WO2016098389A1 - 貼付位置検査装置 - Google Patents

貼付位置検査装置 Download PDF

Info

Publication number
WO2016098389A1
WO2016098389A1 PCT/JP2015/073566 JP2015073566W WO2016098389A1 WO 2016098389 A1 WO2016098389 A1 WO 2016098389A1 JP 2015073566 W JP2015073566 W JP 2015073566W WO 2016098389 A1 WO2016098389 A1 WO 2016098389A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
substrate
bonded
optical measurement
hole
Prior art date
Application number
PCT/JP2015/073566
Other languages
English (en)
French (fr)
Inventor
智 小塩
隼 三島
渉史 川合
誠剛 臼井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016098389A1 publication Critical patent/WO2016098389A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a pasting position inspection apparatus.
  • Image display devices such as a liquid crystal display (LCD), a plasma display (PDP), and an electroluminescence display (ELD) are attracting attention for their excellent performance. For this reason, a display panel manufacturing technique, which is one of the essential components for an image display apparatus, has attracted more and more attention.
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • an optical film for example, a polarizing film
  • an optical element for example, a liquid crystal cell
  • Patent Document 1 proposes an apparatus that can realize such an inspection function.
  • the display panel inspection apparatus in Patent Document 1 includes a light transmission unit 14 on which the display panel 40 is placed and glass substrates 41 and 42 of the display panel 40 on which the display panel 40 is placed.
  • the positioning part 15 for positioning two sides and the distance from the peripheral edge of the glass substrates 41 and 42 brought into contact with the positioning part 15 to the peripheral edge of the polarizing plates 44 and 45 attached to the glass substrates 41 and 42 are measured.
  • An inspection table 11 having a distance measuring member 16 is provided. At the time of measurement, as shown in FIG.
  • Patent Document 1 since the display panel inspection apparatus described in Patent Document 1 measures the sticking position of the polarizing plate by mechanically pressing the measuring rod from the side, it can measure only three corners in contact with the side frame. The accuracy may deviate from the target accuracy.
  • the present invention has been made in view of such a situation, and the inspection accuracy of the pasting position on the substrate of the rectangular bonded material bonded so that the four sides are parallel to the four sides of the rectangular substrate, respectively.
  • An object of the present invention is to provide a sticking position inspection apparatus capable of improving the quality.
  • the present invention provides a bonding position on a substrate of a rectangular bonded material bonded so that the four sides are parallel to the four sides of the rectangular substrate.
  • a pasting position inspection apparatus for inspecting a substrate an inspection table on which a mounting area for mounting a substrate on which the bonded material is bonded is formed, and four corners of the substrate and the bonded material are attached to the inspection table.
  • Four optical measurement units that optically measure the distance between the edge of the bonded object and the edge of the substrate parallel to the edge of the bonded object at the four corners,
  • a sticking position inspection apparatus that is connected to four optical measurement units and includes a measurement result display unit that displays distances measured by the four optical measurement units as measurement results.
  • the four optical measurement units allow the edges of the bonded product (for example, a polarizing film) and the edges of the substrate (for example, a glass substrate) to be parallel to the edges of the bonded material at the four corners. Since the distance between each can be optically measured, the inspection accuracy of the pasting position on the substrate of the rectangular bonded product bonded so that the four sides are parallel to the four sides of the rectangular substrate can be improved. It is possible to provide a sticking position inspection device that can be improved.
  • the inspection table is attached to the front surface in the front-rear direction so as to be openable and closable, and further provided with a cover that opens the placement area when opened and shields the placement area when closed.
  • the mounting area on the inspection table four inspection holes penetrating in the front-rear direction are formed so that the four corners of the substrate and the bonded object are respectively located within the range of the four inspection holes, and four optical measurements are made.
  • Each of the units is attached to the rear surface in the front-rear direction of the inspection table, and is configured to face each of the four inspection holes.
  • the optical measurement unit By installing the optical measurement unit on the rear surface of the inspection table, it is possible to prevent interference with the optical measurement unit when the substrate to which the bonded object is attached is placed on or taken out of the inspection table. Then, by installing a cover that can be opened and closed on the front surface of the inspection table, the cover can be closed during the inspection process, and the measurement of the attachment position of the bonded object by the optical measurement unit can be made more accurate.
  • each of the four optical measurement units is disposed so as to face one of the four inspection holes, and the inspection hole of the substrate and the bonded object is interposed through the inspection hole.
  • a light source is provided so as to irradiate light on a portion within the range, and when the light source emits light, an imaging unit that images the substrate and the bonded object with light reflected by the substrate and the bonded object, and the imaging unit The distance between the edge of the bonded object and the edge of the substrate parallel to the edge is calculated from the image captured by the imaging means connected to the measurement result display unit, and the distance is displayed as the measurement result.
  • Image processing means for transmitting to the unit.
  • the image of the substrate and the bonded object can be imaged by the light from the light source using the imaging means, and the distance between the edge of the bonded object and the edge of the substrate is accurately measured. Will be able to.
  • the imaging means is installed on the side facing the inspection hole across the light source.
  • one of the four inspection holes is a circular hole
  • the other two inspection holes adjacent to the circular hole are perpendicular to each other in the longitudinal direction and the extension line is the circular hole.
  • the inspection hole located diagonally to the circular hole is formed obliquely with respect to the other two inspection holes, and the extension line is a long hole passing through the circular hole.
  • a rail mechanism is provided in the vicinity of each inspection hole that becomes a hole, and the optical measurement unit that faces the inspection hole that is a long hole slides in a corresponding rail mechanism so that it can move along the longitudinal direction of the corresponding inspection hole. Configure to be able to be attached.
  • the optical measurement unit can be moved to an appropriate position according to the size of the substrate and the bonded object, various substrates having different sizes can be measured by the same application position inspection apparatus. Become.
  • the inspection table includes a rail mechanism in the vicinity of the inspection hole that becomes a circular hole, and the optical measurement unit that faces the inspection hole that becomes the circular hole moves within the range of the circular hole. It is slidably attached to the rail mechanism so that it can.
  • the optical measurement unit in the vicinity of the circular hole can be moved to the optimum measurement position according to the attachment position of the bonded object on the substrate.
  • the inspection table further includes a drive unit that is installed corresponding to each rail mechanism and that drives the corresponding optical measurement unit so as to move along the rail mechanism.
  • a control unit that controls the drive unit to move to a position is further provided.
  • the optical measurement unit can be automatically moved to a position according to the substrate size by the drive unit, so that the inspection efficiency can be improved.
  • the cover is attached to the examination table via a hinge so as to be openable and closable.
  • one of the inspection table and the cover is provided with a slide rail, the other is provided with a slider, and the cover is attached so that the slider can slide relative to the slide rail. It is configured to be openable and closable with respect to the examination table.
  • an attachment frame is installed on the front surface of the inspection table so as to face the inspection table and to be spaced from the front surface of the inspection table by a predetermined distance. It can be attached to the inspection table via the mounting frame.
  • FIG. 1A is a front view showing a sticking position inspection apparatus according to an embodiment of the present invention, and shows a state where a cover is opened.
  • FIG. 1B is a front view showing the sticking position inspection apparatus in the embodiment of the present invention, and shows a state in which the cover is closed.
  • FIG. 2 is a front view showing the sticking position inspection apparatus in a state where the substrate is placed.
  • FIG. 3 is a side view showing the sticking position inspection apparatus in the embodiment of the present invention.
  • FIG. 4 is an explanatory view of the inspection table of the sticking position inspection device as viewed from the rear side.
  • FIG. 5 is an explanatory view showing the structure of the optical measurement unit of the sticking position inspection apparatus.
  • FIG. 1A is a front view showing a sticking position inspection apparatus according to an embodiment of the present invention, and shows a state where a cover is opened.
  • FIG. 1B is a front view showing the sticking position inspection apparatus in the embodiment of the present invention, and shows a state in which the cover is closed
  • FIG. 6 is an explanatory view showing an image of a substrate on which a bonded object imaged by annular illumination is attached.
  • FIG. 7A is a flowchart showing the operation of the sticking position inspection apparatus in the embodiment of the present invention.
  • FIG. 7B is a flowchart showing the operation of the sticking position inspection apparatus in the embodiment of the present invention.
  • FIG. 8A is an explanatory view showing a conventional display panel inspection apparatus.
  • FIG. 8B is an explanatory view showing a conventional display panel inspection apparatus.
  • the inspection target is a structure in which a rectangular bonded object F is bonded to the substrate C so that the four sides are parallel to the four sides of the rectangular substrate C.
  • FIG. 1A and 1B are front views showing a sticking position inspection apparatus according to an embodiment of the present invention.
  • FIG. 1A shows a state where the cover 7 is opened
  • FIG. 1B shows a state where the cover 7 is closed.
  • FIG. 2 is a front view showing the sticking position inspection apparatus in a state where the substrate C is placed.
  • FIG. 3 is a side view showing the sticking position inspection apparatus.
  • FIG. 4 is an explanatory view of the inspection table 6 viewed from the rear side.
  • the sticking position inspection apparatus is attached to the front surface of the inspection table 6 mainly through a support frame 5, an inspection table 6 supported by the support frame 5, and a hinge 9.
  • the support frame 5 is for supporting each other member, and extends downward from the base, the support leg in contact with the ground, and extends upward from the back surface of the base to a predetermined height. And a support plate.
  • the inspection table 6 includes a plate-shaped inspection table main body, a long positioning plate 60 installed on the front surface of the inspection table main body so that the longitudinal direction is in the horizontal direction, and the longitudinal direction is the longitudinal direction of the positioning plate 60.
  • a long positioning plate 61 installed on the front surface of the inspection table main body along the direction perpendicular to the direction, and four inspection holes 62, 63, 64 formed in the inspection table main body and penetrating in the front-rear direction.
  • 65 four sets of linear guides 66, 67, 68, 69 (69-1, 69-2) installed on the rear surface of the inspection table main body, and four sets of adjustment motors 66 installed on the rear surface of the inspection table main body.
  • the inspection table main body places both the positioning plates 60 and 61 together with the substrate C on which the bonded material F is pasted, and divides a placement area for positioning.
  • the plate-shaped inspection table main body is used to place the substrate C on which the bonded object F is attached, and as a whole between the front portion of the base of the support frame 5 and the upper portion of the rear support plate in a tilted posture.
  • Each of the long positioning plates 60 and 61 is in surface contact with two adjacent sides of the substrate C, and positions the substrate C on which the bonded material F is adhered to the inspection table main body. To do.
  • one inspection hole 62 (the inspection hole on the lower right in FIG. 1A) is a circular hole, and is an extension of both positioning plates 60, 61 of the inspection table body.
  • the other inspection holes 63 and 64 (inspection holes on the lower left and upper right in FIG. 1A) that are formed in a portion near the crossing position and are adjacent to the circular hole are perpendicular to each other in the longitudinal direction.
  • the extension line is a long hole that passes through the circular hole 62, and the inspection hole 65 (the upper left inspection hole in FIG. 1A) at a position diagonal to the circular hole is relative to the other inspection holes 63 and 64.
  • the elongated line is an elongated hole that is formed obliquely and passes through the circular hole.
  • four sets of linear guides 66, 67, 68, 69 are installed in the vicinity of the four inspection holes 62, 63, 64, 65 on the rear surface of the inspection table main body, respectively, and four optical measurements described later.
  • Each of the units 8 is attached to four sets of linear guides 66, 67, 68, 69 so as to be movable along the longitudinal direction of each of the inspection holes 62, 63, 64, 65.
  • ′, 67 ′, 68 ′, and 69 ′ are installed on the rear surface of the inspection table main body in correspondence with the four linear guides 66, 67, 68, and 69, respectively. , 63, 64, 65 to move along the longitudinal direction.
  • the slide rail of the linear guide 66 corresponding to the inspection hole 62 that is a circular hole is installed along the horizontal direction below the inspection hole 62, and one end of the slide rail serves as an output shaft of the adjustment motor 66 ′. It is connected. Further, the slider of the linear guide 66 is slidably provided on the slide rail, and one optical measurement unit 8 is attached to the slider of the linear guide 66.
  • the imaging range thereof faces the inspection hole 62, and the inspection hole. It is in the range of 62.
  • the slide rail of the linear guide 67 corresponding to the inspection hole 63 which is a long hole is installed horizontally below the inspection hole 63, and one end thereof is connected to the output shaft of the adjustment motor 67 '. Further, the slider of the linear guide 67 is slidably provided on the slide rail, and another optical measurement unit 8 is attached to the slider of the linear guide 67, and its imaging range is opposed to the inspection hole 63. It is within the formation range of the inspection hole 63.
  • the slide rail of the linear guide 68 corresponding to the inspection hole 64 which is a long hole is installed on one of the left and right sides of the inspection hole 64 so that the longitudinal direction thereof is parallel to the longitudinal direction of the inspection hole 64, and one end of the slide rail. It is connected to the output shaft of the adjustment motor 68 '. Further, the slider of the linear guide 68 is slidably provided on the slide rail, and another optical measurement unit 8 is attached to the slider of the linear guide 68, and the imaging range thereof faces the inspection hole 64. In the range where the inspection hole 64 is formed.
  • the linear guide 69 corresponding to the inspection hole 65 which is a long hole, includes a first linear guide portion 69-1 and a second linear guide portion 69-2.
  • the slide rail of the first linear guide portion 69-1 is installed horizontally above the inspection hole 65, and one end of the slide rail is connected to the output shaft of one of the adjustment motors 69-1 '. ing.
  • the slider of the first linear guide portion 69-1 is slidably provided on this slide rail.
  • one end of the slide rail of the second linear guide portion 69-2 is attached to the slider of the first linear guide portion 69-1, and the other end is the other adjustment motor 69-2 'of the adjustment motor 69'. Connected to the output shaft.
  • the slide rail of the second linear guide portion 69-2 is configured such that its longitudinal direction is perpendicular to the horizontal direction and parallel to the rear surface of the inspection table main body, and the second linear guide portion 69-2.
  • the slider is slidably provided on the slide rail of the second linear guide portion 69-2.
  • the optical measurement unit 8 is attached to the slider of the second linear guide portion 69-2, and its imaging range is opposite to the inspection hole 65 and is within the range of the inspection hole 65.
  • Adjustment motors 66 ', 67', 68 ', 69' (69-1 ', 69-2') are servo motors and are connected to a control unit (not shown).
  • the adjustment motors 66 ', 67', 68 'and 69' are controlled by the control unit based on the parameters input by the operator, thereby controlling the linear guides so that the optical measuring units 8 are moved to desired positions. Actuate to move to.
  • the cover 7 is attached to the front face through a hinge 9 so as to be openable and closable when viewed in the front-rear direction of the inspection table 6. As shown in FIG. 1A, when the cover 7 is opened, the placement area of the inspection table 6 is opened. And as shown to FIG. 1B, when the cover 7 is closed, the mounting area
  • the four optical measurement units 8 are respectively installed on the rear surface when viewed in the front-rear direction of the inspection table 6 and are configured to face the corresponding inspection holes as described above.
  • the four corners of the substrate C and the bonded material F are within the range of the four inspection holes 62, 63, 64, and 65, respectively.
  • the four optical measuring units 8 are respectively opposed to the four corners of the substrate C and the bonded product F, and at the four corners, the edge of the bonded product F and the bonded product F through inspection holes. The distance between the edge of the substrate C and the edge of the substrate C is measured optically (see FIG. 6).
  • FIG. 5 is an explanatory view showing the structure of the optical measurement unit 8 of the sticking position inspection apparatus.
  • each of the four optical measurement units 8 includes a mounting bracket 80, an annular light source 81, a CCD camera 82, and an image processing means 83.
  • the mounting bracket 80 is fixed to the slider of the corresponding linear guide (see reference numerals 66, 67, 68, and 69 (69-1 and 69-2)). Can move.
  • An annular light source 81 is attached to the mounting bracket 80, and its light emitting surface faces a corresponding inspection hole (see reference numerals 62, 63, 64, 65) in the inspection table main body, and the substrate C and Light is irradiated to a portion of the bonded product F in the range where the inspection hole is formed.
  • the CCD camera 82 is attached to the mounting bracket 80 via a holder, and is installed on the opposite side of the corresponding inspection hole with the annular light source 81 interposed therebetween.
  • the lens that is the imaging end of the camera 82 faces the substrate C and the bonded object F through the center hole of the annular light source 81 and the corresponding inspection hole.
  • the CCD camera 82 uses the light emitted from the annular light source 81 and reflected by the substrate C and the bonded product F in the direction of the lens to image the substrate C and the bonded product F. An image signal is generated, and the image signal is transmitted to the image processing means 83.
  • the image processing means 83 is connected to the CCD camera 82, the control unit, the display unit RD, and the like, and uses the image signal from the CCD camera 82 and the edge of the bonded material F and the bonded material F.
  • the distance between the edges of the substrate C parallel to the edges is calculated, and the calculated results are transmitted to the display unit RD.
  • the operation panel SD includes an operation button for the operator to turn on and off the sticking position inspection device, and a touch-type panel for the operator to input various parameters.
  • the display unit RD is connected to the image processing unit 83, the operation panel SD, and the like, and displays an image from the image processing unit 83, a measurement result, and parameters input by the operator from the operation panel SD.
  • the control unit includes adjustment motors 66 ', 67', 68 ', 69' (69-1 ', 69-2'), annular light source 81, CCD camera 82, image processing means 83, operation panel SD, display unit RD. 1) the operation of receiving and storing parameters input by the operator using the operation panel SD, and 2) the adjustment motors 66 ′ according to the input parameters of 1) above, 67 ', 68', 69 '(69-1', 69-2 '), 3) receiving and storing information from the image processing means 83, 4) pre-stored The operation of controlling the operation of the annular light source 81, the CCD camera 82 and the image processing means 83 based on the control program, and 5) the display unit RD so as to display the various parameters 1) and 3) and other information. To control work and To do.
  • FIG. 6 is an explanatory view showing an image of a substrate on which a bonded object is imaged by annular illumination.
  • 7A and 7B are flowcharts showing the operation of the sticking position inspection apparatus in the embodiment of the present invention.
  • step S10 After the operator turns on the sticking position inspection device with the operation panel SD in step S10, the process proceeds to step S11. In step S ⁇ b> 11, the operator sets the substrate C on which the bonded material F is attached to the placement area on the inspection table 6.
  • the CCD camera 82 is switched to the operating state by the control of the control unit, images the substrate C and the bonded material F set in the placement area, and displays the captured image on the display unit RD.
  • step S12 the operator inputs the target value to which the optical measurement unit 8 moves by operating the panel SD while viewing the image displayed on the display unit RD, and the substrate C and the bonded object.
  • the position of each optical measurement unit 8 is adjusted so that the edge of F falls within the imaging range.
  • step S13 the edge of the bonding thing F parallel to the edge of the board
  • substrate C Determine whether the distance between can be measured. If it is determined in step S13 that measurement cannot be performed, the process returns to step S12.
  • step S13 determines whether the measurement can be performed. If it is determined in step S13 that the measurement can be performed, the process proceeds to step S14, where the control unit generates a recipe D1 that matches the size of the substrate C, and this recipe D1 and each optical corresponding to the recipe D1.
  • the respective positions of the measuring unit 8 are stored correspondingly.
  • step S15 finish the recipe creation.
  • step S14 the process returns to step S11 to set a substrate C of another size on which the bonded material F is pasted in the placement area on the inspection table 6, and repeat steps S12 to S14. , Dn and the position of each optical measurement unit 8 corresponding to the recipe D2, D3,.
  • step S21 the operator positions the substrate C on which the bonded material F is attached to the placement area on the inspection table 6.
  • step S22 the operator determines whether or not a recipe Di matching the size of the substrate C to be measured is stored in the pasting position inspection apparatus.
  • step S22 If it is determined in step S22 that the recipe Di matched to the size of the substrate C measured is not stored in the sticking position inspection apparatus, the process proceeds to step S23 ′ and returns to the “recipe creation flow”. Recipe Di is created by performing the operation of step S15.
  • step S22 if it is determined in step S22 that the recipe Di matching the size of the substrate C measured in step S22 is stored in the pasting position inspection apparatus, in step S23, the operator displays the response displayed on the operation panel SD. This recipe is selected by touching the recipe Di to be performed, and the process proceeds to step S24.
  • step S24 the control unit reads the target position data of each optical measurement unit 8 in accordance with the recipe Di. And after the process of step S24 is completed, it progresses to step S25.
  • step S25 the control unit transmits a drive instruction to each adjustment motor 66 ', 67', 68 ', 69' based on the control program in accordance with the read target position data of each optical measurement unit 8, and each adjustment is performed.
  • Each optical measurement unit 8 is adjusted to the target position by rotating the motors 66 ', 67', 68 ', 69' by a predetermined amount.
  • step S26 the control unit issues an instruction to the annular light source 81 and the CCD camera 82 of each optical measurement unit 8 to cause the annular light source 81 to emit light and control the CCD camera 82 to perform an imaging operation.
  • step S27 the control unit transmits the image captured by the CCD camera 82 to the image processing unit 83, and the image processing unit 83 performs the CCD processing in the width direction and the vertical direction of the substrate C as shown in FIG. Control is performed so as to calculate a distance L1 and a distance L2 between the edge of the substrate C and the edge of the bonded object F parallel to the edge of the substrate C from the image data from the camera 82. And after the process of step S27 is completed, it progresses to step S28.
  • step S28 the control unit stores the calculation results (distances L1, L2) of the image processing means 83 and controls the calculation results of the image processing means 83 to be transmitted to the display unit RD.
  • step S28 the process proceeds to step S29, the sticking position inspection device is turned off, and the quality inspection is terminated.
  • the four optical measuring units 8 allow the substrate C (for example, a glass substrate) parallel to the edge of the bonded object F (for example, a polarizing film) and the edge of the bonded object F at four corners. Since the distance between each of the edges of the rectangular substrate F can be optically measured, the rectangular bonded object F bonded on the substrate C so that the four sides are parallel to the four sides of the rectangular substrate C, respectively.
  • a sticking position inspection apparatus capable of improving the inspection accuracy of the sticking position in the case is obtained.
  • the substrate interferes with the optical measurement unit when the substrate with the bonded material is placed on or taken out of the inspection table. Can be prevented.
  • the cover By installing a cover that can be opened and closed on the front surface of the inspection table, the cover can be closed during the inspection process, and the measurement of the attachment position of the bonded object by the optical measurement unit can be made more accurate.
  • each optical measurement unit 8 is slidably installed on the rear surface of the inspection table 6 via the linear guides 66, 67, 68, 69.
  • the present invention is not limited to this.
  • One or more of the optical measurement units 8 may be immediately attached to the rear surface of the inspection table 6.
  • the adjustment motors 66 ', 67', 68 ', 69' (69-1 ', 69-2') can be omitted.
  • the first linear guide portion 69-1 and the second linear guide portion 69- are used as means for moving the optical measurement unit 8 near the inspection hole 65 along the longitudinal direction of the inspection hole 65.
  • the present invention is not limited to this, and a linear guide whose longitudinal direction of the slide rail coincides with the longitudinal direction of the inspection hole 65 is installed in the vicinity of the inspection hole 65.
  • the optical measurement unit 8 near the inspection hole 65 may be attached to the slider of this linear guide.
  • an adjustment motor having an output shaft connected to the slide rail of the corresponding linear guide is provided, and the position of each optical measurement unit 8 is automatically adjusted by the adjustment motor.
  • the present invention is not limited to this, and the adjustment motor may be omitted and the position of each optical measurement unit 8 may be manually adjusted.
  • each optical measurement unit 8, each linear guide 66, 67, 68, 69 and each adjustment motor 66 ′, 67 ′, 68 ′, 69 ′ are installed on the rear surface of the inspection table 6.
  • a mounting frame facing the inspection table 6 and spaced from the front surface of the inspection table 6 by a predetermined distance is installed on the front surface of the inspection table 6, and each linear guide 66, 67, 68, 69 and each adjustment motor 66 ', 67'. 68 ', 69' may be mounted on the mounting frame, and each optical measuring unit 8 may be installed on the corresponding linear guide slider. That is, each optical measurement unit 8, each linear guide 66, 67, 68, 69 and each adjustment motor 66 ′, 67 ′, 68 ′, 69 ′ can be installed on the front surface of the inspection table 6.
  • the inspection holes 62, 63, 64, 65 formed in the inspection table 6 and the cover 7 attached to the inspection table 6 can be omitted.
  • each optical measurement unit 8 each linear guide 66, 67, 68, 69 and each adjustment motor 66 ′, 67 ′, 68 ′, 69 ′ are installed on the rear surface of the inspection table 6.
  • the installation of the linear guides 66, 67, 68, 69 and the adjustment motors 66 ', 67', 68 ', 69', etc. is omitted, the inspection table 6 faces the inspection table 6 on the front surface of the inspection table 6, and the inspection table 6
  • the inspection holes 62, 63, 64, 65 formed in the inspection table 6 and the cover 7 attached to the inspection table 6 can be omitted.
  • the cover 7 is attached to the inspection table 6 via a hinge, but is not limited to this.
  • One of the inspection table 6 and the cover 7 is provided with a slide rail, the other is provided with a slider, and the cover 7 is configured to be openable and closable with respect to the inspection table 6 by attaching the slider to the slide rail. You can also.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 四辺がそれぞれ矩形状の基板の四辺と平行になるように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置を検査する貼付位置検査装置を開示する。該貼付位置検査装置は、貼り合せ物が貼り合せられた基板を載置する載置領域が形成される検査台と、検査台に取り付けられ且つ基板及び貼り合わせ物の4隅と対向して、それぞれ当該4隅において貼り合わせ物の辺縁と貼り合わせ物の当該辺縁に平行な基板の辺縁との間の距離を光学測定する4つの光学測定ユニットと、4つの光学測定ユニットに接続されており、4つの光学測定ユニットのそれぞれにより測定された距離を測定結果として表示する測定結果表示ユニットとを備えている。これにより、四辺がそれぞれ矩形状の基板の四辺と平行するように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置の検査精度を向上させることができる。

Description

貼付位置検査装置
 本発明は、貼付位置検査装置に関する。
 液晶ディスプレー(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレー(ELD)などの画像表示装置は、その優れている性能で注目されている。そのため、画像表示装置にとって肝心な構成部分の1つである表示パネルの製造技術も益々注目されている。
 表示パネルの製造において、表示パネルの表示機能を実現するために、光学素子(例えば、液晶セル)に光学フィルム(例えば、偏光フィルム)を貼り付ける必要がある。ここで、光学フィルムの貼付精度は、製品となった表示パネルの表示品質に密に関連している。したがって、光学フィルムを光学素子に貼り付けた後、光学素子における光学フィルムの貼付位置を検査する必要がある。
 このために、特許文献1には、このような検査機能を実現できる装置が提案されている。図8A及び図8Bに示すように、特許文献1における表示パネル検査装置は、表示パネル40が載置される光透過部14と、載置される表示パネル40のガラス基板41、42の連続する二辺を位置決めする位置決め部15と、該位置決め部15に当接させたガラス基板41、42の周縁からガラス基板41、42に貼り付けられた偏光板44、45の周縁までの距離を測定する距離測定部材16とを有する検査台11を備えている。測定に際しては、図8Bに示すように、表示パネル40のガラス基板41、42の周縁41a、42aの連続する二辺をそれぞれ位置決め部15の内面15aに当接させる。この時、位置決め部15の内面15aから測定棒16cの先端16c‐1までの距離Lが、ガラス基板41、42の周縁から偏光板44、45の周縁までの距離と一致する。
特開2008-014674A
 しかしながら、特許文献1に記載された表示パネル検査装置は、側面から機械的に測定棒を押し当てて偏光板の貼付位置を測定しているため、側枠に接する3隅しか測定できず、測定精度が目標精度から外れるおそれがある。
 本発明はこのような実情に鑑みてなされたものであり、四辺がそれぞれ矩形状の基板の四辺と平行するように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置の検査精度を向上させることができる貼付位置検査装置を提供することを目的とする。
 上記課題を解決して上記目的を達成するために、本発明は、四辺がそれぞれ矩形状の基板の四辺と平行になるように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置を検査する貼付位置検査装置において、該貼り合せ物が貼り合せられた基板を載置する載置領域が形成される検査台と、該検査台に取り付けられ且つ該基板及び貼り合わせ物の4隅と対向して、それぞれ当該4隅において該貼り合わせ物の辺縁と該貼り合わせ物の当該辺縁に平行な基板の辺縁との間の距離を光学測定する4つの光学測定ユニットと、該4つの光学測定ユニットに接続されており、該4つの光学測定ユニットのそれぞれにより測定された距離を測定結果として表示する測定結果表示ユニットとを備えている貼付位置検査装置を提供する。
 本発明によれば、4つの光学測定ユニットによって、4隅において貼り合せ物(例えば、偏光フィルム)の辺縁と当該貼り合せ物の辺縁に平行な基板(例えば、ガラス基板)の辺縁との間の距離をそれぞれ光学測定することができるので、四辺がそれぞれ矩形状の基板の四辺と平行になるように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置の検査精度を向上させることができる貼付位置検査装置を提供することができる。
 また、好ましくは、検査台の前後方向での前面に開閉可能に取り付けられており、開けられている時に載置領域を開放し、且つ閉められている時に載置領域を遮蔽するカバーをさらに設け、検査台上における載置領域内には前後に貫通する4つの検査孔を形成し、基板及び貼り合わせ物の4隅がそれぞれ4つの検査孔の範囲内に位置するようにし、4つの光学測定ユニットは、それぞれ検査台の前後方向での後面に取り付け、且つそれぞれ4つの検査孔と対向するように構成する。
 これにより、光学測定ユニットを検査台の後面に設置することで、貼り合せ物の貼り付けられた基板が検査台に対する載置又は取り出される時に光学測定ユニットとの干渉を防止できる。そして、検査台の前面に開閉可能なカバーを設置することで、検査過程においてこのカバーを閉めることができ、光学測定ユニットによる貼り合せ物の貼付位置の測定を、より正確にすることができる。
 また、好ましくは、4つの光学測定ユニットのそれぞれは、4つの検査孔のうちの1つの検査孔と対向するように配置し、当該検査孔を介して、基板及び貼り合わせ物の当該検査孔の範囲内にある部分に光を照射するように光源を設け、該光源が発光したとき、基板及び貼り合わせ物によって反射された光により、基板及び貼り合わせ物を撮像する撮像手段と、該撮像手段及び測定結果表示ユニットに接続され、撮像手段によって撮像された画像から貼り合わせ物の辺縁と当該辺縁に平行な当該基板の辺縁との間の距離を演算し、当該距離を測定結果表示ユニットに送信する画像処理手段とを設ける。
 これにより、撮像手段を用いて、光源からの光によって基板及び貼り合せ物の画像を撮像することができ、貼り合せ物の辺縁と基板の辺縁との間の距離を正確に測定することができるようになる。
 また、好ましくは、撮像手段は、光源を挟んで検査孔とは相対する側に設置される。
 また、好ましくは、貼付位置検査装置において、4つの検査孔のうちの1つは円孔とし、当該円孔と隣り合うほかの2つの検査孔は長手方向が互いに垂直で延長線が当該円孔を通過する長孔とし、当該円孔と対角線位置にある検査孔はほかの2つの検査孔に対し斜めに形成され且つ延長線が当該円孔を通過する長孔であり、検査台は、長孔となる検査孔のそれぞれの付近にレール機構を備え、長孔となる検査孔と対向する光学測定ユニットは、それぞれ対応する検査孔の長手方向に沿って移動できるように相応するレール機構にスライド可能に取り付けられるように構成する。
 これにより、基板及び貼り合せ物のサイズに応じて、光学測定ユニットを適当な位置に移動させることができるため、同一の貼付位置検査装置でサイズが異なる種々の基板を測定することができるようになる。
 また、好ましくは、貼付位置検査装置において、検査台は円孔となる検査孔の付近にレール機構を備え、円孔となる検査孔と対向する光学測定ユニットは、当該円孔の範囲内で移動できるように当該レール機構にスライド可能に取り付けられる。
 これにより、基板における貼り合せ物の貼付位置に応じて、円孔付近にある光学測定ユニットを最適な測定位置に移動させることができる。
 また、好ましくは、検査台は、各レール機構と対応して設置された、対応する光学測定ユニットをレール機構に沿って移動するように駆動する駆動ユニットをさらに備え、各光学測定ユニットを所望の位置まで移動させるように駆動ユニットを制御する制御ユニットをさらに備える構成とする。
 これにより、駆動ユニットによって光学測定ユニットを基板サイズに合わせた位置に自動的に移動することができるので、検査効率を向上させることができる。
 また、好ましくは、カバーはヒンジを介して検査台に開閉可能に取り付けられる。
 これにより、簡単な構造で、検査台における載置領域を開閉することができるようになる。
 また、好ましくは、貼付位置検査装置において、検査台及びカバーの一方にはスライドレールを備え、他方にはスライダを備え、カバーは、スライダをスライドレールに対し相対的にスライド可能に取り付けることで、検査台に対して開閉できるように構成される。
 これにより、簡単な構造で、検査台における載置領域を開閉することができる。
 また、好ましくは、貼付位置検査装置において、検査台の前面には、当該検査台と対向し且つ当該検査台の前面と所定の間隔を隔てる取付フレームが設置され、4つの光学測定ユニットは、それぞれ当該取付フレームを介して検査台に取り付けられるようにする。
 これにより、検査台に検査孔を加工する工程を省略することができ、さらにはカバーを必要とすることなく検査することができるため、構造を簡単にすることができる。
図1Aは本発明の実施形態における貼付位置検査装置を示す正面図であり、カバーを開ける状態を示す。 図1Bは本発明の実施形態における貼付位置検査装置を示す正面図であり、カバーを閉める状態を示す。 図2は基板が載置されている状態の貼付位置検査装置を示す正面図である。 図3は本発明の実施形態における貼付位置検査装置を示す側面図である。 図4は貼付位置検査装置の検査台を後側から見た説明図である。 図5は貼付位置検査装置の光学測定ユニットの構造を示す説明図である。 図6は環状照明により撮像した貼り合せ物が貼り付けられた基板の画像を示す説明図である。 図7Aは本発明の実施形態における貼付位置検査装置の作動を示すフロー図である。 図7Bは本発明の実施形態における貼付位置検査装置の作動を示すフロー図である。 図8Aは従来技術の表示パネル検査装置を示す説明図である。 図8Bは従来技術の表示パネル検査装置を示す説明図である。
 以下、図面を参照しながら本発明の実施形態における貼付位置検査装置を説明する。
 なお、本実施形態において、検査対象は、矩形状の貼り合せ物Fを四辺がそれぞれ矩形状の基板Cの四辺と平行になるように当該基板Cに貼り付けた構成のものである。
<貼付位置検査装置の構造>
 図1A及び図1Bは本発明の実施形態における貼付位置検査装置を示す正面図であり、図1Aはカバー7を開けた状態、図1Bはカバー7を閉めた状態を示す。図2は基板Cが載置されている状態の貼付位置検査装置を示す正面図である。図3は貼付位置検査装置を示す側面図である。図4は検査台6を後側から見た説明図である。
 図1A~図3に示すように、貼付位置検査装置は、主に、支持フレーム5と、該支持フレーム5に支持される検査台6と、ヒンジ9を介して検査台6の前面に取り付けられる観音開き状のカバー7と、検査台6の後面に取り付けられる4つの光学測定ユニット8と、検査台6に固定される操作パネルSDと、検査台6に固定される表示ユニットRDと、図示しない制御ユニットとを備えている。
 支持フレーム5は、他の各部材を支持するためのものであり、ベースと、該ベースから下方に延出し、地面に接する支持脚と、ベースの背面から所定の高さまで上方に延出する後支持板とを有する。
 検査台6は、板状の検査台本体と、長手方向が水平方向に沿うように該検査台本体の前面に設置された長尺状の位置決め板60と、長手方向が該位置決め板60の長手方向に垂直な方向に沿うように検査台本体の前面に設置された長尺状の位置決め板61と、検査台本体に形成された、前後方向に貫通する4つの検査孔62、63、64、65と、検査台本体の後面に設置される4組のリニアガイド66、67、68、69(69-1、69-2)と、検査台本体の後面に設置される4組の調整モータ66′、67′、68′、69′(69-1′、69-2′)とを有する。
 検査台本体は、両位置決め板60、61とともに、貼り合せ物Fが貼り付けられた基板Cを載置し、位置決めする載置領域を区画する。板状の検査台本体は、貼り合せ物Fが貼り付けられた基板Cを載置するものであり、全体として後傾姿勢で支持フレーム5のベースの前部と後支持板の上部との間に支持されており、長尺状の両位置決め板60、61のそれぞれは、基板Cの隣り合う二辺と面接触して、貼り合せ物Fが貼り付けられた基板Cを検査台本体に位置決めするものである。
 4つの検査孔62、63、64、65のうち、1つの検査孔62(図1Aでは右下方の検査孔)は円孔であり、検査台本体の、両位置決め板60、61の延長線の交差位置付近にある部分に形成されており、当該円孔と隣り合うほかの両検査孔63、64(図1Aでは左下方及び右上方の検査孔)は、長手方向が互いに垂直で、それぞれの延長線が当該円孔62を通過する長孔であり、そして、当該円孔と対角線位置にある検査孔65(図1Aでは左上方の検査孔)は、他の両検査孔63、64に対して斜めに形成され且つ延長線が当該円孔を通過する長孔である。
 図4に示すように、4組のリニアガイド66、67、68、69は、それぞれ検査台本体の後面において4つの検査孔62、63、64、65付近に設置され、後述する4つの光学測定ユニット8のそれぞれは、各検査孔62、63、64、65の長手方向に沿って移動できるように対応する4組のリニアガイド66、67、68、69に取り付けられ、4組の調整モータ66′、67′、68′、69′は、それぞれ検査台本体の後面において4つのリニアガイド66、67、68、69と対応して設置され、後述する4つの光学測定ユニット8を各検査孔62、63、64、65の長手方向に沿って移動させるように作動する。
 具体的には、円孔となる検査孔62に対応するリニアガイド66のスライドレールは、検査孔62の下方に水平方向に沿って設置され、且つ、その一端が調整モータ66′の出力軸に接続されている。また、該リニアガイド66のスライダがこのスライドレールにスライド可能に設けられ、1つの光学測定ユニット8がこのリニアガイド66のスライダに取り付けられ、その撮像範囲が検査孔62と対向するとともに、検査孔62の範囲内にある。
 長孔である検査孔63に対応するリニアガイド67のスライドレールは該検査孔63の下方に水平方向に設置され、且つ、その一端が調整モータ67′の出力軸に接続されている。また、該リニアガイド67のスライダは、該スライドレールにスライド可能に設けられ、もう1つの光学測定ユニット8がこのリニアガイド67のスライダに取り付けられ、その撮像範囲が検査孔63と対向するとともに、検査孔63の形成範囲内にある。
 長孔である検査孔64に対応するリニアガイド68のスライドレールは、長手方向が検査孔64の長手方向と平行になるように、該検査孔64の左右両側の一方に設置され、その一端が調整モータ68′の出力軸に接続されている。また、リニアガイド68のスライダは、このスライドレールにスライド可能に設けられ、さらにもう1つの光学測定ユニット8が、このリニアガイド68のスライダに取り付けられ、その撮像範囲が検査孔64と対向するとともに、検査孔64の形成範囲内にある。
 長孔である検査孔65に対応するリニアガイド69は、第1リニアガイド部69-1と第2リニアガイド部69-2とからなる。第1リニアガイド部69-1のスライドレールは検査孔65の上方に水平方向に設置され、且つ、その一端が調整モータ69′のうちの1つの調整モータ69-1′の出力軸に接続されている。第1リニアガイド部69-1のスライダは、このスライドレールにスライド可能に設けられている。また、第2リニアガイド部69-2のスライドレールの一端は第1リニアガイド部69-1のスライダに取り付けられ、他端は調整モータ69′のうちのもう1つの調整モータ69-2′の出力軸に接続されている。そして、第2リニアガイド部69-2のスライドレールは、その長手方向が水平方向に対して垂直であり且つ検査台本体の後面に平行になるように構成され、第2リニアガイド部69-2のスライダは、第2リニアガイド部69-2のスライドレールにスライド可能に設けられている。また、光学測定ユニット8は、第2リニアガイド部69-2のスライダに取り付けられ、その撮像範囲が検査孔65と対向するとともに、検査孔65の範囲内にある。
 調整モータ66′、67′、68′、69′(69-1′、69-2′)はサーボモータであり、図示しない制御ユニットと接続されている。調整モータ66′、67′、68′、69′は、制御ユニットによって操作者が入力したパラメータに基づいて制御されることで、各リニアガイドを制御して、各光学測定ユニット8を所望の位置に移動させるように作動する。
 カバー7は、ヒンジ9を介して、検査台6の前後方向にみて前面に開閉可能に取り付けられている。図1Aに示すように、カバー7は開けられている時に検査台6の載置領域を開放する。そして、図1Bに示すように、カバー7は閉められている時に検査台6の載置領域を遮蔽する。
 4つの光学測定ユニット8は、それぞれ検査台6の前後方向にみて後面に設置され、前述のように、対応する検査孔と対向するように構成されている。貼り合せ物Fが貼り付けられた基板Cを検査台6に載置する場合には、基板C及び貼り合せ物Fの4隅はそれぞれ4つの検査孔62、63、64、65の範囲内に位置し、4つの光学測定ユニット8は、それぞれ基板C及び貼り合せ物Fの4隅と対向して、当該4隅において、検査孔を介して貼り合せ物Fの辺縁と当該貼り合せ物Fの当該辺縁に平行な基板Cの辺縁との間の距離を光学的に測定する(図6参照)。
 図5は、貼付位置検査装置の光学測定ユニット8の構造を示す説明図である。
 図5に示すように、4つの光学測定ユニット8のそれぞれは、取付ブラケット80と、環状光源81と、CCDカメラ82と、画像処理手段83とを有する。
 取付ブラケット80は、前述のように、対応するリニアガイド(符号66、67、68、69(69-1、69-2)を参照)のスライダに固定されており、このスライダとともにスライドレールに沿って移動することができる。
 環状光源81が取付ブラケット80に取り付けられ且つその発光面が検査台本体における対応する検査孔(符号62、63、64、65を参照)と対向して、当該検査孔を介して、基板C及び貼り合せ物Fの、当該検査孔の形成範囲にある部分に光を照射する。
 CCDカメラ82が、ホルダを介して取付ブラケット80に取り付けられ、且つ、環状光源81を挟んで対応する検査孔とは反対側に設置されている。そして、カメラ82の撮像端であるレンズは、環状光源81の中心孔及び対応する検査孔を介して、基板C及び貼り合せ物Fに対面する。CCDカメラ82は、環状光源81から射出され基板C及び貼り合せ物Fによってレンズの方向に反射された光を利用して基板C及び貼り合せ物Fを撮像し、基板C及び貼り合せ物Fの画像信号を生成して、該画像信号を画像処理手段83に送信する。
 画像処理手段83は、CCDカメラ82、制御ユニット、及び表示ユニットRD等と接続されており、CCDカメラ82からの画像信号を利用して貼り合せ物Fの辺縁と当該貼り合せ物Fの当該辺縁に平行な基板Cの辺縁との間の距離(図6の符号L1、L2を参照)を演算するとともに、演算した結果を表示ユニットRDに送信する。
 操作パネルSDは、操作者が貼付位置検査装置をオン・オフにする操作ボタンと、該操作者が各種のパラメータを入力するタッチ式のパネルとを有する。
 表示ユニットRDは、画像処理手段83及び操作パネルSD等と接続されており、画像処理手段83からの画像と測定結果、操作者が操作パネルSDから入力したパラメータを表示する。
 制御ユニットは、各調整モータ66′、67′、68′、69′(69-1′、69-2′)、環状光源81、CCDカメラ82、画像処理手段83、操作パネルSD、表示ユニットRD等に接続されており、主に、1)操作者が操作パネルSDを用いて入力したパラメータを受信して記憶する作業と、2)上記1)の入力パラメータに応じて各調整モータ66′、67′、68′、69′(69-1′、69-2′)の作動を制御する作業と、3)画像処理手段83からの情報を受信して記憶する作業と、4)予め格納した制御プログラムに基づいて環状光源81、CCDカメラ82及び画像処理手段83の作動を制御する作業と、5)表示ユニットRDを、上記1)、3)の種々のパラメータ、その他の情報を表示するように制御する作業とを行なう。
<貼付位置検査装置の作動>
 図6は、環状照明により撮像した、貼り合せ物が貼り付けられた基板の画像を示す説明図である。図7A及び図7Bは本発明の実施形態における貼付位置検査装置の作動を示すフロー図である。
 以下、図面を参照しながら本発明の実施形態における貼付位置検査装置の作動を説明する。
[レシピ作成フロー]
 まず、図7Aに示すように、操作者がステップS10において操作パネルSDによって貼付位置検査装置をオンにした後、ステップS11へ進む。ステップS11において、操作者は、貼り合せ物Fが貼り付けられた基板Cを検査台6における載置領域にセットする。
 このとき、CCDカメラ82は制御ユニットの制御により作動状態に切り替えられ、載置領域にセットした基板C及び貼り合せ物Fを撮像して、撮像した画像を表示ユニットRDに表示する。
 続いて、ステップS12において、操作者は、表示ユニットRDに表示された画像を見ながら、パネルSDを操作することで光学測定ユニット8が移動する目標値を入力して、基板C及び貼り合せ物Fの辺縁が撮像範囲に入るように各光学測定ユニット8の位置を調整する。
 そして、基板C及び貼り合せ物Fの辺縁が撮像範囲に入った後、ステップS13へ進んで、基板Cの辺縁と当該基板Cの当該辺縁に平行な貼り合せ物Fの辺縁との間の距離を測定できるかどうかを判断する。ステップS13において測定ができないと判断した場合には、ステップS12に戻る。
 一方、ステップS13において測定できると判断した場合には、ステップS14へ進んで、制御ユニットによって上記の基板Cのサイズに合わせたレシピD1を生成するとともに、このレシピD1と、それが対応する各光学測定ユニット8のそれぞれの位置とを、対応して記憶する。
 最後にステップS15へ進み、レシピの作成を終了する。また、ステップS14が完了した後にステップS11に戻って、貼り合せ物Fが貼り付けられた他のサイズの基板Cを検査台6における載置領域にセットしてステップS12~ステップS14を繰り返し、他のサイズに合わせたレシピD2、D3、……、Dn及びそれが対応する各光学測定ユニット8の位置を決定して記憶する。
[品質検査フロー]
 まず、図7Bに示すように、操作者がステップS20において操作パネルSDによって貼付位置検査装置をオンにした後、ステップS21へ進む。ステップS21において、操作者は、貼り合せ物Fが貼り付けられた基板Cを、検査台6における載置領域に位置決めする。
 続いて、ステップS22において、操作者は、測定される基板Cのサイズに合わせたレシピDiが貼付位置検査装置に格納されているかどうかを判断する。
 ステップS22において測定される基板Cのサイズに合わせたレシピDiが貼付位置検査装置に格納されていないと判断した場合には、ステップS23′へ進んで「レシピ作成フロー」へ戻って、ステップS12~ステップS15の操作を行うことでレシピDiを作成する。
 一方、ステップS22において測定される基板Cのサイズに合わせたレシピDiが貼付位置検査装置に格納されていると判断した場合には、ステップS23において、操作者は、操作パネルSDに表示された対応するレシピDiをタッチすることでこのレシピを選択して、ステップS24へ進む。
 ステップS24において、制御ユニットは、レシピDiに合わせた各光学測定ユニット8の目標位置データを読み取る。そして、ステップS24の処理が完了した後、ステップS25へ進む。
 ステップS25において、制御ユニットは、読み取った各光学測定ユニット8の目標位置データに応じて、制御プログラムに基づき各調整モータ66′、67′、68′、69′へ駆動指示を送信し、各調整モータ66′、67′、68′、69′を所定量だけ回転させることで各光学測定ユニット8を目標位置まで調整する。ステップS25の処理が完了した後、ステップS26へ進む。
 ステップS26において、制御ユニットは、各光学測定ユニット8の環状光源81、CCDカメラ82へ指示を出して、環状光源81を発光させ、CCDカメラ82が撮像動作を行うように制御する。
 続いて、ステップS27において、制御ユニットは、CCDカメラ82が撮像した画像を画像処理手段83に送信し、基板Cの幅方向及び縦方向について、図6に示すように、画像処理手段83がCCDカメラ82からの画像データから基板Cの辺縁と当該基板Cの当該辺縁に平行な貼り合せ物Fの辺縁との間の距離L1、距離L2を演算するように制御する。そして、ステップS27の処理が完了した後、ステップS28へ進む。
 ステップS28において、制御ユニットは、画像処理手段83の演算結果(距離L1、L2)を記憶するとともに、画像処理手段83の演算結果を表示ユニットRDに送信するように制御する。
 最後に、ステップS28の処理が完了した後、ステップS29へ進んで貼付位置検査装置をオフにして、品質検査を終了する。
<貼付位置検査装置の効果>
 本発明によれば、4つの光学測定ユニット8によって、4隅において貼り合せ物F(例えば、偏光フィルム)の辺縁と当該貼り合せ物Fの辺縁に平行な基板C(例えば、ガラス基板)の辺縁との間の距離をそれぞれ光学測定することができるので、四辺がそれぞれ矩形状の基板Cの四辺と平行になるように貼り合わせられた矩形状の貼り合せ物Fの当該基板C上における貼付位置の検査精度を向上させることができる貼付位置検査装置が得られる。
 また、光学測定ユニット8を検査台6の後面に設置することで、貼り合せ物の貼り付けられた基板が検査台に対して載置又は取り出される時に、該基板が光学測定ユニットと干渉することを防止できる。そして、検査台の前面に開閉可能なカバーを設置することで、検査過程においてこのカバーを閉めることができ、光学測定ユニットによる貼り合せ物の貼付位置の測定をより正確にすることができる。
<変形例>
 以上、本発明を実施するための形態を例示的に説明したが、本発明は以上のような実施形態に限られるものではない。本発明の思想を逸脱することない範囲内において種々の変更が可能であり、これらの変更も本発明の範囲に含まれる。
 例えば、上記の実施形態において、各光学測定ユニット8は、リニアガイド66、67、68、69を介して検査台6の後面にスライド可能に設置されているが、これに限られるものではなく、各光学測定ユニット8のうちの1つ又は複数を直ちに検査台6の後面に取り付けても良い。
 この場合には、調整モータ66′、67′、68′、69′(69-1′、69-2′)を省略することが可能である。
 また、上記の実施形態において、検査孔65付近の光学測定ユニット8をこの検査孔65の長手方向に沿って移動させる手段としては、第1リニアガイド部69-1と第2リニアガイド部69-2とからなるリニアガイド69を使用しているが、これに限られるものではなく、スライドレールの長手方向が検査孔65の長手方向と一致するリニアガイドを、この検査孔65付近に設置し、検査孔65付近の光学測定ユニット8をこのリニアガイドのスライダに取り付けても良い。
 また、上記の実施形態において、対応するリニアガイドのスライドレールに出力軸が接続されている調整モータを設けて、該調整モータによって、各光学測定ユニット8の位置を自動的に調整するように構成しているが、これに限られるものではなく、調整モータを省略し、各光学測定ユニット8の位置を手動的に調整するようにしても良い。
 また、上記の実施形態において、各光学測定ユニット8、各リニアガイド66、67、68、69及び各調整モータ66′、67′、68′、69′は、検査台6の後面に設置されているが、これに限られるものではない。検査台6と対向し且つ検査台6の前面と所定の間隔を隔てる取付フレームを当該検査台6の前面に設置し、各リニアガイド66、67、68、69及び各調整モータ66′、67′、68′、69′を当該取付フレームに取り付け、各光学測定ユニット8を対応するリニアガイドのスライダに設置しても良い。即ち、各光学測定ユニット8、各リニアガイド66、67、68、69及び各調整モータ66′、67′、68′、69′を、検査台6の前面に設置することも可能である。
 この場合には、検査台6に形成される検査孔62、63、64、65及び検査台6に取り付けられるカバー7を省略することが可能である。
 また、上記の実施形態において、各光学測定ユニット8、各リニアガイド66、67、68、69及び各調整モータ66′、67′、68′、69′は、検査台6の後面に設置されているが、これに限られるものではない。各リニアガイド66、67、68、69及び各調整モータ66′、67′、68′、69′等の設置を省略し、検査台6の前面に当該検査台6と対向し且つ当該検査台6の前面と所定の間隔を隔てる取付フレームを設置し、各光学測定ユニット8を取付フレームを介して検査台6に取り付けても良い。即ち、各光学測定ユニット8を検査台6の前面に設置することができる。
 この場合には、検査台6に形成される検査孔62、63、64、65及び検査台6に取り付けられるカバー7を省略することが可能である。
 また、上記の実施形態において、カバー7は、ヒンジを介して検査台6に取り付けられているが、これに限られるものではない。検査台6及びカバー7の一方にスライドレールを設け、他方にスライダを設け、カバー7は、スライダをスライドレールに対しスライド可能に取り付けることで、検査台6に対して開閉できるように構成することもできる。
 5  支持フレーム;
 6  検査台;
 7  カバー;
 8  光学測定ユニット;
 9  ヒンジ;
 60、61  位置決め板;
 62、63、64、65  検査孔;
 66、67、68、69  リニアガイド(レール機構);
 66′、67′、68′、69′  調整モータ(駆動ユニット);
 80  取付ブラケット;
 81  環状光源(光源);
 82  CCDカメラ(撮像手段);
 83  画像処理手段;
 C  基板;
 F  貼り合せ物;
 L1、L2  基板の辺縁と当該基板の当該辺縁に平行な貼り合せ物の辺縁との間の距離;
 SD  操作パネル;
 RD  表示ユニット(測定結果表示ユニット)

Claims (10)

  1.  四辺がそれぞれ矩形状の基板の四辺と平行になるように貼り合わせられた矩形状の貼り合せ物の当該基板上における貼付位置を検査する貼付位置検査装置において、
     前記貼り合せ物が貼り合せられた前記基板を載置する載置領域が形成される検査台と、
     前記検査台に取り付けられ且つ前記基板及び貼り合わせ物の4隅と対向して、それぞれ当該4隅において前記貼り合わせ物の辺縁と前記貼り合わせ物の当該辺縁に平行な前記基板の辺縁との間の距離を光学的に測定する4つの光学測定ユニットと、
     4つの前記光学測定ユニットに接続されており、4つの前記光学測定ユニットのそれぞれにより測定された前記距離を測定結果として表示する測定結果表示ユニットと
    を備えることを特徴とする貼付位置検査装置。
  2.  前記検査台の前後方向の前面に開閉可能に取り付けられており、開けられている時に前記載置領域を開放し、且つ閉められている時に前記載置領域を遮蔽するカバーをさらに備え、
     前記検査台上における前記載置領域内には前後貫通する4つの検査孔が形成され、前記基板及び貼り合わせ物の4隅はそれぞれ4つの前記検査孔の範囲内に位置し、
     4つの前記光学測定ユニットは、それぞれ前記検査台の前後方向での後面に取り付けられ、且つそれぞれ4つの前記検査孔と対向している
     ことを特徴とする請求項1に記載の貼付位置検査装置。
  3.  4つの前記光学測定ユニットのそれぞれは、
     4つの前記検査孔のうちの1つの検査孔と対向し、当該検査孔を介して、前記基板及び前記貼り合わせ物の当該検査孔の範囲内にある部分に光を照射する光源と、
     前記光源が発光したとき前記基板及び貼り合わせ物によって反射された光により、前記基板及び貼り合わせ物を撮像する撮像手段と、
     前記撮像手段及び前記測定結果表示ユニットに接続されており、前記撮像手段によって撮像された画像から前記貼り合わせ物の辺縁と当該辺縁に平行な当該基板の辺縁との間の距離を演算し、当該距離を前記測定結果表示ユニットに送信する画像処理手段とを有する
     ことを特徴とする請求項2に記載の貼付位置検査装置。
  4.  前記撮像手段は、前記光源を挟んで前記検査孔とは反対側に設置されていることを特徴とする請求項3に記載の貼付位置検査装置。
  5.  4つの前記検査孔のうちの1つは円孔で、当該円孔と隣り合うほかの2つの検査孔は長手方向が互いに垂直の関係にあり延長線が当該円孔を通過する長孔で、当該円孔と対角線位置にある検査孔は前記ほかの2つの検査孔に対し斜めに形成され且つ延長線が当該円孔を通過する長孔であり、
     前記検査台は、長孔である前記検査孔のそれぞれの付近にレール機構を備え、長孔である前記検査孔と対向する前記光学測定ユニットは、それぞれ対応する前記検査孔の長手方向に沿って移動できるように、対応する前記レール機構にスライド可能に取り付けられている
     ことを特徴とする請求項2~4のいずれか1項に記載の貼付位置検査装置。
  6.  前記検査台は円孔である前記検査孔の付近にレール機構を備え、円孔である前記検査孔と対向する前記光学測定ユニットは、当該円孔の形成範囲内で移動できるように当該レール機構にスライド可能に取り付けられている
    ことを特徴とする請求項5に記載の貼付位置検査装置。
  7.  前記検査台は、各前記レール機構と対応して設置された、対応する光学測定ユニットを前記レール機構に沿って移動するように駆動する駆動ユニットをさらに備え、
     各前記光学測定ユニットを所望の位置まで移動させるように前記駆動ユニットを制御する制御ユニットをさらに備えている
     ことを特徴とする請求項6に記載の貼付位置検査装置。
  8.  前記カバーは、ヒンジを介して前記検査台に開閉可能に取り付けられていることを特徴とする請求項1に記載の貼付位置検査装置。
  9.  前記検査台及び前記カバーの一方にスライドレールを備え、他方にスライダを備え、
     前記カバーは、前記スライダを前記スライドレールに対しスライド可能に取り付けることで、前記検査台に対して開閉できるように構成された
     ことを特徴とする請求項1に記載の貼付位置検査装置。
  10.  前記検査台の前面には、当該検査台と対向し且つ当該検査台の前面と所定の間隔を隔てる取付フレームが設置されており、4つの前記光学測定ユニットはそれぞれ当該取付フレームを介して前記検査台に取り付けられている
    ことを特徴とする請求項1に記載の貼付位置検査装置。
PCT/JP2015/073566 2014-12-16 2015-08-21 貼付位置検査装置 WO2016098389A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420799553.3U CN204301688U (zh) 2014-12-16 2014-12-16 贴合位置检查装置
CN201420799553.3 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098389A1 true WO2016098389A1 (ja) 2016-06-23

Family

ID=53107221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073566 WO2016098389A1 (ja) 2014-12-16 2015-08-21 貼付位置検査装置

Country Status (5)

Country Link
JP (1) JP6550620B2 (ja)
KR (1) KR102405735B1 (ja)
CN (1) CN204301688U (ja)
TW (1) TWI642895B (ja)
WO (1) WO2016098389A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036535B (zh) * 2017-05-25 2019-07-09 大连船舶重工集团有限公司 矩形板材对角线精度检测工装
CN109323654B (zh) * 2018-11-14 2023-10-27 张家港康得新光电材料有限公司 一种检测装置及检测方法
CN110208285A (zh) * 2019-06-14 2019-09-06 苏州精濑光电有限公司 一种检测设备
CN112461796A (zh) * 2019-09-09 2021-03-09 合肥欣奕华智能机器有限公司 掩膜板贴合状态检测设备及压合机
CN110928235B (zh) * 2019-11-18 2021-04-06 广东利元亨智能装备股份有限公司 工件贴合方法、装置、电子设备及工件贴合***
CN111784648A (zh) * 2020-06-19 2020-10-16 巨轮(广州)智能装备有限公司 软资材贴合精度检测方法、装置、设备以及存储介质
CN114355640A (zh) * 2021-12-31 2022-04-15 深圳市深科达智能装备股份有限公司 偏光片贴合检测设备、***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258157A (ja) * 1996-03-26 1997-10-03 Nippon Maikuronikusu:Kk 液晶表示パネルの検査装置
JPH11223608A (ja) * 1998-02-05 1999-08-17 Sumitomo Chem Co Ltd フィルム検査方法およびそれを用いたフィルム検査装置
JPH11242007A (ja) * 1998-02-26 1999-09-07 Fujikura Rubber Ltd Oリングの検査装置
JP2005165097A (ja) * 2003-12-04 2005-06-23 Yamatake Corp 偏光板貼り付け位置検査装置
JP2008014674A (ja) * 2006-07-03 2008-01-24 Sharp Corp 表示パネルの検査装置および該検査装置を用いた検査方法
JP2013115317A (ja) * 2011-11-30 2013-06-10 Dainippon Screen Mfg Co Ltd 転写装置、アライメント方法および転写方法
JP2014186056A (ja) * 2013-03-21 2014-10-02 Sumitomo Chemical Co Ltd 検出装置、レーザー光照射装置及び光学部材貼合体の製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258157A (ja) * 1996-03-26 1997-10-03 Nippon Maikuronikusu:Kk 液晶表示パネルの検査装置
JPH11223608A (ja) * 1998-02-05 1999-08-17 Sumitomo Chem Co Ltd フィルム検査方法およびそれを用いたフィルム検査装置
JPH11242007A (ja) * 1998-02-26 1999-09-07 Fujikura Rubber Ltd Oリングの検査装置
JP2005165097A (ja) * 2003-12-04 2005-06-23 Yamatake Corp 偏光板貼り付け位置検査装置
JP2008014674A (ja) * 2006-07-03 2008-01-24 Sharp Corp 表示パネルの検査装置および該検査装置を用いた検査方法
JP2013115317A (ja) * 2011-11-30 2013-06-10 Dainippon Screen Mfg Co Ltd 転写装置、アライメント方法および転写方法
JP2014186056A (ja) * 2013-03-21 2014-10-02 Sumitomo Chemical Co Ltd 検出装置、レーザー光照射装置及び光学部材貼合体の製造装置

Also Published As

Publication number Publication date
TW201623912A (zh) 2016-07-01
JP6550620B2 (ja) 2019-07-31
KR20160073283A (ko) 2016-06-24
TWI642895B (zh) 2018-12-01
CN204301688U (zh) 2015-04-29
KR102405735B1 (ko) 2022-06-07
JP2016114588A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6550620B2 (ja) 貼付位置検査装置
TWI416793B (zh) 天線調節裝置及方法
WO2015014041A1 (zh) 检测***
US20170108447A1 (en) Detecting apparatus and detecting method
JP6516453B2 (ja) 画像測定装置及び測定装置
JP5813555B2 (ja) 露光描画装置及び露光描画方法
US9457555B2 (en) Film peeling apparatus
KR101366873B1 (ko) 필름 부착된 기판의 에지 검출 장치 및 이를 포함한 레이저 절단 시스템
JP2007048113A5 (ja)
KR20130078721A (ko) 평판 디스플레이 패널 검사 장치 및 방법
JP6670054B2 (ja) 位置補正用治具、x線位置計測装置、及びx線の光軸合わせ方法
KR101300894B1 (ko) 엘시디백라이트 휘도교정장치 및 교정방법
KR20200043000A (ko) 디스펜서
CN108393212B (zh) 分配装置
CN104698591A (zh) 3d显示屏的对齐定位方法与装置
CN108535900A (zh) 一种检测夹治具
KR101331878B1 (ko) 터치 디스플레이 패널 합착용 접착재 경화 장치
KR101429590B1 (ko) 평면의 평탄도 측정장치
JP2013043362A (ja) スクリーン印刷装置およびスクリーン印刷方法
KR20090078520A (ko) 기판 지지기구 및 이를 구비한 기판 검사장치
TW201520564A (zh) 靜電放電抗擾度測試裝置
CN203464904U (zh) 图像测量仪
KR101221093B1 (ko) 디스플레이 패널용 박막필름의 재단장치
JP2009168507A (ja) 透明基板のエッジ位置検出方法及びエッジ位置検出装置
JP2006250783A (ja) マクロ検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP