WO2016111518A1 - Carbon nanotube paste, method for manufacturing same, and method for manufacturing carbon nanotube emitter using same - Google Patents

Carbon nanotube paste, method for manufacturing same, and method for manufacturing carbon nanotube emitter using same Download PDF

Info

Publication number
WO2016111518A1
WO2016111518A1 PCT/KR2016/000046 KR2016000046W WO2016111518A1 WO 2016111518 A1 WO2016111518 A1 WO 2016111518A1 KR 2016000046 W KR2016000046 W KR 2016000046W WO 2016111518 A1 WO2016111518 A1 WO 2016111518A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
mixture
graphene
carbon nanotubes
paste
Prior art date
Application number
PCT/KR2016/000046
Other languages
French (fr)
Korean (ko)
Inventor
김대준
김동일
박관수
Original Assignee
(주) 브이에스아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 브이에스아이 filed Critical (주) 브이에스아이
Publication of WO2016111518A1 publication Critical patent/WO2016111518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30434Nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30461Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a carbon nanotube (CNT) paste, a method for preparing the same, and a method for manufacturing a carbon nanotube emitter using the same, and more specifically, stable using graphene.
  • the present invention relates to a carbon nanotube paste capable of obtaining an emission current, a method for preparing the same, and a method for producing a carbon nanotube emitter using the same.
  • Such flat panel displays include liquid crystal displays (LCDs), plasma display panels (PDPs), field emission displays (FEDs), and the like.
  • Field emission is a phenomenon in which electrons are released in a vacuum when an electric field is applied to a conductive emitter with a sharp tip formed on a negative electrode.
  • the display using this principle inherits the advantages of CRT, such as fast response speed and high image quality, and has high luminous efficiency. It is highly regarded as a next-generation display that significantly improves the shortcomings of the CRT in that it can be thin and thin.
  • carbon nanotubes have advantages such as high aspect ratio, mechanical strength, chemical stability, and high melting point, and since their discovery, their application as an electron source to various devices such as displays, lamps and X-ray generators has been studied. Principle Provides the best performance of the emitter.
  • One of two methods of fabricating carbon nanotube emitters to use carbon nanotubes as an electron source of a device one is to grow and deposit carbon nanotubes directly on a negative electrode, and the other is screen printing carbon nanotube paste. That's how.
  • the direct growth method has the advantage of controlling the density of carbon nanotube formation of the emitter, but it is difficult to apply to large-area devices due to the cost, and also the problem of removing the growth catalyst and adhesion to the substrate.
  • the disadvantage is that the strength is weak.
  • carbon nanotube having a large area can be formed on the negative electrode easily and inexpensively through printing, but in order to use the carbon nanotube paste as a stable emitter, carbon nanotube
  • the paste binder must be evaporated, surface treated, and subjected to a complex step of activating a stable emitter through an aging process that converges to a reduction in output characteristics.
  • the present invention has been made in view of the above problems, and the present invention effectively disperses the field emission device in the negative electrode to achieve a stable output, and at the same time can effectively shorten the emitter manufacturing process, carbon nanotube paste, its It provides a manufacturing method and a method of manufacturing a carbon nanotube emitter using the same.
  • Carbon nanotube paste according to an embodiment of the present invention for solving this problem, a carbon nanotube, a mixture containing graphene for mixing and dispersing the carbon nanotube, and the carbon nanotube and the mixture is mixed And an organic binder for adhering the prepared mixture to the adherend.
  • the carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 to 1: 3.
  • Method of manufacturing a carbon nanotube paste according to an exemplary embodiment of the present invention, the step of crushing the mixture containing graphene, the step of preparing a mixture by mixing the carbon nanotubes in the crushed mixture, and the mixture Dispersing in an organic binder.
  • the mixture may be crushed to a size of 45 ⁇ m or less through the physical force.
  • the carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 to 1: 3.
  • Method of manufacturing a carbon nanotube emitter the carbon nanotube, a mixture comprising graphene, and preparing a carbon nanotube paste comprising an organic binder, the carbon nanotube Printing and firing the paste on the negative electrode, and adhering the graphene and the carbon nanotubes adhered to the graphene from the calcined carbon nanotube paste with the roller using a surface treatment apparatus including a roller. Removing by.
  • the preparing of the carbon nanotube paste may include: crushing the mixed material including graphene, mixing the carbon nanotubes with the crushed mixed material, preparing a mixture, and dispersing the mixture in an organic binder. It may include.
  • the carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 ⁇ 1: 3.
  • a carbon nanotube emitter is manufactured from a nanocarbon-based mixture containing carbon nanotubes and graphene. Since the nanotubes are directly adhered to the negative electrode, it is possible to suppress the reduction of properties during field emission of the carbon nanotubes and to obtain stable emission characteristics. In addition, by removing the carbon nanotubes attached to the graphene and more than 90% of the graphene during the surface treatment to give a considerable distance to suppress the electric field screen effect between the remaining carbon nanotubes, carbon nanotubes during field emission It can reduce the electrical stress applied to and obtain stable emission characteristics. Moreover, roller-based belt conveyor surface treatment devices can be used to easily produce uniform carbon nanotube emitters over a large area.
  • FIG. 1 is a flowchart illustrating a method of manufacturing carbon nanotube paste according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a carbon nanotube emitter according to an embodiment of the present invention.
  • FIG 3 is a view showing a surface treatment method of a carbon nanotube emitter according to an embodiment of the present invention.
  • Figure 4 is a graph showing the emission characteristics of the carbon nanotube emitter prepared by the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • Carbon nanotube paste according to an embodiment of the present invention is a carbon nanotube, a mixture for mixing and dispersing the carbon nanotube, and a mixture of the carbon nanotube and the mixture is an adhesive such as an emitter negative electrode And an organic binder for adhering to it.
  • Nanomaterials such as carbon nanotubes
  • the mixture is composed of graphene or a mixture composed mainly of graphene.
  • the graphene is a thin plate-shaped nanomaterial in which carbon atoms are entangled in a honeycomb shape, and has a significantly lower adhesive force with surrounding molecules than other conventional nanopowders. Therefore, by adding the graphene to the carbon nanotube paste, recombination of the carbon nanotubes can be effectively prevented, and the mixing and dispersion characteristics of the carbon nanotubes can be improved.
