WO2016113946A1 - クロム含有水の処理方法 - Google Patents

クロム含有水の処理方法 Download PDF

Info

Publication number
WO2016113946A1
WO2016113946A1 PCT/JP2015/076199 JP2015076199W WO2016113946A1 WO 2016113946 A1 WO2016113946 A1 WO 2016113946A1 JP 2015076199 W JP2015076199 W JP 2015076199W WO 2016113946 A1 WO2016113946 A1 WO 2016113946A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
water
hydrogen sulfide
containing water
solution
Prior art date
Application number
PCT/JP2015/076199
Other languages
English (en)
French (fr)
Inventor
宏之 三ツ井
中井 修
敬介 柴山
翔 白井
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2015377617A priority Critical patent/AU2015377617B2/en
Priority to CA2973460A priority patent/CA2973460C/en
Priority to CN201580066052.1A priority patent/CN107001083A/zh
Priority to US15/542,485 priority patent/US10442715B2/en
Priority to EP15877898.5A priority patent/EP3246290B1/en
Publication of WO2016113946A1 publication Critical patent/WO2016113946A1/ja
Priority to PH12017501260A priority patent/PH12017501260B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the present invention relates to a method for treating water containing chromium.
  • Methods for removing metal elements from water include coagulation precipitation methods, ion exchange methods, adsorption methods that adsorb to adsorbents such as activated carbon, electrical adsorption methods, and magnetic adsorption methods. Coagulation precipitation methods using agents are often used.
  • the coagulation precipitation method includes adding a neutralizer to the water to be treated and increasing the pH to solidify the metal as a hydroxide, and then filtering the solid and liquid by an operation such as filtration. The liquid is separated, the liquid is discharged outside the factory, and the solid is processed at a disposal site or the like.
  • a neutralizing agent used in the coagulation precipitation method an inexpensive calcium-based neutralizing agent such as limestone or slaked lime is generally used.
  • Patent Document 1 discloses a reduction process in which ferrous ions are added to water containing hexavalent chromium to reduce hexavalent chromium to trivalent chromium, and alkali is added to the effluent water in the reduction process.
  • the insolubilization process which makes trivalent chromium produced
  • the sludge separation process which isolate
  • a chromium-containing wastewater treatment method is disclosed in which part of the sludge separated in the sludge separation step is introduced into the reduction step.
  • the present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a method for treating chromium-containing water that can treat water containing chromium (chromium-containing water) at low cost.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, the present invention finds that it is possible to effectively treat at low cost by reducing chromium contained in water to be treated using thin hydrogen sulfide discharged from processes such as various factories and plants. It came to complete. That is, the present invention provides the following.
  • water containing chromium and a liquid containing 5 ppm to 50 ppm of hydrogen sulfide are mixed, and an acid is added to adjust the pH to 3.5 or less and ORP 200 mV to 400 mV.
  • a reduction step of reducing chromium contained in the water, and a neutralizer is added to the solution obtained through the reduction step to adjust the pH to 8 to 9, thereby reducing the reduced chromium contained in the solution to water.
  • a precipitation separation step of separating the precipitate of the hydroxide by precipitation as an oxide.
  • the second invention of the present invention is the method for treating chromium-containing water according to the first invention, wherein the acid is sulfuric acid.
  • the neutralizing agent is any one or more of calcium oxide, calcium carbonate, and calcium hydroxide. It is a processing method of contained water.
  • a trivalent solution is added to the mixed solution of the water containing chromium and the liquid containing hydrogen sulfide. It is a method for treating chromium-containing water, characterized by coexisting an iron compound.
  • a fifth invention of the present invention is the method for treating chromium-containing water according to the fourth invention, wherein the trivalent iron compound is iron hydroxide.
  • water containing chromium can be effectively treated at low cost.
  • the method for treating water containing chromium includes a reduction step of reducing chromium contained in water and a solution obtained through the reduction step.
  • chromium contained in the water to be treated is reduced. More specifically, in this reduction step, chromium-containing water and a liquid containing 5 to 50 ppm of hydrogen sulfide are mixed, acid is added to adjust the pH to 3.5 or less, and the oxidation-reduction potential (ORP) ) To 200 mV to 400 mV to reduce chromium in water.
  • ORP oxidation-reduction potential
  • FIG. 1 is a schematic diagram showing an example of a reaction tank for performing a method for treating chromium-containing water.
  • a chromium-containing water 11 to be treated and a liquid 12 containing 5 to 50 ppm of hydrogen sulfide are charged into a reaction tank 1A having a desired capacity.
  • the hexavalent chromium contained in the chromium-containing water 11 is reduced to trivalent chromium.
  • the reduction process in a reduction
  • the liquid 12 containing hydrogen sulfide having a concentration of 5 ppm to 50 ppm is used to reduce chromium contained in the chromium-containing water 11. It is characterized by that.
  • chromium is reduced using the liquid 12 containing hydrogen sulfide having a predetermined concentration discharged from a process such as a factory or a plant, that is, process water.
  • the reduction treatment can be performed at a low cost without preparing a new reducing agent.
  • the liquid (process water) 12 containing hydrogen sulfide having a concentration of 5 ppm to 50 ppm cannot be used as a use application of a sulfurizing agent or the like because of its low hydrogen sulfide concentration. Therefore, conventionally, the process water discharged from factories or the like has to be detoxified by fixing the hydrogen sulfide as sulfur. However, costs also arise in the detoxification process. On the other hand, in this Embodiment, since the said process water 12 is used in order to reduce
  • the concentration of hydrogen sulfide if the concentration is less than 5 ppm, the concentration is too low to allow the reduction reaction to proceed sufficiently. On the other hand, if the concentration of hydrogen sulfide exceeds 50 ppm, there is a possibility that it will be used as a main use application such as a sulfurizing agent.
