WO2016098324A1 - Fabric having uneven-surface design, and method for producing same - Google Patents

Fabric having uneven-surface design, and method for producing same Download PDF

Info

Publication number
WO2016098324A1
WO2016098324A1 PCT/JP2015/006171 JP2015006171W WO2016098324A1 WO 2016098324 A1 WO2016098324 A1 WO 2016098324A1 JP 2015006171 W JP2015006171 W JP 2015006171W WO 2016098324 A1 WO2016098324 A1 WO 2016098324A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
fabric
fibers
yarn
fiber
Prior art date
Application number
PCT/JP2015/006171
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 川村
Original Assignee
セーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56126232&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016098324(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by セーレン株式会社 filed Critical セーレン株式会社
Priority to EP15869533.8A priority Critical patent/EP3235946B1/en
Priority to JP2016564679A priority patent/JP6145584B2/en
Priority to CN201580068657.4A priority patent/CN107109784B/en
Priority to US15/533,225 priority patent/US20170342658A1/en
Publication of WO2016098324A1 publication Critical patent/WO2016098324A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/08Decorating textiles by fixation of mechanical effects, e.g. calendering, embossing or Chintz effects, using chemical means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C23/00Making patterns or designs on fabrics
    • D06C23/04Making patterns or designs on fabrics by shrinking, embossing, moiréing, or crêping
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/70Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment combined with mechanical treatment
    • D06M15/705Embossing; Calendering; Pressing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/16Processes for the non-uniform application of treating agents, e.g. one-sided treatment; Differential treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5285Polyurethanes; Polyurea; Polyguanides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2044Textile treatments at a pression higher than 1 atm
    • D06P5/2061Textile treatments at a pression higher than 1 atm after dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C2700/00Finishing or decoration of textile materials, except for bleaching, dyeing, printing, mercerising, washing or fulling
    • D06C2700/31Methods for making patterns on fabrics, e.g. by application of powder dye, moiréing, embossing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a fabric having an uneven design and a method for producing the same.
  • An object of the present invention is to provide a fabric that is fine and has an uneven design having bending resistance and abrasion resistance.
  • the present invention firstly relates to a fabric having a polyurethane resin coated portion on at least a part of the surface side of a fabric made of fibers, and having an uneven design formed on the polyurethane resin coated portion.
  • the polyurethane resin application part is an area where the applied polyurethane resin is present, and the polyurethane resin penetrates between the fibers in at least the surface part of the fabric so that the fabric surface is formed by the polyurethane resin and the fibers,
  • the polyurethane resin application part satisfies the following requirements.
  • the application depth of the polyurethane resin is 50 to 200 ⁇ m.
  • the filling rate of polyurethane resin is 15-45%.
  • the fiber filling ratio of the fabric is 50 to 80%.
  • a second aspect of the present invention is a method for producing a fabric having the above-described uneven design, in which a polyurethane resin is applied to at least a part of the surface side of the fabric, and then the uneven design is applied to the polyurethane resin application portion by embossing.
  • the present invention relates to a method for manufacturing a fabric.
  • the present invention it is possible to provide a fabric in which the polyurethane resin suppresses the compressive recovery force caused by the elasticity of the fiber and is provided with a fine uneven design having bending resistance and wear resistance.
  • FIG. 1 is a structural diagram of a fabric used in Example 5.
  • the fabric having the concavo-convex design according to the present embodiment has a polyurethane resin coated portion on at least a part of the surface side of the fabric, and has a concavo-convex design formed on the polyurethane resin coated portion.
  • the polyurethane resin application part is an area where the applied polyurethane resin is present, and the polyurethane resin permeates between the fibers in at least the surface part of the fabric so that the fabric surface is formed by the polyurethane resin and the fibers. It satisfies the requirements of 1) to (3).
  • the application depth of the polyurethane resin is 50 to 200 ⁇ m.
  • the filling rate of the polyurethane resin is 15 to 45%.
  • the fiber filling ratio of the fabric is 50 to 80%.
  • FIG. 1 is a photograph (25 times) of the surface of a fabric having an uneven design according to one example
  • FIG. 2 is a cross-sectional photograph (100 times) of the fabric.
  • a fine uneven design by embossing, that is, an embossed pattern is formed on the surface of the fabric.
  • the cross-sectional photograph of the fabric in FIG. 3 is a photograph of a cross-section in the vertical direction of the polyurethane resin coated portion of the fabric having a concavo-convex design according to one embodiment, and is an example of the state of application of the polyurethane resin in the polyurethane resin coated portion.
  • Polyurethane resin is not in the form of a film covering the surface of the fabric, but exists so as to penetrate between the fibers on at least the surface portion of the fabric to form a lump together with the fibers and to fix the fibers between the fibers around the fabric surface. Yes. Therefore, a fine uneven design having bending resistance and wear resistance can be obtained while suppressing the compression recovery force due to the elasticity of the fiber.
  • the polyurethane resin application portion is a portion where the polyurethane resin is applied and indicates a region where the applied polyurethane resin exists.
  • the fabric as a treatment target used in the present embodiment that is, a fabric to which a polyurethane resin is applied is also referred to as a base fabric or a cloth.
  • a fabric is not particularly limited, and examples thereof include known fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics.
  • the fabric structure is not particularly limited. For example, plain weaves, twill weave (oblique fabric), satin weaving, special textures such as change textures of these Mihara textures, plain fabrics, and the like.
  • species or more can be mentioned.
  • the knitted fabric is not particularly limited, and examples thereof include tricot, double raschel, and circular knitting.
  • the fiber material constituting the fabric in the present embodiment is not particularly limited, and conventionally known natural fibers, regenerated fibers, semi-synthetic fibers, synthetic fibers, and the like can be used. These can be used alone or in combination of two or more.
  • the fiber material is preferably synthetic fiber, more preferably polyester, and particularly preferably polyethylene terephthalate. Furthermore, it is preferable to use a flame retardant fiber from the viewpoint of flame retardancy.
  • Napped fibers may be formed on the surface of the fabric as the base fabric by a known method such as a woven or knitted structure or a raised process.
  • the length of napping when the fabric has napping is not particularly limited, but from the viewpoint of wear resistance, for example, in the case of pile products such as a full-cut napping product or a double raschel opening product, the napping length is 1600 ⁇ m or less. Preferably there is. By being 1600 micrometers or less, it can suppress that a polyurethane resin adheres to the surface of napping in a layer form. For this reason, it is possible to prevent a load from being applied only to the polyurethane resin application portion during wear and deterioration of wear resistance.
  • the fabric having a concavo-convex design according to the present embodiment (hereinafter also referred to as a fabric with a design) has a polyurethane resin coating portion at least at a part on the surface side of the fabric.
  • the single fiber fineness (hereinafter also referred to as single fineness) of the fibers constituting the fabric of the polyurethane resin coated portion is mainly fibers of 1.5 dtex or less.
  • the lower limit of the single fiber fineness is not particularly limited, and may be, for example, 0.1 dtex or more.
  • the total fineness per unit volume of 1 mm 3 is preferably 2500 to 5800 dtex in the region where the uneven design is imparted. Further, 3000 to 5800 dtex is more preferable, and 3500 to 5800 dtex is further preferable.
  • interval between fibers can be made small and the moldability of the fine uneven
  • favorable weaving property is securable by being 5800 dtex or less.
  • the total fineness per unit volume 1 mm 3 is calculated as follows. That is, the product of warp density (main / 25.4 mm), warp fineness (warp fineness) (dtex) and 25.4 mm is 25.4 mm in the width direction and 25.4 mm in the length direction with respect to the length direction of the machine.
  • X The total fineness of the warp in the volume of the fabric thickness (mm) is calculated. In this calculation, the length of the warp in the warp direction 25.4 mm is 25.4 mm. Strictly speaking, it is calculated that the warp does not go straight but is bent at the entangled part with the weft but is going straight.
  • the sum of the fineness of the weft is calculated in the same manner as the warp, and the sum of the sum of the fineness of the warp and the sum of the fineness of the weft is calculated.
  • the quotient of the calculated value and volume is calculated and taken as the total fineness per 1 mm 3 .
  • Total fineness per unit volume of 1 mm 3 (warp density ⁇ warp fineness ⁇ 25.4 + weft density ⁇ weft fineness ⁇ 25.4) ⁇ (25.4 ⁇ 25.4 ⁇ fabric thickness (mm))
  • the substantial density is used for calculation. For example, if the warp removal is 1 in 3out (that is, an arrangement of three single thread inserts), the warp density is multiplied by 1/4.
  • the fabric as the base fabric preferably has a total fineness of 1000 to 5800 dtex per unit volume of 1 mm 3 in the region where the uneven design is imparted. Further, 1200 to 5800 dtex is more preferable, and 1500 to 5800 dtex is further preferable.
  • gap between fibers can be made small and the moldability of the fine uneven
  • favorable knitting property is securable by being 5800 dtex or less.
  • the total fineness per unit volume of 1 mm 3 in the case of a knitted fabric is calculated as follows.
  • the product of the double of the course density and the yarn fineness and 25.4 mm gives the fineness in the volume of the width direction (25.4 mm) x length direction (25.4 mm) x fabric thickness (mm) with respect to the length direction of the raw machine.
  • the total is calculated.
  • the quotient of the calculated value and volume is calculated and taken as the total fineness per 1 mm 3 .
  • the yarn fineness in the volume of raw machine width direction (25.4 mm) x raw machine length direction (25.4 mm) x fabric thickness (mm) was calculated for each yarn constituting each structure. Thereafter, the sum is calculated, and the quotient of the total value and the volume is calculated to obtain the total fineness per unit volume of 1 mm 3 .
  • Total fineness per unit volume of 1 mm 3 (Total yarn fineness of each yarn * 1 x course density x 2 x 25.4) ⁇ (25.4 x 25.4 x fabric thickness (mm)) * 1: For tricot knitting, the sum of the fineness of the front yarn, middle yarn and back yarn, and for the circular knitting, the sum of the fineness of the front yarn, binder yarn and back yarn.
  • the polyurethane resin used in the present embodiment is not particularly limited, and examples thereof include polyether-based, polyester-based, and polycarbonate-based polyurethane resins.
  • polyester polyurethane resins are preferably used from the viewpoint of texture
  • polycarbonate polyurethane resins are preferably used from the viewpoint of durability, particularly wear resistance.
  • the softening temperature of the polyurethane resin is preferably 100 to 200 ° C.
  • the softening temperature is 100 ° C. or higher, the resin can be hardly dissolved even when used under conditions such as a vehicle interior material that is left at a high temperature for a long time.
  • the softening temperature is 200 ° C. or lower, the embossing roll heating temperature is set low when shaping the uneven design, and the portion of the base fabric to which the polyurethane resin is not applied is prevented from becoming hard. it can.
  • the softening temperature is measured by differential scanning calorimetry using a DSC thermal analyzer.
  • the application of the polyurethane resin may be performed on the entire fabric, or may be performed only around the portion to which the fine uneven design is imparted.
  • the amount of polyurethane resin applied in the polyurethane resin application part varies depending on the configuration of the fabric to be treated, such as density and fineness, but is preferably about 1 to 200 g / m 2 with respect to the fabric.
  • the fibers are sufficiently fixed to each other, so that the wear resistance is improved and the formability of a fine uneven shape by embossing is improved.
  • the texture is prevented from becoming hard.
  • the polyurethane resin permeates between the fibers in at least the surface portion (surface layer portion) of the fabric to form the surface portion of the fabric together with the fiber, and the surface layer of the polyurethane resin alone like a synthetic leather with a silver surface. Is not formed on the entire surface of the fabric.
  • the provision amount of a polyurethane resin converts the provision amount in the part by which a polyurethane resin is apply
  • the application depth of the polyurethane resin in the polyurethane resin application portion of this embodiment is in the range of 50 to 200 ⁇ m.
  • the thickness is 50 ⁇ m or more, the fibers are sufficiently fixed to each other, so that the wear resistance is improved and the formability of a fine uneven shape by embossing is improved.
  • the thickness is preferably 50 to 130 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the polyurethane resin application depth refers to the depth from the surface of the fabric where the polyurethane resin exists between the fabric fibers.
  • this region is also referred to as the polyurethane resin application depth region.
  • the application depth of the polyurethane resin is synonymous with the thickness of the polyurethane resin application portion.
  • the application depth of the polyurethane resin is indicated by a white arrow in FIG.
  • the provision depth of a polyurethane resin is calculated
  • the polyurethane resin penetrates between the fibers in at least the surface portion of the fabric, and may penetrate throughout the fabric thickness. However, from the viewpoint of the texture, it is preferable that the polyurethane resin does not penetrate the entire fabric thickness, that is, penetrates part of the thickness direction including the surface portion of the fabric. Specifically, the ratio of the application depth of the polyurethane resin to the thickness of the fabric with a design may be 3 to 30% or 3 to 10%.
  • the thickness of the fabric with a design is not particularly limited, and may be, for example, 0.2 to 3.0 mm (that is, 200 to 3000 ⁇ m) or 0.3 to 2.8 mm.
  • the filling rate of the polyurethane resin in the polyurethane resin coated portion of this embodiment is in the range of 15 to 45%. By being 15% or more, the formability of the uneven shape is improved. By being 45% or less, the bending resistance is improved. Preferably it is 15 to 35%, more preferably 20 to 35%.
  • the filling rate of the polyurethane resin in the polyurethane resin application portion is a ratio of the polyurethane resin in the polyurethane resin application depth region (a portion where the polyurethane resin adheres fibers to form a lump), and is as follows. Is required. That is, it calculates
  • Polyurethane resin filling ratio (%) 100 ⁇ (fiber filling ratio + void ratio)
  • the filling rate of the fabric fibers in the polyurethane resin coated part is in the range of 50 to 80%. By being 50% or more, the space
  • the filling rate of the fiber in a polyurethane resin application part is a ratio which a fiber occupies in the provision area
  • the diameter R ( ⁇ m) of the yarn is obtained by measuring and averaging the diameters in the vertical and horizontal directions of the cross-sections of arbitrary five yarns.
  • Fiber filling rate (%) (78.5 ⁇ R 2 ⁇ n) ⁇ (100 ⁇ depth of polyurethane resin applied ( ⁇ m))
  • the filling rate of the fiber in a polyurethane resin application part be the average value of the filling rate of the fiber calculated
  • the sum of the outer peripheral lengths of the fiber cross sections in the polyurethane resin coated portion of this embodiment is preferably 1500 ⁇ m or more per unit area of 10,000 ⁇ m 2 , more preferably 1800 ⁇ m or more, and even more preferably 2700 ⁇ m or more. If it is 1500 micrometers or more, the adhesiveness of a polyurethane resin and a fiber will improve, the compression recovery force of a fiber can be suppressed, and the shaping property of the fine uneven
  • the fact that there are many fibers having a small single fineness is considered to be because the surface area of the polyurethane resin is increased because the surface area is large with respect to the total fineness, and it is easy to fix.
  • the upper limit of the sum of the outer peripheral lengths of the fiber cross sections is not particularly limited, and may be, for example, 9000 ⁇ m or less, or 6000 ⁇ m or less.
  • the sum of the outer peripheral length of the fiber cross section in a polyurethane resin application part is calculated
  • the diameter R ( ⁇ m) of the yarn is obtained by measuring and averaging the diameters in the vertical and horizontal directions of the cross-sections of arbitrary five yarns.
  • Sum of outer peripheral lengths of fiber cross section ( ⁇ m) (31400 ⁇ R ⁇ n) ⁇ (100 ⁇ depth of polyurethane resin applied ( ⁇ m))
  • the sum of the outer periphery length of the fiber cross section in a polyurethane resin application part be an average value of the sum of the outer periphery length of the fiber cross section calculated
  • the porosity in a polyurethane resin application part is 13% or less, More preferably, it is 9% or less. When the porosity is 13% or less, it becomes easy to shape the uneven shape by embossing.
  • the lower limit of the porosity is not particularly limited, and may be, for example, 0.1% or more, or 2% or more.
  • the porosity in a polyurethane resin application part is a ratio which a space
  • the porosity in a polyurethane resin application part be the average value of the porosity calculated
  • the number of fibers per 100 ⁇ m 2 of the cross-sectional area of the polyurethane resin in the polyurethane resin application part is preferably 1.5 or more, and more preferably 2.0 or more. Since the number of fibers per polyurethane resin is increased by being 1.5 or more, the binder effect by the polyurethane resin can be enhanced. Therefore, it is possible to improve the formability of a fine uneven shape by embossing and improve wear resistance.
  • the upper limit of the number of the fibers is not particularly limited, and may be, for example, 100 or less, 50 or less, or 20 or less.
  • the number of fibers per 100 ⁇ m 2 of polyurethane resin in the polyurethane resin application part is obtained using a photograph taken with a microscope of a vertical cross section of the polyurethane resin application part similar to the filling rate of the polyurethane resin.
  • the number of fiber cross sections in the measurement area is counted.
  • the area of the polyurethane resin is calculated by the product of the filling ratio of the polyurethane resin and the area of the measurement region. From these values, the number of fibers per 100 ⁇ m 2 of polyurethane resin is calculated.
  • the concave / convex design in the present embodiment is preferably a fine concave / convex design having a concave shape with a width of 200 to 1500 ⁇ m and a maximum depth of 20 to 450 ⁇ m. Moreover, as an uneven
  • the width of the recesses may be 200 to 800 ⁇ m
  • the maximum depth of the recesses may be 20 to 150 ⁇ m
  • the maximum value of the pattern spacing may be 2000 ⁇ m or less.
  • the width and depth of the recesses in the uneven design can be obtained by measuring the width and depth of the recesses from a photograph of a vertical cross section of the polyurethane resin coated portion taken with a microscope. Specifically, as shown in FIG. 2, the width (W) of the concave portion of the concave / convex design is to calculate the average value by measuring the distance from one end to the other end of any three concave portions. It is calculated by. Further, the depth (D) of the concave portion of the concave and convex design was lowered from the straight line connecting from one end of the concave portion to the other end when measuring the width of the concave portion to the deepest portion of the concave portion.
  • the pattern spacing of the concavo-convex design is obtained by measuring the distance between the vertices of adjacent convex portions from a photograph of the surface photograph of the polyurethane resin coated portion taken with a microscope, and any three sets of convex portions Find the maximum value for the part.
  • the cross-sectional shape in the vertical direction of the concavo-convex design is not particularly limited, but is preferably a corrugated shape that can express a more delicate pattern.
  • a corrugated shape it is preferable that the inclination angle of a straight line connecting the highest level of the convex portion and the lowest level of the concave portion is 5 to 40 degrees in the adjacent concave and convex portions. More preferably, the inclination angle is 5 to 30 degrees, and further preferably 5 to 20 degrees.
  • the inclination angle of the corrugated design is measured as follows. It can be obtained by measuring the angle between the straight line connecting the highest level of the convex part and the lowest level of the concave part and the tangent line at the highest level of the convex part from a photograph of a vertical section of the polyurethane resin coated part taken with a microscope.
  • the fabric having an uneven design according to this embodiment is obtained by applying a polyurethane resin to at least a part of the surface side of the fabric as a base fabric and then embossing the polyurethane resin applied portion by embossing. be able to.
  • a treatment liquid containing a polyurethane resin is applied to at least a part of the surface side of the fabric.
  • the treatment liquid may be applied to the entire surface side of the fabric.
  • the treatment liquid may be applied to a part of the surface side of the fabric, and in that case, it may be applied in a pattern.
  • the treatment liquid contains at least a polyurethane resin and a medium (for example, water) in which the polyurethane resin is dispersed. If necessary, a colorant (dye, pigment, metal powder), a thickener, and the like are added. An agent may be included.
  • the method for applying the treatment liquid is not particularly limited, and examples thereof include screen printing, rotary printing, and inkjet printing.
  • a gravure coater, a comma coater, a reverse coater, or the like can be used.
  • the polyurethane resin is dried and solidified.
  • the drying may be performed to such an extent that the medium does not remain, and the conditions are not particularly limited. What is necessary is just to set suitably in consideration of the boiling point of a medium and production efficiency.
  • the entire surface is embossed. Specifically, for example, it is passed through an embossing roll having a temperature of 100 to 160 ° C. and a pressure (linear pressure) of 490 to 1960 N / cm, and the polyurethane resin on the surface of the fabric is softened and shaped.
  • a desired concavo-convex pattern and a concavo-convex pattern opposite to the concavo-convex pattern are engraved.
  • the temperature of the embossing roll is set in consideration of the softening temperature of the polyurethane resin, the fiber material constituting the fabric, the required durability, and the like.
  • the heat treatment is preferably performed at 100 to 150 ° C. for 30 seconds to 3 minutes.
  • the fabric having the uneven design of the present embodiment can be obtained.
  • the polyurethane resin permeates at least between the fibers in the surface portion in the thickness direction and forms the surface portion of the fabric together with the fibers.
  • the use of the fabric having an uneven design according to the present embodiment is not particularly limited, and can be used in various fields such as vehicle interior materials, interior materials, clothing, bags, and the like.
  • Embossing roll A Recess width 800 ⁇ m, Recess depth maximum value 150 ⁇ m, Handle spacing 2000 ⁇ m, Vertical cross-sectional shape of corrugation; Wave shape, Inclination angle 5 to 20 degrees, Leather wrinkle pattern Embossing roll B: Recess width 1200 ⁇ m , Maximum depth of recesses 250 ⁇ m, pattern spacing 5000 ⁇ m, vertical concavo-convex cross-sectional shape; corrugated, tilt angle 10-30 degrees, leather wrinkle pattern Embossing roll C: recess width 1500 ⁇ m, maximum recess depth 450 ⁇ m, pattern spacing 10000 ⁇ m, vertical uneven cross-sectional shape; trapezoidal shape, line pattern (evaluation criteria) 1: All the concavo-convex shapes of A, B, and C are clearly formed. 2: The uneven shape of A is unclear
  • test piece was cut into a width of 25 mm and a length of 150 mm, and then fixed to a Demacha flex tester (manufactured by Tester Sangyo Co., Ltd.). Bending stroke was 57 mm, and bending was performed 3000 times at 300 times per minute. The test piece after bending was observed and evaluated according to the following criteria. (Evaluation criteria) 1: There is no crack. 2: A crack has occurred.
  • Example 1 A 167 dtex / 288f polyethylene terephthalate false twisted yarn was used as the warp, and a 167 dtex / 48f polyethylene terephthalate false twisted yarn was used as the weft to produce a raw machine by weaving with a warp-out 5 satin structure. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The resulting fabric had a warp density of 178 yarns / 25.4 mm, a weft yarn density of 61 yarns / 25.4 mm, and a fineness per volume of 1 mm 3 of 3928 dtex.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min.
  • As the embossing roll three types of rolls A to C described in the evaluation item moldability described above were used.
  • the polyurethane resin is infiltrated between the fibers in the surface portion of the fabric, and the fabric surface is formed by the polyurethane resin and the fiber, and the entire surface of the fabric is finely textured by embossing (fine embossed pattern).
  • the polyurethane resin application depth in the polyurethane resin coated portion of this design-coated fabric is 98 ⁇ m
  • the fiber filling rate is 69.1%
  • the polyurethane resin filling rate is 26.4%
  • the porosity is 4.5%
  • the polyurethane resin is 100 ⁇ m 2 .
  • the number of fibers was 6.5
  • the length around the filament cross section was 3863 ⁇ m
  • the fabric thickness was 400 ⁇ m.
  • the evaluation results are shown in Table 1.
  • L1 front yarn
  • L2 middle yarn
  • L3 back yarn
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
  • the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface.
  • the polyurethane resin is applied to the polyurethane resin coated portion of this design with a polyurethane resin application depth of 92 ⁇ m, a fiber filling ratio of 66.2%, a polyurethane resin filling ratio of 25.4%, a porosity of 8.4%, and a polyurethane resin of 100 ⁇ m 2.
  • the number of per-fibers was 4.0, the length around the filament cross section was 2934 ⁇ m, and the fabric thickness was 610 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 3 178 dtex / 24f polyethylene terephthalate false twisted yarn is used as the warp, and 167 dtex / 144f polyethylene terephthalate false twisted yarn is used as the weft.
  • a border pattern with an interval of was created and woven to obtain a living machine.
  • a weaving end direction and a weaving start direction at a cloth roller speed of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine equipped with a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed for 1 minute at 150 degreeC with the heat setter, and was finished.
  • the resulting fabric had a warp density of 184 pieces / 25.4 mm, a weft density of 88 pieces / 25.4 mm, and a fineness per volume of 1 mm 3 of 3113 dtex.
  • embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the weft part exposed on the fabric surface of the product obtained and applied with a resin is given a fine uneven design by embossing
  • the polyurethane resin application depth in the polyurethane resin application part is 66 ⁇ m
  • the fiber filling rate was 59.6%
  • polyurethane resin filling rate was 30.9%
  • porosity was 9.5%
  • the number of fibers per 100 ⁇ m 2 of polyurethane resin was 2.4
  • the perimeter of the filament cross section was 2353 ⁇ m.
  • the thickness of the fabric with design was 600 ⁇ m.
  • the evaluation results are shown in Table 1.
  • L1 front yarn
  • L2 middle yarn
  • L3 back yarn
  • the threaders were each knitted with a full set to obtain a living machine.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface with a knife coater at a cloth speed of 10 m / min.
  • the shape and position of the knife were set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried by a 130 ° C. dryer for 1 minute.
  • embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
  • the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface.
  • the polyurethane resin application depth in the polyurethane resin coated portion of the fabric with this design is 53 ⁇ m
  • the fiber filling rate is 50.5%
  • the polyurethane resin filling rate is 42.1%
  • the porosity is 7.4%, per 100 ⁇ m 2 of polyurethane resin.
  • the number of fibers was 1.5
  • the length around the filament cross section was 1996 ⁇ m
  • the fabric thickness was 610 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 5 Using a 26 gauge double knit circular knitting machine, 110 dtex / 48f polyethylene terephthalate flame retardant yarn as back yarn (3F, 6F), 110 dtex / 36f polyethylene terephthalate flame retardant yarn as tie yarn (2F, 5F), front yarn (1F, 3F) was used, and a double knitting machine was knitted according to the organization chart of FIG. 4 using a 84 dtex / 94 f polyethylene terephthalate false twisted yarn. Subsequently, it dye
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried for 10 minutes with a 90 ° C. dryer.
  • embossing was performed with an embossing machine at a roll temperature of 130 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface.
  • the polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 84 ⁇ m
  • the fiber filling ratio is 66.2%
  • the polyurethane resin filling ratio is 24.8%
  • the porosity is 9.0%
  • the number of fibers was 4.1
  • the perimeter of the filament cross section was 2924 ⁇ m
  • the fabric thickness was 600 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 6 Using a double raschel knitting machine with 6 gauges at 22 gauge, a full set of 84 dtex / 36f polyethylene terephthalate false twisted yarn as the ground yarn on the heels L1 and L6, and 110 dtex / 94f as the ground yarn on the heels L2 and L5 A full set of polyethylene terephthalate false twisted yarn, and 84dtex / 216f of polyethylene terephthalate false twisted yarn as pile yarns are placed on the heels L3 and L4, respectively, and a double raschel knitted fabric is knitted according to the following organization. did.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 110 ° C., a roll pressure of 1960 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface.
  • the polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 96 ⁇ m
  • the fiber filling rate is 63.1%
  • the polyurethane resin filling rate is 27.9%
  • the porosity is 9.0%
  • the number of fibers was 9.6, the length around the filament cross section was 4609 ⁇ m, and the fabric thickness was 1200 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 7 Using a 22-gauge double raschel knitting machine, a full set of 167 dtex / 30f polyethylene terephthalate false twisted yarn as the lining fabric ground yarn on the heels L1 and L2, and 33 dtex / 1f as the connecting yarn on the heel L3 Full set of polyethylene terephthalate false twisted yarn, 330dtex / 144f of polyethylene terephthalate false twisted yarn as connecting yarn to ⁇ L4, and 220dtex / 288f of polyethylene terephthalate false twisted yarn as surface texture ground yarn to ⁇ L5 With a full set of yarns, 110 dtex / 144 f polyethylene terephthalate false twisted yarns were introduced in 1 in 3 out as surface texture ground yarns on heel L6, respectively, and a double raschel knitted fabric was knitted according to the following structure.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 100 ° C., a roll pressure of 1764 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 95 ⁇ m
  • the fiber filling rate is 70.1%
  • the polyurethane resin filling rate is 21.9%
  • the porosity is 8.0%
  • the fibers at 100 ⁇ m 2 polyurethane resin. was 5.8, the length around the filament cross section was 3329 ⁇ m, and the fabric thickness was 2500 ⁇ m.
  • Table 1 The evaluation results are shown in Table 1.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 37 ⁇ m, a fiber filling rate of 64.9%, a polyurethane resin filling rate of 20.1%, a porosity of 15.0%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length of 1.3 filaments and the circumference of the filament cross section was 1480 ⁇ m.
  • the evaluation results are shown in Table 1.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 27 ⁇ m, a fiber filling ratio of 14.6%, a polyurethane resin filling ratio of 62.0%, a porosity of 23.4%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length around the filament cross section was 409 ⁇ m.
  • the evaluation results are shown in Table 1.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of the polyurethane resin applied was 60 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes. In the obtained fabric, no fiber was exposed on the surface, and a polyurethane resin layer was formed.
  • embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 35 ⁇ m, a fiber filling rate of 70.4%, a polyurethane resin filling rate of 23.6%, a porosity of 6.0%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length of the periphery of the 7.4 filaments and the filament cross section was 3931 ⁇ m.
  • the polyurethane resin was in the form of a film. The evaluation results are shown in Table 1.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by screen printing.
  • the number of coatings was set so that the amount of the polyurethane resin applied was 60 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 42 ⁇ m, a fiber filling rate of 86.2%, a polyurethane resin filling rate of 10.0%, a porosity of 3.8%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is
  • the length of the periphery of the filament cross section was 7215 ⁇ m.
  • the polyurethane resin was in the form of a film. The evaluation results are shown in Table 1.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 160 ° C., a roll pressure of 490 N / cm, and a cloth speed of 3 m / min.
  • the three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 130 ⁇ m, a fiber filling rate of 72.2%, a polyurethane resin filling rate of 12.4%, a porosity of 15.4%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is
  • the length of 2.4 filaments and the circumference of the filament cross section was 1647 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Comparative Example 7 The fabric after heat treatment by the heat setter of Comparative Example 6 was used. End of weaving at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine equipped with a needle cloth roll having 12 pile rollers and 12 counter pile rollers on the back side (weft output side) of the fabric. Brushing from the direction and from the weaving start direction was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished.
  • a polyurethane resin “RYUDTE-W Binder UF6025” manufactured by DIC Corporation
  • solid content: 28% by mass was applied to the entire raised surface by a screen printing machine.
  • the number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying.
  • After applying the polyurethane resin solution it was dried with a 90 ° C. dryer for 10 minutes.
  • embossing was performed with an embossing machine at a roll temperature of 160 ° C., a roll pressure of 490 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
  • the obtained product has a polyurethane resin application depth of 158 ⁇ m, a fiber filling rate of 40.0%, a polyurethane resin filling rate of 20.7%, a porosity of 40.3%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length around the filament cross section was 888 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Comparative Example 8 A product was obtained in the same manner as in Comparative Example 7, except that the amount of polyurethane resin applied was 50 g / m 2 by weight after drying and the embossing conditions were 130 ° C. roll temperature.
  • the obtained product has a polyurethane resin application depth of 161 ⁇ m, a fiber filling rate of 42.1%, a polyurethane resin filling rate of 12.0%, a porosity of 45.9%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length of the 1.4 filaments perimeter was 959 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Comparative Example 9 A product was obtained in the same manner as in Comparative Example 7, except that the amount of polyurethane resin applied was 10 g / m 2 by weight after drying and the embossing conditions were 130 ° C. roll temperature.
  • the obtained product has a polyurethane resin application depth of 31 ⁇ m, a fiber filling rate of 42.8%, a polyurethane resin filling rate of 25.7%, a porosity of 30.0%, and the number of fibers per 100 ⁇ m 2 of polyurethane resin is The length of the 0.7 perimeter of the filament cross section was 977 ⁇ m.
  • the evaluation results are shown in Table 1.
  • the products obtained in Examples 1 to 7 were excellent in all evaluations of the formability, flex resistance, and wear resistance of the uneven design.
  • the products obtained by Comparative Examples 1, 2, 4, 8, and 9 were inferior in evaluation of formability and wear resistance.
  • the products obtained by Comparative Examples 3 and 5 were inferior in evaluation of flex resistance.
  • the product obtained by Comparative Example 6 was inferior in moldability.
  • the product obtained by Comparative Example 7 was inferior in wear resistance.

Abstract

Provided is a fabric to which a fine, bending-resistant, and wear-resistant uneven-surface design has been imparted. This fabric has a polyurethane resin-coated section on at least a part of a surface side of the fabric, and has an uneven-surface design imparted to the polyurethane resin-coated section. The polyurethane resin-coated section is a region coated with a polyurethane resin; the polyurethane resin is impregnated between fibers in at least a surface section of the fabric, and the polyurethane resin and the fibers form a fabric surface. The imparted depth of polyurethane resin in the polyurethane resin-coated section is 50 to 200 μm, the rate of filling with the polyurethane resin is 15 to 45%, and the rate of filling with the fibers of the fabric is 50 to 80%.

Description

凹凸意匠を有する布帛およびその製造方法Fabric having uneven design and method for producing the same
 本発明は、凹凸意匠を有する布帛およびその製造方法に関する。 The present invention relates to a fabric having an uneven design and a method for producing the same.