  • the mixture including graphene is added in a ratio of about 1: 1 to 1: 3 on a mass basis as compared to the carbon nanotubes. If the specific gravity of the mixture in the carbon nanotube paste is too small, the mixing and dispersing characteristics of the carbon nanotubes are deteriorated. On the other hand, if the specific gravity of the mixture is too large, the formation density of the carbon nanotubes is too small to reduce the field emission characteristics of the emitter. Therefore, the mixture is preferably mixed at a mass ratio of about 1: 1 to 1: 3 in consideration of the mixing and dispersing characteristics of the carbon nanotubes and the field emission characteristics of the emitter.
  • the organic binder serves to impart viscosity such that the mixture of the carbon nanotubes and the mixture is adhered to an adherend such as a negative electrode of an emitter.
  • the viscosity of the carbon nanotube paste may be adjusted by adjusting the mixing amount of the organic binder.
  • FIG. 1 is a flowchart illustrating a method of manufacturing carbon nanotube paste according to an embodiment of the present invention.
  • the method for producing a carbon nanotube paste according to an embodiment of the present invention, the step of crushing the mixed material containing graphene (S12), by mixing the carbon nanotubes in the crushed mixed material mixture The manufacturing step (S14), and dispersing the mixture in an organic binder (S16).
  • the graphene of the plate structure is crushed to a suitable size in order to improve the mixing with the carbon nanotubes. If the size of the graphene is too large, the compatibility with the carbon nanotubes may be inferior, the graphene is preferably broken into a size of about 45 ⁇ m or less, in order to enhance the mixing with the carbon nanotubes.
  • the graphene shredding method is preferably a shredding method through physical force in order to prevent performance degradation due to chemical shredding. For example, by adding beads to the graphene of the raw material and rotating them, physical crushing of the graphene can be performed. At this time, by adjusting the amount or rotation speed of the bead added, it is possible to adjust the size of the crushed graphene.
  • carbon nanotubes are mixed with the crushed mixture to form a mixture (S14).
  • the carbon nanotubes and the mixture is mixed in a mass ratio of about 1: 1 to 1: 3 in order to improve the mixing and dispersing characteristics of the carbon nanotubes and the field emission characteristics of the emitter manufactured through the carbon nanotubes. It is preferable.
  • the mixture of the graphene and the carbon nanotubes is dispersed in an organic binder to prepare a carbon nanotube paste having a predetermined viscosity (S16).
  • the viscosity of the carbon nanotube paste may be adjusted by adjusting the mixing amount of the organic binder.
  • the carbon nanotube paste prepared by the above manufacturing method may be used for the field emission emitter.
  • FIG. 2 is a flow chart showing a method of manufacturing a carbon nanotube emitter according to an embodiment of the present invention
  • Figure 3 is a view showing a surface treatment method of a carbon nanotube emitter according to an embodiment of the present invention.
  • a method of manufacturing a carbon nanotube emitter to prepare a carbon nanotube paste comprising a carbon nanotube, a mixture containing graphene and an organic binder
  • the carbon nanotube paste using the surface treatment apparatus 400 including a step (S10), printing and firing the carbon nanotube paste on the negative electrode 100 (S20), and a roller 410. And surface treating the surface of the calcined negative electrode 100 (S30).
  • the step of crushing the mixed material including graphene, mixing the carbon nanotubes with the crushed mixed material to prepare a mixture, and dispersing the mixture in an organic binder comprises the step of.
  • the carbon nanotube paste manufacturing method according to the present embodiment is substantially the same as the carbon nanotube paste manufacturing method shown in FIG. 1, the detailed description thereof will be omitted.
  • the carbon nanotube paste which has been manufactured, is screen-printed on the negative electrode 100 for manufacturing a carbon nanotube emitter, and then heated to a constant temperature to fire the carbon nanotube paste (S20). Perform.
  • a layer of carbon nanotubes 200 and graphene 300 are formed on the negative electrode 100.
  • the fired carbon nanotube paste is subjected to a surface treatment process using a surface treatment apparatus 400 (eg, a belt conveyor surface treatment apparatus of a roller substrate) including a roller 410 (S30). ).
  • a surface treatment apparatus 400 eg, a belt conveyor surface treatment apparatus of a roller substrate
  • a roller 410 S30.
  • the surface treatment process is performed in such a manner that the roller 410 is brought into contact with the calcined carbon nanotube paste at a constant speed and pressure by driving a belt conveyor of the surface treatment apparatus 400.
  • the graphene 300 Since the graphene 300 has a significantly lower adhesive force with surrounding molecules in a plate structure, through the surface treatment process, more than 90% of the graphene 300 and some carbon adhered to the graphene 300 are formed.
  • the nanotubes 200 are removed by adhesion with the rollers 410.
  • the carbon nanotubes 200 remaining after the surface treatment are directly adhered to the negative electrode 100, as shown in FIG. 3 (b), while the carbon nanotubes 200 may suppress the electric field screen effect. As much distance is formed.
  • Figure 4 is a graph showing the emission characteristics of the carbon nanotube emitter prepared by the present invention.
  • the carbon nanotube emitter prepared according to an embodiment of the present invention after aging (Aging) for 30 minutes under the conditions of 400V, 2.5mA, the field emission of the carbon nanotube emitter It can be seen that in the sustain, almost no current drop occurs.
  • the carbon nanotube emitter from the nano-carbon-based mixture of carbon nanotubes and graphene, the carbon nanotubes are directly adhered to the negative electrode during surface treatment, thereby reducing the characteristics of the carbon nanotubes during field emission. Suppressive and stable emission characteristics can be obtained.
  • carbon nanotubes attached to the graphene and more than 90% of the graphene during the surface treatment to give a considerable distance to suppress the electric field screen effect between the remaining carbon nanotubes, carbon nanotubes during field emission It can reduce the electrical stress applied to and obtain stable emission characteristics.
  • roller-based belt conveyor surface treatment devices can be used to easily produce uniform carbon nanotube emitters over a large area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The present invention relates to a carbon nanotube paste, a method for manufacturing the same, and a method for manufacturing a carbon nanotube emitter using the same, the carbon nanotube paste comprising: a carbon nanotube; an admixture comprising a graphene for mixing and dispersing the carbon nanotube; and an organic binder for bonding a mixture of the carbon nanotube and the adxmixture to an adherend. As such, a carbon nanotube emitter is directly formed in a cathode electrode having a large area, and at the same time, highly stable dispersion is achieved, whereby a stable emission current can be obtained.

