JP2006234264A - Fin and tube-type heat exchanger - Google Patents

Fin and tube-type heat exchanger Download PDF

Info

Publication number
JP2006234264A
JP2006234264A JP2005048756A JP2005048756A JP2006234264A JP 2006234264 A JP2006234264 A JP 2006234264A JP 2005048756 A JP2005048756 A JP 2005048756A JP 2005048756 A JP2005048756 A JP 2005048756A JP 2006234264 A JP2006234264 A JP 2006234264A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
fin
pitch
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005048756A
Other languages
Japanese (ja)
Inventor
Sunao Saito
直 斎藤
Toshiaki Yoshikawa
利彰 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005048756A priority Critical patent/JP2006234264A/en
Publication of JP2006234264A publication Critical patent/JP2006234264A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a fin and tube-type heat exchanger used in a conventional air conditioner that its performance can not be significantly improved because of its storing performance, air flow resistance and distribution of wind speed even when the number of arrays is increased. <P>SOLUTION: This fin and tube-type heat exchanger is composed of a plurality of fins arranged in parallel with each other at constant intervals to allow a gas to flow among them, and heat transfer tubes approximately orthogonally inserted to the fins at prescribed level pitches and array pitches in such a state that the fluid flows inside. 1.9D0≤L1≤2.2D0 and L2<3.3D0 are satisfied when an outer diameter D0 of the heat transfer tube is 3 mm≤D0≤7.8 mm, the tube array pitch in the airflow direction is L1, and the tube level pitch in the direction vertical to the airflow is L2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、空気調和機または冷凍機分野に広く用いられるフィンチューブ型熱交換器に関するものである。   The present invention relates to a finned tube heat exchanger widely used in the field of air conditioners or refrigerators.

従来のフィンチューブ型熱交換器は、管外径D0(3mm≦D0≦7.5mm)の伝熱管を有し、気流方向の管列ピッチL1を1.2D0≦L1≦1.8D0、そして気流方向に垂直な管段ピッチL2を2.6D0≦L2≦3.5D0としている。   The conventional fin tube type heat exchanger has a heat transfer tube having a tube outer diameter D0 (3 mm ≦ D0 ≦ 7.5 mm), the tube row pitch L1 in the airflow direction is 1.2D0 ≦ L1 ≦ 1.8D0, and the airflow The tube stage pitch L2 perpendicular to the direction is set to 2.6D0 ≦ L2 ≦ 3.5D0.

そして、フィンの伝熱管相互間に切り起して開口したスリット形切り起し群の脚部列がフィンの前縁と角度をなすように設けられて、空気側伝熱性能を高めるものであった(例えば、特許文献1参照。)。   In addition, the slit-shaped cut-and-raised group of leg portions that are cut and opened between the heat transfer tubes of the fins are provided so as to form an angle with the front edge of the fins, thereby improving the air-side heat transfer performance. (For example, refer to Patent Document 1).

特開昭63−3188号公報(第3−4頁、第1図)JP-A-63-3188 (page 3-4, Fig. 1)

上述のように構成された従来の熱交換器は、近年の省エネ法規制等による高効率の追求に応じた伝熱面積の拡大のための複数列化には対応しておらず、空気側の圧力損失の増加により伝熱性能の低下をまねくといった問題を有していた。また、環境問題による素材使用量の削減といった観点では、伝熱性能最大を目指すあまり素材(フィン材)使用量に対する効率面ではパフォーマンスの悪いところで列ピッチL1が設定されているという問題を有していた。   The conventional heat exchanger configured as described above does not support multiple rows for expanding the heat transfer area according to the pursuit of high efficiency due to recent energy saving laws and regulations. There was a problem that the heat transfer performance deteriorated due to an increase in pressure loss. In addition, from the viewpoint of reducing the amount of material used due to environmental problems, there is a problem that the row pitch L1 is set where the performance is poor in terms of efficiency with respect to the amount of material (fin material) used so as to maximize the heat transfer performance. It was.

この発明は、上記のような課題を解決するためになされたもので、複数列化した場合の伝熱性能を改善することと、列数が少ない場合でも伝熱性能を確保しながらフィン材の使用量を削減することを目的としている。   The present invention has been made to solve the above-described problems. It improves the heat transfer performance when a plurality of rows are formed, and the fin material while ensuring the heat transfer performance even when the number of rows is small. The purpose is to reduce usage.

この発明に係るフィンチューブ型熱交換器は、一定間隔で平行に複数並べられ、その間を気体が流動するフィンと、前記フィンに所定の段ピッチおよび列ピッチで略直角に挿入され、内部を冷媒が流動する伝熱管から構成され、前記伝熱管の外径D0を3mm≦D0≦7.8mmとし、気流方向の管列ピッチL1および気流と垂直方向の管段ピッチL2を、1.9D0≦L1≦2.2D0およびL2<3.3D0としたものである。   The finned tube heat exchanger according to the present invention includes a plurality of fins arranged in parallel at regular intervals, a gas flowing between them, and inserted into the fins at a predetermined step pitch and row pitch at a substantially right angle, and the inside is a refrigerant The outer diameter D0 of the heat transfer tube is 3 mm ≦ D0 ≦ 7.8 mm, the tube row pitch L1 in the airflow direction and the tube stage pitch L2 in the direction perpendicular to the airflow are 1.9D0 ≦ L1 ≦ 2.2D0 and L2 <3.3D0.

この発明に係るフィンチューブ型熱交換器は、一定間隔で平行に複数並べられ、その間を気体が流動するフィンと、前記フィンに所定の段ピッチおよび列ピッチで略直角に挿入され、内部を冷媒が流動する伝熱管から構成され、前記伝熱管の外径D0を3mm≦D0≦7.8mmとし、気流方向の管列ピッチL1および気流と垂直方向の管段ピッチL2を、1.9D0≦L1≦2.2D0およびL2<3.3D0としたので、大幅な性能向上の効果を有する。   The finned tube heat exchanger according to the present invention includes a plurality of fins arranged in parallel at regular intervals, a gas flowing between them, and inserted into the fins at a predetermined step pitch and row pitch at a substantially right angle, and the inside is a refrigerant The outer diameter D0 of the heat transfer tube is 3 mm ≦ D0 ≦ 7.8 mm, the tube row pitch L1 in the airflow direction and the tube stage pitch L2 in the direction perpendicular to the airflow are 1.9D0 ≦ L1 ≦ Since 2.2D0 and L2 <3.3D0, there is a significant performance improvement effect.

実施の形態1.
以下、この発明の実施の形態1に係るフィンチューブ型熱交換器を図1〜図5を用いて説明する。
図1はこの発明の実施の形態1による冷凍サイクルの構成図、図2と図3はこの発明のフィンチューブ型熱交換器を示す断面図、図4、図5はこのフィンチューブ型熱交換器の性能を説明する特性図である。
Embodiment 1 FIG.
Hereinafter, the finned tube heat exchanger according to Embodiment 1 of the present invention will be described with reference to FIGS.
1 is a configuration diagram of a refrigeration cycle according to Embodiment 1 of the present invention, FIGS. 2 and 3 are sectional views showing a finned tube heat exchanger of the present invention, and FIGS. 4 and 5 are finned tube heat exchangers. It is a characteristic view explaining the performance of.

図1において、圧縮機1、四方弁2、室外側熱交換器3、膨張機構(電子制御式膨張弁)4、室内側熱交換器5を順次接続して冷凍サイクルを構成し、室外側熱交換器3には室外送風機6が、そして室内側熱交換器5には室内送風機7が設けられている。冷房運転時は、圧縮機1から圧縮された高温高圧の冷媒が吐出し、四方弁2を介して室外側熱交換器3へ流入する。この室外側熱交換器3ではその風路に設けられた室外側送風機6により室外の空気が室外側熱交換器のフィンとチューブの間を通過しながら熱交換し冷媒は冷却されて高圧の液状態になり、室外側熱交換器3は凝縮器として作用する。その後膨張機構4を通過して減圧され低圧の二相冷媒となり室内側熱交換器5に流入する。室内側熱交換器5ではその取り付けられた風路の室内側送風機7の駆動により室内空気が室内側熱交換器5のフィンとチューブの間を通過し冷媒と熱交換することにより、室内空間に吹出される空気は冷やされ、一方冷媒は空気より熱を受け取り蒸発して気体状態となり(室内側熱交換器5は蒸発器として作用する)、その後圧縮機1へ戻り冷媒は循環することにより、室内空間を空調する。また、暖房運転の場合は、冷凍サイクルにおいて上記と逆向きの冷媒流れとなり、室内側熱交換器5が凝縮器として、室外側熱交換器3が蒸発器として作用する。   In FIG. 1, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion mechanism (electronically controlled expansion valve) 4, and an indoor heat exchanger 5 are sequentially connected to constitute a refrigeration cycle, and the outdoor heat The exchanger 3 is provided with an outdoor blower 6, and the indoor heat exchanger 5 is provided with an indoor blower 7. During the cooling operation, the high-temperature and high-pressure refrigerant compressed from the compressor 1 is discharged and flows into the outdoor heat exchanger 3 through the four-way valve 2. In the outdoor heat exchanger 3, the outdoor air blower 6 provided in the air path exchanges heat while the outdoor air passes between the fins and the tubes of the outdoor heat exchanger, and the refrigerant is cooled, so that the high-pressure liquid is cooled. The outdoor heat exchanger 3 acts as a condenser. Thereafter, the refrigerant passes through the expansion mechanism 4 and is reduced in pressure to become a low-pressure two-phase refrigerant and flows into the indoor heat exchanger 5. In the indoor side heat exchanger 5, the indoor air passes through between the fins and the tubes of the indoor side heat exchanger 5 and exchanges heat with the refrigerant by driving the indoor side blower 7 in the attached air passage, thereby changing the indoor air into the indoor space. The air blown out is cooled, while the refrigerant receives heat from the air and evaporates into a gaseous state (the indoor heat exchanger 5 acts as an evaporator), and then returns to the compressor 1 to circulate the refrigerant. Air-condition the indoor space. In the heating operation, the refrigerant flows in the opposite direction in the refrigeration cycle, and the indoor heat exchanger 5 functions as a condenser and the outdoor heat exchanger 3 functions as an evaporator.

図2および図3に示すように、一定間隔をおいて平行に複数並べられたフィン20に一定間隔でバーリング加工されてフィンカラーを有した挿通穴にフィンに対して略垂直に伝熱管10が挿入され、フィン20に並行に、そして伝熱管10には垂直な方向(図中の矢印方向)に気流が流入する。この伝熱管10の外径D0は略3mmから7.8mmのサイズである。また、気流方向の管列ピッチをL1、気流と垂直方向の管段ピッチL2とすると、外径D0と管列ピッチL1との関係は1.9D0≦L1≦2.2D0、外径D0と管列ピッチL2との関係はL2<3.3D0に設定されている。なお、この伝熱管10には図1にて説明した冷凍サイクル中を循環する冷媒が流動することにより、熱交換器を通過する気流とこの冷媒との間で、伝熱管10およびそれに密着して熱的に繋がったフィン20を介して熱交換される。   As shown in FIG. 2 and FIG. 3, the heat transfer tube 10 is inserted in a plurality of fins 20 arranged in parallel at regular intervals and burringed at regular intervals to have insertion holes with fin collars substantially perpendicular to the fins. The airflow flows in parallel to the fins 20 and in a direction perpendicular to the heat transfer tubes 10 (arrow direction in the figure). The outer diameter D0 of the heat transfer tube 10 is approximately 3 mm to 7.8 mm. If the pipe row pitch in the airflow direction is L1 and the pipe stage pitch L2 is perpendicular to the airflow, the relationship between the outer diameter D0 and the pipe row pitch L1 is 1.9D0 ≦ L1 ≦ 2.2D0, the outer diameter D0 and the tube row. The relationship with the pitch L2 is set to L2 <3.3D0. In addition, when the refrigerant circulating in the refrigeration cycle described in FIG. 1 flows in the heat transfer tube 10, the heat transfer tube 10 and the refrigerant are in close contact with each other between the airflow passing through the heat exchanger and the refrigerant. Heat exchange is performed through the thermally connected fins 20.

図3は図2のA−A断面における断面図であり、フィン20に対して伝熱管10が管列数を3列とし、千鳥状に配置された形態となっている。   FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2, and the heat transfer tubes 10 are arranged in a staggered manner with three tube rows with respect to the fins 20.

図4は上記構成のフィンチューブ型熱交換器を室外側熱交換器として用いた場合に、管列ピッチL1と列数をパラメータとして、同一送風騒音時の風量基準で冷凍サイクル機器のCOP(エネルギー消費効率の冷房と暖房の平均)を実験および解析を行い評価したものである。図において、縦軸にCOP改善率[%]、横軸にL1/D0をとり、3列の場合を実線、2列を一点鎖線、そして1列を点線で示している。   FIG. 4 shows a case where the fin tube type heat exchanger having the above-described configuration is used as an outdoor heat exchanger, with the pipe row pitch L1 and the number of rows as parameters, and the COP (energy of the refrigeration cycle equipment based on the air volume reference at the time of the same blowing noise. The average of consumption efficiency cooling and heating) was evaluated through experiments and analysis. In the figure, the vertical axis indicates the COP improvement rate [%], the horizontal axis indicates L1 / D0, the case of three columns is indicated by a solid line, the second column is indicated by a one-dot chain line, and the one column is indicated by a dotted line.

すなわち、管列数が3列の熱交換器(図中の実線)において、従来の熱交換器で用いられたL1>2.2D0の範囲では、伝熱面積は増加するが通風抵抗も増加し、COPは減少するばかりでCOPの最大ポイントで使用できていない。本発明は、1.9D0≦L1≦2.2D0の範囲に設定しているので、COPの最大ポイントで使用することができ、大幅に性能が向上する。   In other words, in a heat exchanger with three rows of tubes (solid line in the figure), in the range of L1> 2.2D0 used in the conventional heat exchanger, the heat transfer area increases but the ventilation resistance also increases. , COP is only decreasing and not being used at the maximum point of COP. Since the present invention is set in the range of 1.9D0 ≦ L1 ≦ 2.2D0, it can be used at the maximum point of COP, and the performance is greatly improved.

また、管列数が2列の熱交換器(図中の一点鎖線)や1列の熱交換器(図中の点線)においては、従来のL1>2.2D0の範囲で、L1/D0が増加するにつれてCOPは微増傾向にあるのでCOPとしては最大値を得ることができるが、管列ピッチが増加するためフィン材の使用量も増加する。一方、L1<1.9D0の領域ではL1/D0が減少するにつれてCOPは大幅に低下する。そして、本発明の1.9D0≦L1≦2.2D0の範囲に設定することで、COPの低下を最小限に抑えながらフィン材の使用量を削減しているのでコストパフォーマンスは大幅に改善できる。   Further, in a heat exchanger having two rows of tubes (one-dot chain line in the figure) and one row of heat exchangers (dotted line in the figure), L1 / D0 is within the conventional range of L1> 2.2D0. As the COP increases, the COP tends to increase slightly, so that the maximum value can be obtained for the COP. On the other hand, in the region of L1 <1.9D0, the COP greatly decreases as L1 / D0 decreases. And by setting to the range of 1.9D0 <= L1 <= 2.2D0 of this invention, since the usage-amount of a fin material is reduced, suppressing the fall of COP, cost performance can be improved significantly.

図4に示すように、1.9≦L1/D0≦2.2の範囲に設定すると、管列数が1列または2列に比べて、3列の熱交換器の方がCOP改善率において顕著な効果が得られる。   As shown in FIG. 4, when the range of 1.9 ≦ L1 / D0 ≦ 2.2 is set, the number of tube rows is one row or two rows, and the three rows of heat exchangers have a COP improvement rate. A remarkable effect is obtained.

上述のフィンチューブ型熱交換器では室外側熱交換器の場合として説明したが、室内側熱交換器でも同様の効果を得ることができる。
なお、室内側熱交換器と室内送風機を内設し、吸込口および吹出口を有する箱体からなる空気調和機室内機は居室空間に設置されることからコンパクトな形状となっている。一方、室外側熱交換器と室外送風機および圧縮機等の冷媒回路部品を内設する箱体からなる空気調和機室外機は、屋外の広い設置制約が少ない場所に据え付けられることから室外側熱交換器の正面面積は室内側熱交換器よりも大きくとれるのが一般的である。従って、これまでの室外側熱交換器の管列数は1または2列が多く、3列は稀であり、この3列の室外側熱交換器は1または2列の仕様の延長線上でつくられていた。そこで近年の市場環境より3列化の室外側熱交換器の重要度が上がってきているので、より室外側熱交換器への展開が必要となっている。
Although the above-described fin tube type heat exchanger has been described as an outdoor heat exchanger, the same effect can be obtained with an indoor heat exchanger.
In addition, the air conditioner indoor unit which consists of a box body which has an indoor side heat exchanger and an indoor air blower, and has a suction inlet and a blower outlet is installed in a living room space, and has a compact shape. On the other hand, outdoor heat exchangers and air conditioner outdoor units consisting of boxes that contain refrigerant circuit components such as outdoor fans and compressors are installed in places where there are few outdoor installation restrictions. Generally, the front area of the vessel is larger than that of the indoor heat exchanger. Therefore, the number of tube rows of the outdoor heat exchanger so far has been one or two, and three rows are rare, and these three rows of outdoor heat exchangers are attached on the extension line of the specification of one or two rows. It was done. Therefore, since the importance of outdoor heat exchangers in three rows is increasing from the market environment in recent years, it is necessary to expand to outdoor heat exchangers.

図5は図1から図3を用いて説明した構成のフィンチューブ型熱交換器を室外側熱交換器として用いた場合において、フィンピッチFPをパラメーターとして、同一送風騒音時の風量基準で機器の暖房低温能力(デフロストサイクル能力)を実験および解析を行い評価したものであり、縦軸に暖房低温能力、横軸にフィンピッチFP[mm]をとり、その特性を実線カーブで示している。   FIG. 5 shows a case where the fin tube type heat exchanger having the configuration described with reference to FIGS. 1 to 3 is used as an outdoor heat exchanger, and the fin pitch FP is used as a parameter and the air flow standard at the time of the same blowing noise is used. The low temperature heating capability (defrost cycle capability) was evaluated by experiment and analysis. The vertical axis represents the heating low temperature capability, the horizontal axis represents the fin pitch FP [mm], and the characteristic is shown by a solid curve.

そして、図5のフィンピッチFPを変化させたときのフィンチューブ型熱交換器の性能を示す特性図におけるフィンチューブ型熱交換器の条件としては、上記の伝熱管の外径寸法や、管外径と管列ピッチの関係、および管外径と管段ピッチの関係は同一としたものである。   And as a condition of the fin tube type heat exchanger in the characteristic diagram showing the performance of the fin tube type heat exchanger when the fin pitch FP of FIG. 5 is changed, the outer diameter dimension of the heat transfer tube or the outside of the tube The relationship between the diameter and the tube row pitch and the relationship between the tube outer diameter and the tube step pitch are the same.

図5に示すように、フィンピッチFPが1.3mm未満の場合には、伝熱面積は増加するが、フィン表面への着霜の成長が早まりその着霜した熱交換器を通過する風量が低下することによる能力低下となる。一方、フィンピッチFPが2.0mm以上の場合には、着霜による風量低下は抑えられるが伝熱面積が減少するための能力が低下してしまう。そこで、本発明は、フィンピッチFPを1.3mm≦FP≦2.0mmとすることで最大の能力を得ることができ、暖房低温能力の大幅な性能改善の効果を有する。   As shown in FIG. 5, when the fin pitch FP is less than 1.3 mm, the heat transfer area increases, but the growth of frost on the fin surface is accelerated, and the amount of air passing through the frosted heat exchanger is increased. Decreasing ability due to decrease. On the other hand, when the fin pitch FP is 2.0 mm or more, the air flow reduction due to frost formation can be suppressed, but the ability to reduce the heat transfer area is reduced. Therefore, the present invention can obtain the maximum capability by setting the fin pitch FP to 1.3 mm ≦ FP ≦ 2.0 mm, and has the effect of greatly improving the heating / low temperature capability.

また、この発明により伝熱性能を低下させることなく、フィン材の使用量を従来よりも削減し原価低減の効果を有するものである。   In addition, the present invention reduces the amount of fin material used compared to the prior art without reducing the heat transfer performance, and has the effect of reducing costs.

本発明の実施の形態1に係る冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るフィンチューブ型熱交換器の断面図である。It is sectional drawing of the fin tube type heat exchanger which concerns on Embodiment 1 of this invention. 図2のA−A断面における断面図である。It is sectional drawing in the AA cross section of FIG. 本発明の実施の形態1に係るフィンチューブ型熱交換器の性能を示す特性図である。It is a characteristic view which shows the performance of the fin tube type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るフィンチューブ型熱交換器の性能を示す特性図である。It is a characteristic view which shows the performance of the fin tube type heat exchanger which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 圧縮機、 2 四方弁、 3 室外側熱交換器、 4 膨張機構、 5 室内側熱交換器、 6 室外送風機、 7 室内熱交換器、 10 伝熱管、 20 冷却フィン。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Expansion mechanism, 5 Indoor heat exchanger, 6 Outdoor blower, 7 Indoor heat exchanger, 10 Heat exchanger tube, 20 Cooling fin.

Claims (4)

一定間隔で平行に複数並べられ、その間を気体が流動するフィンと、前記フィンに所定の段ピッチおよび列ピッチで略直角に挿入され、内部を冷媒が流動する伝熱管から構成され、前記伝熱管の外径D0を3mm≦D0≦7.8mmとし、気流方向の管列ピッチL1および気流と垂直方向の管段ピッチL2を、1.9D0≦L1≦2.2D0およびL2<3.3D0としたことを特徴とするフィンチューブ型熱交換器。 A plurality of fins arranged in parallel at regular intervals, and a gas flowing between them, and a heat transfer tube inserted into the fins at a predetermined right angle with a predetermined step pitch and a row pitch, and in which a refrigerant flows, the heat transfer tube The outer diameter D0 is 3 mm ≦ D0 ≦ 7.8 mm, and the tube row pitch L1 in the airflow direction and the tube stage pitch L2 in the direction perpendicular to the airflow are 1.9D0 ≦ L1 ≦ 2.2D0 and L2 <3.3D0. A finned tube heat exchanger. 前記伝熱管の列数を3列としたことを特徴とする請求項1記載のフィンチューブ型熱交換器。 2. The finned tube heat exchanger according to claim 1, wherein the number of rows of the heat transfer tubes is three. 前記フィンのフィンピッチFPを1.3mm≦FP≦2.0mmとしたことを特徴とする請求項1または2記載のフィンチューブ型熱交換器。 The fin tube type heat exchanger according to claim 1 or 2, wherein a fin pitch FP of the fins is set to 1.3 mm ≤ FP ≤ 2.0 mm. 冷凍サイクルの圧縮機と膨張機構と室外側熱交換器を内設した空気調和機の室外機の前記室外側熱交換器として使用したことを特徴とする請求項1ないし請求項3のいずれかに記載のフィンチューブ型熱交換器。 The compressor according to any one of claims 1 to 3, wherein the compressor is used as an outdoor heat exchanger of an outdoor unit of an air conditioner having a compressor, an expansion mechanism, and an outdoor heat exchanger installed therein. The described finned tube heat exchanger.
JP2005048756A 2005-02-24 2005-02-24 Fin and tube-type heat exchanger Pending JP2006234264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048756A JP2006234264A (en) 2005-02-24 2005-02-24 Fin and tube-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048756A JP2006234264A (en) 2005-02-24 2005-02-24 Fin and tube-type heat exchanger

Publications (1)

Publication Number Publication Date
JP2006234264A true JP2006234264A (en) 2006-09-07

Family

ID=37042123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048756A Pending JP2006234264A (en) 2005-02-24 2005-02-24 Fin and tube-type heat exchanger

Country Status (1)

Country Link
JP (1) JP2006234264A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP2010060267A (en) * 2008-08-07 2010-03-18 Sanden Corp Heat exchanger and heat pump apparatus using the same
JP2011237047A (en) * 2010-04-30 2011-11-24 Daikin Industries Ltd Heat exchanger of air conditioner
JP2015141009A (en) * 2014-01-30 2015-08-03 ダイキン工業株式会社 Heat exchanger for heat source unit of refrigeration device and heat source unit including the same
EP3117162A4 (en) * 2014-03-11 2017-11-29 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN109140604A (en) * 2018-08-27 2019-01-04 广东美的制冷设备有限公司 Finned heat exchanger, air-conditioner outdoor unit and air conditioner
CN114174751A (en) * 2019-08-06 2022-03-11 三菱电机株式会社 Heat exchanger and refrigeration cycle device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2002257483A (en) * 2001-02-28 2002-09-11 Toyo Radiator Co Ltd Plate fin type heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2002257483A (en) * 2001-02-28 2002-09-11 Toyo Radiator Co Ltd Plate fin type heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP2010060267A (en) * 2008-08-07 2010-03-18 Sanden Corp Heat exchanger and heat pump apparatus using the same
JP2011237047A (en) * 2010-04-30 2011-11-24 Daikin Industries Ltd Heat exchanger of air conditioner
JP2015141009A (en) * 2014-01-30 2015-08-03 ダイキン工業株式会社 Heat exchanger for heat source unit of refrigeration device and heat source unit including the same
EP3117162A4 (en) * 2014-03-11 2017-11-29 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN109140604A (en) * 2018-08-27 2019-01-04 广东美的制冷设备有限公司 Finned heat exchanger, air-conditioner outdoor unit and air conditioner
CN114174751A (en) * 2019-08-06 2022-03-11 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN114174751B (en) * 2019-08-06 2023-10-13 三菱电机株式会社 Heat exchanger and refrigeration cycle device

Similar Documents

Publication Publication Date Title
US9885525B2 (en) Aft conditioner
US20090084129A1 (en) Heat exchanger and refrigeration cycle apparatus having the same
JP2006234264A (en) Fin and tube-type heat exchanger
US20210041115A1 (en) Indoor heat exchanger and air conditioning apparatus
JP2007139231A (en) Refrigerator distributor and air conditioner using it
JPWO2013084397A1 (en) Air conditioner
EP1757869A2 (en) Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
US20230101157A1 (en) Heat exchanger and air-conditioning apparatus
JP5627635B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
WO2014125997A1 (en) Heat exchange device and refrigeration cycle device equipped with same
WO2021065914A1 (en) Freezing apparatus
JP6316458B2 (en) Air conditioner
JP2021191996A (en) Heat transfer pipe and heat exchanger
JP7118247B2 (en) air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP5958075B2 (en) Showcase
KR100486599B1 (en) Cooling fin arrangement structure for fin and tube solid type heat exchanger
JP2008121995A (en) Air conditioner
CN218884117U (en) Indoor machine of air conditioner
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP7357137B1 (en) air conditioner
US11976855B2 (en) Heat exchanger and air conditioner having the same
US11732971B2 (en) Heat exchanger and air conditioner having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Effective date: 20100115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100312

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20100823

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20101008

Free format text: JAPANESE INTERMEDIATE CODE: A912