 今日、衣料やインテリア資材、車両内装材などの分野では、意匠性の高い商品が求められ、表面に凹凸模様のある商品が開発されている。例えば、布帛に凹凸意匠を付与するために、布帛表面にエンボス加工が施されている。しかし、布帛を構成する繊維は弾性がある。そのため、エンボス加工による加熱押圧を行っても、その意匠が微細な凹凸形状である場合は、繊維の弾性に起因する圧縮回復力により、十分な賦型効果が得られないという課題がある。 Today, in the fields of clothing, interior materials, and vehicle interior materials, products with high design properties are required, and products with uneven patterns on the surface are being developed. For example, in order to give an uneven design to the fabric, the fabric surface is embossed. However, the fibers constituting the fabric are elastic. Therefore, even if the heat pressing by embossing is performed, if the design is a fine uneven shape, there is a problem that a sufficient shaping effect cannot be obtained due to the compression recovery force due to the elasticity of the fiber.
 上記のような課題を解決する方法として、布帛を構成する繊維として繊度の小さいものを用いて、繊維の弾性に起因する圧縮回復力を小さくすることが考えられる。しかし、この場合、エンボス加工により微細な凹凸形状は付与できるが、凹凸形状の耐久性がなく、摩耗により凹凸形状が消失するという課題がある。 As a method for solving the above problems, it is conceivable to reduce the compression recovery force caused by the elasticity of the fiber by using a fiber having a small fineness as a fiber constituting the fabric. However, in this case, although a fine uneven shape can be imparted by embossing, there is a problem that the uneven shape is not durable and the uneven shape disappears due to wear.
 また、特許文献1や特許文献2のように、布帛表面に樹脂膜(樹脂層)を形成すれば、繊維に比べて樹脂は賦型性が良好であるため、微細な凹凸形状を付与することができる。しかし、合成皮革やプラスチックフィルムのように表面に膜が張っている状態になってしまい、繊維による柔らかな触感や外観を損ね、また、屈曲した際にひび割れが生じてしまうという課題がある。 Moreover, if a resin film (resin layer) is formed on the surface of the fabric as in Patent Document 1 and Patent Document 2, the resin has better moldability than fibers, so that a fine uneven shape is imparted. Can do. However, there is a problem that a film is stretched on the surface like a synthetic leather or a plastic film, the soft tactile sensation and appearance due to the fibers are impaired, and cracks occur when bent.
特開昭55-132784号公報JP 55-132784 A 特開2002-242085号公報JP 2002-242085 A
 本発明の目的は、微細で且つ耐屈曲性および耐摩耗性を有する凹凸意匠が付与された布帛を提供することである。 An object of the present invention is to provide a fabric that is fine and has an uneven design having bending resistance and abrasion resistance.
 本発明は第1に、繊維からなる布帛の表面側の少なくとも一部にポリウレタン樹脂塗布部を有し、前記ポリウレタン樹脂塗布部に賦型された凹凸意匠を有する布帛に関する。前記ポリウレタン樹脂塗布部は、塗布されたポリウレタン樹脂が存在する領域であって、ポリウレタン樹脂が布帛の少なくとも表面部における繊維間に浸透してポリウレタン樹脂と繊維とにより布帛表面が形成されており、該ポリウレタン樹脂塗布部が以下の要件を満たす。
 ポリウレタン樹脂の付与深さが50~200μm。
 ポリウレタン樹脂の充填率が15~45%。
 布帛の繊維の充填率が50~80%。
The present invention firstly relates to a fabric having a polyurethane resin coated portion on at least a part of the surface side of a fabric made of fibers, and having an uneven design formed on the polyurethane resin coated portion. The polyurethane resin application part is an area where the applied polyurethane resin is present, and the polyurethane resin penetrates between the fibers in at least the surface part of the fabric so that the fabric surface is formed by the polyurethane resin and the fibers, The polyurethane resin application part satisfies the following requirements.
The application depth of the polyurethane resin is 50 to 200 μm.
The filling rate of polyurethane resin is 15-45%.
The fiber filling ratio of the fabric is 50 to 80%.
 本発明は第2に、上記の凹凸意匠を有する布帛の製造方法であって、布帛の表面側の少なくとも一部にポリウレタン樹脂を塗布した後、ポリウレタン樹脂塗布部にエンボス加工にて凹凸意匠を賦型する、布帛の製造方法に関する。 A second aspect of the present invention is a method for producing a fabric having the above-described uneven design, in which a polyurethane resin is applied to at least a part of the surface side of the fabric, and then the uneven design is applied to the polyurethane resin application portion by embossing. The present invention relates to a method for manufacturing a fabric.
 本発明によれば、ポリウレタン樹脂が繊維の弾性に起因する圧縮回復力を抑制し、微細で且つ耐屈曲性および耐摩耗性を有する凹凸意匠が付与された布帛を提供することができる。 According to the present invention, it is possible to provide a fabric in which the polyurethane resin suppresses the compressive recovery force caused by the elasticity of the fiber and is provided with a fine uneven design having bending resistance and wear resistance.
一実施例に係る布帛表面を示す写真である。It is a photograph which shows the fabric surface which concerns on one Example. 一実施例に係る布帛の断面写真である。It is a cross-sectional photograph of the fabric which concerns on one Example. 一実施例に係る布帛のポリウレタン樹脂塗布部を拡大した断面写真である。It is the cross-sectional photograph which expanded the polyurethane resin application part of the fabric which concerns on one Example. 実施例5に用いる布帛の組織図である。6 is a structural diagram of a fabric used in Example 5. FIG.
 本実施形態に係る凹凸意匠を有する布帛は、布帛の表面側の少なくとも一部にポリウレタン樹脂塗布部を有し、前記ポリウレタン樹脂塗布部に賦型された凹凸意匠を有するものである。ポリウレタン樹脂塗布部は、塗布されたポリウレタン樹脂が存在する領域であって、ポリウレタン樹脂が布帛の少なくとも表面部における繊維間に浸透してポリウレタン樹脂と繊維とにより布帛表面が形成されており、下記(1)~(3)の要件を満たすものである。
 (1)ポリウレタン樹脂の付与深さが50~200μm。
 (2)ポリウレタン樹脂の充填率が15~45%。
 (3)布帛の繊維の充填率が50~80%。
The fabric having the concavo-convex design according to the present embodiment has a polyurethane resin coated portion on at least a part of the surface side of the fabric, and has a concavo-convex design formed on the polyurethane resin coated portion. The polyurethane resin application part is an area where the applied polyurethane resin is present, and the polyurethane resin permeates between the fibers in at least the surface part of the fabric so that the fabric surface is formed by the polyurethane resin and the fibers. It satisfies the requirements of 1) to (3).
(1) The application depth of the polyurethane resin is 50 to 200 μm.
(2) The filling rate of the polyurethane resin is 15 to 45%.
(3) The fiber filling ratio of the fabric is 50 to 80%.
 これら(1)~(3)の要件を満たし、且つポリウレタン樹脂を布帛の表面周辺の繊維の間に存在させることにより、繊維の弾性に起因する圧縮回復力を抑制しつつ、耐屈曲性および耐摩耗性を有する微細な凹凸意匠を得ることができる。 By satisfying the requirements of (1) to (3) and having a polyurethane resin present between the fibers around the surface of the fabric, it is possible to suppress the compression recovery force due to the elasticity of the fibers, while maintaining the bending resistance and resistance. A fine concavo-convex design having wearability can be obtained.
 図1は、一実施例に係る凹凸意匠を有する布帛の表面の写真(25倍)であり、図2は、同布帛の断面写真(100倍)である。布帛の表面にはエンボス加工による微細な凹凸意匠、即ちエンボス模様が形成されている。 FIG. 1 is a photograph (25 times) of the surface of a fabric having an uneven design according to one example, and FIG. 2 is a cross-sectional photograph (100 times) of the fabric. A fine uneven design by embossing, that is, an embossed pattern is formed on the surface of the fabric.
 図3の布帛の断面写真は、一実施例に係る凹凸意匠を有する布帛のポリウレタン樹脂塗布部の垂直方向における断面の写真であり、ポリウレタン樹脂塗布部のポリウレタン樹脂の付与状態の一例である。ポリウレタン樹脂は、布帛表面を被覆する膜状ではなく、布帛の少なくとも表面部における繊維間に浸透して繊維とともに塊状をなし、布帛表面周辺の繊維の間に繊維同士を固着するように存在している。そのため、繊維の弾性に起因する圧縮回復力を抑制しつつ、耐屈曲性および耐摩耗性を有する微細な凹凸意匠が得られる。なお、本実施形態において、ポリウレタン樹脂塗布部とは、ポリウレタン樹脂が塗布された部分であって、塗布されたポリウレタン樹脂が存在する領域を指す。 The cross-sectional photograph of the fabric in FIG. 3 is a photograph of a cross-section in the vertical direction of the polyurethane resin coated portion of the fabric having a concavo-convex design according to one embodiment, and is an example of the state of application of the polyurethane resin in the polyurethane resin coated portion. Polyurethane resin is not in the form of a film covering the surface of the fabric, but exists so as to penetrate between the fibers on at least the surface portion of the fabric to form a lump together with the fibers and to fix the fibers between the fibers around the fabric surface. Yes. Therefore, a fine uneven design having bending resistance and wear resistance can be obtained while suppressing the compression recovery force due to the elasticity of the fiber. In the present embodiment, the polyurethane resin application portion is a portion where the polyurethane resin is applied and indicates a region where the applied polyurethane resin exists.
 本実施形態に用いられる処理対象としての布帛、即ち、ポリウレタン樹脂を塗布する対象の布帛は、基布ないし生地とも称される。このような布帛としては特に限定されるものではなく、例えば、織物、編物、不織布など公知の布帛を挙げることができる。織物の組織としては特に限定されるものではなく、例えば、三原組織である平織、綾織(斜文織)、朱子織、これら三原組織の変化組織、なし地織などの特別組織、さらにこれらを2種以上組み合わせた混合組織などを挙げることができる。編物としては特に限定されるものではなく、例えば、トリコット、ダブルラッセル、丸編を挙げることができる。 The fabric as a treatment target used in the present embodiment, that is, a fabric to which a polyurethane resin is applied is also referred to as a base fabric or a cloth. Such a fabric is not particularly limited, and examples thereof include known fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics. The fabric structure is not particularly limited. For example, plain weaves, twill weave (oblique fabric), satin weaving, special textures such as change textures of these Mihara textures, plain fabrics, and the like. The mixed structure | tissue etc. which combined the seed | species or more can be mentioned. The knitted fabric is not particularly limited, and examples thereof include tricot, double raschel, and circular knitting.
 本実施形態における布帛を構成する繊維素材は特に限定されるものではなく、従来公知の天然繊維、再生繊維、半合成繊維、合成繊維などを用いることができる。これらは1種単独で、または2種以上組合せて用いることができる。なかでも、耐久性、特には機械的強度、耐熱性、耐光性の観点から、繊維素材は合成繊維が好ましく、ポリエステルがより好ましく、ポリエチレンテレフタレートが特に好ましい。さらには、難燃性の観点から、難燃繊維を用いることが好ましい。 The fiber material constituting the fabric in the present embodiment is not particularly limited, and conventionally known natural fibers, regenerated fibers, semi-synthetic fibers, synthetic fibers, and the like can be used. These can be used alone or in combination of two or more. Among these, from the viewpoints of durability, particularly mechanical strength, heat resistance, and light resistance, the fiber material is preferably synthetic fiber, more preferably polyester, and particularly preferably polyethylene terephthalate. Furthermore, it is preferable to use a flame retardant fiber from the viewpoint of flame retardancy.
 基布としての布帛の表面には、織編組織や起毛加工など公知の方法により立毛が形成されていてもよい。布帛が立毛を有する場合の立毛長さは特に制限されないが、耐摩耗性の観点から、例えば、フルカット起毛品やダブルラッセルの開反品などのパイル品の場合、立毛長さは1600μm以下であることが好ましい。1600μm以下であることにより、立毛の表面にポリウレタン樹脂が層状で固着されることが抑制できる。そのため、摩耗時にポリウレタン樹脂塗布部のみに負荷がかかり、耐摩耗性が悪くなることを防ぐことができる。 Napped fibers may be formed on the surface of the fabric as the base fabric by a known method such as a woven or knitted structure or a raised process. The length of napping when the fabric has napping is not particularly limited, but from the viewpoint of wear resistance, for example, in the case of pile products such as a full-cut napping product or a double raschel opening product, the napping length is 1600 μm or less. Preferably there is. By being 1600 micrometers or less, it can suppress that a polyurethane resin adheres to the surface of napping in a layer form. For this reason, it is possible to prevent a load from being applied only to the polyurethane resin application portion during wear and deterioration of wear resistance.
 本実施形態に係る凹凸意匠を有する布帛(以後、意匠付き布帛ともいう。)は、布帛の表面側の少なくとも一部にポリウレタン樹脂塗布部を有している。ポリウレタン樹脂塗布部の布帛を構成する繊維の単繊維繊度(以後、単繊度ともいう。)は、主として1.5dtex以下の繊維であることが好ましい。単繊維繊度が1.5dtex以下であることにより、繊維間の空隙が大きくなることを防ぎ、エンボス加工による微細な凹凸形状の賦型性を向上することができる。単繊維繊度の下限は、特に限定されず、例えば0.1dtex以上でもよい。 The fabric having a concavo-convex design according to the present embodiment (hereinafter also referred to as a fabric with a design) has a polyurethane resin coating portion at least at a part on the surface side of the fabric. It is preferable that the single fiber fineness (hereinafter also referred to as single fineness) of the fibers constituting the fabric of the polyurethane resin coated portion is mainly fibers of 1.5 dtex or less. When the single fiber fineness is 1.5 dtex or less, it is possible to prevent a gap between fibers from becoming large, and to improve the formability of a fine uneven shape by embossing. The lower limit of the single fiber fineness is not particularly limited, and may be, for example, 0.1 dtex or more.
 基布としての布帛は、織物の場合、凹凸意匠を付与する領域において、単位体積1mm3当たりの繊度の合計が2500~5800dtexであることが好ましい。また3000~5800dtexがより好ましく、3500~5800dtexがさらに好ましい。2500dtex以上であることにより、繊維間の空隙を小さくして、エンボス加工による微細な凹凸形状の賦型性を向上することができる。また、5800dtex以下であることにより、良好な製織性を確保することができる。 In the case where the fabric as the base fabric is a woven fabric, the total fineness per unit volume of 1 mm 3 is preferably 2500 to 5800 dtex in the region where the uneven design is imparted. Further, 3000 to 5800 dtex is more preferable, and 3500 to 5800 dtex is further preferable. By being 2500 dtex or more, the space | interval between fibers can be made small and the moldability of the fine uneven | corrugated shape by embossing can be improved. Moreover, favorable weaving property is securable by being 5800 dtex or less.
 なお、単位体積1mm3当たりの繊度の合計は、次のように算出される。すなわち、経糸密度(本/25.4mm)と経糸繊度(経糸の糸繊度)(dtex)および25.4mmの積により、生機長さ方向に対して幅方向25.4mm×長さ方向25.4mm×布帛厚み(mm)の体積における経糸の繊度の合計を算出する。この計算において、経方向25.4mmにおける経糸の長さを25.4mmとしている。厳密には経糸は直進せず緯糸との交絡部分で曲がっているが直進しているものとして計算する。緯糸の繊度の合計も経糸と同様に算出し、経糸の繊度の合計および緯糸の繊度の合計の和を算出する。算出した値と体積(幅方向×長さ方向×布帛厚み)の商を算出し、1mm3当たりの繊度の合計とする。 The total fineness per unit volume 1 mm 3 is calculated as follows. That is, the product of warp density (main / 25.4 mm), warp fineness (warp fineness) (dtex) and 25.4 mm is 25.4 mm in the width direction and 25.4 mm in the length direction with respect to the length direction of the machine. X The total fineness of the warp in the volume of the fabric thickness (mm) is calculated. In this calculation, the length of the warp in the warp direction 25.4 mm is 25.4 mm. Strictly speaking, it is calculated that the warp does not go straight but is bent at the entangled part with the weft but is going straight. The sum of the fineness of the weft is calculated in the same manner as the warp, and the sum of the sum of the fineness of the warp and the sum of the fineness of the weft is calculated. The quotient of the calculated value and volume (width direction × length direction × fabric thickness) is calculated and taken as the total fineness per 1 mm 3 .
 具体的には、下記式により算出される。
  単位体積1mm3当たりの繊度の合計
  =(経糸密度×経糸繊度×25.4+緯糸密度×緯糸繊度×25.4)÷(25.4×25.4×布帛厚み(mm))
 糸抜きがある場合など、糸密度が実質的な密度と異なる場合は、実質的な密度を用いて算出する。例えば、経糸抜きが1in3out(すなわち、1本糸入れ3本糸抜きの配列)であれば、経糸密度に1/4を乗じて、算出する。
Specifically, it is calculated by the following formula.
Total fineness per unit volume of 1 mm 3 = (warp density × warp fineness × 25.4 + weft density × weft fineness × 25.4) ÷ (25.4 × 25.4 × fabric thickness (mm))
When the yarn density is different from the substantial density, such as when there is thread removal, the substantial density is used for calculation. For example, if the warp removal is 1 in 3out (that is, an arrangement of three single thread inserts), the warp density is multiplied by 1/4.
 基布としての布帛は、編物の場合、凹凸意匠を付与する領域において、単位体積1mm3当たりの繊度の合計が1000~5800dtexであることが好ましい。また、1200~5800dtexがより好ましく、1500~5800dtexがさらに好ましい。1000dtex以上であることにより、繊維間の空隙を小さくして、エンボス加工による微細な凹凸形状の賦型性を向上することができる。また、5800dtex以下であることにより、良好な製編性を確保することができる。 In the case of a knitted fabric, the fabric as the base fabric preferably has a total fineness of 1000 to 5800 dtex per unit volume of 1 mm 3 in the region where the uneven design is imparted. Further, 1200 to 5800 dtex is more preferable, and 1500 to 5800 dtex is further preferable. By being 1000 dtex or more, the space | gap between fibers can be made small and the moldability of the fine uneven | corrugated shape by embossing can be improved. Moreover, favorable knitting property is securable by being 5800 dtex or less.
 なお、編物の場合の単位体積1mm3当たりの繊度の合計は、次のように算出される。コース密度の2倍数と糸繊度および25.4mmの積により、生機長さ方向に対して幅方向(25.4mm)×長さ方向(25.4mm)×布帛厚み(mm)の体積における繊度の合計が算出される。生機長さ方向に対して垂直方向の断面では1ループで2つの断面が見えるため、経密度を倍にして計算する。また、この計算において、幅方向25.4mmにおけるループの断面が連なっている長さを25.4mmとしている。また、厳密には編糸は直進せずループを形成しているため曲がっているが直進しているものとして計算する。算出した値と体積(幅方向×長さ方向×布帛厚み)の商を算出し、1mm3当たりの繊度の合計とする。組織が多重である場合は、それぞれの組織を構成する糸各々において、生機幅方向(25.4mm)×生機長さ方向(25.4mm)×布帛厚み(mm)の体積における糸繊度を算出した後、合計し、合計した値と体積の商を算出して、単位体積1mm3当たりの繊度の合計を求める。 The total fineness per unit volume of 1 mm 3 in the case of a knitted fabric is calculated as follows. The product of the double of the course density and the yarn fineness and 25.4 mm gives the fineness in the volume of the width direction (25.4 mm) x length direction (25.4 mm) x fabric thickness (mm) with respect to the length direction of the raw machine. The total is calculated. In the cross section perpendicular to the length direction of the raw machine, two cross sections can be seen in one loop. In this calculation, the length of the loop cross-section in the width direction 25.4 mm is 25.4 mm. Strictly speaking, it is calculated that the knitting yarn does not go straight but forms a loop and is bent but straight. The quotient of the calculated value and volume (width direction × length direction × fabric thickness) is calculated and taken as the total fineness per 1 mm 3 . When the structure is multiple, the yarn fineness in the volume of raw machine width direction (25.4 mm) x raw machine length direction (25.4 mm) x fabric thickness (mm) was calculated for each yarn constituting each structure. Thereafter, the sum is calculated, and the quotient of the total value and the volume is calculated to obtain the total fineness per unit volume of 1 mm 3 .
 具体的には、下記式により算出される。
  単位体積1mm3当たりの繊度の合計(トリコット編および丸編の場合)
  =(各糸の糸繊度の合計※1×コース密度×2×25.4)÷(25.4×25.4×布帛厚み(mm))
 ※1:トリコット編であれば、フロント糸、ミドル糸およびバック糸の糸繊度の合計、丸編であれば、表糸、つなぎ糸および裏糸の糸繊度の合計。
Specifically, it is calculated by the following formula.
Total fineness per unit volume of 1 mm 3 (for tricot and circular knitting)
= (Total yarn fineness of each yarn * 1 x course density x 2 x 25.4) ÷ (25.4 x 25.4 x fabric thickness (mm))
* 1: For tricot knitting, the sum of the fineness of the front yarn, middle yarn and back yarn, and for the circular knitting, the sum of the fineness of the front yarn, binder yarn and back yarn.
  単位体積1mm3当たりの繊度の合計(ダブルラッセルの開反品の場合)
  ={(各地糸の糸繊度の合計+各パイル糸の糸繊度の合計)×コース密度×2×25.4}÷(25.4×25.4×布帛厚み(mm))
Total fineness per unit volume of 1 mm 3 (in the case of double raschel opening)
= {(Total yarn fineness of each yarn + total yarn fineness of each pile yarn) × course density × 2 × 25.4} ÷ (25.4 × 25.4 × fabric thickness (mm))
  単位体積1mm3当たりの繊度の合計(ダブルラッセルの非開反品の場合)
  ={(各地糸の糸繊度の合計+各連結糸の糸繊度の合計×2)×コース密度×2×25.4}÷(25.4×25.4×布帛厚み(mm))
The total fineness per unit volume 1 mm 3 (when a double Russell HiHiraku anti goods)
= {(Total yarn fineness of each yarn + total yarn fineness of each connecting yarn × 2) × course density × 2 × 25.4} ÷ (25.4 × 25.4 × fabric thickness (mm))
 糸抜きがある場合など、糸密度が実質的な密度と異なる場合は、実質的な密度を用いて算出する。一例を以下に示す。ダブルラッセルの非開反品の連結糸において、例えば糸抜きが1in1outであった場合は、下記式となる。
  単位体積1mm3当たりの繊度の合計
  ={(各地糸の糸繊度の合計+各連結糸の糸繊度の合計×2×1/2)×コース密度×2×25.4}÷(25.4×25.4×布帛厚み(mm))
When the yarn density is different from the substantial density, such as when there is thread removal, the substantial density is used for calculation. An example is shown below. In the case of a double Russell non-reversed connection thread, for example, when the thread removal is 1 in 1 out, the following formula is obtained.
Total fineness per unit volume of 1 mm 3 = {(total yarn fineness of each yarn + total yarn fineness of each connecting yarn × 2 × 1/2) × course density × 2 × 25.4} ÷ (25.4 X 25.4 x fabric thickness (mm))
 本実施形態に用いられるポリウレタン樹脂は特に限定されず、例えば、ポリエーテル系、ポリエステル系、ポリカーボネート系などのポリウレタン樹脂を挙げることができる。なかでも、風合いの観点からはポリエステル系ポリウレタン樹脂が好ましく用いられ、耐久性、特には耐摩耗性の観点からはポリカーボネート系ポリウレタン樹脂が好ましく用いられる。 The polyurethane resin used in the present embodiment is not particularly limited, and examples thereof include polyether-based, polyester-based, and polycarbonate-based polyurethane resins. Of these, polyester polyurethane resins are preferably used from the viewpoint of texture, and polycarbonate polyurethane resins are preferably used from the viewpoint of durability, particularly wear resistance.
 ポリウレタン樹脂の軟化温度は、100~200℃であることが好ましい。軟化温度が100℃以上であることにより、車両内装材など高温に長時間放置されるような条件で使用された場合でも樹脂が溶け出しにくくすることができる。軟化温度が200℃以下であることにより、凹凸意匠を賦型する際にエンボスロールの加熱温度を低く設定して、ポリウレタン樹脂が付与されない部分の基布が粗硬になるのを回避することができる。なお、軟化温度は、DSC熱分析機を用いて示差走査熱分析法により測定される。 The softening temperature of the polyurethane resin is preferably 100 to 200 ° C. When the softening temperature is 100 ° C. or higher, the resin can be hardly dissolved even when used under conditions such as a vehicle interior material that is left at a high temperature for a long time. When the softening temperature is 200 ° C. or lower, the embossing roll heating temperature is set low when shaping the uneven design, and the portion of the base fabric to which the polyurethane resin is not applied is prevented from becoming hard. it can. The softening temperature is measured by differential scanning calorimetry using a DSC thermal analyzer.
 ポリウレタン樹脂の塗布は、布帛全体に行ってもよいし、微細な凹凸意匠を付与する部分周辺のみに行ってもよい。ポリウレタン樹脂塗布部におけるポリウレタン樹脂の付与量は、処理対象となる布帛の構成、例えば、密度や繊度などによって異なるが、布帛に対しておおよそ1~200g/m2であることが好ましい。1g/m2以上であることにより、繊維同士が十分に固着されるため耐摩耗性が向上したり、エンボス加工による微細な凹凸形状の賦型性が向上したりする。200g/m2以下であることにより、風合いが硬くなることを抑制する。ここで、ポリウレタン樹脂は、布帛の少なくとも表面部(表層部)における繊維間に浸透して繊維とともに布帛の表面部を形成するものであり、銀面付き合成皮革のようにポリウレタン樹脂単独の表皮層を布帛の表面全体に形成するものではない。なお、ポリウレタン樹脂の付与量とは、ポリウレタン樹脂が塗布される部分における付与量を平方メートル当たりの付与量に換算したものであり、乾燥後の固形分質量での値である。 The application of the polyurethane resin may be performed on the entire fabric, or may be performed only around the portion to which the fine uneven design is imparted. The amount of polyurethane resin applied in the polyurethane resin application part varies depending on the configuration of the fabric to be treated, such as density and fineness, but is preferably about 1 to 200 g / m 2 with respect to the fabric. By being 1 g / m 2 or more, the fibers are sufficiently fixed to each other, so that the wear resistance is improved and the formability of a fine uneven shape by embossing is improved. By being 200 g / m 2 or less, the texture is prevented from becoming hard. Here, the polyurethane resin permeates between the fibers in at least the surface portion (surface layer portion) of the fabric to form the surface portion of the fabric together with the fiber, and the surface layer of the polyurethane resin alone like a synthetic leather with a silver surface. Is not formed on the entire surface of the fabric. In addition, the provision amount of a polyurethane resin converts the provision amount in the part by which a polyurethane resin is apply | coated to the provision amount per square meter, and is the value in the solid content mass after drying.
 本実施形態のポリウレタン樹脂塗布部におけるポリウレタン樹脂の付与深さは、50~200μmの範囲である。50μm以上であることにより、繊維同士が十分に固着されるため耐摩耗性が向上したり、エンボス加工による微細な凹凸形状の賦型性が向上したりする。200μm以下であることにより、風合いが硬くなることを抑制する。好ましくは50~130μmであり、さらに好ましくは50~100μmである。 The application depth of the polyurethane resin in the polyurethane resin application portion of this embodiment is in the range of 50 to 200 μm. When the thickness is 50 μm or more, the fibers are sufficiently fixed to each other, so that the wear resistance is improved and the formability of a fine uneven shape by embossing is improved. By being 200 μm or less, the texture is prevented from becoming hard. The thickness is preferably 50 to 130 μm, more preferably 50 to 100 μm.
 なお、ポリウレタン樹脂の付与深さとは、ポリウレタン樹脂が布帛の繊維の間に存在している領域の、布帛の表面からの深さをいい、以下、この領域をポリウレタン樹脂の付与深さ領域ともいう。ここで、ポリウレタン樹脂の付与深さは、ポリウレタン樹脂塗布部の厚みと同義である。ポリウレタン樹脂の付与深さを図3に白色矢印にて示す。なお、ポリウレタン樹脂の付与深さは、次のように求められる。ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影し、任意の10か所において、ポリウレタン樹脂が繊維同士を固着して塊状をなしている部分の、布帛表面からポリウレタン樹脂の浸透下端までの垂直方向の長さを測定して、平均を求める。 The polyurethane resin application depth refers to the depth from the surface of the fabric where the polyurethane resin exists between the fabric fibers. Hereinafter, this region is also referred to as the polyurethane resin application depth region. . Here, the application depth of the polyurethane resin is synonymous with the thickness of the polyurethane resin application portion. The application depth of the polyurethane resin is indicated by a white arrow in FIG. In addition, the provision depth of a polyurethane resin is calculated | required as follows. The vertical cross section of the polyurethane resin coated part is photographed with a microscope, and the vertical part from the fabric surface to the lower end of penetration of the polyurethane resin at the arbitrary 10 places where the polyurethane resin adheres to each other and forms a lump. Measure the length of the direction and find the average.
 上記のようにポリウレタン樹脂は、布帛の少なくとも表面部における繊維間に浸透しており、布帛厚みの全体にわたって浸透してもよい。但し、風合いの点から、ポリウレタン樹脂は、布帛厚みの全体には浸透していないこと、即ち、布帛の表面部を含む厚み方向の一部に浸透していることが好ましい。具体的には、意匠付き布帛の厚みに対するポリウレタン樹脂の付与深さの比は、3~30%でもよく、3~10%でもよい。ここで、意匠付き布帛の厚みは、特に限定されず、例えば0.2~3.0mm(即ち、200~3000μm)でもよく、0.3~2.8mmでもよい。 As described above, the polyurethane resin penetrates between the fibers in at least the surface portion of the fabric, and may penetrate throughout the fabric thickness. However, from the viewpoint of the texture, it is preferable that the polyurethane resin does not penetrate the entire fabric thickness, that is, penetrates part of the thickness direction including the surface portion of the fabric. Specifically, the ratio of the application depth of the polyurethane resin to the thickness of the fabric with a design may be 3 to 30% or 3 to 10%. Here, the thickness of the fabric with a design is not particularly limited, and may be, for example, 0.2 to 3.0 mm (that is, 200 to 3000 μm) or 0.3 to 2.8 mm.
 本実施形態のポリウレタン樹脂塗布部におけるポリウレタン樹脂の充填率は、15~45%の範囲である。15%以上であることにより、凹凸形状の賦型性が向上する。45%以下であることにより、耐屈曲性が向上する。好ましくは15~35%であり、より好ましくは20~35%である。 The filling rate of the polyurethane resin in the polyurethane resin coated portion of this embodiment is in the range of 15 to 45%. By being 15% or more, the formability of the uneven shape is improved. By being 45% or less, the bending resistance is improved. Preferably it is 15 to 35%, more preferably 20 to 35%.
 なお、ポリウレタン樹脂塗布部におけるポリウレタン樹脂の充填率は、ポリウレタン樹脂の付与深さ領域(ポリウレタン樹脂が繊維同士を固着して塊状をなしている部分)においてポリウレタン樹脂が占める割合であり、次のように求められる。すなわち、後述の繊維の充填率および空隙率から、下記式により求める。
 ポリウレタン樹脂の充填率(%)=100-(繊維の充填率+空隙率)
In addition, the filling rate of the polyurethane resin in the polyurethane resin application portion is a ratio of the polyurethane resin in the polyurethane resin application depth region (a portion where the polyurethane resin adheres fibers to form a lump), and is as follows. Is required. That is, it calculates | requires by a following formula from the filling rate and porosity of the below-mentioned fiber.
Polyurethane resin filling ratio (%) = 100− (fiber filling ratio + void ratio)
 ポリウレタン樹脂塗布部における布帛の繊維の充填率は、50~80%の範囲である。50%以上であることにより、繊維間の空隙を小さくして繊維同士の固着を高めることができ、耐摩耗性を向上することができる。80%以下であることにより、耐屈曲性を向上することができる。好ましくは55~80%であり、より好ましくは55~75%である。 The filling rate of the fabric fibers in the polyurethane resin coated part is in the range of 50 to 80%. By being 50% or more, the space | gap between fibers can be made small and the adhesion | attachment of fibers can be improved, and abrasion resistance can be improved. By being 80% or less, the bending resistance can be improved. Preferably it is 55 to 80%, more preferably 55 to 75%.
 なお、ポリウレタン樹脂塗布部における繊維の充填率は、ポリウレタン樹脂の付与深さ領域(ポリウレタン樹脂が繊維同士を固着して塊状をなしている部分)において繊維が占める割合であり、次のように求められる。すなわち、ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真をスキャナーで読み取り、ヨコ方向を100μmの幅、タテ方向をポリウレタン樹脂の付与深さ領域とする測定面積において糸の断面の数(n)を測定し、下記式により繊維の充填率を求める。なお、糸の直径R(μm)は、任意の5か所の糸の断面のタテ・ヨコ方向の直径を測定し、平均して求める。
 繊維の充填率(%)=(78.5×R2×n)÷(100×ポリウレタン樹脂の付与深さ(μm))
 なお、ポリウレタン樹脂塗布部における繊維の充填率は、任意の5か所において求めた繊維の充填率の平均値とする。
In addition, the filling rate of the fiber in a polyurethane resin application part is a ratio which a fiber occupies in the provision area | region (The part which the polyurethane resin adheres fibers and forms the lump) of a polyurethane resin, and calculates | requires as follows. It is done. That is, a photograph taken with a microscope of a vertical cross section of the polyurethane resin coated portion is read with a scanner, and the number of cross sections of the yarn in the measurement area where the horizontal direction is 100 μm width and the vertical direction is the polyurethane resin application depth region ( n) is measured, and the filling factor of the fiber is obtained by the following formula. The diameter R (μm) of the yarn is obtained by measuring and averaging the diameters in the vertical and horizontal directions of the cross-sections of arbitrary five yarns.
Fiber filling rate (%) = (78.5 × R 2 × n) ÷ (100 × depth of polyurethane resin applied (μm))
In addition, let the filling rate of the fiber in a polyurethane resin application part be the average value of the filling rate of the fiber calculated | required in arbitrary 5 places.