Description

카본나노튜브 페이스트, 이의 제조방법 및 이를 이용한 카본나노튜브 에미터의 제조방법Carbon nanotube paste, preparation method thereof and preparation method of carbon nanotube emitter using the same
본 발명은 카본나노튜브(Carbon Nano Tube: CNT) 페이스트(Paste), 이의 제조방법, 및 이를 이용한 카본나노튜브 에미터(Emitter)의 제조방법에 관한 것으로, 더욱 상세하게는 그래핀을 이용하여 안정적인 에미션 전류를 얻을 수 있는 카본나노튜브 페이스트, 이의 제조방법 및 이를 이용한 카본나노튜브 에미터의 제조방법에 관한 것이다.The present invention relates to a carbon nanotube (CNT) paste, a method for preparing the same, and a method for manufacturing a carbon nanotube emitter using the same, and more specifically, stable using graphene. The present invention relates to a carbon nanotube paste capable of obtaining an emission current, a method for preparing the same, and a method for producing a carbon nanotube emitter using the same.
최근 디스플레이 기술이 발달함에 따라, 전통적인 음극선관(CRT: cathode ray display) 대신 평판표시장치가 널리 보급되고 있다. 이러한 평판표시장치로는 액정표시장치(LCD: liquid crystal display), 플라즈마 표시 패널(PDP: plasma display panel) 및 전계방출 표시장치(FED: field emission Display) 등이 대표적이다.Recently, with the development of display technology, flat panel displays have been widely used instead of the conventional cathode ray display (CRT). Such flat panel displays include liquid crystal displays (LCDs), plasma display panels (PDPs), field emission displays (FEDs), and the like.
전계방출이란 음전극에 형성된 끝이 뾰족한 도전성 에미터에 전기장이 인가되었을 때 전자가 진공 중으로 방출되는 현상으로, 이러한 원리를 이용한 디스플레이는 빠른 응답속도와 높은 화질 등 CRT의 장점을 계승하는 한편 발광효율이 높고 경량 박형화가 가능한 점에서 CRT의 단점을 획기적으로 개선한 차세대 디스플레이로 평가되고 있다.Field emission is a phenomenon in which electrons are released in a vacuum when an electric field is applied to a conductive emitter with a sharp tip formed on a negative electrode. The display using this principle inherits the advantages of CRT, such as fast response speed and high image quality, and has high luminous efficiency. It is highly regarded as a next-generation display that significantly improves the shortcomings of the CRT in that it can be thin and thin.
한편, 카본나노튜브는 높은 종횡비와 기계적 강도, 화학적 안정성, 고융점 등의 장점을 가진 소자로서, 발견 시부터 디스플레이 및 램프, 엑스선 발생장치 등 다양한 디바이스에 전자원으로서의 적용이 연구되어 왔으며, 전계방출 원리 에미터 중 가장 우수한 성능을 제공한다.On the other hand, carbon nanotubes have advantages such as high aspect ratio, mechanical strength, chemical stability, and high melting point, and since their discovery, their application as an electron source to various devices such as displays, lamps and X-ray generators has been studied. Principle Provides the best performance of the emitter.
카본나노튜브를 디바이스의 전자원으로서 이용하기 위해 카본나노튜브 에미터를 제작하는 두 가지 방법 중, 하나는 카본나노튜브를 음전극에 직접 성장 증착시키는 방법이고, 다른 하나는 카본나노튜브 페이스트를 스크린 프린팅하는 방법이다.One of two methods of fabricating carbon nanotube emitters to use carbon nanotubes as an electron source of a device, one is to grow and deposit carbon nanotubes directly on a negative electrode, and the other is screen printing carbon nanotube paste. That's how.
직접 성장 방법의 경우, 에미터의 카본나노튜브 형성 밀도를 제어할 수 있는 등의 장점이 있지만, 비용상의 문제로 대면적의 디바이스에 적용하기가 어려우며, 또한 성장 촉매의 제거 문제와 기판과의 접착 강도가 취약하다는 단점이 있다.The direct growth method has the advantage of controlling the density of carbon nanotube formation of the emitter, but it is difficult to apply to large-area devices due to the cost, and also the problem of removing the growth catalyst and adhesion to the substrate. The disadvantage is that the strength is weak.
반면, 카본나노튜브 페이스트의 스크린 프린팅 방법의 경우에는 프린팅을 통해 쉽고 저렴하게 음전극에 대면적의 카본나노튜브를 형성할 수 있지만, 상기 카본나노튜브 페이스트를 안정적인 에미터로 사용하기 위해서는, 카본나노튜브 페이스트의 바인더를 증발시키고 표면처리를 하며, 출력특성의 감소를 수렴시키는 에이징 과정을 통해 안정적인 에미터로 활성화하는 복잡한 단계를 거쳐야 한다.On the other hand, in the case of the screen printing method of carbon nanotube paste, carbon nanotube having a large area can be formed on the negative electrode easily and inexpensively through printing, but in order to use the carbon nanotube paste as a stable emitter, carbon nanotube The paste binder must be evaporated, surface treated, and subjected to a complex step of activating a stable emitter through an aging process that converges to a reduction in output characteristics.
따라서, 본 발명은 이와 같은 문제점을 감안한 것으로써, 본 발명은 전계방출 소자를 음전극에 효과적으로 분산시켜 안정적인 출력을 달성함과 동시에, 에미터의 제조 공정을 효과적으로 단축시킬 수 있는 카본나노튜브 페이스트, 이의 제조방법 및 이를 이용한 카본나노튜브 에미터의 제조방법을 제공한다.Accordingly, the present invention has been made in view of the above problems, and the present invention effectively disperses the field emission device in the negative electrode to achieve a stable output, and at the same time can effectively shorten the emitter manufacturing process, carbon nanotube paste, its It provides a manufacturing method and a method of manufacturing a carbon nanotube emitter using the same.
이러한 과제를 해결하는 본 발명의 일 실시예에 의한 카본나노튜브 페이스트는, 카본나노튜브, 상기 카본나노튜브를 혼합 및 분산시키기 위한 그래핀을 포함하는 혼합재, 및 상기 카본나노튜브와 상기 혼합재가 혼합된 혼합물을 피접착체에 접착시키기 위한 유기 바인더를 포함한다.Carbon nanotube paste according to an embodiment of the present invention for solving this problem, a carbon nanotube, a mixture containing graphene for mixing and dispersing the carbon nanotube, and the carbon nanotube and the mixture is mixed And an organic binder for adhering the prepared mixture to the adherend.
상기 카본나노튜브와 상기 혼합재는 1:1 ~ 1:3의 질량비로 혼합될 수 있다.The carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 to 1: 3.
본 발명의 예시적인 일 실시예에 의한 카본나노튜브 페이스트의 제조방법은, 그래핀을 포함하는 혼합재를 파쇄하는 단계, 파쇄된 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계, 및 상기 혼합물을 유기 바인더에 분산시키는 단계를 포함한다.Method of manufacturing a carbon nanotube paste according to an exemplary embodiment of the present invention, the step of crushing the mixture containing graphene, the step of preparing a mixture by mixing the carbon nanotubes in the crushed mixture, and the mixture Dispersing in an organic binder.