  • liquid 12 containing 5 ppm to 50 ppm of hydrogen sulfide is used to mix with chromium-containing water 12.
  • a liquid containing hydrogen sulfide may be used, and a liquid adjusted to a hydrogen sulfide concentration of 5 ppm to 50 ppm by blowing it into the liquid may be used.
  • the pH of the mixed solution of the chromium-containing water 11 and the liquid 12 containing hydrogen sulfide is adjusted to 3.5 or lower, and the ORP is adjusted to 200 mV to 400 mV to cause a reduction reaction.
  • the pH of the mixed solution is adjusted by adding acid 13 as shown in FIG.
  • the acid is not particularly limited, and for example, sulfuric acid, hydrochloric acid, nitric acid or the like can be used, and sulfuric acid is particularly preferably used.
  • Sulfuric acid is generally used in various factories and plants, and can be easily used without making new investments in storage facilities and the like.
  • the pH of the mixed solution if the pH exceeds 3.5, the reduction reaction cannot proceed efficiently. Therefore, by adding an acid to the mixed solution, the pH is adjusted to 3.5 or less and subjected to a reduction treatment, and more preferably to 3.0 or less.
  • the upper limit value of the pH is not particularly limited, but is preferably 1.0 or more from the viewpoint of making the amount of acid used in an appropriate range.
  • the ORP of the mixed solution is adjusted by increasing or decreasing the amount of chromium-containing water 11 and the amount of hydrogen sulfide (the amount of liquid 12 containing hydrogen sulfide) that are added and mixed in the reaction vessel.
  • the ORP of the mixed solution if the ORP is less than 200 mV, a large amount of hydrogen sulfide is required and it is difficult to perform efficient treatment. On the other hand, when the ORP exceeds 400 mV, the reduced chromium is oxidized. For this reason, the ORP is adjusted to 200 mV to 400 mV for reduction treatment, and more preferably 250 mV to 350 mV.
  • the reduction step when mixing the chromium-containing water 11 and the liquid 12 containing 5 ppm to 50 ppm of hydrogen sulfide, it is preferable to add a trivalent iron compound 14 to coexist.
  • the amount of hydrogen sulfide contained in the liquid 12 containing hydrogen sulfide is reduced by chromium. May be greater than the amount of hydrogen sulfide required.
  • the liquid 12 containing 5 ppm to 50 ppm of hydrogen sulfide which is the process water discharged from the factory or plant, for the reduction treatment of chromium
  • the amount of hydrogen sulfide contained in the process water 12 is substantially greater than the amount of hydrogen sulfide required for chromium reduction.
  • surplus hydrogen sulfide in the mixed solution in the reaction tank 1A can be effectively rendered harmless.
  • iron hydroxide Fe (OH) 3
  • iron hydroxide Fe (OH) 3
  • Chromium-containing water 11 can be treated.
  • the addition amount of the trivalent iron compound 14 is not particularly limited, and an excess amount can be added. Also, the timing of addition is not particularly limited, and for example, it can be added after adding a chromium-containing water 11 or a liquid 12 containing hydrogen sulfide to cause a reduction reaction.
  • the solution (chromium-containing solution) 11 ′ obtained by the reduction treatment is collected by the dispensing pump 4 and transferred to the reaction tank 1 ⁇ / b> B that performs the treatment in the next precipitation separation step. Further, the gas (cycle gas) 15 generated in the reduction reaction is collected through the cycle line 5 connected to the scrubber.
  • ⁇ Precipitation separation step> In the precipitation separation step, a neutralizing agent is added to the solution obtained through the reduction step to produce and separate chromium hydroxide precipitates. More specifically, in this precipitation separation step, the reduced chromium is agglomerated and separated as a hydroxide and separated by adding a neutralizing agent to the solution after the reduction treatment and adjusting the pH to 8-9. .
  • FIG. 1 (B) is a schematic diagram showing an example of a reaction tank that performs the treatment in the precipitation separation step.
  • the chromium-containing solution 11 ′ transferred from the reaction tank 1A used for the treatment in the reduction process is charged into the reaction tank 1B having a desired capacity.
  • the pH of the solution is adjusted to 8-9 by adding a neutralizing agent 16 to the chromium-containing solution 11 ′.
  • a post-treatment liquid 20 in which the reduced chromium in the solution is aggregated as a hydroxide to form a precipitate, and chromium is removed.
  • the neutralizing agent 16 is not particularly limited, but is preferably one or more of calcium oxide, calcium carbonate, and calcium hydroxide. These neutralizing agents 16 are particularly preferable because they are inexpensive and easily available.
  • the pH of the solution if the pH is less than 8, chromium hydroxide may not be generated effectively. On the other hand, when the pH exceeds 9, the amount of the neutralizing agent 16 to be added is not preferable.
  • the chromium hydroxide precipitate is separated from the chromium-removed solution (treated solution) 20 by solid-liquid separation operation, and only the treated solution 20 is recovered.
  • the post-treatment liquid 20 can be recovered by, for example, the dispensing pump 4.
  • Example 1 First, as a reduction step, water 250 m 3 / hr containing chromium at a concentration of 0.39 mg / L and liquid 10 m 3 / hr containing hydrogen sulfide at a concentration of 5 ppm are charged into the reaction vessel and mixed.
  • the ORP was adjusted to 200 mV to 400 mV, and sulfuric acid was added to adjust the pH of the mixed solution to 2.71 for reduction treatment.
  • iron hydroxide was simultaneously added to the mixed solution as a trivalent iron compound.
  • the chromium concentration in the water was changed from 0.39 mg / L to 0.02 mg / L, and it was possible to effectively reduce chromium.
  • Example 2 The chromium-containing water was treated in the same manner as in Example 1 except that a liquid containing hydrogen sulfide at a concentration of 50 ppm was mixed.
  • the chromium concentration in the water was changed from 0.39 mg / L to 0.01 mg / L, and the chromium could be effectively reduced.
  • the chromium concentration in the water obtained by such a treatment method that is, the treatment only with the addition of the neutralizing agent was 0.38 mg / L, which was only slightly decreased.

Abstract

 クロムを含有する水(クロム含有水)を低コストで処理することができるクロム含有水の処理方法を提供する。 本発明に係るクロム含有水の処理方法は、クロム含有水11と、5ppm~50ppmの硫化水素を含む液体12とを混合し、酸13を添加することによってpH3.5以下、及びORP200mV~400mVに調整し、その水に含まれるクロムを還元する還元工程と、還元工程を経て得られる溶液11'に中和剤を添加してpH8~9に調整することによって、その溶液に含まれる還元されたクロムを水酸化物として沈殿させて分離する沈殿分離工程とを有する。

Description

クロム含有水の処理方法
 本発明は、クロムを含有した水の処理方法に関する。
 金属元素を含む水を工場等の外に排出するには、残存しているその金属元素を何らかの方法で除去する必要がある。水から金属元素を除去する方法としては、凝集沈殿法、イオン交換法、活性炭等の吸着剤に吸着させる吸着法、電気的吸着法、磁気吸着法などがあるが、一般的な方法として中和剤を用いた凝集沈殿方法が多用されている。
 具体的に、凝集沈殿法としては、処理対象の水に対して中和剤を添加しpHを上昇させることで金属を水酸化物として固体化させた後、ろ過等の操作で固体と液体を分離し、液体は工場外へ排出し、固体は廃棄場等で処理する方法が採られている。凝集沈殿法にて用いる中和剤としては、石灰石や消石灰等の安価なカルシウム系の中和剤が一般的に用いられている。
 しかしながら、金属元素としてクロム(Cr)を含む水を処理するにあたっては、上述した凝集沈澱方法では、十分に効率的に且つ効果的にクロムを分離できないことがある。
 具体的には、クロムを水酸化物として効果的に固定するには、一度そのクロムを6価のクロムから3価のクロムに還元してから反応させる必要があり、そのために還元剤を使用して還元処理を行う必要があるが、還元剤を使用することによりコストが掛かってしまうことになる。
 このようなことから、クロムを含む水を安価に処理する方法が求められている。
 例えば、特許文献1には、6価クロムを含有する水に第一鉄イオンを添加して6価クロムを3価クロムに還元する還元工程と、その還元工程での流出水にアルカリを添加して還元工程で生成した3価クロムを不溶性の水酸化物とする不溶化工程と、その不溶化工程での流出水から不溶性の水酸化物を分離する汚泥分離工程とを有するクロム含有排水の処理方法において、汚泥分離工程で分離された汚泥の一部を還元工程に導入するクロム含有排水の処理方法が開示されている。
 しかしながら、この特許文献1に記載の技術では、6価クロムを3価クロムに還元するために、還元剤をわざわざ用意する必要が生じ、高価な処理コストが掛ってしまう。
特開平7-80478号公報
 本発明は、上述したような実情に鑑みて提案されたものであり、クロムを含有する水(クロム含有水)を低コストで処理することができるクロム含有水の処理方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、様々な工場やプラント等のプロセスから排出される濃度の薄い硫化水素を用いて処理対象の水に含まれるクロムを還元することにより、低コストで効果的に処理できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものを提供する。
 (1)本発明の第1の発明は、クロムを含む水と、5ppm~50ppmの硫化水素を含む液体とを混合し、酸を添加することによってpH3.5以下、及びORP200mV~400mVに調整し、該水に含まれるクロムを還元する還元工程と、前記還元工程を経て得られる溶液に中和剤を添加してpH8~9に調整することによって、該溶液に含まれる還元されたクロムを水酸化物として沈殿させ、該水酸化物の沈殿を分離する沈殿分離工程とを有することを特徴とするクロム含有水の処理方法である。
 (2)本発明の第2の発明は、第1の発明において、前記酸が、硫酸であることを特徴とするクロム含有水の処理方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記中和剤が、酸化カルシウム、炭酸カルシウム、水酸化カルシウムのいずれか1つ以上であることを特徴とするクロム含有水の処理方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記還元工程では、前記クロムを含む水と前記硫化水素を含む液体との混合溶液に、3価の鉄化合物を共存させることを特徴とするクロム含有水の処理方法である。
 (5)本発明の第5の発明は、第4の発明において、前記3価の鉄化合物が、水酸化鉄であることを特徴とするクロム含有水の処理方法である。
 本発明によれば、低コストで効果的にクロムを含有する水を処理することができる。
クロム含有水の処理方法を実行する反応槽の一例を示した模式図であり、(A)は還元工程における処理を行う反応槽の模式図であり、(B)は沈殿分離工程における処理を行う反応槽の模式図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 本実施の形態に係るクロムを含有する水(以下、「クロム含有水」ともいう)の処理方法は、水に含まれるクロムを還元する還元工程と、その還元工程を経て得られる溶液に中和剤を添加してクロムの水酸化物沈殿を生成させて分離する沈殿分離工程とを有する。