 本実施形態のポリウレタン樹脂塗布部における繊維断面の外周長の和は、単位面積10000μm2当たり1500μm以上であることが好ましく、より好ましくは1800μm以上であり、更に好ましくは2700μm以上である。1500μm以上であれば、ポリウレタン樹脂と繊維の密着性が向上し、繊維の圧縮回復力を抑制して、エンボス加工による微細な凹凸形状の賦型性を向上することができる。これは、外周長の和が大きいほど、単繊度の小さい繊維(フィラメント)が多数存在することになり、繊維間の空隙が小さく、ポリウレタン樹脂と繊維とが固着しやすくなるためと考えられる。また、単繊度の小さい繊維が多いということは、繊度の合計に対して表面積が大きいことになるので、ポリウレタン樹脂が被覆する面積が大きくなり、固着しやすくなるためと考えられる。繊維断面の外周長の和の上限は、特に限定されず、例えば、9000μm以下であってもよく、6000μm以下でもよい。 The sum of the outer peripheral lengths of the fiber cross sections in the polyurethane resin coated portion of this embodiment is preferably 1500 μm or more per unit area of 10,000 μm 2 , more preferably 1800 μm or more, and even more preferably 2700 μm or more. If it is 1500 micrometers or more, the adhesiveness of a polyurethane resin and a fiber will improve, the compression recovery force of a fiber can be suppressed, and the shaping property of the fine uneven | corrugated shape by embossing can be improved. This is presumably because the larger the sum of the outer peripheral lengths, the more fibers (filaments) having a small single fineness, the smaller the gaps between the fibers, and the easier the polyurethane resin and the fibers are fixed. Further, the fact that there are many fibers having a small single fineness is considered to be because the surface area of the polyurethane resin is increased because the surface area is large with respect to the total fineness, and it is easy to fix. The upper limit of the sum of the outer peripheral lengths of the fiber cross sections is not particularly limited, and may be, for example, 9000 μm or less, or 6000 μm or less.
 なお、ポリウレタン樹脂塗布部における繊維断面の外周長の和は、次のように求められる。すなわち、ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真をスキャナーで読み取り、ヨコ方向を100μmの幅、タテ方向をポリウレタン樹脂の付与深さ領域とする測定面積において糸の断面の数(n)を測定し、下記式により繊維断面の外周長の和を求める。なお、糸の直径R(μm)は、任意の5か所の糸の断面のタテ・ヨコ方向の直径を測定し、平均して求める。
 繊維断面の外周長の和(μm)=(31400×R×n)÷(100×ポリウレタン樹脂の付与深さ(μm))
 なお、ポリウレタン樹脂塗布部における繊維断面の外周長の和は、任意の5か所において求めた繊維断面の外周長の和の平均値とする。
In addition, the sum of the outer peripheral length of the fiber cross section in a polyurethane resin application part is calculated | required as follows. That is, a photograph taken with a microscope of a vertical cross section of the polyurethane resin coated portion is read with a scanner, and the number of cross sections of the yarn in the measurement area where the horizontal direction is 100 μm width and the vertical direction is the polyurethane resin application depth region ( n) is measured, and the sum of the outer peripheral lengths of the fiber cross sections is obtained by the following equation. The diameter R (μm) of the yarn is obtained by measuring and averaging the diameters in the vertical and horizontal directions of the cross-sections of arbitrary five yarns.
Sum of outer peripheral lengths of fiber cross section (μm) = (31400 × R × n) ÷ (100 × depth of polyurethane resin applied (μm))
In addition, let the sum of the outer periphery length of the fiber cross section in a polyurethane resin application part be an average value of the sum of the outer periphery length of the fiber cross section calculated | required in arbitrary 5 places.
 ポリウレタン樹脂塗布部における空隙率は、13%以下であることが好ましく、より好ましくは9%以下である。空隙率が13%以下であることにより、エンボス加工による凹凸形状を賦型しやすくなる。空隙率の下限は、特に限定されず、例えば0.1%以上でもよく、2%以上でもよい。 It is preferable that the porosity in a polyurethane resin application part is 13% or less, More preferably, it is 9% or less. When the porosity is 13% or less, it becomes easy to shape the uneven shape by embossing. The lower limit of the porosity is not particularly limited, and may be, for example, 0.1% or more, or 2% or more.
 なお、ポリウレタン樹脂塗布部における空隙率は、ポリウレタン樹脂の付与深さ領域(ポリウレタン樹脂が繊維同士を固着して塊状をなしている部分)において空隙部分が占める割合であり、次のように求められる。すなわち、ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真をスキャナーで読み取り、ヨコ方向を100μmの幅、タテ方向をポリウレタン樹脂の付与深さ領域とする測定面積において、空隙部分とそれ以外の部分を二値化して、布帛のポリウレタン樹脂の付与深さ領域における空隙部分の割合を算出する。なお、ポリウレタン樹脂塗布部における空隙率は、任意の5か所において求めた空隙率の平均値とする。 In addition, the porosity in a polyurethane resin application part is a ratio which a space | gap part occupies in the provision depth area | region (The part which the polyurethane resin adhere | attaches fibers and has formed the lump shape), and is calculated | required as follows. . That is, a photograph taken with a microscope of a vertical cross section of the polyurethane resin coated portion is read with a scanner, and in the measurement area where the width direction is 100 μm and the vertical direction is the polyurethane resin application depth region, the void portion and the others 2 is binarized, and the ratio of the void portion in the application depth region of the polyurethane resin of the fabric is calculated. In addition, let the porosity in a polyurethane resin application part be the average value of the porosity calculated | required in arbitrary 5 places.
 ポリウレタン樹脂塗布部におけるポリウレタン樹脂の断面積100μm2当たりの繊維の本数は1.5本以上が好ましく、2.0本以上がより好ましい。1.5本以上であることにより、ポリウレタン樹脂当たりの繊維数が多くなるため、ポリウレタン樹脂によるバインダー効果を高めることができる。そのため、エンボス加工による微細な凹凸形状の賦型性を向上し、耐摩耗性を向上することができる。該繊維の本数の上限は、特に限定されず、例えば100本以下でもよく、50本以下でもよく、20本以下でもよい。 The number of fibers per 100 μm 2 of the cross-sectional area of the polyurethane resin in the polyurethane resin application part is preferably 1.5 or more, and more preferably 2.0 or more. Since the number of fibers per polyurethane resin is increased by being 1.5 or more, the binder effect by the polyurethane resin can be enhanced. Therefore, it is possible to improve the formability of a fine uneven shape by embossing and improve wear resistance. The upper limit of the number of the fibers is not particularly limited, and may be, for example, 100 or less, 50 or less, or 20 or less.
 なお、ポリウレタン樹脂塗布部におけるポリウレタン樹脂100μm2当たりの繊維の本数は、ポリウレタン樹脂の充填率と同様のポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真を用い求める。測定領域における繊維断面の数をカウントする。ポリウレタン樹脂の面積はポリウレタン樹脂の充填率と測定領域面積の積にて算出する。これらの値からポリウレタン樹脂100μm2当たりの繊維の本数を算出する。 The number of fibers per 100 μm 2 of polyurethane resin in the polyurethane resin application part is obtained using a photograph taken with a microscope of a vertical cross section of the polyurethane resin application part similar to the filling rate of the polyurethane resin. The number of fiber cross sections in the measurement area is counted. The area of the polyurethane resin is calculated by the product of the filling ratio of the polyurethane resin and the area of the measurement region. From these values, the number of fibers per 100 μm 2 of polyurethane resin is calculated.
 本実施形態における凹凸意匠としては、幅が200~1500μm、深さの最大値が20~450μmである凹部形状を有する微細な凹凸意匠(微細凹凸意匠)であることが好ましい。また、凹凸意匠としては、柄間隔の最大値が10000μm以下であることが好ましい。好ましい実施形態として、凹凸意匠は、凹部の幅が200~1200μmであり、凹部の深さの最大値が20~250μmであり、柄間隔の最大値が5000μm以下でもよい。さらに好ましい実施形態として、凹部の幅が200~800μmであり、凹部の深さの最大値が20~150μmであり、柄間隔の最大値が2000μm以下でもよい。これらの範囲を満たすことにより、これまでのエンボス加工では得られなかった微細な凹凸意匠、例えば、天然皮革の革絞のような微細な凹凸意匠を表現できる。 The concave / convex design in the present embodiment is preferably a fine concave / convex design having a concave shape with a width of 200 to 1500 μm and a maximum depth of 20 to 450 μm. Moreover, as an uneven | corrugated design, it is preferable that the maximum value of a pattern space | interval is 10,000 micrometers or less. As a preferred embodiment, the concave / convex design may have a recess width of 200 to 1200 μm, a maximum depth of the recess of 20 to 250 μm, and a maximum pattern spacing of 5000 μm or less. In a more preferred embodiment, the width of the recesses may be 200 to 800 μm, the maximum depth of the recesses may be 20 to 150 μm, and the maximum value of the pattern spacing may be 2000 μm or less. By satisfying these ranges, it is possible to express a fine uneven design that has not been obtained by embossing so far, for example, a fine uneven design such as a leather strap of natural leather.
 なお、上記凹凸意匠における凹部の幅及び深さは、ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真から、凹部の幅および深さを測定して求めることができる。詳細には、図2に示すように、凹凸意匠の凹部の幅(W)は、任意の3つの凹部につき、その一方の端から他方の端までの距離を測定し、平均値を算出することにより求められる。また、凹凸意匠の凹部の深さ(D)は、上記のように凹部の幅を計測する際に凹部の一方の端から他方の端までを結んだ直線から、凹部の最も深い部分に下ろした垂線の距離を測定することにより求められ、任意の3つの凹部についての最大値を求める。そして、凹凸意匠の柄間隔については、ポリウレタン樹脂塗布部の表面写真をマイクロスコープにて撮影した写真から、隣り合う凸部の頂点間の距離を測定することにより求められ、任意の3組の凸部についての最大値を求める。 Note that the width and depth of the recesses in the uneven design can be obtained by measuring the width and depth of the recesses from a photograph of a vertical cross section of the polyurethane resin coated portion taken with a microscope. Specifically, as shown in FIG. 2, the width (W) of the concave portion of the concave / convex design is to calculate the average value by measuring the distance from one end to the other end of any three concave portions. It is calculated by. Further, the depth (D) of the concave portion of the concave and convex design was lowered from the straight line connecting from one end of the concave portion to the other end when measuring the width of the concave portion to the deepest portion of the concave portion. It is obtained by measuring the distance of the perpendicular line, and the maximum value for any three recesses is obtained. The pattern spacing of the concavo-convex design is obtained by measuring the distance between the vertices of adjacent convex portions from a photograph of the surface photograph of the polyurethane resin coated portion taken with a microscope, and any three sets of convex portions Find the maximum value for the part.
 凹凸意匠の垂直方向における断面形状は特に限定されないが、より繊細な柄を表現ができる波型であることが好ましい。また、波型である場合は、隣り合う凹凸において、凸部の最高位と凹部の最低位を結ぶ直線の傾斜角度が5~40度であることが好ましい。より好ましくは、傾斜角度が5~30度であり、さらに好ましくは5~20度である。 The cross-sectional shape in the vertical direction of the concavo-convex design is not particularly limited, but is preferably a corrugated shape that can express a more delicate pattern. In the case of a corrugated shape, it is preferable that the inclination angle of a straight line connecting the highest level of the convex portion and the lowest level of the concave portion is 5 to 40 degrees in the adjacent concave and convex portions. More preferably, the inclination angle is 5 to 30 degrees, and further preferably 5 to 20 degrees.
 なお、波型意匠の傾斜角度は、次のように測定される。ポリウレタン樹脂塗布部の垂直断面をマイクロスコープにて撮影した写真から、凸部の最高位と凹部の最低位を結んだ直線と凸部最高位における接線との角度を測定して求められる。 The inclination angle of the corrugated design is measured as follows. It can be obtained by measuring the angle between the straight line connecting the highest level of the convex part and the lowest level of the concave part and the tangent line at the highest level of the convex part from a photograph of a vertical section of the polyurethane resin coated part taken with a microscope.
 本実施形態に係る凹凸意匠を有する布帛は、基布としての布帛の表面側の少なくとも一部にポリウレタン樹脂を塗布した後、ポリウレタン樹脂塗布部にエンボス加工にて凹凸意匠を賦型することにより得ることができる。 The fabric having an uneven design according to this embodiment is obtained by applying a polyurethane resin to at least a part of the surface side of the fabric as a base fabric and then embossing the polyurethane resin applied portion by embossing. be able to.
 本実施形態の製造方法は、まず、ポリウレタン樹脂を含む処理液を布帛の表面側の少なくとも一部に塗布する。例えば、該処理液を布帛の表面側の全面に塗布してもよい。あるいはまた、該処理液を布帛の表面側の一部に塗布してもよく、その場合、模様状に塗布してもよい。処理液は、ポリウレタン樹脂と、これを分散させる媒体(例えば、水)とを少なくとも含んでなるものであり、必要に応じて、色材(染料、顔料、金属粉末)、増粘剤などの添加剤を含んでいてもよい。 In the manufacturing method of this embodiment, first, a treatment liquid containing a polyurethane resin is applied to at least a part of the surface side of the fabric. For example, the treatment liquid may be applied to the entire surface side of the fabric. Alternatively, the treatment liquid may be applied to a part of the surface side of the fabric, and in that case, it may be applied in a pattern. The treatment liquid contains at least a polyurethane resin and a medium (for example, water) in which the polyurethane resin is dispersed. If necessary, a colorant (dye, pigment, metal powder), a thickener, and the like are added. An agent may be included.
 処理液の塗布方法は特に限定されるものではなく、例えば、スクリーンプリント、ロータリープリント、インクジェットプリントなどを挙げることができる。また、布帛が凹凸を有する場合には、グラビアコーター、コンマコーター、リバースコーターなどを用いることもできる。 The method for applying the treatment liquid is not particularly limited, and examples thereof include screen printing, rotary printing, and inkjet printing. In addition, when the fabric has irregularities, a gravure coater, a comma coater, a reverse coater, or the like can be used.
 次いで、ポリウレタン樹脂を乾燥し、固化させる。乾燥は、媒体が残存しない程度になされればよく、条件は特に限定されない。媒体の沸点や生産効率を考慮し、適宜設定すればよい。 Next, the polyurethane resin is dried and solidified. The drying may be performed to such an extent that the medium does not remain, and the conditions are not particularly limited. What is necessary is just to set suitably in consideration of the boiling point of a medium and production efficiency.
 このように布帛の表面部にポリウレタン樹脂を塗布し乾燥した後、その表面全体にエンボス加工を行う。具体的には、例えば温度が100~160℃、圧力(線圧)が490~1960N/cmのエンボスロールに通し、布帛の表面のポリウレタン樹脂を軟化させ、賦型する。エンボスロールの表面には、所望の微細凹凸模様と凹凸が逆の凹凸模様が刻印されている。エンボスロールの温度は、ポリウレタン樹脂の軟化温度や布帛を構成する繊維素材、要求される耐久性などを考慮して設定する。 Thus, after the polyurethane resin is applied to the surface portion of the fabric and dried, the entire surface is embossed. Specifically, for example, it is passed through an embossing roll having a temperature of 100 to 160 ° C. and a pressure (linear pressure) of 490 to 1960 N / cm, and the polyurethane resin on the surface of the fabric is softened and shaped. On the surface of the embossing roll, a desired concavo-convex pattern and a concavo-convex pattern opposite to the concavo-convex pattern are engraved. The temperature of the embossing roll is set in consideration of the softening temperature of the polyurethane resin, the fiber material constituting the fabric, the required durability, and the like.
 賦型加工後の布帛には、風合いを柔らかくするために熱処理を行うとよい。熱処理は、100~150℃で30秒~3分間行うことが好ましい。 It is advisable to heat-treat the fabric after the shaping process in order to soften the texture. The heat treatment is preferably performed at 100 to 150 ° C. for 30 seconds to 3 minutes.
 以上のようにして、本実施形態の凹凸意匠を有する布帛を得ることができる。ポリウレタン樹脂は、厚み方向では少なくとも表面部における繊維間に浸透して繊維とともに布帛の表面部を形成している。 As described above, the fabric having the uneven design of the present embodiment can be obtained. The polyurethane resin permeates at least between the fibers in the surface portion in the thickness direction and forms the surface portion of the fabric together with the fibers.
 本実施形態に係る凹凸意匠を有する布帛の用途は、特に限定されず、例えば、車両内装材、インテリア資材、衣料、鞄などの様々な分野で用いることができる。 The use of the fabric having an uneven design according to the present embodiment is not particularly limited, and can be used in various fields such as vehicle interior materials, interior materials, clothing, bags, and the like.
 以下、実施例によりさらに詳しく説明するが、本発明はこれらの例に限定されるものではない。また、布帛の評価は、以下の方法に従った。 Hereinafter, examples will be described in more detail, but the present invention is not limited to these examples. Moreover, the evaluation of the fabric followed the following method.
(1)賦型性
 下記の凹凸形状を有するエンボスロールA、B、Cを用いてエンボス加工を行った製品を目視で確認し、下記評価基準に従って評価した。
 エンボスロールA:凹部の幅800μm、凹部の深さの最大値150μm、柄間隔2000μm、垂直方向の凹凸断面形状;波型、傾斜角度5~20度、革シボ柄
 エンボスロールB:凹部の幅1200μm、凹部の深さの最大値250μm、柄間隔5000μm、垂直方向の凹凸断面形状;波型、傾斜角度10~30度、革シボ柄
 エンボスロールC:凹部の幅1500μm、凹部の深さの最大値450μm、柄間隔10000μm、垂直方向の凹凸断面形状;台形型、ライン柄
(評価基準)
 1:A、B、Cの全ての凹凸形状が明瞭に賦型されている。
 2:Aの凹凸形状は不明瞭であるが、B、Cの凹凸形状は明瞭に賦型されている。
 3:A、Bの凹凸形状は不明瞭であるが、Cの凹凸形状は明瞭に賦型されている。
 4:A、B、C全ての凹凸形状が不明瞭である。
(1) Formability The products embossed using the embossing rolls A, B, and C having the following uneven shape were visually confirmed and evaluated according to the following evaluation criteria.
Embossing roll A: Recess width 800 μm, Recess depth maximum value 150 μm, Handle spacing 2000 μm, Vertical cross-sectional shape of corrugation; Wave shape, Inclination angle 5 to 20 degrees, Leather wrinkle pattern Embossing roll B: Recess width 1200 μm , Maximum depth of recesses 250 μm, pattern spacing 5000 μm, vertical concavo-convex cross-sectional shape; corrugated, tilt angle 10-30 degrees, leather wrinkle pattern Embossing roll C: recess width 1500 μm, maximum recess depth 450 μm, pattern spacing 10000 μm, vertical uneven cross-sectional shape; trapezoidal shape, line pattern (evaluation criteria)
1: All the concavo-convex shapes of A, B, and C are clearly formed.
2: The uneven shape of A is unclear, but the uneven shapes of B and C are clearly shaped.
3: The uneven shapes of A and B are unclear, but the uneven shape of C is clearly shaped.
4: All the uneven shapes of A, B, and C are unclear.
(2)耐屈曲性
 賦型性評価後の試験片を幅25mm、長さ150mmに裁断した後、デマチャ屈曲試験機(テスター産業株式会社製)に固定した。屈曲ストローク57mmで、毎分300回で3000回屈曲した。屈曲後の試験片を観察し、次の基準に従って評価した。
(評価基準)
 1:亀裂が生じていない。
 2:亀裂が生じている。
(2) Flexibility After the moldability evaluation, the test piece was cut into a width of 25 mm and a length of 150 mm, and then fixed to a Demacha flex tester (manufactured by Tester Sangyo Co., Ltd.). Bending stroke was 57 mm, and bending was performed 3000 times at 300 times per minute. The test piece after bending was observed and evaluated according to the following criteria.
(Evaluation criteria)
1: There is no crack.
2: A crack has occurred.
(3)耐摩耗性
 賦型性評価後の試験片を幅70mm、長さ300mmに裁断した後、裏面に幅70mm、長さ300mm、厚み10mmの大きさのウレタンフォームを添えて、平面摩耗試験機T-TYPE(株式会社大栄科学精器製作所製)に固定した。綿布(綿帆布)をかぶせた摩擦子に荷重9.8Nを掛けて試験片を摩耗した。摩擦子は試験片の表面上140mmの間を60往復/分の速さで10000回往復摩耗した。綿帆布は摩耗回数2500回往復ごとに交換し、合計10000回往復摩耗した。摩耗後の試験片を観察し、次の基準に従って評価した。
(評価基準)
 1:凹凸形状の消失がない。
 2:やや凹凸形状の消失がある。
 3:明らかに凹凸形状の消失がある。
(3) Abrasion resistance After the moldability evaluation test piece was cut to a width of 70 mm and a length of 300 mm, a urethane foam having a width of 70 mm, a length of 300 mm and a thickness of 10 mm was attached to the back surface, and a flat wear test was performed. It was fixed to a machine T-TYPE (manufactured by Daiei Scientific Instruments). A test piece was worn by applying a load of 9.8 N to a friction element covered with cotton cloth (cotton canvas). The frictional wear was reciprocally worn 10,000 times at a speed of 60 reciprocations / minute between 140 mm on the surface of the test piece. The cotton canvas was changed every 2500 reciprocations, and was worn a total of 10,000 reciprocations. The specimen after abrasion was observed and evaluated according to the following criteria.
(Evaluation criteria)
1: There is no loss | disappearance of uneven | corrugated shape.
2: Slightly uneven shape disappears.
3: There is a clear disappearance of the uneven shape.
[実施例1]
 経糸として、167dtex/288fのポリエチレンテレフタレート仮撚り加工糸を用い、緯糸として、167dtex/48fのポリエチレンテレフタレート仮撚り加工糸を用いて経糸出しの5枚朱子の組織で、製織し、生機を得た。次いで、ヒートセッターにより190℃で1分間熱処理を施した。得られた布帛の経糸の密度は178本/25.4mm、緯糸の密度は61本/25.4mm、体積1mm3当たりの繊度は3928dtexであった。
[Example 1]
A 167 dtex / 288f polyethylene terephthalate false twisted yarn was used as the warp, and a 167 dtex / 48f polyethylene terephthalate false twisted yarn was used as the weft to produce a raw machine by weaving with a warp-out 5 satin structure. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The resulting fabric had a warp density of 178 yarns / 25.4 mm, a weft yarn density of 61 yarns / 25.4 mm, and a fineness per volume of 1 mm 3 of 3928 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製、軟化温度=120℃)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度150℃、ロール圧力588N/cm、布速3m/分にてエンボス加工を施した。エンボスロールは先述した評価項目賦型性に記載のA~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation, softening temperature = 120 ° C.) solution (solid content 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. As the embossing roll, three types of rolls A to C described in the evaluation item moldability described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠(微細エンボス模様)が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂付与深さは98μm、繊維充填率は69.1%、ポリウレタン樹脂充填率は26.4%、空隙率は4.5%、ポリウレタン樹脂100μm2当たりの繊維の本数は6.5本、フィラメント断面周囲の長さは3863μm、布帛厚みは400μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin is infiltrated between the fibers in the surface portion of the fabric, and the fabric surface is formed by the polyurethane resin and the fiber, and the entire surface of the fabric is finely textured by embossing (fine embossed pattern). Was granted. The polyurethane resin application depth in the polyurethane resin coated portion of this design-coated fabric is 98 μm, the fiber filling rate is 69.1%, the polyurethane resin filling rate is 26.4%, the porosity is 4.5%, and the polyurethane resin is 100 μm 2 . The number of fibers was 6.5, the length around the filament cross section was 3863 μm, and the fabric thickness was 400 μm. The evaluation results are shown in Table 1.
[実施例2]
 3枚筬のトリコット編機にて、L1(フロント糸)に84dtex/96fのポリエチレンテレフタレート仮撚り加工糸を用い3針振りコード編組織(1-0/3-4)で、L2(ミドル糸)には84dtex/36fのポリエチレンテレフタレート難燃糸を用いデンビ編組織(1-0/1-2)で、L3(バック糸)には84dtex/36fのポリエチレンテレフタレート難燃糸を用い3針振りコード編組織(2-1/1-0)で、糸通しはそれぞれフルセットで編成し、生機を得た。次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、パイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて編終わり方向からと編始め方向からの起毛を交互に13回行い、フルカット起毛を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが71ループ/25.4mm、ウェルが38ループ/25.4mm、体積1mm3当たりの繊度は2310dtexであった。
[Example 2]
In a three-ply tricot knitting machine, L1 (front yarn) is made of 84 dtex / 96f polyethylene terephthalate false twisted yarn, using a 3-needle swing cord knitting structure (1-0 / 3-4), L2 (middle yarn) Is a denvi knitted fabric (1-0 / 1-2) using 84 dtex / 36f polyethylene terephthalate flame retardant yarn, and L3 (back yarn) is a 3 needle swing cord knitted fabric using 84 dtex / 36f polyethylene terephthalate flame retardant yarn ( 2-1 / 1-0), and the threaders were each knitted with a full set to obtain a living machine. Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Next, from a knitting end direction and a knitting start direction at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine having a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and full-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the obtained fabric was 71 loops / 25.4 mm for the course, 38 loops / 25.4 mm for the well, and the fineness per volume 1 mm 3 was 2310 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度120℃、ロール圧力1470N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Next, embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂の付与深さは92μm、繊維充填率は66.2%、ポリウレタン樹脂充填率は25.4%、空隙率は8.4%、ポリウレタン樹脂100μm2当たりの繊維の本数は4.0本、フィラメント断面周囲の長さは2934μm、布帛厚みは610μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface. . The polyurethane resin is applied to the polyurethane resin coated portion of this design with a polyurethane resin application depth of 92 μm, a fiber filling ratio of 66.2%, a polyurethane resin filling ratio of 25.4%, a porosity of 8.4%, and a polyurethane resin of 100 μm 2. The number of per-fibers was 4.0, the length around the filament cross section was 2934 μm, and the fabric thickness was 610 μm. The evaluation results are shown in Table 1.
[実施例3]
 経糸として、178dtex/24fのポリエチレンテレフタレート仮撚り加工糸を用い、緯糸として、167dtex/144fのポリエチレンテレフタレート仮撚り加工糸を用いて、経糸出しの8枚朱子組織と緯糸出しの8枚朱子組織で10mmの間隔のボーダー柄を作成し、製織し、生機を得た。次いで、パイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて織終わり方向からと織始め方向からの起毛を交互に13回行い、セミカット起毛を施した。次いで、ヒートセッターにより150℃で1分間熱処理して仕上げた。得られた布帛の経糸の密度は184本/25.4mm、緯糸の密度は88本/25.4mm、体積1mm3当たりの繊度は3113dtexであった。
[Example 3]
178 dtex / 24f polyethylene terephthalate false twisted yarn is used as the warp, and 167 dtex / 144f polyethylene terephthalate false twisted yarn is used as the weft. A border pattern with an interval of was created and woven to obtain a living machine. Next, from a weaving end direction and a weaving start direction at a cloth roller speed of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine equipped with a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed for 1 minute at 150 degreeC with the heat setter, and was finished. The resulting fabric had a warp density of 184 pieces / 25.4 mm, a weft density of 88 pieces / 25.4 mm, and a fineness per volume of 1 mm 3 of 3113 dtex.
 次いで、リバースコーター機により布速5m/分、ロール回転速度12m/分にて、ポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を緯糸部のみに塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2なるようにロール回転速度条件を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度150℃、ロール圧力588N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, apply a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content 28% by mass) only to the weft portion at a cloth speed of 5 m / min and a roll rotation speed of 12 m / min. did. Roll rotation speed conditions were set so that the amount of polyurethane resin applied was 30 g / m 2 in terms of mass after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品の布帛表面に露出し、樹脂が塗布された緯糸部にはエンボス加工による微細凹凸意匠が付与されており、そのポリウレタン樹脂塗布部におけるポリウレタン樹脂の付与深さは66μm、繊維充填率は59.6%、ポリウレタン樹脂充填率は30.9%、空隙率は9.5%、ポリウレタン樹脂100μm2当たりの繊維の本数は2.4本、フィラメント断面周囲の長さは2353μmであった。意匠付き布帛の厚みは600μmであった。評価結果を表1に示す。 The weft part exposed on the fabric surface of the product obtained and applied with a resin is given a fine uneven design by embossing, the polyurethane resin application depth in the polyurethane resin application part is 66 μm, the fiber filling rate Was 59.6%, polyurethane resin filling rate was 30.9%, porosity was 9.5%, the number of fibers per 100 μm 2 of polyurethane resin was 2.4, and the perimeter of the filament cross section was 2353 μm. . The thickness of the fabric with design was 600 μm. The evaluation results are shown in Table 1.
[実施例4]
 3枚筬のトリコット編機にて、L1(フロント糸)に84dtex/72fのポリエチレンテレフタレート仮撚り加工糸を用い4針振りコード編組織(1-0/4-5)で、L2(ミドル糸)には84dtex/36fのポリエチレンテレフタレートレギュラー糸を用いデンビ織組織(1-0/1-2)で、L3(バック糸)には84dtex/36fのポリエチレンテレフタレートレギュラー糸を用い4針振りコード編組織(2-1/1-0)で、糸通しはそれぞれフルセットで編成し、生機を得た。次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、パイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて編終わり方向からと編始め方向からの起毛を交互に13回行い、フルカット起毛を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが67ループ/25.4mm、ウェルが28ループ/25.4mm、体積1mm3当たりの繊度は2179dtexであった。
[Example 4]
In a three-ply tricot knitting machine, L1 (front yarn) uses 84 dtex / 72f polyethylene terephthalate false twisted yarn, and a 4-needle swing cord knitting structure (1-0 / 4-5), L2 (middle yarn) Is a dendhi weave structure (1-0 / 1-2) using 84 dtex / 36 f polyethylene terephthalate regular yarn, and L3 (back yarn) is a 84 dtex / 36 f polyethylene terephthalate regular yarn using a 4-needle knitted cord knitting structure ( 2-1 / 1-0), and the threaders were each knitted with a full set to obtain a living machine. Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Next, from a knitting end direction and a knitting start direction at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine having a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and full-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the obtained fabric was 67 loops / 25.4 mm for the course, 28 loops / 25.4 mm for the wells, and the fineness per volume 1 mm 3 was 2179 dtex.
 次いで、ナイフコーター機により布速10m/分でポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるようにナイフの形状及び位置を設定した。ポリウレタン樹脂溶液を塗布後、130℃乾燥機にて1分間乾燥させた。次いで、エンボス加工機によりロール温度120℃、ロール圧力1470N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface with a knife coater at a cloth speed of 10 m / min. The shape and position of the knife were set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried by a 130 ° C. dryer for 1 minute. Next, embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂付与深さは53μm、繊維充填率は50.5%、ポリウレタン樹脂充填率は42.1%、空隙率は7.4%、ポリウレタン樹脂100μm2当たりの繊維の本数は1.5本、フィラメント断面周囲の長さは1996μm、布帛厚みは610μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface. . The polyurethane resin application depth in the polyurethane resin coated portion of the fabric with this design is 53 μm, the fiber filling rate is 50.5%, the polyurethane resin filling rate is 42.1%, the porosity is 7.4%, per 100 μm 2 of polyurethane resin. The number of fibers was 1.5, the length around the filament cross section was 1996 μm, and the fabric thickness was 610 μm. The evaluation results are shown in Table 1.
[実施例5]
 26ゲージダブルニット丸編機を用い、裏糸(3F、6F)として110dtex/48fポリエチレンテレフタレート難燃糸を、つなぎ糸(2F、5F)として110dtex/36fのポリエチレンテレフタレート難燃糸を、表糸(1F、3F)として84dtex/94fのポリエチレンテレフタレート仮撚り加工糸を用い、図4の組織図に従って、ダブルニットの生機を編成した。次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、パイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて編終わり方向からと編始め方向からの起毛を交互に13回行い、セミカット起毛を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが73ループ/25.4mm、ウェルが34ループ/25.4mm、体積1mm3当たりの繊度は2912dtexであった。
[Example 5]
Using a 26 gauge double knit circular knitting machine, 110 dtex / 48f polyethylene terephthalate flame retardant yarn as back yarn (3F, 6F), 110 dtex / 36f polyethylene terephthalate flame retardant yarn as tie yarn (2F, 5F), front yarn (1F, 3F) was used, and a double knitting machine was knitted according to the organization chart of FIG. 4 using a 84 dtex / 94 f polyethylene terephthalate false twisted yarn. Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Next, from a knitting end direction and a knitting start direction at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine having a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the resulting fabric was 73 loops / 25.4 mm for the course, 34 loops / 25.4 mm for the well, and the fineness per volume 1 mm 3 was 2912 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10間乾燥させた。次いで、エンボス加工機によりロール温度130℃、ロール圧力1470N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried for 10 minutes with a 90 ° C. dryer. Subsequently, embossing was performed with an embossing machine at a roll temperature of 130 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂付与深さは84μm、繊維充填率は66.2%、ポリウレタン樹脂充填率は24.8%、空隙率9.0%、ポリウレタン樹脂100μm2当たりの繊維の本数は4.1本、フィラメント断面周囲の長さは2924μm、布帛厚みは600μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface. . The polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 84 μm, the fiber filling ratio is 66.2%, the polyurethane resin filling ratio is 24.8%, the porosity is 9.0%, and the polyurethane resin per 100 μm 2 The number of fibers was 4.1, the perimeter of the filament cross section was 2924 μm, and the fabric thickness was 600 μm. The evaluation results are shown in Table 1.
[実施例6]
 22ゲージで6枚の筬を有するダブルラッセル編機を用い、筬L1、L6に地糸として84dtex/36fポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L2、L5に地糸として110dtex/94fのポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L3、L4にパイル糸として84dtex/216fのポリエチレンテレフタレート仮撚り加工糸をフルセットでそれぞれ導糸し、下記の組織に従って、ダブルラッセル編物の生機を編成した。
筬L1:1-2/1-1/1-0/1-1
筬L2:1-0/1-1/1-2/1-1
筬L3:1-0/0-1
筬L4:1-0/0-1
筬L5:1-0/1-1/1-2/1-1
筬L6:1-2/1-1/1-0/1-1
[Example 6]
Using a double raschel knitting machine with 6 gauges at 22 gauge, a full set of 84 dtex / 36f polyethylene terephthalate false twisted yarn as the ground yarn on the heels L1 and L6, and 110 dtex / 94f as the ground yarn on the heels L2 and L5 A full set of polyethylene terephthalate false twisted yarn, and 84dtex / 216f of polyethylene terephthalate false twisted yarn as pile yarns are placed on the heels L3 and L4, respectively, and a double raschel knitted fabric is knitted according to the following organization. did.
筬 L1: 1-2 / 1-1 / 1-0 / 1-1
筬 L2: 1-0 / 1-1 / 1-2 / 1-1
筬 L3: 1-0 / 0-1
筬 L4: 1-0 / 0-1
筬 L5: 1-0 / 1-1 / 1-2 / 1-1
筬 L6: 1-2 / 1-1 / 1-0 / 1-1
 この生機をセンターカット後、整毛処理した。次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが53ループ/25.4mm、ウェルが38ループ/25.4mm、体積1mm3当たりの繊度は1259dtexであった。 After this center machine was center-cut, the hair was treated. Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the obtained fabric was 53 loops / 25.4 mm for the course, 38 loops / 25.4 mm for the wells, and the fineness per volume 1 mm 3 was 1259 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度110℃、ロール圧力1960N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 110 ° C., a roll pressure of 1960 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂付与深さは96μm、繊維充填率は63.1%、ポリウレタン樹脂充填率は27.9%、空隙率9.0%、ポリウレタン樹脂100μm2当たりの繊維の本数は9.6本、フィラメント断面周囲の長さは4609μm、布帛厚みは1200μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface. . The polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 96 μm, the fiber filling rate is 63.1%, the polyurethane resin filling rate is 27.9%, the porosity is 9.0%, and the polyurethane resin per 100 μm 2 The number of fibers was 9.6, the length around the filament cross section was 4609 μm, and the fabric thickness was 1200 μm. The evaluation results are shown in Table 1.
[実施例7]
 22ゲージで6枚の筬を有するダブルラッセル編機を用い、筬L1、L2に裏地組織地糸として167dtex/30fのポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L3に連結糸として33dtex/1fのポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L4に連結糸として330dtex/144fのポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L5に表地組織地糸として220dtex/288fのポリエチレンテレフタレート仮撚り加工糸をフルセットで、筬L6に表地組織地糸として110dtex/144fのポリエチレンテレフタレート仮撚り加工糸を1in3outでそれぞれ導糸し、下記の組織に従って、ダブルラッセル編物の生機を編成した。
筬L1:1-0/0-0/2-3/3-3
筬L2:0-1/1-1/2-1/1-1
筬L3:0-1/0-1/1-0/1-0
筬L4:0-0/0-1/0-0/0-1/0-0/0-0/0-0/
    0-0/0-0/0-0/0-0/0-0/0-0/0-0/
    0-0/0-0/0-0/0-0/0-0/0-0
筬L5:0-0/0-1/1-1/1-0
筬L6:0-0/4-4/4-4/0-0/0-0/4-4/4-4/
    0-0/0-0/8-8/8-8/0-0/0-0/8-8/
    8-8
[Example 7]
Using a 22-gauge double raschel knitting machine, a full set of 167 dtex / 30f polyethylene terephthalate false twisted yarn as the lining fabric ground yarn on the heels L1 and L2, and 33 dtex / 1f as the connecting yarn on the heel L3 Full set of polyethylene terephthalate false twisted yarn, 330dtex / 144f of polyethylene terephthalate false twisted yarn as connecting yarn to 筬 L4, and 220dtex / 288f of polyethylene terephthalate false twisted yarn as surface texture ground yarn to 筬 L5 With a full set of yarns, 110 dtex / 144 f polyethylene terephthalate false twisted yarns were introduced in 1 in 3 out as surface texture ground yarns on heel L6, respectively, and a double raschel knitted fabric was knitted according to the following structure.
筬 L1: 1-0 / 0-0 / 2-3 / 3-3
筬 L2: 0-1 / 1-1 / 2-1 / 1-1
筬 L3: 0-1 / 0-1 / 1-1-0 / 1-0
筬 L4: 0-0 / 0-1 / 0-0 / 0-1 / 0-0 / 0-0 / 0-0 /
0-0 / 0-0 / 0-0 / 0-0 / 0-0 / 0-0 / 0-0 /
0-0 / 0-0 / 0-0 / 0-0 / 0-0 / 0-0
筬 L5: 0-0 / 0-1 / 1-1 / 1-0
筬 L6: 0-0 / 4-4 / 4-4 / 0-0 / 0-0 / 4/4 / 4-4 /
0-0 / 0-0 / 8-8 / 8 / 8-8 / 0-0 / 0-0 / 8/8 /
8-8
 次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが43ループ/25.4mm、ウェルが25ループ/25.4mm、体積1mm3当たりの繊度は1771dtexであった。 Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the obtained fabric was 43 loops / 25.4 mm for the course, 25 loops / 25.4 mm for the well, and the fineness per volume 1 mm 3 was 1771 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度100℃、ロール圧力1764N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 100 ° C., a roll pressure of 1764 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた布帛は、ポリウレタン樹脂が布帛の表面部における繊維間に浸透しており、ポリウレタン樹脂と繊維により布帛表面が形成されており、布帛表面全体にエンボス加工による微細凹凸意匠が付与されていた。この意匠付き布帛のポリウレタン樹脂塗布部におけるポリウレタン樹脂付与深さは95μm、繊維充填率は70.1%、ポリウレタン樹脂充填率は21.9%、空隙率8.0%、ポリウレタン樹脂100μm2における繊維の本数は5.8本、フィラメント断面周囲の長さは3329μm、布帛厚みは2500μmであった。評価結果を表1に示す。 In the obtained fabric, the polyurethane resin penetrated between the fibers in the surface portion of the fabric, the fabric surface was formed by the polyurethane resin and the fiber, and the fine uneven design by embossing was given to the entire fabric surface. . The polyurethane resin application depth in the polyurethane resin-coated portion of the fabric with this design is 95 μm, the fiber filling rate is 70.1%, the polyurethane resin filling rate is 21.9%, the porosity is 8.0%, and the fibers at 100 μm 2 polyurethane resin. Was 5.8, the length around the filament cross section was 3329 μm, and the fabric thickness was 2500 μm. The evaluation results are shown in Table 1.
[比較例1]
 経糸として、333dtex/96fのポリエチレンテレフタレート仮撚り加工糸を用い、緯糸として、600dtex/192fのポリエチレンテレフタレート仮撚り加工糸を用いて緯糸出しの8枚朱子組織で製織し、生機を得た。次いで、ヒートセッターにより190℃で1分間熱処理を施した。得られた布帛の経糸の密度は78本/25.4mm、緯糸の密度は36本/25.4mm、体積1mm3当たりの繊度は2341dtexであった。
[Comparative Example 1]
A 333 dtex / 96f polyethylene terephthalate false twisted yarn was used as the warp, and a 600 dtex / 192f polyethylene terephthalate false twisted yarn was used as the weft to weave with a weft-out 8 satin structure to obtain a raw machine. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The resulting fabric had a warp density of 78 yarns / 25.4 mm, a weft yarn density of 36 yarns / 25.4 mm, and a fineness per volume of 1 mm 3 of 2341 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度150℃、ロール圧力588N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは37μm、繊維充填率は64.9%、ポリウレタン樹脂充填率は20.1%、空隙率は15.0%、ポリウレタン樹脂100μm2当たりの繊維の本数は1.3本、フィラメント断面周囲の長さは1480μmであった。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 37 μm, a fiber filling rate of 64.9%, a polyurethane resin filling rate of 20.1%, a porosity of 15.0%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of 1.3 filaments and the circumference of the filament cross section was 1480 μm. The evaluation results are shown in Table 1.
[比較例2]
 2枚筬のトリコット編機にて、L1(フロント糸)に55dtex/24fのポリエチレンテレフタレート仮撚り加工糸を用い2針振りコード編組織(1-0/4-5)で、L2(バック糸)には33dtex/12fのポリエチレンテレフタレート仮撚り加工糸を用い、デンビ編組織(1-0/1-2)で、糸通しはそれぞれフルセットで編成し、生機を得た。次いで、染色機にて、グレーの分散染料にて130℃で60分間染色を施した。次いで、パイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて編終わり方向からと編始め方向からの起毛を交互に13回行い、セミカット起毛を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。得られた布帛の密度はコースが66ループ/25.4mm、ウェルが36ループ/25.4mm、体積1mm3当たりの繊度は915dtexであった。
[Comparative Example 2]
In a two-ply tricot knitting machine, L1 (front yarn) uses 55dtex / 24f polyethylene terephthalate false twisted yarn and a 2-needle cord knitting structure (1-0 / 4-5), L2 (back yarn) In this example, 33 dtex / 12f polyethylene terephthalate false twisted yarn was used, and a denvi knitted structure (1-0 / 1-2) was knitted with a full set of threaders to obtain a raw machine. Subsequently, it dye | stained for 60 minutes at 130 degreeC with the gray disperse dye with the dyeing machine. Next, from a knitting end direction and a knitting start direction at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine having a needle cloth roll having twelve pile rollers and twelve counter pile rollers. Brushing was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished. The density of the obtained fabric was 66 loops / 25.4 mm for the course, 36 loops / 25.4 mm for the wells, and the fineness per volume 1 mm 3 was 915 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂を塗布後、90℃乾燥機にて10分間乾燥させた。ポリウレタン樹脂塗布量は乾燥後質量で約30g/m2であった。次いで、エンボス加工機によりロール温度120℃、ロール圧力1470N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. After applying the polyurethane resin, it was dried with a 90 ° C. dryer for 10 minutes. The amount of the polyurethane resin applied was about 30 g / m 2 after drying. Next, embossing was performed with an embossing machine at a roll temperature of 120 ° C., a roll pressure of 1470 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは27μm、繊維充填率は14.6%、ポリウレタン樹脂充填率は62.0%、空隙率は23.4%、ポリウレタン樹脂100μm2当たりの繊維の本数は0.1本、フィラメント断面周囲の長さは409μmであった。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 27 μm, a fiber filling ratio of 14.6%, a polyurethane resin filling ratio of 62.0%, a porosity of 23.4%, and the number of fibers per 100 μm 2 of polyurethane resin is The length around the filament cross section was 409 μm. The evaluation results are shown in Table 1.
[比較例3]
 経糸として、167dtex/288fのポリエチレンテレフタレート仮撚り加工糸を用い、緯糸として、167dtex/288fのポリエチレンテレフタレート仮撚り加工糸を用いて経糸出しの5枚朱子組織で、製織し、生機を得た。次いで、ヒートセッターにより190℃で1分間熱処理を施した。得られた布帛の経糸の密度は178本/25.4mm、緯糸の密度は65本/25.4mm、体積1mm3当たりの繊度は4204dtexであった。
[Comparative Example 3]
A 167 dtex / 288f polyethylene terephthalate false twisted yarn was used as the warp, and a 167 dtex / 288f polyethylene terephthalate false twisted yarn was used as the weft to produce a raw machine by weaving with a warp-out 5 sheet satin structure. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The resulting fabric had a warp density of 178 / 25.4 mm, a weft density of 65 / 25.4 mm, and a fineness per volume of 1 mm 3 of 4204 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で60g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。得られた布帛は表面に繊維が露出せず、ポリウレタン樹脂層が形成されていた。次いで、エンボス加工機によりロール温度150℃、ロール圧力588N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of the polyurethane resin applied was 60 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. In the obtained fabric, no fiber was exposed on the surface, and a polyurethane resin layer was formed. Subsequently, embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは35μm、繊維充填率は70.4%、ポリウレタン樹脂充填率は23.6%、空隙率は6.0%、ポリウレタン樹脂100μm2当たりの繊維の本数は7.4本、フィラメント断面周囲の長さは3931μmであった。ポリウレタン樹脂は膜状になっていた。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 35 μm, a fiber filling rate of 70.4%, a polyurethane resin filling rate of 23.6%, a porosity of 6.0%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of the periphery of the 7.4 filaments and the filament cross section was 3931 μm. The polyurethane resin was in the form of a film. The evaluation results are shown in Table 1.
[比較例4]
 ポリウレタン樹脂塗布量が乾燥後質量で15g/m2になるように塗り回数を変更した以外は、全て比較例1と同様にして製品を得た。得られた製品のポリウレタン樹脂付与深さは40μm、繊維充填率は64.9%、ポリウレタン樹脂充填率は9.5%、空隙率25.6%、ポリウレタン樹脂100μm2当たりの繊維の本数は2.8本、フィラメント断面周囲の長さは1480μmであった。評価結果を表1に示す。
[Comparative Example 4]
Products were obtained in the same manner as in Comparative Example 1 except that the number of coatings was changed so that the amount of polyurethane resin applied was 15 g / m 2 by weight after drying. The obtained product has a polyurethane resin application depth of 40 μm, a fiber filling ratio of 64.9%, a polyurethane resin filling ratio of 9.5%, a porosity of 25.6%, and the number of fibers per 100 μm 2 of polyurethane resin is 2. 8 pieces, the length of the periphery of the filament cross section was 1480 μm. The evaluation results are shown in Table 1.
[比較例5]
 経糸として、122dtex/444fのポリエチレンテレフタレート割繊糸を用い、緯糸として、244dtex/888fのポリエチレンテレフタレート割繊糸を用いて経糸出し5枚朱子組織で、製織し、生機を得た。次いで、ヒートセッターにより190℃で1分間熱処理を施した。得られた布帛の経糸の密度は232本/25.4mm、緯糸の密度は110本/25.4mm、体積1mm3当たりの繊度は5713dtexであった。
[Comparative Example 5]
Using a 122 dtex / 444f polyethylene terephthalate split fiber as the warp, and using 244 dtex / 888f polyethylene terephthalate split yarn as the weft, weaving with a warp-out 5 satin structure yielded a raw machine. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The density of the warp of the obtained fabric was 232 / 25.4 mm, the density of the weft was 110 / 25.4 mm, and the fineness per volume of 1 mm 3 was 5713 dtex.
 次いで、スクリーンプリントによりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で60g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度150℃、ロール圧力588N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Subsequently, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by screen printing. The number of coatings was set so that the amount of the polyurethane resin applied was 60 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 150 ° C., a roll pressure of 588 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは42μm、繊維充填率は86.2%、ポリウレタン樹脂充填率は10.0%、空隙率は3.8%、ポリウレタン樹脂100μm2当たりの繊維の本数は48.2本、フィラメント断面周囲の長さは7215μmであった。また、ポリウレタン樹脂は膜状になっていた。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 42 μm, a fiber filling rate of 86.2%, a polyurethane resin filling rate of 10.0%, a porosity of 3.8%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of the periphery of the filament cross section was 7215 μm. Moreover, the polyurethane resin was in the form of a film. The evaluation results are shown in Table 1.
[比較例6]
 経糸として、333dtex/96fのポリエチレンテレフタレート仮撚り加工糸を用い、緯糸として、600dtex/192fのポリエチレンテレフタレート仮撚り加工糸を用いて経糸出しの5枚朱子組織で製織し、生機を得た。次いで、ヒートセッターにより190℃で1分間熱処理を施した。得られた布帛の経糸の密度は78本/25.4mm、緯糸の密度は36本/25.4mm、体積1mm3当たりの繊度は2341dtexであった。
[Comparative Example 6]
A 333 dtex / 96f polyethylene terephthalate false twisted yarn was used as the warp, and a 600 dtex / 192f polyethylene terephthalate false twisted yarn was used as the weft to weave with a warp-out 5 satin structure to obtain a raw machine. Next, heat treatment was performed at 190 ° C. for 1 minute using a heat setter. The resulting fabric had a warp density of 78 yarns / 25.4 mm, a weft yarn density of 36 yarns / 25.4 mm, and a fineness per volume of 1 mm 3 of 2341 dtex.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度160℃、ロール圧力490N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Next, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 160 ° C., a roll pressure of 490 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは130μm、繊維充填率は72.2%、ポリウレタン樹脂充填率は12.4%、空隙率は15.4%、ポリウレタン樹脂100μm2当たりの繊維の本数は2.4本、フィラメント断面周囲の長さは1647μmであった。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 130 μm, a fiber filling rate of 72.2%, a polyurethane resin filling rate of 12.4%, a porosity of 15.4%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of 2.4 filaments and the circumference of the filament cross section was 1647 μm. The evaluation results are shown in Table 1.
[比較例7]
 比較例6のヒートセッターによる熱処理後の織物を用いた。該織物の裏面(緯糸出し側)にパイルローラー12本、カウンターパイルローラー12本を有する針布ロールを備える針布起毛機により、針布ローラートルク2.5MPa、布速12m/分にて織終わり方向からと織始め方向からの起毛を交互に13回行い、セミカット起毛を施した。次いで、ヒートセッターにより190℃で1分間熱処理して仕上げた。
[Comparative Example 7]
The fabric after heat treatment by the heat setter of Comparative Example 6 was used. End of weaving at a cloth roller torque of 2.5 MPa and a cloth speed of 12 m / min by a needle cloth raising machine equipped with a needle cloth roll having 12 pile rollers and 12 counter pile rollers on the back side (weft output side) of the fabric. Brushing from the direction and from the weaving start direction was performed 13 times alternately, and semi-cut brushing was performed. Subsequently, it heat-processed at 190 degreeC with the heat setter for 1 minute, and was finished.
 次いで、スクリーンプリント機によりポリウレタン樹脂「RYUDTE-W BINDER UF6025」(DIC株式会社製)溶液(固形分28質量%)を起毛面全面に塗布した。ポリウレタン樹脂塗布量が乾燥後質量で30g/m2になるように塗り回数を設定した。ポリウレタン樹脂溶液を塗布後、90℃乾燥機にて10分間乾燥させた。次いで、エンボス加工機によりロール温度160℃、ロール圧力490N/cm、布速3m/分にてエンボス加工を行なった。ロールは上記A~Cの3種類のロールを使用した。 Subsequently, a polyurethane resin “RYUDTE-W Binder UF6025” (manufactured by DIC Corporation) solution (solid content: 28% by mass) was applied to the entire raised surface by a screen printing machine. The number of coatings was set so that the amount of polyurethane resin applied was 30 g / m 2 by weight after drying. After applying the polyurethane resin solution, it was dried with a 90 ° C. dryer for 10 minutes. Subsequently, embossing was performed with an embossing machine at a roll temperature of 160 ° C., a roll pressure of 490 N / cm, and a cloth speed of 3 m / min. The three types of rolls A to C described above were used.
 得られた製品のポリウレタン樹脂付与深さは158μm、繊維充填率は40.0%、ポリウレタン樹脂充填率は20.7%、空隙率は40.3%、ポリウレタン樹脂100μm2当たりの繊維の本数は0.8本、フィラメント断面周囲の長さは888μmであった。評価結果を表1に示す。 The obtained product has a polyurethane resin application depth of 158 μm, a fiber filling rate of 40.0%, a polyurethane resin filling rate of 20.7%, a porosity of 40.3%, and the number of fibers per 100 μm 2 of polyurethane resin is The length around the filament cross section was 888 μm. The evaluation results are shown in Table 1.
[比較例8]
 ポリウレタン樹脂塗布量を乾燥後質量で50g/m2とし、エンボス加工の条件をロール温度130℃とした以外は、全て比較例7と同様にして製品を得た。得られた製品のポリウレタン樹脂付与深さは161μm、繊維充填率は42.1%、ポリウレタン樹脂充填率は12.0%、空隙率は45.9%、ポリウレタン樹脂100μm2当たりの繊維の本数は1.4本、フィラメント断面周囲の長さは959μmであった。評価結果を表1に示す。
[Comparative Example 8]
A product was obtained in the same manner as in Comparative Example 7, except that the amount of polyurethane resin applied was 50 g / m 2 by weight after drying and the embossing conditions were 130 ° C. roll temperature. The obtained product has a polyurethane resin application depth of 161 μm, a fiber filling rate of 42.1%, a polyurethane resin filling rate of 12.0%, a porosity of 45.9%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of the 1.4 filaments perimeter was 959 μm. The evaluation results are shown in Table 1.
[比較例9]
 ポリウレタン樹脂塗布量を乾燥後質量で10g/m2とし、エンボス加工の条件をロール温度130℃とした以外は、全て比較例7と同様にして製品を得た。得られた製品のポリウレタン樹脂付与深さは31μm、繊維充填率は42.8%、ポリウレタン樹脂充填率は25.7%、空隙率は30.0%、ポリウレタン樹脂100μm2当たりの繊維の本数は0.7本、フィラメント断面周囲の長さは977μmであった。評価結果を表1に示す。
[Comparative Example 9]
A product was obtained in the same manner as in Comparative Example 7, except that the amount of polyurethane resin applied was 10 g / m 2 by weight after drying and the embossing conditions were 130 ° C. roll temperature. The obtained product has a polyurethane resin application depth of 31 μm, a fiber filling rate of 42.8%, a polyurethane resin filling rate of 25.7%, a porosity of 30.0%, and the number of fibers per 100 μm 2 of polyurethane resin is The length of the 0.7 perimeter of the filament cross section was 977 μm. The evaluation results are shown in Table 1.
 実施例1~7によって得られた製品は、凹凸意匠の賦型性、耐屈曲性および耐摩耗性のいずれの評価も優れていた。一方、比較例1、2、4、8、9によって得られた製品は、賦型性および耐摩耗性の評価が劣っていた。比較例3および5によって得られた製品は、耐屈曲性の評価が劣っていた。比較例6によって得られた製品は、賦型性の評価が劣っていた。比較例7によって得られた製品は、耐摩耗性の評価が劣っていた。 The products obtained in Examples 1 to 7 were excellent in all evaluations of the formability, flex resistance, and wear resistance of the uneven design. On the other hand, the products obtained by Comparative Examples 1, 2, 4, 8, and 9 were inferior in evaluation of formability and wear resistance. The products obtained by Comparative Examples 3 and 5 were inferior in evaluation of flex resistance. The product obtained by Comparative Example 6 was inferior in moldability. The product obtained by Comparative Example 7 was inferior in wear resistance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  繊維からなる布帛の表面側の少なくとも一部にポリウレタン樹脂塗布部を有し、前記ポリウレタン樹脂塗布部に賦型された凹凸意匠を有する布帛であって、
     前記ポリウレタン樹脂塗布部は、塗布されたポリウレタン樹脂が存在する領域であって、ポリウレタン樹脂が布帛の少なくとも表面部における繊維間に浸透してポリウレタン樹脂と繊維とにより布帛表面が形成されており、
     前記ポリウレタン樹脂塗布部は、ポリウレタン樹脂の付与深さが50~200μmで、且つ、ポリウレタン樹脂の充填率が15~45%で、且つ、繊維の充填率が50~80%である、布帛。
    A fabric having a polyurethane resin coating portion on at least a part of the surface side of a fabric made of fibers, and having a concavo-convex design formed on the polyurethane resin coating portion,
    The polyurethane resin application part is an area where the applied polyurethane resin is present, and the polyurethane resin penetrates between the fibers in at least the surface part of the fabric, and the fabric surface is formed by the polyurethane resin and the fibers,
    The polyurethane resin coated portion is a fabric having a polyurethane resin application depth of 50 to 200 μm, a polyurethane resin filling ratio of 15 to 45%, and a fiber filling ratio of 50 to 80%.
  2.  前記ポリウレタン樹脂塗布部における空隙率が13%以下である、請求項1に記載の布帛。 The fabric according to claim 1, wherein a porosity in the polyurethane resin application part is 13% or less.
  3.  前記ポリウレタン樹脂塗布部における繊維断面の外周長の和が、単位面積10000μm2当たり1500μm以上である、請求項1または2に記載の布帛。 The fabric according to claim 1 or 2, wherein the sum of the outer peripheral lengths of the fiber cross-sections in the polyurethane resin coated portion is 1500 µm or more per unit area of 10,000 µm 2 .
  4.  前記ポリウレタン樹脂塗布部におけるポリウレタン樹脂の断面積100μm2当たりの繊維の本数が1.5本以上である、請求項1~3のいずれか1項に記載の布帛。 The fabric according to any one of claims 1 to 3, wherein the number of fibers per 100 µm 2 of the cross-sectional area of the polyurethane resin in the polyurethane resin application portion is 1.5 or more.
  5.  前記ポリウレタン樹脂塗布部は、ポリウレタン樹脂の付与深さが50~100μmで、且つ、ポリウレタン樹脂の充填率が20~35%で、且つ、繊維の充填率が55~75%である、請求項1~4のいずれか1項に記載の布帛。 2. The polyurethane resin coated portion has a polyurethane resin application depth of 50 to 100 μm, a polyurethane resin filling rate of 20 to 35%, and a fiber filling rate of 55 to 75%. 5. The fabric according to any one of 1 to 4.
  6.  前記凹凸意匠を有する布帛の厚みに対する前記ポリウレタン樹脂の付与深さの比が3~30%である、請求項1~5のいずれか1項に記載の布帛。 The fabric according to any one of claims 1 to 5, wherein a ratio of the application depth of the polyurethane resin to a thickness of the fabric having the uneven design is 3 to 30%.
  7.  前記凹凸意匠を構成する凹部の幅が200~1500μmであり、且つ該凹部の深さの最大値が20~450μmである、請求項1~6のいずれか1項に記載の布帛。 The fabric according to any one of claims 1 to 6, wherein a width of a concave portion constituting the concave and convex design is 200 to 1500 µm, and a maximum depth of the concave portion is 20 to 450 µm.
  8.  請求項1~7のいずれか一項に記載の布帛の製造方法であって、
     布帛の表面側の少なくとも一部にポリウレタン樹脂を塗布した後、ポリウレタン樹脂塗布部にエンボス加工にて凹凸意匠を賦型する、布帛の製造方法。
    A method for producing a fabric according to any one of claims 1 to 7,
    A method for producing a fabric, wherein a polyurethane resin is applied to at least a part of the surface side of the fabric, and then a concavo-convex design is formed on the polyurethane resin application portion by embossing.
  9.  前記ポリウレタン樹脂を塗布する対象の布帛が織物であり、前記織物は、前記凹凸意匠を付与する領域において、単位体積1mm3当たりの繊度の合計が2500~5800dtexである、請求項8に記載の布帛の製造方法。 9. The fabric according to claim 8, wherein the fabric to which the polyurethane resin is applied is a woven fabric, and the woven fabric has a total fineness of 2500 to 5800 dtex per unit volume of 1 mm 3 in the region to which the uneven design is applied. Manufacturing method.
  10.  前記ポリウレタン樹脂を塗布する対象の布帛が編物であり、前記編物は、前記凹凸意匠を付与する領域において、単位体積1mm3当たりの繊度の合計が1000~5800dtexである、請求項8に記載の布帛の製造方法。 The fabric according to claim 8, wherein the fabric to which the polyurethane resin is applied is a knitted fabric, and the knitted fabric has a total fineness of 1000 to 5800 dtex per unit volume of 1 mm 3 in the region to which the uneven design is applied. Manufacturing method.
PCT/JP2015/006171 2014-12-15 2015-12-10 Fabric having uneven-surface design, and method for producing same WO2016098324A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15869533.8A EP3235946B1 (en) 2014-12-15 2015-12-10 Fabric having uneven-surface design, and method for producing same
JP2016564679A JP6145584B2 (en) 2014-12-15 2015-12-10 Fabric having uneven design and method for producing the same
CN201580068657.4A CN107109784B (en) 2014-12-15 2015-12-10 Fabric having uneven design and method for producing same
US15/533,225 US20170342658A1 (en) 2014-12-15 2015-12-10 Fabric having uneven-surface design, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-253379 2014-12-15
JP2014253379 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016098324A1 true WO2016098324A1 (en) 2016-06-23

Family

ID=56126232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006171 WO2016098324A1 (en) 2014-12-15 2015-12-10 Fabric having uneven-surface design, and method for producing same

Country Status (5)

Country Link
US (1) US20170342658A1 (en)
EP (1) EP3235946B1 (en)
JP (1) JP6145584B2 (en)
CN (1) CN107109784B (en)
WO (1) WO2016098324A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099932A (en) * 2017-11-30 2019-06-24 セーレン株式会社 Designed fabric and method for producing the same
WO2019244572A1 (en) * 2018-06-18 2019-12-26 セーレン株式会社 Production method for sheet-shaped object and sheet-shaped object
EP3635171A4 (en) * 2017-06-09 2021-03-03 Engineered Floors LLC Stabilization of looped fabric surfaces by fine-scale embossing
JP7322477B2 (en) 2018-04-09 2023-08-08 東レ株式会社 Sheet-shaped article and method for producing the same
US11814783B2 (en) 2020-02-18 2023-11-14 Seiren Co., Ltd. Synthetic leather
WO2023233909A1 (en) * 2022-06-01 2023-12-07 セーレン株式会社 Napped leather-like sheet-like article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594396B1 (en) * 2018-07-10 2024-01-31 Karlsruher Institut für Technologie Process for producing micro- and nano-structured fiber-based substrates
CN112080939A (en) * 2019-06-14 2020-12-15 东丽纤维研究所(中国)有限公司 Concave-convex forming fabric
US11771144B1 (en) 2023-01-17 2023-10-03 Mast Industries (Far East) Limited Bra, bra cup, and method of manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016476B1 (en) * 1970-03-23 1975-06-13
JP2010248668A (en) * 2009-04-17 2010-11-04 Teijin Fibers Ltd Cloth and textile product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727577A (en) * 1970-07-24 1973-04-17 Usm Corp Machines for coating sheet material
US4735849A (en) * 1985-08-26 1988-04-05 Toray Industries, Inc. Non-woven fabric
US7670666B2 (en) * 2002-06-21 2010-03-02 Asahi Kasei Fibers Corporation Cloth
WO2007040144A1 (en) * 2005-09-30 2007-04-12 Kuraray Co., Ltd. Leather-like sheet and method of manufacturing the same
CN101583757B (en) * 2006-06-27 2012-08-15 可乐丽股份有限公司 Leather-like sheet and method of producing leather-like sheet
JP5154045B2 (en) * 2006-09-14 2013-02-27 日本ゴア株式会社 Fabrics, composite fabrics, textile products having excellent wear resistance, and methods for producing the same
JP2008273103A (en) * 2007-05-02 2008-11-13 Japan Polymer-Ku Kk Method of manufacturing textile having irregular pattern
KR101261228B1 (en) * 2011-06-01 2013-05-07 현대자동차주식회사 Method for manufacturing synthetic leather having air permeability
JP5496389B2 (en) * 2012-06-06 2014-05-21 セーレン株式会社 Skin material
KR101526842B1 (en) * 2013-01-29 2015-06-05 손한수 Forming method for textile of forming pattern design and rubber printing forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016476B1 (en) * 1970-03-23 1975-06-13
JP2010248668A (en) * 2009-04-17 2010-11-04 Teijin Fibers Ltd Cloth and textile product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3635171A4 (en) * 2017-06-09 2021-03-03 Engineered Floors LLC Stabilization of looped fabric surfaces by fine-scale embossing
US10968554B2 (en) 2017-06-09 2021-04-06 Engineered Floors LLC Stabilization of looped fabric surfaces by fine-scale embossing
JP2019099932A (en) * 2017-11-30 2019-06-24 セーレン株式会社 Designed fabric and method for producing the same
JP7322477B2 (en) 2018-04-09 2023-08-08 東レ株式会社 Sheet-shaped article and method for producing the same
WO2019244572A1 (en) * 2018-06-18 2019-12-26 セーレン株式会社 Production method for sheet-shaped object and sheet-shaped object
JP7065957B2 (en) 2018-06-18 2022-05-12 セーレン株式会社 Manufacturing method of sheet-like material and sheet-like material
US11345117B2 (en) 2018-06-18 2022-05-31 Seiren Co., Ltd. Method for manufacturing sheet-shaped material and sheet-shaped material
US11814783B2 (en) 2020-02-18 2023-11-14 Seiren Co., Ltd. Synthetic leather
JP7441670B2 (en) 2020-02-18 2024-03-01 セーレン株式会社 Synthetic leather
WO2023233909A1 (en) * 2022-06-01 2023-12-07 セーレン株式会社 Napped leather-like sheet-like article

Also Published As

Publication number Publication date
EP3235946A4 (en) 2018-07-25
EP3235946B1 (en) 2019-06-12
JP6145584B2 (en) 2017-06-14
EP3235946A1 (en) 2017-10-25
CN107109784A (en) 2017-08-29
CN107109784B (en) 2020-03-03
JPWO2016098324A1 (en) 2017-06-15
US20170342658A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6145584B2 (en) Fabric having uneven design and method for producing the same
JP6145585B2 (en) Fabric with design and method for producing the same
CN103917368B (en) Lamilated body cloth and silk
KR100517043B1 (en) Stretchable high-density woven fabric
JP7155119B2 (en) Synthetic leather
CN102965787B (en) A rubbing material for a liquid crystal panel substrate
JP2019035160A (en) Three layer-structured fabric
EP0303716B1 (en) Three-dimensional cloth with special structure and process for its production
JP4571542B2 (en) Vehicle skin material
JP2008169505A (en) Compressed fabric consisting of ultra fine fiber, and method for producing the same
JP6473299B2 (en) Polyester fabric, method for producing the same, and glossy processed sheet
WO2019230482A1 (en) Garment
EP3530133B1 (en) Feather products
JP2019099932A (en) Designed fabric and method for producing the same
JP7248976B2 (en) Double circular knitted fabric and clothing using said double circular knitted fabric
JP2005232643A (en) Raised knit fabric having bonding cloth touch and clothes
JP2012082545A (en) Leathery sheet-like product
JP5582703B2 (en) Interlining fabric and clothes
JP6615731B2 (en) High density fabric with multi-leaf type single yarn
JP4273510B2 (en) Brushed pile warp knitted fabric
JP5036649B2 (en) Interlining fabric and method for producing the same
CN114836870A (en) Raised fabric with concave-convex grid patterns and production method thereof
JPS59150182A (en) Special leather-like yarn
TW200811326A (en) Fabric structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564679

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015869533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15533225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE