WO2016101182A1 - Procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et machine d'apprentissage extrême - Google Patents

Procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et machine d'apprentissage extrême Download PDF

Info

Publication number
WO2016101182A1
WO2016101182A1 PCT/CN2014/094839 CN2014094839W WO2016101182A1 WO 2016101182 A1 WO2016101182 A1 WO 2016101182A1 CN 2014094839 W CN2014094839 W CN 2014094839W WO 2016101182 A1 WO2016101182 A1 WO 2016101182A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
interval
output
prediction
hidden layer
Prior art date
Application number
PCT/CN2014/094839
Other languages
English (en)
Chinese (zh)
Inventor
刘民
宁克锋
董明宇
吴澄
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2016101182A1 publication Critical patent/WO2016101182A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the invention belongs to the fields of automatic control, information technology and advanced manufacturing, and particularly relates to a Bayesian network and an extreme learning machine (ELM)-based interval type for a complex industrial production process in which it is difficult to establish a mechanism model and has a large amount of historical production data. Indicator forecasting method.
  • ELM extreme learning machine
  • Production index forecasting is one of the key technologies involved in the operation optimization and dynamic scheduling of production processes.
  • production data often contains various uncertainties, based on neural networks and support vectors.
  • the forecast value of the index given by the conventional predictive model and the actual measured value of the index often have large deviations, which affects the operation optimization and dynamic scheduling effect.
  • the use of interval-type index forecasting method is one of the effective ways to solve the above-mentioned index forecasting problem. .
  • the present invention is directed to a complex production process in which it is difficult to establish a mechanism model and has a large amount of historical production data, and proposes an interval type index prediction method based on Bayesian network and extreme learning machine (ELM).
  • ELM extreme learning machine
  • the invention aims at the uncertainty characteristics of complex production process, uses interval numbers to describe production indexes, utilizes actual operation data in complex production processes, uses asymmetric Gaussian distribution Bayesian and ELM methods to model interval indicators, and adopts The pair of mutually reciprocal weights are adaptively adjusted to obtain the upper boundary model and the lower boundary model as the forecast interval of the production index.
  • the above-mentioned interval type indicator forecasting method can predict the production index in the actual production process, and is used to guide the operation optimization and dynamic scheduling of the production process.
  • Step (1) Data acquisition and preprocessing
  • Data acquisition system is used to collect data from actual industrial production processes, and the above data is processed into Training data:
  • x i (x i,1 ,...,x i,n )
  • N is the number of training data samples
  • n is the dimension of the input variable
  • Step (2) Construct a double ELM model based on asymmetric Gaussian distribution Bayes
  • h(x) is the hidden layer node function of ELM
  • is the output layer weight
  • is the model error
  • the output of the ELM model can be assumed to be an asymmetric Gaussian distribution as follows:
  • b is the variance parameter of the asymmetric Gaussian distribution
  • w is the weight of the asymmetric Gaussian distribution
  • the likelihood function of the training data can be written as:
  • H 1 and t 1 are the hidden layer output matrix and the output vector of the sample set satisfying t ⁇ h ⁇ , respectively, and H 2 and t 2 are the hidden layer output matrix and the output vector of the sample set satisfying t ⁇ h ⁇ , respectively;
  • M is the number of hidden layer nodes, and a and ⁇ k are parameters of the Gaussian distribution;
  • Step (3) Initialization of a double ELM model based on asymmetric Gaussian distribution Bayesian
  • the number of selected input layer neural nodes is the same as the training sample dimension n, the number of output neural nodes is 1, and the number of hidden layer nodes of the single hidden layer limit learning machine is M;
  • the excitation function h(x,o l ,r l ) of the hidden layer node can adopt Gaussian function/Sigmoid function/sine function/triangle base function/Hard Limit function;
  • H 1,1 and t 1,1 are the hidden layer output matrix and output values corresponding to the training samples with ⁇ 0 , respectively
  • H 1,2 and t 1,2 are the hidden layers corresponding to the training samples with ⁇ >0 , respectively.
  • Step (5) Parameter learning of the Bayesian ELM model with weight w 2 :
  • H 2,1 and t 2,1 are the hidden layer output matrix and output values corresponding to the training samples of ⁇ 0, respectively, and H 2,2 and t 2,2 are the hidden layers corresponding to the training samples with ⁇ >0, respectively.
  • Step (6) Adaptive adjustment of weights (w 1 , w 2 )
  • Step (7) repeating step (4), step (5), and step (6) until CI err satisfies the stop condition;
  • Step (8) On the basis of the completion of the above-mentioned model parameter learning, the interval type index prediction is performed as follows, assuming that the input variable is x,
  • t 1 and t 2 are the lower bound and upper bound of the predicted value of the interval type indicator, respectively;
  • Figure 1 Block diagram of the algorithm for the interval-based indicator prediction method based on Bayesian network and extreme learning machine.
  • Fig. 2 is a graph showing the comparison between the model output and the actual output for the prediction of the molten steel temperature in the LF production process.
  • the abscissa is the sample number
  • the blue small dot on the ordinate is the actual molten steel temperature value
  • the green curve and the red curve are the predicted upper bound value and the predicted lower bound value of the prediction model, respectively.
  • Fig. 3 is a diagram showing the weight adaptive adjustment process and the corresponding prediction interval change diagram of the present invention for the prediction of the molten steel temperature in the LF production process.
  • the abscissa is the number of iterations of the model learning
  • the blue curve and the red curve in the ordinate are the adaptive adjustment processes of the weights of the upper bound model and the lower bound model respectively
  • the green curve is the corresponding predicted interval value in the adjustment process.
  • the first step refinery production data collection
  • Step 2 Conduct AB-TELM model training
  • the Bayesian ELM model of the weight w 1 in the AB-TELM model (hereinafter referred to as the upper bound model) and the Bayesian ELM model of the weight w 2 (hereinafter referred to as the lower bound model)
  • the parameter and the parameters in the weight adaptive algorithm are initialized; on the basis of the initialization, the upper bound model and the given w 1 and w 2 are given according to steps (4) and (5) in the specification respectively.
  • Parameter learning of the lower bound model using the method in the specification of the present invention, adaptively adjusting w 1 and w 2 according to step (6); repeating the parameter learning process of the upper bound model, the lower bound model, and the self of w 1 and w 2 Adapt to the adjustment process until the model converges.
  • the optimal hidden layer node's excitation function and hidden layer node number need to be determined by cross-validation method.
  • the third step using the AB-TELM model for interval index prediction
  • the data acquisition system is used to collect the actual industrial production data of the refining furnace site, and the data is processed into the input data required by the AB-TELM model according to the first step of processing the training data, and the test samples are obtained. 578, and then use the AB-TELM model parameters obtained in the second step to calculate the interval type index prediction value according to step (8).
  • Figure (2) is the prediction result of the model when the interval is 10 degrees.
  • the red curve represents the lower bound value of the temperature prediction
  • the green curve represents the upper bound value of the temperature prediction. It can be seen from Fig. 2 that in the prediction results of the AB-TELM model, the predicted values of the upper bound model are larger than the predicted values of the lower bound model, and most of the actual data are located in the prediction interval of the AB-TELM model, indicating The feasibility of the model.
  • Figure (3) is its corresponding weight adaptive adjustment process and its corresponding prediction interval change graph, in which the green curve is the change process of the prediction interval, and the blue curve is the adaptive adjustment process of the lower bound model weight w 1 , the red curve The adaptive adjustment process for the upper bound model weight w 2 . It can be seen from the diagram (3) that after setting the expected prediction interval to 10 degrees, the lower bound model weight w 1 and the upper bound model weight w 2 can be self-according to the error between the actual predicted interval value of the model and the expected prediction interval. Adapt to the adjustment, and after 10 steps of iteration, can achieve the desired prediction interval value.
  • Table 1 compares the simulation results of the proposed algorithm AB-TELM with the common ELM and the dual model based on the support vector machine (including the linear kernel TSVR-1 and the Gaussian kernel TSVR-g).
  • the performance index is the mean square error. (RMSE).
  • #Nodes is the number of hidden layer nodes of the ELM category model
  • C and ⁇ are the error penalty coefficients and insensitive coefficients of the TSVR category model. It can be seen from Table 1 that the test accuracy of AB-TELM is greatly improved compared with the ELM, TSVR-1, and TSVR-g models, indicating the effectiveness of the AB-TELM model proposed by the present invention.
  • the first step refinery production data collection
  • Step 2 Conduct AB-TELM model training
  • the Bayesian ELM model of the weight w 1 in the AB-TELM model (hereinafter referred to as the upper bound model) and the Bayesian ELM model of the weight w 2 (hereinafter referred to as the lower bound model)
  • the parameter and the parameters in the weight adaptive algorithm are initialized; on the basis of the initialization, the upper bound model and the given w 1 and w 2 are given according to steps (4) and (5) in the specification respectively.
  • Parameter learning of the lower bound model using the method in the specification of the present invention, adaptively adjusting w 1 and w 2 according to step (6); repeating the parameter learning process of the upper bound model, the lower bound model, and the self of w 1 and w 2 Adapt to the adjustment process until the model converges.
  • the optimal hidden layer node's excitation function and hidden layer node number need to be determined by cross-validation method.
  • the third step using the AB-TELM model for interval index prediction
  • the data acquisition system is used to collect the actual industrial production data of the CMP site, and the data is processed into the input data required by the AB-TELM model according to the first step of processing the training data, and the test sample is obtained. Then, using the AB-TELM model parameters obtained in the second step, the interval type index prediction value is calculated according to step (8).

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Feedback Control In General (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)

Abstract

L'invention concerne un procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et une machine d'apprentissage extrême, qui se rapportent aux domaines de la commande automatique, des technologies de l'information et de la fabrication avancée, et concernent, en particulier, l'apprentissage de paramètres d'un modèle ELM bayésien de distribution gaussienne asymétrique et le réglage adaptatif de poids asymétriques. Le procédé est caractérisé en ce qu'il comprend les étapes suivantes consistant : quant à la caractéristique de l'incertitude d'un processus de production complexe, à décrire des indicateurs de production par utilisation de nombres d'intervalles ; à utiliser une distribution gaussienne asymétrique comme distribution de sortie dans un modèle ELM, et à acquérir le modèle ELM bayésien ayant les poids ; et à apprendre des paramètres du modèle ELM bayésien sous une trame bayésienne d'expérience par utilisation de données d'exécution réelles dans le processus de production complexe ; sur la base, à apprendre une paire de poids réciproques par utilisation d'un procédé de réglage adaptatif ; et enfin, à acquérir une valeur de prévision des indicateurs de type d'intervalle. Au moyen du procédé de prévision d'indicateur de type d'intervalle, des indicateurs de production dans le processus de production pratique peuvent être prévus, et le procédé de prévision d'indicateur de type d'intervalle peut être utilisé pour guider une optimisation et une planification dynamique d'opération dans le processus de production.
PCT/CN2014/094839 2014-12-23 2014-12-24 Procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et machine d'apprentissage extrême WO2016101182A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410805036.7A CN104537033B (zh) 2014-12-23 2014-12-23 基于贝叶斯网络和极限学习机的区间型指标预报方法
CN201410805036.7 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016101182A1 true WO2016101182A1 (fr) 2016-06-30

Family

ID=52852561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094839 WO2016101182A1 (fr) 2014-12-23 2014-12-24 Procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et machine d'apprentissage extrême

Country Status (2)

Country Link
CN (1) CN104537033B (fr)
WO (1) WO2016101182A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764517A (zh) * 2018-04-08 2018-11-06 中南大学 一种高炉铁水硅含量变化趋势预测方法、设备和存储介质
CN110287124A (zh) * 2019-07-03 2019-09-27 大连海事大学 一种自动标记软件错误报告并进行严重性识别的方法
CN110362881A (zh) * 2019-06-25 2019-10-22 西安电子科技大学 基于极限学习机的微波功率器件非线性模型方法
CN110675587A (zh) * 2019-09-25 2020-01-10 深圳市中电数通智慧安全科技股份有限公司 火灾预警方法、装置、终端及可读存储介质
CN111027202A (zh) * 2019-12-04 2020-04-17 北京软通智城科技有限公司 一种数字城市的预测方法、装置、设备及存储介质
CN111707895A (zh) * 2020-06-22 2020-09-25 合肥博雷电气有限公司 一种基于机器学习的电磁环境复杂度评估方法及***
CN111832840A (zh) * 2020-07-27 2020-10-27 南方电网科学研究院有限责任公司 基于可微成本函数的超短期风电功率区间预测方法、装置
CN112232672A (zh) * 2020-10-16 2021-01-15 北京中船信息科技有限公司 一种工业机理模型的管理***及方法
CN112257942A (zh) * 2020-10-29 2021-01-22 中国特种设备检测研究院 一种应力腐蚀开裂预测方法及***
CN112862166A (zh) * 2021-01-27 2021-05-28 兰州理工大学 一种基于信号分解的风电功率区间预测组合方法
CN113283614A (zh) * 2021-04-29 2021-08-20 东北财经大学 基于OcE的PM2.5浓度预测方法
CN113344270A (zh) * 2021-06-03 2021-09-03 上海交通大学 基于集成式极限学习机的风资源预测方法及***
CN113866204A (zh) * 2021-09-27 2021-12-31 电子科技大学 一种基于贝叶斯正则化的土壤重金属定量分析方法
CN114065572A (zh) * 2021-10-27 2022-02-18 西北工业大学 一种厚度偏差与叶片厚度分布相关的叶片模型构建方法
CN114580758A (zh) * 2022-03-09 2022-06-03 苗韧 一种多城市自动能源负荷预测方法及***
CN114626304A (zh) * 2022-03-21 2022-06-14 齐鲁工业大学 一种矿浆铜品位在线预测软测量建模方法
CN114638555A (zh) * 2022-05-18 2022-06-17 国网江西综合能源服务有限公司 基于多层正则化极限学习机的用电行为检测方法及***
CN114688981A (zh) * 2022-03-15 2022-07-01 中南大学 一种复合钢筋覆层厚度识别及厚度均匀性评价方法、设备及介质
CN116256592A (zh) * 2022-11-28 2023-06-13 国网山东省电力公司德州供电公司 一种中压配电电缆潜伏性故障检测方法及***
CN117933316A (zh) * 2024-03-25 2024-04-26 南京大学 一种基于可解释贝叶斯卷积网络的地下水位概率预报方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107066659A (zh) * 2016-12-27 2017-08-18 长春工业大学 一种利用极限学习机预测水泥分解炉温度的方法
CN107274016A (zh) * 2017-06-13 2017-10-20 辽宁大学 随机蛙跳算法优化对称极限学习机的带钢出口厚度预测方法
CN107911346B (zh) * 2017-10-31 2020-12-29 兵棋思学(天津)教育科技有限公司 一种基于极限学习机的入侵检测方法
CN108520320A (zh) * 2018-03-30 2018-09-11 华中科技大学 一种基于多重长短期记忆网络和经验贝叶斯的设备寿命预测方法
CN108597603B (zh) * 2018-05-04 2021-04-20 吉林大学 基于多维高斯分布贝叶斯分类的癌症复发预测***
US11150633B2 (en) * 2018-05-14 2021-10-19 Purdue Research Foundation System and method for automated geometric shape deviation modeling for additive manufacturing
EP3801981B1 (fr) * 2018-06-01 2022-08-24 Basf Se Procédé de détermination de la géométrie d'une ébauche, laquelle est moulé lors d'un procédé de meulage par érosion hydraulique en une pièce préfabriquée

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956023A (zh) * 2012-08-30 2013-03-06 南京信息工程大学 一种基于贝叶斯分类的传统气象数据与感知数据融合的方法
CN103472721A (zh) * 2013-09-22 2013-12-25 浙江大学 自适应机器学习的农药废液焚烧炉炉温最佳化***及方法
CN103559540A (zh) * 2013-11-13 2014-02-05 上海电气集团股份有限公司 基于自适应神经模糊推理***的风速超短期在线预测方法
CN103745273A (zh) * 2014-01-06 2014-04-23 北京化工大学 一种半导体制造过程的多性能预测方法
CN103778466A (zh) * 2013-12-30 2014-05-07 浙江中控研究院有限公司 一种基于矢量误差的转炉炼钢温度建模预测方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007113A1 (fr) * 1998-07-31 2000-02-10 Cet Technologies Pte Ltd. Systeme automatique de detection d'incidents sur autoroute utilisant des reseaux neuronaux artificiels et des algorithmes genetiques
US7610560B2 (en) * 2004-11-16 2009-10-27 Microsoft Corporation Methods for automated and semiautomated composition of visual sequences, flows, and flyovers based on content and context
US7475047B1 (en) * 2005-03-16 2009-01-06 Sun Microsystems, Inc. Parallel grouping decomposition for fast training of large-scale support vector machines
US7707129B2 (en) * 2006-03-20 2010-04-27 Microsoft Corporation Text classification by weighted proximal support vector machine based on positive and negative sample sizes and weights
CN102354158A (zh) * 2011-10-24 2012-02-15 天津职业技术师范大学 一种基于贝叶斯网络在机测量动态误差分离装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956023A (zh) * 2012-08-30 2013-03-06 南京信息工程大学 一种基于贝叶斯分类的传统气象数据与感知数据融合的方法
CN103472721A (zh) * 2013-09-22 2013-12-25 浙江大学 自适应机器学习的农药废液焚烧炉炉温最佳化***及方法
CN103559540A (zh) * 2013-11-13 2014-02-05 上海电气集团股份有限公司 基于自适应神经模糊推理***的风速超短期在线预测方法
CN103778466A (zh) * 2013-12-30 2014-05-07 浙江中控研究院有限公司 一种基于矢量误差的转炉炼钢温度建模预测方法及***
CN103745273A (zh) * 2014-01-06 2014-04-23 北京化工大学 一种半导体制造过程的多性能预测方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764517A (zh) * 2018-04-08 2018-11-06 中南大学 一种高炉铁水硅含量变化趋势预测方法、设备和存储介质
CN108764517B (zh) * 2018-04-08 2020-12-04 中南大学 一种高炉铁水硅含量变化趋势预测方法、设备和存储介质
CN110362881A (zh) * 2019-06-25 2019-10-22 西安电子科技大学 基于极限学习机的微波功率器件非线性模型方法
CN110287124A (zh) * 2019-07-03 2019-09-27 大连海事大学 一种自动标记软件错误报告并进行严重性识别的方法
CN110675587A (zh) * 2019-09-25 2020-01-10 深圳市中电数通智慧安全科技股份有限公司 火灾预警方法、装置、终端及可读存储介质
CN111027202B (zh) * 2019-12-04 2023-12-15 北京软通绿城科技有限公司 一种数字城市的预测方法、装置、设备及存储介质
CN111027202A (zh) * 2019-12-04 2020-04-17 北京软通智城科技有限公司 一种数字城市的预测方法、装置、设备及存储介质
CN111707895A (zh) * 2020-06-22 2020-09-25 合肥博雷电气有限公司 一种基于机器学习的电磁环境复杂度评估方法及***
CN111832840A (zh) * 2020-07-27 2020-10-27 南方电网科学研究院有限责任公司 基于可微成本函数的超短期风电功率区间预测方法、装置
CN111832840B (zh) * 2020-07-27 2024-03-12 南方电网科学研究院有限责任公司 基于可微成本函数的超短期风电功率区间预测方法、装置
CN112232672B (zh) * 2020-10-16 2024-01-12 北京中船信息科技有限公司 一种工业机理模型的管理***及方法
CN112232672A (zh) * 2020-10-16 2021-01-15 北京中船信息科技有限公司 一种工业机理模型的管理***及方法
CN112257942A (zh) * 2020-10-29 2021-01-22 中国特种设备检测研究院 一种应力腐蚀开裂预测方法及***
CN112257942B (zh) * 2020-10-29 2023-11-14 中国特种设备检测研究院 一种应力腐蚀开裂预测方法及***
CN112862166A (zh) * 2021-01-27 2021-05-28 兰州理工大学 一种基于信号分解的风电功率区间预测组合方法
CN113283614B (zh) * 2021-04-29 2023-09-12 东北财经大学 基于OcE的PM2.5浓度预测方法
CN113283614A (zh) * 2021-04-29 2021-08-20 东北财经大学 基于OcE的PM2.5浓度预测方法
CN113344270A (zh) * 2021-06-03 2021-09-03 上海交通大学 基于集成式极限学习机的风资源预测方法及***
CN113866204A (zh) * 2021-09-27 2021-12-31 电子科技大学 一种基于贝叶斯正则化的土壤重金属定量分析方法
CN114065572A (zh) * 2021-10-27 2022-02-18 西北工业大学 一种厚度偏差与叶片厚度分布相关的叶片模型构建方法
CN114580758B (zh) * 2022-03-09 2023-07-18 苗韧 一种多城市自动能源负荷预测方法及***
CN114580758A (zh) * 2022-03-09 2022-06-03 苗韧 一种多城市自动能源负荷预测方法及***
CN114688981A (zh) * 2022-03-15 2022-07-01 中南大学 一种复合钢筋覆层厚度识别及厚度均匀性评价方法、设备及介质
CN114626304B (zh) * 2022-03-21 2024-02-27 齐鲁工业大学 一种矿浆铜品位在线预测软测量建模方法
CN114626304A (zh) * 2022-03-21 2022-06-14 齐鲁工业大学 一种矿浆铜品位在线预测软测量建模方法
CN114638555A (zh) * 2022-05-18 2022-06-17 国网江西综合能源服务有限公司 基于多层正则化极限学习机的用电行为检测方法及***
CN116256592A (zh) * 2022-11-28 2023-06-13 国网山东省电力公司德州供电公司 一种中压配电电缆潜伏性故障检测方法及***
CN116256592B (zh) * 2022-11-28 2023-09-26 国网山东省电力公司德州供电公司 一种中压配电电缆潜伏性故障检测方法及***
CN117933316A (zh) * 2024-03-25 2024-04-26 南京大学 一种基于可解释贝叶斯卷积网络的地下水位概率预报方法
CN117933316B (zh) * 2024-03-25 2024-05-31 南京大学 一种基于可解释贝叶斯卷积网络的地下水位概率预报方法

Also Published As

Publication number Publication date
CN104537033A (zh) 2015-04-22
CN104537033B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2016101182A1 (fr) Procédé de prévision d'indicateur de type d'intervalle basé sur un réseau bayésien et machine d'apprentissage extrême
CN103730006B (zh) 一种短时交通流量的组合预测方法
CN106874581B (zh) 一种基于bp神经网络模型的建筑空调能耗预测方法
CN108817103B (zh) 一种轧钢模型钢族层别分类优化方法
WO2023130666A1 (fr) Procédé de prédiction de convexité de plaque de feuillard d'acier basé sur la fusion d'un pilotage de données et d'un modèle de mécanisme
KR101440304B1 (ko) 예측 모델을 생성하기 위해 샘플들을 선별하는 방법 및 이의 컴퓨터 프로그램 프로덕트
CN103745273B (zh) 一种半导体制造过程的多性能预测方法
CN108311544B (zh) 一种轧制力参数自学习方法及装置
CN104699894A (zh) 基于实时学习的高斯过程回归多模型融合建模方法
CN113191080B (zh) 基于hmpso算法的加热炉钢坯温度场预报模型优化方法
CN103878186A (zh) 一种确定热轧带钢层流冷却温度的方法
CN101807046B (zh) 一种基于结构可调极限学习机的在线建模方法
JP5962290B2 (ja) 鋼材の熱伝達係数予測装置及び冷却制御方法
Pian et al. A hybrid soft sensor for measuring hot-rolled strip temperature in the laminar cooling process
Matias et al. Using a neural network for estimating plant gradients in real-time optimization with modifier adaptation
CN108628288A (zh) 一种用于一阶时滞组合积分控制***的性能评价方法
CN112113146A (zh) 供水管网管道粗糙系数和节点需水量同步自适应校核方法
CN104008433A (zh) 基于贝叶斯动态模型的中长期电力负荷预测方法
Xie et al. Prediction of coiling temperature on run-out table of hot strip mill using data mining
CN107030121B (zh) 一种连铸坯感应加热快速自适应温控方法
CN106292289B (zh) 流程工业控制回路对象的混合精英随机搜索优化方法
CN105921522B (zh) 基于rbf神经网络的层流冷却温度自适应控制方法
CN108009859A (zh) 农产品价格波动预警方法及设备
CN105032951B (zh) 一种提高超快冷温度模型精度和自学习效率的控制方法
CN104537167B (zh) 基于鲁棒区间极限学习机的区间型指标预报方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908750

Country of ref document: EP

Kind code of ref document: A1