 <還元工程>
 還元工程では、処理対象の水に含まれるクロムを還元する。より具体的に、この還元工程では、クロム含有水と、5ppm~50ppmの硫化水素を含む液体とを混合し、酸を添加してpHを3.5以下に調整し、また酸化還元電位(ORP)を200mV~400mVに調整して、水中のクロムを還元する。
 図1は、クロム含有水の処理方法を実行する反応槽の一例を示した模式図である。先ず、還元工程では、図1(A)に示すように、所望の容量の反応槽1A内に、処理対象であるクロム含有水11と、5ppm~50ppmの硫化水素を含む液体12とを装入して混合し、そのクロム含有水11に含まれる6価のクロムを3価のクロムに還元する。
 なお、還元工程における還元処理は、例えば、攪拌羽根2aを有する攪拌装置2を反応槽1Aに設置して攪拌しながら行うことが好ましい。また、図1(A)に示すように、例えばエアーブロワー3により混合溶液を攪拌させて反応効率を高めるようにしてもよい。
 本実施の形態に係るクロム含有水の処理方法では、このように還元工程において、クロム含有水11に含まれるクロムを還元するために、5ppm~50ppmの濃度の硫化水素を含む液体12を使用することを特徴としている。
 クロムを還元するに際して、一般的な還元剤をわざわざ用意して使用すると高価な処理コストが発生する。一方で、様々な工場やプラント等のプロセスからは、濃度の低い硫化水素が排出されることがある。本件発明者は、このような工場等から排出される硫化水素をクロムの還元処理に活用できないか検討した。その結果、工場やプラント等のプロセス水である、5ppm~50ppmの濃度範囲の硫化水素を含む液体であれば、低コストで処理対象である水に含まれるクロムを効率的に且つ効果的に還元できることを見出した。
 このように、本実施の形態に係るクロム含有水の処理方法では、工場やプラント等のプロセスから排出される所定の濃度の硫化水素が含まれる液体12、つまりプロセス水を用いてクロムを還元することにより、新規の還元剤を用意することなく、低いコストで還元処理を施すことができる。
 また、5ppm~50ppmという濃度の硫化水素を含む液体(プロセス水)12は、その硫化水素濃度が低いために、例えば硫化剤等の使用用途としては使用できない。このことから、従来、工場等から排出された当該プロセス水は、その硫化水素を硫黄として固定して無害化処理を施す必要があった。ところが、その無害化処理においてもコストが発生してしまう。これに対して、本実施の形態においては、当該プロセス水12を、クロム含有水11の処理におけるクロムを還元するために使用しているため、従来のようなプロセス水に対する無害化処理を行う必要もなくなり、その処理に要するコストも効果的に削減することができる。
 硫化水素の濃度に関して、濃度が5ppm未満であると、濃度が低すぎるために還元反応を十分に進めることができない。一方で、硫化水素の濃度が50ppmを超えると、例えば硫化剤等の主な使用用途として使用する可能性が生じる。
 また、液体ではなく、硫化水素を含む気体を用いると、反応槽1A内でクロム含有水11と混合する際に十分に効果的に混合させることができず、還元効率が低下してしまう。したがって、5ppm~50ppmの硫化水素を含む液体12を使用してクロム含有水12と混合させる。なお、硫化水素を含む気体を使用し、それを液体に吹き込むことで5ppm~50ppmの硫化水素濃度となるように調整した液体を使用してもよい。
 還元工程においては、クロム含有水11と硫化水素を含む液体12との混合溶液のpHを3.5以下、ORPを200mV~400mVに調整して還元反応を生じさせる。
 混合溶液のpHの調整は、図1に示すように酸13を添加することによって行う。具体的に、酸としては、特に限定されず、例えば硫酸、塩酸、硝酸等を用いて行うことができ、特に硫酸を用いることが好ましい。硫酸は、様々な工場やプラントにおいて一般的に使用されており、貯留設備等の新たな投資を行うことなく容易に使用することができる。
 混合溶液のpHに関して、pHが3.5を超えると、還元反応を効率よく進めることができない。そのため、混合溶液に酸を添加することによってpHを3.5以下に調整して還元処理を施し、より好ましくは3.0以下に調整する。なお、pHの上限値としては、特に限定されないが、酸の使用量を適度な範囲とする観点から1.0以上であることが好ましい。
 混合溶液のORPの調整は、反応槽内に添加して混合させるクロム含有水11の量と硫化水素の量(硫化水素を含む液体12の量)とを増減させることによって行う。
 混合溶液のORPに関して、ORPが200mV未満であると、多量の硫化水素が必要となって効率的な処理を行うことが困難となる。一方で、ORPが400mVを超えると、還元されたクロムが酸化してしまう。そのため、ORPを200mV~400mVに調整して還元処理を施し、より好ましくは250mV~350mVに調整する。
