Nidec Copal Corp 近赤外線吸収フィルタ
JP5168917B2 (ja) 2007-01-26 2013-03-27 Jsr株式会社 近赤外線カットフィルターおよびその製造方法
JP4598102B2 (ja) * 2008-05-28 2010-12-15 富士フイルム株式会社 撮像装置
JP5489669B2 (ja) 2008-11-28 2014-05-14 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
KR101474351B1 (ko) * 2008-11-28 2014-12-18 제이에스알 가부시끼가이샤 근적외선 컷 필터 및, 이를 구비하는 고체 촬상 장치 및 카메라 모듈
JP5769918B2 (ja) 2009-08-26 2015-08-26 ソニー株式会社 光学素子、撮像光学系及び撮像装置
WO2011071052A1 (ja) * 2009-12-07 2011-06-16 旭硝子株式会社 光学部材、近赤外線カットフィルタ、固体撮像素子、撮像装置用レンズ、およびそれらを用いた撮像・表示装置
JP5936299B2 (ja) 2010-11-08 2016-06-22 Jsr株式会社 近赤外線カットフィルター、およびそれを備える固体撮像素子ならびに固体撮像装置
JP5741283B2 (ja) * 2010-12-10 2015-07-01 旭硝子株式会社 赤外光透過フィルタ及びこれを用いた撮像装置
JP2012137649A (ja) 2010-12-27 2012-07-19 Canon Electronics Inc 光学フィルタ
JP5819063B2 (ja) 2010-12-27 2015-11-18 キヤノン電子株式会社 光学フィルタ
JP5823119B2 (ja) 2010-12-27 2015-11-25 キヤノン電子株式会社 紫外赤外線カット用光学フィルタ
JP5693949B2 (ja) 2010-12-27 2015-04-01 キヤノン電子株式会社 光学フィルタ
JP2012137651A (ja) 2010-12-27 2012-07-19 Canon Electronics Inc 光学フィルタ
JP5789373B2 (ja) 2010-12-27 2015-10-07 キヤノン電子株式会社 光学フィルタ
JP5759717B2 (ja) 2010-12-27 2015-08-05 キヤノン電子株式会社 監視カメラ用撮像光学系
JP5881096B2 (ja) * 2011-03-30 2016-03-09 株式会社タムロン 反射防止膜及び光学素子
JP2012247501A (ja) * 2011-05-25 2012-12-13 Asahi Glass Co Ltd 光学フィルタおよび画像表示装置
WO2012169447A1 (ja) 2011-06-06 2012-12-13 旭硝子株式会社 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置
JP2013050593A (ja) 2011-08-31 2013-03-14 Fujifilm Corp 近赤外線カットフィルタおよび近赤外線カットフィルタの製造方法
WO2013038938A1 (ja) * 2011-09-15 2013-03-21 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
KR101969612B1 (ko) 2011-10-14 2019-04-16 제이에스알 가부시끼가이샤 광학 필터 및 이 광학 필터를 이용한 고체 촬상 장치 및 카메라 모듈
JP5973747B2 (ja) 2012-02-28 2016-08-23 旭硝子株式会社 近赤外線カットフィルター
JP6017805B2 (ja) 2012-03-13 2016-11-02 株式会社日本触媒 光選択透過フィルター、紫光吸収シート及び固体撮像素子
CN104364681B (zh) 2012-06-25 2017-05-24 Jsr株式会社 固体摄影组件用光学滤波器及其用途
JP6183041B2 (ja) 2012-08-23 2017-08-23 旭硝子株式会社 近赤外線カットフィルタ
JP6317875B2 (ja) 2012-09-06 2018-04-25 日本板硝子株式会社 赤外線カットフィルタ、撮像装置および赤外線カットフィルタの製造方法
WO2014088063A1 (ja) 2012-12-06 2014-06-12 旭硝子株式会社 近赤外線カットフィルタ
JP2014126642A (ja) 2012-12-26 2014-07-07 Adeka Corp 波長カットフィルタ
JP2014177365A (ja) 2013-03-14 2014-09-25 Central Glass Co Ltd 車両用ウィンドシールド
KR101527821B1 (ko) 2013-04-04 2015-06-16 주식회사 엘엠에스 근적외선 커트 필터 및 이를 포함하는 고체 촬상 장치
JP2014203044A (ja) * 2013-04-09 2014-10-27 日本板硝子株式会社 赤外線カットフィルタおよび撮像装置
WO2014192715A1 (ja) 2013-05-29 2014-12-04 Jsr株式会社 光学フィルターおよび前記フィルターを用いた装置
JP6380390B2 (ja) 2013-05-29 2018-08-29 Jsr株式会社 光学フィルターおよび前記フィルターを用いた装置
WO2015022892A1 (ja) 2013-08-13 2015-02-19 Jsr株式会社 光学フィルターおよび前記フィルターを用いた装置
WO2015034211A1 (ko) 2013-09-06 2015-03-12 주식회사 엘엠에스 광학 필터 및 이를 포함하는 촬상 장치
WO2015034217A1 (ko) 2013-09-06 2015-03-12 주식회사 엘엠에스 광학 필터 및 이를 포함하는 촬상 장치
KR101611807B1 (ko) 2013-12-26 2016-04-11 아사히 가라스 가부시키가이샤 광학 필터
KR101453469B1 (ko) 2014-02-12 2014-10-22 나우주 광학 필터 및 이를 포함하는 촬상 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158635A1 (ja) * 2010-06-18 2011-12-22 株式会社大真空 赤外線カットフィルタ
WO2013183557A1 (ja) * 2012-06-04 2013-12-12 旭硝子株式会社 近赤外線カットフィルタ
WO2014030628A1 (ja) * 2012-08-23 2014-02-27 旭硝子株式会社 近赤外線カットフィルタおよび固体撮像装置
JP2014048402A (ja) * 2012-08-30 2014-03-17 Kyocera Corp 光学フィルタ部材および撮像装置
JP5617063B1 (ja) * 2012-12-28 2014-10-29 旭硝子株式会社 近赤外線カットフィルタ
WO2014168189A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
CN109477921B (zh) * 2016-07-28 2021-06-18 京瓷株式会社 光学滤波器及光学元件用封装件
