WO2016107077A1 - 空气净化器滤芯剩余使用时长的确定方法及装置 - Google Patents

空气净化器滤芯剩余使用时长的确定方法及装置 Download PDF

Info

Publication number
WO2016107077A1
WO2016107077A1 PCT/CN2015/080805 CN2015080805W WO2016107077A1 WO 2016107077 A1 WO2016107077 A1 WO 2016107077A1 CN 2015080805 W CN2015080805 W CN 2015080805W WO 2016107077 A1 WO2016107077 A1 WO 2016107077A1
Authority
WO
WIPO (PCT)
Prior art keywords
target device
wind speed
average
days
usage
Prior art date
Application number
PCT/CN2015/080805
Other languages
English (en)
French (fr)
Inventor
赵明
梁越
侯恩星
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Priority to KR1020157020395A priority Critical patent/KR101771522B1/ko
Priority to JP2016567118A priority patent/JP6388668B2/ja
Priority to BR112015026558A priority patent/BR112015026558A2/pt
Priority to RU2015138929A priority patent/RU2621491C2/ru
Priority to MX2015012099A priority patent/MX2015012099A/es
Priority to US14/947,957 priority patent/US20160187367A1/en
Publication of WO2016107077A1 publication Critical patent/WO2016107077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/08Registering or indicating the production of the machine either with or without registering working or idle time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication

Definitions

  • the present disclosure relates to the field of Internet technologies, and in particular, to a method and an apparatus for determining a remaining usage duration.
  • the filter element is the core component of the air purifier, and the life of the filter element is an important indicator to measure the quality of the air purifier.
  • the filter element of the air purifier is gradually lost.
  • many users fail to replace the filter element in time because they do not know the remaining use time of the filter element, resulting in the air purifier not working properly.
  • the user can replace the filter element in time according to the remaining use time of the filter element, and a more precise method for determining the remaining use time of the air purifier filter element is needed.
  • the present disclosure provides a method and apparatus for determining the remaining usage time.
  • a method for determining a remaining usage duration comprising:
  • Obtaining usage information of the target device where the usage information includes an on/off time of the target device
  • Determining a remaining usage duration of the target device according to an average operating wind speed of the target device, target device attribute information, and environmental data.
  • the determining, according to the usage information, determining an average operating wind speed of the target device includes:
  • the first average running wind speed is obtained according to the usage information of the plurality of peripheral devices
  • the second average operating wind speed is obtained according to the usage information of the target device.
  • the usage information of the peripheral device includes an on-off time and a working gear position of the peripheral device
  • An average value of the average operating wind speeds of the plurality of peripheral devices is obtained, and an average value of the average operating wind speeds of the plurality of peripheral devices is used as the first average operating wind speed.
  • the usage information further includes: a working gear position
  • Obtaining a second average running wind speed according to the usage information of the target device including:
  • the environmental data includes particulate matter concentration data
  • the target device attribute information includes a total adsorption capacity of the target device, and adsorption of the target device The percentage and the area of the surface of the target device that is in contact with the filter element and the air;
  • the remaining usage duration of the target device determined according to the average operating wind speed of the target device, target device attribute information, and environment data is:
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device
  • S is the target The area of the surface of the device that is in contact with the air and ⁇ is the particle concentration data.
  • determining a remaining usage duration of the target device Also includes:
  • a determining apparatus for remaining usage duration comprising:
  • An obtaining module configured to acquire usage information of the target device, where the usage information includes an on/off time of the target device
  • a first determining module configured to determine an average running wind speed of the target device according to the usage information
  • the second determining module is configured to determine, according to the average operating wind speed of the target device, target device attribute information, and environment data, a remaining usage duration of the target device.
  • the first determining module includes:
  • a determining unit configured to determine, according to the on-off time of the target device, the number of days of use of the target device;
  • a determining unit configured to determine whether the number of used days reaches a preset number of days
  • a first acquiring unit configured to acquire a first average running wind speed according to usage information of multiple peripheral devices when the number of used days does not reach a preset number of days;
  • the second obtaining unit is configured to obtain the second average running wind speed according to the usage information of the target device when the usage days reach a preset number of days.
  • the usage information of the peripheral device includes an on/off time and a working gear position of the peripheral device
  • the first acquiring unit is configured to determine an average running wind speed of each peripheral device according to an on-off time and a working gear position of each peripheral device; and obtain an average value of average running wind speeds of the plurality of peripheral devices, where the multiple The average value of the average operating wind speeds of the peripheral devices is taken as the first average operating wind speed.
  • the usage information further includes: a working gear position
  • the second obtaining unit is configured to calculate an average running wind speed of the target device according to a daily working gear position and a switch time of the target device within a preset number of days; and obtain an average daily average of the target device within a preset number of days.
  • the environmental data includes particulate matter concentration data
  • the target device attribute information includes a total adsorption capacity of the target device, and adsorption of the target device The percentage and the area of the surface of the target device that is in contact with the filter element and the air;
  • the remaining usage duration of the target device determined by the second determining module is:
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device
  • S is the target The area of the surface of the device that is in contact with the air and ⁇ is the particle concentration data.
  • the device further includes:
  • a prompting module configured to send prompt information to the control terminal of the target device, where the control terminal prompts according to the prompt information; or, a prompting module, configured to send prompt information to the target device, by the target The device prompts according to the prompt information.
  • a determining apparatus for remaining usage duration comprising:
  • processor is configured to:
  • Obtaining usage information of the target device where the usage information includes an on/off time of the target device
  • Determining a remaining usage duration of the target device according to an average operating wind speed of the target device, target device attribute information, and environmental data.
  • the usage information of the target device is obtained, and the average operating wind speed of the target device is determined according to the usage information, and then the remaining usage duration of the target device is determined according to the average operating wind speed of the target device, the target device attribute information, and the environmental data. Since the remaining usage time of the target device is determined according to the use information of the target device, the attribute information of the target device, and the environmental data, the actual use state of the device can be more accurately reflected.
  • FIG. 1 is a flow chart showing a method of determining a remaining usage duration according to an exemplary embodiment.
  • FIG. 2 is a structural diagram of a filter element of a target device, according to an exemplary embodiment.
  • FIG. 3 is a flowchart of a method for determining a remaining usage duration according to an exemplary embodiment.
  • FIG. 4 is a schematic structural diagram of a determining device for remaining usage duration according to an exemplary embodiment.
  • FIG. 5 is a schematic structural diagram of a first determining module according to an exemplary embodiment.
  • FIG. 6 is a schematic structural diagram of a determining apparatus for remaining usage duration according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a determining device for remaining usage durations, according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a method for determining a remaining usage duration according to an exemplary embodiment. As shown in FIG. 1, a method for determining a remaining usage duration is used in a server, and includes the following steps.
  • step S101 usage information of the target device is acquired, and the usage information includes an on/off time of the target device.
  • step S102 the average operating wind speed of the target device is determined based on the usage information.
  • step S103 the remaining usage duration of the target device is determined according to the average operating wind speed of the target device, the target device attribute information, and the environmental data.
  • the method provided by the embodiment of the present disclosure obtains the usage information of the target device, and determines the average operating wind speed of the target device according to the usage information, and further according to the average operating wind speed of the target device, the target device attribute information, and the number of environments. According to the determination, the remaining usage time of the target device is determined. Since the remaining usage time of the target device is determined according to the use information of the target device, the attribute information of the target device, and the environmental data, the actual use state of the device can be more accurately reflected.
  • determining an average operating wind speed of the target device according to the usage information includes:
  • the first average running wind speed is obtained according to the usage information of the plurality of peripheral devices
  • the second average operating wind speed is obtained according to the usage information of the target device.
  • the usage information of the peripheral device includes an on/off time and a working gear position of the peripheral device
  • the average value of the average operating wind speeds of the plurality of peripheral devices is obtained, and the average value of the average operating wind speeds of the plurality of peripheral devices is taken as the first average operating wind speed.
  • the usage information further includes: a working gear position
  • Obtain a second average operating wind speed according to the usage information of the target device including:
  • the average value of the average running wind speed of the target device in the preset number of days is obtained, and the average value of the average running wind speed of the target device per day in the preset number of days is taken as the second average running wind speed.
  • the environmental data includes particulate matter concentration data
  • the target device attribute information includes a total adsorption capacity of the target device, a percentage of adsorption of the target device, and an area of a surface of the target device that is in contact with the filter element and the air.
  • the particle concentration data is a long-term or a period of time statistics of the climate of the location of the target device, and the obtained average particle concentration data.
  • the one time period may be the most recent week in the past, the most recent month in the past, or the last three months in the past.
  • the total adsorption capacity of the target device is determined by the filter material of the target device, and the total adsorption capacity of the different filter materials is different.
  • the method provided in this embodiment needs to set the corresponding relationship between the filter material and the total adsorption capacity before determining the remaining usage time of the target device.
  • the total adsorption capacity of the target device can be determined by querying the correspondence between the filter material and the total adsorption capacity.
  • the percentage of adsorption of the target device refers to the degree of adsorption of the target device to the particulate matter in the air currently entering the target device. For example, before entering the target device, the amount of particulate matter per unit volume of air is 10,000.
  • the amount of particulate matter per unit volume of air is 4000, and the percentage of adsorption of the target device is 60%.
  • the area of the filter element of the target device and the surface in contact with the air will be described with reference to FIG. 2 as an example. 2 is a filter element of the target device. It can be seen from FIG. 2 that the filter element of the target device is a cylinder, and the upward arrow direction represents the flow direction of the air, and the area of the surface of the target device that contacts the air is the bottom area of the cylinder. .
  • the remaining usage duration of the target device determined is:
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device.
  • the average operating wind speed can be determined by the above method
  • S is the target.
  • the area of the surface of the device that is in contact with the air and ⁇ is the particle concentration data.
  • the method further includes:
  • the prompt information is sent to the target device, and the target device prompts according to the prompt information.
  • FIG. 3 is a flowchart of a method for determining a remaining usage duration according to an exemplary embodiment. As shown in FIG. 3, a method for determining a remaining usage duration is used in a server, and includes the following steps.
  • step S301 the server acquires usage information of the target device.
  • the target device and the peripheral device involved in the embodiments of the present disclosure are the same type of devices, and both may be an air cleaner or the like.
  • the target device is the device for which the remaining usage time is to be calculated.
  • the usage information of the target device includes at least the on/off time of the target device, and the like.
  • the process of obtaining usage information by the server may be classified into the following cases due to the different functions of the server and the target device.
  • the target device may have a recording and pushing function, and can automatically record the number of times of switching, the time of each switch, the working position, and the like, and push the acquired data to the server.
  • the server can have monitoring and storage functions, can monitor the air quality of the target device location, obtain environmental data that characterizes the air quality, and store the data pushed by the target device and the monitored environmental data in a storage unit such as a memory or a flash memory. Based on the functions of the target device and the server, the server can obtain the usage information of the target device directly from its corresponding storage unit.
  • the target device may further have a recording, monitoring, and storage function, which can automatically record the number of times of switching, the time of each switch, and the working gear position, and can also monitor the time of each switch.
  • Air quality obtain environmental data that characterizes air quality, and store the acquired data in a storage unit such as a memory or a flash memory.
  • the server can have a query function that can query data from the target device. Based on the functions of the target device and the server, when the server obtains the usage information of the target device, the server may query the usage information of the target device from the storage unit of the target device, and obtain the queried data.
  • the target device may further have a recording and pushing function, and can automatically record the number of times of switching, the time of each switch, the working position, and the like, and push the acquired data to the control terminal for storage.
  • the control terminal is a terminal bound to the target device, and the control terminal can be a mobile phone, a tablet computer, or the like.
  • the server can also have a query function to query data from the control terminal. Based on the functions of the target device and the server, when the server obtains the usage information of the target device, the server may query the usage information of the target device from the control terminal, and obtain the queried data.
  • the target device and the server may have other functions in addition to the above functions, which are not detailed in this embodiment.
  • the server obtains the usage information of the target device, other methods may be used in addition to the foregoing methods, which are not described in this embodiment.
  • step S302 the server determines the average operating wind speed of the target device based on the usage information.
  • the operating wind speed of the target device is the wind speed generated when the target device works.
  • the average operating wind speed of the target equipment can reflect the loss of the target equipment, and the loss of the target equipment determines the remaining service life of the target equipment. Therefore, in order to be able to determine the remaining service life of the target device, the method provided in this embodiment needs to first determine the average operating wind speed of the target device.
  • the usage information of the target device can accurately reflect the current usage of the target device. Therefore, in order to improve the accuracy of the remaining service life of the determined target device, in this embodiment, the server will use the information according to the usage of the target device. Determine the average operating wind speed of the target equipment.
  • the server determines the average operating wind speed of the target device based on the usage information
  • the following (1) to (3) can be used:
  • the server determines the number of days of use of the target device according to the on/off time of the target device.
  • the switch time can be the start time and the shutdown time, and can also be the use time between the switch machines.
  • the on/off time is set to be the power on time and the power off time.
  • the target device since the target device records the switching time of the target device, in order to facilitate the management of the recorded switching time, the target device often records the date corresponding to the switching time when recording the switching time, therefore, Based on the date corresponding to the switch time, the server can determine the number of days of use of the target device.
  • the server can determine that the target device is used for 8 days.
  • the server determines whether the number of days used reaches the preset number of days.
  • the usage time of the target device is different, and the calculation method used by the server when calculating the average operating wind speed of the target device is also different.
  • the method provided by the embodiment is based on the usage information of the target device.
  • the preset number of days may be 20 days, 30 days, 50 days, etc., and the preset number is not specifically limited in this embodiment.
  • the server can directly compare the number of days of use of the target device with the preset number of days.
  • the server determines the average operating wind speed of the target device according to the comparison result.
  • the comparison result may be: the number of days of use does not reach the preset number of days, and the number of days of use reaches the preset number of days.
  • the server determines the target device.
  • the server obtains the first average running wind speed according to the usage information of the plurality of peripheral devices.
  • the number of days of use of the target device does not reach the preset number of days, the number of days of use of the target device is short. According to the usage information of the target device, the determined average running wind speed may be inaccurate. In this case, according to the usage information of multiple peripheral devices, The first average operating wind speed is obtained, and the first average operating wind speed is used as the average operating wind speed of the target device.
  • the peripheral device is a device within a specified range of the target device.
  • the target device specified range may be a circumferential range centered on the target device and radiused by a preset length.
  • the preset length may be 1 Km (km), 2 Km, 3 Km, etc., and the preset length is not specifically limited in this embodiment.
  • the usage information of peripheral devices includes at least the on/off time and working gear position of peripheral devices.
  • the server when determining the peripheral device of the target device, the server A plurality of peripheral devices located within a specified range of the target device may be determined according to the received location information.
  • the server may further determine a plurality of peripheral devices located within a specified range of the target device according to the IP address of each device.
  • the server may also query the receiving address corresponding to the target device and other devices from the consumption record stored in the user account, and further determine a plurality of perimeters within the specified range of the target device according to the receiving address. device.
  • the working gears of the device may be normal files, strong files, and dormant files.
  • the operating wind speed of the equipment is different.
  • the running speed of the device when the device is working in the dormant position, the running speed of the device is the smallest, and the device can be set to the first speed; when the device is working under the ordinary file, the running wind of the device The speed is small and can be set to the second speed; when the device is working under the strong gear, the running speed of the device is the largest and can be set to the third speed.
  • the first speed is less than the second speed and the second speed is less than the third speed.
  • the server obtains the first average operating wind speed according to the usage information of the plurality of peripheral devices, and may obtain (3.11) to (3.12):
  • the server determines the average operating wind speed of each peripheral device according to the on-off time and working gear position of each peripheral device.
  • the server can directly obtain the switching time and the working gear position of the plurality of peripheral devices directly from the corresponding storage unit.
  • the server can determine the switch of each peripheral device according to the daily switching time of each peripheral device within a preset number of days. According to the duration of the switch and the corresponding working gear position of each peripheral device, determine the daily running wind speed of each peripheral device, and then obtain the average value of the running wind speed of each peripheral device within a preset number of days, the average The value is the average operating wind speed of each peripheral device.
  • Table 2 shows the usage information of any peripheral device A and the duration of the power on/off calculated based on the usage information.
  • the operating wind speed corresponding to the sleep mode is set to v 1 (/hour)
  • the operating wind speed corresponding to the normal gear is v 2 (/hour)
  • the operating wind speed corresponding to the strong gear is v 3 (/hour).
  • the server obtains the average of the average operating wind speeds of multiple peripheral devices, and averages multiple peripheral devices.
  • the average value of the operating wind speed is taken as the first average operating wind speed.
  • the server may obtain an average of the average operating wind speeds of the plurality of peripheral devices within the preset number of days.
  • the value which is the first average operating wind speed.
  • the five peripheral devices acquired by the server are: peripheral device A, peripheral device B, peripheral device C, peripheral device D, and peripheral device E.
  • the average operating wind speed of peripheral device A is a 1 v 1 + b 1 v 2 + c 1 v 3
  • the average operating wind speed of peripheral device B is a 2 v 1 + b 2 v 2 + c 2 v 3
  • the average operating wind speed of peripheral device C is a 3 v 1 + b 3 v 2 + c 3 v 3
  • the average operating wind speed of the peripheral device D is a 4 v 1 + b 4 v 2 + c 4 v 3
  • the average operating wind speed of the peripheral device E is a 5 v 1 + b 5 v 2 + c 5 v 3
  • the average of the average operating wind speeds of the five peripheral devices [(a 1 v 1 + b 1 v 2 + c 1 v 3 ) + (a 2 v 1 + b 2 v 2 + c 2 v 3 )
  • the server can obtain the first according to the usage information of the target device.
  • the average operating wind speed is used as the average operating wind speed of the target equipment.
  • the usage information of the target device further includes a working gear position.
  • the server may adopt the following (3.21) to (3.22) when acquiring the second average operating wind speed:
  • the server calculates the average running wind speed of the target equipment per day according to the working gear position and the switching time of the target device within a preset number of days.
  • the server may determine the duration of the on/off of the target device according to the daily on/off time of the target device within a preset number of days, and then, according to the on/off time and the working position of each target device. Calculate the average running wind speed per day of the target equipment.
  • Table 3 shows the usage information of the target device on June 4, 2014 and the duration of the power on/off calculated based on the usage information.
  • the operating wind speed corresponding to the sleep mode is set to v 1 (/hour)
  • the operating wind speed corresponding to the normal gear is v 2 (/hour)
  • the operating wind speed corresponding to the strong gear is v 3 (/hour).
  • the server After calculating the average running wind speed of the target device within the preset number of days, based on the calculated average running wind speed of the target device within a preset number of days, the server can obtain the average value of the average running wind speed of the target device per day within the preset number of days. This average is the second average operating wind speed.
  • the preset number of days is set to 30 days
  • the average running wind speed value of the target device in the preset number of days is: a 1 v 1 + b 1 v 2 + c 1 v 3 , a 2 v 1 + b 2 v 2 +c 2 v 3 , a 3 v 1 +b 3 v 2 +c 3 v 3 , . . .
  • the target device operates on average every day for a preset number of days
  • the average value of wind speed [(a 1 v 1 + b 1 v 2 + c 1 v 3 ) + (a 2 v 1 + b 2 v 2 + c 2 v 3 ) + (a 3 v 1 + b 3 v 2 +c 3 v 3 )+whereas+(a 30 v 1 +b 30 v 2 +c 30 v 3 )]/30
  • step S303 the server determines the remaining usage duration of the target device according to the average operating wind speed of the target device, the target device attribute information, and the environment data.
  • the remaining usage time of the target device is not only related to the average operating wind speed of the target device, but also related to the target device attribute information and the environmental data. Therefore, in order to improve the accuracy of the determined remaining usage time of the target device, In this embodiment, the server needs to comprehensively consider the average operating wind speed of the target device, the target device attribute information, and the environment data, and determine the remaining usage time of the target device.
  • the environmental data is an average value obtained by long-term monitoring of the air quality of the location of the target device, and the environmental data includes at least the particle concentration data and the like.
  • the target device attribute information includes at least the total adsorption capacity of the target device, the adsorption percentage of the target device, and the area of the surface of the target device that is in contact with the filter element and the air.
  • the server Based on the average operating wind speed of the target device, the target device attribute information, and the environmental data, the server generally determines the remaining usage time of the target device by using the following formula (1):
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device
  • S is the area of the filter element of the target device and the surface of the air contact
  • is the particle concentration data.
  • the method provided in this embodiment will be counted every preset time.
  • the environmental data obtained once is obtained, and the average value of the environmental data is obtained. Then, based on the average value of the environmental data, the remaining usage time of the target device is determined.
  • step S304 the server prompts according to the remaining usage duration of the target device.
  • the method provided in this embodiment determines the remaining usage time of the target device, and the server further Prompt for the remaining usage time of the target device.
  • the server may send a prompt message to the control terminal of the target device, and the control terminal prompts according to the prompt information.
  • the prompt information carries the remaining usage duration of the target device.
  • the control terminal may display the remaining usage duration on the display interface to prompt, or may promptly display the prompt on the display interface.
  • the server may also send a prompt message to the target device, and the target device prompts according to the prompt information. This embodiment does not limit the specific prompt mode.
  • the method provided by the embodiment of the present disclosure determines the average operating wind speed of the target device according to the usage information of the target device, and determines the target operating device according to the average operating wind speed of the target device, the target device attribute information, and the environment data.
  • the remaining usage time Since the remaining usage time of the target device is determined according to the use information of the target device, the attribute information of the target device, and the environmental data, the actual use state of the device can be accurately reflected, and therefore, the user experience is more accurate.
  • the server prompts the user by sending a prompt message, so as to ensure that the target device is in a normal working state at all times.
  • FIG. 4 is a schematic diagram of a determining device for remaining usage duration according to an exemplary embodiment.
  • the apparatus includes an acquisition module 401, a first determination module 402, and a second determination module 403.
  • the obtaining module 401 is configured to acquire usage information of the target device, where the usage information includes an on/off time of the target device;
  • the first determining module 402 is configured to determine an average operating wind speed of the target device according to the usage information
  • the second determining module 403 is configured to determine the remaining usage duration of the target device according to the average operating wind speed of the target device, the target device attribute information, and the environment data.
  • the first determining module 402 includes: a determining unit 4021, a determining unit 4022, a first obtaining unit 4023, and a second acquiring unit 4024.
  • the determining unit 4021 is configured to determine the number of days of use of the target device according to the power on/off time of the target device;
  • the determining unit 4022 is configured to determine whether the number of days of use reaches a preset number of days
  • the first obtaining unit 4023 is configured to acquire the first average running wind speed according to the usage information of the plurality of peripheral devices when the number of used days does not reach the preset number of days;
  • the second obtaining unit 4024 is configured to obtain the second average running wind speed according to the usage information of the target device when the number of days of use reaches a preset number of days.
  • the usage information of the peripheral device includes an on/off time and a working gear position of the peripheral device
  • the first obtaining unit 4023 is configured to determine an average running wind speed of each peripheral device according to an on-off time and a working gear position of each peripheral device; acquire an average value of average running wind speeds of the plurality of peripheral devices, and multiple peripherals The average value of the average operating wind speed of the equipment is taken as the first average operating wind speed.
  • the usage information further includes: a working gear position
  • the second obtaining unit 4024 is configured to work and switch the machine according to the target device within a preset number of days. Time, calculate the average running wind speed of the target equipment per day; obtain the average value of the average running wind speed of the target equipment in the preset number of days, and use the average value of the average running wind speed of the target equipment in the preset number of days as the second average running wind speed.
  • the environmental data includes particulate matter concentration data
  • the target device attribute information includes a total adsorption capacity of the target device, a percentage of adsorption of the target device, and an area of a surface of the target device that is in contact with the filter element and the air;
  • the remaining usage duration of the target device determined by the second determining module 403 is:
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device
  • S is the area of the filter element of the target device and the surface of the air contact
  • is the particle concentration data.
  • the device further includes a prompting module 404.
  • the prompting module 404 is configured to send prompt information to the control terminal of the target device, and the control terminal prompts according to the prompt information; or the prompting module 404 is configured to send prompt information to the target device, and the target device prompts according to the prompt information. .
  • the device provided by the embodiment of the present disclosure determines the average operating wind speed of the target device according to the usage information of the target device, and determines the target operating device according to the average operating wind speed of the target device, the target device attribute information, and the environment data.
  • the remaining usage time Since the remaining usage time of the target device is determined according to the use information of the target device, the attribute information of the target device, and the environmental data, the actual use state of the device can be more accurately reflected.
  • FIG. 7 is a block diagram of a determining apparatus 700 for remaining usage durations, according to an exemplary embodiment.
  • device 700 can be provided as a server.
  • apparatus 700 includes a processing component 722 that further includes one or more processors, and memory resources represented by memory 732 for storing instructions executable by processing component 722, such as an application.
  • An application stored in memory 732 can include one or more modules each corresponding to a set of instructions.
  • the processing component 722 is configured to execute instructions to perform the determination method of the remaining usage duration described above.
  • the usage information includes the on/off time of the target device
  • the remaining usage duration of the target device is determined according to the average operating wind speed of the target device, the target device attribute information, and the environmental data.
  • determining an average operating wind speed of the target device according to the usage information includes:
  • the first average running wind speed is obtained according to the usage information of the plurality of peripheral devices
  • the second average operating wind speed is obtained according to the usage information of the target device.
  • the usage information of the peripheral device includes an on/off time and a working gear position of the peripheral device
  • the average value of the average operating wind speeds of the plurality of peripheral devices is obtained, and the average value of the average operating wind speeds of the plurality of peripheral devices is taken as the first average operating wind speed.
  • the usage information further includes: a working gear position
  • Obtain a second average operating wind speed according to the usage information of the target device including:
  • the average value of the average running wind speed of the target device in the preset number of days is obtained, and the average value of the average running wind speed of the target device per day in the preset number of days is taken as the second average running wind speed.
  • the environmental data includes particulate matter concentration data
  • the target device attribute information includes a total adsorption capacity of the target device, a percentage of adsorption of the target device, and an area of a surface of the target device that is in contact with the filter element and the air;
  • the remaining usage duration of the target device determined is:
  • t is the remaining usage time of the target device
  • M is the total adsorption capacity of the target device
  • X is the adsorption percentage of the target device
  • V is the average operating wind speed of the target device
  • S is the area of the filter element of the target device and the surface of the air contact
  • is the particle concentration data.
  • the method further includes:
  • the prompt information is sent to the target device, and the target device prompts according to the prompt information.
  • Apparatus 700 can also include a power supply component 726 configured to perform power management of apparatus 700, a wired or wireless network interface 750 configured to connect apparatus 700 to the network, and an input/output (I/O) interface 758.
  • Device 700 can operate based on an operating system stored in memory 732, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or similar.
  • the device provided by the embodiment of the present disclosure determines the average operating wind speed of the target device according to the usage information of the target device, and determines the target operating device according to the average operating wind speed of the target device, the target device attribute information, and the environment data.
  • the remaining usage time Since the remaining usage time of the target device is determined according to the use information of the target device, the attribute information of the target device, and the environmental data, the actual use state of the device can be more accurately reflected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Ventilation (AREA)

Abstract

一种空气净化器滤芯剩余使用时长的确定方法,包括:获取空气净化器的使用信息,使用信息包括空气净化器的开关机时间(S101);根据使用信息确定空气净化器的平均运转风速(S102);根据空气净化器的平均运转风速、空气净化器的属性信息及环境数据,确定滤芯的剩余使用时长(S103)。该方法根据空气净化器的使用信息和属性信息以及环境数据确定滤芯的剩余使用时长,能够准确反应空气净化器的使用状态。

Description

剩余使用时长的确定方法及装置
本申请基于申请号为201410852715.X、申请日为2014年12月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及互联网技术领域,尤其涉及一种剩余使用时长的确定方法及装置。
背景技术
随着空气污染的日益严重,越来越多的用户使用空气净化器改善居住场所的空气质量。滤芯作为空气净化器的核心部件,滤芯的使用寿命成为衡量空气净化器品质的一个重要指标。随着使用时间的增长,空气净化器的滤芯逐渐被损耗,然而,很多用户由于不知道滤芯的剩余使用时长,未能及时地更换滤芯,导致空气净化器不能正常工作。为了营造良好的居住环境,使用户能够根据滤芯的剩余使用时长,及时地对滤芯进行更换,亟需一种更为精准的确定空气净化器滤芯剩余使用时长的方法。
发明内容
为克服相关技术中存在的问题,本公开提供一种剩余使用时长的确定方法及装置。
根据本公开实施例的第一方面,提供一种剩余使用时长的确定方法,该方法包括:
获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
根据所述使用信息,确定所述目标设备的平均运转风速;
根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
结合第一方面,在第一方面的第一种可能的实现方式,所述根据所述使用信息,确定所述目标设备的平均运转风速,包括:
根据所述目标设备的开关机时间,确定所述目标设备的使用天数;
判断所述使用天数是否达到预设天数;
当所述使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
当所述使用天数达到预设天数,根据所述目标设备的使用信息,获取第二平均运转风速。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述周边设备的使用信息包括周边设备的开关机时间及工作档位;
所述根据多个周边设备的使用信息,获取第一平均运转风速,包括:
根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;
获取多个周边设备的平均运转风速的平均值,将所述多个周边设备的平均运转风速的平均值作为第一平均运转风速。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述使用信息还包括:工作档位;
所述根据所述目标设备的使用信息,获取第二平均运转风速,包括:
根据所述目标设备在预设天数内每天的工作档位及开关机时间,计算所述目标设备每天平均运转风速;
获取预设天数内所述目标设备每天平均运转风速的平均值,将所述预设天数内所述目标设备每天平均运转风速的平均值作为第二平均运转风速。
结合第一方面,在第一方面的第四种可能的实现方式中,所述环境数据包括颗粒物浓度数据;所述目标设备属性信息包括所述目标设备的总吸附能力、所述目标设备的吸附百分率及所述目标设备的滤芯和空气接触的表面的面积;
所述根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定的所述目标设备的剩余使用时长为:
Figure PCTCN2015080805-appb-000001
其中,t为所述目标设备的剩余使用时长,M为所述目标设备的总吸附能力,X为所述目标设备的吸附百分率,V为所述目标设备的平均运转风速,S为所述目标设备的滤芯和空气接触的表面的面积,ρ为所述颗粒物浓度数据。
结合第一方面,在第一方面的第五种可能的实现方式中,所述根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长之后,还包括:
向所述目标设备的控制终端发送提示信息,由所述控制终端根据所述提示信息进行提示;或,
向所述目标设备发送提示信息,由所述目标设备根据所述提示信息进行提示。
根据本公开实施例的第二方面,提供一种剩余使用时长的确定装置,该装置包括:
获取模块,用于获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
第一确定模块,用于根据所述使用信息,确定所述目标设备的平均运转风速;
第二确定模块,用于根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一确定模块,包括:
确定单元,用于根据所述目标设备的开关机时间,确定所述目标设备的使用天数;
判断单元,用于判断所述使用天数是否达到预设天数;
第一获取单元,用于当所述使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
第二获取单元,用于当所述使用天数达到预设天数,根据所述目标设备的使用信息,获取第二平均运转风速。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述周边设备的使用信息包括周边设备的开关机时间及工作档位;
所述第一获取单元,用于根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;获取多个周边设备的平均运转风速的平均值,将所述多个周边设备的平均运转风速的平均值作为第一平均运转风速。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述使用信息还包括:工作档位;
所述第二获取单元,用于根据所述目标设备在预设天数内每天的工作档位及开关机时间,计算所述目标设备每天平均运转风速;获取预设天数内所述目标设备每天平均运转风速的平均值,将所述预设天数内所述目标设备每天平均运转风速的平均值作为第二平均运转风速。
结合第二方面,在第二方面的第四种可能的实现方式中,所述环境数据包括颗粒物浓度数据;所述目标设备属性信息包括所述目标设备的总吸附能力、所述目标设备的吸附百分率及所述目标设备的滤芯和空气接触的表面的面积;
所述第二确定模块确定的所述目标设备的剩余使用时长为:
Figure PCTCN2015080805-appb-000002
其中,t为所述目标设备的剩余使用时长,M为所述目标设备的总吸附能力,X为所述目标设备的吸附百分率,V为所述目标设备的平均运转风速,S为所述目标设备的滤芯和空气接触的表面的面积,ρ为所述颗粒物浓度数据。
结合第二方面,在第二方面的第五种可能的实现方式中,所述装置,还包括:
提示模块,用于向所述目标设备的控制终端发送提示信息,由所述控制终端根据所述提示信息进行提示;或,提示模块,用于向所述目标设备发送提示信息,由所述目标设备根据所述提示信息进行提示。
根据本公开实施例的第三方面,提供一种剩余使用时长的确定装置,包括:
处理器;
用于存储处理器可执行的指令;
其中,所述处理器被配置为:
获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
根据所述使用信息,确定所述目标设备的平均运转风速;
根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过获取目标设备的使用信息,并根据使用信息,确定目标设备的平均运转风速,进而根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。由于目标设备的剩余使用时长是根据目标设备的使用信息、目标设备的属性信息及环境数据等可靠数据确定的,因此,更能准确地反应设备的实际使用状态。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种剩余使用时长的确定方法的流程图。
图2是根据一示例性实施例示出的一种目标设备的滤芯的结构图。
图3是根据一示例性实施例示出的一种剩余使用时长的确定方法的流程图。
图4是根据一示例性实施例示出的一种剩余使用时长的确定装置的结构示意图。
图5是根据一示例性实施例示出的第一确定模块的结构示意图。
图6是根据一示例性实施例示出的一种剩余使用时长的确定装置的结构示意图。
图7是根据一示例性实施例示出的一种剩余使用时长的确定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种剩余使用时长的确定方法的流程图,如图1所示,剩余使用时长的确定方法用于服务器中,包括以下步骤。
在步骤S101中,获取目标设备的使用信息,使用信息包括目标设备的开关机时间。
在步骤S102中,根据使用信息,确定目标设备的平均运转风速。
在步骤S103中,根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。
本公开实施例提供的方法,通过获取目标设备的使用信息,并根据使用信息,确定目标设备的平均运转风速,进而根据目标设备的平均运转风速、目标设备属性信息及环境数 据,确定目标设备的剩余使用时长。由于目标设备的剩余使用时长是根据目标设备的使用信息、目标设备的属性信息及环境数据等可靠数据确定的,因此,更能准确地反应设备的实际使用状态。
在本公开的一个实施例中,根据使用信息,确定目标设备的平均运转风速,包括:
根据目标设备的开关机时间,确定目标设备的使用天数;
判断使用天数是否达到预设天数;
当使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
当使用天数达到预设天数,根据目标设备的使用信息,获取第二平均运转风速。
在本公开的一个实施例中,周边设备的使用信息包括周边设备的开关机时间及工作档位;
根据多个周边设备的使用信息,获取第一平均运转风速,包括:
根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;
获取多个周边设备的平均运转风速的平均值,将多个周边设备的平均运转风速的平均值作为第一平均运转风速。
在本公开的一个实施例中,使用信息还包括:工作档位;
根据目标设备的使用信息,获取第二平均运转风速,包括:
根据目标设备在预设天数内每天的工作档位及开关机时间,计算目标设备每天平均运转风速;
获取预设天数内目标设备每天平均运转风速的平均值,将预设天数内目标设备每天平均运转风速的平均值作为第二平均运转风速。
在本公开的一个实施例中,环境数据包括颗粒物浓度数据;目标设备属性信息包括目标设备的总吸附能力、目标设备的吸附百分率及目标设备的滤芯和空气接触的表面的面积。在本实施例中,可选的,该颗粒物浓度数据是对目标设备所在地的气候进行长期的或者一个时间段的统计,所得到的平均颗粒物浓度数据。可选的,所述一个时间段可以是过去最近的一周、过去最近的一个月、或者过去最近的三个月等。目标设备的总吸附能力由目标设备的滤芯材质决定,且不同的滤芯材质所对应的总吸附能力不同。为了便于根据不同的滤芯材质,确定目标设备的总吸附能力,本实施例提供的方法,在确定目标设备的剩余使用时长之前,需要先设置滤芯材质与总吸附能力的对应关系。这样在确定了目标设备的滤芯材质后,通过查询滤芯材质和总吸附能力的对应关系,就可以确定出目标设备的总吸附能力。目标设备的吸附百分率是指目标设备对当前进入到目标设备的空气中颗粒物的吸附程度。例如,进入目标设备之前,单位体积的空气中颗粒物数量为10000,净化之后,单位体积的空气中颗粒物数量为4000,则目标设备的吸附百分率就是60%。对于目标设备的滤芯和空气接触的表面的面积,以图2为例进行说明。图2为目标设备的滤芯,由图2可知该目标设备的滤芯为圆柱体,向上的箭头方向代表空气的流动方向,则目标设备的滤芯和空气接触的表面的面积为圆柱体的底面积S。
根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定的目标设备的剩余使用时长为:
Figure PCTCN2015080805-appb-000003
其中,t为目标设备的剩余使用时长,M为目标设备的总吸附能力,X为目标设备的吸附百分率,V为目标设备的平均运转风速,该平均运转风速可通过上述方法确定,S为目标设备的滤芯和空气接触的表面的面积,ρ为颗粒物浓度数据。
在本公开的一个实施例中,根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长之后,还包括:
向目标设备的控制终端发送提示信息,由控制终端根据提示信息进行提示;或,
向目标设备发送提示信息,由目标设备根据提示信息进行提示。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图3是根据一示例性实施例示出的一种剩余使用时长的确定方法的流程图,如图3所示,剩余使用时长的确定方法用于服务器中,包括以下步骤。
在步骤S301中,服务器获取目标设备的使用信息。
本公开实施例所涉及到的目标设备和周边设备为同一类设备,均可以为空气净化器等。目标设备为本次待计算剩余使用时长的设备。目标设备的使用信息至少包括目标设备的开关机时间等。
针对于服务器获取使用信息的过程,由于服务器和目标设备所具有的功能不同,可分为如下几种情况。
在本公开的一个实施例中,目标设备可以具有记录、推送功能,能够自动记录开关机次数、每次开关机时间及工作档位等,并将获取到的数据推送至服务器。服务器可以具有监测、存储功能,能够监测目标设备所在地的空气质量,获取表征空气质量的环境数据,并将目标设备推送的数据及监测得到的环境数据存储在内存、闪存等存储单元中。基于目标设备和服务器所具有的功能,服务器在获取目标设备的使用信息时,可直接从其对应的存储单元中获取。
在本公开的另一个实施例中,目标设备还可以具有记录、监测、存储功能,能够自动地记录开关机次数、每次开关机时间及工作档位,还能监控每次开关机时间内的空气质量,获取表征空气质量的环境数据,并将获取到的数据存储在内存、闪存等存储单元中。服务器可以具有查询功能,能够从目标设备中查询数据。基于目标设备和服务器所具有的功能,服务器在获取目标设备的使用信息时,可从目标设备的存储单元中查询目标设备的使用信息,并获取查询到的数据。
在本公开的另一个实施例中,目标设备还可以具有记录、推送功能,能够自动记录开关机次数、每次开关机时间及工作档位等,并将获取到的数据推送至控制终端进行存储。控制终端为与目标设备绑定的终端,该控制终端可以为手机、平板电脑等。服务器还可以具有查询功能,能够从控制终端中查询数据。基于目标设备和服务器所具有的功能,服务器在获取目标设备的使用信息时,可从控制终端中查询目标设备的使用信息,并获取查询到的数据。
当然,目标设备和服务器除了具有上述功能外,还可以具有其他功能,本实施例对此不再详述。相应地,服务器在获取目标设备的使用信息时,除了采用上述几种方式外,还可以采用其他方式,本实施例对此不再一一说明。
在步骤S302中,服务器根据使用信息,确定目标设备的平均运转风速。
其中,目标设备的运转风速为目标设备工作时所产生的风速。目标设备的平均运转风速大小可以反应出目标设备的损耗情况,而目标设备的损耗情况决定着目标设备的剩余使用寿命。因此,为了能够确定出目标设备的剩余使用寿命,本实施例提供的方法需要先确定目标设备的平均运转风速。另外,目标设备的使用信息能够准确地体现出目标设备当前的使用情况,因此,为了提高所确定的目标设备的剩余使用寿命的准确性,本实施例中,服务器将根据目标设备的使用信息,确定出目标设备的平均运转风速。
服务器在根据使用信息,确定目标设备的平均运转风速时,可采用如下(1)~(3):
(1)、服务器根据目标设备的开关机时间,确定目标设备的使用天数。
其中,开关机时间可以为开机时刻和关机时刻,还也可以为开关机之间的使用时长。在本公开的所有实施例中,设定开关机时间为开机时刻和关机时刻。另外,由于目标设备所记录的目标设备的开关机时间较多,为了便于对记录的开关机时间进行管理,目标设备在记录开关机时间时,常常将开关机时间对应的日期一同记录,因此,基于开关机时间对应的日期,服务器就可以确定出目标设备的使用天数。
对于服务器根据目标设备的开关机时间,确定目标设备的使用天数的过程,下面以表1中记录的数据为例进行详述。
表1
开关机次数 开关机时间
1 2014年1月1日6:00~9:00
2 2014年1月4日12:30~15:30
3 2014年1月9日20:00~21:00
4 2014年1月16日9:00~11:00
5 2014年1月17日10:30~14:00
6 2014年1月17日16:00~19:00
7 2014年1月23日8:00~11:00
8 2014年1月23日7:00~9:30
9 2014年1月25日16:00~21:00
10 2014年1月31日7:00~10:00
基于上述表1中记录的开关机时间,服务器可以确定出目标设备的使用天数为8天。
(2)、服务器判断使用天数是否达到预设天数。
在本实施例中,目标设备的使用时间不同,服务器在计算目标设备的平均运转风速时,所采用的计算方法也是不同的,基于这个理由,本实施例提供的方法在根据目标设备的使用信息,确定目标设备的平均运转风速之前,还需要判断使用天数是否达到预设天数。其中,预设天数可以为20天、30天、50天等,本实施例不对预设天数作具体的限定。具体在判断使用天数是否达到预设天数时,服务器可直接将目标设备的使用天数与预设天数进行比较。
(3)、服务器根据比较结果,确定目标设备的平均运转风速。
在将目标设备的使用天数与预设天数进行比较时,比较结果可以为:使用天数未达到预设天数、使用天数达到预设天数两种,针对这两种比较结果,服务器在确定目标设备的平均运转风速时,可参见下述(3.1)~(3.2):
(3.1)、当使用天数未达到预设天数,服务器根据多个周边设备的使用信息,获取第一平均运转风速。
当目标设备的使用天数未达到预设天数,说明目标设备的使用天数较短,依据目标设备的使用信息,所确定的平均运转风速可能不准确,此时可根据多个周边设备的使用信息,获取第一平均运转风速,并将该第一平均运转风速作为目标设备的平均运转风速。
其中,周边设备为在目标设备指定范围内的设备。目标设备指定范围可以为以目标设备为圆心、以预设长度为半径的圆周范围。该预设长度可以为1Km(千米)、2Km、3Km等,本实施例不对预设长度作具体的限定。周边设备的使用信息至少包括周边设备的开关机时间及工作档位。
由于本实施例中的设备可以连接到互联网中,当每个设备通过互联网获取到所在地的位置信息后,会将获取到的位置信息发送至服务器,因此,在确定目标设备的周边设备时,服务器可根据接收到的位置信息,确定出位于目标设备指定范围内的多个周边设备,当然,服务器还可以根据每个设备的IP地址,确定出位于目标设备指定范围内的多个周边设备。除了采用上述方式外,服务器还可以从用户账号存储的消费记录中,查询到目标设备及其他设备对应的收货地址,进而根据该收货地址,确定出在目标设备指定范围内的多个周边设备。
需要说明的是,在本实施例中,设备的工作档位可以为普通档、强力档及休眠档等。当设备在不同的工作档位下工作时,设备的运转风速是不同的。其中,设备在休眠档下工作时,设备的运转风速最小,可设置为第一速度;设备在普通档下工作时,设备的运转风 速较小,可设置为第二速度;设备在强力档下工作时,设备的运转风速最大,可设置为第三速度。其中,第一速度小于第二速度,第二速度小于第三速度。
当判断得出使用天数未达到预设天数,服务器根据多个周边设备的使用信息,获取第一平均运转风速时,可采用(3.11)~(3.12)进行获取:
(3.11)、服务器根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速。
由于服务器的存储单元中存储着包括目标设备、周边设备在内的所有设备的使用信息,因此,服务器可直接从其对应的存储单元中获取多个周边设备的开关机时间及工作档位。
基于获取到的多个周边设备的开关机时间及工作档位,针对于每个周边设备,服务器可根据每个周边设备在预设天数内每天的开关机时间,确定出每个周边设备的开关机时长,之后根据每个周边设备的开关机时长及对应的工作档位,确定出每个周边设备每天的运转风速,进而获取每个周边设备在预设天数内运转风速的平均值,该平均值即为每个周边设备的平均运转风速。
例如,表2所示的为任一周边设备A的使用信息及根据使用信息计算出的开关机时长。设定休眠档对应的运转风速为v1(/小时),普通档对应的运转风速为v2(/小时),强力档对应的运转风速为v3(/小时)。
表2
Figure PCTCN2015080805-appb-000004
基于表2中的数据,服务器可计算出周边设备A的平均运转风速=(3*v2+3*v3+1*v1+2*v3+3.5*v2+3*v1+3*v3+2.5*v3+5*v2+3*v3)/29=(4v1+11.5v2+10.5v3)/29。
(3.12)服务器获取多个周边设备的平均运转风速的平均值,将多个周边设备的平均 运转风速的平均值作为第一平均运转风速。
当获取到多个周边设备的平均运转风速的平均值之后,基于获取到的多个周边设备的平均运转风速的平均值,服务器就可以获取预设天数内多个周边设备的平均运转风速的平均值,该平均值即为第一平均运转风速。
例如,服务器获取到的五个周边设备,分别为:周边设备A、周边设备B、周边设备C、周边设备D及周边设备E,周边设备A的平均运转风速为a1v1+b1v2+c1v3,周边设备B的平均运转风速为a2v1+b2v2+c2v3,周边设备C的平均运转风速为a3v1+b3v2+c3v3,周边设备D的平均运转风速为a4v1+b4v2+c4v3,周边设备E的平均运转风速为a5v1+b5v2+c5v3,则这五个周边设备的平均运转风速的平均值=[(a1v1+b1v2+c1v3)+(a2v1+b2v2+c2v3)+(a3v1+b3v2+c3v3)+(a4v1+b4v2+c4v3)+(a5v1+b5v2+c5v3)]/5=[(a1+a2+a3+a4+a5)v1+(b1+b2+b3+b4+b5)v2+(c1+c2+c3+c4+c5)v3]/5。
(3.2)、当使用天数达到预设天数,根据目标设备的使用信息,获取第二平均运转风速。
当目标设备的使用天数达到了预设天数,说明目标设备的使用天数较长,依据目标设备的使用信息,所确定的平均运转风速较为准确,此时服务器可根据目标设备的使用信息,获取第二平均运转风速,并将该第二平均运转风速作为目标设备的平均运转风速。
在本实施例中,目标设备的使用信息还包括工作档位。基于目标设备的使用信息,服务器在获取第二平均运转风速时,可采用下述(3.21)~(3.22):
(3.21)、服务器根据目标设备在预设天数内每天的工作档位及开关机时间,计算目标设备每天平均运转风速。
基于获取到的目标设备的使用信息,服务器可根据目标设备在预设天数内每天的开关机时间,确定处目标设备的开关机时长,之后,根据每个目标设备的开关机时长及工作档位,计算出目标设备每天平均运转风速。
例如,表3所示的为目标设备在2014年6月4日的使用信息及根据使用信息计算出的开关机时长。设定休眠档对应的运转风速为v1(/小时),普通档对应的运转风速为v2(/小时),强力档对应的运转风速为v3(/小时)。
表3
Figure PCTCN2015080805-appb-000005
基于表3所示的数据,服务器可计算出目标设备在2014年6月4日的平均运转风速=(3*v2+3*v3+1*v1)/7。
(3.22)、获取预设天数内目标设备每天平均运转风速的平均值,将预设天数内目标设备每天平均运转风速的平均值作为第二平均运转风速。
当计算出目标设备在预设天数内每天平均运转风速之后,基于计算出的目标设备在预设天数内每天平均运转风速,服务器就可以获取预设天数内目标设备每天平均运转风速的平均值,该平均值即为第二平均运转风速。
例如,设定预设天数为30天,在预设天数内目标设备每天平均运转风速值分别为:a1v1+b1v2+c1v3、a2v1+b2v2+c2v3、a3v1+b3v2+c3v3、…….、a30v1+b30v2+c130v3,则预设天数内目标设备每天平均运转风速的平均值=[(a1v1+b1v2+c1v3)+(a2v1+b2v2+c2v3)+(a3v1+b3v2+c3v3)+…..+(a30v1+b30v2+c30v3)]/30,即第二平均运转风速为=[(a1v1+b1v2+c1v3)+(a2v1+b2v2+c2v3)+(a3v1+b3v2+c3v3)+…..+(a30v1+b30v2+c30v3)]/30。
在步骤S303中,服务器根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。
在本实例中,目标设备的剩余使用时长不仅与目标设备的平均运转风速有关,还与目标设备属性信息及环境数据有关,因此,为了提高所确定的目标设备的剩余使用时长的准确性,在本实施例中,服务器需要综合考虑目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。其中,环境数据为对目标设备所在地的空气质量进行长期监测得到的平均值,该环境数据至少包括颗粒物浓度数据等。目标设备属性信息至少包括目标设备的总吸附能力、目标设备的吸附百分率及目标设备的滤芯和空气接触的表面的面积等。对于目标设备属性信息每个参数的具体含义可参见上述各个参数的含义,此处不再赘述。
基于目标设备的平均运转风速、目标设备属性信息及环境数据,服务器在确定的目标设备的剩余使用时长时,一般采用如下公式(1)进行确定:
Figure PCTCN2015080805-appb-000006
其中,t为目标设备的剩余使用时长,M为目标设备的总吸附能力,X为目标设备的吸附百分率,V为目标设备的平均运转风速,S为目标设备的滤芯和空气接触的表面的面积,ρ为颗粒物浓度数据。
需要说明的是,由于在不同的季节内,目标设备所在地的环境数据是不同的,因此,为了提高所确定的剩余使用寿命的准确性,本实施例提供的方法,将每隔预设时长统计一次获取到的环境数据,得到环境数据的平均值,之后,依据该环境数据的平均值,确定一次目标设备的剩余使用时长。
在步骤S304中,服务器根据目标设备的剩余使用时长进行提示。
为了及时地对目标设备当前所处的状态进行提醒,避免目标设备因未及时更换而无法正常工作,本实施例提供的方法,在确定出目标设备的剩余使用时长后,服务器还将根据 目标设备的剩余使用时长进行提示。具体提示时,服务器可向目标设备的控制终端发送提示信息,由控制终端根据提示信息进行提示。其中,提示信息中携带着目标设备的剩余使用时长。控制终端在接收到提示信息之后,可在显示界面上显示剩余使用时长进行提示,也可在显示界面上以闪烁提示的方式进行提醒。当然,服务器还可向目标设备发送提示信息,由目标设备根据提示信息进行提示,本实施例不对具体的提示方式进行限定。
本公开实施例提供的方法,通过获取目标设备的使用信息,并根据使用信息,确定目标设备的平均运转风速,进而根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。由于目标设备的剩余使用时长是根据目标设备的使用信息、目标设备的属性信息及环境数据等可靠数据确定的,更能准确地反应设备的实际使用状态,因此,相比于用户经验更为精准。另外,在确定出目标设备的剩余使用时长之后,服务器通过发送提示信息进行提示,可及时地向用户作出提醒,从而确保了目标设备时刻处于正常工作状态。
图4是根据一示例性实施例示出的一种剩余使用时长的确定装置的示意图。参照图4,该装置包括:获取模块401、第一确定模块402和第二确定模块403。
该获取模块401被配置为获取目标设备的使用信息,使用信息包括目标设备的开关机时间;
该第一确定模块402被配置为根据使用信息,确定目标设备的平均运转风速;
该第二确定模块403被配置为根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。
参照图5,该第一确定模块402,包括:确定单元4021、判断单元4022、第一获取单元4023和第二获取单元4024。
该确定单元4021被配置为根据目标设备的开关机时间,确定目标设备的使用天数;
该判断单元4022被配置为判断使用天数是否达到预设天数;
该第一获取单元4023被配置为当使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
该第二获取单元4024被配置为当使用天数达到预设天数,根据目标设备的使用信息,获取第二平均运转风速。
在本公开的一个实施例中,周边设备的使用信息包括周边设备的开关机时间及工作档位;
该第一获取单元4023被配置为根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;获取多个周边设备的平均运转风速的平均值,将多个周边设备的平均运转风速的平均值作为第一平均运转风速。
在本公开的一个实施例中,使用信息还包括:工作档位;
该第二获取单元4024被配置为根据目标设备在预设天数内每天的工作档位及开关机 时间,计算目标设备每天平均运转风速;获取预设天数内目标设备每天平均运转风速的平均值,将预设天数内目标设备每天平均运转风速的平均值作为第二平均运转风速。
在本公开的一个实施例中,环境数据包括颗粒物浓度数据;目标设备属性信息包括目标设备的总吸附能力、目标设备的吸附百分率及目标设备的滤芯和空气接触的表面的面积;
该第二确定模块403确定的目标设备的剩余使用时长为:
Figure PCTCN2015080805-appb-000007
其中,t为目标设备的剩余使用时长,M为目标设备的总吸附能力,X为目标设备的吸附百分率,V为目标设备的平均运转风速,S为目标设备的滤芯和空气接触的表面的面积,ρ为颗粒物浓度数据。
参见图6,该装置,还包括:提示模块404。
该提示模块404被配置为向目标设备的控制终端发送提示信息,由控制终端根据提示信息进行提示;或,该提示模块404被配置为向目标设备发送提示信息,由目标设备根据提示信息进行提示。
本公开实施例提供的装置,通过获取目标设备的使用信息,并根据使用信息,确定目标设备的平均运转风速,进而根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。由于目标设备的剩余使用时长是根据目标设备的使用信息、目标设备的属性信息及环境数据等可靠数据确定的,因此,更能准确地反应设备的实际使用状态。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种用于剩余使用时长的确定装置700的框图。例如,装置700可以被提供为一服务器。参照图7,装置700包括处理组件722,其进一步包括一个或多个处理器,以及由存储器732所代表的存储器资源,用于存储可由处理组件722的执行的指令,例如应用程序。存储器732中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件722被配置为执行指令,以执行上述剩余使用时长的确定方法。
获取目标设备的使用信息,使用信息包括目标设备的开关机时间;
根据使用信息,确定目标设备的平均运转风速;
根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。
在本公开的一个实施例中,根据使用信息,确定目标设备的平均运转风速,包括:
根据目标设备的开关机时间,确定目标设备的使用天数;
判断使用天数是否达到预设天数;
当使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
当使用天数达到预设天数,根据目标设备的使用信息,获取第二平均运转风速。
在本公开的一个实施例中,周边设备的使用信息包括周边设备的开关机时间及工作档位;
根据多个周边设备的使用信息,获取第一平均运转风速,包括:
根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;
获取多个周边设备的平均运转风速的平均值,将多个周边设备的平均运转风速的平均值作为第一平均运转风速。
在本公开的一个实施例中,使用信息还包括:工作档位;
根据目标设备的使用信息,获取第二平均运转风速,包括:
根据目标设备在预设天数内每天的工作档位及开关机时间,计算目标设备每天平均运转风速;
获取预设天数内目标设备每天平均运转风速的平均值,将预设天数内目标设备每天平均运转风速的平均值作为第二平均运转风速。
在本公开的一个实施例中,环境数据包括颗粒物浓度数据;目标设备属性信息包括目标设备的总吸附能力、目标设备的吸附百分率及目标设备的滤芯和空气接触的表面的面积;
根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定的目标设备的剩余使用时长为:
Figure PCTCN2015080805-appb-000008
其中,t为目标设备的剩余使用时长,M为目标设备的总吸附能力,X为目标设备的吸附百分率,V为目标设备的平均运转风速,S为目标设备的滤芯和空气接触的表面的面积,ρ为颗粒物浓度数据。
在本公开的一个实施例中,根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长之后,还包括:
向目标设备的控制终端发送提示信息,由控制终端根据提示信息进行提示;或,
向目标设备发送提示信息,由目标设备根据提示信息进行提示。
装置700还可以包括一个电源组件726被配置为执行装置700的电源管理,一个有线或无线网络接口750被配置为将装置700连接到网络,和一个输入输出(I/O)接口758。装置700可以操作基于存储在存储器732的操作***,例如Windows ServerTM,Mac OS  XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例提供的装置,通过获取目标设备的使用信息,并根据使用信息,确定目标设备的平均运转风速,进而根据目标设备的平均运转风速、目标设备属性信息及环境数据,确定目标设备的剩余使用时长。由于目标设备的剩余使用时长是根据目标设备的使用信息、目标设备的属性信息及环境数据等可靠数据确定的,因此,更能准确地反应设备的实际使用状态。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种剩余使用时长的确定方法,其特征在于,所述方法包括:
    获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
    根据所述使用信息,确定所述目标设备的平均运转风速;
    根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述使用信息,确定所述目标设备的平均运转风速,包括:
    根据所述目标设备的开关机时间,确定所述目标设备的使用天数;
    判断所述使用天数是否达到预设天数;
    当所述使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
    当所述使用天数达到预设天数,根据所述目标设备的使用信息,获取第二平均运转风速。
  3. 根据权利要求2所述的方法,其特征在于,所述周边设备的使用信息包括周边设备的开关机时间及工作档位;
    所述根据多个周边设备的使用信息,获取第一平均运转风速,包括:
    根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;
    获取多个周边设备的平均运转风速的平均值,将所述多个周边设备的平均运转风速的平均值作为第一平均运转风速。
  4. 根据权利要求2所述的方法,其特征在于,所述使用信息还包括:工作档位;
    所述根据所述目标设备的使用信息,获取第二平均运转风速,包括:
    根据所述目标设备在预设天数内每天的工作档位及开关机时间,计算所述目标设备每天平均运转风速;
    获取预设天数内所述目标设备每天平均运转风速的平均值,将所述预设天数内所述目标设备每天平均运转风速的平均值作为第二平均运转风速。
  5. 根据权利要求1所述的方法,其特征在于,所述环境数据包括颗粒物浓度数据;所述目标设备属性信息包括所述目标设备的总吸附能力、所述目标设备的吸附百分率及所述目标设备的滤芯和空气接触的表面的面积;
    所述根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定的所述目标设备的剩余使用时长为:
    Figure PCTCN2015080805-appb-100001
    其中,t为所述目标设备的剩余使用时长,M为所述目标设备的总吸附能力,X为所述目标设备的吸附百分率,V为所述目标设备的平均运转风速,S为所述目标设备的滤芯和空气接触的表面的面积,ρ为所述颗粒物浓度数据。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长之后,还包括:
    向所述目标设备的控制终端发送提示信息,由所述控制终端根据所述提示信息进行提示;或,
    向所述目标设备发送提示信息,由所述目标设备根据所述提示信息进行提示。
  7. 一种剩余使用时长的确定装置,其特征在于,所述装置包括:
    获取模块,用于获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
    第一确定模块,用于根据所述使用信息,确定所述目标设备的平均运转风速;
    第二确定模块,用于根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
  8. 根据权利要求7所述的装置,其特征在于,所述第一确定模块,包括:
    确定单元,用于根据所述目标设备的开关机时间,确定所述目标设备的使用天数;
    判断单元,用于判断所述使用天数是否达到预设天数;
    第一获取单元,用于当所述使用天数未达到预设天数,根据多个周边设备的使用信息,获取第一平均运转风速;
    第二获取单元,用于当所述使用天数达到预设天数,根据所述目标设备的使用信息,获取第二平均运转风速。
  9. 根据权利要求8所述的装置,其特征在于,所述周边设备的使用信息包括周边设备的开关机时间及工作档位;
    所述第一获取单元,用于根据每个周边设备的开关机时间及工作档位,确定每个周边设备的平均运转风速;获取多个周边设备的平均运转风速的平均值,将所述多个周边设备的平均运转风速的平均值作为第一平均运转风速。
  10. 根据权利要求8所述的装置,其特征在于,所述使用信息还包括:工作档位;
    所述第二获取单元,用于根据所述目标设备在预设天数内每天的工作档位及开关机时 间,计算所述目标设备每天平均运转风速;获取预设天数内所述目标设备每天平均运转风速的平均值,将所述预设天数内所述目标设备每天平均运转风速的平均值作为第二平均运转风速。
  11. 根据权利要求7所述的装置,其特征在于,所述环境数据包括颗粒物浓度数据;所述目标设备属性信息包括所述目标设备的总吸附能力、所述目标设备的吸附百分率及所述目标设备的滤芯和空气接触的表面的面积;
    所述第二确定模块确定的所述目标设备的剩余使用时长为:
    Figure PCTCN2015080805-appb-100002
    其中,t为所述目标设备的剩余使用时长,M为所述目标设备的总吸附能力,X为所述目标设备的吸附百分率,V为所述目标设备的平均运转风速,S为所述目标设备的滤芯和空气接触的表面的面积,ρ为所述颗粒物浓度数据。
  12. 根据权利要求7所述的装置,其特征在于,所述装置,还包括:
    提示模块,用于向所述目标设备的控制终端发送提示信息,由所述控制终端根据所述提示信息进行提示;或,提示模块,用于向所述目标设备发送提示信息,由所述目标设备根据所述提示信息进行提示。
  13. 一种剩余使用时长的确定装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令;
    其中,所述处理器被配置为:
    获取目标设备的使用信息,所述使用信息包括目标设备的开关机时间;
    根据所述使用信息,确定所述目标设备的平均运转风速;
    根据所述目标设备的平均运转风速、目标设备属性信息及环境数据,确定所述目标设备的剩余使用时长。
PCT/CN2015/080805 2014-12-31 2015-06-04 空气净化器滤芯剩余使用时长的确定方法及装置 WO2016107077A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157020395A KR101771522B1 (ko) 2014-12-31 2015-06-04 나머지 사용 기간의 확정 방법, 장치, 프로그램 및 기록매체
JP2016567118A JP6388668B2 (ja) 2014-12-31 2015-06-04 残りの使用期間の特定方法、装置、プログラム、及び記憶媒体
BR112015026558A BR112015026558A2 (pt) 2014-12-31 2015-06-04 método e aparelho de determinação de tempo de uso restante do mesmo
RU2015138929A RU2621491C2 (ru) 2014-12-31 2015-06-04 Способ определения остающегося времени использования и аппарат для него
MX2015012099A MX2015012099A (es) 2014-12-31 2015-06-04 Metodo para determinar el tiempo de uso restante y aparato para lo mismo.
US14/947,957 US20160187367A1 (en) 2014-12-31 2015-11-20 Method for Determining Remaining Service Time and Apparatus Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410852715.XA CN104633848B (zh) 2014-12-31 2014-12-31 剩余使用时长的确定方法及装置
CN201410852715.X 2014-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/947,957 Continuation US20160187367A1 (en) 2014-12-31 2015-11-20 Method for Determining Remaining Service Time and Apparatus Thereof

Publications (1)

Publication Number Publication Date
WO2016107077A1 true WO2016107077A1 (zh) 2016-07-07

Family

ID=53212887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080805 WO2016107077A1 (zh) 2014-12-31 2015-06-04 空气净化器滤芯剩余使用时长的确定方法及装置

Country Status (8)

Country Link
EP (1) EP3040948B1 (zh)
JP (1) JP6388668B2 (zh)
KR (1) KR101771522B1 (zh)
CN (1) CN104633848B (zh)
BR (1) BR112015026558A2 (zh)
MX (1) MX2015012099A (zh)
RU (1) RU2621491C2 (zh)
WO (1) WO2016107077A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517917A (ja) * 2016-05-31 2019-06-27 ブルーエアー・エービー エアフィルターの利用能力を決定するための方法
CN114353264A (zh) * 2021-12-29 2022-04-15 深圳市晨北科技有限公司 滤网寿命监测方法、装置、设备及存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633848B (zh) * 2014-12-31 2017-02-22 小米科技有限责任公司 剩余使用时长的确定方法及装置
CN105528518B (zh) * 2015-12-03 2018-10-26 小米科技有限责任公司 净化设备的使用寿命确定方法及装置
CN107255338A (zh) * 2017-05-27 2017-10-17 青岛海尔空调器有限总公司 带有净化功能的空调器及其信息提示方法
US10760804B2 (en) 2017-11-21 2020-09-01 Emerson Climate Technologies, Inc. Humidifier control systems and methods
US11371726B2 (en) 2018-04-20 2022-06-28 Emerson Climate Technologies, Inc. Particulate-matter-size-based fan control system
US11226128B2 (en) 2018-04-20 2022-01-18 Emerson Climate Technologies, Inc. Indoor air quality and occupant monitoring systems and methods
US12018852B2 (en) 2018-04-20 2024-06-25 Copeland Comfort Control Lp HVAC filter usage analysis system
US11421901B2 (en) 2018-04-20 2022-08-23 Emerson Climate Technologies, Inc. Coordinated control of standalone and building indoor air quality devices and systems
WO2019204789A1 (en) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Indoor air quality sensor calibration systems and methods
US11486593B2 (en) 2018-04-20 2022-11-01 Emerson Climate Technologies, Inc. Systems and methods with variable mitigation thresholds
WO2019204790A1 (en) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Systems and methods with variable mitigation thresholds
KR102281159B1 (ko) * 2019-08-22 2021-07-23 호스트웨이아이디씨(주) 공기 청정기 제어 시스템
CN114383276B (zh) * 2022-01-18 2023-09-26 北京小米移动软件有限公司 确定剩余工作时长的方法、装置、空气处理设备及介质
CN114963472B (zh) * 2022-04-14 2023-06-27 青岛海信日立空调***有限公司 一种空气调节设备联动控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065204A1 (en) * 2002-10-01 2004-04-08 Deere & Company, A Delaware Corporation Monitoring arrangement for compartment air contamination
JP2004239449A (ja) * 2003-02-03 2004-08-26 Fujitsu General Ltd 空気調和機の制御方法
CN102095232A (zh) * 2009-12-14 2011-06-15 珠海格力电器股份有限公司 带过滤网清扫提示功能的空调机及其过滤网清扫提示方法
CN102938023A (zh) * 2012-11-15 2013-02-20 创天昱科技(深圳)有限公司 空气净化器中过滤网有效使用时间的积算方法及装置
CN104007790A (zh) * 2014-05-08 2014-08-27 北京化工大学 一种具有空气过滤及监测功能的电子计算机
CN104633848A (zh) * 2014-12-31 2015-05-20 小米科技有限责任公司 剩余使用时长的确定方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596114A (ja) * 1991-10-04 1993-04-20 Sharp Corp 空気清浄装置
JPH08257332A (ja) * 1995-03-24 1996-10-08 Mitsubishi Electric Corp 空気調和機
JPH08327102A (ja) * 1995-05-31 1996-12-13 Matsushita Seiko Co Ltd 換気扇
JP3695846B2 (ja) * 1996-06-13 2005-09-14 三洋電機株式会社 空気調和機のフィルタ目詰まり検出方法
JPH1174169A (ja) * 1997-08-29 1999-03-16 Dainippon Screen Mfg Co Ltd 雰囲気処理部の寿命判定装置を備える基板処理装置
US6036757A (en) * 1998-07-10 2000-03-14 Honeywell Inc. Portable room air purifier
US20030070544A1 (en) * 2001-10-15 2003-04-17 Hamilton Beach/Proctor-Silex, Inc. System and method for determining filter condition
JP4013121B2 (ja) * 2002-03-28 2007-11-28 三菱電機株式会社 環境浄化装置
JP2004279176A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd 吸着体の寿命推定方法およびこれを用いた脱臭装置
US8021469B2 (en) * 2005-07-14 2011-09-20 Access Business Group International Llc Control methods for an air treatment system
JP2009254942A (ja) * 2008-04-14 2009-11-05 Nitta Ind Corp ケミカルフィルタの寿命推定方法
JP5260381B2 (ja) * 2009-03-30 2013-08-14 メタウォーター株式会社 集塵用セラミックフィルタの寿命予測システム
WO2012066453A1 (en) * 2010-11-16 2012-05-24 Koninklijke Philips Electronics N.V. Control of air treatment device with filter
CN102494397A (zh) * 2011-11-16 2012-06-13 奇瑞汽车股份有限公司 能自动检测过滤效果的汽车空调进风滤清器及其检测方法
JP5076031B2 (ja) * 2012-01-23 2012-11-21 株式会社東芝 製品寿命分析装置及び製品寿命分析方法
CN103912964A (zh) * 2014-03-24 2014-07-09 中国科学院上海微***与信息技术研究所 一种空气净化装置智能测控***和方法
CN103994559B (zh) * 2014-05-16 2017-02-15 广东志高空调有限公司 一种具有自动检测并提示用户清洗过滤网功能的空调器及其提示方法
CN104048387A (zh) * 2014-07-08 2014-09-17 陈南 空气净化器的调节控制方法、装置、***及空气净化器
CN104180474B (zh) * 2014-07-30 2017-05-31 珠海格力电器股份有限公司 新风机过滤网使用时间控制的方法、装置及新风机***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065204A1 (en) * 2002-10-01 2004-04-08 Deere & Company, A Delaware Corporation Monitoring arrangement for compartment air contamination
JP2004239449A (ja) * 2003-02-03 2004-08-26 Fujitsu General Ltd 空気調和機の制御方法
CN102095232A (zh) * 2009-12-14 2011-06-15 珠海格力电器股份有限公司 带过滤网清扫提示功能的空调机及其过滤网清扫提示方法
CN102938023A (zh) * 2012-11-15 2013-02-20 创天昱科技(深圳)有限公司 空气净化器中过滤网有效使用时间的积算方法及装置
CN104007790A (zh) * 2014-05-08 2014-08-27 北京化工大学 一种具有空气过滤及监测功能的电子计算机
CN104633848A (zh) * 2014-12-31 2015-05-20 小米科技有限责任公司 剩余使用时长的确定方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517917A (ja) * 2016-05-31 2019-06-27 ブルーエアー・エービー エアフィルターの利用能力を決定するための方法
JP2021105508A (ja) * 2016-05-31 2021-07-26 ブルーエアー・エービー エアフィルターの利用能力を決定するための方法
EP3463617B1 (en) 2016-05-31 2021-09-01 Blueair AB Method for determining utilized capacity of an air filter
US11484824B2 (en) 2016-05-31 2022-11-01 Blueair Ab Method for determining utilized capacity of an air filter
CN114353264A (zh) * 2021-12-29 2022-04-15 深圳市晨北科技有限公司 滤网寿命监测方法、装置、设备及存储介质
CN114353264B (zh) * 2021-12-29 2023-09-22 深圳市晨北科技有限公司 滤网寿命监测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3040948B1 (en) 2020-12-09
JP6388668B2 (ja) 2018-09-12
RU2015138929A (ru) 2017-03-16
KR20160092483A (ko) 2016-08-04
KR101771522B1 (ko) 2017-08-25
CN104633848A (zh) 2015-05-20
RU2621491C2 (ru) 2017-06-06
CN104633848B (zh) 2017-02-22
EP3040948A1 (en) 2016-07-06
JP2017506579A (ja) 2017-03-09
BR112015026558A2 (pt) 2017-07-25
MX2015012099A (es) 2017-04-04

Similar Documents

Publication Publication Date Title
WO2016107077A1 (zh) 空气净化器滤芯剩余使用时长的确定方法及装置
US11391477B2 (en) Method and device for controlling self-cleaning of air conditioner
US9970966B2 (en) Method, device and computer storage medium for detecting power consumption of an application
CN109947812B (zh) 连续缺失值填充方法、数据分析装置、终端及存储介质
KR101835303B1 (ko) 컴퓨팅 장치들에 대한 시스템 성능 및 이벤트 데이터를 수집, 추적 및 저장하기 위한 시스템들 및 방법들
US9563182B2 (en) Building analysis systems and methods
US10613501B2 (en) Method and apparatus for providing equipment maintenance via a network
WO2016107076A1 (zh) 状态提醒方法及装置
CN106322643B (zh) 一种空气净化类设备的管理方法和装置
WO2014206270A1 (zh) 一种检测电池使用时长的方法、装置及设备
CN106304325B (zh) 一种定位方法、装置及定位终端
CN116864834A (zh) 电动设备及其电池电量管理方法和***
Hasan et al. AudioSense: Enabling real-time evaluation of hearing aid technology in-situ
CN202720746U (zh) 室内吸烟预警装置
US11360872B2 (en) Creating statistical analyses of data for transmission to servers
CN114138098A (zh) 功耗调节方法、装置、存储设备及可读存储介质
CN111258225B (zh) 环境分布建立方法、智能设备、清洁机器人及存储介质
CN106711933B (zh) 一种设备供电异常处理方法、装置及摄像机
FR3003666A1 (fr) Dispositif d'estimation de probabilite de presence dans une piece, procede et programme correspondants
TW201325192A (zh) 基於環境回復簡訊的電子裝置及方法
CN104949260B (zh) 空调器睡眠模式控制方法、装置及空调器
US20160187367A1 (en) Method for Determining Remaining Service Time and Apparatus Thereof
WO2016145854A1 (zh) Gps功能关闭方法、装置及终端
US9563178B2 (en) Methods for computing an alarm time and devices thereof
US20220100251A1 (en) Personal pollution sensing device with extended battery life

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157020395

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016567118

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/012099

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015138929

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874768

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026558

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015026558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151020

122 Ep: pct application non-entry in european phase

Ref document number: 15874768

Country of ref document: EP

Kind code of ref document: A1