 ここで、還元工程においては、クロム含有水11と、5ppm~50ppmの硫化水素を含む液体12とを混合する際に、3価の鉄化合物14を添加して共存させることが好ましい。単一の反応槽1Aで、クロム含有水11と5ppm~50ppmの硫化水素を含む液体12とを混合する場合、その硫化水素を含む液体12に含まれる硫化水素の量の方が、クロムの還元に必要な硫化水素の量よりも多くなる場合がある。特に、本実施の形態においては、上述したように、工場やプラント等から排出されるプロセス水である、5ppm~50ppmの硫化水素を含む液体12をクロムの還元処理に用いていることにより、そのクロムの還元に必要な硫化水素の量よりもプロセス水12に含まれる硫化水素の量の方が実質的に多くなる。このような場合において、混合溶液中に3価の鉄化合物14を共存させることによって、反応槽1Aにおける混合溶液中で余剰となる硫化水素を有効に無害化することができる。
 3価の鉄化合物14としては、特に限定されないが、水酸化鉄(Fe(OH))であることが好ましい。例えば処理対象である水に鉄分が含まれるような場合には、本実施の形態における凝集沈殿の処理の後に得られる澱物として水酸化鉄を容易に得ることができ、より一層に低コストでクロム含有水11を処理することができる。
 3価の鉄化合物14の添加量としては、特に限定されず、過剰量を添加することができる。また、添加のタイミングについても、特に限定されず、例えばクロム含有水11や硫化水素を含有する液体12を添加して還元反応を生じさせた後に添加することができる。
 還元工程における処理の終了後、払出しポンプ4により、還元処理により得られた溶液(クロム含有溶液)11’を回収し、次工程の沈殿分離工程での処理を実施する反応槽1Bに移送する。また、還元反応において発生したガス(環集ガス)15は、スクラバーに接続する環集ライン5を通過して回収される。
 <沈殿分離工程>
 沈殿分離工程では、還元工程を経て得られた溶液に中和剤を添加してクロムの水酸化物沈殿を生成させて分離する。より具体的に、この沈殿分離工程では、還元処理後の溶液に中和剤を添加してpHを8~9に調整することによって、還元されたクロムを水酸化物として凝集沈殿させて分離する。
 図1(B)は、沈殿分離工程での処理を行う反応槽の一例を示した模式図である。図1(B)に示すように、沈殿分離工程では、所望の容量の反応槽1Bに、還元工程での処理に用いた反応槽1Aから移送されてきたクロム含有溶液11’を装入し、そのクロム含有溶液11’に対して中和剤16を添加することによって溶液のpHを8~9に調整する。これにより、溶液中の還元されたクロムを水酸化物として凝集させ沈殿物とし、クロムを除去した処理後液20を得ることができる。
 なお、図1(B)の模式図において、図1(A)と同様の装置構成については同じ符号を付して説明する。この沈殿分離工程での処理においても、例えば、攪拌羽根2aを有する攪拌装置2を反応槽1Bに設置して攪拌しながら行うことが好ましい。また、図1(B)に示すように、例えばエアーブロワー3により溶液を攪拌させて反応効率を高めるようにしてもよい。
 中和剤16としては、特に限定されないが、酸化カルシウム、炭酸カルシウム、水酸化カルシウムのいずれか1種以上であることが好ましい。これらの中和剤16は、安価であり、入手も容易である点で特に好ましい。
 溶液のpHに関して、pHが8未満では、クロムの水酸化物が効果的に生成しないことがある。一方で、pHが9を超えると、添加する中和剤16の量が増加するため好ましくない。
 沈殿分離工程における処理の終了後、固液分離操作により、クロムの水酸化物沈殿と、クロムを除去した溶液(処理後液)20とを分離し、その処理後液20のみを回収する。なお、処理後液20の回収は、例えば払出しポンプ4により回収することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 先ず、還元工程として、クロムを0.39mg/Lの濃度で含有する水250m/hrと、硫化水素を5ppmの濃度で含む液体10m/hrとを反応槽内に装入して混合し、ORPを200mV~400mVに調整するとともに、硫酸を添加して混合溶液のpHを2.71に調整して還元処理を施した。なお、混合溶液には、3価の鉄化合物として水酸化鉄を同時に添加した。
 次に、沈殿分離工程として、還元処理により得られた溶液に、中和剤である炭酸カルシウムと水酸化カルシウムとを添加してpHを8.5とし、還元されたクロムを水酸化物の沈殿として分離した。
 このような方法によりクロム含有水を処理した結果、水中のクロム濃度は0.39mg/Lから0.02mg/Lとなり、効果的にクロムを低減させることができた。
 [実施例2]
 硫化水素が50ppmの濃度で含む液体を混合させたこと以外は、実施例1と同様にしてクロム含有水を処理した。
 その結果、水中のクロム濃度は0.39mg/Lから0.01mg/Lとなり、効果的にクロムを低減させることができた。
 [比較例1]
 クロム濃度が0.39mg/Lの水250m/hrに、中和剤として炭酸カルシウムと水酸化カルシウムとを添加してpHを8.5とし、水中のクロムを水酸化物として沈殿分離した。
 このような処理方法、つまり中和剤の添加のみの処理により得られた水中のクロム濃度は0.38mg/Lとなり、僅かに減少したにとどまった。
 1A,1B  反応槽
 2  攪拌装置
 11  クロム含有水
 11’  クロム含有溶液
 12  硫化水素を含む液体(プロセス水)
 13  酸
 14  3価の鉄化合物
 15  環集ガス
 16  中和剤
 20  処理後液

