WO2016095163A1 - 光开关芯片、光开关驱动模组及驱动方法 - Google Patents

光开关芯片、光开关驱动模组及驱动方法 Download PDF

Info

Publication number
WO2016095163A1
WO2016095163A1 PCT/CN2014/094229 CN2014094229W WO2016095163A1 WO 2016095163 A1 WO2016095163 A1 WO 2016095163A1 CN 2014094229 W CN2014094229 W CN 2014094229W WO 2016095163 A1 WO2016095163 A1 WO 2016095163A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical switch
frequency
pass filter
signal source
band pass
Prior art date
Application number
PCT/CN2014/094229
Other languages
English (en)
French (fr)
Inventor
章春晖
蔡毓
付红岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/094229 priority Critical patent/WO2016095163A1/zh
Priority to EP14908198.6A priority patent/EP3226576A4/en
Priority to CN201480081191.7A priority patent/CN107079203A/zh
Publication of WO2016095163A1 publication Critical patent/WO2016095163A1/zh
Priority to US15/625,829 priority patent/US20170289654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0035Construction using miscellaneous components, e.g. circulator, polarisation, acousto/thermo optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an optical switch chip, an optical switch driving module, and a driving method thereof.
  • the optical communication network is mainly composed of a transmission network, a switching network, and an access network.
  • the electrical switch in the switching network faces the technical limit of switching speed and energy consumption, and will not be able to meet the huge switching throughput requirement under high bandwidth demand.
  • As a low-energy, high-throughput optical signal switching technology all-optical switching technology will replace the electrical switching technology and become the main technology of the future switching network.
  • the core component of the all-optical switching technology is the optical switch matrix.
  • the optical switch matrix consists of a number of optical switching units in a regular topology. When the number of input ports and the number of output ports of the optical switch matrix are both N, it is called NxN exchange scale.
  • the optical switch matrix can have a total number of optical switch units of N2 at the NxN switching scale.
  • One or two phase shifters are required for each optical switch unit. Since the phase shifter can only make the optical switch unit in the through or cross state under a specific DC voltage or current, each optical switch unit needs to be equipped with a separate DAC (digital to analog conversion) drive unit for driving, an optical switch.
  • a matrix usually requires a large number of DAC drive units to drive it.
  • an optical switch module includes a main chip, a phase shifter, and a DAC driving unit.
  • the main chip includes an optical switch matrix and a circle of electrodes are distributed around the main chip. Each electrode is used to connect a corresponding phase shifter and a DAC driving unit, and the DAC driving unit can drive the corresponding optical switching unit.
  • the number of electrodes cannot match the number of optical switching units, resulting in some optical switching units not being able to be normal. drive.
  • Embodiments of the present invention provide an optical switch driving module and method that can reduce the number of electrodes used.
  • a first aspect of the present invention provides an optical switch driving module including an optical switch chip and the optical switch a multi-frequency driving signal source connected to the chip, the optical switch chip includes an optical switch matrix, and the optical switch unit of the optical switch matrix is divided into N groups, wherein N is a natural number greater than or equal to 1, each group of optical switch units Sharing the same pair of electrodes, each pair of electrodes is used for connecting a multi-frequency driving signal source, each optical switching unit is connected with a band pass filter and connected to the multi-frequency driving signal source through the band pass filter, the same group of M
  • the pass bands of the M band pass filters connected by the optical switch units are different, wherein M is a natural number greater than or equal to 2; the multi-frequency drive signal source outputs a pass band with the M band pass filters
  • a plurality of different frequency drive signals are respectively corresponding to drive the group of optical switch units.
  • the optical switch unit includes a coupler and a phase shifter, one end of the band pass filter is connected to the phase shifter, and the other end is connected to one of the pair of electrodes, and the other of the pair of electrodes A common end; two ends of the multi-frequency driving signal source are respectively connected to the pair of electrodes.
  • the band pass filter includes a capacitor C and an inductor L connected in series, and a resonant frequency of the band pass filter
  • the filter includes a first capacitor, a second capacitor, and a resistor, one end of the first capacitor is connected to the phase shifter, and the other end is connected to a node; one end of the resistor and the node Connected, the other end is connected to one of the pair of electrodes; one end of the second capacitor is connected to the node, and the other end is connected to the phase shifter to the other of the pair of electrodes; the phase shifter Forming a low pass filter with the first capacitor, the second capacitor and the resistor forming a high pass filter, the band pass filter is through a cascade one or more stages of low pass filter and a first stage A filter composed of a cascade of multi-stage high-pass filters.
  • the band pass filter includes one or more stages of active filters, the active filter including an integrated operational amplifier and a plurality of capacitors and resistors connected to the integrated operational amplifier.
  • the amplitude of the multi-frequency drive signal source output signal is adjustable.
  • the multi-frequency driving signal source comprises a multi-frequency signal source, an integrated operational amplifier and a plurality of LC resonant circuits, the multi-frequency signal source being connected to a positive input end of the integrated operational amplifier, the LC resonant circuit and The negative input terminals of the integrated operational amplifier are connected, and a resistor is connected between the negative input terminal and the output terminal of the integrated operational amplifier; each LC resonant circuit includes an adjustable resistor; when the multi-frequency signal source outputs a signal The multi-frequency signal source output signal is amplified when the frequency is consistent with the resonant frequency of the LC resonant circuit The multiple is the ratio of the resistance of the resistor and the adjustable resistor.
  • the multi-frequency driving signal source includes a plurality of signal sources having different output signal frequencies, and the output signals of the plurality of signal sources are superimposed and output through a high-speed DAC, and the signals output by the high-speed DAC include The components of the drive signal at different frequencies.
  • the optical switch driving module further includes an anti-crosstalk module, and the anti-crosstalk module calculates a driving power required by the corresponding phase shifter when receiving the optical switch switching request; and calculating a multi-frequency signal source The generated drive signal power; the multi-frequency signal source generates a drive signal in accordance with the power of the drive signal it needs to generate.
  • a second aspect of the present invention provides an optical switch chip including a plurality of optical switch units, wherein the plurality of optical switch units are divided into N groups, wherein N is a natural number greater than or equal to 1, and each group of optical switch units share the same pair An electrode, each pair of electrodes is used for connecting a multi-frequency driving signal source, each optical switching unit is connected with a band pass filter and connected to the electrode through the band pass filter, and M of the same group of optical switch units are connected The passbands of the bandpass filters are different, where M is a natural number greater than or equal to two.
  • the optical switch unit includes a coupler and a phase shifter, one end of the band pass filter is connected to the phase shifter, and the other end is connected to one of the pair of electrodes, and the other of the pair of electrodes A common end; two ends of the multi-frequency driving signal source are respectively connected to the pair of electrodes.
  • the band pass filter includes a capacitor C and an inductor L connected in series, and a resonant frequency of the band pass filter
  • the filter includes a first capacitor, a second capacitor, and a resistor, one end of the first capacitor is connected to the phase shifter, and the other end is connected to a node; one end of the resistor and the node Connected, the other end is connected to one of the pair of electrodes; one end of the second capacitor is connected to the node, and the other end is connected to the phase shifter to the other of the pair of electrodes; the phase shifter Forming a low pass filter with the first capacitor, the second capacitor and the resistor forming a high pass filter, the band pass filter is through a cascade one or more stages of low pass filter and a first stage A filter composed of a cascade of multi-stage high-pass filters.
