WO2016110930A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2016110930A1
WO2016110930A1 PCT/JP2015/050008 JP2015050008W WO2016110930A1 WO 2016110930 A1 WO2016110930 A1 WO 2016110930A1 JP 2015050008 W JP2015050008 W JP 2015050008W WO 2016110930 A1 WO2016110930 A1 WO 2016110930A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fins
boss portion
tube
air conditioner
Prior art date
Application number
PCT/JP2015/050008
Other languages
French (fr)
Japanese (ja)
Inventor
央 眞下
和樹 岡田
瑞朗 酒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050008 priority Critical patent/WO2016110930A1/en
Priority to JP2016568183A priority patent/JP6316458B2/en
Priority to CN201520910444.9U priority patent/CN205156305U/en
Publication of WO2016110930A1 publication Critical patent/WO2016110930A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely

Definitions

  • the present invention relates to an air conditioner including a heat exchanger.
  • Patent Document 1 discloses an outdoor unit of an air conditioner that includes a heat exchanger having a flat plate-shaped heat exchanging part arranged in a lateral direction of a housing and a blower arranged to face the heat exchanging part. Yes.
  • the heat exchanger when the heat exchanger is viewed from the direction of the rotation axis of the propeller fan of the blower, the heat exchange part has a substantially square shape.
  • Patent Document 1 attempts to save energy by suppressing variations in wind speed distribution in the heat exchange section, increasing the heat exchange amount per unit area. Further, Patent Document 1 intends to save resources by increasing the heat exchange amount without increasing the volume of the heat exchange section.
  • the present invention has been made against the background of the above problems, and provides an air conditioner that improves the heat exchange efficiency of the heat exchanger and is excellent in noise reduction.
  • An air conditioner according to the present invention is provided with a casing, a plurality of fins provided in the casing and spaced apart from each other in the lateral direction, and the plurality of fins, and a heat medium flows therethrough.
  • a flat plate-shaped heat exchanger having a tube, and a boss portion and an impeller that rotates around the boss portion.
  • the heat exchanger is disposed inside the housing so as to face the heat exchanger, and is rotated by the rotation of the impeller. And at least a part of the plurality of fins in the heat exchanger is inclined toward the boss portion.
  • the plurality of fins are inclined toward the boss portion. For this reason, the heat exchange efficiency of the heat exchanger is improved, and noise reduction can be realized.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 includes a heat medium circuit 2.
  • the compressor 11, the heat exchanger 13, the expansion unit 14, and the indoor heat exchanger 15 are connected by piping, and the heat medium flows.
  • the heat medium circuit 2 also has, for example, a four-way switching valve 12.
  • the air conditioner 1 includes a blower 13 a that is disposed to face the heat exchanger 13 and an indoor blower 15 a that is disposed to face the indoor heat exchanger 15.
  • the air conditioning apparatus 1 has the outdoor unit 3 and the indoor unit 4, for example. Inside the outdoor unit 3, a compressor 11, a four-way switching valve 12, a heat exchanger 13, a blower 13 a and an expansion unit 14 are installed. Inside the indoor unit 4, an indoor heat exchanger 15 and An indoor blower 15a is installed.
  • the compressor 11 compresses the refrigerant vapor and can be, for example, a scroll type.
  • the four-way switching valve 12 has a first port 12a, a second port 12b, a third port 12c, and a fourth port 12d.
  • the first port 12 a is connected to a discharge pipe 11 a that is a pipe on the discharge side of the compressor 11.
  • the second port 12 b is connected to the indoor heat exchanger 15.
  • the third port 12 c is connected to a suction pipe 11 b that is the suction side of the compressor 11.
  • the fourth port 12d is connected to the heat exchanger 13.
  • the four-way switching valve 12 is connected to the third port 12c and the fourth port 12d when the first port 12a and the second port 12b are connected (solid line in FIG. 1). .
  • the second port 12b and the third port 12c are connected (broken line in FIG. 1). .
  • the heat exchanger 13 is for exchanging heat between, for example, a heat medium flowing inside the outdoor air.
  • the heat exchanger 13 includes fins 41 and tubes 42 (see FIG. 3), and the fins 41 and the tubes 42 are made of, for example, aluminum.
  • the heat exchanger 13 acts as an evaporator in the heating operation, and acts as a condenser in the cooling operation.
  • the blower 13 a blows outdoor air to the heat exchanger 13, for example, and discharges the outdoor air heat-exchanged with the heat medium circulating in the heat exchanger 13 to the outside of the outdoor unit 3.
  • the expansion part 14 depressurizes the heat medium, and is, for example, an electronic expansion valve.
  • the indoor heat exchanger 15 is for exchanging heat between, for example, a heat medium flowing inside the indoor heat exchanger 15 and indoor air.
  • the indoor heat exchanger 15 has fins (not shown) and tubes (not shown), and the fins and tubes are made of, for example, aluminum.
  • the indoor heat exchanger 15 acts as a condenser in the heating operation, and acts as an evaporator in the cooling operation.
  • the indoor blower 15a blows indoor air to the indoor heat exchanger 15, and blows outdoor air heat-exchanged with the heat medium circulating in the indoor heat exchanger 15 from the indoor unit 4 into the room. is there.
  • the heat medium is, for example, ammonia refrigerant or chlorofluorocarbon refrigerant, but is not limited thereto, and other refrigerants may be used.
  • the heat medium circuit 2 is a circuit in which a vapor compression refrigeration cycle is configured by circulating a heat medium through a pipe.
  • the four-way switching valve 12 is connected to the first port 12a and the second port 12b, and is connected to the third port 12c and the fourth port 12d (solid line in FIG. 1). .
  • the compressor 11 sucks the heat medium, compresses the heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state.
  • the discharged heat medium passes through the first port 12a and the second port 12b of the four-way switching valve 12, flows into the indoor heat exchanger 15, and the indoor heat exchanger 15 is supplied from the indoor blower 15a.
  • the heat medium is condensed by heat exchange with the supplied indoor air.
  • the indoor blower 15a blows indoor air heated by heat exchange into the room. Thereby, the room is heated.
  • the condensed heat medium flows into the expansion unit 14, and the expansion unit 14 depressurizes the condensed heat medium.
  • the reduced-pressure heat medium flows into the heat exchanger 13, and the heat exchanger 13 evaporates the heat medium by heat exchange with outdoor air supplied from the blower 13a.
  • the evaporated heat medium passes through the fourth port 12d and the third port 12c of the four-way switching valve 12, and is sucked into the compressor 11.
  • the four-way switching valve 12 is connected to the first port 12a and the fourth port 12d, and is connected to the second port 12b and the third port 12c (broken line in FIG. 1). .
  • the compressor 11 sucks the heat medium, compresses the heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state.
  • the discharged heat medium passes through the first port 12a and the fourth port 12d of the four-way switching valve 12, flows into the heat exchanger 13, and the heat exchanger 13 is supplied from the blower 13a.
  • the heat medium is condensed by heat exchange with outdoor air.
  • the condensed heat medium flows into the expansion unit 14, and the expansion unit 14 decompresses the condensed heat medium.
  • the decompressed heat medium flows into the indoor heat exchanger 15, and the indoor heat exchanger 15 evaporates the heat medium by heat exchange with indoor air supplied from the indoor blower 15a. At this time, the indoor blower 15a blows indoor air cooled by heat exchange into the room. Thereby, the room is cooled.
  • the evaporated heat medium passes through the second port 12b and the third port 12c of the four-way switching valve 12, and is sucked into the compressor 11.
  • FIG. 2 is a top cross-sectional view showing the outdoor unit 3 according to Embodiment 1 of the present invention.
  • the outdoor unit 3 has a rectangular parallelepiped casing 31 in a plan view (a top view).
  • the housing 31 is divided into two in the width direction by a flat partition plate 32.
  • One side of the casing 31 is a machine room 31a, and the other side of the casing 31 is a blower chamber 31b.
  • the compressor 11, the four-way switching valve 12, and the expansion part 14 are accommodated in the machine room 31a, and the heat exchanger 13 and the air blower 13a are accommodated in the ventilation chamber 31b.
  • the blower chamber 31b is surrounded on all sides by a flat bottom plate 33, a flat side panel 34, a partition plate 32, and a flat top plate (not shown). And the suction part 35 which inhales air is formed in the back surface of the ventilation chamber 31b. Moreover, the blowing part 36 from which air is blown out is formed in the front of the ventilation chamber 31b. A cylindrical bell mouth 36 a is attached to the peripheral portion of the blowing portion 36.
  • the heat exchanger 13 is installed on the suction portion 35 side, that is, on the upstream side of the air flow.
  • the blower 13a is installed on the outlet 36 side, that is, on the downstream side of the air flow. They are arranged facing each other.
  • the air blower 13a may be arrange
  • the heat exchanger 13 may be arrange
  • the blower 13a has a boss portion 21 and an impeller 22.
  • the boss portion 21 is a cylindrical member provided at the center of the blower 13a, for example, and is connected to an output shaft of a motor (not shown). And the boss
  • the impeller 22 is composed of a plurality of wings, and is provided on the outer periphery of the boss portion 21. The plurality of wings are arranged at intervals in the circumferential direction around the boss portion 21. The impeller 22 rotates around the boss portion 21.
  • the blower 13a blows out the air inside the blower chamber 31b from the blowout part 36.
  • the inside of the ventilation chamber 31b becomes a negative pressure
  • the outdoor air around the outdoor unit 3 is sucked from the suction portion 35.
  • the outdoor air sucked from the suction part 35 is heat-exchanged with the heat medium in the heat exchanger 13.
  • FIG. 3 is a front view showing the heat exchanger 13 according to Embodiment 1 of the present invention.
  • the heat exchanger 13 will be described in detail.
  • the heat exchanger 13 has a flat plate shape and includes a plurality of fins 41 and a plurality of tubes 42. Further, the heat exchanger 13 has a header 43 and a bend pipe 44.
  • the heat exchanger 13 has a rectangular shape with a wide width in the lateral direction when viewed in the direction of the rotation axis of the boss portion 21.
  • the plurality of fins 41 are arranged at intervals in the lateral direction of the heat exchanger 13 and have a flat plate shape.
  • the fin 41 has a notch (not shown) into which the tube 42 is inserted by being cut out from one end thereof. Note that the cutout portion is cut out from one end portion by a length equal to or longer than the width of the tube 42 in the long axis direction.
  • the plurality of tubes 42 penetrates the plurality of fins 41 in the lateral direction, and the heat medium circulates therein.
  • the heat medium flows through at least one flow path (not shown) provided inside the fin 41.
  • the tube 42 is, for example, a flat tube, and its cross section has a shape obtained by rounding a rectangle having a high aspect ratio.
  • the tube 42 is a hollow metal having high thermal conductivity such as aluminum.
  • a plurality of tubes 42 are arranged in a step direction parallel to the gravity direction (longitudinal direction of the fins 41).
  • FIG. 3 shows an example in which 10 stages of tubes 42 are arranged.
  • the tube 42 is inserted into a notch formed at one end of the fin 41.
  • the header 43 is connected to one end portion of the plurality of tubes 42, and causes the refrigerant flowing from the four-way switching valve 12 or the expansion portion 14 through the inflow pipe 43 a to branch into the plurality of tubes 42.
  • the bend pipe 44 connects the other ends of the tubes 42 adjacent in the step direction, and has, for example, a U shape.
  • each bend pipe 44 connects the other end of the first-stage tube 42a and the other end of the second-stage tube 42b.
  • the other end of the tube 42c is connected to the other end of the fourth-stage tube 42d
  • the other end of the fifth-stage tube 42e is connected to the other end of the sixth-stage tube 42f
  • 7 The other end of the stage tube 42g and the other end of the eighth stage tube 42h are connected, and the other end of the ninth stage tube 42i and the other end of the tenth stage tube 42j are connected.
  • the other end parts of the tube 42 have illustrated the structure connected by the bend pipe
  • FIG. 4 is a top view showing the heat exchanger 13 and the blower 13a according to Embodiment 1 of the present invention.
  • the arrangement of the fins 41 of the heat exchanger 13 will be described.
  • in the heat exchanger 13 at least some of the plurality of fins 41 are inclined toward the boss portion 21 of the blower 13a.
  • the air flow in the blower 13 a is parallel to the rotation axis direction of the boss portion 21 in the boss portion 21.
  • the air flow in the blower 13 a is inclined toward the boss portion 21 with respect to the rotation axis direction of the boss portion 21 as it goes outward from the boss portion 21.
  • the inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss 21 to the outer fin 41 among the plurality of fins 41. That is, one end portion on the blower 13a side in the width direction of the fin 41 is closer to the extension line in the rotation axis direction of the boss portion 21 than the other end portion.
  • FIG. 5 is a top view showing the heat exchanger 13 and the blower 13a according to the first embodiment of the present invention.
  • the plurality of fins 41 includes a first fin group 41a and a second fin group 41b.
  • the first fin group 41a faces the boss portion 21 and is disposed perpendicular to the tube axis direction of the tube 42 in plan view. That is, the arrangement angle formed by the first fin group 41a and the extension line in the rotation axis direction of the boss portion 21 is 0 °.
  • the first fin group 41 a faces only the boss portion 21.
  • the second fin group 41b is further away from the boss portion 21 than the first fin group 41a and is inclined toward the blower 13a.
  • the second fin group 41b has a plurality of fin groups, and the inclination angle is larger on the side away from the boss portion 21 than on the first fin group 41a side.
  • the second fin group 41b includes an inner fin group 41c, an intermediate fin group 41d, and an outer fin group 41e.
  • the inner fin group 41 c is adjacent to the first fin group 41 a and ranges from the side edge of the boss portion 21 to N (mm) in the width direction of the heat exchanger 13.
  • hub part 21 make is (alpha) degrees.
  • the middle fin group 41d is adjacent to the inner fin group 41c and ranges from the side edge of the inner fin group 41c to M (mm) in the width direction of the heat exchanger 13.
  • the arrangement angle formed by the middle fin group 41d and the extension line of the boss portion 21 in the rotation axis direction is ⁇ °.
  • the outer fin group 41e is adjacent to the middle fin group 41d and is in a range of L (mm) from the side edge of the middle fin group 41d to the header 43.
  • hub part 21 make is (theta) degrees.
  • the plurality of fins 41 in the heat exchanger 13 are arranged symmetrically with respect to the extension line in the rotation axis direction of the boss portion 21 when viewed in the longitudinal direction of the fins 41.
  • ⁇ ⁇ ⁇ holds for the arrangement angle. That is, the inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss portion 21 toward the outer fin 41 among the plurality of fins 41. Note that relationships of 0 ° ⁇ ⁇ 10 °, 5 ° ⁇ ⁇ 15 °, and 8 ° ⁇ ⁇ 20 ° hold. Further, assuming that the half value of the stacking width, which is the width from one side of the plurality of fins 41 of the heat exchanger 13 to the other side, is T, the relationship N + M ⁇ T is established.
  • the air conditioner 1 As described above, in the air conditioner 1, at least a part of the plurality of fins 41 is inclined toward the boss portion 21 of the blower 13a.
  • the flow direction of the air which passes the heat exchanger 13 corresponds with the air blowing direction in the air blower 13a. For this reason, pressure loss is reduced. Thereby, the heat exchange efficiency of the heat exchanger 13 can be improved, and low noise can be realized.
  • the inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss portion 21 toward the outer fin 41 among the plurality of fins 41.
  • the air flow in the blower 13 a is parallel to the rotation axis direction of the boss portion 21 in the boss portion 21.
  • the air flow in the blower 13 a gradually inclines toward the boss portion 21 with respect to the rotation axis direction of the boss portion 21 as it goes outward from the boss portion 21.
  • the inclination angle increases from the fin 41 facing the boss portion 21 toward the outer fin 41, so the flow direction of the air passing through the heat exchanger 13 is The air blowing direction in the blower 13a is more consistent. For this reason, the pressure loss is further reduced, the heat exchange efficiency of the heat exchanger 13 is further improved, and noise reduction can be realized.
  • the plurality of fins 41 in the heat exchanger 13 are arranged in line symmetry with respect to the extension line in the rotation axis direction of the boss portion 21 when viewed in the longitudinal direction of the fins 41.
  • the distribution of the air flowing by the blower 13a becomes uniform in the width direction of the heat exchanger 13. For this reason, the pressure loss is further reduced, the heat exchange efficiency of the heat exchanger 13 is further improved, and noise reduction can be realized.
  • the heat exchanger 13 has a rectangular shape with a wide lateral width when viewed in the direction of the rotation axis of the boss portion 21.
  • the width of the heat exchanger 13 is wider than that of the blower 13a, the heat exchanger 13 is separated from the blower 13a and the pressure loss increases as the side end of the heat exchanger 13 is approached.
  • the plurality of fins 41 are inclined toward the boss portion 21 of the blower 13a.
  • the flow direction of the air which passes the heat exchanger 13 corresponds with the air blowing direction in the air blower 13a.
  • this Embodiment 1 makes the heat exchanger 13 rectangular shape with a wide width
  • the heat exchanger 13 is manufactured by inserting the tube 42 into the notch portion of the fin 41. For this reason, even in the heat exchanger 13 in which the arrangement angles of the plurality of fins 41 are different, it can be easily manufactured.
  • FIG. 6 is a top view showing the heat exchanger 113 and the blower 13a in the comparative example.
  • the air conditioning apparatus 100 in a comparative example is demonstrated.
  • the air flow direction in the heat exchanger 113 is the same throughout the heat exchanger 113.
  • the direction of air flow provided by the blower 13a is different in the entire blower 13a.
  • the flow direction of the air which passes the heat exchanger 113 does not correspond with the flow direction of the air which the air blower 13a brings. Therefore, pressure loss occurs. Thereby, the heat exchange efficiency of the heat exchanger 113 is inferior, and noise is also generated.
  • FIG. 7 is a top view showing the heat exchanger 213 and the blower 13a according to the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment in that a plurality of tubes 42 are arranged in parallel to the air blowing direction in the blower 13a.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • a plurality of tubes 42 are arranged in the row direction that is the rotation axis direction of the boss portion 21 in a plan view.
  • FIG. 7 shows an example in which the tubes 42 are arranged in two rows in the row direction.
  • Each of the plurality of fins 241 in the heat exchanger 213 has an integral shape penetrating all of the plurality of tubes 42.
  • the fin 241 has a notch (not shown) cut out from one end by a length equal to or longer than the sum of the widths of the two tubes 42 in the major axis direction.
  • the two tubes 42 are inserted in a notch part in the state adjacent to the major axis direction.