Claims (5)

  1.  クロムを含む水と、5ppm~50ppmの硫化水素を含む液体とを混合し、酸を添加することによってpH3.5以下、及びORP200mV~400mVに調整し、該水に含まれるクロムを還元する還元工程と、
     前記還元工程を経て得られる溶液に中和剤を添加してpH8~9に調整することによって、該溶液に含まれる還元されたクロムを水酸化物として沈殿させ、該水酸化物の沈殿を分離する沈殿分離工程と
     を有することを特徴とするクロム含有水の処理方法。
  2.  前記酸は、硫酸であることを特徴とする請求項1に記載のクロム含有水の処理方法。
  3.  前記中和剤は、酸化カルシウム、炭酸カルシウム、水酸化カルシウムのいずれか1つ以上であることを特徴とする請求項1に記載のクロム含有水の処理方法。
  4.  前記還元工程において、前記クロムを含む水と前記硫化水素を含む液体との混合溶液に、3価の鉄化合物を共存させることを特徴とする請求項1に記載のクロム含有水の処理方法。
  5.  前記3価の鉄化合物は、水酸化鉄であることを特徴とする請求項4に記載のクロム含有水の処理方法。
PCT/JP2015/076199 2015-01-13 2015-09-15 クロム含有水の処理方法 WO2016113946A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015377617A AU2015377617B2 (en) 2015-01-13 2015-09-15 Chromium-containing water treatment method
CA2973460A CA2973460C (en) 2015-01-13 2015-09-15 Chromium-containing water treatment method
CN201580066052.1A CN107001083A (zh) 2015-01-13 2015-09-15 含铬水的处理方法
US15/542,485 US10442715B2 (en) 2015-01-13 2015-09-15 Chromium-containing water treatment method
EP15877898.5A EP3246290B1 (en) 2015-01-13 2015-09-15 Chromium-containing water treatment method
PH12017501260A PH12017501260B1 (en) 2015-01-13 2017-07-10 Chromium-containing water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004374 2015-01-13
JP2015004374A JP6413772B2 (ja) 2015-01-13 2015-01-13 クロム含有水の処理方法

Publications (1)

Publication Number Publication Date
WO2016113946A1 true WO2016113946A1 (ja) 2016-07-21

Family

ID=56405504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076199 WO2016113946A1 (ja) 2015-01-13 2015-09-15 クロム含有水の処理方法

Country Status (8)

Country Link
US (1) US10442715B2 (ja)
EP (1) EP3246290B1 (ja)
JP (1) JP6413772B2 (ja)
CN (1) CN107001083A (ja)
AU (1) AU2015377617B2 (ja)
CA (1) CA2973460C (ja)
PH (1) PH12017501260B1 (ja)
WO (1) WO2016113946A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122885A (ja) * 2018-01-12 2019-07-25 学校法人智香寺学園埼玉工業大学 廃水処理方法、及び廃水処理システム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836962A (ja) * 1971-09-10 1973-05-31
JPS516195A (en) * 1974-07-05 1976-01-19 Hitachi Chemical Co Ltd Kuromuhaiekikara ryokushokuganryokuo seizosuruhoho
JPS51113357A (en) * 1975-03-31 1976-10-06 Kiyomitsu Yahikosawa Chrome-containing service and waste water treating method
US4260491A (en) * 1978-11-15 1981-04-07 Amchem Products, Inc. Chrome removal waste treatment process
JPS631497A (ja) * 1986-06-19 1988-01-06 Yoji Taguchi 硫黄還元による重金属含有排水の処理法
JP2004209424A (ja) * 2003-01-07 2004-07-29 Mie Prefecture 汚泥処理剤およびこれを用いた汚泥処理方法
JP2005161116A (ja) * 2003-11-28 2005-06-23 Kumamoto Prefecture 脱硫化水素材、それを用いた脱硫化水素処理方法及び装置
JP2005342694A (ja) * 2004-06-07 2005-12-15 Toshiba Corp 廃液処理方法および廃液処理装置
JP2010022926A (ja) * 2008-07-17 2010-02-04 Jfe Steel Corp 6価クロム含有廃液の処理装置及び処理方法
JP2010227737A (ja) * 2009-03-25 2010-10-14 Ibiden Co Ltd 有機物含有液の処理方法
JP2014218719A (ja) * 2013-05-10 2014-11-20 住友金属鉱山株式会社 スカンジウム回収方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1143473A (en) 1966-08-04 1969-02-19 Industrial Filter Pump Mfg Co Waste treatment and method and apparatus therefor
US3901805A (en) 1973-10-24 1975-08-26 Dow Badische Co Removing toxic chromium from industrial effluents
US4684472A (en) 1985-12-26 1987-08-04 Phillips Petroleum Company Precipitation of waste chromium compounds utilizing an aqueous sulfide solution
JPH06169977A (ja) * 1992-12-04 1994-06-21 Meiji Yakuhin Kogyo Kk 硫化水素の消臭方法とこれに用いる消臭剤
JP3513883B2 (ja) 1993-09-13 2004-03-31 栗田工業株式会社 クロム含有排水の処理方法
JP3518857B2 (ja) * 2000-03-16 2004-04-12 日本碍子株式会社 有機性汚泥濃縮排ガスの簡易脱臭方法
US6649071B2 (en) * 2001-01-26 2003-11-18 A. S. Incorporated Water treatment method for reducing levels of Cr+6
US6896817B2 (en) 2002-04-15 2005-05-24 Gregory S. Bowers Essentially insoluble heavy metal sulfide slurry for wastewater treatment
JP2005095783A (ja) * 2003-09-25 2005-04-14 Mitsui Eng & Shipbuild Co Ltd 脱硫方法及び脱硫システム
JP2006281651A (ja) * 2005-04-01 2006-10-19 Kurihara Kazuyuki 複合フィルム
CN101811793B (zh) * 2009-02-24 2011-12-21 宝山钢铁股份有限公司 一种含铬废水的预处理工艺
CN102070261A (zh) * 2009-11-24 2011-05-25 中国航空工业标准件制造有限责任公司 一种含六价铬的废水处理方法
CN102765831B (zh) * 2012-07-25 2013-10-23 中南大学 一种含重金属及砷的废水净化方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836962A (ja) * 1971-09-10 1973-05-31
JPS516195A (en) * 1974-07-05 1976-01-19 Hitachi Chemical Co Ltd Kuromuhaiekikara ryokushokuganryokuo seizosuruhoho
JPS51113357A (en) * 1975-03-31 1976-10-06 Kiyomitsu Yahikosawa Chrome-containing service and waste water treating method
US4260491A (en) * 1978-11-15 1981-04-07 Amchem Products, Inc. Chrome removal waste treatment process
JPS631497A (ja) * 1986-06-19 1988-01-06 Yoji Taguchi 硫黄還元による重金属含有排水の処理法
JP2004209424A (ja) * 2003-01-07 2004-07-29 Mie Prefecture 汚泥処理剤およびこれを用いた汚泥処理方法
JP2005161116A (ja) * 2003-11-28 2005-06-23 Kumamoto Prefecture 脱硫化水素材、それを用いた脱硫化水素処理方法及び装置
JP2005342694A (ja) * 2004-06-07 2005-12-15 Toshiba Corp 廃液処理方法および廃液処理装置
JP2010022926A (ja) * 2008-07-17 2010-02-04 Jfe Steel Corp 6価クロム含有廃液の処理装置及び処理方法
JP2010227737A (ja) * 2009-03-25 2010-10-14 Ibiden Co Ltd 有機物含有液の処理方法
JP2014218719A (ja) * 2013-05-10 2014-11-20 住友金属鉱山株式会社 スカンジウム回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246290A4 *

Also Published As

Publication number Publication date
JP6413772B2 (ja) 2018-10-31
EP3246290A4 (en) 2018-06-27
CA2973460C (en) 2019-07-23
EP3246290A1 (en) 2017-11-22
JP2016129867A (ja) 2016-07-21
CN107001083A (zh) 2017-08-01
AU2015377617B2 (en) 2019-01-24
PH12017501260A1 (en) 2018-01-15
US10442715B2 (en) 2019-10-15
AU2015377617A1 (en) 2017-07-20
CA2973460A1 (en) 2016-07-21
EP3246290B1 (en) 2019-08-21
PH12017501260B1 (en) 2018-01-15
US20180273411A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
RU2663034C2 (ru) Получение фосфатных соединений из материалов, содержащих фосфор и по меньшей мере один металл, выбранный из железа и алюминия
KR100221556B1 (ko) 배연탈황배수의 처리방법
JPH09276875A (ja) 排水の処理方法
WO2000003952A1 (fr) Procede et dispositif de traitement d'eaux residuaires contenant du fluor
CA3087017A1 (en) Method of treating wastewater
JP2007326077A (ja) セレン含有水の処理方法
JP2007252969A (ja) 鉄鋼製造排水の浄化処理方法
JP3600458B2 (ja) 排煙脱硫排水の処理方法
JP6413772B2 (ja) クロム含有水の処理方法
JP3577832B2 (ja) Se含有液からのSe除去方法
CA2251480A1 (en) Waste treatment of metal plating solutions
JP2009011914A (ja) セレン含有排水の処理方法及び処理装置
JP4338705B2 (ja) ホウフッ化物イオンを含む廃液の処理方法
JP2002205077A (ja) 有機性汚水の処理方法及び装置
JP2018130717A (ja) 脱硫排水の処理方法及び処理システム
WO2008111682A1 (ja) 硫黄酸化物含有液中のセレン処理方法
JP2001232372A (ja) ホウ素含有水の処理方法
JP2005324137A (ja) 排水中のフッ素イオン除去方法
JPH1076279A (ja) 重金属含有排水の処理方法
JP2001286875A (ja) 含ヒ素排水の処理方法
KR20030069013A (ko) 물속에 포함된 인을 제거하는 방법
JP3905588B2 (ja) 排水処理方法
JP2003047972A (ja) フッ素含有排水の処理方法
JPH06485A (ja) キレート排水の処理方法
JP2751875B2 (ja) フッ素含有廃水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877898

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2973460

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15542485

Country of ref document: US

Ref document number: 12017501260

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015377617

Country of ref document: AU

Date of ref document: 20150915

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877898

Country of ref document: EP