CN109477921A (zh) * 2016-07-28 2019-03-15 京瓷株式会社 光学滤波器及光学元件用封装件
WO2018021496A1 (ja) * 2016-07-28 2018-02-01 京セラ株式会社 光学フィルタおよび光学素子用パッケージ
JPWO2018021496A1 (ja) * 2016-07-28 2019-05-23 京セラ株式会社 光学フィルタおよび光学素子用パッケージ
US11609360B2 (en) 2016-08-18 2023-03-21 AGC Inc. Laminate, method for manufacturing electronic device, and method for manufacturing laminate
CN109641419A (zh) * 2016-08-18 2019-04-16 Agc株式会社 层叠体、电子设备的制造方法、层叠体的制造方法
CN109641419B (zh) * 2016-08-18 2021-07-27 Agc株式会社 层叠体、电子设备的制造方法、层叠体的制造方法
CN109804275B (zh) * 2016-08-26 2023-08-25 分子印记公司 制造单片光子器件的方法、光子器件
KR20230003292A (ko) * 2016-08-26 2023-01-05 몰레큘러 임프린츠 인코퍼레이티드 모놀리식 고굴절률 광자 디바이스들
JP7232877B2 (ja) 2016-08-26 2023-03-03 モレキュラー インプリンツ, インコーポレイテッド モノリシック高屈折率フォトニックデバイス
JP2019529972A (ja) * 2016-08-26 2019-10-17 モレキュラー インプリンツ, インコーポレイテッドMolecular Imprints,Inc. モノリシック高屈折率フォトニックデバイス
CN109804275A (zh) * 2016-08-26 2019-05-24 分子印记公司 单片高折光指数光子器件
KR102668713B1 (ko) 2016-08-26 2024-05-22 몰레큘러 임프린츠 인코퍼레이티드 모놀리식 고굴절률 광자 디바이스들
JP2021185435A (ja) * 2016-08-26 2021-12-09 モレキュラー インプリンツ, インコーポレイテッドMolecular Imprints, Inc. モノリシック高屈折率フォトニックデバイス
TWI743180B (zh) * 2016-08-30 2021-10-21 日商富士軟片股份有限公司 感光性組成物、硬化膜、濾光器、積層體、圖案形成方法、固體成像元件、圖像顯示裝置以及紅外線感測器
US10890699B2 (en) 2016-09-07 2021-01-12 Largan Precision Co., Ltd. Optical image lens assembly, image capturing apparatus and electronic device
US11073638B2 (en) 2016-09-07 2021-07-27 Largan Precision Co., Ltd. Optical image lens assembly and plastic material thereof, image capturing apparatus and electronic device
CN107797164A (zh) * 2016-09-07 2018-03-13 大立光电股份有限公司 光学成像镜头及其塑胶材料、取像装置及电子装置
JP2018055091A (ja) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置
JP2018055092A (ja) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 光学撮像レンズ及びそのプラスチック材料、画像取込装置並びに電子装置
EP4221179A1 (en) * 2016-10-13 2023-08-02 Hamamatsu Photonics K.K. Radiation image reading device
EP3528484A4 (en) * 2016-10-13 2020-06-17 Hamamatsu Photonics K.K. RADIATION IMAGE READING DEVICE
CN109804613B (zh) * 2016-10-13 2020-11-24 浜松光子学株式会社 放射线图像读取装置
US11355150B2 (en) 2016-10-13 2022-06-07 Hamamatsu Photonics K.K. Radiation image reading device
CN109804613A (zh) * 2016-10-13 2019-05-24 浜松光子学株式会社 放射线图像读取装置
EP4221178A1 (en) * 2016-10-13 2023-08-02 Hamamatsu Photonics K.K. Radiation image reading device
JP2019536825A (ja) * 2016-10-25 2019-12-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 酸化セシウムタングステンナノ粒子および両性イオン性安定剤を含有する分散物および噴射可能な組成物
US11820906B2 (en) 2016-10-25 2023-11-21 Hewlett-Packard Development Company, L.P. Dispersion and jettable composition containing cesium tungsten oxide nanoparticles and a zwitterionic stabilizer
KR102188217B1 (ko) 2016-10-25 2020-12-08 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 금속 산화물 나노입자를 함유하는 분산액 및 분사가능한 조성물
US11305486B2 (en) 2016-10-25 2022-04-19 Hewlett-Packard Development Company, L.P. Dispersion and jettable composition containing metal oxide nanoparticles
KR20190009799A (ko) * 2016-10-25 2019-01-29 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 금속 산화물 나노입자를 함유하는 분산액 및 분사가능한 조성물
JP2018077304A (ja) * 2016-11-08 2018-05-17 株式会社デンソー 撮像装置
JP2018120097A (ja) * 2017-01-25 2018-08-02 Jsr株式会社 光学フィルターおよびその用途
JPWO2018155050A1 (ja) * 2017-02-24 2019-11-21 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP2018163327A (ja) * 2017-03-27 2018-10-18 プラチナム オプティクス テクノロジー (スーチョウ) インコーポレイテッドPlatinum Optics Technology (Suzhou) Inc. フィルタ
US11810935B2 (en) 2017-05-29 2023-11-07 Sony Semiconductor Solutions Corporation Imaging device, solid state image sensor, and electronic device
JP7449317B2 (ja) 2017-05-29 2024-03-13 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2022044653A (ja) * 2017-05-29 2022-03-17 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US11296133B2 (en) 2017-05-29 2022-04-05 Sony Semiconductor Solutions Corporation Imaging apparatus and electronic device
US11309344B2 (en) 2017-05-29 2022-04-19 Sony Semiconductor Solutions Corporation Imaging device, solid state image sensor, and electronic device
JP2018200980A (ja) * 2017-05-29 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 撮像装置および固体撮像素子、並びに電子機器
JPWO2019004319A1 (ja) * 2017-06-30 2020-05-21 Jsr株式会社 固体撮像装置
WO2019004319A1 (ja) * 2017-06-30 2019-01-03 Jsr株式会社 固体撮像装置
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
TWI741195B (zh) * 2017-07-27 2021-10-01 日商日本板硝子股份有限公司 濾光器
US11885993B2 (en) 2017-07-27 2024-01-30 Nippon Sheet Glass Company, Limited Optical filter and method of manufacturing
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
JP2019066742A (ja) * 2017-10-03 2019-04-25 日本板硝子株式会社 光学フィルタ及び撮像装置
US11428857B2 (en) 2017-10-03 2022-08-30 Nippon Sheet Glass Company, Limited Optical filter and imaging apparatus
TWI754100B (zh) * 2017-10-03 2022-02-01 日商日本板硝子股份有限公司 濾光器及攝像裝置
JP2019066741A (ja) * 2017-10-03 2019-04-25 日本板硝子株式会社 光学フィルタ及び撮像装置
WO2019069687A1 (ja) * 2017-10-03 2019-04-11 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6273063B1 (ja) * 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6273062B1 (ja) * 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
US11413591B2 (en) 2017-11-02 2022-08-16 Magic Leap, Inc. Preparing and dispensing polymer materials and producing polymer articles therefrom
JP7454592B2 (ja) 2019-11-26 2024-03-22 富士フイルム株式会社 固体撮像素子
JP2021089357A (ja) * 2019-12-03 2021-06-10 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置
JP7499018B2 (ja) 2019-12-03 2024-06-13 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置
WO2022154017A1 (ja) * 2021-01-13 2022-07-21 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置
WO2023248903A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタ、及び撮像装置
WO2023248908A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタおよび撮像装置
WO2023248900A1 (ja) * 2022-06-24 2023-12-28 Agc株式会社 光学フィルタおよび撮像装置

Also Published As

Publication number Publication date
KR101764084B1 (ko) 2017-08-01
US20170017023A1 (en) 2017-01-19
KR20160130987A (ko) 2016-11-15
CN106062591B (zh) 2018-10-09
JP6103152B2 (ja) 2017-03-29
US10310150B2 (en) 2019-06-04
JPWO2016114362A1 (ja) 2017-04-27
CN106062591A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6103152B2 (ja) 近赤外線カットフィルタおよび固体撮像装置
JP6504226B2 (ja) 近赤外線カットフィルタおよび固体撮像装置
JP6168252B2 (ja) 近赤外線カットフィルタおよび撮像装置
JP6332403B2 (ja) 光学フィルタおよび固体撮像素子
KR102102690B1 (ko) 근적외선 차단 필터
WO2015099060A1 (ja) 光学フィルタ
JP5849906B2 (ja) 近赤外線吸収フィルタおよび固体撮像装置
WO2023008291A1 (ja) 光学フィルタ
JP2017090687A (ja) 近赤外線吸収型ガラスウェハおよび半導体ウェハ積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544886

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167020557

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737433

Country of ref document: EP

Kind code of ref document: A1