  • the band pass filter includes one or more stages of active filters, the active filter including an integrated operational amplifier and a plurality of capacitors and resistors connected to the integrated operational amplifier.
  • An optical switch driving method comprises: dividing an optical switch unit of an optical switch matrix into N groups, N being a natural number greater than or equal to 1; each group of optical switch units sharing the same pair of electrodes, each pair of electrodes being used for connecting a plurality of frequencies a driving signal source, each optical switching unit is connected to a band pass filter and connected to the multi-frequency driving signal source through the band pass filter, and M band pass filters connected to the M optical switching units of the same group
  • the pass bands are different, wherein M is a natural number greater than or equal to 2; and the multi-frequency drive signal source outputs a plurality of different frequency drive signals corresponding to the pass bands of the M band pass filters to drive The group of optical switch units.
  • the optical switch driving method further includes adjusting an amplitude of the driving signal to drive the optical switching unit when the optical switching unit is a low speed switch.
  • each optical switch unit includes a coupler and a phase shifter, and the band pass filter is formed by connecting a capacitor and an inductor in series on a drive loop of each phase shifter.
  • each optical switch unit includes a coupler and a phase shifter, and the band pass filter is formed by cascading one or more stages of low pass filters and one or more stages of high pass filters.
  • the band pass filter includes an active filter.
  • the band pass filter is composed of a multi-stage active band pass filter cascade, or a multi-stage active low pass filter and an active high pass filter cascade.
  • the optical switch driving method further includes: calculating a driving power required by the phase shifter of the optical switching unit when receiving the optical switch state switching request; calculating a driving required to generate the multi-frequency signal source; and the multi-frequency The signal source generates a drive signal in accordance with the power of the drive signal it needs to generate.
  • the optical switch driving module and method use an AC signal containing a plurality of frequencies to drive the optical switch.
  • different optical switching phase shifters can be connected to the outside of the chip through the same electrode, thereby effectively reducing the number of electrodes.
  • FIG. 1 is a circuit diagram of an embodiment of an optical switch driving module of the present invention
  • 2 is a composition diagram of an embodiment of an optical switch unit
  • FIG. 3 is a composition diagram of another embodiment of an optical switch
  • 4a-4b are diagrams showing state changes of the optical switch unit when the amplitude of the DC drive signal changes
  • 5a-5b are diagrams showing state changes of the optical switch unit when the amplitude of the AC drive signal changes
  • Figure 6 shows a specific circuit diagram of the filter in a first embodiment
  • Figure 7 shows a specific circuit diagram of a filter in a second embodiment
  • Figure 8 shows a specific circuit diagram of a filter in a third embodiment
  • Figure 9 is a block diagram showing a specific circuit diagram of a multi-frequency driving signal source in a fourth embodiment
  • Figure 10 is a view showing the composition of a multi-frequency driving signal source in a fifth embodiment
  • Figure 11 is a block diagram showing the components of the optical switch driving module in a sixth embodiment
  • FIG. 13 is a flow chart of a method for driving an optical switch according to an embodiment of the present invention.
  • an optical switch driving module includes an optical switch chip 100 and M multi-frequency driving signal sources 200 connected to the optical switch chip 100 , where M is greater than or equal to 1 Natural number.
  • the optical switch chip 100 includes a plurality of optical switch units 110 and a plurality of filters 120.
  • the optical switch units are divided into M groups, and each group of optical switch units uses a multi-frequency drive signal.
  • Source 200 the number of each group of optical switch units is N, where N is a natural number greater than or equal to 2.
  • the phase shifter 114 of each optical switch unit 110 is coupled to a corresponding multi-frequency drive signal source 200 via a filter 120.
  • the optical switch chip 100 includes M pairs of electrodes 101 and 102, and each pair of electrodes is connected to a multi-frequency drive signal source 200.
  • the filter 120 is connected to a corresponding phase shifter 114, the filter The other end of the waver 120 is connected to the electrode 101.
  • the electrode 102 is a common terminal electrode, and the common terminal electrode functions as a reflow, and may be directly connected to the other pole of the phase shifter or to the common ground of the chip.
  • the filter 120 is a band pass filter that allows only a signal of a specific frequency to drive a corresponding phase shifter; the pass bands of the N band pass filters connected by the N optical switch units 110 of the same group are different.
  • the multi-frequency driving signal source 200 connected to each group of optical switching units can provide driving signals of various frequencies, and the frequencies of the driving signals respectively correspond to the pass bands of the band pass filters.
  • the amplitude of the driving signal of each frequency can be independently adjusted. By adjusting the amplitude or power value of different frequency components, the control of different optical switching units can be realized.
  • phase shifters of the same group of optical switch units require different frequencies of the drive signals; the phase shifters of the different sets of optical switch phase units can use the same frequency, but they need to be connected to different electrodes.
  • the optical switch unit 110 has two input ports (input 1, input 2) and two output ports (output 1, output 2), and two couplers at the beginning and the end. 112, a phase shifter 114 is connected between the two couplers 112. If two input ports and two output ports are used, the optical switch unit 110 can implement a 2x2 optical switch unit; if only one input port and two output ports of the 2x2 optical switch unit are used, the 1x2 optical switch can be equivalently realized. The function of the unit; if only the two output ports of the 2x2 optical switch unit and one of the output ports are used, the function of the 2x1 optical switch unit can be equivalently realized.
  • the optical switch unit 110 has two input ports (input 1, input 2) and two output ports (output 1, output 2), and two couplers 112 at the beginning and the end, two Two phase shifters 114 are connected between the couplers 112, and the principle of the Mach-Zehnder interferometer (MZI) is applied to change the optical path difference of the two phase shifters inside the optical switch unit under the action of the thermo-optic effect.
  • MZI Mach-Zehnder interferometer
  • the optical signal can be propagated from one of the two input ports to one of the two output ports, thereby realizing the function of the optical signal in the 2x2 switch unit; if only one of the input ports and the two output ports of the 2x2 optical switch unit is used, Equivalent to realize the function of the 1x2 optical switch unit; if only the two output ports of the 2x2 optical switch unit and one of the output ports are used, the function of the 2x1 optical switch unit can be equivalently realized.
  • the coupler 112 is a 50:50 optocoupler.
  • the corresponding optical switching unit can be driven using the driving signals of the respective frequencies.
  • the amplitude of the drive signal is one of the factors controlling the operational state of the filter, except that the frequency of the drive signal affects the operational state of the bandpass filter.
  • the optical switch unit is a low-speed optical switch (such as a thermo-optic switch)
  • the switching time of the switch is usually slow, that is, the response frequency is low; if the low-speed optical switch is driven by an AC signal whose frequency is much higher than the switching frequency of the switch Then, the state of the optical switch is only related to the amplitude of the AC signal, and the high frequency fluctuation of the AC drive signal has little effect on the switching state.
  • thermo-optical switch of the order of milliseconds
  • the high-speed fluctuation of the AC signal will only cause the optical switch state to generate small fluctuations without It will have a large impact on the state of the optical switch. Only when the amplitude of the AC signal changes, the state of the optical switch will change significantly.
  • the waveform diagrams of Figures 4a-4b show that when the drive signal is a DC drive signal, the state of the optical switch changes as the amplitude of the drive signal decreases; the waveform diagrams of Figures 5a-5b show that when the drive signal is an AC drive signal Since the frequency of the driving signal is higher than the response frequency of the switch, the frequency change of the driving signal has little influence on the state of the optical switch. At this time, the state of the optical switch can be changed only when the amplitude of the driving signal changes.
  • the filter 120 can be a bandpass filter of various forms.
  • the filter 120 has a capacitor and an inductor connected in series with each phase shifter 114 drive loop.
  • the impedance of the LC resonant circuit formed by the capacitor and the inductor is related to the frequency of the drive signal.
  • the impedance of the LC resonant circuit is 0; when the driving signal frequency deviates from the resonant frequency of the LC resonant circuit When the LC circuit exhibits a certain impedance.
  • each phase shifter can be driven mainly by only one frequency signal, that is, the LC circuit connected in series with it. Resonant frequency, but less affected by signals from other frequencies.
  • the LC resonant circuit functions as a bandpass filter having a relatively narrow bandwidth.
  • the capacitors and inductors in this embodiment can be made in the metal layer of the chip, which is relatively easy to implement. Moreover, the capacitor and the inductor do not generate power consumption, and the power consumption of the entire optical switch chip is not increased.
  • Fig. 7 shows a circuit diagram of the composition of the filter 120 in a second embodiment in which the other portions of the optical switch unit are omitted, and only the phase shifter portion is shown.
  • the filter 120 includes two capacitors and a resistor; for example, the filter 120 connected to the phase shifter 1 includes the first a capacitor C1.1, a second capacitor C1.2 and a resistor R1, one end of the first capacitor C1.1 is connected to the phase shifter 1 and the other end is connected to a node N; one end of the resistor R1 is The node N is connected, and the other end of the electrode 101 is connected; one end of the second capacitor C1.2 is connected to the node N, and the other end is connected to the electrode 102 in common with the phase shifter 1.
  • the filters connected to the other phase shifters are the same as those of the filter 120 connected to the phase shifter 1 described above, and only the capacitance and the resistance are different.
  • the phase shifter 1 and the first capacitor C1.1 in FIG. 7 form a low pass filter, and the second capacitor C1.2 and the resistor R1 form a high pass filter, which can be realized by cascading two filters. Through the effect of filtering.
  • the drive signal component in the passband of the bandpass filter can drive the phase shifter 1 through the filter, while the other frequency components cannot drive the phase shifter 1 through the filter or have less effect on the phase shifter 1.
  • phase shifter loop uses different capacitance and resistance values on each phase shifter loop to receive different drive signal frequencies. By controlling the amplitude of the signals at different frequencies in the drive signal, different optical switch states can be controlled.
  • Fig. 8 shows a circuit diagram of the composition of the filter 120 in a third embodiment.
  • the filter 120 constitutes an active filter by integrating an operational amplifier (U1, U2, ... Un) and a resistive capacitor.
  • the filter 120 connected to the phase shifter 1 includes an integrated operational amplifier U1, resistors R1.1, R1.2, R1.3, R1.4, R1.5, and a capacitor C1.1. , C1.2.
  • the output of the integrated operational amplifier U1 is connected to the phase shifter 1.
  • the resistor R1.1 is connected between the output end of the integrated operational amplifier U1 and the node N1, and one end of the electronic R1.2 is connected to the node N1.
  • the other end is grounded; one end of the resistor R1.3 is connected to the positive input end of the integrated operational amplifier U1, and the other end is grounded; the capacitor C1.1 is connected between the positive input end of the integrated operational amplifier U1 and a node N2; The resistor R1.4 is connected between the output end of the integrated operational amplifier U1 and the node N2; one end of the capacitor C1.2 is connected to the node N2, and the other end is grounded; one end of the resistor R1.5 is opposite to the node N2 Connected to the other end and connected to the electrode 101.
  • the filters connected to the other phase shifters are the same as those of the filter 120 connected to the phase shifter 1 described above, and only the capacitance and the resistance are different.
  • the capacitor resistors in the integrated op amp loop form a typical active bandpass filter.
  • the out-of-band rejection of active bandpass filters is generally superior to passive filters of the same order, reducing crosstalk between different phase shifter loops.
  • the isolation of the bandpass filter can be improved, allowing different phase shifter loops The crosstalk between them is reduced.
  • linear devices such as transistors, field effect transistors, etc.
  • other linear devices such as transistors, field effect transistors, etc.
  • FIG. 9 shows that in a fourth embodiment, the multi-frequency drive signal source 200 is an adjustable multi-frequency signal source.
  • the multi-frequency drive signal source 200 shown in FIG. 9 includes a multi-frequency signal source 210, an integrated operational amplifier U11, a resistor R0, and a plurality of LC resonant circuits.
  • Each LC resonant circuit shown in FIG. 9 is composed of an adjustable resistor (R1, R2 or Rn, etc.), a capacitor and an inductor connected in series; the integrated operational amplifier and the resistor, the capacitor and the inductor constitute a DC amplifier circuit.
  • the LC resonant circuit composed of the capacitor C1 and the inductor L1 as an example, when the frequency of the signal generated by the multi-frequency signal source is the resonant frequency of the LC resonant circuit
  • the impedance of the LC resonant circuit is 0; when the frequency of the signal generated by the multi-frequency signal source deviates from the resonant frequency ⁇ 1, the LC circuit exhibits a certain impedance.
  • other LC resonant circuits in the figure also have corresponding resonant frequencies.
  • each LC resonant circuit Choosing the appropriate inductance and capacitance values allows each LC resonant circuit to exhibit a short-circuit condition when it receives a signal that is consistent with its resonant frequency, and a high impedance for other frequencies, which is equivalent to an open circuit condition.
  • the amplification circuit composed of the integrated operational amplifier and the resistor, the capacitor and the inductor has a magnification of R0/R1 for the signal with the ⁇ 1 frequency, and the amplification factor for the signal of the ⁇ 2 frequency is R0/R2, and the amplification factor of the signal for the ⁇ n frequency. Is R0/Rn.
  • the R1, R2, and Rn are all adjustable resistors, and different adjustable resistors can be adjusted, and the amplification factor of the amplification circuit can be adjusted for different frequency components, and the amplification factor of other frequency components is not affected, so that the output can be realized.
  • the amplitudes of the different frequencies of the signal are individually adjusted.
  • the output signal of the multi-frequency signal source 210 may only contain frequency components of ⁇ 1, ⁇ 2, ... ⁇ n, and may also include other frequency components, which may be a wide-spectrum noise source.
  • the LC resonance circuit shown in Fig. 9 can also be replaced by other band rejection filters.
  • the multi-frequency drive signal source 200 includes signal sources 210a, 210b, 210c that provide signals of different frequencies, and the signals generated by these signal sources are superimposed to obtain time-domain waveforms.
  • the output signal of the high speed DAC 220 contains drive signal components of various desired frequencies.
  • FIG. 11 shows a sixth embodiment
  • the optical switch driving module further includes an anti-crosstalk module 300
  • the anti-crosstalk module 300 is configured to reduce crosstalk between different phase shifter driving circuits.
  • the specific method for preventing crosstalk is shown in FIG. 12, and includes the following steps:
  • the multi-frequency driving signal source 200 generates a driving signal according to the vector d.
  • the output power of the multi-frequency driving signals at these frequencies is respectively a1 , a2...an, and after passing the filter, the power received by the phase shifter is b1, b2, ... bn, respectively.
  • the present invention also discloses an optical switch driving method based on the above optical switch driving module, including:
  • S1 dividing the optical switch unit of the optical switch matrix into N groups, N being a natural number greater than or equal to 1; each group of optical switch units sharing the same pair of electrodes, each pair of electrodes being used to connect a multi-frequency drive signal source, each The optical switch unit is connected to a band pass filter and connected to the multi-frequency drive signal source through the band pass filter, and the pass bands of the M band pass filters connected to the M optical switch units of the same group are different.
  • M is a natural number greater than or equal to 2.
  • the multi-frequency driving signal source outputs driving signals of a plurality of different frequencies corresponding to the pass bands of the M band-pass filters to drive the group of optical switching units.
  • the optical switch driving module and the driving method use the AC signal to drive the optical switch, and the different optical switches are driven by signals of different frequencies; by this method, different optical switches share a pair of chip electrodes, thereby effectively alleviating the surrounding of the large-scale optical switch chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光开关芯片、光开关驱动模组及驱动方法,可通过不同频率的驱动信号驱动光开关矩阵中的光开关单元。光开关驱动模组包括光开关芯片。光开关芯片包括多个光开关单元(110)。光开关单元(110)分为N组,N为大于或等于1的自然数。每组光开关单元(110)共用同一对电极(101,102)。每对电极(101,102)用于连接一多频率驱动信号源(200)。每一光开关单元(110)连接有一带通滤波器(120)并通过该带通滤波器(120)连接至多频率驱动信号源(200)。同组的M个光开关单元(110)连接的M个带通滤波器(120)的通带各不相同,M为大于等于2的自然数。多频率驱动信号源(200)输出与M个带通滤波器(120)分别对应的多种不同频率的驱动信号,以驱动光开关单元(110)。

Description

光开关芯片、光开关驱动模组及驱动方法 技术领域
本发明涉及光通信技术领域,尤其涉及一种光开关芯片、光开关驱动模组及驱动方法
背景技术
光通信网络主要由传送网,交换网,接入网三个部分组成。其中,交换网中的电交换机面临着交换速度,能耗等技术极限,将无法满足高带宽需求下巨大的交换吞吐量要求。全光交换技术作为一种低能耗,大吞吐量的光信号交换技术,将取代电交换技术,成为未来交换网的主要技术。
实现全光交换技术的核心部件,是光开关矩阵。光开关矩阵由一定数量的光开关单元按照规则拓扑结构组成。光开关矩阵的输入口数量和输出口数量均为N时,被称为NxN交换规模。光开关矩阵在NxN交换规模下,所需要的光开关单元的总数可为N2个。每个光开关单元需要1个或两个相移器。由于相移器只有在特定的直流电压或电流下才能使光开关单元处于直通或交叉状态,因此每个光开关单元需要配一个独立的DAC(数模转换)驱动单元来进行驱动,一个光开关矩阵通常就需要很多个的DAC驱动单元来驱动它。
例如一种光开关模组,包括主芯片、相移器及DAC驱动单元等。主芯片包括光开关矩阵且主芯片的周围分布一圈电极,每一个电极用于连接相应的相移器及DAC驱动单元,DAC驱动单元即可驱动相应的光开关单元。
然而,随着光开关矩阵规模的增大,光开关单元数量多到一定程度时,主芯片周围即使布满电极,其电极数量仍不能匹配光开关单元的数量,导致有些光开关单元不能被正常驱动。
发明内容
本发明的实施例提供一种能减少电极使用数量的光开关驱动模组及方法。
本发明第一方面提供了一种光开关驱动模组,包括光开关芯片及与该光开 关芯片相连的多频率驱动信号源,所述光开关芯片包括有光开关矩阵,所述光开关矩阵的光开关单元分为N组,其中N为大于或等于1的自然数,每组光开关单元共用同一对电极,每对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述多频率驱动信号源,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数;所述多频率驱动信号源输出与所述M个带通滤波器的通带分别对应的多种不同频率的驱动信号,以驱动该组光开关单元。
进一步地,所述光开关单元包括耦合器及相移器,所述带通滤波器的一端与所述相移器相连,另一端与该对电极其中之一相连,该对电极其中之另一为公共端;所述多频率驱动信号源的两端分别与该对电极相连。
进一步地,所述带通滤波器包括串联连接的电容C及电感L,所述带通滤波器的谐振频率
Figure PCTCN2014094229-appb-000001
进一步地,所述滤波器包括第一电容、第二电容及一电阻,所述第一电容的一端与所述相移器相连,另一端连接至一节点;所述电阻的一端与所述节点相连,另一端与该对电极其中之一相连;所述第二电容的一端与所述节点相连,另一端与所述相移器共同连接至该对电极其中之另一;所述相移器与所述第一电容组成一个低通滤波器,所述第二电容与所述电阻组成一个高通滤波器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器级联的方式组成的滤波器。
进一步地,所述带通滤波器包括一级或多级有源滤波器,所述有源滤波器包括集成运放及与所述集成运放相连的多个电容和电阻。
进一步地,所述多频率驱动信号源输出信号的幅度可调。
进一步地,所述多频率驱动信号源包括多频率信号源、集成运放及多个LC谐振电路,所述多频率信号源与所述集成运放的正输入端相连,所述LC谐振电路与所述集成运放的负输入端相连,一电阻连接于所述集成运放的负输入端及输出端之间;每一LC谐振电路包括一可调电阻;当所述多频率信号源输出信号的频率与LC谐振电路的谐振频率一致时,所述多频率信号源输出信号被放大的 倍数为所述电阻及所述可调电阻的阻值之比。
进一步地,所述多频率驱动信号源包括多个输出信号频率不同的多个信号源,所述多个信号源的输出信号进过叠加后通过一高速DAC输出,所述高速DAC输出的信号包括不同频率的驱动信号的分量。
进一步地,所述光开关驱动模组还包括防串扰模组,所述防串扰模组在接收到光开关切换请求时计算出相应相移器所需要的驱动功率;计算出多频率信号源需要产生的驱动信号功率;所述多频率信号源按照其需要产生的驱动信号的功率产生驱动信号。
本发明第二方面提供了一种光开关芯片,包括多个光开关单元,所述多个光开关单元分为N组,其中N为大于或等于1的自然数,每组光开关单元共用同一对电极,每对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述电极,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数。
进一步地,所述光开关单元包括耦合器及相移器,所述带通滤波器的一端与所述相移器相连,另一端与该对电极其中之一相连,该对电极其中之另一为公共端;所述多频率驱动信号源的两端分别与该对电极相连。
进一步地,所述带通滤波器包括串联连接的电容C及电感L,所述带通滤波器的谐振频率
Figure PCTCN2014094229-appb-000002
进一步地,所述滤波器包括第一电容、第二电容及一电阻,所述第一电容的一端与所述相移器相连,另一端连接至一节点;所述电阻的一端与所述节点相连,另一端与该对电极其中之一相连;所述第二电容的一端与所述节点相连,另一端与所述相移器共同连接至该对电极其中之另一;所述相移器与所述第一电容组成一个低通滤波器,所述第二电容与所述电阻组成一个高通滤波器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器级联的方式组成的滤波器。
进一步地,所述带通滤波器包括一级或多级有源滤波器,所述有源滤波器包括集成运放及与所述集成运放相连的多个电容和电阻。
一种光开关驱动方法包括:将光开关矩阵的光开关单元分为N组,N为大于或等于1的自然数;每组光开关单元共用同一对电极,每一对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述多频率驱动信号源,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数;及所述多频率驱动信号源输出与所述M个带通滤波器的通带相对应的多种不同频率的驱动信号,以驱动该组光开关单元。
进一步地,所述光开关驱动方法还包括在所述光开关单元是低速开关时,调节驱动信号的幅度以驱动所述光开关单元。
进一步地,每一光开关单元包括耦合器及相移器,所述带通滤波器是通过在每个相移器的驱动回路上串联一个电容和一个电感的方式组成。
进一步地,每一光开关单元包括耦合器及相移器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器的方式组成。
进一步地,所述带通滤波器包括有源滤波器。
进一步地,所述带通滤波器由多级有源带通滤波器级联、或多级有源低通滤波器和有源高通滤波器级联的方式组成。
进一步地,所述光开关驱动方法还包括在接收到光开关状态切换请求时计算出光开关单元的相移器所需要的驱动功率;计算出多频率信号源需要产生的驱动;及所述多频率信号源按照其需要产生的驱动信号的功率产生驱动信号。
上述光开关驱动模组及方法使用含有多种频率的交流信号驱动光开关,通过这样的方法,可以使不同的光开关相移器通过相同的电极连接到芯片外部,有效减少了电极的数量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明光开关驱动模组一实施方式的电路图;
图2为光开关单元的一实施例的组成图;
图3为光开关的另一实施例的组成图;
图4a-4b为直流驱动信号的幅度变化时光开关单元的状态变化图;
图5a-5b为交流驱动信号的幅度变化时光开关单元的状态变化图;
图6示出在一第一实施例中滤波器的具体电路图;
图7示出在一第二实施例中滤波器的具体电路图;
图8示出在一第三实施例中滤波器的具体电路图;
图9示出在一第四实施例中多频率驱动信号源的具体电路图;
图10示出在一第五实施例中多频率驱动信号源的组成图;
图11示出在一第六实施例中光开关驱动模组的组成模块图;
图12是本发明实施例中防串扰的方法流程图;
图13为本发明光开关驱动方法一实施方式的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明涵盖的范围。
请参阅图1,在一实施方式中,一种光开关驱动模组包括一光开关芯片100及M个与所述光开关芯片100相连的多频率驱动信号源200,其中M为大于或等于1的自然数。
请参阅图1至图3,所述光开关芯片100包括多个光开关单元110及多个滤波器120,这些光开关单元分为M组,每一组光开关单元同用一多频率驱动信号源200,每组光开关单元的数个为N个,其中N为大于或等于2的自然数。每个光开关单元110的相移器114通过一滤波器120连接至相应的多频率驱动信号源200。所述光开关芯片100包括M对电极101及102,每对电极连接一多频率驱动信号源200。所述滤波器120的一端与相应的相移器114相连,所述滤 波器120的另一端连接至电极101。所述电极102是公共端电极,公共端电极作用是回流,可以直接连到相移器的另一极,也可以接到芯片的公共地上。
所述滤波器120是带通滤波器,只允许特定频率的信号驱动对应的相移器;同组的N个光开关单元110连接的N个带通滤波器的通带各不相同。每一组光开关单元连接的多频率驱动信号源200都能提供多种频率的驱动信号,驱动信号的频率分别与带通滤波器的通带对应。每个频率的驱动信号的幅度都可以独立调节,通过调整不同频率分量的幅度或功率值,就可以实现对不同光开关单元的控制。
同一组的光开关单元的相移器所需的驱动信号的频率各不相同;不同组的光开关相单元的相移器可以使用相同的频率,但它们需要连到不同的电极上。
在图1及图2所示的实施例中,所述光开关单元110有两个输入口(输入1、输入2)和两个输出口(输出1、输出2),首尾有两个耦合器112,两个耦合器112之间连接有一相移器114。如果使用两个输入口及两个输出口,所述光开关单元110能实现2x2光开关单元;如果只使用2x2光开关单元其中一个输入口及两个输出口,可以等效的实现1x2光开关单元的功能;如果只使用2x2光开关单元的两个输出口及其中一个输出口,可以等效的实现2x1光开关单元的功能。
在图3所示的实施例中,所述光开关单元110有两个输入口(输入1、输入2)和两个输出口(输出1、输出2),首尾有两个耦合器112,两个耦合器112之间连接有两个相移器114,应用马赫曾德干涉仪(MZI)原理,在热光效应的作用下,改变光开关单元内部两个相移器的光程差值,可以让光信号从两个输入口的其中一个传播到两个输出口的其中一个,从而实现光信号在2x2开关单元功能;如果只使用2x2光开关单元其中一个输入口及两个输出口,可以等效的实现1x2光开关单元的功能;如果只使用2x2光开关单元的两个输出口及其中一个输出口,可以等效的实现2x1光开关单元的功能。
在一实施方式中,上述耦合器112为50:50光耦合器。
在上述实施例中,使用相应频率的驱动信号则可驱动相应的光开关单元。 但在其它实施方式中,除了驱动信号的频率影响带通滤波器的工作状态之外,驱动信号的幅度也是控制滤波器的工作状态的因素之一。例如,在所述光开关单元是低速光开关(如热光开关)时,开关的切换时间通常比较慢,即响应频率很低;如果用频率远高于开关切换频率的交流信号驱动低速光开关,那么光开关的状态就只和交流信号的幅度有关,而在交流驱动信号的高频波动对开关状态影响很小。以毫秒量级的热光开关为例,如果使用MHz的交流信号来驱动(对应的周期为us量级),那么交流信号的高速波动只会使光开关状态产生幅度很小的波动,而不会对光开关状态产生较大的影响,只有交流信号的幅度发生变化,光开关的状态才会发生显著变化。
图4a-4b的波形图显示,当驱动信号是直流驱动信号时,驱动信号的幅度下降时,光开关的状态会发生变化;图5a-5b的波形图显示,当驱动信号是交流驱动信号时,由于该驱动信号的频率高于开关的响应频率,驱动信号的频率变化对光开关状态的影响很小,此时仅当驱动信号的幅度发生变化,才能使光开关的状态发生变化。
所述滤波器120可以是各种形式的带通滤波器。例如,在图6所示的第一实施例中,所述滤波器120在每个相移器114驱动回路上串联一个电容和电感。电容和电感形成的LC谐振电路的阻抗和驱动信号频率有关。当驱动信号频率与LC谐振电路的谐振频率时,LC谐振电路的阻抗为0;当驱动信号频率偏离LC谐振电路的谐振频率
Figure PCTCN2014094229-appb-000003
时,LC电路呈现一定阻抗。在不同的光开关相移器上串联不同的电容和电感,并选择合适的电容和电感参数,可以使每个相移器主要只受一个频率的信号的驱动,即与之串联的LC电路的谐振频率,而受其它频率的信号影响较小。所述LC谐振电路起到一个带宽比较窄的带通滤波器的作用。本实施例中的电容和电感可以做在芯片的金属层,实现比较容易。且电容和电感不产生功耗,不会使整个光开关芯片的功耗增加。
图7示出了在一第二实施例中滤波器120的组成电路图,图中省去了光开关单元的其它部分,仅示出了相移器部分。在图7所示的第二实施中,所述滤波器120包括两个电容及一电阻;例如:相移器1连接的滤波器120包括第一 电容C1.1、第二电容C1.2及一电阻R1,所述第一电容C1.1的一端与相移器1相连,另一端连接至一节点N;所述电阻R1的一端与所述节点N相连,另一端所述电极101相连;所述第二电容C1.2的一端与所述节点N相连,另一端与相移器1共同连接至所述电极102。其它相移器连接的滤波器的与上述与相移器1相连的滤波器120的电路相同,仅电容容量及电阻阻值有所不同。
图7中的相移器1和第一电容C1.1组成一个低通滤波器,第二电容C1.2和电阻R1组成一个高通滤波器,可通过两个滤波器级联的方式实现一个带通滤波的效果。带通滤波器通带内的驱动信号分量可以通过滤波器驱动相移器1,而其它频率分量则不能通过滤波器驱动相移器1或对相移器1产生的影响较小。
在每个相移器回路上使用不同的电容和电阻值,可以使不同相移器能接收到的驱动信号频率各不相同。控制驱动信号中不同频率的信号的幅度,即可对不同的光开关状态进行控制。
使用多级低通滤波器和多级高通滤波器级联可以使相移器回路上的带通滤波器的隔离度更好,受其他频率的影响更小。
图8示出了在一第三实施例中滤波器120的组成电路图。图中省去了光开关单元的其它部分,仅示出了相移器部分。在图8所示的第三实施例中,所述滤波器120通过集成运放(U1、U2、…Un)和电阻电容组成有源滤波器。具体以与相移器1连接的滤波器120为例,该滤波器120包括集成运放U1、电阻R1.1、R1.2、R1.3、R1.4、R1.5及电容C1.1、C1.2。所述集成运放U1的输出端与相移器1相连,电阻R1.1连接于所述集成运放U1的输出端与节点N1之间,电子R1.2的一端与所述节点N1相连,另一端接地;电阻R1.3的一端与所述集成运放U1的正输入端相连,另一端接地;电容C1.1连接于所述集成运放U1的正输入端及一节点N2之间;电阻R1.4连接于所述集成运放U1的输出端及所述节点N2之间;电容C1.2一端与所述节点N2相连,另一端接地;电阻R1.5的一端与所述节点N2相连,另一端与所述电极101相连。其它相移器连接的滤波器的与上述与相移器1相连的滤波器120的电路相同,仅电容容量及电阻阻值有所不同。
上述集成运放回路中的电容电阻组成一个典型的有源带通滤波器。有源带通滤波器的带外抑制特性通常优于级数相同的无源滤波器,能减小不同相移器回路之间的串扰。
使用多级的有源带通滤波器级联,或者多级有源低通滤波器和有源高通滤波器级联的方法,可以提高带通滤波器的隔离度,使不同相移器回路之间的串扰减小。
在其它实施方式中,也可以使用其他线性器件(如三极管、场效应管等)来搭建有源带通滤波器电路。
图9示出了在一第四实施例中,所述多频率驱动信号源200为可调式多频率信号源。图9所示的多频率驱动信号源200包括多频率信号源210、集成运放U11、电阻R0及多个LC谐振电路。图9所示的每一LC谐振电路均由串联的可调电阻(R1、R2或Rn等)、电容及电感组成;集成运放和电阻、电容及电感组成一个同向放大电路。以电容C1和电感L1组成的LC谐振电路为例,当多频率信号源产生的信号频率为该LC谐振电路的谐振频率
Figure PCTCN2014094229-appb-000004
时,该LC谐振电路的阻抗为0;当多频率信号源产生的信号频率偏离该谐振频率ω1时,LC电路呈现一定阻抗。同样的,图中其它LC谐振电路也有相应的谐振频率
Figure PCTCN2014094229-appb-000005
Figure PCTCN2014094229-appb-000006
选择合适的电感和电容值,可以使每个LC谐振电路在收到与其谐振频率一致的信号时,呈现短路状态;对其它频率的信号则呈现很高的阻抗,相当于断路状态。所述集成运放和电阻、电容及电感组成的放大电路对与ω1频率的信号的放大倍数为R0/R1,对ω2频率的信号的放大倍数为R0/R2,对ωn频率的信号的放大倍数为R0/Rn。
所述R1、R2、Rn等均为可调电阻,调节不同的可调电阻,可以调节放大电路对不同频率分量的放大倍数,而对其他频率分量的放大倍数不产生影响,如此可实现对输出信号的不同频率的幅度进行单独调节。
所述多频率信号源210的输出信号可以只包含ω1、ω2、…ωn的频率分量,也可以包含其它频率分量,可以是一个宽谱噪声源。
图9所示的LC谐振电路也可以由其他的带阻滤波器来替代。
图10示出了在一第五实施例中,所述多频率驱动信号源200包括提供不同频率的信号的信号源210a、210b、210c,这些信号源产生的信号通过叠加后得到的时域波形通过一高速DAC 220输出,高速DAC 220的输出信号就包含各种所需频率的驱动信号分量。
当某个光开关需要改变状态时,需要重新计算各个频率频率分量叠加之后的时域波形,高速DAC根据新的波形重新发出所需驱动信号。
图11示出了在一第六实施例中,所述光开关驱动模组还包括一防串扰模组300,所述防串扰模组300用于减小不同相移器驱动回路之间的串扰。具体防串扰的方法如图12所示,包括以下步骤:
S01:发送光开关切换请求至多频率驱动信号源200;
S02:计算出相应的相移器所需要的驱动功率向量c;
S03:计算出多频率驱动信号源200需要产生的驱动信号的功率向量d=cT-1
S04:多频率驱动信号源200按照向量d产生驱动信号。
如果共用同一对电极的几个光开关单元的相移器分别被驱动信号中的ω1、ω2、…ωn几种频率所驱动,多频率的驱动信号在这几个频率上的输出功率分别为a1、a2…an,而通过滤波器之后,相移器接收到的功率分别为b1、b2…bn。
假设滤波器存在一定串扰,相邻通道之间串扰为p。即ω2的功率会有pω2的功率串扰到接收ω1的相移器和接收ω3的相移器上,用矩阵来表示,即b=Ta,其中b=[b1、b2…bn],a=[a1、a2…an]
Figure PCTCN2014094229-appb-000007
上述矩阵即多频率信号源发出的信号功率到相移器接收的信号功率的传输 函数。如果相移器需要的驱动信号的功率向量为c=[c1、c2、…cn],可以通过抑制的传输函数T计算出需要的多频率信号源的各频率分量的功率d=cT-1,然后计算出多频率信号源需要产生的驱动信号的功率向量d。通过这种算法可以减小因为滤波器隔离度不够好而造成的不同相移器的驱动信号之间的串扰问题。
请参阅图13,本发明还揭示了一种基于上述光开关驱动模组的光开关驱动方法,包括:
S1:将光开关矩阵的光开关单元分为N组,N为大于或等于1的自然数;每组光开关单元共用同一对电极,每一对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述多频率驱动信号源,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数。
S2:所述多频率驱动信号源输出与所述M个带通滤波器的通带相对应的多种不同频率的驱动信号,以驱动该组光开关单元。
S3:所述光开关单元是低速开关时,调节驱动信号的幅度以根据切换请求切换所述光开关单元的状态。
上述光开关驱动模组及驱动方法使用交流信号驱动光开关,不同光开关使用不同频率的信号驱动;通过这样的方法使不同的光开关共用一对芯片电极,有效缓解了大规模光开关芯片周围驱动电极不够的问题。
以上所述,仅为本发明的各种具体实施例,各实施例记载的方案可以单独使用或结合使用,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种光开关驱动模组,其特征在于,所述光开关驱动模组包括光开关芯片及与该光开关芯片相连的多频率驱动信号源,所述光开关芯片包括有光开关矩阵,所述光开关矩阵的光开关单元分为N组,其中N为大于或等于1的自然数,每组光开关单元共用同一对电极,每对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述多频率驱动信号源,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数;所述多频率驱动信号源输出与所述M个带通滤波器的通带分别对应的多种不同频率的驱动信号,以驱动该组光开关单元。
  2. 根据权利要求1所述的光开关驱动模组,其特征在于,所述光开关单元包括耦合器及相移器,所述带通滤波器的一端与所述相移器相连,另一端与该对电极其中之一相连,该对电极其中之另一为公共端;所述多频率驱动信号源的两端分别与该对电极相连。
  3. 根据权利要求1-2任意一项所述的光开关驱动模组,其特征在于,所述带通滤波器包括串联连接的电容C及电感L,所述带通滤波器的谐振频率
    Figure PCTCN2014094229-appb-100001
  4. 根据权利要求1-2任意一项所述的光开关驱动模组,其特征在于,所述滤波器包括第一电容、第二电容及一电阻,所述第一电容的一端与所述相移器相连,另一端连接至一节点;所述电阻的一端与所述节点相连,另一端与该对电极其中之一相连;所述第二电容的一端与所述节点相连,另一端与所述相移器共同连接至该对电极其中之另一;所述相移器与所述第一电容组成一个低通滤波器,所述第二电容与所述电阻组成一个高通滤波器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器级联的方式组成的滤波器。
  5. 根据权利要求1-2任意一项所述的光开关驱动模组,其特征在于,所述 带通滤波器包括一级或多级有源滤波器,所述有源滤波器包括集成运放及与所述集成运放相连的多个电容和电阻。
  6. 根据权利要求1所述的光开关驱动模组,其特征在于,所述多频率驱动信号源输出信号的幅度可调。
  7. 根据权利要求6所述的光开关驱动模组,其特征在于,所述多频率驱动信号源包括多频率信号源、集成运放及多个LC谐振电路,所述多频率信号源与所述集成运放的正输入端相连,所述LC谐振电路与所述集成运放的负输入端相连,一电阻连接于所述集成运放的负输入端及输出端之间;每一LC谐振电路包括一可调电阻;当所述多频率信号源输出信号的频率与LC谐振电路的谐振频率一致时,所述多频率信号源输出信号被放大的倍数为所述电阻及所述可调电阻的阻值之比。
  8. 根据权利要求1所述的光开关驱动模组,其特征在于,所述多频率驱动信号源包括多个输出信号频率不同的多个信号源,所述多个信号源的输出信号进过叠加后通过一高速DAC输出,所述高速DAC输出的信号包括不同频率的驱动信号的分量。
  9. 根据权利要求1所述的光开关驱动模组,其特征在于,所述光开关驱动模组还包括防串扰模组,所述防串扰模组在接收到光开关切换请求时计算出相应相移器所需要的驱动功率;计算出多频率信号源需要产生的驱动信号功率;所述多频率信号源按照其需要产生的驱动信号的功率产生驱动信号。
  10. 一种光开关芯片,包括多个光开关单元,其特征在于,所述多个光开关单元分为N组,其中N为大于或等于1的自然数,每组光开关单元共用同一对电极,每对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述电极,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数。
  11. 根据权利要求10所述的光开关芯片,其特征在于,所述光开关单元包括耦合器及相移器,所述带通滤波器的一端与所述相移器相连,另一端与该对电极其中之一相连,该对电极其中之另一为公共端;所述多频率驱动信号源的 两端分别与该对电极相连。
  12. 根据权利要求10-11任意一项所述的光开关芯片,其特征在于,所述带通滤波器包括串联连接的电容C及电感L,所述带通滤波器的谐振频率
    Figure PCTCN2014094229-appb-100002
  13. 根据权利要求10-11任意一项所述的光开关芯片,其特征在于,所述滤波器包括第一电容、第二电容及一电阻,所述第一电容的一端与所述相移器相连,另一端连接至一节点;所述电阻的一端与所述节点相连,另一端与该对电极其中之一相连;所述第二电容的一端与所述节点相连,另一端与所述相移器共同连接至该对电极其中之另一;所述相移器与所述第一电容组成一个低通滤波器,所述第二电容与所述电阻组成一个高通滤波器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器级联的方式组成的滤波器。
  14. 根据权利要求10-11任意一项所述的光开关芯片,其特征在于,所述带通滤波器包括一级或多级有源滤波器,所述有源滤波器包括集成运放及与所述集成运放相连的多个电容和电阻。
  15. 一种光开关驱动方法,用于驱动光开关矩阵中的光开关单元,其特征在于,所述光开关驱动方法包括:
    将所述光开关矩阵的光开关单元分为N组,N为大于或等于1的自然数;每组光开关单元共用同一对电极,每一对电极用于连接一多频率驱动信号源,每一光开关单元连接有一带通滤波器并通过该带通滤波器连接至所述多频率驱动信号源,同组的M个光开关单元连接的M个的带通滤波器的通带各不相同,其中M为大于或等于2的自然数;及
    所述多频率驱动信号源输出与所述M个带通滤波器的通带相对应的多种不同频率的驱动信号,以驱动该组光开关单元。
  16. 根据权利要求15所述的光开关驱动方法,其特征在于,所述光开关驱动方法还包括在所述光开关单元是低速开关时,调节驱动信号的幅度以驱动所述光开关单元。
  17. 根据权利要求15所述的光开关驱动方法,其特征在于,每一光开关单 元包括耦合器及相移器,所述带通滤波器是通过在每个相移器的驱动回路上串联一个电容和一个电感的方式组成。
  18. 根据权利要求15所述的光开关驱动方法,其特征在于,每一光开关单元包括耦合器及相移器,所述带通滤波器是通过级联一级或多级低通滤波器和一级或多级高通滤波器的方式组成。
  19. 根据权利要求15所述的光开关驱动方法,其特征在于,所述带通滤波器包括有源滤波器。
  20. 根据权利要求19所述的光开关驱动方法,其特征在于,所述带通滤波器由多级有源带通滤波器级联、或多级有源低通滤波器和有源高通滤波器级联的方式组成。
  21. 根据权利要求15-20任意一项所述的光开关驱动方法,其特征在于,所述光开关驱动方法还包括在接收到光开关状态切换请求时计算出光开关单元的相移器所需要的驱动功率;计算出多频率信号源需要产生的驱动;及所述多频率信号源按照其需要产生的驱动信号的功率产生驱动信号。
PCT/CN2014/094229 2014-12-18 2014-12-18 光开关芯片、光开关驱动模组及驱动方法 WO2016095163A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/094229 WO2016095163A1 (zh) 2014-12-18 2014-12-18 光开关芯片、光开关驱动模组及驱动方法
EP14908198.6A EP3226576A4 (en) 2014-12-18 2014-12-18 Optical switch chip, optical switch driving module, and driving method
CN201480081191.7A CN107079203A (zh) 2014-12-18 2014-12-18 光开关芯片、光开关驱动模组及驱动方法
US15/625,829 US20170289654A1 (en) 2014-12-18 2017-06-16 Optical switch chip, optical switch driving module, and optical switch driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094229 WO2016095163A1 (zh) 2014-12-18 2014-12-18 光开关芯片、光开关驱动模组及驱动方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/625,829 Continuation US20170289654A1 (en) 2014-12-18 2017-06-16 Optical switch chip, optical switch driving module, and optical switch driving method

Publications (1)

Publication Number Publication Date
WO2016095163A1 true WO2016095163A1 (zh) 2016-06-23

Family

ID=56125625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094229 WO2016095163A1 (zh) 2014-12-18 2014-12-18 光开关芯片、光开关驱动模组及驱动方法

Country Status (4)

Country Link
US (1) US20170289654A1 (zh)
EP (1) EP3226576A4 (zh)
CN (1) CN107079203A (zh)
WO (1) WO2016095163A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079203A (zh) * 2014-12-18 2017-08-18 华为技术有限公司 光开关芯片、光开关驱动模组及驱动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163346A (zh) * 2018-11-07 2020-05-15 深圳Tcl新技术有限公司 一种多路交流信号的单路传输电路、传输***和电视机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417960A (zh) * 2001-10-05 2003-05-14 阿尔卡塔尔公司 有选择性的频率交换***及与之其结合的可重新配置的光延迟电路
US7333686B1 (en) * 2002-12-10 2008-02-19 Avanex Corporation System and method for a re-configurable optical channel dropping de-multiplexer
CN102291634A (zh) * 2011-09-08 2011-12-21 电子科技大学 一种光分组交换装置
WO2014019721A1 (en) * 2012-07-30 2014-02-06 Alcatel Lucent High capacity network node
CN103955147A (zh) * 2014-04-24 2014-07-30 电子科技大学 一种微环光开关的控制装置
CN104159170A (zh) * 2014-08-04 2014-11-19 武汉光盈科技有限公司 适用于光信号标记及解析装置、光信号标记及解析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999652B2 (en) * 2002-11-06 2006-02-14 Nippon Telegraph And Telephone Corporation Optical module and optical switch constituting the same
JP5070777B2 (ja) * 2006-09-19 2012-11-14 富士通株式会社 半導体光増幅器型ゲートスイッチの駆動回路および容量性負荷の駆動回路
CN102244511A (zh) * 2010-05-12 2011-11-16 上海领芯微电子有限公司 远距离红外光电开关专用集成电路及使用该集成电路的远距离红外光电开关
US9685291B2 (en) * 2011-03-08 2017-06-20 The Regents Of The University Of California Frequency addressable microactuators
US8947762B2 (en) * 2013-01-08 2015-02-03 Visitret Displays Ou Fine pixel pitch electrophoretic display
WO2016095163A1 (zh) * 2014-12-18 2016-06-23 华为技术有限公司 光开关芯片、光开关驱动模组及驱动方法
CN105514785A (zh) * 2016-01-08 2016-04-20 暨南大学 一种高速线性扫频激光光源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417960A (zh) * 2001-10-05 2003-05-14 阿尔卡塔尔公司 有选择性的频率交换***及与之其结合的可重新配置的光延迟电路
US7333686B1 (en) * 2002-12-10 2008-02-19 Avanex Corporation System and method for a re-configurable optical channel dropping de-multiplexer
CN102291634A (zh) * 2011-09-08 2011-12-21 电子科技大学 一种光分组交换装置
WO2014019721A1 (en) * 2012-07-30 2014-02-06 Alcatel Lucent High capacity network node
CN103955147A (zh) * 2014-04-24 2014-07-30 电子科技大学 一种微环光开关的控制装置
CN104159170A (zh) * 2014-08-04 2014-11-19 武汉光盈科技有限公司 适用于光信号标记及解析装置、光信号标记及解析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226576A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079203A (zh) * 2014-12-18 2017-08-18 华为技术有限公司 光开关芯片、光开关驱动模组及驱动方法

Also Published As

Publication number Publication date
EP3226576A4 (en) 2017-12-27
US20170289654A1 (en) 2017-10-05
EP3226576A1 (en) 2017-10-04
CN107079203A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CA2987426C (en) Superconducting single-pole double-throw switch system
CA2998363C (en) Superconducting cross-bar switch system
GB515640A (en) Improvements in electrical frequency-selective systems
Kinariwala Synthesis of active RC networks
WO2016095163A1 (zh) 光开关芯片、光开关驱动模组及驱动方法
CN103973235B (zh) 限幅放大器
Pal et al. Single CDBA based current mode first order multifunction filter
Fettweis Steady-state analysis of circuits containing a periodically-operated switch
Petrzela et al. Systematic design procedure towards reconfigurable first-order filters
DE102010055648B4 (de) Filterbauelement
CN110783673A (zh) 一种基于mems开关的多通道交指型可调滤波器
WO2015186578A1 (ja) 移相回路
JP6425515B2 (ja) スピーカ装置
US9660625B1 (en) Continuously tunable delay line
JP2016208353A (ja) マルチポートスイッチ
CN203883828U (zh) 电力线载波信号可调衰减器的电路
CN204031097U (zh) 复数滤波器及其q值补偿电路
GB2489440A (en) A crossover network comprising cascaded filter sections having conjugate phase responses
Banerjee et al. Performance Analysis of Single Operational Transresistance Amplifier Based Bandpass Filter and Bandreject Filter
JP2007221444A (ja) アクティブキャパシタ
RU2350010C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
JP2015179982A (ja) デュプレクサ用の送信側フィルタ、デュプレクサ及び電子部品
RU2388140C2 (ru) Активный фильтр верхних частот четвертого порядка
RU2011105354A (ru) Способ фазовой модуляции и демодуляции высокочастотных сигналов и устройство его реализации
RU2011109636A (ru) Способ амплитудной и фазовой модуляции, частотной и амплитудной демодуляции высокочастотных сигналов и многофункциональное устройство его реализации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908198

Country of ref document: EP