상기 혼합재를 파쇄하는 단계에서, 상기 혼합재는 물리력을 통해 45㎛ 이하의 크기로 파쇄될 수 있다.In the step of crushing the mixture, the mixture may be crushed to a size of 45㎛ or less through the physical force.
상기 혼합물을 제조하는 단계에서, 상기 카본나노튜브와 상기 혼합재는 1:1 ~ 1:3의 질량비로 혼합될 수 있다.In the step of preparing the mixture, the carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 to 1: 3.
본 발명의 예시적인 일 실시예에 의한 카본나노튜브 에미터의 제조방법은, 카본나노튜브, 그래핀을 포함하는 혼합재, 및 유기바인더를 포함하는 카본나노튜브 페이스트를 제조하는 단계, 상기 카본나노튜브 페이스트를 음전극에 프린팅 및 소성시키는 단계, 및 롤러를 포함하는 표면처리 장치를 이용하여, 상기 소성된 카본나노튜브 페이스트로부터 상기 그래핀 및 상기 그래핀에 점착된 상기 카본나노튜브를 상기 롤러와의 점착에 의해 제거하는 단계를 포함한다.Method of manufacturing a carbon nanotube emitter according to an exemplary embodiment of the present invention, the carbon nanotube, a mixture comprising graphene, and preparing a carbon nanotube paste comprising an organic binder, the carbon nanotube Printing and firing the paste on the negative electrode, and adhering the graphene and the carbon nanotubes adhered to the graphene from the calcined carbon nanotube paste with the roller using a surface treatment apparatus including a roller. Removing by.
상기 카본나노튜브 페이스트를 제조하는 단계는, 그래핀을 포함하는 혼합재를 파쇄하는 단계, 파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계, 및 상기 혼합물을 유기 바인더에 분산시키는 단계를 포함할 수 있다.The preparing of the carbon nanotube paste may include: crushing the mixed material including graphene, mixing the carbon nanotubes with the crushed mixed material, preparing a mixture, and dispersing the mixture in an organic binder. It may include.
또한, 상기 혼합물을 제조하는 단계에서, 상기 카본나노튜브와 상기 혼합재는 1:1 ~1:3의 질량비로 혼합될 수 있다.In addition, in the step of preparing the mixture, the carbon nanotubes and the mixture may be mixed in a mass ratio of 1: 1 ~ 1: 3.
이와 같은 카본나노튜브 페이스트, 이의 제조방법 및 이를 이용한 카본나노튜브 에미터의 제조방법에 따르면, 카본나노튜브와 그래핀이 혼합된 나노카본계 혼합물로 카본나노튜브 에미터를 제조함으로써, 표면처리 시 카본나노튜브가 직접 음전극에 점착되게 되어, 카본나노튜브의 전계방출 시 특성 감소를 억제하고 안정적인 에미션 특성을 얻을 수 있다. 또한, 표면처리 시 그래핀의 90% 이상 및 그래핀에 점착된 카본나노튜브를 제거하여 잔류 카본나노튜브들 사이에 전계 스크린 효과가 억제될 만큼의 상당한 거리를 부여함으로써, 전계방출 시 카본나노튜브에 인가되는 전기적 스트레스를 감소시키고 안정적인 에미션 특성을 얻을 수 있다. 더욱이, 롤러 기반의 벨트 컨베이어 표면처리 장치를 사용하여 대면적에 걸쳐 균일한 카본나노튜브 에미터를 용이하게 제조할 수 있다.According to such a carbon nanotube paste, a method for manufacturing the same, and a method for producing a carbon nanotube emitter using the same, a carbon nanotube emitter is manufactured from a nanocarbon-based mixture containing carbon nanotubes and graphene. Since the nanotubes are directly adhered to the negative electrode, it is possible to suppress the reduction of properties during field emission of the carbon nanotubes and to obtain stable emission characteristics. In addition, by removing the carbon nanotubes attached to the graphene and more than 90% of the graphene during the surface treatment to give a considerable distance to suppress the electric field screen effect between the remaining carbon nanotubes, carbon nanotubes during field emission It can reduce the electrical stress applied to and obtain stable emission characteristics. Moreover, roller-based belt conveyor surface treatment devices can be used to easily produce uniform carbon nanotube emitters over a large area.
도 1은 본 발명의 일 실시예에 따른 카본나노튜브 페이스트의 제조 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing carbon nanotube paste according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 카본나노튜브 에미터의 제조 방법을 나타낸 흐름도이다.2 is a flowchart illustrating a method of manufacturing a carbon nanotube emitter according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 카본나노튜브 에미터의 표면 처리 방법을 나타낸 도면이다.3 is a view showing a surface treatment method of a carbon nanotube emitter according to an embodiment of the present invention.
도 4는 본 발명에 의해 제조된 카본나노튜브 에미터의 에미션 특성을 나타낸 그래프이다.Figure 4 is a graph showing the emission characteristics of the carbon nanotube emitter prepared by the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and that one or more other features It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, actions, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail.
본 발명의 일 실시예에 따른 카본나노튜브 페이스트는 카본나노튜브와, 상기 카본나노튜브를 혼합 및 분산시키는 혼합재, 및 상기 카본나노튜브와 상기 혼합재가 혼합된 혼합물을 에미터의 음전극 등과 같은 피접착체에 접착시키기 위한 유기 바인더를 포함한다. Carbon nanotube paste according to an embodiment of the present invention is a carbon nanotube, a mixture for mixing and dispersing the carbon nanotube, and a mixture of the carbon nanotube and the mixture is an adhesive such as an emitter negative electrode And an organic binder for adhering to it.
상기 카본나노튜브와 같은 나노 물질은 분산이 이루어진 후 소정 기간이 경과하면 재결합(뭉침)하려는 특성이 있어, 이러한 카본나노튜브 페이스트를 그대로 에미터 제조에 사용하게 되면, 상기 카본나노튜브의 형성 밀도가 불균일하게 되어 전계 방출 특성이 떨어지게 된다. Nanomaterials, such as carbon nanotubes, have a property to recombine (agglomerate) after a predetermined period of time after dispersion is made, and when the carbon nanotube paste is used for manufacturing an emitter as it is, the formation density of the carbon nanotubes is increased. Nonuniformity results in poor field emission characteristics.
따라서, 에미터의 제조 시까지 상기 카본나노튜브의 안정적인 혼합 및 분산 특성을 유지하기 위하여, 카본나노튜브 페이스트에 고상의 혼합재가 첨가된다.Therefore, in order to maintain stable mixing and dispersing properties of the carbon nanotubes until the emitter is manufactured, a solid mixture is added to the carbon nanotube paste.
상기 혼합재는 그래핀 또는 그래핀을 주요 성분으로 하는 혼합물로 이루어진다. 상기 그래핀은 탄소원자들이 벌집 모양으로 얽혀 있는 얇은 판 형태의 나노 소재로써, 주변 분자들과의 점착력이 기존의 다른 나노파우더에 비해 현저하게 낮은 특성을 갖는다. 따라서, 상기 그래핀을 카본나노튜브 페이스트에 첨가함으로써, 카본나노튜브의 재결합을 효과적으로 방지하고, 카본나노튜브의 혼합 및 분산 특성을 향상시킬 수 있다.The mixture is composed of graphene or a mixture composed mainly of graphene. The graphene is a thin plate-shaped nanomaterial in which carbon atoms are entangled in a honeycomb shape, and has a significantly lower adhesive force with surrounding molecules than other conventional nanopowders. Therefore, by adding the graphene to the carbon nanotube paste, recombination of the carbon nanotubes can be effectively prevented, and the mixing and dispersion characteristics of the carbon nanotubes can be improved.
그래핀을 포함하는 상기 혼합재는 상기 카본나노튜브와 비교하여 질량 기준으로 약 1:1 ~ 1:3 의 비율로 첨가된다. 상기 카본나노튜브 페이스트에서 차지하는 상기 혼합재의 비중이 너무 작으면, 상기 카본나노튜브의 혼합 및 분산 특성이 떨어지게 된다. 반면, 상기 혼합재의 비중이 너무 크게 되면, 상기 카본나노튜브의 형성 밀도가 너무 작아지게 되어 에미터의 전계 방출 특성이 떨어지게 된다. 따라서, 상기 혼합재는 상기 카본나노튜브의 혼합 및 분산 특성과 에미터의 전계 방출 특성 등을 고려하여, 약 1:1 ~ 1:3 의 질량비로 혼합되는 것이 바람직하다.The mixture including graphene is added in a ratio of about 1: 1 to 1: 3 on a mass basis as compared to the carbon nanotubes. If the specific gravity of the mixture in the carbon nanotube paste is too small, the mixing and dispersing characteristics of the carbon nanotubes are deteriorated. On the other hand, if the specific gravity of the mixture is too large, the formation density of the carbon nanotubes is too small to reduce the field emission characteristics of the emitter. Therefore, the mixture is preferably mixed at a mass ratio of about 1: 1 to 1: 3 in consideration of the mixing and dispersing characteristics of the carbon nanotubes and the field emission characteristics of the emitter.
상기 유기 바인더는 상기 카본나노튜브와 상기 혼합재가 혼합된 혼합물을 에미터의 음전극 등과 같은 피접착체에 점착되도록 점성을 부여하는 역할을 한다. 상기 유기 바인더의 혼합 양을 조절함에 따라 상기 카본나노튜브 페이스트의 점도를 조절할 수 있다.The organic binder serves to impart viscosity such that the mixture of the carbon nanotubes and the mixture is adhered to an adherend such as a negative electrode of an emitter. The viscosity of the carbon nanotube paste may be adjusted by adjusting the mixing amount of the organic binder.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 카본나노튜브 페이스트의 제조 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing carbon nanotube paste according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 카본나노튜브 페이스트의 제조 방법은, 그래핀을 포함하는 혼합재를 파쇄하는 단계(S12), 파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계(S14), 및 상기 혼합물을 유기 바인더에 분산시키는 단계(S16)를 포함한다.Referring to Figure 1, the method for producing a carbon nanotube paste according to an embodiment of the present invention, the step of crushing the mixed material containing graphene (S12), by mixing the carbon nanotubes in the crushed mixed material mixture The manufacturing step (S14), and dispersing the mixture in an organic binder (S16).
상기 혼합재를 파쇄하는 단계(S12)에서는, 판 구조의 그래핀을 카본나노튜브와의 혼합성을 향상시키기 위하여 적당한 크기로 파쇄시킨다. 상기 그래핀의 크기가 너무 크면 카본나노튜브와의 혼합성이 떨어질 수 있으므로, 상기 그래핀은 상기 카본나노튜브와의 혼합성을 강화시키기 위하여, 약 45㎛ 이하의 크기로 파쇄되는 것이 바람직하다. In the step of crushing the mixed material (S12), the graphene of the plate structure is crushed to a suitable size in order to improve the mixing with the carbon nanotubes. If the size of the graphene is too large, the compatibility with the carbon nanotubes may be inferior, the graphene is preferably broken into a size of about 45㎛ or less, in order to enhance the mixing with the carbon nanotubes.
상기 그래핀의 파쇄 방법은, 화학적 파쇄에 의한 성능 저하를 방지하기 위하여, 물리력을 통한 파쇄 방법이 바람직하다. 예를 들어, 원재료의 그래핀에 비드를 첨가하고, 이를 회전시킴으로써, 그래핀의 물리적 파쇄를 수행할 수 있다. 이때, 첨가되는 비드의 양 또는 회전 속도 등을 조절함으로써, 파쇄되는 그래핀의 크기를 조절할 수 있다. The graphene shredding method is preferably a shredding method through physical force in order to prevent performance degradation due to chemical shredding. For example, by adding beads to the graphene of the raw material and rotating them, physical crushing of the graphene can be performed. At this time, by adjusting the amount or rotation speed of the bead added, it is possible to adjust the size of the crushed graphene.
상기 혼합재의 파쇄 후, 파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 형성한다(S14). 이때, 상기 카본나노튜브와 상기 혼합재는, 상기 카본나노튜브의 혼합 및 분산 특성과 이를 통해 제조된 에미터의 전계 방출 특성 등을 향상시키기 위하여, 약 1:1 ~ 1:3 의 질량비로 혼합되는 것이 바람직하다.After crushing the mixture, carbon nanotubes are mixed with the crushed mixture to form a mixture (S14). In this case, the carbon nanotubes and the mixture is mixed in a mass ratio of about 1: 1 to 1: 3 in order to improve the mixing and dispersing characteristics of the carbon nanotubes and the field emission characteristics of the emitter manufactured through the carbon nanotubes. It is preferable.
다음으로, 상기 그래핀과 상기 카본나노튜브가 혼합된 상기 혼합물을 유기 바인더에 분산시켜, 소정의 점도를 갖는 카본나노튜브 페이스트를 제조한다(S16). 이때, 상기 유기 바인더의 혼합 양을 조절함에 따라 상기 카본나노튜브 페이스트의 점도를 조절할 수 있다.Next, the mixture of the graphene and the carbon nanotubes is dispersed in an organic binder to prepare a carbon nanotube paste having a predetermined viscosity (S16). In this case, the viscosity of the carbon nanotube paste may be adjusted by adjusting the mixing amount of the organic binder.
한편, 상기한 제조 방법을 통해 제조된 카본나노튜브 페이스트는 전계방출용 에미터 등에 사용될 수 있다.On the other hand, the carbon nanotube paste prepared by the above manufacturing method may be used for the field emission emitter.
도 2는 본 발명의 일 실시예에 따른 카본나노튜브 에미터의 제조 방법을 나타낸 흐름도이며, 도 3은 본 발명의 일 실시예에 따른 카본나노튜브 에미터의 표면 처리 방법을 나타낸 도면이다.2 is a flow chart showing a method of manufacturing a carbon nanotube emitter according to an embodiment of the present invention, Figure 3 is a view showing a surface treatment method of a carbon nanotube emitter according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 카본나노튜브 에미터의 제조방법은, 카본나노튜브, 그래핀을 포함하는 혼합재 및 유기 바인더를 포함하는 카본나노튜브 페이스트를 제조하는 단계(S10)와, 상기 카본나노튜브 페이스트를 음전극(100) 상에 프린팅 및 소성시키는 단계(S20), 및 롤러(410)를 포함하는 표면처리 장치(400)를 이용하여, 상기 카본나노튜브 페이스트가 소성된 음전극(100)의 표면을 표면 처리하는 단계(S30)를 포함한다.2 and 3, a method of manufacturing a carbon nanotube emitter according to an embodiment of the present invention, to prepare a carbon nanotube paste comprising a carbon nanotube, a mixture containing graphene and an organic binder The carbon nanotube paste using the surface treatment apparatus 400 including a step (S10), printing and firing the carbon nanotube paste on the negative electrode 100 (S20), and a roller 410. And surface treating the surface of the calcined negative electrode 100 (S30).
상기 카본나노튜브 페이스트를 제조하는 단계(S10)는, 그래핀을 포함하는 혼합재를 파쇄하는 단계, 파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계, 및 상기 혼합물을 유기 바인더에 분산시키는 단계를 포함한다.In the preparing of the carbon nanotube paste (S10), the step of crushing the mixed material including graphene, mixing the carbon nanotubes with the crushed mixed material to prepare a mixture, and dispersing the mixture in an organic binder It comprises the step of.
본 실시예에 의한 카본나노튜브 페이스트 제조방법은, 도 1에 도시된 카본나노튜브 페이스트 제조방법과 실질적으로 동일하므로, 그와 관련된 중복되는 상세한 설명은 생략하기로 한다.Since the carbon nanotube paste manufacturing method according to the present embodiment is substantially the same as the carbon nanotube paste manufacturing method shown in FIG. 1, the detailed description thereof will be omitted.
다음으로, 제조가 완료된 상기 카본나노튜브 페이스트를 카본나노튜브 에미터의 제조를 위한 음전극(100) 상에 스크린 프린팅한 후, 일정한 온도로 가열하여 상기 카본나노튜브 페이스트를 소성하는 단계(S20)를 수행한다. 상기 카본나노튜브 페이스트의 소성 공정을 통해, 도 3(a)에 도시된 바와 같이, 음전극(100) 상에 카본나노튜브(200) 및 그래핀(300) 층이 형성된다.Next, the carbon nanotube paste, which has been manufactured, is screen-printed on the negative electrode 100 for manufacturing a carbon nanotube emitter, and then heated to a constant temperature to fire the carbon nanotube paste (S20). Perform. Through the firing process of the carbon nanotube paste, as shown in FIG. 3 (a), a layer of carbon nanotubes 200 and graphene 300 are formed on the negative electrode 100.
다음으로, 소성된 상기 카본나노튜브 페이스트에 대하여 롤러(410)를 포함하는 표면처리 장치(400)(예를 들어, 롤러 기판의 벨트 컨베이어 표면처리 장치)를 이용하여 표면처리 공정을 수행한다(S30).Next, the fired carbon nanotube paste is subjected to a surface treatment process using a surface treatment apparatus 400 (eg, a belt conveyor surface treatment apparatus of a roller substrate) including a roller 410 (S30). ).
상기 표면처리 공정은 상기 표면처리 장치(400)의 벨트 컨베이어의 구동을 통해 롤러(410)를 일정 속도 및 압력으로 상기 소성된 카본나노튜브 페이스트와 접촉시키는 방식으로 진행된다. The surface treatment process is performed in such a manner that the roller 410 is brought into contact with the calcined carbon nanotube paste at a constant speed and pressure by driving a belt conveyor of the surface treatment apparatus 400.
그래핀(300)은 판 구조로 주변 분자들과의 점착력이 현저하게 낮기 때문에, 이러한 표면처리 공정을 통해, 90% 이상의 그래핀(300)과, 그래핀(300)에 점착되어 있는 일부의 카본나노튜브(200)가 롤러(410)와의 점착에 의해 제거된다. 반면, 표면처리 후 잔류하는 카본나노튜브(200)는 도 3(b)에 도시된 바와 같이, 음전극(100)에 직접 점착되는 한편, 카본나노튜브들(200) 사이에는 전계 스크린 효과를 억제할 만큼의 상당한 거리가 형성된다.Since the graphene 300 has a significantly lower adhesive force with surrounding molecules in a plate structure, through the surface treatment process, more than 90% of the graphene 300 and some carbon adhered to the graphene 300 are formed. The nanotubes 200 are removed by adhesion with the rollers 410. On the other hand, the carbon nanotubes 200 remaining after the surface treatment are directly adhered to the negative electrode 100, as shown in FIG. 3 (b), while the carbon nanotubes 200 may suppress the electric field screen effect. As much distance is formed.
도 4는 본 발명에 의해 제조된 카본나노튜브 에미터의 에미션 특성을 나타낸 그래프이다.Figure 4 is a graph showing the emission characteristics of the carbon nanotube emitter prepared by the present invention.
도 4를 참조하면, 본 발명의 일 실시예에 의해 제조된 카본나노튜브 에미터를 400V, 2.5mA의 조건으로 30분간 에이징(Aging) 처리를 진행한 결과, 상기 카본나노튜브 에미터의 전계방출 지속 시, 전류 하강이 거의 발생되지 않는 것을 확인할 수 있다.Referring to Figure 4, the carbon nanotube emitter prepared according to an embodiment of the present invention after aging (Aging) for 30 minutes under the conditions of 400V, 2.5mA, the field emission of the carbon nanotube emitter It can be seen that in the sustain, almost no current drop occurs.
이상과 같이, 카본나노튜브와 그래핀이 혼합된 나노카본계 혼합물로 카본나노튜브 에미터를 제조함으로써, 표면처리 시 카본나노튜브가 직접 음전극에 점착되게 되어, 카본나노튜브의 전계방출 시 특성 감소를 억제하고 안정적인 에미션 특성을 얻을 수 있다. 또한, 표면처리 시 그래핀의 90% 이상 및 그래핀에 점착된 카본나노튜브를 제거하여 잔류 카본나노튜브들 사이에 전계 스크린 효과를 억제할 만큼의 상당한 거리를 부여함으로써, 전계방출 시 카본나노튜브에 인가되는 전기적 스트레스를 감소시키고 안정적인 에미션 특성을 얻을 수 있다. 더욱이, 롤러 기반의 벨트 컨베이어 표면처리 장치를 사용하여 대면적에 걸쳐 균일한 카본나노튜브 에미터를 용이하게 제조할 수 있다.As described above, by manufacturing the carbon nanotube emitter from the nano-carbon-based mixture of carbon nanotubes and graphene, the carbon nanotubes are directly adhered to the negative electrode during surface treatment, thereby reducing the characteristics of the carbon nanotubes during field emission. Suppressive and stable emission characteristics can be obtained. In addition, by removing the carbon nanotubes attached to the graphene and more than 90% of the graphene during the surface treatment to give a considerable distance to suppress the electric field screen effect between the remaining carbon nanotubes, carbon nanotubes during field emission It can reduce the electrical stress applied to and obtain stable emission characteristics. Moreover, roller-based belt conveyor surface treatment devices can be used to easily produce uniform carbon nanotube emitters over a large area.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다. 따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어져야 한다.In the detailed description of the present invention described above with reference to the preferred embodiments of the present invention, those skilled in the art or those skilled in the art having ordinary skill in the art will be described in the claims to be described later And various modifications and variations of the present invention without departing from the scope of the art. Therefore, the above description and the drawings below should be construed as illustrating the present invention, not limiting the technical spirit of the present invention.

