WO2016107207A1 - 一种耳机音效补偿方法、装置及耳机 - Google Patents

一种耳机音效补偿方法、装置及耳机 Download PDF

Info

Publication number
WO2016107207A1
WO2016107207A1 PCT/CN2015/089250 CN2015089250W WO2016107207A1 WO 2016107207 A1 WO2016107207 A1 WO 2016107207A1 CN 2015089250 W CN2015089250 W CN 2015089250W WO 2016107207 A1 WO2016107207 A1 WO 2016107207A1
Authority
WO
WIPO (PCT)
Prior art keywords
earphone
data
function
current
standard
Prior art date
Application number
PCT/CN2015/089250
Other languages
English (en)
French (fr)
Inventor
刘崧
王林章
李波
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to JP2016548671A priority Critical patent/JP6096993B1/ja
Priority to US15/115,525 priority patent/US9749732B2/en
Priority to EP15874893.9A priority patent/EP3089475B1/en
Priority to DK15874893.9T priority patent/DK3089475T3/en
Publication of WO2016107207A1 publication Critical patent/WO2016107207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/165Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/15Determination of the acoustic seal of ear moulds or ear tips of hearing devices

Definitions

  • the present invention relates to the field of earphone technology, and in particular, to a headset sound effect compensation method, device and earphone.
  • Headphones have been widely used in people's ordinary life and work. Compared with the traditional listening mode using high-fidelity audio, the earphones are small in size and easy to carry, and the listening mode does not need to be fixed. Advances in micro-speaker technology, many excellent headphones also achieve a very wide, very flat frequency response curve, thus ensuring high-fidelity music appreciation, so it is also favored by more and more consumers, but many manufacturers are Paying close attention to the quality of the earphone itself, and ignoring the user's wearing state of the earphone will also affect the listening effect that the earphone should bring.
  • the wearing of the earphone is different and the wearing method is different, the user of the earphone often cannot obtain the listening effect of the earphone.
  • incorrect wearing methods can have a negative impact on low frequency, medium frequency and reverberation during listening.
  • the sound detection method also adopts the acoustic detection method.
  • the method of the acoustic detection is computationally troublesome, and is greatly affected by external disturbances, which is prone to misjudgment. Case.
  • the main object of the present invention is to provide a method, device and earphone for compensating the sound effect of the earphone, which can eliminate the interference of the external environment, dynamically compensate the sound effect under different earphone wearing modes, and enable the earphone user to obtain the standard wearing state of the earphone.
  • an embodiment of the present invention provides a method for compensating a headphone sound effect, and a monitoring microphone is disposed in a coupling cavity of the earphone and the human ear; the method includes:
  • the sound compensation of the earphone is performed according to the error data.
  • an embodiment of the present invention further provides a headphone sound effect compensation device.
  • the device includes:
  • a monitoring data acquiring unit configured to acquire monitoring signal data of a current wearing state of the earphone user according to the signal collected by the monitoring microphone disposed in the coupling cavity of the earphone and the human ear and the audio signal played by the speaker of the earphone;
  • the error data calculation unit is configured to calculate error data of the monitoring signal data of the current wearing state and the standard signal data of the standard wearing state of the earphone;
  • the sound effect compensation unit is configured to perform sound effect compensation on the earphone according to the error data.
  • an embodiment of the present invention provides an earphone, including the earphone sound compensation device provided in the above embodiment, in which a monitoring microphone is disposed in a coupling cavity of the earphone and the human ear.
  • the current earphone wearing state of the user can be obtained in real time by monitoring the signals of the microphone and the earphone speaker in the coupling cavity, and the error state between the wearing states can be dynamically performed for different earphone wearing states.
  • Sound compensation which realizes a new type of earphone sound compensation scheme, which enables the earphone user to achieve the best listening effect.
  • the embodiment of the present invention adopts the method of adaptive digital signal processing, the implementation manner is simple and the anti-interference ability is strong.
  • FIG. 1 is a flowchart of a method for compensating a sound effect of a headset according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an earphone with sound compensation performance according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a working principle of a method for compensating a sound effect of a headset according to an embodiment of the present invention
  • FIG. 5 is a flowchart of another method for compensating for a sound effect of a headset according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a headphone sound effect compensation apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another earphone sound effect compensation apparatus according to an embodiment of the present invention.
  • the main technical idea of the present invention is to combine the earphone coupling intelligent detection and the sound effect compensation, and to detect the coupling of the earphone wearing in real time according to the different wearing state of the earphone, the interference of the intelligent environment, and according to the coupling situation. Different, the dynamic sound compensation method is adopted, so that the earphone user can achieve the best listening effect.
  • the invention adopts an adaptive digital signal processing method, which is simple in implementation and is not susceptible to external interference.
  • a monitoring microphone is arranged in the coupling cavity of the earphone and the human ear, the coupling cavity changes, and the signal collected by the monitoring microphone also changes, and the coupling of the earphone wearing can be known by monitoring the signal collected by the microphone in real time.
  • the earphone plays a signal
  • this signal is played through the speaker of the earphone, and the sound propagation in the coupling cavity is finally collected by the built-in monitoring microphone.
  • the inventor has drawn from the perspective of digital signal processing that the played signal is convoluted by a filter to obtain the acquired signal.
  • the filter changes accordingly. Therefore, the function of this filter can be used to reverse the wearing state of the earphone.
  • the signal to be played has a strong correlation with the signal collected from the coupling cavity, so the adaptive method of the digital signal can be used to solve the filter.
  • FIG. 1 is a flow chart showing a method for compensating for a headphone sound effect according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • Step S110 Acquire monitoring signal data of the current wearing state of the earphone user according to the signal collected by the monitoring microphone and the audio signal played by the speaker of the earphone.
  • the current filter function corresponding to the acoustic path of the coupling cavity is calculated, and the earphone is used according to the current filter function. Monitoring signal data of the current wearing state.
  • the current filter function at each moment is calculated by using adaptive filtering within a predetermined time; the data window is set, and the current filter function at each moment is sampled according to the data window; When the average variance of the sampled current filter function does not exceed the steady-state threshold, it is determined that the current filter function at each moment of the calculation reaches a steady state; then any current filter function or time of the steady state will be reached.
  • the mean of the current filter function is used as the monitoring signal data.
  • Step S120 calculating error data of the monitoring signal data of the current wearing state and the standard signal data of the standard wearing state of the earphone.
  • the standard signal data for obtaining the standard wearing state of the earphone includes:
  • the standard filter function corresponding to the acoustic path of the coupling cavity is calculated, and the standard signal data is obtained according to the standard filter function.
  • the step S120 specifically includes: calculating a current filter frequency domain function of the current filter function, and calculating a standard filter frequency domain function of the standard filter function; dividing the frequency into a predetermined number of frequency bands according to the sound effect; on each frequency band Calculating an average of amplitude differences between the current filter frequency domain function and the standard filter frequency domain function, or calculating an area value surrounded by a frequency response curve of the current filter frequency domain function and the standard filter frequency domain function; The mean value of the amplitude difference or the area value enclosed by the frequency response curve is used as the error data used for the earphone sound compensation.
  • Step S130 performing sound effect compensation on the earphone according to the error data.
  • the step S130 specifically includes: setting a first threshold and a second threshold in advance, and the second threshold is smaller than the first threshold; and performing, for each frequency band divided according to the sound effect, the following processing:
  • Equalizer EQ Equalizer
  • DRC Dynamic Range Control
  • the earphone sound effect compensation method of the embodiment of the present invention adopts an adaptive digital signal processing mode, and the monitoring signal data of the current wearing state of the earphone user is obtained by monitoring the microphone, and the standard signal of the monitoring signal data and the standard wearing state of the earphone is calculated.
  • the error data between the data, and the sound compensation of the earphone according to the error data can eliminate the interference of the external environment, real-time monitoring and dynamic compensation of the current wearing state of the earphone user, so that the earphone user can achieve the best listening Sound effect.
  • FIG. 2 is a schematic diagram of an earphone with sound compensation performance according to an embodiment of the present invention.
  • the sound emitted by the speaker 21 is controlled by the signal processing circuit board 22.
  • the data collected by the monitoring microphone 24 in the coupling cavity 23 is also fed back to the signal processing circuit board 22 for operation, and the signal processing circuit board 22 adapts the signal.
  • Filter processing Since the adaptive filtering is sensitive to external noise, the convergence stability of the adaptive filter can be used to determine whether there is external interference and to determine the credibility of the filtering result.
  • FIG. 3 is a schematic diagram showing the operation of the earphone sound effect compensation method according to an embodiment of the present invention. As shown in Figure 3, the headphone sound compensation process includes the following three steps:
  • the signal acquisition link includes collecting the speaker sound signal x(t) and collecting the signal d(t) of the monitoring microphone, t indicating the sampling moment, and sampling the analog signal to obtain the digital signals x(i) and d(i) respectively. Input to the adaptive filter.
  • an adaptive filtering step adaptively filtering the input digital signals x(i) and d(i), outputting an adaptive filter function, and obtaining a headphone user when the adaptive filter function reaches a steady state
  • the monitoring signal data of the current wearing state the monitoring signal data is the current filter function.
  • the sound compensation link that is, the error data according to the current filter function (the monitoring signal data of the current wearing state when the adaptive filter function reaches the steady state) and the standard filter function (standard signal data of the standard wearing state of the earphone),
  • the sound output of the speaker's output signal is compensated, so that the earphone user can reach or approach the standard listening experience.
  • the sound signal played in the earphone speaker is x(t)
  • the external noise is n(t)
  • the signal collected by the monitoring microphone in the coupling cavity is d(t)
  • the propagation path from the speaker to the monitoring microphone is filtered by the filter h(t).
  • h(t) is a parameter that reflects the coupling between the earphone and the human ear. According to the adaptive filter theory, use Approximate the true h(t) and set the approximation principle to the error. The signal mean square value is the smallest. The analog signal is sampled to obtain a digital signal, which is represented by ⁇ (i). Where i is used to represent the sampling of t, ie:
  • the adaptive filter function can be found.
  • the above equation can also be seen if the external noise n(i) ⁇ 0, then Will infinitely approach h(i), when the external noise changes, n(i) ⁇ 0, Will change, according to The change is to identify external noise interference, which can avoid the influence of external noise on the judgment.
  • the speaker inputs a white noise series u(i) with a power of 1 and monitors the microphone for acquisition.
  • the acquired output signal is y(i), and the cross-correlation between input and output is calculated.
  • R is the autocorrelation matrix of the loudspeaker signal x(i)
  • P is the cross-correlation matrix of the microphone input d(i) and the loudspeaker input x(i).
  • the filter function of the current wearing state when the error range is set Will eventually reach a stable value, but when there is noise outside, or when people move the headphones, it will cause Change, in During the change, you need to stop compensating for the sound of the headphones. In other words, you need to keep the previous sound compensation until Once the steady state is reached again, the error between the current filter and the standard filter is recalculated, and the sound compensation is re-executed.
  • This kind of processing avoids the excessive data processing burden caused by too much adjustment of the sound effect, and too frequent adjustment can not bring a good auditory feeling, thus ensuring reasonable adjustment of the sound effect within the range that the human ear can perceive. , in line with the human ear's auditory characteristics.
  • the time domain adaptive filter updates the filter function from sample to point, considering that the output update of the filter function does not need to be so fast. Therefore, in the embodiment of the present invention, a data window is set, and generally the window N is 128 or 256 points, that is, the update of the data is updated once every N points of the sample. In other words, you can get one every N points. Vector.
  • the criterion for judging stability is that M (M generally takes 10 to 100) sampling points closest to the current processing time.