  • the heat exchange efficiency of the heat exchanger 213 is improved by arranging the tubes 42 in a plurality of rows.
  • the plurality of fins 241 have an integral shape, the seam between the fins is eliminated as compared to the case where individual fins are provided for each row of the tubes 42, so that pressure loss is further reduced. Thereby, the heat exchange efficiency of the heat exchanger 213 can be improved, and noise reduction can be realized.
  • the plurality of fins 241 may be individually provided for each row of the tubes 42 instead of being integrally formed. Further, the cutout portion may be cut out from both ends by a length equal to or longer than the width of the single tube 42 in the long axis direction. In this case, one tube 42 is inserted into a notch at one end of the fin 241, and the other tube 42 is inserted into a notch at the other end of the fin 241.
  • the heat exchanger 13 illustrated what was provided outdoors, it is good also as an indoor heat exchanger provided indoors.
  • the fin 41 of the heat exchanger 13 has the 1st fin group 41a which opposes the boss

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This air conditioning device 1 is at least provided with: a casing 31; a plate-shaped heat exchanger 13 that is provided in the casing 31 and has a plurality of fins 41 spaced from each other in the lateral direction, and a tube 42 running through the plurality of fins 41 and having a heat medium circulating therein; and a blower 13a that has a boss part 21 and an impeller 22 rotating about the boss part 21, is arranged so as to face the heat exchanger 13 in the casing 31, and blows air to the heat exchanger 13 by the rotation of the impeller 22. At least some of the plurality of fins 41 in the heat exchanger 13 incline toward the boss part 21.

Description

空気調和装置Air conditioner
 本発明は、熱交換器を備える空気調和装置に関する。 The present invention relates to an air conditioner including a heat exchanger.
 近年、地球環境保護の観点から、空気調和装置を省エネルギ化するために、様々な取り組みが行われている。また、空気調和装置から生じる騒音に関する問題は、多岐にわたっており、空気調和装置の低騒音化が推進されている。 In recent years, various efforts have been made to save energy in air conditioners from the viewpoint of protecting the global environment. Moreover, the problem regarding the noise which arises from an air conditioning apparatus is various, and the noise reduction of an air conditioning apparatus is promoted.
 特許文献1には、筐体の横方向に配置され平板形状の熱交換部を有する熱交換器と、熱交換部と向かい合って配置された送風機とを備える空気調和機の室外機が開示されている。特許文献1は、送風機のプロペラファンの回転軸方向から熱交換器をみた場合に、熱交換部が略正方形の形状をなしている。これにより、特許文献1は、熱交換部における風速分布のばらつきを抑え、単位面積当たりの熱交換量を増大させ、省エネルギ化を図ろうとするものである。また、特許文献1は、熱交換部の体積を増加させずに熱交換量を増大させて、省資源化を図ろうとするものである。 Patent Document 1 discloses an outdoor unit of an air conditioner that includes a heat exchanger having a flat plate-shaped heat exchanging part arranged in a lateral direction of a housing and a blower arranged to face the heat exchanging part. Yes. In Patent Document 1, when the heat exchanger is viewed from the direction of the rotation axis of the propeller fan of the blower, the heat exchange part has a substantially square shape. As a result, Patent Document 1 attempts to save energy by suppressing variations in wind speed distribution in the heat exchange section, increasing the heat exchange amount per unit area. Further, Patent Document 1 intends to save resources by increasing the heat exchange amount without increasing the volume of the heat exchange section.
特開2013-148231号公報JP 2013-148231 A
 しかしながら、特許文献1に開示された空気調和機の室外機は、横方向に間隔を空けて配置された複数のフィンの幅方向が、平面視において送風機の回転軸方向に平行である。このため、熱交換器における熱交換部の空気の流れ方向が、熱交換部の全体で同一である。一方、送風機のプロペラファンがもたらす空気の流れ方向は、プロペラファンの全体で相違する。このため、特許文献1は、熱交換器を通過する空気の流れ方向が、送風機のプロペラファンがもたらす空気の流れ方向と一致しない。従って、圧力損失が生じる。これにより、特許文献1は、熱交換器の熱交換効率が劣り、また、騒音も生じる。 However, in the outdoor unit of the air conditioner disclosed in Patent Document 1, the width direction of the plurality of fins arranged at intervals in the lateral direction is parallel to the rotational axis direction of the blower in plan view. For this reason, the flow direction of the air of the heat exchange part in a heat exchanger is the same in the whole heat exchange part. On the other hand, the direction of air flow provided by the propeller fan of the blower is different for the entire propeller fan. For this reason, in patent document 1, the flow direction of the air which passes a heat exchanger does not correspond with the flow direction of the air which the propeller fan of an air blower brings. Therefore, pressure loss occurs. Thereby, patent document 1 is inferior in the heat exchange efficiency of a heat exchanger, and noise also arises.
 本発明は、上記のような課題を背景としてなされたもので、熱交換器の熱交換効率が向上し、低騒音化に優れた空気調和装置を提供するものである。 The present invention has been made against the background of the above problems, and provides an air conditioner that improves the heat exchange efficiency of the heat exchanger and is excellent in noise reduction.
 本発明に係る空気調和装置は、筐体と、筐体の内部に設けられ、横方向に互いに間隔を空けて配置された複数のフィン、及び複数のフィンを貫き、内部に熱媒体が流通するチューブを有する平板状の熱交換器と、ボス部及びボス部を中心として回転する羽根車を有し、筐体の内部において熱交換器に対向して配置され、羽根車の回転によって熱交換器に空気を送風する送風機と、を少なくとも備え、熱交換器における複数のフィンのうちの少なくとも一部は、ボス部に向かって傾斜している。 An air conditioner according to the present invention is provided with a casing, a plurality of fins provided in the casing and spaced apart from each other in the lateral direction, and the plurality of fins, and a heat medium flows therethrough. A flat plate-shaped heat exchanger having a tube, and a boss portion and an impeller that rotates around the boss portion. The heat exchanger is disposed inside the housing so as to face the heat exchanger, and is rotated by the rotation of the impeller. And at least a part of the plurality of fins in the heat exchanger is inclined toward the boss portion.
 本発明によれば、複数のフィンは、ボス部に向かって傾斜している。このため、熱交換器の熱交換効率が向上し、低騒音化を実現することができる。 According to the present invention, the plurality of fins are inclined toward the boss portion. For this reason, the heat exchange efficiency of the heat exchanger is improved, and noise reduction can be realized.
本発明の実施の形態1に係る空気調和装置1を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における室外機3を示す上面断面図である。It is upper surface sectional drawing which shows the outdoor unit 3 in Embodiment 1 of this invention. 本発明の実施の形態1における熱交換器13を示す正面図である。It is a front view which shows the heat exchanger 13 in Embodiment 1 of this invention. 本発明の実施の形態1における熱交換器13及び送風機13aを示す上面図である。It is a top view which shows the heat exchanger 13 and the air blower 13a in Embodiment 1 of this invention. 本発明の実施の形態1における熱交換器13及び送風機13aを示す上面図である。It is a top view which shows the heat exchanger 13 and the air blower 13a in Embodiment 1 of this invention. 比較例における熱交換器113及び送風機13aを示す上面図である。It is a top view which shows the heat exchanger 113 and the air blower 13a in a comparative example. 本発明の実施の形態2における熱交換器213及び送風機13aを示す上面図である。It is a top view which shows the heat exchanger 213 and the air blower 13a in Embodiment 2 of this invention.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置1を示す回路図である。この図1に基づいて、空気調和装置1について説明する。図1に示すように、空気調和装置1は、熱媒体回路2を備えている。熱媒体回路2は、圧縮機11、熱交換器13、膨張部14及び室内熱交換器15が配管により接続され、熱媒体が流通するものである。更に、熱媒体回路2は、例えば四路切替弁12も有している。また、空気調和装置1は、熱交換器13に対向して配置された送風機13aと、室内熱交換器15に対向して配置された室内送風機15aとを備えている。そして、空気調和装置1は、例えば室外機3と室内機4とを有している。この室外機3の内部には、圧縮機11、四路切替弁12、熱交換器13、送風機13a及び膨張部14が設置されており、室内機4の内部には、室内熱交換器15及び室内送風機15aが設置されている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention. The air conditioner 1 will be described with reference to FIG. As shown in FIG. 1, the air conditioner 1 includes a heat medium circuit 2. In the heat medium circuit 2, the compressor 11, the heat exchanger 13, the expansion unit 14, and the indoor heat exchanger 15 are connected by piping, and the heat medium flows. Furthermore, the heat medium circuit 2 also has, for example, a four-way switching valve 12. In addition, the air conditioner 1 includes a blower 13 a that is disposed to face the heat exchanger 13 and an indoor blower 15 a that is disposed to face the indoor heat exchanger 15. And the air conditioning apparatus 1 has the outdoor unit 3 and the indoor unit 4, for example. Inside the outdoor unit 3, a compressor 11, a four-way switching valve 12, a heat exchanger 13, a blower 13 a and an expansion unit 14 are installed. Inside the indoor unit 4, an indoor heat exchanger 15 and An indoor blower 15a is installed.
 圧縮機11は、冷媒蒸気を圧縮するものであり、例えばスクロール型とすることができる。四路切替弁12は、第1のポート12a、第2のポート12b、第3のポート12c及び第4のポート12dを有している。このうち、第1のポート12aは、圧縮機11の吐出側の配管である吐出管11aに接続されている。第2のポート12bは、室内熱交換器15に接続されている。第3のポート12cは、圧縮機11の吸入側である吸入管11bに接続されている。第4のポート12dは、熱交換器13に接続されている。そして、四路切替弁12は、第1のポート12aと第2のポート12bとが接続されているとき、第3のポート12cと第4のポート12dとが接続される(図1の実線)。一方、四路切替弁12は、第1のポート12aと第4のポート12dとが接続されているとき、第2のポート12bと第3のポート12cとが接続される(図1の破線)。 The compressor 11 compresses the refrigerant vapor and can be, for example, a scroll type. The four-way switching valve 12 has a first port 12a, a second port 12b, a third port 12c, and a fourth port 12d. Among these, the first port 12 a is connected to a discharge pipe 11 a that is a pipe on the discharge side of the compressor 11. The second port 12 b is connected to the indoor heat exchanger 15. The third port 12 c is connected to a suction pipe 11 b that is the suction side of the compressor 11. The fourth port 12d is connected to the heat exchanger 13. The four-way switching valve 12 is connected to the third port 12c and the fourth port 12d when the first port 12a and the second port 12b are connected (solid line in FIG. 1). . On the other hand, when the first port 12a and the fourth port 12d are connected to the four-way switching valve 12, the second port 12b and the third port 12c are connected (broken line in FIG. 1). .
 熱交換器13は、例えばその内部に流通する熱媒体と室外の空気とを熱交換するものである。熱交換器13は、フィン41とチューブ42とを有し(図3参照)、フィン41とチューブ42とは、例えばアルミニウム製である。熱交換器13は、暖房運転においては蒸発器として作用し、冷房運転においては凝縮器として作用する。送風機13aは、例えば熱交換器13に室外の空気を送風し、熱交換器13の内部に流通する熱媒体と熱交換された室外の空気を、室外機3の外部に排出するものである。膨張部14は、熱媒体を減圧するものであり、例えば電子膨張弁である。 The heat exchanger 13 is for exchanging heat between, for example, a heat medium flowing inside the outdoor air. The heat exchanger 13 includes fins 41 and tubes 42 (see FIG. 3), and the fins 41 and the tubes 42 are made of, for example, aluminum. The heat exchanger 13 acts as an evaporator in the heating operation, and acts as a condenser in the cooling operation. The blower 13 a blows outdoor air to the heat exchanger 13, for example, and discharges the outdoor air heat-exchanged with the heat medium circulating in the heat exchanger 13 to the outside of the outdoor unit 3. The expansion part 14 depressurizes the heat medium, and is, for example, an electronic expansion valve.
 室内熱交換器15は、例えばその内部に流通する熱媒体と室内の空気とを熱交換するものである。室内熱交換器15は、フィン(図示せず)とチューブ(図示せず)とを有し、フィンとチューブとは、例えばアルミニウム製である。室内熱交換器15は、暖房運転においては凝縮器として作用し、冷房運転においては蒸発器として作用する。室内送風機15aは、室内熱交換器15に室内の空気を送風し、室内熱交換器15の内部に流通する熱媒体と熱交換された室外の空気を、室内機4から室内に送風するものである。 The indoor heat exchanger 15 is for exchanging heat between, for example, a heat medium flowing inside the indoor heat exchanger 15 and indoor air. The indoor heat exchanger 15 has fins (not shown) and tubes (not shown), and the fins and tubes are made of, for example, aluminum. The indoor heat exchanger 15 acts as a condenser in the heating operation, and acts as an evaporator in the cooling operation. The indoor blower 15a blows indoor air to the indoor heat exchanger 15, and blows outdoor air heat-exchanged with the heat medium circulating in the indoor heat exchanger 15 from the indoor unit 4 into the room. is there.
 熱媒体は、例えばアンモニア冷媒又はフロン冷媒等が使用されるが、これに限定されず、そのほかの冷媒を用いてもよい。熱媒体回路2は、熱媒体が配管を循環することによって、蒸気圧縮式の冷凍サイクルが構成されたものである。 The heat medium is, for example, ammonia refrigerant or chlorofluorocarbon refrigerant, but is not limited thereto, and other refrigerants may be used. The heat medium circuit 2 is a circuit in which a vapor compression refrigeration cycle is configured by circulating a heat medium through a pipe.
 次に、空気調和装置1の動作について説明する。先ず、暖房運転について説明する。暖房運転のとき、四路切替弁12は、第1のポート12aと第2のポート12bとが接続され、第3のポート12cと第4のポート12dとが接続される(図1の実線)。圧縮機11は、熱媒体を吸入し、この熱媒体を圧縮して高温高圧のガスの状態で吐出する。この吐出された熱媒体は、四路切替弁12の第1のポート12a及び第2のポート12bを通過して、室内熱交換器15に流入し、室内熱交換器15は、室内送風機15aから供給される室内の空気との熱交換により、熱媒体を凝縮する。このとき、室内送風機15aは、熱交換されて加熱された室内の空気を室内に送風する。これにより、室内が暖房される。 Next, the operation of the air conditioner 1 will be described. First, the heating operation will be described. In the heating operation, the four-way switching valve 12 is connected to the first port 12a and the second port 12b, and is connected to the third port 12c and the fourth port 12d (solid line in FIG. 1). . The compressor 11 sucks the heat medium, compresses the heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state. The discharged heat medium passes through the first port 12a and the second port 12b of the four-way switching valve 12, flows into the indoor heat exchanger 15, and the indoor heat exchanger 15 is supplied from the indoor blower 15a. The heat medium is condensed by heat exchange with the supplied indoor air. At this time, the indoor blower 15a blows indoor air heated by heat exchange into the room. Thereby, the room is heated.
 凝縮された熱媒体は、膨張部14に流入し、膨張部14は、凝縮された熱媒体を減圧する。そして、減圧された熱媒体は、熱交換器13に流入し、熱交換器13は、送風機13aから供給される室外の空気との熱交換により、熱媒体を蒸発する。そして、蒸発された熱媒体は、四路切替弁12の第4のポート12d及び第3のポート12cを通過して、圧縮機11に吸入される。 The condensed heat medium flows into the expansion unit 14, and the expansion unit 14 depressurizes the condensed heat medium. The reduced-pressure heat medium flows into the heat exchanger 13, and the heat exchanger 13 evaporates the heat medium by heat exchange with outdoor air supplied from the blower 13a. The evaporated heat medium passes through the fourth port 12d and the third port 12c of the four-way switching valve 12, and is sucked into the compressor 11.
 次に、冷房運転について説明する。冷房運転のとき、四路切替弁12は、第1のポート12aと第4のポート12dとが接続され、第2のポート12bと第3のポート12cとが接続される(図1の破線)。圧縮機11は、熱媒体を吸入し、この熱媒体を圧縮して高温高圧のガスの状態で吐出する。この吐出された熱媒体は、四路切替弁12の第1のポート12a及び第4のポート12dを通過して、熱交換器13に流入し、熱交換器13は、送風機13aから供給される室外の空気との熱交換により、熱媒体を凝縮する。この凝縮された熱媒体は、膨張部14に流入し、膨張部14は、凝縮された熱媒体を減圧する。 Next, the cooling operation will be described. In the cooling operation, the four-way switching valve 12 is connected to the first port 12a and the fourth port 12d, and is connected to the second port 12b and the third port 12c (broken line in FIG. 1). . The compressor 11 sucks the heat medium, compresses the heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state. The discharged heat medium passes through the first port 12a and the fourth port 12d of the four-way switching valve 12, flows into the heat exchanger 13, and the heat exchanger 13 is supplied from the blower 13a. The heat medium is condensed by heat exchange with outdoor air. The condensed heat medium flows into the expansion unit 14, and the expansion unit 14 decompresses the condensed heat medium.
 そして、減圧された熱媒体は、室内熱交換器15に流入し、室内熱交換器15は、室内送風機15aから供給される室内の空気との熱交換により、熱媒体を蒸発する。このとき、室内送風機15aは、熱交換されて冷却された室内の空気を室内に送風する。これにより、室内が冷房される。そして、蒸発された熱媒体は、四路切替弁12の第2のポート12b及び第3のポート12cを通過して、圧縮機11に吸入される。 The decompressed heat medium flows into the indoor heat exchanger 15, and the indoor heat exchanger 15 evaporates the heat medium by heat exchange with indoor air supplied from the indoor blower 15a. At this time, the indoor blower 15a blows indoor air cooled by heat exchange into the room. Thereby, the room is cooled. The evaporated heat medium passes through the second port 12b and the third port 12c of the four-way switching valve 12, and is sucked into the compressor 11.
 図2は、本発明の実施の形態1における室外機3を示す上面断面図である。図2に示すように、平面視(上面視)において、室外機3は、直方体状の筐体31を有している。筐体31は、平板状の仕切り板32によって幅方向に2分割されている。筐体31の一側部は、機械室31aとなっており、筐体31の他側部は、送風室31bとなっている。そして、機械室31aには、圧縮機11、四路切替弁12及び膨張部14が収容されており、送風室31bには、熱交換器13及び送風機13aが収容されている。送風室31bは、平板状の底板33と平板状の側面パネル34と仕切り板32と平板状の上面板(図示せず)によって四方が囲まれている。そして、送風室31bの背面には、空気を吸い込む吸込部35が形成されている。また、送風室31bの正面には、空気が吹き出される吹出部36が形成されている。なお、吹出部36の周縁部には、円筒状のベルマウス36aが取り付けられている。 FIG. 2 is a top cross-sectional view showing the outdoor unit 3 according to Embodiment 1 of the present invention. As shown in FIG. 2, the outdoor unit 3 has a rectangular parallelepiped casing 31 in a plan view (a top view). The housing 31 is divided into two in the width direction by a flat partition plate 32. One side of the casing 31 is a machine room 31a, and the other side of the casing 31 is a blower chamber 31b. And the compressor 11, the four-way switching valve 12, and the expansion part 14 are accommodated in the machine room 31a, and the heat exchanger 13 and the air blower 13a are accommodated in the ventilation chamber 31b. The blower chamber 31b is surrounded on all sides by a flat bottom plate 33, a flat side panel 34, a partition plate 32, and a flat top plate (not shown). And the suction part 35 which inhales air is formed in the back surface of the ventilation chamber 31b. Moreover, the blowing part 36 from which air is blown out is formed in the front of the ventilation chamber 31b. A cylindrical bell mouth 36 a is attached to the peripheral portion of the blowing portion 36.
 送風室31bにおいて、吸込部35側、即ち空気の流れの上流側に、熱交換器13が設置されている。また、送風室31bにおいて、吹出部36側、即ち空気の流れの下流側に、送風機13aが設置されており、熱交換器13と送風機13aとは、送風機13aのボス部21の回転軸方向にみて対向して配置されている。なお、送風機13aが吸込部35側に配置され、熱交換器13が吹出部36側に配置されてもよい。 In the blower chamber 31b, the heat exchanger 13 is installed on the suction portion 35 side, that is, on the upstream side of the air flow. In the blower chamber 31b, the blower 13a is installed on the outlet 36 side, that is, on the downstream side of the air flow. They are arranged facing each other. In addition, the air blower 13a may be arrange | positioned at the suction part 35 side, and the heat exchanger 13 may be arrange | positioned at the blowing part 36 side.
 次に、送風機13aについて詳細に説明する。図2に示すように、送風機13aは、ボス部21と羽根車22とを有している。ボス部21は、例えば送風機13aの中心に設けられた円柱状の部材であり、モータ(図示せず)の出力軸に接続されている。そして、ボス部21は、モータの出力軸が回転することによって、回転する。羽根車22は、複数の翼から構成されており、ボス部21の外周に設けられている。複数の翼は、ボス部21を中心として周方向に間隔を空けて夫々配置されている。そして、羽根車22は、ボス部21を中心として回転する。 Next, the blower 13a will be described in detail. As shown in FIG. 2, the blower 13 a has a boss portion 21 and an impeller 22. The boss portion 21 is a cylindrical member provided at the center of the blower 13a, for example, and is connected to an output shaft of a motor (not shown). And the boss | hub part 21 rotates when the output shaft of a motor rotates. The impeller 22 is composed of a plurality of wings, and is provided on the outer periphery of the boss portion 21. The plurality of wings are arranged at intervals in the circumferential direction around the boss portion 21. The impeller 22 rotates around the boss portion 21.
 送風機13aは、送風室31bの内部の空気を、吹出部36から吹き出す。これにより、送風室31bの内部が負圧となり、室外機3の周辺の室外の空気は、吸込部35から吸い込まれる。そして、吸込部35から吸い込まれた室外の空気は、熱交換器13において熱媒体と熱交換される。このように、空気は、送風機13aによって、吸込部35、熱交換器13、送風機13a、吹出部36の順に流れる。 The blower 13a blows out the air inside the blower chamber 31b from the blowout part 36. Thereby, the inside of the ventilation chamber 31b becomes a negative pressure, and the outdoor air around the outdoor unit 3 is sucked from the suction portion 35. The outdoor air sucked from the suction part 35 is heat-exchanged with the heat medium in the heat exchanger 13. Thus, air flows in order of the suction part 35, the heat exchanger 13, the air blower 13a, and the blowing part 36 by the air blower 13a.
 図3は、本発明の実施の形態1における熱交換器13を示す正面図である。熱交換器13について詳細に説明する。図3に示すように、熱交換器13は、平板状をなしており、複数のフィン41と複数のチューブ42とを有している。更に、熱交換器13は、ヘッダ43とベンド管44とを有している。なお、熱交換器13は、ボス部21の回転軸方向にみて、横方向の幅が広い長方形状をなしている。複数のフィン41は、熱交換器13の横方向に互いに間隔を空けて配置されており、平板状をなしている。そして、フィン41は、その一端部から切り欠かれチューブ42が挿入される切欠き部(図示せず)が形成されている。なお、切欠き部は、チューブ42の長軸方向の幅以上の長さだけ、一端部から切り欠かれている。 FIG. 3 is a front view showing the heat exchanger 13 according to Embodiment 1 of the present invention. The heat exchanger 13 will be described in detail. As shown in FIG. 3, the heat exchanger 13 has a flat plate shape and includes a plurality of fins 41 and a plurality of tubes 42. Further, the heat exchanger 13 has a header 43 and a bend pipe 44. The heat exchanger 13 has a rectangular shape with a wide width in the lateral direction when viewed in the direction of the rotation axis of the boss portion 21. The plurality of fins 41 are arranged at intervals in the lateral direction of the heat exchanger 13 and have a flat plate shape. The fin 41 has a notch (not shown) into which the tube 42 is inserted by being cut out from one end thereof. Note that the cutout portion is cut out from one end portion by a length equal to or longer than the width of the tube 42 in the long axis direction.
 複数のチューブ42は、複数のフィン41を、横方向に貫き、内部に熱媒体が流通するものである。熱媒体は、フィン41の内部に設けられた少なくとも一つの流路(図示せず)を流通する。チューブ42は、例えば扁平管であり、その断面は、アスペクト比が高い長方形を角取りした形状をなしている。また、チューブ42は、アルミニウム等の熱伝導性が高い中空状の金属である。そして、チューブ42は、重力方向(フィン41の長手方向)に平行の段方向に複数配置されている。図3では、チューブ42が10段配置されている例を示している。なお、チューブ42は、フィン41の一端部に形成された切欠き部に挿入される。 The plurality of tubes 42 penetrates the plurality of fins 41 in the lateral direction, and the heat medium circulates therein. The heat medium flows through at least one flow path (not shown) provided inside the fin 41. The tube 42 is, for example, a flat tube, and its cross section has a shape obtained by rounding a rectangle having a high aspect ratio. The tube 42 is a hollow metal having high thermal conductivity such as aluminum. A plurality of tubes 42 are arranged in a step direction parallel to the gravity direction (longitudinal direction of the fins 41). FIG. 3 shows an example in which 10 stages of tubes 42 are arranged. The tube 42 is inserted into a notch formed at one end of the fin 41.
 ヘッダ43は、複数のチューブ42の一端部に接続されており、四路切替弁12又は膨張部14から流入管43aを通って流入する冷媒を、複数のチューブ42に分岐させるものである。また、ベンド管44は、段方向に隣り合ったチューブ42の他端部同士を接続するものであり、例えばU字状をなしている。 The header 43 is connected to one end portion of the plurality of tubes 42, and causes the refrigerant flowing from the four-way switching valve 12 or the expansion portion 14 through the inflow pipe 43 a to branch into the plurality of tubes 42. Further, the bend pipe 44 connects the other ends of the tubes 42 adjacent in the step direction, and has, for example, a U shape.
 図3では、ベンド管44が5個設けられており、各ベンド管44は、1段目のチューブ42aの他端部と2段目のチューブ42bの他端部とを接続し、3段目のチューブ42cの他端部と4段目のチューブ42dの他端部とを接続し、5段目のチューブ42eの他端部と6段目のチューブ42fの他端部とを接続し、7段目のチューブ42gの他端部と8段目のチューブ42hの他端部とを接続し、9段目のチューブ42iの他端部と10段目のチューブ42jの他端部とを接続している。なお、チューブ42の他端部同士は、ベンド管44によって接続されている構成を例示しているが、これに限定されない。 In FIG. 3, five bend pipes 44 are provided, and each bend pipe 44 connects the other end of the first-stage tube 42a and the other end of the second-stage tube 42b. The other end of the tube 42c is connected to the other end of the fourth-stage tube 42d, the other end of the fifth-stage tube 42e is connected to the other end of the sixth-stage tube 42f, and 7 The other end of the stage tube 42g and the other end of the eighth stage tube 42h are connected, and the other end of the ninth stage tube 42i and the other end of the tenth stage tube 42j are connected. ing. In addition, although the other end parts of the tube 42 have illustrated the structure connected by the bend pipe | tube 44, it is not limited to this.
 図4は、本発明の実施の形態1における熱交換器13及び送風機13aを示す上面図である。次に、熱交換器13のフィン41の配置について説明する。図4に示すように、熱交換器13において、複数のフィン41のうちの少なくとも一部は、送風機13aのボス部21に向かって傾斜している。送風機13aにおける空気の流れは、ボス部21においては、ボス部21の回転軸方向に平行である。一方、送風機13aにおける空気の流れは、ボス部21から外側に向かうに従って、ボス部21の回転軸方向に対してボス部21に向かって傾斜する。熱交換器13は、複数のフィン41のうち、ボス部21に対向するフィン41から外側のフィン41に向かうに従って、傾斜角度が大きくなる。即ち、フィン41の幅方向における送風機13a側の一端部の方が、他端部よりも、ボス部21の回転軸方向の延長線に近い位置にある。 FIG. 4 is a top view showing the heat exchanger 13 and the blower 13a according to Embodiment 1 of the present invention. Next, the arrangement of the fins 41 of the heat exchanger 13 will be described. As shown in FIG. 4, in the heat exchanger 13, at least some of the plurality of fins 41 are inclined toward the boss portion 21 of the blower 13a. The air flow in the blower 13 a is parallel to the rotation axis direction of the boss portion 21 in the boss portion 21. On the other hand, the air flow in the blower 13 a is inclined toward the boss portion 21 with respect to the rotation axis direction of the boss portion 21 as it goes outward from the boss portion 21. The inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss 21 to the outer fin 41 among the plurality of fins 41. That is, one end portion on the blower 13a side in the width direction of the fin 41 is closer to the extension line in the rotation axis direction of the boss portion 21 than the other end portion.
 図5は、本発明の実施の形態1における熱交換器13及び送風機13aを示す上面図である。次に、熱交換器13のフィン41の配置角度について説明する。図5に示すように、複数のフィン41は、第1のフィン群41aと第2のフィン群41bとを有している。第1のフィン群41aは、ボス部21に対向し、平面視においてチューブ42の管軸方向に垂直に配置されている。即ち、第1のフィン群41aとボス部21の回転軸方向の延長線とのなす配置角度は0°である。なお、本実施の形態1では、第1のフィン群41aは、ボス部21のみに対向している。第2のフィン群41bは、第1のフィン群41aよりもボス部21から離れ、送風機13aに向かって傾斜している。 FIG. 5 is a top view showing the heat exchanger 13 and the blower 13a according to the first embodiment of the present invention. Next, the arrangement angle of the fins 41 of the heat exchanger 13 will be described. As shown in FIG. 5, the plurality of fins 41 includes a first fin group 41a and a second fin group 41b. The first fin group 41a faces the boss portion 21 and is disposed perpendicular to the tube axis direction of the tube 42 in plan view. That is, the arrangement angle formed by the first fin group 41a and the extension line in the rotation axis direction of the boss portion 21 is 0 °. In the first embodiment, the first fin group 41 a faces only the boss portion 21. The second fin group 41b is further away from the boss portion 21 than the first fin group 41a and is inclined toward the blower 13a.
 更に、第2のフィン群41bは、複数のフィン群を有しており、第1のフィン群41aの側よりも、ボス部21から離れる側の方が、傾斜角度が大きい。具体的には、第2のフィン群41bは、内側フィン群41cと中側フィン群41dと外側フィン群41eとを有している。内側フィン群41cは、第1のフィン群41aに隣接しており、ボス部21の側縁部から熱交換器13の幅方向においてN(mm)までの範囲である。そして、内側フィン群41cとボス部21の回転軸方向の延長線とのなす配置角度はα°である。 Furthermore, the second fin group 41b has a plurality of fin groups, and the inclination angle is larger on the side away from the boss portion 21 than on the first fin group 41a side. Specifically, the second fin group 41b includes an inner fin group 41c, an intermediate fin group 41d, and an outer fin group 41e. The inner fin group 41 c is adjacent to the first fin group 41 a and ranges from the side edge of the boss portion 21 to N (mm) in the width direction of the heat exchanger 13. And the arrangement | positioning angle which the inner side fin group 41c and the extended line of the rotating shaft direction of the boss | hub part 21 make is (alpha) degrees.
 また、中側フィン群41dは、内側フィン群41cに隣接しており、内側フィン群41cの側縁部から熱交換器13の幅方向においてM(mm)までの範囲である。そして、中側フィン群41dとボス部21の回転軸方向の延長線とのなす配置角度はβ°である。更に、外側フィン群41eは、中側フィン群41dに隣接しており、中側フィン群41dの側縁部からヘッダ43までのL(mm)の範囲である。そして、外側フィン群41eとボス部21の回転軸方向の延長線とのなす配置角度はθ°である。なお、熱交換器13における複数のフィン41は、フィン41の長手方向にみて、ボス部21の回転軸方向の延長線に対し線対称に配置されている。 Further, the middle fin group 41d is adjacent to the inner fin group 41c and ranges from the side edge of the inner fin group 41c to M (mm) in the width direction of the heat exchanger 13. The arrangement angle formed by the middle fin group 41d and the extension line of the boss portion 21 in the rotation axis direction is β °. Further, the outer fin group 41e is adjacent to the middle fin group 41d and is in a range of L (mm) from the side edge of the middle fin group 41d to the header 43. And the arrangement | positioning angle | corner which the outer side fin group 41e and the extended line of the rotating shaft direction of the boss | hub part 21 make is (theta) degrees. The plurality of fins 41 in the heat exchanger 13 are arranged symmetrically with respect to the extension line in the rotation axis direction of the boss portion 21 when viewed in the longitudinal direction of the fins 41.
 配置角度は、α<β<θの関係が成り立つ。即ち、熱交換器13は、複数のフィン41のうち、ボス部21に対向するフィン41から外側のフィン41に向かうに従って、傾斜角度が大きくなっている。なお、0°<α<10°、5°<β<15°、8°<θ<20°の関係が成り立つ。また、熱交換器13の複数のフィン41の一側部から他側部までの幅である積み幅の半値をTとすると、N+M≦Tの関係が成り立つ。 The relationship of α <β <θ holds for the arrangement angle. That is, the inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss portion 21 toward the outer fin 41 among the plurality of fins 41. Note that relationships of 0 ° <α <10 °, 5 ° <β <15 °, and 8 ° <θ <20 ° hold. Further, assuming that the half value of the stacking width, which is the width from one side of the plurality of fins 41 of the heat exchanger 13 to the other side, is T, the relationship N + M ≦ T is established.
 次に、本発明の実施の形態1に係る空気調和装置1の作用について説明する。空気調和装置1は、前述の如く、複数のフィン41のうちの少なくとも一部が、送風機13aのボス部21に向かって傾斜している。このように、本実施の形態1に係る空気調和装置1は、熱交換器13を通過する空気の流れ方向が、送風機13aにおける空気の送風方向と合致している。このため、圧力損失が低減する。これにより、熱交換器13の熱交換効率が向上し、低騒音化を実現することができる。 Next, the operation of the air conditioner 1 according to Embodiment 1 of the present invention will be described. As described above, in the air conditioner 1, at least a part of the plurality of fins 41 is inclined toward the boss portion 21 of the blower 13a. Thus, as for the air conditioning apparatus 1 which concerns on this Embodiment 1, the flow direction of the air which passes the heat exchanger 13 corresponds with the air blowing direction in the air blower 13a. For this reason, pressure loss is reduced. Thereby, the heat exchange efficiency of the heat exchanger 13 can be improved, and low noise can be realized.
 また、熱交換器13は、複数のフィン41のうち、ボス部21に対向するフィン41から外側のフィン41に向かうに従って、傾斜角度が大きくなる。送風機13aにおける空気の流れは、ボス部21においては、ボス部21の回転軸方向に平行である。一方、送風機13aにおける空気の流れは、ボス部21から外側に向かうに従って、ボス部21の回転軸方向に対してボス部21に向かって徐々に傾斜する。本実施の形態1は、複数のフィン41のうち、ボス部21に対向するフィン41から外側のフィン41に向かうに従って、傾斜角度が大きくなるため、熱交換器13を通過する空気の流れ方向が、送風機13aにおける空気の送風方向と、より合致している。このため、更に圧力損失が低減し、更に熱交換器13の熱交換効率が向上し、低騒音化を実現することができる。 The inclination angle of the heat exchanger 13 increases from the fin 41 facing the boss portion 21 toward the outer fin 41 among the plurality of fins 41. The air flow in the blower 13 a is parallel to the rotation axis direction of the boss portion 21 in the boss portion 21. On the other hand, the air flow in the blower 13 a gradually inclines toward the boss portion 21 with respect to the rotation axis direction of the boss portion 21 as it goes outward from the boss portion 21. In the first embodiment, among the plurality of fins 41, the inclination angle increases from the fin 41 facing the boss portion 21 toward the outer fin 41, so the flow direction of the air passing through the heat exchanger 13 is The air blowing direction in the blower 13a is more consistent. For this reason, the pressure loss is further reduced, the heat exchange efficiency of the heat exchanger 13 is further improved, and noise reduction can be realized.
 更に、熱交換器13における複数のフィン41は、フィン41の長手方向にみて、ボス部21の回転軸方向の延長線に対し線対称に配置されている。これにより、送風機13aによって流れる空気の分布が熱交換器13の幅方向において均一になる。このため、更に圧力損失が低減し、更に熱交換器13の熱交換効率が向上し、低騒音化を実現することができる。 Furthermore, the plurality of fins 41 in the heat exchanger 13 are arranged in line symmetry with respect to the extension line in the rotation axis direction of the boss portion 21 when viewed in the longitudinal direction of the fins 41. Thereby, the distribution of the air flowing by the blower 13a becomes uniform in the width direction of the heat exchanger 13. For this reason, the pressure loss is further reduced, the heat exchange efficiency of the heat exchanger 13 is further improved, and noise reduction can be realized.
 更にまた、熱交換器13は、ボス部21の回転軸方向にみて、横方向の幅が広い長方形状をなしている。熱交換器13は、送風機13aよりも幅が広い場合、熱交換器13の側端部に近づくに従って、送風機13aから離間し、圧力損失が増加する。しかしながら、本実施の形態1は、複数のフィン41が、送風機13aのボス部21に向かって傾斜している。このため、熱交換器13の側端部においても、熱交換器13を通過する空気の流れ方向が、送風機13aにおける空気の送風方向と合致する。このため、本実施の形態1は、熱交換器13を幅が広い長方形状となしても、圧力損失を低減することで、熱交換効率を向上させることができる。 Furthermore, the heat exchanger 13 has a rectangular shape with a wide lateral width when viewed in the direction of the rotation axis of the boss portion 21. When the width of the heat exchanger 13 is wider than that of the blower 13a, the heat exchanger 13 is separated from the blower 13a and the pressure loss increases as the side end of the heat exchanger 13 is approached. However, in the first embodiment, the plurality of fins 41 are inclined toward the boss portion 21 of the blower 13a. For this reason, also in the side edge part of the heat exchanger 13, the flow direction of the air which passes the heat exchanger 13 corresponds with the air blowing direction in the air blower 13a. For this reason, even if this Embodiment 1 makes the heat exchanger 13 rectangular shape with a wide width | variety, heat exchange efficiency can be improved by reducing a pressure loss.
 そして、熱交換器13は、チューブ42がフィン41の切欠き部に挿入されて製造されている。このため、複数のフィン41同士の配置角度が相違している熱交換器13においても、容易に製造することができる。 The heat exchanger 13 is manufactured by inserting the tube 42 into the notch portion of the fin 41. For this reason, even in the heat exchanger 13 in which the arrangement angles of the plurality of fins 41 are different, it can be easily manufactured.
 図6は、比較例における熱交換器113及び送風機13aを示す上面図である。ここで、本実施の形態1に係る空気調和装置1と比較するため、比較例における空気調和装置100について説明する。図6に示すように、比較例における熱交換器113は、複数のフィン141のいずれもが、送風機13aのボス部21の回転軸方向に平行である。このため、熱交換器113における空気の流れ方向は、熱交換器113の全体で同一である。一方、送風機13aがもたらす空気の流れ方向は、送風機13aの全体で相違する。このため、比較例における空気調和装置100は、熱交換器113を通過する空気の流れ方向が、送風機13aがもたらす空気の流れ方向と一致しない。従って、圧力損失が生じる。これにより、熱交換器113の熱交換効率が劣り、また、騒音も生じる。 FIG. 6 is a top view showing the heat exchanger 113 and the blower 13a in the comparative example. Here, in order to compare with the air conditioning apparatus 1 which concerns on this Embodiment 1, the air conditioning apparatus 100 in a comparative example is demonstrated. As shown in FIG. 6, in the heat exchanger 113 in the comparative example, all of the plurality of fins 141 are parallel to the rotational axis direction of the boss portion 21 of the blower 13a. For this reason, the air flow direction in the heat exchanger 113 is the same throughout the heat exchanger 113. On the other hand, the direction of air flow provided by the blower 13a is different in the entire blower 13a. For this reason, as for the air conditioning apparatus 100 in a comparative example, the flow direction of the air which passes the heat exchanger 113 does not correspond with the flow direction of the air which the air blower 13a brings. Therefore, pressure loss occurs. Thereby, the heat exchange efficiency of the heat exchanger 113 is inferior, and noise is also generated.
 そのほかに、従来より、扁平管を斜めに傾斜させた熱交換器が知られている。この熱交換器は、凝縮器として作用する場合に、凝縮水及び除霜水を、扁平管を傾斜させることによって、良好に落下させようとするものである。そして、これにより、熱交換器が霜によって目詰まり等を起こすことを抑制しようとするものである。しかし、このような従来の熱交換器は、フィンが傾斜していないため、熱交換器を通過する空気の流れ方向が、送風機がもたらす空気の流れ方向と一致しない。従って、圧力損失が生じる。これにより、従来の熱交換器の熱交換効率が劣り、また、騒音も生じる。 In addition, a heat exchanger in which a flat tube is inclined obliquely has been known. When this heat exchanger acts as a condenser, it tends to drop the condensed water and defrost water well by inclining the flat tube. And thereby, it is going to suppress that a heat exchanger raise | generates clogging etc. by frost. However, in such a conventional heat exchanger, since the fins are not inclined, the flow direction of air passing through the heat exchanger does not coincide with the flow direction of air provided by the blower. Therefore, pressure loss occurs. Thereby, the heat exchange efficiency of the conventional heat exchanger is inferior, and noise is also generated.
実施の形態2.
 次に、本発明の実施の形態2に係る空気調和装置200について説明する。図7は、本発明の実施の形態2における熱交換器213及び送風機13aを示す上面図である。本実施の形態2は、チューブ42が、送風機13aにおける空気の送風方向に平行に複数配置されている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
Next, the air conditioning apparatus 200 according to Embodiment 2 of the present invention will be described. FIG. 7 is a top view showing the heat exchanger 213 and the blower 13a according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that a plurality of tubes 42 are arranged in parallel to the air blowing direction in the blower 13a. In the second embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 図7に示すように、チューブ42は、平面視においてボス部21の回転軸方向である列方向に複数配置されている。図7では、チューブ42が列方向に2列配置されている例を示している。そして、熱交換器213における複数のフィン241の夫々は、複数のチューブ42のいずれもに貫かれた一体形状をなしている。なお、フィン241には、2個のチューブ42の長軸方向の幅を加算した長さ以上の長さだけ、一端部から切り欠かれた切欠き部(図示せず)を有している。そして、2個のチューブ42は、長軸方向に隣接した状態で、切欠き部に挿入される。 As shown in FIG. 7, a plurality of tubes 42 are arranged in the row direction that is the rotation axis direction of the boss portion 21 in a plan view. FIG. 7 shows an example in which the tubes 42 are arranged in two rows in the row direction. Each of the plurality of fins 241 in the heat exchanger 213 has an integral shape penetrating all of the plurality of tubes 42. Note that the fin 241 has a notch (not shown) cut out from one end by a length equal to or longer than the sum of the widths of the two tubes 42 in the major axis direction. And the two tubes 42 are inserted in a notch part in the state adjacent to the major axis direction.
 このように、チューブ42が複数列配置されていることによって、熱交換器213の熱交換効率が向上する。また、複数のフィン241が一体形状をなしているため、チューブ42の列毎に個別のフィンが設けられているよりも、フィン同士の継ぎ目がなくなるため、圧力損失が更に低減する。これにより、熱交換器213の熱交換効率が向上し、低騒音化を実現することができる。なお、複数のフィン241は、一体形状ではなく、チューブ42の列毎に個別に設けられてもよい。また、切欠き部は、1個のチューブ42の長軸方向の幅以上の長さだけ、両端部から切り欠かれていてもよい。この場合、1個のチューブ42は、フィン241の一端部の切欠き部に挿入され、もう1個のチューブ42は、フィン241の他端部の切欠き部に挿入される。 Thus, the heat exchange efficiency of the heat exchanger 213 is improved by arranging the tubes 42 in a plurality of rows. In addition, since the plurality of fins 241 have an integral shape, the seam between the fins is eliminated as compared to the case where individual fins are provided for each row of the tubes 42, so that pressure loss is further reduced. Thereby, the heat exchange efficiency of the heat exchanger 213 can be improved, and noise reduction can be realized. The plurality of fins 241 may be individually provided for each row of the tubes 42 instead of being integrally formed. Further, the cutout portion may be cut out from both ends by a length equal to or longer than the width of the single tube 42 in the long axis direction. In this case, one tube 42 is inserted into a notch at one end of the fin 241, and the other tube 42 is inserted into a notch at the other end of the fin 241.
 なお、上記実施の形態において、熱交換器13は、室外に設けられたものを例示しているが、室内に設けられた室内熱交換器としてもよい。また、上記実施の形態において、熱交換器13のフィン41は、ボス部21に対向する第1のフィン群41aが、平面視においてチューブ42の管軸方向に垂直であるが、第1のフィン群41aが傾斜していてもよい。 In addition, in the said embodiment, although the heat exchanger 13 illustrated what was provided outdoors, it is good also as an indoor heat exchanger provided indoors. Moreover, in the said embodiment, although the fin 41 of the heat exchanger 13 has the 1st fin group 41a which opposes the boss | hub part 21, it is perpendicular to the pipe-axis direction of the tube 42 in planar view, 1st fin The group 41a may be inclined.
 1 空気調和装置、2 熱媒体回路、3 室外機、4 室内機、11 圧縮機、11a 吐出管、11b 吸入管、12 四路切替弁、12a 第1のポート、12b 第2のポート、12c 第3のポート、12d 第4のポート、13 熱交換器、13a 送風機、14 膨張部、15 室内熱交換器、15a 室内送風機、21 ボス部、22 羽根車、31 筐体、31a 機械室、31b 送風室、32 仕切り板、33 底板、34 側面パネル、35 吸込部、36 吹出部、36a ベルマウス、41 フィン、41a 第1のフィン群、41b 第2のフィン群、41c 内側フィン群、41d 中側フィン群、41e 外側フィン群、42 チューブ、42a 1段目のチューブ、42b 2段目のチューブ、42c 3段目のチューブ、42d 4段目のチューブ、42e 5段目のチューブ、42f 6段目のチューブ、42g 7段目のチューブ、42h 8段目のチューブ、42i 9段目のチューブ、42j 10段目のチューブ、43 ヘッダ、43a 流入管、44 ベンド管、100 空気調和装置、113 熱交換器、141 フィン、 200 空気調和装置、213 熱交換器、241 フィン。 1 air conditioner, 2 heat medium circuit, 3 outdoor unit, 4 indoor unit, 11 compressor, 11a discharge pipe, 11b suction pipe, 12 four-way switching valve, 12a first port, 12b second port, 12c second 3 port, 12d 4th port, 13 heat exchanger, 13a blower, 14 expansion section, 15 indoor heat exchanger, 15a indoor blower, 21 boss section, 22 impeller, 31 housing, 31a machine room, 31b blow Chamber, 32 partition plate, 33 bottom plate, 34 side panel, 35 suction part, 36 blowing part, 36a bell mouth, 41 fin, 41a first fin group, 41b second fin group, 41c inner fin group, 41d middle side Fin group, 41e outer fin group, 42 tube, 42a first tube, 42b second tube, 42c 3rd tube, 42d 4th tube, 42e 5th tube, 42f 6th tube, 42g 7th tube, 42h 8th tube, 42i 9th tube, 42j 10 Stage tube, 43 header, 43a inflow pipe, 44 bend pipe, 100 air conditioner, 113 heat exchanger, 141 fin, 200 air conditioner, 213 heat exchanger, 241 fin.

Claims (8)

  1.  筐体と、
     前記筐体の内部に設けられ、横方向に互いに間隔を空けて配置された複数のフィン、及び複数の前記フィンを貫き、内部に熱媒体が流通するチューブを有する平板状の熱交換器と、
     ボス部及び前記ボス部を中心として回転する羽根車を有し、前記筐体の内部において前記熱交換器に対向して配置され、前記羽根車の回転によって前記熱交換器に空気を送風する送風機と、を少なくとも備え、
     前記熱交換器における複数の前記フィンのうちの少なくとも一部は、前記ボス部に向かって傾斜している空気調和装置。
    A housing,
    A flat heat exchanger having a plurality of fins provided inside the casing and arranged in the lateral direction at intervals, and a tube through which the heat medium flows through the plurality of fins;
    A blower having a boss portion and an impeller that rotates around the boss portion, is disposed to face the heat exchanger inside the housing, and blows air to the heat exchanger by the rotation of the impeller And at least comprising
    An air conditioner in which at least a part of the plurality of fins in the heat exchanger is inclined toward the boss portion.
  2.  前記熱交換器は、
     複数の前記フィンのうち、前記ボス部に対向するフィンから外側のフィンに向かうに従って、傾斜角度が大きくなる請求項1記載の空気調和装置。
    The heat exchanger is
    The air conditioner according to claim 1, wherein an inclination angle becomes larger from a fin facing the boss portion toward an outer fin among the plurality of fins.
  3.  前記熱交換器における複数の前記フィンは、
     前記ボス部に対向し、平面視において前記チューブの管軸方向に垂直の第1のフィン群と、
     前記第1のフィン群よりも前記ボス部から離れ、前記ボス部に向かって傾斜している第2のフィン群と、を有する請求項2記載の空気調和装置。
    The plurality of fins in the heat exchanger are:
    A first fin group facing the boss portion and perpendicular to the tube axis direction of the tube in plan view;
    The air conditioning apparatus according to claim 2, further comprising: a second fin group that is further away from the boss part than the first fin group and is inclined toward the boss part.
  4.  前記熱交換器における前記第2のフィン群は、複数のフィン群を有しており、
     前記第1のフィン群の側よりも、前記ボス部から離れる側の方が、傾斜角度が大きい請求項3記載の空気調和装置。
    The second fin group in the heat exchanger has a plurality of fin groups,
    The air conditioner according to claim 3, wherein the inclination angle is larger on the side away from the boss portion than on the side of the first fin group.
  5.  前記熱交換器における複数の前記フィンは、
     前記フィンの長手方向にみて、前記ボス部の回転軸方向の延長線に対し線対称に配置されている請求項1~4のいずれか1項に記載の空気調和装置。
    The plurality of fins in the heat exchanger are:
    The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is arranged symmetrically with respect to an extension line in a rotation axis direction of the boss portion in the longitudinal direction of the fin.
  6.  前記熱交換器は、
     前記ボス部の回転軸方向にみて、横方向の幅が広い長方形状をなしている請求項1~5のいずれか1項に記載の空気調和装置。
    The heat exchanger is
    The air conditioner according to any one of claims 1 to 5, wherein the air conditioner has a rectangular shape with a wide width in a lateral direction when viewed in a rotation axis direction of the boss portion.
  7.  前記熱交換器における前記チューブは、扁平管であり、
     前記熱交換器における複数の前記フィンは、その端部から切り欠かれ前記チューブが挿入された切欠き部が形成されている請求項1~6のいずれか1項に記載の空気調和装置。
    The tube in the heat exchanger is a flat tube,
    The air conditioner according to any one of claims 1 to 6, wherein the plurality of fins in the heat exchanger are notched from an end portion and formed with notches into which the tubes are inserted.
  8.  前記熱交換器における前記チューブは、
     平面視において前記ボス部の回転軸方向に複数配置されており、
     前記熱交換器における複数の前記フィンの夫々は、複数の前記チューブのいずれもに貫かれた一体形状をなしている請求項1~7のいずれか1項に記載の空気調和装置。
    The tube in the heat exchanger is
    A plurality of the boss portions are arranged in the rotation axis direction in plan view,
    The air conditioner according to any one of claims 1 to 7, wherein each of the plurality of fins in the heat exchanger has an integral shape penetrating all of the plurality of tubes.
PCT/JP2015/050008 2015-01-05 2015-01-05 Air conditioning device WO2016110930A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/050008 WO2016110930A1 (en) 2015-01-05 2015-01-05 Air conditioning device
JP2016568183A JP6316458B2 (en) 2015-01-05 2015-01-05 Air conditioner
CN201520910444.9U CN205156305U (en) 2015-01-05 2015-11-16 Air -conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050008 WO2016110930A1 (en) 2015-01-05 2015-01-05 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2016110930A1 true WO2016110930A1 (en) 2016-07-14

Family

ID=55691991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050008 WO2016110930A1 (en) 2015-01-05 2015-01-05 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6316458B2 (en)
CN (1) CN205156305U (en)
WO (1) WO2016110930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193678A1 (en) * 2017-04-20 2018-10-25 三菱電機株式会社 Heat exchanger, air conditioner, and apparatus for manufacturing heat exhanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004216A (en) * 2018-07-03 2020-01-13 주식회사 위니아대우 Evaporator and refrigerator having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129226A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Outdoor device of air conditioner
JP2012154493A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger, and air conditioner
JP2012237538A (en) * 2011-05-13 2012-12-06 Daikin Industries Ltd Heat exchanger
JP2013113517A (en) * 2011-11-30 2013-06-10 Sanyo Electric Co Ltd Heat exchanger, and outdoor unit for air conditioner
JP2013148231A (en) * 2012-01-17 2013-08-01 Sharp Corp Outdoor unit for air conditioner
JP2013213601A (en) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp Heat source machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308252A (en) * 2004-04-19 2005-11-04 Sharp Corp Heat exchanger and air-conditioner outdoor unit equipped therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129226A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Outdoor device of air conditioner
JP2012154493A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger, and air conditioner
JP2012237538A (en) * 2011-05-13 2012-12-06 Daikin Industries Ltd Heat exchanger
JP2013113517A (en) * 2011-11-30 2013-06-10 Sanyo Electric Co Ltd Heat exchanger, and outdoor unit for air conditioner
JP2013148231A (en) * 2012-01-17 2013-08-01 Sharp Corp Outdoor unit for air conditioner
JP2013213601A (en) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp Heat source machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193678A1 (en) * 2017-04-20 2018-10-25 三菱電機株式会社 Heat exchanger, air conditioner, and apparatus for manufacturing heat exhanger
JPWO2018193678A1 (en) * 2017-04-20 2019-11-07 三菱電機株式会社 Heat exchanger, air conditioner and heat exchanger manufacturing apparatus
US11305386B2 (en) 2017-04-20 2022-04-19 Mitsubishi Electric Corporation Heat exchanger, air conditioner, and apparatus for manufacturing heat exchanger

Also Published As

Publication number Publication date
JPWO2016110930A1 (en) 2017-06-29
CN205156305U (en) 2016-04-13
JP6316458B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP4749373B2 (en) Air conditioner
US8205470B2 (en) Indoor unit for air conditioner
US9568221B2 (en) Indoor unit for air conditioning device
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JPWO2013084397A1 (en) Air conditioner
JP6466047B1 (en) Heat exchanger and air conditioner
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP2016200338A (en) Air conditioner
JPWO2016071953A1 (en) Air conditioner indoor unit
TW201825838A (en) Dehumidifying device
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
JP6316458B2 (en) Air conditioner
JP2006234264A (en) Fin and tube-type heat exchanger
JP5081881B2 (en) Air conditioner
JP6400378B2 (en) Air conditioner
EP3524915B1 (en) Refrigeration cycle apparatus
JP2019027614A (en) Heat exchanging device and air conditioner
JP2014081150A (en) Air conditioner
JP6545424B1 (en) Air conditioner
JP2012042128A (en) Heat exchanger and air conditioner equipped with the same
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
JP6486718B2 (en) Heat exchanger
JP5818984B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876808

Country of ref document: EP

Kind code of ref document: A1