Claims (9)

  1. 카본나노튜브;Carbon nanotubes;
    상기 카본나노튜브를 혼합 및 분산시키기 위한 그래핀을 포함하는 혼합재; 및A mixed material including graphene for mixing and dispersing the carbon nanotubes; And
    상기 카본나노튜브와 상기 혼합재가 혼합된 혼합물을 피접착체에 접착시키기 위한 유기 바인더를 포함하는 카본나노튜브 페이스트.A carbon nanotube paste comprising an organic binder for adhering the mixture of the carbon nanotubes and the mixture to an adherend.
  2. 제1항에 있어서,The method of claim 1,
    상기 카본나노튜브와 상기 혼합재는 1:1 ~ 1:3의 질량비로 혼합되는 것을 특징으로 하는 카본나노튜브 페이스트.The carbon nanotube paste and the carbon nanotube paste, characterized in that the mixture is mixed in a mass ratio of 1: 1 to 1: 3.
  3. 그래핀을 포함하는 혼합재를 파쇄하는 단계;Crushing the mixture comprising graphene;
    파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계; 및Preparing a mixture by mixing carbon nanotubes in the crushed mixture; And
    상기 혼합물을 유기 바인더에 분산시키는 단계를 포함하는 카본나노튜브 페이스트의 제조방법.Method of producing a carbon nanotube paste comprising the step of dispersing the mixture in an organic binder.
  4. 제3항에 있어서,The method of claim 3,
    상기 혼합재를 파쇄하는 단계에서, 상기 혼합재는 물리력을 통해 45㎛ 이하의 크기로 파쇄되는 것을 특징으로 하는 카본나노튜브 페이스트의 제조방법.In the step of crushing the mixture, the mixture is pulverized to a size of 45㎛ or less through the physical force, characterized in that the manufacturing method of the carbon nanotube paste.
  5. 제3항에 있어서,The method of claim 3,
    상기 혼합물을 제조하는 단계에서,In the step of preparing the mixture,
    상기 카본나노튜브와 상기 혼합재는 1:1 ~ 1:3의 질량비로 혼합되는 것을 특징으로 하는 카본나노튜브 페이스트의 제조방법.The carbon nanotubes and the mixture is a method of producing a carbon nanotube paste, characterized in that mixed in a mass ratio of 1: 1 ~ 1: 3.
  6. 카본나노튜브, 그래핀을 포함하는 혼합재 및 유기바인더를 포함하는 카본나노튜브 페이스트를 제조하는 단계;Preparing a carbon nanotube paste including a carbon nanotube, a graphene-containing mixture, and an organic binder;
    상기 카본나노튜브 페이스트를 음전극에 프린팅 및 소성시키는 단계; 및Printing and firing the carbon nanotube paste on a negative electrode; And
    롤러를 포함하는 표면처리 장치를 이용하여, 상기 소성된 카본나노튜브 페이스트로부터 상기 그래핀 및 상기 그래핀에 점착된 상기 카본나노튜브를 상기 롤러와의 점착에 의해 제거하는 단계를 포함하는 카본나노튜브 에미터의 제조방법.Carbon nanotubes comprising the step of removing the graphene and the carbon nanotubes adhered to the graphene from the calcined carbon nanotube paste by adhesion with the rollers using a surface treatment apparatus including a roller. Method of making emitters.
  7. 제6항에 있어서,The method of claim 6,
    상기 카본나노튜브 페이스트를 제조하는 단계는,The step of preparing the carbon nanotube paste,
    그래핀을 포함하는 혼합재를 파쇄하는 단계;Crushing the mixture comprising graphene;
    파쇄된 상기 혼합재에 카본나노튜브를 혼합하여 혼합물을 제조하는 단계; 및Preparing a mixture by mixing carbon nanotubes in the crushed mixture; And
    상기 혼합물을 유기 바인더에 분산시키는 단계를 포함하는 카본나노튜브 에미터의 제조방법.Method of producing a carbon nanotube emitter comprising the step of dispersing the mixture in an organic binder.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 혼합재를 파쇄하는 단계에서, 상기 혼합재는 물리력을 통해 45㎛ 이하의 크기로 파쇄되는 것을 특징으로 하는 카본나노튜브 에미터의 제조방법.In the step of crushing the mixture, the mixture is crushed to a size of 45㎛ or less through the physical force, characterized in that the manufacturing method of the carbon nanotube emitter.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 혼합물을 제조하는 단계에서,In the step of preparing the mixture,
    상기 카본나노튜브와 상기 혼합재는 1:1 ~ 1:3의 질량비로 혼합되는 것을 특징으로 하는 카본나노튜브 에미터의 제조방법.The carbon nanotubes and the mixture is a method of producing a carbon nanotube emitter, characterized in that mixed in a mass ratio of 1: 1 ~ 1: 3.
PCT/KR2016/000046 2015-01-05 2016-01-05 Carbon nanotube paste, method for manufacturing same, and method for manufacturing carbon nanotube emitter using same WO2016111518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0000684 2015-01-05
KR1020150000684A KR101672318B1 (en) 2015-01-05 2015-01-05 Carbon Nanotube Paste, Method For Manufacturing Thereof And Method For Manufacturing CNT Emitter Using The Same

Publications (1)

Publication Number Publication Date
WO2016111518A1 true WO2016111518A1 (en) 2016-07-14

Family

ID=56356155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000046 WO2016111518A1 (en) 2015-01-05 2016-01-05 Carbon nanotube paste, method for manufacturing same, and method for manufacturing carbon nanotube emitter using same

Country Status (2)

Country Link
KR (1) KR101672318B1 (en)
WO (1) WO2016111518A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099892A (en) * 2004-04-12 2005-10-17 엘지전자 주식회사 Post-treatment method of printed carbon nanotube for electron field emission device
KR20110087456A (en) * 2010-01-26 2011-08-03 숭실대학교산학협력단 Effective dispersion of carbon nano material to generate electrically high performance polymer
KR101309537B1 (en) * 2012-04-06 2013-10-14 (주) 브이에스아이 Carbon nanotube paste and manufacturing method of carbon nanotube paste
KR20140080782A (en) * 2012-12-18 2014-07-01 한국과학기술원 Cement Compound with Carbon Nanotube and Method for Manufacturing Thereof
KR20140142200A (en) * 2014-10-30 2014-12-11 세종대학교산학협력단 Carbon nanotube paste for field emission device, Emitter using the same and Field emission device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777113B1 (en) 2006-12-07 2007-11-19 한국전자통신연구원 The fine patternable cnt emitter manufacturing method of with high reliability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099892A (en) * 2004-04-12 2005-10-17 엘지전자 주식회사 Post-treatment method of printed carbon nanotube for electron field emission device
KR20110087456A (en) * 2010-01-26 2011-08-03 숭실대학교산학협력단 Effective dispersion of carbon nano material to generate electrically high performance polymer
KR101309537B1 (en) * 2012-04-06 2013-10-14 (주) 브이에스아이 Carbon nanotube paste and manufacturing method of carbon nanotube paste
KR20140080782A (en) * 2012-12-18 2014-07-01 한국과학기술원 Cement Compound with Carbon Nanotube and Method for Manufacturing Thereof
KR20140142200A (en) * 2014-10-30 2014-12-11 세종대학교산학협력단 Carbon nanotube paste for field emission device, Emitter using the same and Field emission device using the same

Also Published As

Publication number Publication date
KR20160084148A (en) 2016-07-13
KR101672318B1 (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP2011100737A (en) Paste for manufacturing electron field emitter, and usage thereof
US7750544B2 (en) Electron emitter composition made of an electron emitting substance and an expansion material for expansion of the electron emitting substance
US20100296842A1 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP2004276232A (en) Carbon nanotube dispersion liquid and method of manufacturing the same
JP2002255528A (en) Fine particle dispersed liquid and its producing method
US8202749B1 (en) Array of aligned and dispersed carbon nanotubes and method of producing the array
JP2004519066A (en) Catalytically grown carbon fiber field emitter and field emitter cathode made therefrom
WO2016111518A1 (en) Carbon nanotube paste, method for manufacturing same, and method for manufacturing carbon nanotube emitter using same
KR101533048B1 (en) Field electron emitter containing nucleic acid coated carbon nanotube and methode for manufactring the same
WO2016111405A1 (en) Carbon nanotube paste for a high power field emission emitter and method of manufacturing the same
CN101192493B (en) Anode device and its producing method
CN102067265A (en) Method for manufacturing plasma display panel
KR20070078221A (en) Method of preparing a carbon nanotube paste having high dispersability
TW480537B (en) Method for enhancing emission efficiency of carbon nanotube emission source field
US8628370B2 (en) Method for making cathode slurry
CN101794696A (en) Preparation method of carbon nanotube field emission cathode for improving field emission characteristics
CN105448624B (en) The preparation method of field-transmitting cathode
KR100647439B1 (en) Manufacturing method of electron field emitter based on Nano Carbon for Electron Emission
KR100508544B1 (en) Method for manufacturing carbon nanotube - emitter performing field emission
KR101100820B1 (en) A composition for preparing an electron emitter, the electron emitter prepared using the composition, and an electron emission device comprising the electron emitter
Mo et al. P‐104: A New Cathode Treatment Method in CNT‐FED Manufacturing
KR20210044385A (en) Method of carbon nanotube process using dc magnetron plasma, and field emitter using thereof
US20070284989A1 (en) Composition for preparing electron emission source, electron emitter prepared using the composition, electron emission device including the electron emitter, and method of preparing the electron emitter
KR20140142200A (en) Carbon nanotube paste for field emission device, Emitter using the same and Field emission device using the same
KR20060005846A (en) Fabrication method of the fluorescent powder and fluorescent screen mixed carbonnanotubes for cathode luminescence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED09/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16735139

Country of ref document: EP

Kind code of ref document: A1