  • M M generally takes 10 to 100
  • the mean variance of the values, when the most recent M The average variance does not exceed a certain steady-state threshold and is considered current. Is a stable value, otherwise it is considered Unstable. Finally to steady state Perform normalization.
  • adaptive filtering is performed according to the signal collected by the monitoring microphone and the audio signal played by the speaker of the earphone to obtain a steady-state normalized filter function. Since the filter difference of the current processing at different times when the steady state is reached is small, any current filter function that reaches the steady state can be used as the monitoring signal data of the current wearing state of the earphone user, or, in order to further reduce the error. The accuracy is ensured, and the current filter function at each moment of the current processing is averaged, and the obtained average value is used as the monitoring signal data of the current wearing state of the earphone user.
  • FIG. 4 shows a schematic diagram of frequency response curve matching according to an embodiment of the present invention.
  • the frequency response curve is a frequency-amplitude curve of the signal.
  • Figure 4 includes the standard filter frequency response curve and the current filter frequency response curve. The entire frequency response curve is divided into several frequency bands according to the system sound effect. In each frequency band (for example, frequency band X), the current filter is calculated.
  • the mean value of the amplitude difference of the frequency response curve may be calculated by calculating the difference of the amplitudes of the two frequency response curves by frequency points in the frequency band (the amplitude values of the two frequency response curves are subtracted, and the difference may be Positive, negative or zero values), the difference in amplitudes of all frequency points of the frequency band is averaged to obtain the mean of the amplitude differences.
  • calculate with The area value (vector) enclosed by the frequency response curve may be calculated by separately calculating the area enclosed by the current filter frequency response curve in the frequency band and calculating the standard filter frequency response curve in the frequency band. Area, the two areas are subtracted to obtain the area value enclosed by two frequency response curves (the area value can be positive, negative or 0).
  • the average value of the calculated amplitude difference or the area value enclosed by the frequency response curve is used as the error data used for the earphone sound compensation.
  • the error data is compensated by using a sound effect algorithm.
  • the sound effects are compensated by the following two methods: one is equalizer compensation (EQ), and the other is dynamic range control compensation (DRC, Dynamic Range Control). Both of these methods are performed in sub-bands.
  • the threshold A and the threshold B are preset, and the threshold B is smaller than the threshold A, then for each frequency band, the following processes are respectively performed:
  • the mean value of the amplitude difference between the current filter frequency domain function and the frequency response curve of the standard filter frequency domain function is in a decreasing state.
  • the area value enclosed by the two frequency response curves is in a decreasing state, and the decreasing value of the mean value of the amplitude difference between the two frequency response curves or the decrement value of the area value enclosed by the two frequency response curve exceeds the threshold value A, and the audio played on the speaker
  • the signal is compensated simultaneously by EQ and DRC.
  • the mean value of the amplitude difference between the current filter frequency domain function and the frequency response curve of the standard filter frequency domain function is in a decreasing state or both
  • the area value decremented by the frequency response curve, and the decreasing value of the mean value of the amplitude difference of the two frequency response curves or the decrement value of the area value enclosed by the two frequency response curve is less than the threshold A but greater than the threshold B, the audio played on the speaker
  • the signal is only compensated by EQ.
  • the embodiment of the present invention provides a new method for adaptive sound compensation, which can eliminate the interference of the external environment, perform real-time detection on the wearing condition of the earphone, and dynamically compensate according to different sound effects of the wearing design, thereby making the earphone use For the best listening experience.
  • FIG. 5 is a flow chart showing another method for compensating for a headphone sound effect according to an embodiment of the present invention.
  • FIG. 5 is an alternative to the earphone sound compensation method shown in FIG. 2. As shown in FIG. 5, the method includes:
  • Step S510 acquiring and storing the wearing signal data and the sound effect compensation data in different wearing states of the earphone.
  • a filter function worn under the criterion of obtaining can be adopted.
  • the M sequence is input to the speaker in the listening lab, and the filter function in various wearing states is taken out.
  • the corresponding sound effect compensation data can be obtained according to the sound effect feedback information of the sound effector, and the correspondence relationship between the filter function and the sound effect compensation data is stored in advance.
  • Step S520 matching the monitoring signal data of the current wearing state with the wearing signal data of different wearing states, and acquiring corresponding sound effect compensation data.
  • the specific matching method may be that the current filter function and the filter function in different wearing states are obtained in advance. For comparison, the sound compensation data corresponding to the closest filter function is taken.
  • Step S530 performing sound effect compensation on the earphone according to the obtained sound effect compensation data.
  • the earphone sound compensation method of FIG. 5 can make the sound effect compensation effect quickly reach or close to the listening effect of the earphone standard wear.
  • FIG. 6 is a schematic structural diagram of a headphone sound effect compensating apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes a monitoring data acquisition unit 61, an error data calculation unit 62, and a sound effect compensation unit 63.
  • the monitoring data acquiring unit 61 is configured to acquire monitoring signal data of the current wearing state of the earphone user according to the signal collected by the monitoring microphone disposed in the coupling cavity of the earphone and the human ear and the audio signal played by the speaker of the earphone.
  • the error data calculation unit 62 is configured to calculate error data of the monitoring signal data of the current wearing state and the standard signal data of the standard wearing state of the earphone.
  • the sound effect compensation unit 63 is configured to perform sound effect compensation on the earphone according to the error data.
  • the monitoring data acquiring unit 61 further includes: a filter function calculating module 611, an adaptive filtering module 612, a sampling module 613, a steady state determining module 614, and a monitoring data determining module 615, and error data.
  • the calculating unit 62 further includes: a frequency domain function calculating module 621,
  • the band dividing module 622 and the error data calculating module 623 further include: a threshold and band setting module 631, a first compensation module 632, a second compensation module 633, a third compensation module 634, and a sound effect maintaining module 635.
  • FIG. 7 is a schematic structural diagram of another earphone sound effect compensation apparatus according to an embodiment of the present invention.
  • a filter function calculation module 611 configured to calculate a current filter function corresponding to an acoustic path of the coupling cavity according to a cross-correlation function of the signal collected by the monitoring microphone and the audio signal played by the speaker of the earphone;
  • the adaptive filtering module 612 is configured to calculate, by using an adaptive filtering method, a current filter function at each moment in a current wearing state;
  • a sampling module 613 configured to set a data window, and sample the current filter function at each moment according to the data window;
  • the steady state determining module 614 is configured to determine that the current filter function at each time of the calculation reaches a steady state when the average variance of the consecutive predetermined number of sampled current filter functions does not exceed the steady state threshold;
  • the monitoring data determining module 615 is configured to use the current value of any current filter function that reaches a steady state or the current filter function at each moment as the monitoring signal data.
  • a frequency domain function calculation module 621 configured to calculate a current filter frequency domain function of the current filter function, and a standard filter frequency domain function for calculating a standard filter function
  • the frequency band dividing module 622 is configured to divide the frequency into a predetermined number of frequency bands according to the sound effect
  • the error data calculation module 623 is configured to calculate, on each frequency band, an average of amplitude differences of a frequency response curve of a current filter frequency domain function and a standard filter frequency domain function, or calculate a current filter frequency domain function and standard filtering.
  • the area value enclosed by the frequency response curve of the frequency domain function; the area value enclosed by the mean of the amplitude difference or the frequency response curve is used as the error data used for the earphone sound compensation.
  • a threshold and frequency band setting module 631 configured to preset a first threshold and a second threshold, and the second threshold Less than the first threshold; respectively performing sound effect compensation for each frequency band divided according to the sound effect;
  • the first compensation module 632 is configured to confirm, according to the error data, that the current filter frequency domain function is in an attenuated state compared to the amplitude value of the standard filter frequency domain function, and when the attenuation value exceeds the first threshold, the audio signal played by the speaker is simultaneously Use equalizer EQ sound compensation and dynamic range control DRC sound compensation;
  • a second compensation module 633 configured to confirm, according to the error data, that the current filter frequency domain function is in an attenuation state compared to the amplitude value of the standard filter frequency domain function, and the attenuation value is less than the first threshold but greater than the second threshold, the speaker is The played audio signal is only compensated by the equalizer EQ sound effect;
  • the third compensation module 634 is configured to confirm, according to the error data, that the current filter frequency domain function is in an enhanced state compared to the amplitude value of the standard filter frequency domain function, and when the enhancement value is greater than the second threshold, the audio signal played by the speaker is only Use equalizer EQ sound compensation;
  • the sound effect maintaining module 635 is configured to confirm, according to the error data, that the amplitude value change of the current filter frequency domain function is smaller than the second threshold value compared to the standard filter frequency domain function, and no sound effect compensation is performed on the audio signal played by the speaker.
  • the earphone sound effect compensating device of the embodiment of the invention adopts an adaptive digital signal processing mode, and the monitoring data acquiring unit monitors the microphone to obtain the monitoring signal data of the current wearing state of the earphone user, and the error data calculating unit calculates the monitoring signal data and The error data between the standard signal data of the standard wearing state of the earphone, so that the sound effect compensation unit compensates the earphone according to the error data, can eliminate the interference of the external environment, and monitor and dynamically monitor the current wearing state of the earphone user. Compensation, so that the earphone user can achieve the best listening effect.
  • the earphone sound compensation device of the present invention further includes: a wearing data acquiring unit, configured to acquire and store wearing signal data and sound effect compensation data in different wearing states of the earphone;
  • the error data calculation unit 62 is further configured to match the monitoring signal data of the current wearing state with the wearing signal data in different wearing states to obtain corresponding sound effect compensation data; correspondingly, the sound effect compensation unit 63 is further used. The sound compensation is performed on the earphone according to the obtained sound effect compensation data.
  • the technical solution of the preferred embodiment can make the sound effect compensation effect quickly reach or close to the listening effect of the standard wearing of the earphone.
  • the specific working mode of each unit in the device embodiment of the present invention reference may be made to the method embodiment of the present invention, and details are not described herein again.
  • the embodiment of the present invention further provides an earphone, which comprises the earphone sound compensation device provided by the above technical solution, and a monitoring microphone is disposed in the coupling cavity of the earphone and the human ear. I will not go into details here.
  • the earphone sound compensation method, device and earphone disclosed by the embodiment of the invention adopt an adaptive digital signal processing method, and a monitoring microphone is arranged in the coupling cavity of the earphone and the human ear, and the earphone is used by monitoring the microphone.
  • the monitoring signal data of the current wearing state calculating the error data between the monitoring signal data and the standard signal data of the standard wearing state of the earphone, and performing sound effect compensation on the earphone according to the error data, which can eliminate the interference of the external environment, and the earphone
  • the user's current wearing state is monitored in real time and dynamically compensated, so that the earphone user achieves or approaches the best listening effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Headphones And Earphones (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明公开了一种耳机音效补偿方法、装置及耳机,本发明的方法包括:根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据;计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据;根据误差数据对耳机进行音效补偿。本发明的技术方案采用自适应数字信号处理的方式,可动态地补偿不同耳机佩戴方式下的音效,能够使耳机使用者获得耳机标准佩戴状态下的听音效果。

Description

一种耳机音效补偿方法、装置及耳机 技术领域
本发明涉及耳机技术领域,特别涉及一种耳机音效补偿方法、装置及耳机。
发明背景
耳机在人们的寻常生活和工作中已经得到了广泛应用,与传统的使用高保真音响的听音方式相比较,耳机因为其体积小,携带方便,听音方式不需要固定场合,而且,随着微型扬声器技术的进步,很多优秀的耳机也做到很宽、很平的频响曲线,从而保证了高保真的音乐欣赏,所以,也受到越来越多消费者的青睐,但是,很多厂商都非常关注耳机本身的质量,而忽视了使用者对耳机的佩戴状态也会影响到耳机本应带来的听音效果。
由于人耳形状不一样,人佩戴耳机的松紧和佩戴方式的不同等因素,耳机的使用者往往获取不到耳机所标称的听音效果。实验证明,不正确的佩戴方式会对听音时的低频,中高频以及混响等都会产生负面的影响。目前耳机中鲜有对耳机佩戴耦合情况进行音效补偿的产品,而且进行音效检测方法也多采用声学的检测方法,这种声学检测的方法计算比较麻烦,受外界干扰影响大,很容易出现误判的情况。
发明内容
有鉴于此,本发明的主要目的在于提供了一种耳机音效补偿方法、装置及耳机,能够排除外界环境的干扰,动态地补偿不同耳机佩戴方式下的音效,使耳机使用者获得耳机标准佩戴状态下的听音效果。
为达到上述目的,本发明的技术方案是这样实现的:
一方面,本发明实施例提供了一种耳机音效补偿方法,在耳机和人耳的耦合腔内设置监测麦克风;所述方法包括:
根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据;
计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据;
根据误差数据对耳机进行音效补偿。
另一方面,本发明实施例还提供了一种耳机音效补偿装置。该装置包括:
监测数据获取单元,用于根据设置在耳机和人耳的耦合腔内的监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据;
误差数据计算单元,用于计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据;
音效补偿单元,用于根据所述误差数据对耳机进行音效补偿。
又一方面,本发明实施例提供了一种耳机,包括上述实施例提供的耳机音效补偿装置,在该耳机和人耳的耦合腔内设置有监测麦克风。
与现有技术相比,本发明的有益效果是:
本发明实施例的技术方案,通过监测耦合腔中麦克风和耳机扬声器的信号能够实时获取到使用者的当前耳机佩戴状态,通过佩戴状态之间的误差数据,能够针对不同的耳机佩戴状态进行动态的音效补偿,从而实现了一种新型的耳机音效补偿方案,使耳机使用者达到最佳的听音效果。并且,由于本发明实施例采用了自适应数字信号处理的方法,实现方式简单,抗干扰能力强。
附图简要说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的一种耳机音效补偿方法的流程图;
图2为本发明实施例提供的一种具有音效补偿性能的耳机示意图;
图3为本发明实施例的耳机音效补偿方法的工作原理图;
图4为本发明实施例的频响曲线匹配示意图;
图5为本发明实施例的另一种耳机音效补偿方法的流程图;
图6为本发明实施例的一种耳机音效补偿装置的结构示意图;
图7为本发明实施例提供的另一种耳机音效补偿装置的结构示意图。
具体实施方式
本发明的主要技术构思在于:将耳机耦合智能检测和音效补偿相结合,针对使用者对耳机的不同佩戴状态,智能剔除外界环境的干扰,实时检测跟踪耳机佩戴的耦合情况,并根据耦合情况的不同,采用动态的音效补偿方法,从而使耳机使用者达到最佳的听音效果。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明采用的是自适应数字信号处理的方法,实现方式简单,不易受到外界干扰。在耳机和人耳的耦合腔里面设置监测麦克风,耦合腔发生变化,监测麦克风采集的信号也会发生变化,通过实时监控麦克风采集的信号能够获知到耳机佩戴耦合情况。
耳机播放信号时,这个信号通过耳机的扬声器被播放出来,在耦合腔里面经过声传播最终被内置的监测麦克风采集到。发明人从数字信号处理的角度得出,播放出的信号卷积一个滤波器就能得到采集到的信号。而当耦合腔发生变化,即耳机佩戴耦合方式发生变化时,这个滤波器也会发生相应的变化。因此求得这个滤波器的函数就能反推求得耳机的佩戴状态。而要播放的信号和从耦合腔里面采集到的信号具有很强的相关性,所以可以采用数字信号的自适应方式来求解滤波器。
一方面,本发明实施例提供了一种耳机音效补偿方法。图1示出了本发明实施例的一种耳机音效补偿方法的流程图。如图1所示,该方法包括:
步骤S110,根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据。
具体地,在当前佩戴状态下,根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号的互相关函数,计算耦合腔的声学路径对应的当前滤波器函数,根据当前滤波器函数得到耳机使用者当前佩戴状态的监测信号数据。
更具体地,在当前佩戴状态下,在预定时间内采用自适应滤波的方式计算各时刻的当前滤波器函数;设置数据窗口,根据数据窗口对各时刻的当前滤波器函数进行采样;当连续预定个数的采样出的当前滤波器函数的平均方差不超过稳态阈值时,确定计算出的各时刻的当前滤波器函数达到稳定状态;之后将达到稳定状态的任一当前滤波器函数或各时刻的当前滤波器函数的均值作为监测信号数据。
步骤S120,计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据。
为得到佩戴状态的误差数据,需要事先获取到耳机的标准佩戴状态的标准信号数据。其中,获取耳机的标准佩戴状态的标准信号数据包括:
在标准佩戴状态下,根据监测麦克风采集到的信号和耳机的扬声器播放的M序列信号的互相关函数,计算耦合腔的声学路径对应的标准滤波器函数,根据标准滤波器函数得到标准信号数据。
该步骤S120具体包括:计算当前滤波器函数的当前滤波器频域函数,以及计算标准滤波器函数的标准滤波器频域函数;根据音效将频率划分为预定个数的频带;在每个频带上,计算当前滤波器频域函数和标准滤波器频域函数的幅度差的均值,或者,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线围成的面积值;将所述幅度差的均值或者频响曲线围成的面积值作为耳机音效补偿所使用的误差数据。
步骤S130,根据误差数据对耳机进行音效补偿。
该步骤S130具体包括:预先设定第一阈值和第二阈值,且第二阈值小于第一阈值;对于根据音效划分的每一个频带,分别做如下处理:
根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值超过第一阈值时,对扬声器播放的音频信号同时采 用均衡器EQ(Equalizer)音效补偿和动态范围控制DRC(Dynamic Range Control)音效补偿;
根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值小于第一阈值但是大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于增强状态,且增强值大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值变化小于第二阈值,对扬声器播放的音频信号不做音效补偿。
本发明实施例的耳机音效补偿方法,采用的是自适应数字信号处理的方式,通过监测麦克风获知耳机使用者当前佩戴状态的监测信号数据,计算该监测信号数据与耳机的标准佩戴状态的标准信号数据之间的误差数据,并根据该误差数据对耳机进行音效补偿,能够排除外界环境的干扰,对耳机使用者的当前佩戴状态进行实时监测和动态补偿,从而使耳机使用者达到最佳的听音效果。
如图2是本发明实施例提供的一种具有音效补偿性能的耳机示意图。扬声器21发出的声音由信号处理电路板22控制,同时,耦合腔23里面的监测麦克风24采集到的数据也会反馈给信号处理电路板22进行运算,信号处理电路板22会对信号进行自适应滤波处理。因为自适应滤波对外界噪声敏感,所以可以利用自适应滤波器的收敛稳定性来判断是否存在外界干扰,以及判断滤波结果的可信度高低。计算出从扬声器到监测麦克风的等效滤波器函数,并将滤波器函数转换到频域,求取滤波的频域响应,然后与标准佩戴时的滤波函数频响进行比较得到误差数据,再根据误差所在频域进行音效补偿,最终使得监测麦克风采集到的信号接近标准佩戴时采集到的信号,使耳机使用者达到或者接近标准佩戴的听音效果。
图3示出了本发明实施例的耳机音效补偿方法的工作原理图。如图3所示,耳机音效补偿过程依次包括以下三个环节:
S310,信号采集环节,包括采集扬声器声音信号x(t)和采集监测麦克风的信号d(t),t表示采样时刻,并将模拟信号进行抽样分别得到数字信号x(i)和d(i)输入到自适应滤波器。
S320,自适应滤波环节,对输入的数字信号x(i)和d(i)进行自适应滤波,输出自适应滤波器函数,并在自适应滤波器函数达到稳态时,求取耳机使用者当前佩戴状态的监测信号数据,该监测信号数据即为当前滤波器函数。当滤波器函数处于变化期间,没有达到稳态时,停止对耳机音效补偿的更新,保持以前的音效补偿。
S330,音效补偿环节,即根据当前滤波器函数(自适应滤波器函数达到稳态时当前佩戴状态的监测信号数据)与标准滤波器函数(耳机的标准佩戴状态的标准信号数据)的误差数据,对扬声器的输出信号进行音效补偿,使耳机使用者达到或者接近标准佩戴的听音效果。
下面对图3示出的耳机音效补偿方法的工作原理做具体说明。
耳机扬声器里面播放的声音信号为x(t),外界噪声为n(t),耦合腔内监测麦克风采集到的信号为d(t),从扬声器到监测麦克风的传播路径用滤波器h(t)来描述,由此得到下面的表达式:
d(t)=x(t)*h(t)+n(t)
h(t)是一个能反映耳机和人耳耦合的参量。根据自适应滤波器理论,使用
Figure PCTCN2015089250-appb-000001
对真实的h(t)进行逼近,并设置逼近原则为误差的信号均方值统计最小。将模拟信号进行抽样得到数字信号,用ξ(i)表示。其中用i表示对t的抽样,即:
Figure PCTCN2015089250-appb-000002
由此可以求出自适应滤波器函数。上式也可以看出如果外界噪声n(i)≡0,则
Figure PCTCN2015089250-appb-000003
则会无限逼近h(i),当外界噪声发生变化的时候n(i)≠0,
Figure PCTCN2015089250-appb-000004
就会发生变化,根据
Figure PCTCN2015089250-appb-000005
的变化来识别出外界噪声干扰,据此可以避免外界噪声对判断的影响。
求解出
Figure PCTCN2015089250-appb-000006
后,与耳机标准佩戴下的滤波器函数
Figure PCTCN2015089250-appb-000007
进行比较,从而得到需要的误差数据。
需要说明的是,因为每一个产品不一样,以及耦合腔的麦克风安装的位置不一样,所以标准佩戴下滤波器函数是不一样的。对于一个新的产品,都需要对其标准佩戴下的滤波器函数进行求解。为了保证求解精度,可以要求在听音实验室以标准的方法佩戴耳机,检测在标准佩戴状态下,耦合腔的声学路径对应的归一化的滤波器函数。具体检测方法如下:
假设扬声器输入一个功率为1的白噪声系列u(i),监测麦克风进行采集,采集到的输出信号为y(i),计算输入和输出的互相关,有:
ruy(m)=E{u(i)y(i+m)}=ru(m)*h(m)
其中,ru(m)是输入的自相关函数,因为输入是功率为1的白噪声,所以有ru(m)=δ(m)为冲击函数。即:
ruy(m)=h(m)
上式表明,求解输入和输出的互相关函数ruy(m)就求到了***的滤波器的函数。进一步为了保证计算的有效性和精度,可以采用M序列输入代替白噪声,这样就可以求出标准佩戴下的滤波器函数,记为
Figure PCTCN2015089250-appb-000008
当然使用这种方法,也还可以求取各种不同佩戴状态下的滤波器函数。
求得
Figure PCTCN2015089250-appb-000009
后,根据上面描述的均方误差统计最小原则,对
Figure PCTCN2015089250-appb-000010
求导,可得梯度函数为:
Figure PCTCN2015089250-appb-000011
其中
Figure PCTCN2015089250-appb-000012
为梯度,R为扬声器信号x(i)的自相关矩阵,P为麦克风输入d(i)和扬声器输入x(i)的互相关矩阵。再根据梯度的统计平均值得到滤波器函数的递推关系如下:
Figure PCTCN2015089250-appb-000013
当设定误差范围后,当前佩戴状态的滤波器函数
Figure PCTCN2015089250-appb-000014
最终会达到稳定的值,但是当外界出现噪声的时候,或者当人为移动耳机的时候,都会造成
Figure PCTCN2015089250-appb-000015
发生变化,在
Figure PCTCN2015089250-appb-000016
发生变化的期间,需要停止对耳机音效的补偿。也就是说,此时 需要保持以前的音效补偿,直到
Figure PCTCN2015089250-appb-000017
再次达到稳定状态,才重新计算当前滤波器和标准滤波器的误差,重新进行音效补偿。这种处理方式,避免音效调节过于频繁造成的过重的数据处理负担,且过于频繁的调节也不能带来较好的听觉感受,从而保证在人耳可感知的范围内,对音效进行合理调整,符合人耳的听觉特性。
因为采用的是时域的自适应滤波器,它会逐个采样点更新滤波器函数,考虑到滤波器函数的输出更新并不需要这么迅速。所以,本发明实施例设定一个数据窗口,一般取这个窗口N为128或者256点,即数据的更新是每采样N点更新一次。也就是说,每N点就能取得一个
Figure PCTCN2015089250-appb-000018
的向量。
假设
Figure PCTCN2015089250-appb-000019
向量为L阶(由计算精度决定,一般取L=64或者128)。这里,判断稳定性的标准采用的是距离当前处理时刻最近的M(M一般取10~100)个采样点的
Figure PCTCN2015089250-appb-000020
值的平均方差值,当最近的M个
Figure PCTCN2015089250-appb-000021
的平均方差不超过一定稳态阈值,就认为当前
Figure PCTCN2015089250-appb-000022
是稳定值,否则就认为
Figure PCTCN2015089250-appb-000023
不稳定。最后对稳定状态的
Figure PCTCN2015089250-appb-000024
进行归一化处理。
从而根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,进行自适应滤波获取到稳态归一化的滤波器函数
Figure PCTCN2015089250-appb-000025
由于达到稳定状态时的不同时刻的当前处理的滤波器差异较小,则可以将达到稳定状态的任一当前滤波器函数作为耳机使用者当前佩戴状态的监测信号数据,或者,为了进一步减小误差,保证精度,对当前处理的各时刻的当前滤波器函数求取平均值,将求得的均值作为耳机使用者当前佩戴状态的监测信号数据。
求得标准佩戴状态的滤波器函数
Figure PCTCN2015089250-appb-000026
和当前佩戴状态的滤波器函数
Figure PCTCN2015089250-appb-000027
后,下一步需要做的是比较
Figure PCTCN2015089250-appb-000028
Figure PCTCN2015089250-appb-000029
之间的差别有多大,差别在哪些地方,为了准确的将这种差别对应到人耳的听音效果,采用将
Figure PCTCN2015089250-appb-000030
Figure PCTCN2015089250-appb-000031
转换到频域进行比较。具体方式如下:
Figure PCTCN2015089250-appb-000032
Figure PCTCN2015089250-appb-000033
通过FFT(快速傅里叶变换)转换到频域,分别得到当前 滤波器频域函数
Figure PCTCN2015089250-appb-000034
和标准滤波器频域函数
Figure PCTCN2015089250-appb-000035
根据***音效,将
Figure PCTCN2015089250-appb-000036
Figure PCTCN2015089250-appb-000037
的频响曲线划分到相应的频带上(例如划分为十个频带);计算每一个频带上
Figure PCTCN2015089250-appb-000038
Figure PCTCN2015089250-appb-000039
的频响曲线的差别,从而求取误差数据的各个频点和幅值误差大小。
图4示出了本发明实施例的频响曲线匹配示意图。该频响曲线为信号的频率-幅度的曲线。图4中包括标准滤波器频响曲线和当前滤波器频响曲线,事先根据***音效将整个频响曲线划分成若干个频带,在每个频带上(例如频带X),计算当前滤波器
Figure PCTCN2015089250-appb-000040
和标准滤波器
Figure PCTCN2015089250-appb-000041
的频响曲线的幅度差的均值,具体计算方式可以是,在该频带内逐频点计算这两个频响曲线的幅度的差值(两个频响曲线幅度值相减,差值可为正值、负值或0值),对该频带的所有频点的幅度的差值求平均得到幅度差的均值。或者,计算
Figure PCTCN2015089250-appb-000042
Figure PCTCN2015089250-appb-000043
的频响曲线围成的面积值(矢量),具体计算方式可以是,分别计算当前滤波器频响曲线在该频带内围成的面积和计算标准滤波器频响曲线在该频带内围成的面积,将两个面积相减得到两个频响曲线围成的面积值(该面积值可为正值、负值或0值)。将计算得到的幅度差的均值或者频响曲线围成的面积值作为耳机音效补偿所使用的误差数据。
得到每个频带的误差数据后,就可以设计均衡补偿和动态范围控制补偿,根据误差数据对耳机进行音效补偿。具体是对误差数据采用音效算法进行补偿,本发明实施例采用如下两种方式进行音效的补偿:一是均衡器补偿(EQ),二是动态范围控制进行补偿(DRC,Dynamic Range Control)。这两种方式都是分频带进行的。
比如,音效补偿能力有十个频带,预先设定阈值A和阈值B,且阈值B小于阈值A,那么对于每一个频带,都分别做如下处理:
1、当本频带的当前滤波器的值比标准滤波器的值处于衰减状态,即当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值处于递减状态 或者两者频响曲线围成的面积值处于递减状态,且两频响曲线幅度差的均值的递减值或者两频响曲线围成的面积值的递减值超过阈值A,则对扬声器播放的音频信号采用EQ和DRC同时补偿。
2、当本频带的当前滤波器的值比标准滤波器的值处于衰减状态,即当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值处于递减状态或者两者频响曲线围成的面积值递减状态,且两频响曲线幅度差的均值的递减值或者两频响曲线围成的面积值的递减值小于阈值A但是大于阈值B,则对扬声器播放的音频信号只采用EQ进行补偿。
3、当本频带的当前滤波器的值比标准滤波器的值处于增强状态,即当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值处于递增状态或者两者频响曲线围成的面积值处于递增状态,且两频响曲线幅度差的均值的递增值或者两频响曲线围成的面积值的递增值大于阈值B,则对扬声器播放的音频信号只采用EQ进行补偿。需要说明的是,在耳机实际佩戴使用中很少发生增强的状态,即使发生其增强值也不会特别大。
4、当本频带的当前滤波器的值比标准滤波器的值变化小于阈值B,即当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值的变化值或者两者频响曲线围成的面积值的变化值小于阈值B,不做任何处理,即对扬声器播放的音频信号不做音效补偿。
综上,本发明实施例提供了一种新的自适应音效补偿的方法,能排除外界环境的干扰,对耳机佩戴情况进行实时检测,并根据佩戴设计不同的音效进行动态补偿,从而使耳机使用者达到最佳的听音效果。
图5示出了本发明实施例的另一种耳机音效补偿方法的流程图。图5是图2所示的耳机音效补偿方法的一种替代方案。如图5所示,该方法包括:
步骤S510,获取并存储耳机不同佩戴状态下的佩戴信号数据及音效补偿数据。
具体地,可以采用与求取标准佩戴下的滤波器函数
Figure PCTCN2015089250-appb-000044
相同的方式,在 听音实验室里向扬声器输入M序列,求取出各种不同佩戴状态下的滤波器函数
Figure PCTCN2015089250-appb-000045
对应各种不同佩戴状态下的滤波器函数,可以根据音效师预先的听音效果反馈信息,获取相应的音效补偿数据,并预先存储滤波器函数和音效补偿数据的对应关系。
步骤S520,将当前佩戴状态的监测信号数据与不同佩戴状态下的佩戴信号数据进行匹配,获取到对应的音效补偿数据。
具体匹配方式可以是,将当前滤波器函数与预先获取的各种不同佩戴状态下的滤波器函数
Figure PCTCN2015089250-appb-000046
进行比较,取最接近的滤波器函数对应的音效补偿数据。
步骤S530,根据获取到的音效补偿数据对耳机进行音效补偿。
采用图5的耳机音效补偿方法可以使音效补偿效果快速达到或者接近耳机标准佩戴的听音效果。
另一方面,本发明实施例还提供了一种耳机音效补偿装置。图6示出了本发明实施例的一种耳机音效补偿装置的结构示意图。如图6所示,该装置包括:监测数据获取单元61、误差数据计算单元62和音效补偿单元63。
监测数据获取单元61,用于根据设置在耳机和人耳的耦合腔内的监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据。
误差数据计算单元62,用于计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据。
音效补偿单元63,用于根据误差数据对耳机进行音效补偿。
在图6所示实施例的基础上,监测数据获取单元61进一步包括:滤波器函数计算模块611,自适应滤波模块612、采样模块613、稳态确定模块614和监测数据确定模块615,误差数据计算单元62进一步包括:频域函数计算模块621、 频带划分模块622和误差数据计算模块623,音效补偿单元63进一步包括:阈值及频段设定模块631、第一补偿模块632、第二补偿模块633、第三补偿模块634和音效保持模块635。
具体地,如图7所示,图7为本发明实施例提供的另一种耳机音效补偿装置的结构示意图。
上述监测数据获取单元61中,
滤波器函数计算模块611,用于根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号的互相关函数,计算耦合腔的声学路径对应的当前滤波器函数;
自适应滤波模块612,用于在当前佩戴状态下,在预定时间内采用自适应滤波的方式计算各时刻的当前滤波器函数;
采样模块613,用于设置数据窗口,根据所述数据窗口对所述各时刻的当前滤波器函数进行采样;
稳态确定模块614,用于当连续预定个数的采样出的当前滤波器函数的平均方差不超过稳态阈值时,确定计算出的各时刻的当前滤波器函数达到稳定状态;
监测数据确定模块615,用于将达到稳定状态的任一当前滤波器函数或各时刻的当前滤波器函数的均值作为所述监测信号数据。
上述误差数据计算单元62中,
频域函数计算模块621,用于计算当前滤波器函数的当前滤波器频域函数,以及计算标准滤波器函数的标准滤波器频域函数;
频带划分模块622,用于根据音效将频率划分为预定个数的频带;
误差数据计算模块623,用于在每个频带上,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值,或者,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线围成的面积值;将幅度差的均值或者频响曲线围成的面积值作为耳机音效补偿所使用的误差数据。
上述音效补偿单元63中,
阈值及频段设定模块631,用于预先设定第一阈值和第二阈值,且第二阈值 小于第一阈值;对于根据音效划分的每一个频带分别进行音效补偿;
第一补偿模块632,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值超过第一阈值时,对扬声器播放的音频信号同时采用均衡器EQ音效补偿和动态范围控制DRC音效补偿;
第二补偿模块633,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值小于第一阈值但是大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
第三补偿模块634,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于增强状态,且增强值大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
音效保持模块635,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值变化小于第二阈值,对扬声器播放的音频信号不做音效补偿。
本发明实施例的耳机音效补偿装置,采用的是自适应数字信号处理的方式,通过监测数据获取单元监测麦克风获知耳机使用者当前佩戴状态的监测信号数据,误差数据计算单元计算该监测信号数据与耳机的标准佩戴状态的标准信号数据之间的误差数据,从而使音效补偿单元根据该误差数据对耳机进行音效补偿,能够排除外界环境的干扰,对耳机使用者的当前佩戴状态进行实时监测和动态补偿,从而使耳机使用者达到最佳的听音效果。
一优选实施例,本发明的耳机音效补偿装置还包括:佩戴数据获取单元,用于获取并存储耳机不同佩戴状态下的佩戴信号数据及音效补偿数据;
这时,误差数据计算单元62,还用于将当前佩戴状态的监测信号数据与不同佩戴状态下的佩戴信号数据进行匹配,获取到对应的音效补偿数据;相应的,音效补偿单元63,还用于根据获取到的音效补偿数据对耳机进行音效补偿。
本优选实施例的技术方案可以使音效补偿效果快速达到或者接近耳机标准佩戴的听音效果。本发明装置实施例中各单元的具体工作方式可以参见本发明的方法实施例,在此不再赘述。
又一方面,本发明实施例还提供了一种耳机,该耳机包括上述技术方案提供的耳机音效补偿装置,在该耳机和人耳的耦合腔内设置有监测麦克风。在此不再展开赘述。
综上所述,本发明实施例公开的一种耳机音效补偿方法、装置及耳机,采用自适应数字信号处理的方式,在耳机和人耳的耦合腔里面设置监测麦克风,通过监测麦克风获知耳机使用者当前佩戴状态的监测信号数据,计算该监测信号数据与耳机的标准佩戴状态的标准信号数据之间的误差数据,并根据该误差数据对耳机进行音效补偿,能够排除外界环境的干扰,对耳机使用者的当前佩戴状态进行实时监测和动态补偿,从而使耳机使用者达到或者接近最佳的听音效果。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (12)

  1. 一种耳机音效补偿方法,其特征在于,在耳机和人耳的耦合腔内设置监测麦克风;所述方法包括:
    根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据;
    计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据;
    根据误差数据对耳机进行音效补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据包括:
    在当前佩戴状态下,根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号的互相关函数,计算耦合腔的声学路径对应的当前滤波器函数,根据当前滤波器函数得到耳机使用者当前佩戴状态的监测信号数据;
    其中,获取耳机的标准佩戴状态的标准信号数据包括:
    在标准佩戴状态下,根据监测麦克风采集到的信号和耳机的扬声器播放的M序列信号的互相关函数,计算耦合腔的声学路径对应的标准滤波器函数,根据标准滤波器函数得到所述标准信号数据。
  3. 根据权利要求2所述的方法,其特征在于,所述根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据还包括:
    在当前佩戴状态下,在预定时间内采用自适应滤波的方式计算各时刻的当前滤波器函数;
    设置数据窗口,根据所述数据窗口对所述各时刻的当前滤波器函数进行采样;
    当连续预定个数的采样出的当前滤波器函数的平均方差不超过稳态阈值时,确定计算出的各时刻的当前滤波器函数达到稳定状态;
    将达到稳定状态的任一当前滤波器函数或各时刻的当前滤波器函数的均值作为所述监测信号数据。
  4. 根据权利要求1所述的方法,其特征在于,所述计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据包括:
    计算当前滤波器函数的当前滤波器频域函数,以及计算标准滤波器函数的标准滤波器频域函数;
    根据音效将频率划分为预定个数的频带;
    在每个频带上,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值,或者,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线围成的面积值;
    将所述幅度差的均值或者频响曲线围成的面积值作为耳机音效补偿所使用的误差数据。
  5. 根据权利要求4所述的方法,其特征在于,所述根据误差数据对耳机进行音效补偿包括:
    预先设定第一阈值和第二阈值,且第二阈值小于第一阈值;对于根据音效划分的每一个频带,分别做如下处理:
    根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值超过第一阈值时,对扬声器播放的音频信号同时采用均衡器EQ音效补偿和动态范围控制DRC音效补偿;
    根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值小于第一阈值但是大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
    根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于增强状态,且增强值大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
    根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值变化小于第二阈值,对扬声器播放的音频信号不做音效补偿。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    获取并存储耳机不同佩戴状态下的佩戴信号数据及音效补偿数据;
    将当前佩戴状态的监测信号数据与不同佩戴状态下的佩戴信号数据进行匹配,获取到对应的音效补偿数据;
    根据获取到的音效补偿数据对耳机进行音效补偿。
  7. 一种耳机音效补偿装置,其特征在于,所述装置包括:
    监测数据获取单元,用于根据设置在耳机和人耳的耦合腔内的监测麦克风采集到的信号和耳机的扬声器播放的音频信号,获取耳机使用者当前佩戴状态的监测信号数据;
    误差数据计算单元,用于计算当前佩戴状态的监测信号数据与耳机的标准佩戴状态的标准信号数据的误差数据;
    音效补偿单元,用于根据所述误差数据对耳机进行音效补偿。
  8. 根据权利要求7所述的装置,其特征在于,所述监测数据获取单元包括:
    滤波器函数计算模块,用于根据监测麦克风采集到的信号和耳机的扬声器播放的音频信号的互相关函数,计算耦合腔的声学路径对应的当前滤波器函数;
    自适应滤波模块,用于在当前佩戴状态下,在预定时间内采用自适应滤波的方式计算各时刻的当前滤波器函数;
    采样模块,用于设置数据窗口,根据所述数据窗口对所述各时刻的当前滤波器函数进行采样;
    稳态确定模块,用于当连续预定个数的采样出的当前滤波器函数的平均方差不超过稳态阈值时,确定计算出的各时刻的当前滤波器函数达到稳定状态;
    监测数据确定模块,用于将达到稳定状态的任一当前滤波器函数或各时刻的当前滤波器函数的均值作为所述监测信号数据。
  9. 根据权利要求7所述的装置,其特征在于,所述误差数据计算单元包括:
    频域函数计算模块,用于计算当前滤波器函数的当前滤波器频域函数,以及计算标准滤波器函数的标准滤波器频域函数;
    频带划分模块,用于根据音效将频率划分为预定个数的频带;
    误差数据计算模块,用于在每个频带上,计算当前滤波器频域函数和标准滤波器频域函数的频响曲线的幅度差的均值,或者,计算当前滤波器频域函数 和标准滤波器频域函数的频响曲线围成的面积值;将所述幅度差的均值或者频响曲线围成的面积值作为耳机音效补偿所使用的误差数据。
  10. 根据权利要求9所述的装置,其特征在于,所述音效补偿单元包括:
    阈值及频段设定模块,用于预先设定第一阈值和第二阈值,且第二阈值小于第一阈值;对于根据音效划分的每一个频带分别进行音效补偿;
    第一补偿模块,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值超过第一阈值时,对扬声器播放的音频信号同时采用均衡器EQ音效补偿和动态范围控制DRC音效补偿;
    第二补偿模块,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于衰减状态,且衰减值小于第一阈值但是大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
    第三补偿模块,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值处于增强状态,且增强值大于第二阈值时,对扬声器播放的音频信号只采用均衡器EQ音效补偿;
    音效保持模块,用于根据误差数据确认当前滤波器频域函数相比于标准滤波器频域函数的幅度值变化小于第二阈值,对扬声器播放的音频信号不做音效补偿。
  11. 根据权利要求7-10任一项所述的装置,其特征在于,所述装置还包括:
    佩戴数据获取单元,用于获取并存储耳机不同佩戴状态下的佩戴信号数据及音效补偿数据;
    所述误差数据计算单元,还用于将当前佩戴状态的监测信号数据与不同佩戴状态下的佩戴信号数据进行匹配,获取到对应的音效补偿数据;
    所述音效补偿单元,还用于根据获取到的音效补偿数据对耳机进行音效补偿。
  12. 一种耳机,其特征在于,包括权利要求7-11任一项所述的耳机音效补偿装置,在该耳机和人耳的耦合腔内设置有监测麦克风。
PCT/CN2015/089250 2014-12-31 2015-09-09 一种耳机音效补偿方法、装置及耳机 WO2016107207A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016548671A JP6096993B1 (ja) 2014-12-31 2015-09-09 イヤホンのサウンドエフェクト補償方法、装置及びイヤホン
US15/115,525 US9749732B2 (en) 2014-12-31 2015-09-09 Method and apparatus for earphone sound effect compensation and an earphone
EP15874893.9A EP3089475B1 (en) 2014-12-31 2015-09-09 Headphone audio effect compensation method and device, and headphone
DK15874893.9T DK3089475T3 (en) 2014-12-31 2015-09-09 Method and apparatus for compensating sound power in a headphone and headphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410854872.4A CN104661153B (zh) 2014-12-31 2014-12-31 一种耳机音效补偿方法、装置及耳机
CN201410854872.4 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016107207A1 true WO2016107207A1 (zh) 2016-07-07

Family

ID=53251756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089250 WO2016107207A1 (zh) 2014-12-31 2015-09-09 一种耳机音效补偿方法、装置及耳机

Country Status (6)

Country Link
US (1) US9749732B2 (zh)
EP (1) EP3089475B1 (zh)
JP (1) JP6096993B1 (zh)
CN (1) CN104661153B (zh)
DK (1) DK3089475T3 (zh)
WO (1) WO2016107207A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425718B2 (en) * 2016-12-13 2019-09-24 Samsung Electronics Co., Ltd. Electronic device, storage medium, and method of processing audio signal by electronic device
CN112468926A (zh) * 2020-12-15 2021-03-09 中国联合网络通信集团有限公司 耳机音频调节方法、装置和终端设备
CN112804621A (zh) * 2020-12-30 2021-05-14 西安讯飞超脑信息科技有限公司 音频均衡方法、耳机电路和耳机
CN113613139A (zh) * 2021-07-30 2021-11-05 深圳市时商创展科技有限公司 一种气压检测自适应调音耳机及其控制方法
CN114157965A (zh) * 2021-11-26 2022-03-08 国光电器股份有限公司 一种音效补偿方法、装置、耳机和存储介质

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661153B (zh) 2014-12-31 2018-02-02 歌尔股份有限公司 一种耳机音效补偿方法、装置及耳机
CN104602163B (zh) * 2014-12-31 2017-12-01 歌尔股份有限公司 主动降噪耳机及应用于该耳机的降噪控制方法和***
CN105246000A (zh) * 2015-10-28 2016-01-13 维沃移动通信有限公司 一种提高耳机音质的方法及移动终端
CN105792072B (zh) * 2016-03-25 2020-10-09 腾讯科技(深圳)有限公司 一种音效处理方法、装置及终端
US10988032B2 (en) * 2016-04-19 2021-04-27 Walnut Technology Limited Self-propelled personal transportation device
CN106157962B (zh) * 2016-06-16 2017-10-27 广东欧珀移动通信有限公司 一种音效处理方法及移动终端
CN106385658B (zh) * 2016-09-08 2019-05-31 歌尔科技有限公司 智能眼镜的麦克风声学性能调节方法和智能眼镜
CN106303788B (zh) * 2016-10-19 2019-03-12 歌尔股份有限公司 数字耳机
CN106572417B (zh) * 2016-10-27 2019-11-05 腾讯科技(深圳)有限公司 音效控制方法和装置
KR102535726B1 (ko) * 2016-11-30 2023-05-24 삼성전자주식회사 이어폰 오장착 검출 방법, 이를 위한 전자 장치 및 저장 매체
CN106535024A (zh) * 2016-12-06 2017-03-22 深圳精拓创新科技有限公司 一种功放电路、控制方法及耳机***
CN106658304B (zh) * 2017-01-11 2020-04-24 广东小天才科技有限公司 一种用于可穿戴设备音频的输出控制方法及可穿戴设备
CN108347671B (zh) * 2017-01-24 2020-08-14 瑞昱半导体股份有限公司 噪音消除装置与噪音消除方法
JP6753329B2 (ja) * 2017-02-15 2020-09-09 株式会社Jvcケンウッド フィルタ生成装置、及びフィルタ生成方法
CN106899908B (zh) * 2017-02-27 2019-06-25 努比亚技术有限公司 音频处理装置、方法及***
CN107016309A (zh) * 2017-03-02 2017-08-04 努比亚技术有限公司 一种终端和音效匹配方法
CN106911981B (zh) * 2017-03-10 2019-05-10 四川长虹电器股份有限公司 小音腔音效处理的***及方法
CN106982403A (zh) * 2017-05-25 2017-07-25 深圳市金立通信设备有限公司 一种耳机佩戴的检测方法及终端
CN107197405B (zh) * 2017-06-28 2019-12-13 成都共同进步信息技术有限公司 数字电路对模拟音频电路干扰的解决方法
CN108111956A (zh) * 2017-12-26 2018-06-01 广州励丰文化科技股份有限公司 一种基于幅频响应曲线的音响调试方法及装置
CN115002644A (zh) 2018-01-09 2022-09-02 杜比实验室特许公司 降低不需要的声音传输
JP7131011B2 (ja) * 2018-03-23 2022-09-06 ヤマハ株式会社 音響出力装置
CN108551648B (zh) * 2018-03-30 2021-03-02 Oppo广东移动通信有限公司 质量检测方法和装置、可读存储介质、终端
CN108540900B (zh) * 2018-03-30 2021-03-12 Oppo广东移动通信有限公司 音量调节方法及相关产品
CN108737921B (zh) * 2018-04-28 2020-05-22 维沃移动通信有限公司 一种播放控制方法、***、耳机和移动终端
CN108551631A (zh) * 2018-04-28 2018-09-18 维沃移动通信有限公司 一种音质补偿方法及移动终端
CN108900694A (zh) * 2018-05-28 2018-11-27 Oppo广东移动通信有限公司 耳纹信息获取方法和装置、终端、耳机及可读存储介质
CN109246523B (zh) * 2018-08-02 2020-11-06 美律电子(深圳)有限公司 耳机
CN109104669B (zh) * 2018-08-14 2020-11-10 歌尔科技有限公司 一种耳机的音质修正方法、***及耳机
CN109121035B (zh) * 2018-08-30 2020-10-09 歌尔科技有限公司 耳机异常处理方法、耳机、***及存储介质
CN111314825A (zh) * 2018-12-11 2020-06-19 无锡华润矽科微电子有限公司 自动调节扬声器频响曲线的***及方法
JP7396796B2 (ja) * 2019-01-25 2023-12-12 株式会社ディーアンドエムホールディングス イヤホン装置
EP3712883B1 (en) 2019-03-22 2024-04-24 ams AG Audio system and signal processing method for an ear mountable playback device
CN111988690B (zh) * 2019-05-23 2023-06-27 小鸟创新(北京)科技有限公司 一种耳机佩戴状态检测方法、装置和耳机
CN110191396B (zh) * 2019-05-24 2022-05-27 腾讯音乐娱乐科技(深圳)有限公司 一种音频处理方法、装置、终端及计算机可读存储介质
CN110337054A (zh) * 2019-06-28 2019-10-15 Oppo广东移动通信有限公司 检测耳机佩戴状态的方法、装置、设备和计算机存储介质
CN113709614B (zh) * 2019-07-10 2024-04-30 Oppo广东移动通信有限公司 一种音量调节方法及装置、计算机可读存储介质
US11206003B2 (en) 2019-07-18 2021-12-21 Samsung Electronics Co., Ltd. Personalized headphone equalization
CN110933559B (zh) * 2019-11-28 2021-08-31 深圳创维-Rgb电子有限公司 一种智能音箱音效自适应调整方法、***及存储介质
CN113099336B (zh) * 2020-01-08 2023-07-25 北京小米移动软件有限公司 调整耳机音频参数的方法及装置、耳机、存储介质
CN111800688B (zh) * 2020-03-24 2022-04-12 深圳市豪恩声学股份有限公司 一种主动降噪方法、装置、电子设备及存储介质
CN111163391B (zh) * 2020-04-03 2020-07-10 恒玄科技(北京)有限公司 用于耳机降噪的方法和降噪耳机
CN111479197B (zh) * 2020-04-30 2021-10-01 北京猎户星空科技有限公司 一种音频播放方法、装置、***、设备及介质
CN111781555B (zh) * 2020-06-10 2023-10-17 厦门市派美特科技有限公司 具有校正功能的有源降噪耳机声源定位方法和装置
CN111818439B (zh) * 2020-07-20 2022-04-19 恒玄科技(上海)股份有限公司 耳机的控制方法、控制装置及存储介质
CN114143646B (zh) * 2020-09-03 2023-03-24 Oppo广东移动通信有限公司 检测方法、装置、耳机和可读存储介质
CN112437374A (zh) * 2020-11-06 2021-03-02 维沃移动通信有限公司 耳机及调音方法
CN113132885B (zh) * 2021-04-16 2022-10-04 深圳木芯科技有限公司 基于双麦克风能量差异判别耳机佩戴状态的方法
CN113099350B (zh) * 2021-05-06 2023-02-03 深圳市美恩微电子有限公司 一种播放音乐时自动降噪的蓝牙耳机
TWI773382B (zh) * 2021-06-15 2022-08-01 台灣立訊精密有限公司 耳機及耳機狀態檢測方法
CN113453112A (zh) * 2021-06-15 2021-09-28 台湾立讯精密有限公司 耳机及耳机状态检测方法
CN115942170A (zh) * 2021-08-19 2023-04-07 Oppo广东移动通信有限公司 音频信号处理方法及装置、耳机、存储介质
CN113436639B (zh) * 2021-08-26 2021-12-03 北京百瑞互联技术有限公司 一种音频流补偿方法、装置、存储介质及设备
CN113938786B (zh) * 2021-11-26 2023-12-08 恒玄科技(上海)股份有限公司 补偿耳机泄漏的方法、装置以及耳机
CN113794965B (zh) * 2021-10-28 2022-11-01 歌尔科技有限公司 耳机频响校准方法、装置、耳机设备及存储介质
CN114071304B (zh) * 2021-11-29 2023-04-25 歌尔科技有限公司 耳机主动降噪方法、装置、耳机及计算机可读存储介质
US20230419981A1 (en) * 2022-06-23 2023-12-28 Analog Devices International Unlimited Company Audio signal processing method and system for correcting a spectral shape of a voice signal measured by a sensor in an ear canal of a user
CN116744169B (zh) * 2022-09-30 2024-04-09 荣耀终端有限公司 耳机设备、声音信号的处理方法及佩戴贴合度测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113346A (zh) * 2008-07-29 2011-06-29 杜比实验室特许公司 用于电声通道的自适应控制和均衡的方法
CN102340717A (zh) * 2010-07-15 2012-02-01 欧力天工股份有限公司 头戴式消噪耳机
EP2584558A1 (en) * 2011-10-21 2013-04-24 Harman Becker Automotive Systems GmbH Active noise reduction
CN104661153A (zh) * 2014-12-31 2015-05-27 歌尔声学股份有限公司 一种耳机音效补偿方法、装置及耳机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294989A (ja) * 1997-04-18 1998-11-04 Matsushita Electric Ind Co Ltd 騒音制御ヘッドセット
US8917876B2 (en) * 2006-06-14 2014-12-23 Personics Holdings, LLC. Earguard monitoring system
WO2008061260A2 (en) * 2006-11-18 2008-05-22 Personics Holdings Inc. Method and device for personalized hearing
CN101014209B (zh) * 2007-01-19 2011-06-01 电子科技大学 全频带自然音效声频定向扬声器
CN101843115B (zh) * 2007-10-30 2013-09-25 歌乐株式会社 听觉灵敏度校正装置
US8600067B2 (en) * 2008-09-19 2013-12-03 Personics Holdings Inc. Acoustic sealing analysis system
GB2486268B (en) * 2010-12-10 2015-01-14 Wolfson Microelectronics Plc Earphone
JP5880340B2 (ja) * 2012-08-02 2016-03-09 ソニー株式会社 ヘッドホン装置、装着状態検出装置、装着状態検出方法
US9148725B2 (en) * 2013-02-19 2015-09-29 Blackberry Limited Methods and apparatus for improving audio quality using an acoustic leak compensation system in a mobile device
US9515629B2 (en) * 2013-05-16 2016-12-06 Apple Inc. Adaptive audio equalization for personal listening devices
CN103916798A (zh) * 2014-04-09 2014-07-09 李昂 耳机自动识别音效***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113346A (zh) * 2008-07-29 2011-06-29 杜比实验室特许公司 用于电声通道的自适应控制和均衡的方法
CN102340717A (zh) * 2010-07-15 2012-02-01 欧力天工股份有限公司 头戴式消噪耳机
EP2584558A1 (en) * 2011-10-21 2013-04-24 Harman Becker Automotive Systems GmbH Active noise reduction
CN104661153A (zh) * 2014-12-31 2015-05-27 歌尔声学股份有限公司 一种耳机音效补偿方法、装置及耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089475A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425718B2 (en) * 2016-12-13 2019-09-24 Samsung Electronics Co., Ltd. Electronic device, storage medium, and method of processing audio signal by electronic device
KR102673447B1 (ko) * 2016-12-13 2024-06-11 삼성전자주식회사 전자 장치, 저장매체 및 전자 장치의 음성 신호 처리 방법
CN112468926A (zh) * 2020-12-15 2021-03-09 中国联合网络通信集团有限公司 耳机音频调节方法、装置和终端设备
CN112804621A (zh) * 2020-12-30 2021-05-14 西安讯飞超脑信息科技有限公司 音频均衡方法、耳机电路和耳机
CN112804621B (zh) * 2020-12-30 2022-07-08 西安讯飞超脑信息科技有限公司 音频均衡方法、耳机电路和耳机
CN113613139A (zh) * 2021-07-30 2021-11-05 深圳市时商创展科技有限公司 一种气压检测自适应调音耳机及其控制方法
CN114157965A (zh) * 2021-11-26 2022-03-08 国光电器股份有限公司 一种音效补偿方法、装置、耳机和存储介质
CN114157965B (zh) * 2021-11-26 2024-03-29 国光电器股份有限公司 一种音效补偿方法、装置、耳机和存储介质

Also Published As

Publication number Publication date
EP3089475B1 (en) 2018-12-12
US9749732B2 (en) 2017-08-29
CN104661153A (zh) 2015-05-27
US20170171657A1 (en) 2017-06-15
CN104661153B (zh) 2018-02-02
JP6096993B1 (ja) 2017-03-15
JP2017511025A (ja) 2017-04-13
EP3089475A4 (en) 2017-11-22
EP3089475A1 (en) 2016-11-02
DK3089475T3 (en) 2019-03-11

Similar Documents

Publication Publication Date Title
WO2016107207A1 (zh) 一种耳机音效补偿方法、装置及耳机
CN113676803B (zh) 一种主动降噪方法及装置
CN110996215B (zh) 确定耳机降噪参数的方法、装置以及计算机可读介质
CN112334972B (zh) 耳机***、个人声学设备以及用于检测反馈不稳定性的方法
JP6215488B2 (ja) 能動騒音低減イヤホン、該イヤホンに適用する騒音低減制御方法及びシステム
EP3701525B1 (en) Electronic device using a compound metric for sound enhancement
DK3010249T3 (en) METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE
US9560456B2 (en) Hearing aid and method of detecting vibration
US10049653B2 (en) Active noise cancelation with controllable levels
GB2577824A (en) Earbud speech estimation
WO2015134225A4 (en) Systems and methods for enhancing performance of audio transducer based on detection of transducer status
US10748521B1 (en) Real-time detection of conditions in acoustic devices
CN109996137B (zh) 麦克风装置和耳机
EP3127348A1 (en) Headphone on-head detection using differential signal measurement
WO2021103260A1 (zh) 耳机的控制方法以及耳机
WO2015085946A1 (zh) 语音信号处理方法、装置及服务器
WO2022218093A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
CN110708651A (zh) 一种基于分段陷波的助听器啸叫检测与抑制方法及装置
TW201506913A (zh) 麥克風系統及其聲音處理方法
WO2023020208A1 (zh) 音频信号处理方法及装置、耳机、存储介质
WO2023138252A1 (zh) 音频信号处理方法及装置、耳机设备、存储介质
CN113299263A (zh) 声学路径确定方法、装置、可读存储介质及主动降噪耳机
TW202019194A (zh) 減少干擾音影響之方法及聲音播放裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016548671

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015874893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15115525

Country of ref document: US

Ref document number: 2015874893

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE